WO2008026242A1 - Cvd apparatus and method for thin film formation using the same - Google Patents

Cvd apparatus and method for thin film formation using the same Download PDF

Info

Publication number
WO2008026242A1
WO2008026242A1 PCT/JP2006/316885 JP2006316885W WO2008026242A1 WO 2008026242 A1 WO2008026242 A1 WO 2008026242A1 JP 2006316885 W JP2006316885 W JP 2006316885W WO 2008026242 A1 WO2008026242 A1 WO 2008026242A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
forming
raw material
reaction chamber
thin film
Prior art date
Application number
PCT/JP2006/316885
Other languages
French (fr)
Japanese (ja)
Inventor
Hisayoshi Yamoto
Masashi Tanaka
Tomoyuki Araki
Original Assignee
Youtec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co., Ltd. filed Critical Youtec Co., Ltd.
Priority to PCT/JP2006/316885 priority Critical patent/WO2008026242A1/en
Priority to JP2007525120A priority patent/JPWO2008026242A1/en
Priority to TW096123744A priority patent/TW200817531A/en
Publication of WO2008026242A1 publication Critical patent/WO2008026242A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates

Definitions

  • the present invention relates to a CVD apparatus and a thin film forming method using the same, and more particularly to a CVD apparatus for efficiently forming a thin film on a film-forming tape and a thin film forming method using the same.
  • Holographic recording and playback technology which is said to be the ultimate optical memory, is, for example, NIKKEI EL
  • a wavelength selective film is indispensable for the recording / reproducing medium of the holographic recording / reproducing technology.
  • the silicon oxide film SiO and the niobium oxide film Nb are used as the wavelength selective film.
  • the film has generally been formed by vapor deposition or sputtering.
  • Non-Patent Document 1 NIKKEI ELECTRONICS 2005. 1.17 “Holographic Media Near Takeoff Realized 200GB in 2006” pages 105-114
  • the film is formed at a high vacuum, a low !, and a deposition temperature, so that an oxide thin film having different physical properties due to insufficient oxygen compared to the stoichiometry. Formed If the characteristics as designed easily are not obtained, problems will easily occur!
  • the deposition rate is remarkably lower than that by the CVD method, so that there is a tendency that the productivity is low and it is difficult to reduce the production cost.
  • the recording / reproducing medium requires various films in addition to the wavelength selection film, but only for forming the wavelength selection film, a silicon oxide film and a niobium oxide film or Tantalum oxide films need to be stacked alternately, and the number of stacking steps is 5 to 1 000 times (for example, 20 times), which is a major factor that hinders manufacturing cost reduction.
  • a silicon oxide film for example, a niobium oxide film is then formed, and then a silicon oxide film is formed, and then the niobium oxide film is formed. Repeating film formation 10 times is because it takes time to switch the thin film to be formed.
  • the present invention has been made to solve such problems, solves all of the above-mentioned problems caused by vapor deposition and sputtering, and further wastes time. Accordingly, it is an object of the present invention to provide a CVD apparatus capable of efficiently forming a thin film on both surfaces of a film forming member and a thin film forming method using the CVD apparatus.
  • the invention according to claim 1 includes a reaction chamber, a CVD unit that supplies a source gas into the reaction chamber, and an exhaust unit that exhausts the gas in the reaction chamber.
  • the film forming tape in the reaction chamber, includes a travel path leading to the first scraping roller force and the second scraping roller, and the CVD unit, and travels in one direction along the travel path.
  • a double-sided film forming mechanism that forms a thin film on both sides of the film-deposited tape is provided.
  • the double-sided film-forming mechanism includes a first film-forming mechanism that forms a thin film on one surface of the film-forming tape, and a thin film on the other surface of the film-forming tape. And a reversing means for reversing the front and back of the film-forming tape in a travel path between the first film-forming mechanism and the second film-forming mechanism.
  • the invention according to claim 3 is characterized in that the CVD unit includes the orifice tube that disperses the raw material solution in a fine particle shape or a mist shape in a carrier gas, and the raw material solution that is communicated with the gas passage of the orifice tube.
  • the invention according to claim 4 is characterized in that the CVD unit includes RF plasma generating means for forming plasma by applying an RF voltage in the reaction chamber, and the adjacent CVD unit is disposed in the reaction chamber. It is characterized by providing isolation members that are separated from each other.
  • the invention according to claim 5 is characterized in that the first scraping roller and the second scraping roller can rotate in both forward and reverse directions.
  • the invention according to claim 6 includes an exhaust step of exhausting the gas in the reaction chamber by an exhaust means, a source gas supply step of supplying a source gas to the reaction chamber, and a cover in the reaction chamber.
  • a film forming step including a film forming step for forming a thin film on the film forming tape, wherein the film forming step includes a traveling path from the film forming tape to the first scraping roller force and the first scraping roller force.
  • the double-sided film-forming step includes a first film-forming step of forming a thin film on one surface of the film-forming tape by a first film-forming mechanism; A second film-forming step of forming a thin film on the other surface of the film-forming tape by a film mechanism; and the film-forming film in a travel path between the first film-forming mechanism and the second film-forming mechanism. And a reversing step for reversing the front and back of the tape.
  • the carrier gas pipe force supplies the carrier gas to the orifice pipe.
  • Carrier gas supply step a raw material solution supply step for supplying the raw material solution from the raw material solution passage to the orifice pipe, and the raw material solution is dispersed in the carrier gas in the form of fine particles or mist by the orifice pipe.
  • a vaporization pipe supply step for supplying to a vaporization pipe provided at an outlet of the orifice pipe, and a vaporization step for heating and vaporizing the raw material solution by a heating means of the vaporization pipe in the vaporization pipe. It is characterized by.
  • the invention according to claim 9 is characterized in that it includes an RF plasma generation step of generating RF plasma in the reaction chamber to form a thin film.
  • the invention according to claim 10 includes a thin film forming step of forming the thin film by running the film-forming tape in both forward and reverse directions.
  • FIG. 1 is a diagram showing an overall configuration of a CVD apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a reaction chamber according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of a CVD vaporizer according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of a gas shower electrode according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration of a reaction chamber according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of a reaction chamber according to a third embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a reaction chamber according to a fourth embodiment of the present invention.
  • FIG. 8 is a view showing a configuration of a CVD vaporizer according to a fifth embodiment of the present invention.
  • FIG. 9 shows TG-DTA chart of trisdimethylaminosilane in 760 Torr argon atmosphere.
  • FIG. 10 shows the results of measuring the vapor pressure characteristics of trisdimethylaminosilane with respect to temperature.
  • FIG. 11 Shows the results of measuring the vapor pressure characteristics of hexamethyldisilazane with respect to temperature.
  • the best example of the multilayer film to be formed is a diffusion prevention film (usually a silicon nitride film) formed on a PET resin film-deposited tape for a flexible organic EL display. is there.
  • the film formation tape is, for example, a plastic (material PET) having a length of 5000 m and a width of 0.3 m, and necessary thin films including the above-described wavelength selection film are formed on both surfaces of the film formation tape. Then, by punching, a large number of media discs of a size according to the standard are obtained.
  • the CVD unit of the CVD apparatus may be one in which a normal CVD method is performed, but one having a vaporizing tube for vaporizing a liquid compound or a solid compound having a boiling point of about 25 ° C or higher. Is preferred. Specifically, a solution obtained by dissolving a solid in a solvent, proposed in Japanese Patent Application No. 2004-290087, is vaporized (gasified) by a vaporizer and used as a gas for forming a thin film to form a thin film. You may make full use of technology. In the examples described later, CVD technology using a vaporizer is also used. The details of the vaporization mechanism using this vaporizer will be described later.
  • Each CVD unit may perform plasma CVD by forming a plasma by applying an RF (Radio Frequency) voltage between the RF electrode and the film forming roller.
  • RF Radio Frequency
  • the film deposition table When the heat resistance of the film is low, a multilayer film can be formed at a relatively low temperature by performing plasma CVD, so that the heat resistance required for the film-forming tape is low.
  • an RF power source is provided for each CVD unit.
  • a plurality of RF power sources are provided relatively close to each other. May cause interference between other RF power supplies. Therefore, in order to eliminate this possibility, the power and phase may be shifted from each other when the frequencies of the multiple RF power supplies are changed from each other.
  • a gas for forming a thin film may be supplied vertically to a film formation area like a shower and supplied with a large number of ejection hole forces (shower method). By doing so, it is possible to easily obtain a multilayer film having a uniform and uniform thickness over the entire surface of the tape.
  • the number of CVD units provided in one CVD apparatus is not necessarily limited to the force to explain the case of two in the embodiment described later. For example, five or ten, and the like. If you have many, you can make it a number.
  • Control and management of CVD temperature is extremely important for the formation of thin films.
  • the film forming roller is used with a heat medium (for example, oil).
  • the temperature may be controlled to several tens of degrees Celsius (for example, 50 degrees Celsius or 60 degrees Celsius).
  • a CVD apparatus 1 shown in FIG. 1 includes a reaction chamber 2, an exhaust means 3, and a plurality of CVD sections 4 (4a, 4b). As a whole, the gas in the reaction chamber 2 is exhausted by the exhaust means 3, and the CVD section 4 The raw material gas generated by vaporizing the raw material solution is introduced into the reaction chamber 2 so that a thin film can be formed on the film formation member V in the reaction chamber 2! RU
  • the exhaust means 3 is provided in the main vacuum pipe 6 communicated with the reaction chamber 2 through the vacuum exhaust port 5, the vacuum pipe 8 connecting the main vacuum pipe 6 and the exhaust vacuum pump 7, and the vacuum pipe 8 It consists of a water-cooled trap 9 and a vacuum valve 10. Further, N 2 is introduced into the reaction chamber 2 through the gas supply pipe 11.
  • the reaction chamber 2 includes a sealed reaction chamber main body 15 and a film forming tape 16 that is a film forming member from the first scraping roller 17 to the second scraping roller 17
  • a thin film is formed on both surfaces of the film-forming tape 16 while the film-forming tape 16 reaches the second scraping roller 18 from the first scraping roller 17 and the traveling path R to 18.
  • a double-sided film forming mechanism 19 is provided, and a thin film can be efficiently formed on both sides of the film-forming tape 16.
  • the double-sided film forming mechanism 19 includes a first film forming mechanism 21 that forms a thin film on one surface of the film-forming tape 16 and a second film forming mechanism that forms a thin film on the other surface of the film-forming tape 16.
  • the first film formation mechanism 21 includes a first film formation roller 24 that winds the film formation tape 16, and a first CVD unit provided corresponding to the first film formation roller 24. 4a.
  • the first CVD unit 4a is installed on the lower left side of the reaction chamber 2 so as to supply the source gas upward.
  • the second film forming mechanism 22 includes a second film forming roller 25 for winding the film forming tape 16, and a second CVD unit 4b provided corresponding to the second film forming roller 25.
  • the second CVD unit 4b is installed on the upper right side of the reaction chamber 2 so as to supply the raw material gas downward.
  • the guide roller 23 guides the film formation tape 16 from the first film formation roller 24 to the second film formation roller 25 so that the front and back of the film formation tape 16 can be reversed.
  • the guide roller 23 includes a first guide roller 23a disposed above the film forming rollers 24 and 25 and a second guide roller 23b disposed below the film forming rollers 24 and 25.
  • the first scraping roller 17 and the second scraper so that the film-forming tape 16 can be continuously supplied to the first deposition mechanism 21 and the second deposition mechanism 22.
  • the roller 18, the first film forming roller 24, the second film forming roller 25, the guide roller 23, and the plurality of feed rollers 26 are installed in the reaction chamber 2, and the film forming tape 16 is the first scraping roller.
  • a travel route R from 17 to the second scraping roller 18 is formed.
  • the first scraping roller 17 and the second scraping roller 18 are respectively arranged below the left and right sides of the reaction chamber 2, and are connected to driving means (not shown) to drive the driving It is configured to be able to rotate in the positive direction by the driving force transmitted from the means (in the direction of the arrow in the figure).
  • a first film forming roller 24 and a second film forming roller 25 are pivotally supported between the first scraping roller 17 and the second scraping roller 18.
  • the first film formation roller 24 and the second film formation roller 25 are arranged on the same horizontal line.
  • a guide roller 23 is pivotally supported between the first film forming roller 24 and the second film forming roller 25.
  • a feeding roller 26 is pivotally supported between the first scraping roller 17 and the first deposition roller 24, and between the second deposition roller 25 and the second scraping roller 18, respectively.
  • reference numeral 27 denotes an isolation member that separates the first CVD unit 4a and the second CVD unit 4b from other CVD unit forces.
  • the isolation member 27 is configured by standing a plate-like member on the inner wall of the reaction chamber 2 where the CVD units 4a and 4b are provided, with the first film forming roller 24 and the second film forming roller 25 interposed therebetween. Is done.
  • the isolation member 27 covers the range of the inner wall force of the reaction chamber 2 up to the central axis of the film forming roller, and the tip is folded back inward.
  • the reaction chamber 2 includes a vacuum exhaust port 5 on the inner side covered with the isolation member 27.
  • the film-forming tape 16 is guided at one end to the upper side in the reaction chamber 2 by the feed roller 26, and is wound around the first film-forming roller 24 counterclockwise. When wound around the first film-forming roller 24, the surface of the film-forming tape 16 exposed to the plasma generation region A formed between the first CVD unit 4a and the film-forming tape One side of 16.
  • the guide roller 23 avoids the separating member 27, and the second film is formed clockwise by the film-forming tape 16 wound around the first film forming roller 24 so as to draw an S-shape.
  • Guide the roller 25 so that it can be wound.
  • the film-forming tape 16 that has been delivered by the lower force of the first film-forming roller 24 is guided upward by the first guide roller 23a and then lowered by the second guide roller 23b. It is guided and wound around the second film forming roller 25 clockwise.
  • the front and back of the film-forming tape 16 are reversed between the first film-forming roller 24 and the second film-forming roller 25, and the one surface wound by the first film-forming roller 24 is The other opposite surface is exposed to the plasma generation region A by the second film forming roller 25.
  • the film-forming tape 16 is guided to the lower side of the reaction chamber 2 by the feed roller 26 and reaches the second scraping roller 18.
  • the travel path R from the first scraping roller 17 to the second scraping roller 18 is formed.
  • the front and back are reversed, and the surface on which the first film forming roller 24 forms the film in the second film forming roller 25.
  • a thin film is formed on the other surface.
  • the film-forming tape 16 is pressed against the film-forming rollers 24 and 25 by a guide roller 23 and a feed roller 26 with a predetermined force!
  • the film-forming tape 16 has, for example, a length force of OOOm and a width of 0.3m to 2m, and the material is a resin such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, etc. Or metal power such as copper or aluminum.
  • the first CVD unit 4a and the second CVD unit 4b are capable of forming a thin film on the film forming tape 16 wound around the first film forming roller 24 and the second film forming roller 25, respectively.
  • the first film forming roller 24 and the second film forming roller 25 are provided correspondingly.
  • the first CVD unit 4a and the second CVD unit 4b are respectively provided between a CVD vaporizer 31 for supplying a raw material gas obtained by vaporizing a raw material solution into the reaction chamber 2 and the film forming rollers 24 and 25.
  • a gas shower electrode 32 is provided as an RF plasma generating means for generating plasma in the plasma generation region A and forming a thin film on the film forming tape 16 wound around the film forming rollers 24 and 25.
  • the first CVD unit 4a is provided on the lower side of the reaction chamber 2 so that a gas shower electrode 32 faces the first film-forming roller 24 with a downward force.
  • the second CVD unit 4b is provided on the upper side of the reaction chamber 2 so that the gas shower electrode 32 faces the second film forming roller 25 with an upward force.
  • first CVD unit 4a and the second CVD unit 4b are configured so that film-forming conditions such as the type of raw material solution and temperature can be individually set. Each desired thin film can be formed in the CVD section.
  • the CVD apparatus 1 can start or stop the film forming operation of each CVD unit individually while the film forming tape 16 is running. .
  • the first CVD unit 4a and the second CVD unit 4b have the same configuration except for the positions where they are installed in the reaction chamber 2. Therefore, hereinafter, the first CVD unit 4a and the second CVD unit 4b are the same. Part 4a explain.
  • the CVD gas vessel 31 introduces a raw material gas into the gas shower electrode 32 through the gas supply pipe 33, so that a large number of jetted loca is also showered on the first film forming roller 24 in the reaction chamber 2. In this way, the raw material gas can be supplied.
  • the CVD vaporizer 31 includes a vaporization mechanism 41 and a raw material solution supply mechanism 42 provided in the vaporization mechanism 41, and the vaporization mechanism 41 is connected to the gas supply pipe 33 of the reaction chamber. It has been.
  • a carrier gas flow path 43 for supplying a carrier gas such as nitrogen gas or argon to the reaction chamber 2 is formed by a carrier gas pipe 44 and an orifice pipe 45.
  • a vaporization tube 47 is formed at the outlet 46) of the carrier gas channel 43.
  • the vaporization mechanism 41 includes a carrier gas supply mechanism (not shown) connected to the base end of the carrier gas pipe 44 (that is, the inlet of the carrier gas flow path 43), and a carrier gas supply mechanism (not shown).
  • the distal end 48 of the gas pipe 44 is connected to the proximal end 49 of the orifice pipe 45 so that the carrier gas pipe 44 can also supply a high-speed carrier gas to the orifice pipe 45.
  • a row controller (not shown) is provided.
  • the carrier gas pipe 44 has a pressure transducer 50 attached!
  • the pressure transducer 50 accurately measures the carrier gas pressure in the carrier gas pipe 44 and its fluctuation and constantly monitors it while recording it.
  • the pressure transducer 50 transmits an output signal having a signal level corresponding to the pressure level of the carrier gas to a control unit (not shown).
  • the pressure result of the carrier gas can be displayed on the display unit (not shown) based on the output signal so that the operator can monitor it.
  • the operator can monitor the clogging of the carrier gas channel 43 based on the pressure result.
  • the carrier gas pipe 44 is selected so that the inner diameter thereof is larger than the inner diameter of the orifice pipe 45, and the carrier gas pipe 44 force is configured to further increase the flow velocity of the carrier gas supplied to the orifice pipe 45.
  • the orifice tube 45 is arranged in a vertical direction, and a tip portion 46 having a trapezoidal conical shape is provided at the tip 46, and a pore 52 is provided at the top of the convex portion 51.
  • the inclined surface 51a is formed around the outer periphery of the spray port 53, which is the tip of the pore 52, by providing the convex portion 51 at the tip. This makes it difficult for the residue to collect in the spray port 53, and prevents the spray port 53 from being clogged!
  • the apex angle ⁇ of the convex portion 51 is formed at an acute angle of 45 ° to 135 °, particularly 30 ° to 45 °. This prevents the spray port 53 from being clogged with the compound.
  • the pore 52 of the spray port 53 is selected so that its inner diameter is smaller than the inner diameter of the orifice tube 45, whereby the pressure of the carrier gas in the orifice tube 45 is increased.
  • the tip of the pore 52 is arranged so as to protrude into the internal space 55 of the vaporization tube 47 by inserting the convex portion 51 of the orifice tube 45 into the proximal end 54 of the vaporization tube 47.
  • the orifice pipe 45 has a plurality of (in this case, for example, five) connecting pipes 56a to 56e communicating with each other from the base end 49 to the convex portion 51.
  • Each of the connection pipes 56a to 56e is provided with a raw material solution supply mechanism 42.
  • the orifice pipe 45 is configured such that a predetermined raw material solution can be supplied from the raw material solution supply mechanism 42 via the connecting pipes 56a to 56e.
  • a raw material solution stored in a raw material solution tank (not shown) is routed through a predetermined raw material solution flow path 58, whereby a liquid mass flow controller (LMFC) 57, a block valve are provided. It is configured to supply the orifice pipe 45 through 59 in order.
  • the liquid mass flow controller 57 controls the flow rate of the raw material solution flowing through the raw material solution channel 58.
  • LMFC liquid mass flow controller
  • the carrier gas flowing at high speed joins the raw material solution supplied from the connection tube 56a, and the raw material solution is dispersed in the carrier gas in the form of fine particles or mist. Then, it is sprayed at a high speed (230 mZ seconds to 350 mZ seconds) into the vaporization tube 47 through the pores 52.
  • the orifice tube 45 is selected to have an inner diameter of, for example, ⁇ 1. Omm or less, and the length in the longitudinal direction extending in the vertical direction is selected to be about 100 mm.
  • a cylindrical gas passage is formed.
  • the inner diameter of the pore 52 is ⁇ ⁇ . 2 ⁇ 0.7 It is selected to be about mm, and the carrier gas inside it can be made high-speed.
  • the orifice pipe 45 includes the cylindrical gas passage, the raw material solution can be stably dispersed in the carrier gas and supplied to the vaporization pipe 47.
  • the vaporization pipe 47 connected to the orifice pipe 45 is tubular and is arranged in the vertical direction in the same manner as the orifice pipe 45, and its inner diameter is selected to be significantly larger than the inner diameter of the orifice pipe 45. Therefore, the pressure in the vaporization pipe 47 is formed to be smaller than the pressure in the orifice pipe 45.
  • the vaporizing pipe 47 is provided with a large pressure difference between the orifice pipe 45 and the orifice pipe 45 due to the provision of the pores 52.
  • the raw material solution and the carrier gas are ejected from the pores 52 at a high speed (for example, 230 mZ seconds to 350 mZ seconds) and can be expanded in the internal space.
  • the pressure in the vaporization pipe 47 is selected to be about lOTorr, for example, whereas the pressure in the orifice pipe 45 is selected to be about 500 to 1000 Torr, for example. A large pressure difference is provided between the orifice tube 45.
  • the pressure of the carrier gas after the flow rate control is a force that increases or decreases depending on the carrier gas flow rate, the solution flow rate, and the size of the pore 52.
  • the size of the spray port 53 is selected and the pressure of the carrier gas is increased. It is preferable to control to 500 to 1000 Torr.
  • a vaporization tube heater 60 as a heating means is attached to the outer periphery of the vaporization tube 47 between the base end 54 and the distal end (that is, the connection portion with the reaction chamber).
  • the vaporizing tube 47 can be heated to, for example, about 270 ° C. by the tube heater 60.
  • the base end 54 of the vaporization tube 47 is formed in a substantially hemispherical shape so that the vaporization tube heater 60 can uniformly heat the base end 54 side. Has been made.
  • the raw material solution dispersed and atomized by the high-speed carrier gas flow in the orifice tube 45 is instantaneously heated by the vaporization tube heater 60 and vaporized instantaneously. It is configured. At this time, the time from when the raw material solution is mixed in the orifice tube 45 until it is sprayed into the vaporization tube 47 is preferably extremely short (preferably within 0.1 to 0.002 seconds). .
  • the raw material solution is injected into the orifice by a high-speed carrier gas flow. Immediately after being dispersed in the tube 45, it becomes fine and instantly vaporizes in the high-temperature vaporizing tube 47. In addition, the phenomenon of vaporizing only the solvent is suppressed.
  • the mist size is reduced (the mist diameter is 1 IX m or less), and the evaporation area and the evaporation rate are increased. Can. If the fog size is reduced by an order of magnitude, the evaporation area will increase by an order of magnitude. It is preferable to design the angle of the spraying port 53 and the dimensions of the vaporizing tube 47 so that the mist ejected from the spraying port 53 does not collide with the inner wall of the vaporizing tube 47.
  • the mist collides with the inner wall of the vaporization tube 47, it adheres to the wall surface, the evaporation area decreases by an order of magnitude, and the evaporation rate decreases.
  • the mist is attached to the wall of the vaporization tube 47 for a long time, there is an example in which it changes into a compound that does not evaporate due to thermal decomposition.
  • the vaporization tube 47 can reduce the sublimation temperature of the raw material mixture contained in each of the raw material solutions by reducing the pressure inside, and as a result, the vaporization tube can be added.
  • the heat from the heat heater 60 can easily vaporize the raw material solution!
  • the vaporizing tube 47 vaporizes the raw material solution, supplies it to the reaction chamber 2 as a raw material gas as a thin film forming gas, and can form a thin film by the CVD method in this reaction chamber 2 It is made like that.
  • the proximal end 54 of the vaporization pipe 47 has a heat insulating material 61 between the vaporization pipe 47 and the heat insulation material 61 so that heat from the vaporization pipe 47 is hardly transmitted to the orifice pipe 45. It is composed! Incidentally, the proximal end 54 of the vaporizing tube 47 is hermetically sealed by an O-ring 62.
  • the fastening member 63 that connects the orifice pipe 45 and the vaporization pipe 47 is provided with a heat insulating material 64.
  • the mist sprayed from the pores 52 does not wet the inner wall of the vaporizing tube 47.
  • the evaporation area is reduced by orders of magnitude on wet walls compared to fog. That is, a structure in which the inner wall of the vaporizing tube 47 is not soiled at all is preferable.
  • the wall of the vaporization tube 47 is preferably mirror-finished so that the dirt on the inner wall of the vaporization tube 47 can be easily evaluated.
  • the raw material solution is supplied into the carrier gas flow that always flows at high speed toward the reaction chamber 2 in the orifice tube 45, so that the raw material solution is in the form of fine particles or mist. Then, it is dispersed in a carrier gas and vaporized in the vaporization tube 47 as it is and supplied to the reaction chamber 2 as a raw material gas.
  • the vaporization mechanism 41 instantaneously atomizes the raw material solution by the high-speed carrier gas flow so that the raw material solution can be easily vaporized by the heat of the vaporizing tube heater 60. Because it is difficult to vaporize, it is easy to vaporize even a raw material solution obtained by dissolving a raw material compound in a solvent.
  • the carrier gas pressurized in the carrier gas pipe 44 is introduced into the orifice pipe 45 at high speed (for example, the carrier gas is 500 to 1000 Torr, 200 ml Zmin to 2 LZmin).
  • the carrier gas is 500 to 1000 Torr, 200 ml Zmin to 2 LZmin. The temperature rise of the raw material solution can be suppressed.
  • this vaporization mechanism 41 it is possible to prevent only the solvent in the raw material solution from evaporating in the orifice tube 45, so that it is possible to prevent the raw material solution from being highly concentrated in the orifice tube 45, and to force As a result, an increase in viscosity can be suppressed and precipitation of the raw material compound can be prevented.
  • the raw material solution dispersed in the carrier gas can be instantaneously vaporized by the vaporization tube 47, only the solvent in the raw material solution vaporizes in the pore 52 and in the vicinity of the pore 52. Therefore, clogging of the pores 52 can be suppressed.
  • the continuous use time of the vaporizer for CVD 31 can be increased.
  • the gas shower electrode 32 has one end of an RF power supply 71 electrically connected thereto.
  • the other end of the RF power source 71 is grounded, and the film forming rollers 24 and 25 are grounded.
  • a plasma generation region A in which plasma discharge occurs is formed between the portion of the first film formation roller 24 (second film formation roller 25) on the film formation tape 16 and the gas shower electrode 32.
  • 72 is a bottom plate of the reaction chamber 2
  • 73 is a shield electrode that forms the outermost shell portion of the gas shower electrode 32
  • 74 is an RF electrode that is formed inside the shield electrode 73 and insulated from it. Further, one end of the RF power source 71 is electrically connected.
  • a gas supply pipe 33 for supplying the gas from the vaporization pipe 47 into the reaction chamber 2 is provided inside the RF electrode 74 so that a supply space 75 for oxidizing gas etc. is formed therebetween.
  • Reference numeral 76 denotes an oxidizing gas supply pipe for supplying an oxidizing gas or the like to the supply space 75 for the acid gas.
  • Vaporized material injection holes (outlet holes) for jetting gas (vaporized raw material) downward 79, 79, ..., and the above-mentioned acid gas supplied space 75, etc. 80, 80, ... are arranged in the lower side, and the vaporized raw material reacts with the oxygen gas in the space 78.
  • the film is supplied onto the film forming tape 16 on the first film forming roller 24 through paths separated from each other.
  • 81 is a heater provided in the RF electrode 74
  • 82 is a heater power source for supplying power to the heater 81
  • 83 is a noise cut filter.
  • Reference numeral 84 denotes a vaporized raw material supply valve.
  • the CVD apparatus 1 causes the film-forming tape 16 to move in the forward direction along the travel path R formed in the reaction chamber 2 by the rotation of the first scraping roller 17 and the second scraping roller 18. Let it run.
  • the CVD apparatus 1 is provided with a guide roller 23 and configured to reverse the front and back between the first film formation roller 24 and the second film formation roller 25 while the film formation tape 16 is running. did.
  • a thin film can be formed on the front and back surfaces of the film-forming tape 16 while the film-forming tape 16 is traveling in the forward direction. Thin films can be formed on both sides of the tape 16.
  • the CVD apparatus 1 includes an orifice tube 45 in which the CVD gas vessel 31 sprays the vaporizing tube 47 against the carrier gas flowing the raw material solution at a high speed.
  • a thin film can be formed even with downward force. Therefore, in the CVD apparatus 1, the first CVD unit 4 a installed on the lower surface of the reaction chamber 2 reliably forms a thin film on one surface of the film-forming tape 16, so the second CVD unit 4 b By forming a thin film on the surface, the thin film can be reliably formed on both surfaces of the film-forming tape 16.
  • the CVD apparatus 1 is configured such that the first and second CVD units 4a and 4b can individually set various CVD conditions, and the thin film to be formed can also be set individually. In addition, it is possible to individually control the film forming operation or stop the film forming operation. It is.
  • first and second CVD portions 4a and 4b can be made to form a similar thin film.
  • the CVD apparatus 1 may be configured such that the first scraping roller 17 and the second scraping roller 18 can rotate both forward and backward. That is, the film-forming tape 16 is moved from the first scraping roller 17 to the first scraping roller 17 along the travel path R by the first and second scraping rollers 17 and 18 rotating in both forward and reverse directions. It can travel in the direction of the force (forward direction) to the second scraping roller 18, or conversely, it can travel in the direction of direction (reverse direction) from the second scraping roller 18 to the first scraping roller 17. As a result, the front and back surfaces of the film-forming tape 16 are also reversed when reaching the first scraping roller 17 from the second scraping roller 18. Therefore, by setting the film forming conditions of the first CVD unit 4a and the second CVD unit 4b individually, it is possible to form a multilayer film having an arbitrary laminated structural force.
  • the CVD apparatus 1 provides the first CVD unit 4a and the second CVD unit 4b to another CVD by providing the isolation member 27 in the first CVD unit 4a and the second CVD unit 4b. Can be isolated from the department. Thereby, since one CVD part can form a thin film in the film-forming tape 16 without being influenced by the other CVD part, the quality of the formed thin film can be improved. Further, the CVD apparatus 1 can more reliably prevent the source gas from flowing out by folding the tip of the separating member 27 inward.
  • the CVD apparatus 1 is configured to smoothly exhaust the treated gas by forming the vacuum exhaust port 5 in the portion covered with the isolation member 27. Therefore, the CVD apparatus 1 can prevent the treated gas from flowing out of the reaction chamber 2 beyond the isolation member 27.
  • the CVD apparatus 1 is formed because the first CVD unit 4a and the second CVD unit 4b can form a thin film on the film forming tape 16 without being affected by other CVD units. The quality of the thin film can be further improved.
  • the CVD apparatus 1 is provided with a gas-sharing electrode 32 in each of the first CVD unit 4a and the second CVD unit 4b, so that the entire surface of the film-forming tape 16 is uniform and uniform in thickness. A thin film can be formed. [0094] Further, the CVD apparatus 1 can easily suppress the temperature change of the inner wall of the reaction chamber 2.
  • the thin film attached to the inner wall of the reaction chamber 2 can be removed by etching, so that a thin film with less dust can be formed. If a thin film of an inorganic material such as SiN, SiOx, Si, C, or DLC is formed, the thin film adhering to the reaction chamber 2 may be peeled off immediately after deposition by sputtering or sputtering. However, according to the CVD apparatus 1 of the present invention, since the thin film is formed by the CVD method, the quality can be improved.
  • the CVD apparatus 101 is different from the first embodiment described above in that the first CVD unit 4a and the second CVD unit 4b are reaction chambers. It differs in that it is provided so as to face the two side surfaces.
  • the first film forming roller 24 is disposed on the left side of the reaction chamber 2, and the second film forming roller 25 is disposed on the right side of the reaction chamber 2, and is supported on the same horizontal line.
  • the first scraping roller 17 is provided on the left side of the reaction chamber 2 and on the right side of the first film forming roller 24.
  • the second scraping roller 18 is disposed on the lower right side in the reaction chamber 2. Therefore, the second film forming roller 25 is provided on the vertical axis.
  • the first CVD unit 4a corresponds to the first film formation roller 24 and corresponds to the left side surface of the reaction chamber 2
  • the second CVD unit 4b corresponds to the second film formation roller 25 and reacts. Each is provided on the right side of chamber 2.
  • the film-forming tape 16 hangs vertically downward from the first scraping roller 17 and is sent to the left at a right angle by the feed roller 26 and wound around the first film-forming roller 24 counterclockwise. Is done.
  • the guide roller 23 guides the film forming tape 16 to which the lower force of the first film forming roller 24 is also sent to the upper side of the reaction chamber 2 so as to draw an S-shape, and the second film forming roller 25 Turn clockwise.
  • the film-deposited tape 16 has one surface that is reversed by the first film-forming roller 24 between the first film-forming roller 24 and the second film-forming roller 25. The other side opposite to that appears in the plasma generation region A at the second film formation roller 25.
  • the film forming tape 16 delivered from the second film forming roller 25 is guided leftward from the second film forming roller 25 by the feed roller 26 and reaches the second scraping roller 18.
  • the CVD apparatus 101 includes the first CVD unit 4a and the second CVD unit 4b in the reaction chamber 2.
  • the plasma generation region A can be formed on the side of the film forming rollers 24 and 25 in the first CVD unit 4a and the second CVD unit 4b.
  • the CVD apparatus 101 can supply the source gas in the same horizontal direction in each plasma generation region A, so that the film forming conditions can be made uniform. Accordingly, a stable quality thin film can be formed in any plasma generation region A.
  • the CVD apparatus 101 includes the first CVD unit 4a and the second CVD unit 4b including the CVD vaporizer 31 and the gas shower electrode 32, so that the same as in the first embodiment described above. It is possible to obtain the effects of
  • the CVD apparatus 111 is different from the second embodiment described above in that the first film-forming roller 24, the second film-forming roller 25, It is different in that it is provided in the vertical direction.
  • the first film formation roller 24 is disposed on the lower left side, and the second film formation roller 25 is disposed on the upper right side.
  • the first scraping roller 17 is provided on the left side of the reaction chamber 2 and on the vertical axis of the first film-forming roller 24.
  • the second scraping roller 18 is disposed in the reaction chamber 2.
  • the lower right side is provided on the vertical axis of the second film forming roller 25.
  • the film-forming tape 16 is guided to the right of the reaction chamber 2 from the first scraping roller 17 at one end by the feed roller 26, and is wound counterclockwise by the first film-forming roller 24. .
  • the guide roller 23 guides the film-forming tape 16 sent from the lower force of the first film-forming roller 24 vertically upward to the height of the second film-forming roller 25.
  • the film forming tape 16 is wound around the second film forming roller 25 clockwise so as to draw an S-shape.
  • the film-forming tape 16 to be delivered is fed to the inside of the reaction chamber 2 and then reaches the second scraping roller 18.
  • the CVD apparatus 111 reduces the height dimension of the reaction chamber 2 by providing the first film-forming roller 24 and the second film-forming roller 25 while being shifted upward and downward. Can do. Therefore, the CVD apparatus 111 sets the position where the scraping rollers 17 and 18, the film forming rollers 24 and 25, the feed roller 26, the guide roller 23, and the CVD units 4 a and 4 b are placed at a position where the lower force of the reaction chamber 2 is low. be able to . As a result, the CVD apparatus 111 facilitates the installation and replacement of the film-forming tape 16. And can save space.
  • CVD apparatus 111 has the same effect as that of the second embodiment described above by providing first CVD section 4a and second CVD section 4b on the side surface of reaction chamber 2. Can do.
  • the CVD apparatus 111 includes the first CVD unit 4a and the second CVD unit 4b provided with a CVD vaporizer 31 and a gas shower electrode 32, so that the same as in the first embodiment described above. An effect can be obtained.
  • the CVD apparatus 121 is different from the second embodiment described above in that the first film forming roller 24, the second film forming roller 25, Are different in that they are arranged vertically.
  • the first film formation roller 24 is disposed on the upper side in the reaction chamber 2, and the second film formation roller 25 is disposed on the lower side in the reaction chamber 2.
  • the membrane roller 25 is supported on the center axis in the reaction chamber 2.
  • the first scraping roller 17 is provided on the left side in the reaction chamber 2, and the second scraping roller 18 is provided on the left side in the reaction chamber 2.
  • the film-forming tape 16 is guided at one end by the feed roller 26 from the first scraping roller 17 to the right side of the reaction chamber 2 and wound counterclockwise by the first film-forming roller 24.
  • the guide roller 23 guides the film-forming tape sent from the first film-forming roller 24 so as to avoid the isolation member 27 and to be wound around the second film-forming roller 25 clockwise.
  • the film forming tape 16 wound around the second film forming roller 25 from the upper side is guided to the left side of the reaction chamber 2 and then reaches the second picking roller 18.
  • the CVD apparatus 121 reduces the width dimension of the reaction chamber 2 by providing the first film-forming roller 24 and the second film-forming roller 25 in the vertical direction on the central axis. be able to. Therefore, the CVD apparatus 121 can be installed even when the place where the CVD apparatus 121 can be installed is narrow.
  • CVD apparatus 121 has the same effects as those of the second embodiment described above by providing first CVD section 4a and second CVD section 4b on the side surface of reaction chamber 2. Can do.
  • the CVD apparatus 121 includes the first CVD unit 4a and the second CVD unit 4b, which are provided with a CVD vaporizer 31 and a gas shower electrode 32, so that the same as in the first embodiment described above. Effect It can be done.
  • the CVD vaporizer 131 always supplies the carrier gas to the reaction chamber 2 by the vaporization mechanism 132 and is supplied from the raw material solution supply mechanism 42.
  • the raw material solution is configured to be surely vaporized by the vaporization mechanism 132 and supplied to the reaction chamber 2.
  • the raw material solution supply mechanism 42 the raw material solution stored in the raw material solution tank (not shown) is supplied to the raw material supply pipe 136 sequentially through the liquid mass flow controller (LMFC) 133, the raw material solution flow path 134, and the block valve 59. It is made to do.
  • LMFC liquid mass flow controller
  • the solvent stored in the solvent tank (not shown) Is supplied to the raw material supply pipe 136 via the liquid mass flow controller (L MFC) 138 and the block valve 59 by passing through a predetermined solvent flow path 137.
  • the vaporization mechanism 132 includes a vaporization mechanism main body 139, a carrier gas pipe 44, a raw material supply pipe 136, and a spray flange 142 having pores 141, and a vaporization pipe 47 is formed at the tip of the pore 141.
  • the vaporizing mechanism 132 is configured such that the vaporizing mechanism main body 139 holds the raw material supply pipe 136 in the vertical direction and can supply a carrier gas to the outside near the tip of the raw material supply pipe 136.
  • the raw material solution supplied from the raw material supply pipe 136 and the carrier gas supplied from the carrier gas pipe 44 can be mixed in the dispersion part 143 formed on the proximal end side of the pore 141. It is configured.
  • the raw material supply pipe 136 has an inner diameter of about ⁇ 1. Omm and a length of about 100 mm.
  • the raw material solution supply mechanism 42 communicates with the proximal end of the raw material supply pipe 136 via the raw material solution flow path 134, thereby supplying the raw material solution to the distal end of the raw material supply pipe 136. It is structured to obtain.
  • the vaporization mechanism main body 139 forms a gap with the distal end portion of the raw material supply pipe 136, and is provided with a spray flange 142 on the distal end side of the raw material supply pipe 136 via a dispersion portion 143, and also with a carrier gas.
  • An inlet 144 for connecting the tip 44a of the pipe 44 to the tip of the raw material supply pipe 136 is provided.
  • the dispersion unit 143 is configured to join the raw material solution and the carrier gas so as to disperse the raw material solution in the carrier gas.
  • the raw material solution flowing in the vertical direction from the raw material supply pipe 136 and the carrier gas pipe 44 toward the front end of the raw material supply pipe 136 via the inlet 144 are provided.
  • the carrier gas flowing in the dispersion is mixed in the dispersion part 143.
  • the CVD vaporizer 131 makes the raw material solution into fine particles or mist, disperses it in the carrier gas, and introduces it into the vaporizer 47.
  • it is preferably within 1 second (more preferably within 0.1 second) from when the raw material solution is mixed in the dispersion part 143 until it is sprayed in the form of a mist.
  • the raw material solution dispersed in the carrier gas by the dispersion unit 143 passes through the pores 141 and is introduced into the vaporization tube 47.
  • the pressure in the vaporization pipe 47 is much lower than that in the dispersion part 143, the raw material solution dispersed in the carrier gas is ejected into the vaporization pipe 47 at a high speed and expands.
  • the sublimation temperature of the compound contained in the raw material solution is lowered, so that the raw material solution is vaporized by the heat of the vaporizing tube heater 60 and supplied to the reaction chamber 2 as a raw material gas.
  • the raw material solution can be supplied as a raw material gas into the reaction chamber 2, whereby the raw material gas is uniformly sprayed onto the film forming tape 16 and is covered by RF plasma.
  • a predetermined thin film can be formed by causing a chemical reaction on the film forming tape 16.
  • a silicon nitride film can be formed from a compound containing silicon and nitrogen in the molecule.
  • TDMAS trisdimethylaminosilane
  • HMDS hexamethyldisilazane
  • Fig. 9 shows the TG-DTA chart of TDMAS against temperature, that is, the results of thermogravimetric analysis (TG) and differential thermal analysis.
  • the thermogravimetric analysis characteristics shown in Fig. 9A are data under a 760 Torr argon atmosphere. As is clear from this figure, a temperature of about 100 ° C is required to completely evaporate TDMAS!
  • Fig. 10 shows the change in vapor pressure with respect to the temperature of TDMAS
  • Fig. 11 shows the change in vapor pressure with respect to the temperature of HMDS. This figure also confirms that TDMAS and HMDS have high vapor pressure and temperature dependence.
  • Table 1 shows the conditions when a silicon nitride film is formed by plasma CVD using TDMAS.
  • Table 2 shows the results of measuring the thickness of the formed silicon nitride film. [0123] [Table 2]
  • the silicon nitride film can be formed at a deposition rate of about lOOnm / min.
  • the composition of the silicon nitride film was Si: 34 at%, N: 7 at%, C: 34 at%, and 0: 25 at%.
  • the high oxygen content is thought to be due to the lack of exhaust in the reaction chamber 2 before the thin film formation.
  • TDMAS or HMDS When a silicon nitride film is formed by decomposing a compound containing silicon and nitrogen in the molecule with plasma, TDMAS or HMDS can be used. However, since TDMAS and HMDS lack nitrogen, it is effective to set the RF plasma frequency to 13.56 MHz and use ammonia gas.
  • a silicon nitride film can be formed.
  • organic silicon compounds include tetraethylsilane (hereinafter 4ES, melting point ⁇ 0 ° C, boiling point 154 to 155 ° C), triethylsilane (hereinafter 3ES, boiling point 107 to 108 ° C), trimethylvinylsilane (hereinafter TMVS). Melting point ⁇ 0 ° C, boiling point 55-57 ° C), phenol silane (hereinafter PhS, boiling point 119-121 ° C), diphenylsilane (hereinafter DPS, boiling point 113-114 ° C [9mmHg]), In either case, materials that are inexpensive and non-hazardous can be used.
  • the nitrogen gas can be sufficiently decomposed and radicalized. Thereby, a silicon nitride film containing sufficient nitrogen can be formed.
  • ammonia gas the nitrogen content of the formed silicon nitride film can be increased even when the frequency of the RF plasma is 50 KHz to 380 KHz.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist of the present invention.
  • the CVD apparatus guides the film-forming tape 16 from the first film-forming roller 24 to the second film-forming roller 25 so as to draw an S-shape.
  • the present invention has been described, the present invention is not limited to this, and it is appropriate to reverse the front and back by twisting the film-forming tape 16 in the direction of travel.
  • each of the first film formation mechanism 21 and the second film formation mechanism 22 is one has been described.
  • the present invention is not limited to this, and the first film formation mechanism 21 is provided.
  • a plurality of (two, three, four, etc.) second film forming mechanisms 22 may be provided. By so doing, it is possible to more efficiently form a multilayer film having an arbitrary laminated structural force.
  • the film forming tape 16 may be reversed at least once between the first scraping roller 17 and the second scraping roller 18.
  • the plasma CVD apparatus in which the CVD unit includes the plasma generating means has been described.
  • the present invention is not limited to this and may be a thermal CVD apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

This invention provides a CVD apparatus, which can solve all of problems raised by adopting vapor deposition or sputtering and further can efficiently form a thin film on both sides of a member to be film-deposited without waste of time, and a method for thin film formation using the CVD apparatus. A CVD apparatus (1) comprises a reaction chamber (2), a CVD part (4) for supplying a starting material gas into the reaction chamber (2), and exhaust means (3) for discharging gas within the reaction chamber (2). The reaction chamber (2) comprises a travel path (R) through which a tape (16) to be film-deposited is traveled from a first winding roller (17) to a second winding roller (18), and a double side film formation mechanism (19) for forming a thin film on both sides of the tape (16) being traveled along the travel path (R).

Description

明 細 書  Specification
CVD装置と、それを用いた薄膜形成方法  CVD apparatus and thin film forming method using the same
技術分野  Technical field
[0001] 本発明は CVD装置と、それを用いた薄膜形成方法とに関し、特に、被成膜テープ 上に薄膜を効率的に形成する CVD装置と、それを用いた薄膜形成方法とに関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a CVD apparatus and a thin film forming method using the same, and more particularly to a CVD apparatus for efficiently forming a thin film on a film-forming tape and a thin film forming method using the same.
[0002] 究極の光メモリといわれるホログラフィック記録再生技術は、例えば、 NIKKEI EL [0002] Holographic recording and playback technology, which is said to be the ultimate optical memory, is, for example, NIKKEI EL
ECTRONICS 2005. 1. 17「離陸 f¾近のホログラフィック媒体 2006年【こ 200Gノ イトを実現」第 105頁〜第 114頁等により紹介されている。 ECTRONICS 2005. 1.17 “Holographic media near take-off f¾ 2006 [Realizing this 200G noise”, pages 105-114, etc.
[0003] ところで、その実用化の鍵が光ディスク等の記録再生媒体の低製造コストィ匕を図る ことが可能か否かに握られて 、ると言っても過言ではな 、。 [0003] By the way, it is no exaggeration to say that the key to the practical use is based on whether or not it is possible to achieve a low production cost for recording and reproducing media such as optical disks.
[0004] 即ち、そのホログラフィック記録再生技術の記録再生媒体には、波長選択膜が不可 欠であり、この波長選択膜は、例えばシリコン酸ィ匕膜 SiOと、ニオブオキサイド膜 Nb That is, a wavelength selective film is indispensable for the recording / reproducing medium of the holographic recording / reproducing technology. For example, the silicon oxide film SiO and the niobium oxide film Nb are used as the wavelength selective film.
2 2 twenty two
O (又はタンタルオキサイド膜)とを交互に積層してなり、その層数は例えば 5〜: L00O (or tantalum oxide film) are alternately laminated, and the number of layers is, for example, 5 to: L00
5 Five
層になる。  Become a layer.
[0005] そして、その膜は、従来においては、一般に、蒸着法ゃスパッタ法により形成されて いた。  [0005] Conventionally, the film has generally been formed by vapor deposition or sputtering.
非特許文献 1 :NIKKEI ELECTRONICS 2005. 1. 17「離陸間近のホログラフィ ック媒体 2006年に 200Gバイトを実現」第 105頁〜第 114頁  Non-Patent Document 1: NIKKEI ELECTRONICS 2005. 1.17 “Holographic Media Near Takeoff Realized 200GB in 2006” pages 105-114
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] ところで、多層膜を蒸着法ゃスパッタ法で形成すると、下記のような課題があった。 [0006] Incidentally, when a multilayer film is formed by a vapor deposition method or a sputtering method, there are the following problems.
[0007] 先ず、第 1に、蒸着法ゃスパッタ法によれば、反応室内壁に酸化物が堆積し、それ が剥離して製品上に付着するという問題が生じ易い。 [0007] First, according to the vapor deposition method or the sputtering method, there is a problem that an oxide is deposited on the reaction chamber wall and peels off and adheres to the product.
[0008] 第 2に、蒸着法ゃスパッタ法によれば、高真空で且つ低!、デポジション温度で成膜 するので、化学量論に比較して酸素が不足し、物性の異なる酸化物薄膜が形成され 易ぐ設計通りの特性が得られな 、と 、う問題が生じ易!、。 [0008] Secondly, according to the vapor deposition method or the sputtering method, the film is formed at a high vacuum, a low !, and a deposition temperature, so that an oxide thin film having different physical properties due to insufficient oxygen compared to the stoichiometry. Formed If the characteristics as designed easily are not obtained, problems will easily occur!
[0009] 第 3に、蒸着法ゃスパッタ法によれば、堆積速度が CVD法によるよりも著しく小さい ので、生産性が低ぐ生産コストを低くすることが難しいという問題が生じやすい。  [0009] Thirdly, according to the vapor deposition method or the sputtering method, the deposition rate is remarkably lower than that by the CVD method, so that there is a tendency that the productivity is low and it is difficult to reduce the production cost.
[0010] そして、上記記録再生媒体には、波長選択膜の他にも各種の膜を必要とするが、 その波長選択膜を形成するためだけに、シリコン酸ィ匕膜と、ニオブオキサイド膜又は タンタルオキサイド膜とを交互に積層することが必要であり、その積層工程数が 5〜 1 000回 (例えば 20回)というように非常に多ぐ製造コスト低減を阻む大きな要因にな つている。  [0010] The recording / reproducing medium requires various films in addition to the wavelength selection film, but only for forming the wavelength selection film, a silicon oxide film and a niobium oxide film or Tantalum oxide films need to be stacked alternately, and the number of stacking steps is 5 to 1 000 times (for example, 20 times), which is a major factor that hinders manufacturing cost reduction.
[0011] というのは、シリコン酸ィ匕膜を成膜すると、次に、例えばニオブオキサイド膜を成膜し 、その次に、シリコン酸ィ匕膜を成膜し、次に、ニオブオキサイド膜を成膜するということ を 10回も繰り返すことは、成膜する薄膜の切り換えに時間が力かるからである。  [0011] When a silicon oxide film is formed, for example, a niobium oxide film is then formed, and then a silicon oxide film is formed, and then the niobium oxide film is formed. Repeating film formation 10 times is because it takes time to switch the thin film to be formed.
[0012] 例えば、一つの CVD装置でシリコン酸ィ匕膜を形成し、別の CVD装置でニオブォキ サイド膜を形成するというように、形成する膜を変える度に成膜装置を切り換えると、 切り換える度に時間的な大きな無駄が生じるのである。  [0012] For example, when a film forming apparatus is switched each time the film to be formed is changed, such as forming a silicon oxide film with one CVD apparatus and forming a niobium oxide film with another CVD apparatus, This is a great waste of time.
[0013] さらに、被成膜部材の両面に多層膜を形成するには、片面を成膜した後、被成膜 部材を裏返して、再度成膜する必要がある。したがって、成膜時間は、片面の場合の 少なくとも 2倍以上力かることになり、時間的な無駄は顕著なものとなる。  [0013] Furthermore, in order to form a multilayer film on both surfaces of a film forming member, it is necessary to form a film again by turning the film forming member upside down after forming one surface. Therefore, the film formation time is at least twice as large as that of the single-sided case, and time waste becomes significant.
[0014] 本発明は、そのような課題を解決すべく為されたものであり、蒸着法ゃスパッタ法に より行うことによって生じていた上記問題を総て解決し、さらに、時間的な無駄を伴う ことなく被成膜部材の両面に効率的に薄膜を形成できる CVD装置、その CVD装置 を用いた薄膜形成方法を提供することを目的とする。  [0014] The present invention has been made to solve such problems, solves all of the above-mentioned problems caused by vapor deposition and sputtering, and further wastes time. Accordingly, it is an object of the present invention to provide a CVD apparatus capable of efficiently forming a thin film on both surfaces of a film forming member and a thin film forming method using the CVD apparatus.
課題を解決するための手段  Means for solving the problem
[0015] 上記した課題を解決するため、請求項 1に係る発明は、反応室と、前記反応室内に 原料ガスを供給する CVD部と、前記反応室内の気体を排気する排気手段とを備える CVD装置において、前記反応室に、被成膜テープが第 1の卷取りローラ力 第 2の 卷取りローラへ至る走行経路と、前記 CVD部を備え、前記走行経路に沿って一方向 へ走行する前記被成膜テープの両面に薄膜を形成する両面成膜機構とを設けたこ とを特徴とする。 [0016] また請求項 2に係る発明は、前記両面成膜機構は、前記被成膜テープの一面に薄 膜を形成する第 1の成膜機構と、前記被成膜テープの他面に薄膜を形成する第 2の 成膜機構と、前記第 1の成膜機構と前記第 2の成膜機構との間の走行経路において 前記被成膜テープの表裏を反転させる反転手段とを備えることを特徴とする。 [0015] In order to solve the above-described problem, the invention according to claim 1 includes a reaction chamber, a CVD unit that supplies a source gas into the reaction chamber, and an exhaust unit that exhausts the gas in the reaction chamber. In the apparatus, in the reaction chamber, the film forming tape includes a travel path leading to the first scraping roller force and the second scraping roller, and the CVD unit, and travels in one direction along the travel path. A double-sided film forming mechanism that forms a thin film on both sides of the film-deposited tape is provided. [0016] In the invention according to claim 2, the double-sided film-forming mechanism includes a first film-forming mechanism that forms a thin film on one surface of the film-forming tape, and a thin film on the other surface of the film-forming tape. And a reversing means for reversing the front and back of the film-forming tape in a travel path between the first film-forming mechanism and the second film-forming mechanism. Features.
[0017] また請求項 3に係る発明は、前記 CVD部は、キャリアガス中に原料溶液を微粒子 状又は霧状に分散させるオリフィス管と、前記オリフィス管のガス通路に連通された前 記原料溶液を供給する原料溶液用通路と、前記オリフィス管に前記キャリアガスを供 給するキャリアガス流路と、前記オリフィス管で分散された前記原料溶液を気化する 気化管と、前記気化管内に挿入され前記オリフィス管のガスを噴出する細孔と、前記 気化管を加熱する加熱手段とを有することを特徴とする。  [0017] Further, the invention according to claim 3 is characterized in that the CVD unit includes the orifice tube that disperses the raw material solution in a fine particle shape or a mist shape in a carrier gas, and the raw material solution that is communicated with the gas passage of the orifice tube. A raw material solution passage for supplying gas, a carrier gas flow path for supplying the carrier gas to the orifice pipe, a vaporization pipe for vaporizing the raw material solution dispersed in the orifice pipe, and the gas passage inserted into the vaporization pipe It has the pore which ejects the gas of an orifice pipe | tube, and the heating means which heats the said vaporization pipe | tube.
[0018] また請求項 4に係る発明は、前記 CVD部は、前記反応室内に RF電圧の印加によ りプラズマを形成する RFプラズマ発生手段を備え、前記反応室内において、隣合う 前記 CVD部を互いに分離する隔離部材を設けたことを特徴とする。  [0018] Further, the invention according to claim 4 is characterized in that the CVD unit includes RF plasma generating means for forming plasma by applying an RF voltage in the reaction chamber, and the adjacent CVD unit is disposed in the reaction chamber. It is characterized by providing isolation members that are separated from each other.
[0019] また請求項 5に係る発明は、前記第 1の卷取りローラと前記第 2の卷取りローラとは、 正逆両方向に回転できることを特徴とする。  [0019] The invention according to claim 5 is characterized in that the first scraping roller and the second scraping roller can rotate in both forward and reverse directions.
[0020] また請求項 6に係る発明は、反応室内の気体を排気手段により排気する排気ステツ プと、前記反応室に原料ガスを供給する原料ガス供給ステップと、前記反応室内に ぉ 、て被成膜テープに薄膜を形成する成膜ステップとを備える薄膜形成方法にぉ ヽ て、前記成膜ステップは、被成膜テープが第 1の卷取りローラ力も第 2の卷取りローラ へ至る走行経路を形成する走行経路形成ステップと、前記走行経路に沿って一方向 へ走行する前記被成膜テープの両面に薄膜を形成する両面成膜ステップとを備える ことを特徴とする。  [0020] The invention according to claim 6 includes an exhaust step of exhausting the gas in the reaction chamber by an exhaust means, a source gas supply step of supplying a source gas to the reaction chamber, and a cover in the reaction chamber. A film forming step including a film forming step for forming a thin film on the film forming tape, wherein the film forming step includes a traveling path from the film forming tape to the first scraping roller force and the first scraping roller force. And a double-sided film-forming step of forming a thin film on both surfaces of the film-forming tape that travels in one direction along the traveling path.
[0021] また請求項 7に係る発明は、前記両面成膜ステップは、第 1の成膜機構により前記 被成膜テープの一面に薄膜を形成する第 1の成膜ステップと、第 2の成膜機構により 前記被成膜テープの他面に薄膜を形成する第 2の成膜ステップと、前記第 1の成膜 機構と前記第 2の成膜機構との間の走行経路において前記被成膜テープの表裏を 反転させる反転ステップとを備えることを特徴とする。  [0021] In the invention according to claim 7, the double-sided film-forming step includes a first film-forming step of forming a thin film on one surface of the film-forming tape by a first film-forming mechanism; A second film-forming step of forming a thin film on the other surface of the film-forming tape by a film mechanism; and the film-forming film in a travel path between the first film-forming mechanism and the second film-forming mechanism. And a reversing step for reversing the front and back of the tape.
[0022] また請求項 8に係る発明は、キャリアガス管力 オリフィス管にキャリアガスを供給す るキャリアガス供給ステップと、原料溶液用通路から前記オリフィス管に原料溶液を供 給する原料溶液供給ステップと、前記原料溶液を、前記オリフィス管で微粒子状又は 霧状にしてキャリアガス中に分散させて、前記オリフィス管の流出口に設けられた気 化管に供給する気化管供給ステップと、前記気化管で前記原料溶液を前記気化管 の加熱手段により加熱して気化する気化ステップとを備えることを特徴とする。 [0022] In the invention according to claim 8, the carrier gas pipe force supplies the carrier gas to the orifice pipe. Carrier gas supply step, a raw material solution supply step for supplying the raw material solution from the raw material solution passage to the orifice pipe, and the raw material solution is dispersed in the carrier gas in the form of fine particles or mist by the orifice pipe. A vaporization pipe supply step for supplying to a vaporization pipe provided at an outlet of the orifice pipe, and a vaporization step for heating and vaporizing the raw material solution by a heating means of the vaporization pipe in the vaporization pipe. It is characterized by.
[0023] また請求項 9に係る発明は、前記反応室内に RFプラズマを発生させて薄膜を形成 する RFプラズマ発生ステップを備えることを特徴とする。  [0023] The invention according to claim 9 is characterized in that it includes an RF plasma generation step of generating RF plasma in the reaction chamber to form a thin film.
[0024] また請求項 10に係る発明は、前記被成膜テープを正逆両方向に走行させ、薄膜を 形成する薄膜形成ステップを備えることを特徴とする。 [0024] The invention according to claim 10 includes a thin film forming step of forming the thin film by running the film-forming tape in both forward and reverse directions.
発明の効果  The invention's effect
[0025] 上記した請求項 1及び 6に係る発明によれば、両面成膜機構を備えたことにより、一 方向へ走行中の被成膜テープの両面に薄膜を形成することができるので、時間的な 無駄を伴うことなく被成膜テープの両面に効率的に薄膜を形成できる。  [0025] According to the inventions according to claims 1 and 6, since the double-sided film forming mechanism is provided, a thin film can be formed on both surfaces of the film-forming tape traveling in one direction. A thin film can be efficiently formed on both sides of the film-deposited tape without any waste.
[0026] また、請求項 2及び 7に係る発明によれば、第 1の成膜機構と第 2の成膜機構との間 の走行経路において被成膜テープの表裏を反転させるので、より確実に効率を向上 することができる。  [0026] According to the inventions according to Claims 2 and 7, since the front and back of the film-forming tape are reversed in the travel path between the first film-forming mechanism and the second film-forming mechanism, it is more reliable. The efficiency can be improved.
[0027] また、請求項 3及び 8に係る発明によれば、 CVD用気化器の構造を簡単にしながら 、多種の原料溶液をキャリアガス中に微粒子状又は霧状に分散させ得ることができる と共に、目詰まりが生じにくくすることができるので、原料溶液の流量を長時間にわた り精度良く制御することができる。  [0027] According to the inventions according to claims 3 and 8, various raw material solutions can be dispersed in the form of fine particles or mist in the carrier gas while simplifying the structure of the vaporizer for CVD. Since clogging is less likely to occur, the flow rate of the raw material solution can be accurately controlled over a long period of time.
[0028] また、請求項 4及び 9に係る発明によれば、成膜温度を下げることができるので、耐 熱温度が低い被成膜テープにも、容易に薄膜を形成することができる。  [0028] According to the inventions according to claims 4 and 9, since the film forming temperature can be lowered, a thin film can be easily formed even on a film forming tape having a low heat resistance temperature.
[0029] また、請求項 5及び 10に係る発明によれば、任意の積層構造からなる多層膜を形 成することができる。  [0029] According to the inventions according to claims 5 and 10, a multilayer film having an arbitrary laminated structure can be formed.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本発明の第 1の実施形態に係る CVD装置の全体構成を示す図である。 FIG. 1 is a diagram showing an overall configuration of a CVD apparatus according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施形態に係る反応室の構成を示す図である。  FIG. 2 is a diagram showing a configuration of a reaction chamber according to the first embodiment of the present invention.
[図 3]本発明の第 1の実施形態に係る CVD用気化器の構成を示す図である。 [図 4]本発明の第 1の実施形態に係るガスシャワー電極の構成を示す図である。 FIG. 3 is a diagram showing a configuration of a CVD vaporizer according to the first embodiment of the present invention. FIG. 4 is a diagram showing a configuration of a gas shower electrode according to the first embodiment of the present invention.
[図 5]本発明の第 2の実施形態に係る反応室の構成を示す図である。  FIG. 5 is a diagram showing a configuration of a reaction chamber according to a second embodiment of the present invention.
[図 6]本発明の第 3の実施形態に係る反応室の構成を示す図である。  FIG. 6 is a diagram showing a configuration of a reaction chamber according to a third embodiment of the present invention.
[図 7]本発明の第 4の実施形態に係る反応室の構成を示す図である。  FIG. 7 is a diagram showing a configuration of a reaction chamber according to a fourth embodiment of the present invention.
[図 8]本発明の第 5の実施形態に係る CVD用気化器の構成を示す図である。  FIG. 8 is a view showing a configuration of a CVD vaporizer according to a fifth embodiment of the present invention.
[図 9] 760Torrアルゴン雰囲気中におけるトリスジメチルアミノシランの TG - DTAチ ヤートを示すものである。  FIG. 9 shows TG-DTA chart of trisdimethylaminosilane in 760 Torr argon atmosphere.
[図 10]トリスジメチルアミノシランの温度に対する蒸気圧特性を測定した結果を示すも のである。  FIG. 10 shows the results of measuring the vapor pressure characteristics of trisdimethylaminosilane with respect to temperature.
[図 11]へキサメチルジシラザンの温度に対する蒸気圧特性を測定した結果を示すも のである。  [Fig. 11] Shows the results of measuring the vapor pressure characteristics of hexamethyldisilazane with respect to temperature.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 本発明において、形成しょうとする多層膜の最良の例は、フレキシブル有機 ELディ スプレー用に、 PET榭脂の被成膜テープ上に形成する拡散防止膜 (通常シリコン窒 化膜)である。 In the present invention, the best example of the multilayer film to be formed is a diffusion prevention film (usually a silicon nitride film) formed on a PET resin film-deposited tape for a flexible organic EL display. is there.
[0032] また、被成膜テープは、例えば長さ 5000m、幅 0. 3mのプラスチック(材質 PET) であり、上述した波長選択膜を含む必要な薄膜が被成膜テープの両面に形成される と、それから打ち抜きにより規格に従った大きさの多数の媒体ディスクが得られるよう にされているのである。  In addition, the film formation tape is, for example, a plastic (material PET) having a length of 5000 m and a width of 0.3 m, and necessary thin films including the above-described wavelength selection film are formed on both surfaces of the film formation tape. Then, by punching, a large number of media discs of a size according to the standard are obtained.
[0033] 尚、 CVD装置の CVD部は、通常の CVD方法が行われるようにしたものでも良いが 、沸点が大凡 25°C以上の液体化合物或いは固体化合物を気化する気化管を備え たものが好適である。具体的には、特願 2004— 290087号により提案済みの、固体 を溶媒に溶かして得た溶液を、気化器により気化 (ガス化)することにより薄膜形成用 のガスとして用い、薄膜を形成する技術を駆使するようにしても良い。そして、後で記 載する実施例においても気化器を用いた CVD技術を駆使している。尚、この気化器 を用いた気化機構の内容の詳細は、後述する。  [0033] The CVD unit of the CVD apparatus may be one in which a normal CVD method is performed, but one having a vaporizing tube for vaporizing a liquid compound or a solid compound having a boiling point of about 25 ° C or higher. Is preferred. Specifically, a solution obtained by dissolving a solid in a solvent, proposed in Japanese Patent Application No. 2004-290087, is vaporized (gasified) by a vaporizer and used as a gas for forming a thin film to form a thin film. You may make full use of technology. In the examples described later, CVD technology using a vaporizer is also used. The details of the vaporization mechanism using this vaporizer will be described later.
[0034] また、各 CVD部は、 RF (Radio Frequency)電圧を RF電極と成膜ローラとの間に印 カロしてプラズマを形成したプラズマ CVDを行うようにしても良い。特に、被成膜テー プの耐熱性が低い場合には、プラズマ CVDを行うことにより、比較的低い温度で多 層膜を形成することができるので、被成膜テープに要求される耐熱性は低くて済む。 [0034] Each CVD unit may perform plasma CVD by forming a plasma by applying an RF (Radio Frequency) voltage between the RF electrode and the film forming roller. In particular, the film deposition table When the heat resistance of the film is low, a multilayer film can be formed at a relatively low temperature by performing plasma CVD, so that the heat resistance required for the film-forming tape is low.
[0035] ところで、その場合において、各 CVD部毎に RF電源を設ける実施の形態があり、 そのような形態を採る場合、複数の RF電源が比較的近接して設けられることになり、 その複数の RF電源間に干渉が生じる可能性がある。そこで、その可能性をなくすた めに、複数の RF電源の周波数を互いに変えると力、位相を互いにずらすようにしても 良い。 [0035] Incidentally, in that case, there is an embodiment in which an RF power source is provided for each CVD unit. When such a configuration is adopted, a plurality of RF power sources are provided relatively close to each other. May cause interference between other RF power supplies. Therefore, in order to eliminate this possibility, the power and phase may be shifted from each other when the frequencies of the multiple RF power supplies are changed from each other.
[0036] また、薄膜形成用のガスを、成膜エリア上にシャワーのように垂直に且つ多数の噴 出孔力 供給する(シャワー方式)ようにしても良い。このようにすれば、テープ全面に 対して均質、均厚の多層膜を得ることが容易に為し得る。  [0036] Further, a gas for forming a thin film may be supplied vertically to a film formation area like a shower and supplied with a large number of ejection hole forces (shower method). By doing so, it is possible to easily obtain a multilayer film having a uniform and uniform thickness over the entire surface of the tape.
[0037] 更に、成膜エリア上にシャワーのように CVD形成用のガスを供給するようにすると 共に、プラズマを形成するという、シャワープレート方式とプラズマ方式を併用するよう にしても良 、。後で述べる実施例にお 、てはそのように併用されて 、る。 [0037] Furthermore, it is possible to use a shower plate method and a plasma method together, in which a gas for forming a CVD is supplied to the film formation area like a shower and plasma is formed. In the embodiments described later, this is used together.
[0038] また、一つの CVD装置に設ける CVD部の数は、後で述べる実施例では 2個の場 合について説明する力 必ずしもそれに限定されず、例えば 5個、 10個というように、 更にはもつと多 、数にしても良 、。 [0038] In addition, the number of CVD units provided in one CVD apparatus is not necessarily limited to the force to explain the case of two in the embodiment described later. For example, five or ten, and the like. If you have many, you can make it a number.
[0039] 薄膜の形成にとって、 CVD温度の制御、管理は極めて重要である力 その温度制 御性、管理性をより良好にするために、成膜ローラを、熱媒体 (例えば、オイル)を用 いて数十 °C (例えば、 50°C、或いは 60°C等)に温度制御するようにしてもよい。 [0039] Control and management of CVD temperature is extremely important for the formation of thin films. In order to improve the temperature controllability and controllability, the film forming roller is used with a heat medium (for example, oil). The temperature may be controlled to several tens of degrees Celsius (for example, 50 degrees Celsius or 60 degrees Celsius).
(1)第 1の実施形態  (1) First embodiment
(1— 1)全体構成  (1—1) Overall configuration
図 1に示す CVD装置 1は、反応室 2、排気手段 3、複数の CVD部 4 (4a,4b)からなり 、全体として、反応室 2内の気体を排気手段 3により排気し、 CVD部 4において原料 溶液を気化して生成した原料ガスを前記反応室 2に導入して、前記反応室 2内にお V、て被成膜部材に薄膜を形成し得るように構成されて!、る。  A CVD apparatus 1 shown in FIG. 1 includes a reaction chamber 2, an exhaust means 3, and a plurality of CVD sections 4 (4a, 4b). As a whole, the gas in the reaction chamber 2 is exhausted by the exhaust means 3, and the CVD section 4 The raw material gas generated by vaporizing the raw material solution is introduced into the reaction chamber 2 so that a thin film can be formed on the film formation member V in the reaction chamber 2! RU
[0040] 排気手段 3は、真空排気口 5で反応室 2に連通された主真空配管 6、前記主真空 配管 6と排気用真空ポンプ 7とを繋ぐ真空配管 8、前記真空配管 8に設けられた水冷 トラップ 9、真空バルブ 10とからなる。また、反応室 2内には、ガス供給管 11を通じて N ガスが [0040] The exhaust means 3 is provided in the main vacuum pipe 6 communicated with the reaction chamber 2 through the vacuum exhaust port 5, the vacuum pipe 8 connecting the main vacuum pipe 6 and the exhaust vacuum pump 7, and the vacuum pipe 8 It consists of a water-cooled trap 9 and a vacuum valve 10. Further, N 2 is introduced into the reaction chamber 2 through the gas supply pipe 11. Gas
2 供給されるように構成されて 、る。  2 Configured to be supplied.
[0041] 図 2に示すように、反応室 2は、密閉された反応室本体 15と、被成膜部材である被 成膜テープ 16が第 1の卷取りローラ 17から第 2の卷取りローラ 18へ至る走行経路 Rと、 前記被成膜テープ 16が前記第 1の卷取りローラ 17から前記第 2の卷取りローラ 18へ 至る間に、前記被成膜テープ 16の両面に薄膜を形成する両面成膜機構 19とを備え、 被成膜テープ 16の両面に薄膜を効率的に形成し得るように構成されている。  [0041] As shown in FIG. 2, the reaction chamber 2 includes a sealed reaction chamber main body 15 and a film forming tape 16 that is a film forming member from the first scraping roller 17 to the second scraping roller 17 A thin film is formed on both surfaces of the film-forming tape 16 while the film-forming tape 16 reaches the second scraping roller 18 from the first scraping roller 17 and the traveling path R to 18. A double-sided film forming mechanism 19 is provided, and a thin film can be efficiently formed on both sides of the film-forming tape 16.
(1 2)両面成膜機構の構成  (1 2) Structure of double-sided film formation mechanism
次に本発明の特徴的部分である、被成膜テープ 16の両面に薄膜を形成する両面 成膜機構 19の構成について図 2を参照して詳細に説明する。  Next, the structure of the double-sided film-forming mechanism 19 that forms a thin film on both sides of the film-forming tape 16, which is a characteristic part of the present invention, will be described in detail with reference to FIG.
[0042] 両面成膜機構 19は、前記被成膜テープ 16の一面に薄膜を形成する第 1の成膜機 構 21と、前記被成膜テープ 16の他面に薄膜を形成する第 2の成膜機構 22と、前記第 1の成膜機構 21から前記第 2の成膜機構 22へ至る走行経路 Rにおいて前記被成膜 テープ 16の表裏を反転させる反転手段としての誘導ローラ 23とを備える。  The double-sided film forming mechanism 19 includes a first film forming mechanism 21 that forms a thin film on one surface of the film-forming tape 16 and a second film forming mechanism that forms a thin film on the other surface of the film-forming tape 16. A film forming mechanism 22; and a guide roller 23 as a reversing means for reversing the front and back of the film forming tape 16 in the travel path R from the first film forming mechanism 21 to the second film forming mechanism 22. .
[0043] 第 1の成膜機構 21は、被成膜テープ 16を卷回する第 1の成膜ローラ 24と、該第 1の 成膜ローラ 24に対応して設けられた第 1の CVD部 4aとを備える。前記第 1の CVD部 4 aは、反応室 2の左側下面に、上方に向かって原料ガスを供給し得るように設置され る。一方、第 2の成膜機構 22は、被成膜テープ 16を卷回する第 2の成膜ローラ 25と、 該第 2の成膜ローラ 25に対応して設けられた第 2の CVD部 4bとを備える。前記第 2の CVD部 4bは、反応室 2の右側上面に、下方に向かって原料ガスを供給し得るように 設置される。誘導ローラ 23は、被成膜テープ 16の表裏を反転させ得るように、第 1の 成膜ローラ 24から第 2の成膜ローラ 25へ被成膜テープ 16を誘導する。この誘導ローラ 23は、成膜ローラ 24,25の上側へ配置された第 1の誘導ローラ 23aと、成膜ローラ 24,25 の下側へ配置された第 2の誘導ローラ 23bとからなる。  [0043] The first film formation mechanism 21 includes a first film formation roller 24 that winds the film formation tape 16, and a first CVD unit provided corresponding to the first film formation roller 24. 4a. The first CVD unit 4a is installed on the lower left side of the reaction chamber 2 so as to supply the source gas upward. On the other hand, the second film forming mechanism 22 includes a second film forming roller 25 for winding the film forming tape 16, and a second CVD unit 4b provided corresponding to the second film forming roller 25. With. The second CVD unit 4b is installed on the upper right side of the reaction chamber 2 so as to supply the raw material gas downward. The guide roller 23 guides the film formation tape 16 from the first film formation roller 24 to the second film formation roller 25 so that the front and back of the film formation tape 16 can be reversed. The guide roller 23 includes a first guide roller 23a disposed above the film forming rollers 24 and 25 and a second guide roller 23b disposed below the film forming rollers 24 and 25.
[0044] 前記第 1の成膜機構 21と前記第 2の成膜機構 22に被成膜テープ 16を連続的に供 給し得るように、第 1の卷取りローラ 17、第 2の卷取りローラ 18、第 1の成膜ローラ 24、 第 2の成膜ローラ 25、誘導ローラ 23、複数の送りローラ 26とが反応室 2内に設置され、 被成膜テープ 16が第 1の卷取りローラ 17から第 2の卷取りローラ 18へ至る走行経路 R が形成されている。 [0045] 前記第 1の卷取りローラ 17と前記第 2の卷取りローラ 18は、それぞれ反応室 2内の左 右両側の下側に配置されており、図示しない駆動手段に接続され、該駆動手段から 伝達される駆動力により正方向へ回転し得るように構成されて 、る(図中矢印方向)。 この前記第 1の卷取りローラ 17と前記第 2の卷取りローラ 18との間に第 1の成膜ローラ 24と第 2の成膜ローラ 25とが軸支されている。この第 1の成膜ローラ 24と第 2の成膜口 ーラ 25とは、同一水平線上に配置される。さらに、第 1の成膜ローラ 24と第 2の成膜口 ーラ 25との間に誘導ローラ 23が軸支される。また、第 1の卷取りローラ 17と第 1の成膜 ローラ 24との間、及び第 2の成膜ローラ 25と第 2の卷取りローラ 18との間にそれぞれ送 りローラ 26が軸支されて!、る。 [0044] The first scraping roller 17 and the second scraper so that the film-forming tape 16 can be continuously supplied to the first deposition mechanism 21 and the second deposition mechanism 22. The roller 18, the first film forming roller 24, the second film forming roller 25, the guide roller 23, and the plurality of feed rollers 26 are installed in the reaction chamber 2, and the film forming tape 16 is the first scraping roller. A travel route R from 17 to the second scraping roller 18 is formed. [0045] The first scraping roller 17 and the second scraping roller 18 are respectively arranged below the left and right sides of the reaction chamber 2, and are connected to driving means (not shown) to drive the driving It is configured to be able to rotate in the positive direction by the driving force transmitted from the means (in the direction of the arrow in the figure). A first film forming roller 24 and a second film forming roller 25 are pivotally supported between the first scraping roller 17 and the second scraping roller 18. The first film formation roller 24 and the second film formation roller 25 are arranged on the same horizontal line. Further, a guide roller 23 is pivotally supported between the first film forming roller 24 and the second film forming roller 25. Further, a feeding roller 26 is pivotally supported between the first scraping roller 17 and the first deposition roller 24, and between the second deposition roller 25 and the second scraping roller 18, respectively. Te!
[0046] 尚、 27は第 1の CVD部 4a、第 2の CVD部 4bを他の CVD部力 分離する隔離部材 である。隔離部材 27は、 CVD部 4a,4bが設けられている反応室 2の内壁に、第 1の成 膜ローラ 24、第 2の成膜ローラ 25を挟んで板状の部材を立設して構成される。隔離部 材 27は、反応室 2の内壁力 成膜ローラの中心軸までの範囲を覆い、先端は、内側 へ折り返されている。そして、反応室 2は、隔離部材 27で覆われた内側に、真空排気 口 5を備えている。  Note that reference numeral 27 denotes an isolation member that separates the first CVD unit 4a and the second CVD unit 4b from other CVD unit forces. The isolation member 27 is configured by standing a plate-like member on the inner wall of the reaction chamber 2 where the CVD units 4a and 4b are provided, with the first film forming roller 24 and the second film forming roller 25 interposed therebetween. Is done. The isolation member 27 covers the range of the inner wall force of the reaction chamber 2 up to the central axis of the film forming roller, and the tip is folded back inward. The reaction chamber 2 includes a vacuum exhaust port 5 on the inner side covered with the isolation member 27.
[0047] 被成膜テープ 16は、送りローラ 26によって、一端、反応室 2内の上側へ誘導され、 左回りに第 1の成膜ローラ 24に卷回される。この第 1の成膜ローラ 24に卷回されたとき に、第 1の CVD部 4aとの間に形成されるプラズマ発生領域 Aに曝される被成膜テー プ 16の表面を被成膜テープ 16の一面とする。  [0047] The film-forming tape 16 is guided at one end to the upper side in the reaction chamber 2 by the feed roller 26, and is wound around the first film-forming roller 24 counterclockwise. When wound around the first film-forming roller 24, the surface of the film-forming tape 16 exposed to the plasma generation region A formed between the first CVD unit 4a and the film-forming tape One side of 16.
[0048] 誘導ローラ 23は、隔離部材 27を避けると共に、 S字を描くように第 1の成膜ローラ 24 に左回りに卷回された被成膜テープ 16を右回りに第 2の成膜ローラ 25に卷回し得るよ うに誘導する。すなわち、第 1の成膜ローラ 24の下側力 送出された被成膜テープ 16 は、第 1の誘導ローラ 23aによって、一端上側へ誘導された後、第 2の誘導ローラ 23b によって、下側へ誘導され、右回りに第 2の成膜ローラ 25へ卷回される。これにより、 被成膜テープ 16は、第 1の成膜ローラ 24から第 2の成膜ローラ 25へ至る間に、表裏が 反転され、第 1の成膜ローラ 24で卷回された一面とは逆の他面が第 2の成膜ローラ 25 でプラズマ発生領域 Aに曝される。そして、被成膜テープ 16は、送りローラ 26によって 、反応室 2の下側へ誘導され、第 2の卷取りローラ 18へと至る。 [0049] 以上のようにして、第 1の卷取りローラ 17から第 2の卷取りローラ 18へ至る走行経路 Rが形成され、これにより、被成膜テープ 16は、両面成膜機構 19により第 1の成膜口 ーラ 24から第 2の成膜ローラ 25へ至る走行経路 Rにおいて、表裏が反転され、第 2の 成膜ローラ 25において、第 1の成膜ローラ 24で成膜された面ではない他の面に薄膜 が形成される。また、被成膜テープ 16は、誘導ローラ 23、送りローラ 26によって、成膜 ローラ 24,25へ所定の力で押付けられて!/、る。 [0048] The guide roller 23 avoids the separating member 27, and the second film is formed clockwise by the film-forming tape 16 wound around the first film forming roller 24 so as to draw an S-shape. Guide the roller 25 so that it can be wound. In other words, the film-forming tape 16 that has been delivered by the lower force of the first film-forming roller 24 is guided upward by the first guide roller 23a and then lowered by the second guide roller 23b. It is guided and wound around the second film forming roller 25 clockwise. As a result, the front and back of the film-forming tape 16 are reversed between the first film-forming roller 24 and the second film-forming roller 25, and the one surface wound by the first film-forming roller 24 is The other opposite surface is exposed to the plasma generation region A by the second film forming roller 25. The film-forming tape 16 is guided to the lower side of the reaction chamber 2 by the feed roller 26 and reaches the second scraping roller 18. [0049] As described above, the travel path R from the first scraping roller 17 to the second scraping roller 18 is formed. In the traveling path R from the first film forming roller 24 to the second film forming roller 25, the front and back are reversed, and the surface on which the first film forming roller 24 forms the film in the second film forming roller 25. A thin film is formed on the other surface. Further, the film-forming tape 16 is pressed against the film-forming rollers 24 and 25 by a guide roller 23 and a feed roller 26 with a predetermined force!
[0050] 尚、被成膜テープ 16は、例えば、長さ力 OOOm、幅が 0. 3m〜2mであり、材質は 、 PET (ポリエチレンテレフタレート)、 PEN (ポリエチレンナフタレート)、ポリイミド等 の榭脂、又は、銅やアルミニウム等の金属力 なる。  [0050] The film-forming tape 16 has, for example, a length force of OOOm and a width of 0.3m to 2m, and the material is a resin such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, etc. Or metal power such as copper or aluminum.
(1 3) CVD部の構成  (1 3) Structure of CVD section
第 1の CVD部 4aと第 2の CVD部 4bとは、それぞれ第 1の成膜ローラ 24、第 2の成膜 ローラ 25に卷回された被成膜テープ 16上に薄膜を形成し得るように、前記第 1の成膜 ローラ 24、第 2の成膜ローラ 25に対応して設けられる。第 1の CVD部 4aと第 2の CVD 部 4bとは、それぞれ、原料溶液を気化した原料ガスを反応室 2内へ供給する CVD用 気化器 31と、成膜ローラ 24, 25との間のプラズマ発生領域 Aにプラズマを発生させ、 成膜ローラ 24, 25に卷回された被成膜テープ 16上に薄膜を形成する RFプラズマ発 生手段としてのガスシャワー電極 32とを備える。  The first CVD unit 4a and the second CVD unit 4b are capable of forming a thin film on the film forming tape 16 wound around the first film forming roller 24 and the second film forming roller 25, respectively. The first film forming roller 24 and the second film forming roller 25 are provided correspondingly. The first CVD unit 4a and the second CVD unit 4b are respectively provided between a CVD vaporizer 31 for supplying a raw material gas obtained by vaporizing a raw material solution into the reaction chamber 2 and the film forming rollers 24 and 25. A gas shower electrode 32 is provided as an RF plasma generating means for generating plasma in the plasma generation region A and forming a thin film on the film forming tape 16 wound around the film forming rollers 24 and 25.
[0051] 第 1の CVD部 4aは、反応室 2の下側に、ガスシャワー電極 32が下方力 前記第 1の 成膜ローラ 24に対向するように設けられている。一方、第 2の CVD部 4bは、反応室 2 の上側に、ガスシャワー電極 32が上方力 前記第 2の成膜ローラ 25に対向するように 設けられている。  [0051] The first CVD unit 4a is provided on the lower side of the reaction chamber 2 so that a gas shower electrode 32 faces the first film-forming roller 24 with a downward force. On the other hand, the second CVD unit 4b is provided on the upper side of the reaction chamber 2 so that the gas shower electrode 32 faces the second film forming roller 25 with an upward force.
[0052] また、第 1の CVD部 4aと第 2の CVD部 4bとは、原料溶液の種類や、温度などの成 膜条件をそれぞれ個別的に設定し得るように構成され、これにより、各 CVD部にお いて所望の薄膜をそれぞれ形成することができる。また、 CVD装置 1は、被成膜テー プ 16が走行している間、各 CVD部の成膜動作をそれぞれ個別的に開始させたり、ま たは停止させたりすることができることはもちろんである。  [0052] In addition, the first CVD unit 4a and the second CVD unit 4b are configured so that film-forming conditions such as the type of raw material solution and temperature can be individually set. Each desired thin film can be formed in the CVD section. In addition, the CVD apparatus 1 can start or stop the film forming operation of each CVD unit individually while the film forming tape 16 is running. .
[0053] 尚、第 1の CVD部 4aと第 2の CVD部 4bとは、反応室 2に設置される位置が異なるの みで、その構成は同じであることから、以下、第 1の CVD部 4aについて、その構成を 説明する。 [0053] The first CVD unit 4a and the second CVD unit 4b have the same configuration except for the positions where they are installed in the reaction chamber 2. Therefore, hereinafter, the first CVD unit 4a and the second CVD unit 4b are the same. Part 4a explain.
[0054] CVD用気ィ匕器 31は、ガス供給管 33を通じてガスシャワー電極 32に原料ガスを導入 することにより、多数の噴出ロカも反応室 2内の第 1の成膜ローラ 24上にシャワーのよ うに原料ガスを供給できるように構成されて 、る。  The CVD gas vessel 31 introduces a raw material gas into the gas shower electrode 32 through the gas supply pipe 33, so that a large number of jetted loca is also showered on the first film forming roller 24 in the reaction chamber 2. In this way, the raw material gas can be supplied.
(1 - 3 - 1) CVD用気化器の構成  (1-3-1) Composition of vaporizer for CVD
図 3に示すように、 CVD用気化器 31は、気化機構 41と、当該気化機構 41に設けら れた原料溶液供給機構 42とを備え、気化機構 41が反応室のガス供給管 33に連結さ れている。  As shown in FIG. 3, the CVD vaporizer 31 includes a vaporization mechanism 41 and a raw material solution supply mechanism 42 provided in the vaporization mechanism 41, and the vaporization mechanism 41 is connected to the gas supply pipe 33 of the reaction chamber. It has been.
[0055] 気化機構 41は、窒素ガスやアルゴン等のキャリアガスを反応室 2に供給するキャリア ガス流路 43が、キャリアガス管 44、オリフィス管 45により形成され、オリフィス管 45の先 端 (すなわちキャリアガス流路 43の流出口 46)に気化管 47が形成されている。  [0055] In the vaporization mechanism 41, a carrier gas flow path 43 for supplying a carrier gas such as nitrogen gas or argon to the reaction chamber 2 is formed by a carrier gas pipe 44 and an orifice pipe 45. A vaporization tube 47 is formed at the outlet 46) of the carrier gas channel 43.
[0056] この気化機構 41は、キャリアガスを供給する供給機構(図示せず)にキャリアガス管 4 4の基端 (すなわちキャリアガス流路 43の流入口)が連結されて 、るとともに、キャリア ガス管 44の先端 48がオリフィス管 45の基端 49に連結され、これによりキャリアガス管 44 力もオリフィス管 45に高速のキャリアガスを供給し得るように構成されている。 The vaporization mechanism 41 includes a carrier gas supply mechanism (not shown) connected to the base end of the carrier gas pipe 44 (that is, the inlet of the carrier gas flow path 43), and a carrier gas supply mechanism (not shown). The distal end 48 of the gas pipe 44 is connected to the proximal end 49 of the orifice pipe 45 so that the carrier gas pipe 44 can also supply a high-speed carrier gas to the orifice pipe 45.
[0057] 因みに、キャリアガス管 44の基端と供給機構との間には、 N供給バルブ及びマスフ  [0057] Incidentally, between the proximal end of the carrier gas pipe 44 and the supply mechanism, there are an N supply valve and a mass flow.
2  2
ローコントローラ(図示せず)が設けられている。またキャリアガス管 44には、圧カトラン スデューサ 50が取り付けられて!/、る。  A row controller (not shown) is provided. The carrier gas pipe 44 has a pressure transducer 50 attached!
[0058] なお、圧力トランスデューサ 50は、キャリアガス管 44内のキャリアガスの圧力及びそ の変動を正確に測定し、記録しながら常時モニタする。圧力トランスデューサ 50は、 キャリアガスの圧力レベルに応じた信号レベルを有する出力信号を制御部(図示せ ず)に送信する。 It should be noted that the pressure transducer 50 accurately measures the carrier gas pressure in the carrier gas pipe 44 and its fluctuation and constantly monitors it while recording it. The pressure transducer 50 transmits an output signal having a signal level corresponding to the pressure level of the carrier gas to a control unit (not shown).
[0059] このようにして図示しない表示部に、キャリアガスの圧力結果を出力信号に基づい て表示してオペレータにモニタさせ得るようになされて!、る。これによりオペレータは、 圧力結果に基づ 、てキャリアガス流路 43の目詰まりをモニタできる。  In this way, the pressure result of the carrier gas can be displayed on the display unit (not shown) based on the output signal so that the operator can monitor it. Thus, the operator can monitor the clogging of the carrier gas channel 43 based on the pressure result.
[0060] ここでキャリアガス管 44は、その内径がオリフィス管 45の内径よりも大きく選定され、 キャリアガス管 44力 オリフィス管 45に供給されるキャリアガスの流速を一段と速くさせ 得るように構成されている。 [0061] オリフィス管 45は、鉛直向きに配置され、その先端 46に台形円錐状でなる凸状部 51 が設けられているとともに、この凸状部 51の頂部に細孔 52が設けられている。このよう にオリフィス管 45では、先端に凸状部 51を設けたことにより細孔 52の先端たる噴霧口 53の外周周辺に傾斜面 51aを形成した。これにより残留物が噴霧口 53に溜まり難くな り、噴霧口 53の目詰まりを抑止し得るようになされて!、る。 Here, the carrier gas pipe 44 is selected so that the inner diameter thereof is larger than the inner diameter of the orifice pipe 45, and the carrier gas pipe 44 force is configured to further increase the flow velocity of the carrier gas supplied to the orifice pipe 45. ing. [0061] The orifice tube 45 is arranged in a vertical direction, and a tip portion 46 having a trapezoidal conical shape is provided at the tip 46, and a pore 52 is provided at the top of the convex portion 51. . Thus, in the orifice tube 45, the inclined surface 51a is formed around the outer periphery of the spray port 53, which is the tip of the pore 52, by providing the convex portion 51 at the tip. This makes it difficult for the residue to collect in the spray port 53, and prevents the spray port 53 from being clogged!
[0062] 因みに、この実施の形態の場合、凸状部 51の頂角 Θは、 45° 〜135° 、特に 30 ° 〜45° の鋭角に形成することが好ましぐこの場合、析出した原料ィ匕合物によって 噴霧口 53が詰まることを防止できる。  Incidentally, in the case of this embodiment, it is preferable that the apex angle Θ of the convex portion 51 is formed at an acute angle of 45 ° to 135 °, particularly 30 ° to 45 °. This prevents the spray port 53 from being clogged with the compound.
[0063] 噴霧口 53の細孔 52は、その内径がオリフィス管 45の内径よりも小さく選定され、これ により、当該オリフィス管 45におけるキャリアガスの圧力が高くなるように構成されてい る。ここで細孔 52の先端は、オリフィス管 45の凸状部 51が気化管 47の基端 54に挿入さ れていることにより、気化管 47の内部空間 55に突出するように配置される。  [0063] The pore 52 of the spray port 53 is selected so that its inner diameter is smaller than the inner diameter of the orifice tube 45, whereby the pressure of the carrier gas in the orifice tube 45 is increased. Here, the tip of the pore 52 is arranged so as to protrude into the internal space 55 of the vaporization tube 47 by inserting the convex portion 51 of the orifice tube 45 into the proximal end 54 of the vaporization tube 47.
[0064] 力かる構成にカ卩えてオリフィス管 45には、基端 49から凸状部 51までの間に複数 (こ の場合、例えば 5つ)の接続管 56a〜56eが連通しており、この接続管 56a〜56eにそれ ぞれ原料溶液供給機構 42が設けられている。これによりオリフィス管 45は、接続管 56a 〜56eを介して原料溶液供給機構 42から所定の原料溶液が供給され得るように構成 されている。原料溶液供給機構 42では、原料溶液用タンク(図示せず)に貯えられた 原料溶液を、所定の原料溶液流路 58を経由させることにより、液体マスフローコント口 ーラ (LMFC) 57、ブロックバルブ 59を順次介してオリフィス管 45に供給するように構 成されている。なお、この液体マスフローコントローラ 57は、原料溶液流路 58を流れる 原料溶液の流量を制御するようになされている。  [0064] In connection with the powerful configuration, the orifice pipe 45 has a plurality of (in this case, for example, five) connecting pipes 56a to 56e communicating with each other from the base end 49 to the convex portion 51. Each of the connection pipes 56a to 56e is provided with a raw material solution supply mechanism 42. Thereby, the orifice pipe 45 is configured such that a predetermined raw material solution can be supplied from the raw material solution supply mechanism 42 via the connecting pipes 56a to 56e. In the raw material solution supply mechanism 42, a raw material solution stored in a raw material solution tank (not shown) is routed through a predetermined raw material solution flow path 58, whereby a liquid mass flow controller (LMFC) 57, a block valve are provided. It is configured to supply the orifice pipe 45 through 59 in order. The liquid mass flow controller 57 controls the flow rate of the raw material solution flowing through the raw material solution channel 58.
[0065] この場合、オリフィス管 45は、例えば接続管 56aから供給された原料溶液に高速で 流れるキャリアガスが合流し、当該原料溶液を微粒子状又は霧状にさせてキャリアガ ス中に分散させ、細孔 52を介して気化管 47内に高速(230mZ秒〜 350mZ秒)で 噴霧するようになされて ヽる。  In this case, in the orifice tube 45, for example, the carrier gas flowing at high speed joins the raw material solution supplied from the connection tube 56a, and the raw material solution is dispersed in the carrier gas in the form of fine particles or mist. Then, it is sprayed at a high speed (230 mZ seconds to 350 mZ seconds) into the vaporization tube 47 through the pores 52.
[0066] この実施の形態の場合、オリフィス管 45は、内径が例えば Φ 1. Omm以下に選定さ れて 、るとともに、鉛直向きに延びる長手方向の長さが 100mm程度に選定されるこ とにより、円柱状のガス通路が形成されている。さらに細孔 52の内径が Φ Ο. 2〜0. 7 mm程度に選定されており、その内部でキャリアガスを高速にさせ得るようになされて いる。このように、オリフィス管 45が円柱状のガス通路を備えることにより、安定的にキ ャリアガス中に原料溶液を分散させると共に、気化管 47へ供給することができる。 [0066] In the case of this embodiment, the orifice tube 45 is selected to have an inner diameter of, for example, Φ 1. Omm or less, and the length in the longitudinal direction extending in the vertical direction is selected to be about 100 mm. Thus, a cylindrical gas passage is formed. Furthermore, the inner diameter of the pore 52 is Φ Ο. 2 ~ 0.7 It is selected to be about mm, and the carrier gas inside it can be made high-speed. As described above, since the orifice pipe 45 includes the cylindrical gas passage, the raw material solution can be stably dispersed in the carrier gas and supplied to the vaporization pipe 47.
[0067] ここでオリフィス管 45に連結した気化管 47は、管状でなり、当該オリフィス管 45と同 様に鉛直向きに配置され、その内径がオリフィス管 45の内径より顕著に大きく選定さ れていることにより、当該気化管 47内の圧力がオリフィス管 45内の圧力よりも小さくな るように形成されている。  Here, the vaporization pipe 47 connected to the orifice pipe 45 is tubular and is arranged in the vertical direction in the same manner as the orifice pipe 45, and its inner diameter is selected to be significantly larger than the inner diameter of the orifice pipe 45. Therefore, the pressure in the vaporization pipe 47 is formed to be smaller than the pressure in the orifice pipe 45.
[0068] このように気化管 47は、細孔 52が設けられていることにより、オリフィス管 45との間で 大きな圧力差が設けられている。これにより、原料溶液及びキャリアガスが細孔 52か ら高速 (例えば 230mZ秒〜 350mZ秒)で噴出し、内部空間において膨張させ得る ようになされている。  As described above, the vaporizing pipe 47 is provided with a large pressure difference between the orifice pipe 45 and the orifice pipe 45 due to the provision of the pores 52. As a result, the raw material solution and the carrier gas are ejected from the pores 52 at a high speed (for example, 230 mZ seconds to 350 mZ seconds) and can be expanded in the internal space.
[0069] この実施の形態の場合、気化管 47内の圧力が例えば lOTorr程度に選定されてい るのに対し、オリフィス管 45内の圧力が例えば 500〜1000Torr程度に選定され、気 化管 47とオリフィス管 45との間に大きな圧力差が設けられている。  [0069] In the case of this embodiment, the pressure in the vaporization pipe 47 is selected to be about lOTorr, for example, whereas the pressure in the orifice pipe 45 is selected to be about 500 to 1000 Torr, for example. A large pressure difference is provided between the orifice tube 45.
[0070] 因みに、流量制御後のキャリアガスの圧力は、キャリアガスの流量、溶液流量及び 細孔 52の寸法によって増減する力 最終的には噴霧口 53の寸法を選定してキャリア ガスの圧力を制御し、 500〜1000Torrにすることが好ましい。  [0070] Incidentally, the pressure of the carrier gas after the flow rate control is a force that increases or decreases depending on the carrier gas flow rate, the solution flow rate, and the size of the pore 52. Finally, the size of the spray port 53 is selected and the pressure of the carrier gas is increased. It is preferable to control to 500 to 1000 Torr.
[0071] これに加えて気化管 47の外周には、基端 54及び先端 (すなわち反応室との接続部 分)の間に加熱手段としての気化管加熱ヒータ 60が取り付けられており、この気化管 加熱ヒータ 60によって気化管 47が例えば 270°C程度に加熱され得る。なお、この実 施の形態の場合、気化管 47の基端 54がほぼ半球形状に形成されていることにより、 気化管加熱ヒータ 60によって当該基端 54側を均一に加熱することができるようになさ れている。  [0071] In addition, a vaporization tube heater 60 as a heating means is attached to the outer periphery of the vaporization tube 47 between the base end 54 and the distal end (that is, the connection portion with the reaction chamber). The vaporizing tube 47 can be heated to, for example, about 270 ° C. by the tube heater 60. In the case of this embodiment, the base end 54 of the vaporization tube 47 is formed in a substantially hemispherical shape so that the vaporization tube heater 60 can uniformly heat the base end 54 side. Has been made.
[0072] 力くして気化管 47では、オリフィス管 45内で高速のキャリアガス流によって分散され 霧化した原料溶液を、気化管加熱ヒータ 60によって瞬時に加熱して、瞬間的に気化 するように構成されている。このとき、原料溶液がオリフィス管 45内で混合されたときか ら気化管 47内に噴霧されるまでの時間は極めて短時間(好ましくは 0. 1〜0. 002秒 以内)であることが好ましい。原料溶液は、高速のキャリアガス流によって、オリフィス 管 45内で分散させた直後に微細になり、高温の気化管 47内で瞬時に気化する。また 、溶媒のみが気化する現象は抑制される。 [0072] In the vaporization tube 47, the raw material solution dispersed and atomized by the high-speed carrier gas flow in the orifice tube 45 is instantaneously heated by the vaporization tube heater 60 and vaporized instantaneously. It is configured. At this time, the time from when the raw material solution is mixed in the orifice tube 45 until it is sprayed into the vaporization tube 47 is preferably extremely short (preferably within 0.1 to 0.002 seconds). . The raw material solution is injected into the orifice by a high-speed carrier gas flow. Immediately after being dispersed in the tube 45, it becomes fine and instantly vaporizes in the high-temperature vaporizing tube 47. In addition, the phenomenon of vaporizing only the solvent is suppressed.
[0073] 因みに原料溶液及びキャリアガスを高速で気化管 47に噴霧することによって、霧の 寸法が微細化 (霧の直径が 1 IX m以下)し、蒸発面積の増大と蒸発速度の増大を図 ることができる。なお霧の寸法が 1桁減少すると、蒸発面積は 1桁増大する。なお噴霧 口 53から噴出した霧が気化管 47の内壁に衝突しな 、ように、噴霧口 53の角度と気化 管 47の寸法を設計することが好ましい。霧が気化管 47の内壁に衝突すると、壁面に 付着し、蒸発面積が桁違いに減少して、蒸発速度が低下するからである。また、霧が 長時間気化管 47壁に付着していると、熱分解して蒸発しない化合物に変化する例も あるからである。 [0073] By spraying the raw material solution and the carrier gas onto the vaporization tube 47 at a high speed, the mist size is reduced (the mist diameter is 1 IX m or less), and the evaporation area and the evaporation rate are increased. Can. If the fog size is reduced by an order of magnitude, the evaporation area will increase by an order of magnitude. It is preferable to design the angle of the spraying port 53 and the dimensions of the vaporizing tube 47 so that the mist ejected from the spraying port 53 does not collide with the inner wall of the vaporizing tube 47. This is because when the mist collides with the inner wall of the vaporization tube 47, it adheres to the wall surface, the evaporation area decreases by an order of magnitude, and the evaporation rate decreases. In addition, if the mist is attached to the wall of the vaporization tube 47 for a long time, there is an example in which it changes into a compound that does not evaporate due to thermal decomposition.
[0074] またこの場合、気化管 47は、その内部が減圧されていることにより原料溶液それぞ れに含まれる原料ィ匕合物の昇華温度を低下させることができ、その結果、気化管加 熱ヒータ 60からの熱で原料溶液を容易に気化させ得るようになされて!、る。  [0074] Further, in this case, the vaporization tube 47 can reduce the sublimation temperature of the raw material mixture contained in each of the raw material solutions by reducing the pressure inside, and as a result, the vaporization tube can be added. The heat from the heat heater 60 can easily vaporize the raw material solution!
[0075] このようにして気化管 47は、原料溶液を気化し、これを薄膜形成用ガスとしての原 料ガスとして反応室 2に供給し、この反応室 2で CVD法によって薄膜を形成させ得る ようになされている。  In this way, the vaporizing tube 47 vaporizes the raw material solution, supplies it to the reaction chamber 2 as a raw material gas as a thin film forming gas, and can form a thin film by the CVD method in this reaction chamber 2 It is made like that.
[0076] なお、気化管 47の基端 54は、オリフィス管 45との間に断熱材 61を有し、この断熱材 6 1によって気化管 47からの熱がオリフィス管 45に伝達され難くなるように構成されて!ヽ る。因みに気化管 47の基端 54は Oリング 62によって気密封止されている。またオリフィ ス管 45と気化管 47とを連結する締結部材 63には断熱材 64が設けられている。  It should be noted that the proximal end 54 of the vaporization pipe 47 has a heat insulating material 61 between the vaporization pipe 47 and the heat insulation material 61 so that heat from the vaporization pipe 47 is hardly transmitted to the orifice pipe 45. It is composed! Incidentally, the proximal end 54 of the vaporizing tube 47 is hermetically sealed by an O-ring 62. The fastening member 63 that connects the orifice pipe 45 and the vaporization pipe 47 is provided with a heat insulating material 64.
[0077] 因みに、細孔 52から噴霧された霧が気化管 47の内壁を濡らさないことが好ましい。  Incidentally, it is preferable that the mist sprayed from the pores 52 does not wet the inner wall of the vaporizing tube 47.
理由は、霧に比べて、濡れ壁では蒸発面積が桁違いに減少するからである。つまり、 気化管 47の内壁が全く汚れない構造が好ましい。また、気化管 47の内壁の汚れが簡 単に評価できるように、気化管 47壁は鏡面仕上げをすることが好ましい。  The reason is that the evaporation area is reduced by orders of magnitude on wet walls compared to fog. That is, a structure in which the inner wall of the vaporizing tube 47 is not soiled at all is preferable. In addition, the wall of the vaporization tube 47 is preferably mirror-finished so that the dirt on the inner wall of the vaporization tube 47 can be easily evaluated.
[0078] 以上の構成において、 CVD部では、オリフィス管 45において反応室 2に向けて常 に高速で流れるキャリアガス流に、原料溶液を供給することにより、原料溶液を微粒 子状又は霧状にさせてキャリアガス中に分散させ、そのまま気化管 47で気化し原料 ガスとして反応室 2に供給する。 [0079] このようにして、気化機構 41では、高速のキャリアガス流によって原料溶液を瞬間的 に霧化させて、気化管加熱ヒータ 60の熱で当該原料溶液を容易に気化させ易いよう にして!/ヽること〖こより、気化させ難 ヽ原料化合物を溶媒に溶かして得た原料溶液であ つても気化管 47にお 、て容易に気化できる。 [0078] In the above configuration, in the CVD unit, the raw material solution is supplied into the carrier gas flow that always flows at high speed toward the reaction chamber 2 in the orifice tube 45, so that the raw material solution is in the form of fine particles or mist. Then, it is dispersed in a carrier gas and vaporized in the vaporization tube 47 as it is and supplied to the reaction chamber 2 as a raw material gas. In this way, the vaporization mechanism 41 instantaneously atomizes the raw material solution by the high-speed carrier gas flow so that the raw material solution can be easily vaporized by the heat of the vaporizing tube heater 60. Because it is difficult to vaporize, it is easy to vaporize even a raw material solution obtained by dissolving a raw material compound in a solvent.
[0080] また気化機構 41では、キャリアガス管 44において加圧されたキャリアガスを高速にし てオリフィス管 45に導入するため(例えばキャリアガスは 500〜1000Torrで、 200ml Zmin〜2LZmin)、オリフィス管 45において原料溶液の温度上昇を抑制することが できる。  In the vaporization mechanism 41, the carrier gas pressurized in the carrier gas pipe 44 is introduced into the orifice pipe 45 at high speed (for example, the carrier gas is 500 to 1000 Torr, 200 ml Zmin to 2 LZmin). The temperature rise of the raw material solution can be suppressed.
[0081] 従って、この気化機構 41では、オリフィス管 45において原料溶液中の溶剤のみが蒸 発気化することを抑制できるので、オリフィス管 45において原料溶液が高濃度化する ことを防止でき、力べして粘度の上昇を抑制できるとともに、原料化合物が析出するこ とを防止できる。  Therefore, in this vaporization mechanism 41, it is possible to prevent only the solvent in the raw material solution from evaporating in the orifice tube 45, so that it is possible to prevent the raw material solution from being highly concentrated in the orifice tube 45, and to force As a result, an increase in viscosity can be suppressed and precipitation of the raw material compound can be prevented.
[0082] さらに、気化機構 41では、キャリアガス中に分散した原料溶液を気化管 47で瞬時に 気化させることができるので、細孔 52や細孔 52付近において原料溶液中の溶剤のみ が気化することを抑止できるため、細孔 52の目詰まりを抑止できる。力べして CVD用 気化器 31の連続使用時間を長くすることができる。  [0082] Furthermore, in the vaporization mechanism 41, since the raw material solution dispersed in the carrier gas can be instantaneously vaporized by the vaporization tube 47, only the solvent in the raw material solution vaporizes in the pore 52 and in the vicinity of the pore 52. Therefore, clogging of the pores 52 can be suppressed. The continuous use time of the vaporizer for CVD 31 can be increased.
(1 - 3 - 2)ガスシャワー電極の構成  (1-3-2) Configuration of gas shower electrode
ガスシャワー電極 32は、図 4に示すように、 RF電源 71の一端が電気的に接続され ている。この RF電源 71の他端は接地され、また、上記各成膜ローラ 24,25は接地され ている。これにより、第 1の成膜ローラ 24 (第 2の成膜ローラ 25)の被成膜テープ 16上 の部分と、ガスシャワー電極 32との間にプラズマ放電が生じるプラズマ発生領域 Aを 形成する。  As shown in FIG. 4, the gas shower electrode 32 has one end of an RF power supply 71 electrically connected thereto. The other end of the RF power source 71 is grounded, and the film forming rollers 24 and 25 are grounded. As a result, a plasma generation region A in which plasma discharge occurs is formed between the portion of the first film formation roller 24 (second film formation roller 25) on the film formation tape 16 and the gas shower electrode 32.
[0083] 72は反応室 2の下面板、 73はガスシャワー電極 32の最外殻部分を成すシールド電 極、 74はそのシールド電極 73の内側にそれと絶縁して形成された RF電極で、これに 前記 RF電源 71の一端が電気的に接続されている。そして、その RF電極 74の内側に 、上記気化管 47からのガスを反応室 2内に供給するガス供給管 33が、その間に酸ィ匕 ガス等供給空間 75が構成されるように設けられて ヽる。 76はその酸ィ匕ガス等供給空 間 75に酸化ガス等を供給する酸化ガス等供給管である。 [0084] RF電極 74の下側にこれとの間に空間 78が構成されるように略水平に設けられたガ スシャワープレート 77は、上記ガス供給管 33から上記空間 78内に供給されたガス (気 化原材料)を下側に噴出する気化原材料噴出孔 (噴出し孔) 79,79, · · ·と、上記酸ィ匕 ガス等供給空間 75内に供給された酸ィ匕ガス等を下側に噴出する酸ィ匕ガス等噴出孔( 噴出し孔) 80,80, · · ·とが配設されており、上記空間 78内において気化原材料と酸ィ匕 ガス等とが反応してしまうことがないように、互いに分離された経路を通じて第 1の成 膜ローラ 24上の被成膜テープ 16上に供給されるようになって 、る。 [0083] 72 is a bottom plate of the reaction chamber 2, 73 is a shield electrode that forms the outermost shell portion of the gas shower electrode 32, and 74 is an RF electrode that is formed inside the shield electrode 73 and insulated from it. Further, one end of the RF power source 71 is electrically connected. A gas supply pipe 33 for supplying the gas from the vaporization pipe 47 into the reaction chamber 2 is provided inside the RF electrode 74 so that a supply space 75 for oxidizing gas etc. is formed therebetween. Speak. Reference numeral 76 denotes an oxidizing gas supply pipe for supplying an oxidizing gas or the like to the supply space 75 for the acid gas. [0084] A gas shower plate 77 provided substantially horizontally so that a space 78 is formed between the lower side of the RF electrode 74 was supplied from the gas supply pipe 33 into the space 78. Vaporized material injection holes (outlet holes) for jetting gas (vaporized raw material) downward 79, 79, ..., and the above-mentioned acid gas supplied space 75, etc. 80, 80, ... are arranged in the lower side, and the vaporized raw material reacts with the oxygen gas in the space 78. In this case, the film is supplied onto the film forming tape 16 on the first film forming roller 24 through paths separated from each other.
[0085] 81は上記 RF電極 74内に設けられたヒータ、 82はそのヒータ 81に電力を供給するヒ ータ用電源、 83はノイズカットフィルタである。また、 84は気化原材料供給バルブであ る。 [0085] 81 is a heater provided in the RF electrode 74, 82 is a heater power source for supplying power to the heater 81, and 83 is a noise cut filter. Reference numeral 84 denotes a vaporized raw material supply valve.
(1 4)作用及び効果  (1 4) Actions and effects
次に上記 CVD装置 1の作用及び効果について説明する。  Next, the operation and effect of the CVD apparatus 1 will be described.
[0086] CVD装置 1は、第 1の卷取りローラ 17、第 2の卷取りローラ 18の回転により、反応室 2内に形成された走行経路 Rに沿って被成膜テープ 16を正方向に走行させる。 CVD 装置 1では、誘導ローラ 23を設け、被成膜テープ 16を走行中において、第 1の成膜口 ーラ 24から第 2の成膜ローラ 25へ至る間に、表裏を反転させるように構成した。これに より、 CVD装置 1では、被成膜テープ 16が正方向に走行している間に被成膜テープ 16の表面及び裏面に対し薄膜を形成することができるので、効率的に被成膜テープ 16の両面に薄膜を形成することができる。  [0086] The CVD apparatus 1 causes the film-forming tape 16 to move in the forward direction along the travel path R formed in the reaction chamber 2 by the rotation of the first scraping roller 17 and the second scraping roller 18. Let it run. The CVD apparatus 1 is provided with a guide roller 23 and configured to reverse the front and back between the first film formation roller 24 and the second film formation roller 25 while the film formation tape 16 is running. did. As a result, in the CVD apparatus 1, a thin film can be formed on the front and back surfaces of the film-forming tape 16 while the film-forming tape 16 is traveling in the forward direction. Thin films can be formed on both sides of the tape 16.
[0087] また、 CVD装置 1は、 CVD用気ィ匕器 31が原料溶液を高速で流れるキャリアガスに あてて気化管 47に噴霧するオリフィス管 45を備えることにより、被成膜テープ 16に対し 、下方力もでも薄膜を形成することができる。従って、 CVD装置 1では、反応室 2の下 面に設置された第 1の CVD部 4aが、確実に被成膜テープ 16の一面に薄膜を形成す るので、第 2の CVD部 4bが他面に薄膜を形成することにより、被成膜テープ 16の両 面に確実に薄膜を形成することができる。  In addition, the CVD apparatus 1 includes an orifice tube 45 in which the CVD gas vessel 31 sprays the vaporizing tube 47 against the carrier gas flowing the raw material solution at a high speed. A thin film can be formed even with downward force. Therefore, in the CVD apparatus 1, the first CVD unit 4 a installed on the lower surface of the reaction chamber 2 reliably forms a thin film on one surface of the film-forming tape 16, so the second CVD unit 4 b By forming a thin film on the surface, the thin film can be reliably formed on both surfaces of the film-forming tape 16.
[0088] また、 CVD装置 1は、第 1、第 2の CVD部 4a,4bがそれぞれ個別的に各種 CVD条 件を設定できるようにされ、形成する薄膜も個別に設定できるようにされており、そし て、成膜動作をさせたり、成膜動作を停止させたりする制御も個別に為し得るようにさ れている。 [0088] Further, the CVD apparatus 1 is configured such that the first and second CVD units 4a and 4b can individually set various CVD conditions, and the thin film to be formed can also be set individually. In addition, it is possible to individually control the film forming operation or stop the film forming operation. It is.
[0089] 従って、第 1の CVD部 4aには、第 1の薄膜を、第 2の CVD部 4bには、第 2の薄膜を 形成させるようにすることができる。さらに、第 1、第 2の CVD部 4a, 4bに同様の薄膜 を形成させるよう〖こすることちでさる。  Accordingly, it is possible to form the first thin film in the first CVD unit 4a and the second thin film in the second CVD unit 4b. Furthermore, the first and second CVD portions 4a and 4b can be made to form a similar thin film.
[0090] また、 CVD装置 1では、第 1の卷取りローラ 17、第 2の卷取りローラ 18を正逆両回転 できるように構成してもよい。すなわち、被成膜テープ 16は、第 1の卷取りローラ 17と 第 2の卷取りローラ 18とが正逆両回転することにより、走行経路 Rに沿って第 1の卷取 りローラ 17から第 2の卷取りローラ 18へ向力 方向(正方向)に走行したり、逆に第 2の 卷取りローラ 18から第 1の卷取りローラ 17へ向力 方向(逆方向)に走行し得る。これ により、被成膜テープ 16は、第 2の卷取りローラ 18から第 1の卷取りローラ 17へ至る場 合にも、表裏が反転される。従って、第 1の CVD部 4a、第 2の CVD部 4bの成膜条件 をそれぞれ個別的に設定することにより、任意の積層構造力 なる多層膜を形成する ことができる。  Further, the CVD apparatus 1 may be configured such that the first scraping roller 17 and the second scraping roller 18 can rotate both forward and backward. That is, the film-forming tape 16 is moved from the first scraping roller 17 to the first scraping roller 17 along the travel path R by the first and second scraping rollers 17 and 18 rotating in both forward and reverse directions. It can travel in the direction of the force (forward direction) to the second scraping roller 18, or conversely, it can travel in the direction of direction (reverse direction) from the second scraping roller 18 to the first scraping roller 17. As a result, the front and back surfaces of the film-forming tape 16 are also reversed when reaching the first scraping roller 17 from the second scraping roller 18. Therefore, by setting the film forming conditions of the first CVD unit 4a and the second CVD unit 4b individually, it is possible to form a multilayer film having an arbitrary laminated structural force.
[0091] また、 CVD装置 1は、第 1の CVD部 4a、第 2の CVD部 4bに隔離部材 27を設けたこ とにより、第 1の CVD部 4a、第 2の CVD部 4bを他の CVD部から隔離することができる 。これにより、一方の CVD部が他方の CVD部の影響を受けずに被成膜テープ 16に 薄膜を形成することができるので、形成される薄膜の品質を向上することができる。ま た、 CVD装置 1は、隔離部材 27の先端を内側へ折り返したことにより、原料ガスの流 出をより確実に防ぐことができる。  [0091] In addition, the CVD apparatus 1 provides the first CVD unit 4a and the second CVD unit 4b to another CVD by providing the isolation member 27 in the first CVD unit 4a and the second CVD unit 4b. Can be isolated from the department. Thereby, since one CVD part can form a thin film in the film-forming tape 16 without being influenced by the other CVD part, the quality of the formed thin film can be improved. Further, the CVD apparatus 1 can more reliably prevent the source gas from flowing out by folding the tip of the separating member 27 inward.
[0092] また、 CVD装置 1は、隔離部材 27で覆われた部分に真空排気口 5を形成したことに より、処理済ガスを円滑に排気するように構成した。従って、 CVD装置 1は、処理済 ガスが隔離部材 27を超えて反応室 2内に流出するのを防ぐことができる。これにより、 CVD装置 1は、第 1の CVD部 4a、第 2の CVD部 4bが他の CVD部の影響を受けずに 被成膜テープ 16に薄膜を形成することができるので、形成される薄膜の品質をより向 上することができる。  In addition, the CVD apparatus 1 is configured to smoothly exhaust the treated gas by forming the vacuum exhaust port 5 in the portion covered with the isolation member 27. Therefore, the CVD apparatus 1 can prevent the treated gas from flowing out of the reaction chamber 2 beyond the isolation member 27. Thus, the CVD apparatus 1 is formed because the first CVD unit 4a and the second CVD unit 4b can form a thin film on the film forming tape 16 without being affected by other CVD units. The quality of the thin film can be further improved.
[0093] また、 CVD装置 1は、第 1の CVD部 4a及び第 2の CVD部 4bにそれぞれガスシャヮ 一電極 32を設けたことにより、被成膜テープ 16の全面に対して均質、均厚の薄膜を 形成することができる。 [0094] また、 CVD装置 1は、反応室 2の内壁の温度変化を容易に抑制でき、さらに、 CF [0093] Further, the CVD apparatus 1 is provided with a gas-sharing electrode 32 in each of the first CVD unit 4a and the second CVD unit 4b, so that the entire surface of the film-forming tape 16 is uniform and uniform in thickness. A thin film can be formed. [0094] Further, the CVD apparatus 1 can easily suppress the temperature change of the inner wall of the reaction chamber 2.
4 プラズマクリーニングによって、反応室 2の内壁などに付着した薄膜をエッチングによ り除去できるので、ゴミの少ない薄膜を形成することができる。仮に、無機材料、例え ば、 SiN, SiOx, Si, C, DLCの薄膜を形成する場合、蒸着法ゃスパッタ法では反 応室 2内に付着した薄膜が剥離しやすぐ被成膜テープ 16上にゴミとして付着して、 薄膜の品質を低下させることとなるが、本発明に係る CVD装置 1によれば、 CVD法 により薄膜を形成するので、品質の向上を図ることができる。  4 By plasma cleaning, the thin film attached to the inner wall of the reaction chamber 2 can be removed by etching, so that a thin film with less dust can be formed. If a thin film of an inorganic material such as SiN, SiOx, Si, C, or DLC is formed, the thin film adhering to the reaction chamber 2 may be peeled off immediately after deposition by sputtering or sputtering. However, according to the CVD apparatus 1 of the present invention, since the thin film is formed by the CVD method, the quality can be improved.
(2)第 2の実施形態  (2) Second embodiment
図 1との対応部分に同一符号を付して示す図 5において、 CVD装置 101は、上述し た第 1の実施形態とは、第 1の CVD部 4a、第 2の CVD部 4bが反応室 2の側面に対向 するように設けられて 、る点にお 、て異なる。  In FIG. 5, in which parts corresponding to those in FIG. 1 are assigned the same reference numerals, the CVD apparatus 101 is different from the first embodiment described above in that the first CVD unit 4a and the second CVD unit 4b are reaction chambers. It differs in that it is provided so as to face the two side surfaces.
[0095] 第 1の成膜ローラ 24は反応室 2の左側、第 2の成膜ローラ 25は反応室 2の右側にそ れぞれ配置され、同一水平線上に軸支されている。第 1の卷取りローラ 17は、反応室 2の左側上であって、第 1の成膜ローラ 24より右に設けられており、第 2の卷取りローラ 18は反応室 2内の右側下であって、第 2の成膜ローラ 25の垂直軸線上に設けられて いる。また、第 1の CVD部 4aは、第 1の成膜ローラ 24に対応して、反応室 2の左側面 に、第 2の CVD部 4bは、第 2の成膜ローラ 25に対応して反応室 2の右側面にそれぞ れ設けられている。 [0095] The first film forming roller 24 is disposed on the left side of the reaction chamber 2, and the second film forming roller 25 is disposed on the right side of the reaction chamber 2, and is supported on the same horizontal line. The first scraping roller 17 is provided on the left side of the reaction chamber 2 and on the right side of the first film forming roller 24. The second scraping roller 18 is disposed on the lower right side in the reaction chamber 2. Therefore, the second film forming roller 25 is provided on the vertical axis. The first CVD unit 4a corresponds to the first film formation roller 24 and corresponds to the left side surface of the reaction chamber 2, and the second CVD unit 4b corresponds to the second film formation roller 25 and reacts. Each is provided on the right side of chamber 2.
[0096] 被成膜テープ 16は、第 1の卷取りローラ 17から鉛直下方に垂下して、送りローラ 26 により直角に左方向へ送出され、左周りに第 1の成膜ローラ 24に卷回される。誘導口 ーラ 23は、第 1の成膜ローラ 24の下側力も送出された被成膜テープ 16を、 S字を描く ように反応室 2の上側へ誘導し、第 2の成膜ローラ 25に対し右回りに卷回する。これに より、被成膜テープ 16は、第 1の成膜ローラ 24から第 2の成膜ローラ 25へ至る間に、表 裏が反転され、第 1の成膜ローラ 24で卷回された一面とは逆の他面が第 2の成膜口 ーラ 25でプラズマ発生領域 Aに表れる。第 2の成膜ローラ 25から送出された被成膜テ ープ 16は、送りローラ 26によって、第 2の成膜ローラ 25から左方向へ誘導され、第 2の 卷取りローラ 18へと至る。  The film-forming tape 16 hangs vertically downward from the first scraping roller 17 and is sent to the left at a right angle by the feed roller 26 and wound around the first film-forming roller 24 counterclockwise. Is done. The guide roller 23 guides the film forming tape 16 to which the lower force of the first film forming roller 24 is also sent to the upper side of the reaction chamber 2 so as to draw an S-shape, and the second film forming roller 25 Turn clockwise. As a result, the film-deposited tape 16 has one surface that is reversed by the first film-forming roller 24 between the first film-forming roller 24 and the second film-forming roller 25. The other side opposite to that appears in the plasma generation region A at the second film formation roller 25. The film forming tape 16 delivered from the second film forming roller 25 is guided leftward from the second film forming roller 25 by the feed roller 26 and reaches the second scraping roller 18.
[0097] 以上のように、 CVD装置 101は、第 1の CVD部 4a、第 2の CVD部 4bを反応室 2の 側面に設けたことにより、第 1の CVD部 4a、第 2の CVD部 4bにおいて、成膜ローラ 24 ,25の側方にプラズマ発生領域 Aを形成することができる。これにより、 CVD装置 101 では、各プラズマ発生領域 Aで原料ガスを同じ水平方向に供給することができるので 、成膜条件をそろえることができる。従って、いずれのプラズマ発生領域 Aでも安定し た品質の薄膜を形成することができる。 [0097] As described above, the CVD apparatus 101 includes the first CVD unit 4a and the second CVD unit 4b in the reaction chamber 2. By providing on the side surface, the plasma generation region A can be formed on the side of the film forming rollers 24 and 25 in the first CVD unit 4a and the second CVD unit 4b. Thus, the CVD apparatus 101 can supply the source gas in the same horizontal direction in each plasma generation region A, so that the film forming conditions can be made uniform. Accordingly, a stable quality thin film can be formed in any plasma generation region A.
[0098] また、 CVD装置 101は、第 1の CVD部 4a、第 2の CVD部 4bが CVD用気化器 31、ガ スシャワー電極 32を備えることにより、上述の第 1の実施の形態と同様の効果を得るこ とがでさる。 In addition, the CVD apparatus 101 includes the first CVD unit 4a and the second CVD unit 4b including the CVD vaporizer 31 and the gas shower electrode 32, so that the same as in the first embodiment described above. It is possible to obtain the effects of
(3)第 3の実施形態  (3) Third embodiment
図 5との対応部分に同一符号を付して示す図 6において、 CVD装置 111は、上述し た第 2の実施形態とは、第 1の成膜ローラ 24と第 2の成膜ローラ 25とが上下方向にず らして設けられて 、る点にお 、て異なる。  In FIG. 6 in which the same reference numerals are assigned to the parts corresponding to FIG. 5, the CVD apparatus 111 is different from the second embodiment described above in that the first film-forming roller 24, the second film-forming roller 25, It is different in that it is provided in the vertical direction.
[0099] 第 1の成膜ローラ 24は、左下側に配置され、第 2の成膜ローラ 25は、右上側に配置 されている。第 1の卷取りローラ 17は、反応室 2の左側上であって、第 1の成膜ローラ 2 4の垂直軸線上に設けられており、第 2の卷取りローラ 18は反応室 2内の右側下であ つて、第 2の成膜ローラ 25の垂直軸線上に設けられている。  [0099] The first film formation roller 24 is disposed on the lower left side, and the second film formation roller 25 is disposed on the upper right side. The first scraping roller 17 is provided on the left side of the reaction chamber 2 and on the vertical axis of the first film-forming roller 24. The second scraping roller 18 is disposed in the reaction chamber 2. The lower right side is provided on the vertical axis of the second film forming roller 25.
[0100] 被成膜テープ 16は、送りローラ 26により、一端、第 1の卷取りローラ 17から反応室 2 の右方向へ誘導され、左回りに第 1の成膜ローラ 24に卷回される。誘導ローラ 23は、 第 1の成膜ローラ 24の下側力 送出された被成膜テープ 16を、被成膜テープ 16を第 2の成膜ローラ 25の高さまで垂直上方へ誘導する。被成膜テープ 16は、 S字を描くよ うに右回りに第 2の成膜ローラ 25に卷回される。第 2の成膜ローラ 25の下側力 送出さ れる被成膜テープ 16は、反応室 2の内側へ誘導された後、第 2の卷取りローラ 18へと 至る。  [0100] The film-forming tape 16 is guided to the right of the reaction chamber 2 from the first scraping roller 17 at one end by the feed roller 26, and is wound counterclockwise by the first film-forming roller 24. . The guide roller 23 guides the film-forming tape 16 sent from the lower force of the first film-forming roller 24 vertically upward to the height of the second film-forming roller 25. The film forming tape 16 is wound around the second film forming roller 25 clockwise so as to draw an S-shape. The film-forming tape 16 to be delivered is fed to the inside of the reaction chamber 2 and then reaches the second scraping roller 18.
[0101] 以上により、 CVD装置 111は、第 1の成膜ローラ 24と第 2の成膜ローラ 25とを上下方 向にずらして設けたことにより、反応室 2の高さ寸法を小さくすることができる。従って 、 CVD装置 111は、卷取りローラ 17, 18、成膜ローラ 24, 25、送りローラ 26、誘導ローラ 23や、 CVD部 4a, 4bの設置箇所を、反応室 2の下面力 低い位置とすることができる 。これにより、 CVD装置 111では、被成膜テープ 16の設置、交換作業等を容易に行 なうことができると共に、省スペース化を図れる。 [0101] As described above, the CVD apparatus 111 reduces the height dimension of the reaction chamber 2 by providing the first film-forming roller 24 and the second film-forming roller 25 while being shifted upward and downward. Can do. Therefore, the CVD apparatus 111 sets the position where the scraping rollers 17 and 18, the film forming rollers 24 and 25, the feed roller 26, the guide roller 23, and the CVD units 4 a and 4 b are placed at a position where the lower force of the reaction chamber 2 is low. be able to . As a result, the CVD apparatus 111 facilitates the installation and replacement of the film-forming tape 16. And can save space.
[0102] また、 CVD装置 111は、反応室 2の側面に第 1の CVD部 4a、第 2の CVD部 4bを設 けたことにより、上述した第 2の実施の形態と同様の効果を得ることができる。  [0102] In addition, CVD apparatus 111 has the same effect as that of the second embodiment described above by providing first CVD section 4a and second CVD section 4b on the side surface of reaction chamber 2. Can do.
[0103] さらに、 CVD装置 111は、第 1の CVD部 4a、第 2の CVD部 4bが CVD用気化器 31、 ガスシャワー電極 32を備えることにより、上述の第 1の実施の形態と同様の効果を得 ることがでさる。 [0103] Furthermore, the CVD apparatus 111 includes the first CVD unit 4a and the second CVD unit 4b provided with a CVD vaporizer 31 and a gas shower electrode 32, so that the same as in the first embodiment described above. An effect can be obtained.
(4)第 4の実施形態  (4) Fourth embodiment
図 5との対応部分に同一符号を付して示す図 7において、 CVD装置 121は、上述し た第 2の実施形態とは、第 1の成膜ローラ 24と第 2の成膜ローラ 25とが縦に並設され ている点において異なる。  In FIG. 7 where the same reference numerals are assigned to the parts corresponding to FIG. 5, the CVD apparatus 121 is different from the second embodiment described above in that the first film forming roller 24, the second film forming roller 25, Are different in that they are arranged vertically.
[0104] 第 1の成膜ローラ 24は反応室 2内の上側、第 2の成膜ローラ 25は反応室 2内の下側 にそれぞれ配置され、第 1の成膜ローラ 24と第 2の成膜ローラ 25とは反応室 2内の中 心軸線上に軸支される。第 1の卷取りローラ 17は、反応室 2内の左側上に設けられて おり、第 2の卷取りローラ 18は反応室 2内の左側下に設けられている。  [0104] The first film formation roller 24 is disposed on the upper side in the reaction chamber 2, and the second film formation roller 25 is disposed on the lower side in the reaction chamber 2. The membrane roller 25 is supported on the center axis in the reaction chamber 2. The first scraping roller 17 is provided on the left side in the reaction chamber 2, and the second scraping roller 18 is provided on the left side in the reaction chamber 2.
[0105] 被成膜テープ 16は、送りローラ 26により、一端、第 1の卷取りローラ 17から反応室 2 の右側へ誘導され、左回りに第 1の成膜ローラ 24に卷回される。誘導ローラ 23は、第 1の成膜ローラ 24から送出された被成膜テープを、隔離部材 27を避けると共に、右回 りに第 2の成膜ローラ 25に卷回し得るように誘導する。上側から第 2の成膜ローラ 25に 卷回された被成膜テープ 16は、反応室 2の左側へ誘導された後、第 2の卷取りローラ 18へと至る。  The film-forming tape 16 is guided at one end by the feed roller 26 from the first scraping roller 17 to the right side of the reaction chamber 2 and wound counterclockwise by the first film-forming roller 24. The guide roller 23 guides the film-forming tape sent from the first film-forming roller 24 so as to avoid the isolation member 27 and to be wound around the second film-forming roller 25 clockwise. The film forming tape 16 wound around the second film forming roller 25 from the upper side is guided to the left side of the reaction chamber 2 and then reaches the second picking roller 18.
[0106] 以上により、 CVD装置 121は、第 1の成膜ローラ 24と第 2の成膜ローラ 25とを中心軸 線上に縦方向に設けたことにより、反応室 2の横幅の寸法を小さくすることができる。 従って、 CVD装置 121は、設置できる場所が、幅の狭い場合でも据付けることができ る。  As described above, the CVD apparatus 121 reduces the width dimension of the reaction chamber 2 by providing the first film-forming roller 24 and the second film-forming roller 25 in the vertical direction on the central axis. be able to. Therefore, the CVD apparatus 121 can be installed even when the place where the CVD apparatus 121 can be installed is narrow.
[0107] また、 CVD装置 121は、反応室 2の側面に第 1の CVD部 4a、第 2の CVD部 4bを設 けたことにより、上述した第 2の実施の形態と同様の効果を得ることができる。  [0107] Further, CVD apparatus 121 has the same effects as those of the second embodiment described above by providing first CVD section 4a and second CVD section 4b on the side surface of reaction chamber 2. Can do.
[0108] さらに、 CVD装置 121は、第 1の CVD部 4a、第 2の CVD部 4bが CVD用気化器 31、 ガスシャワー電極 32を備えることにより、上述の第 1の実施の形態と同様の効果を得 ることがでさる。 Furthermore, the CVD apparatus 121 includes the first CVD unit 4a and the second CVD unit 4b, which are provided with a CVD vaporizer 31 and a gas shower electrode 32, so that the same as in the first embodiment described above. Effect It can be done.
(5)第 5の実施形態  (5) Fifth embodiment
図 3との対応部分に同一符号を付して説明する図 8において、 CVD用気化器 131 は、気化機構 132によってキャリアガスを常に反応室 2へ供給するとともに、原料溶液 供給機構 42から供給された原料溶液のほぼ全てを気化機構 132で確実に気化して 反応室 2に供給し得るように構成されている。原料溶液供給機構 42では、原料溶液 用タンク(図示しない)に貯えられた原料溶液を、液体マスフローコントローラ(LMFC ) 133、原料溶液流路 134、ブロックバルブ 59を順次介して原料供給管 136に供給する ようになされている。  In FIG. 8, which is described by attaching the same reference numerals to the parts corresponding to FIG. 3, the CVD vaporizer 131 always supplies the carrier gas to the reaction chamber 2 by the vaporization mechanism 132 and is supplied from the raw material solution supply mechanism 42. The raw material solution is configured to be surely vaporized by the vaporization mechanism 132 and supplied to the reaction chamber 2. In the raw material solution supply mechanism 42, the raw material solution stored in the raw material solution tank (not shown) is supplied to the raw material supply pipe 136 sequentially through the liquid mass flow controller (LMFC) 133, the raw material solution flow path 134, and the block valve 59. It is made to do.
[0109] また、カゝかる構成に加えて原料溶液供給機構 42では、ブロックバルブ 59から原料供 給管 136に原料溶液を供給していないとき、溶媒用タンク(図示しない)に貯えられた 溶媒を、所定の溶媒流路 137を経由させることにより、液体マスフローコントローラ (L MFC) 138、ブロックバルブ 59を介して原料供給管 136に供給するように構成されてい る。  [0109] Further, in the raw material solution supply mechanism 42 in addition to the cover structure, when the raw material solution is not supplied from the block valve 59 to the raw material supply pipe 136, the solvent stored in the solvent tank (not shown) Is supplied to the raw material supply pipe 136 via the liquid mass flow controller (L MFC) 138 and the block valve 59 by passing through a predetermined solvent flow path 137.
[0110] 気化機構 132は、気化機構本体 139、キャリアガス管 44、原料供給管 136、細孔 141 を備えた噴霧フランジ 142を備え、細孔 141の先端に気化管 47が形成されている。こ の気化機構 132は、気化機構本体 139が原料供給管 136を鉛直方向に保持すると共 に、原料供給管 136の先端近傍の外側にキャリアガスを供給し得るように構成されて いる。これにより、原料供給管 136から供給される原料溶液と、キャリアガス管 44力ゝら供 給されるキャリアガスとが細孔 141の基端側に形成された分散部 143で混合し得るよう に構成されている。  The vaporization mechanism 132 includes a vaporization mechanism main body 139, a carrier gas pipe 44, a raw material supply pipe 136, and a spray flange 142 having pores 141, and a vaporization pipe 47 is formed at the tip of the pore 141. The vaporizing mechanism 132 is configured such that the vaporizing mechanism main body 139 holds the raw material supply pipe 136 in the vertical direction and can supply a carrier gas to the outside near the tip of the raw material supply pipe 136. Thus, the raw material solution supplied from the raw material supply pipe 136 and the carrier gas supplied from the carrier gas pipe 44 can be mixed in the dispersion part 143 formed on the proximal end side of the pore 141. It is configured.
[0111] 因みに原料供給管 136は、例えば、内径が Φ 1. Omm程度であり、長さが 100mm 程度である。  Incidentally, for example, the raw material supply pipe 136 has an inner diameter of about Φ 1. Omm and a length of about 100 mm.
[0112] 原料溶液供給機構 42は、原料溶液流路 134を介して原料供給管 136の基端に連通 していることにより、原料供給管 136の基端カゝら先端へ原料溶液を供給し得るように構 成されている。  [0112] The raw material solution supply mechanism 42 communicates with the proximal end of the raw material supply pipe 136 via the raw material solution flow path 134, thereby supplying the raw material solution to the distal end of the raw material supply pipe 136. It is structured to obtain.
[0113] 気化機構本体 139は、原料供給管 136の先端部分との間に隙間を形成し、原料供 給管 136の先端側に分散部 143を介して噴霧フランジ 142を設けると共に、キャリアガ ス管 44の先端 44aを原料供給管 136の先端側に連結する導入口 144を設けている。こ のようにして、分散部 143は原料溶液とキャリアガスとを合流させて、原料溶液をキヤリ ァガス中に分散させ得るように構成されて 、る。 [0113] The vaporization mechanism main body 139 forms a gap with the distal end portion of the raw material supply pipe 136, and is provided with a spray flange 142 on the distal end side of the raw material supply pipe 136 via a dispersion portion 143, and also with a carrier gas. An inlet 144 for connecting the tip 44a of the pipe 44 to the tip of the raw material supply pipe 136 is provided. In this way, the dispersion unit 143 is configured to join the raw material solution and the carrier gas so as to disperse the raw material solution in the carrier gas.
[0114] 以上の構成において、 CVD用気化器 131では、原料供給管 136から鉛直方向に流 れる原料溶液と、キャリアガス管 44カゝら導入口 144を介して原料供給管 136の先端に 向けて流れるキャリアガスとが、分散部 143において混合される。これにより CVD用気 ィ匕器 131は、原料溶液を微粒子状又は霧状にさせてキャリアガス中に分散させ、気化 管 47に導入する。因みに原料溶液が分散部 143で混合されたときから霧状に噴霧さ れるまでは 1秒以内(より好ましくは 0. 1秒以内)であることが好ましい。  [0114] In the above-described configuration, in the CVD vaporizer 131, the raw material solution flowing in the vertical direction from the raw material supply pipe 136 and the carrier gas pipe 44 toward the front end of the raw material supply pipe 136 via the inlet 144 are provided. The carrier gas flowing in the dispersion is mixed in the dispersion part 143. As a result, the CVD vaporizer 131 makes the raw material solution into fine particles or mist, disperses it in the carrier gas, and introduces it into the vaporizer 47. Incidentally, it is preferably within 1 second (more preferably within 0.1 second) from when the raw material solution is mixed in the dispersion part 143 until it is sprayed in the form of a mist.
[0115] 次いで分散部 143でキャリアガス中に分散された原料溶液は、細孔 141を通過して 気化管 47へ導入される。ここで、気化管 47の圧力は分散部 143に比べ格段に低いた め、キャリアガス中に分散した原料溶液は高速で気化管 47に噴出し、膨張する。これ により原料溶液に含まれる化合物の昇華温度は低下するため、気化管加熱ヒータ 60 力 の熱で原料溶液は気化し、原料ガスとして反応室 2に供給される。  Next, the raw material solution dispersed in the carrier gas by the dispersion unit 143 passes through the pores 141 and is introduced into the vaporization tube 47. Here, since the pressure in the vaporization pipe 47 is much lower than that in the dispersion part 143, the raw material solution dispersed in the carrier gas is ejected into the vaporization pipe 47 at a high speed and expands. As a result, the sublimation temperature of the compound contained in the raw material solution is lowered, so that the raw material solution is vaporized by the heat of the vaporizing tube heater 60 and supplied to the reaction chamber 2 as a raw material gas.
[0116] このようにして、 CVD装置 1では、原料溶液を原料ガスとして反応室 2内に供給でき 、これにより当該原料ガスを被成膜テープ 16上に均一に吹き付けて RFプラズマによ り被成膜テープ 16上でィ匕学反応を起させ、所定の薄膜を形成することができる。 (6)実施例 1  In this way, in the CVD apparatus 1, the raw material solution can be supplied as a raw material gas into the reaction chamber 2, whereby the raw material gas is uniformly sprayed onto the film forming tape 16 and is covered by RF plasma. A predetermined thin film can be formed by causing a chemical reaction on the film forming tape 16. (6) Example 1
上記第 1の実施形態に係る CVD用気化器 31を用いることにより、分子中にシリコン と窒素を含む化合物からシリコン窒化膜を形成することができる。そのような化合物の 一例として、ィ匕 1にトリスジメチルアミノシラン(以下 TDMAS)を、化 2にへキサメチル ジシラザン(以下 HMDS)を示す。  By using the CVD vaporizer 31 according to the first embodiment, a silicon nitride film can be formed from a compound containing silicon and nitrogen in the molecule. As an example of such a compound, trisdimethylaminosilane (hereinafter referred to as TDMAS) is shown in FIG. 1, and hexamethyldisilazane (hereinafter referred to as HMDS) is shown in Chemical Formula 2.
[0117] [化 1] [0117] [Chemical 1]
CH3CH 3 ,
Figure imgf000023_0001
Figure imgf000023_0001
[0118] [化 2] CH3 CH3 [0118] [Chemical 2] CH 3 CH 3
I I  I I
H3C— Si— N— Si- CH3 H 3 C— Si— N— Si- CH 3
I I I CH3 H CH3 III CH 3 H CH 3
[0119] 図 9に温度に対する TDMASの TG— DTAチャート、すなわち熱重量分析 (TG :T hermo gravimetric Analysis)及び示差熱分析の結果を示す。図 9の Aに示す熱重量 分析特性は、 760Torrアルゴン雰囲気下におけるデータである。この図から明らかな ように、 TDMASを完全に蒸発させるためには約 100°Cの温度が必要と!/、うことにな る。  [0119] Fig. 9 shows the TG-DTA chart of TDMAS against temperature, that is, the results of thermogravimetric analysis (TG) and differential thermal analysis. The thermogravimetric analysis characteristics shown in Fig. 9A are data under a 760 Torr argon atmosphere. As is clear from this figure, a temperature of about 100 ° C is required to completely evaporate TDMAS!
[0120] 図 10は、 TDMASの温度に対する蒸気圧の変化を示すもの、図 11は、 HMDSの 温度に対する蒸気圧の変化を示すものである。この図からも、 TDMAS及び HMDS の蒸気圧が強!、温度依存性を持つことが確認される。  [0120] Fig. 10 shows the change in vapor pressure with respect to the temperature of TDMAS, and Fig. 11 shows the change in vapor pressure with respect to the temperature of HMDS. This figure also confirms that TDMAS and HMDS have high vapor pressure and temperature dependence.
(7)実施例 2  (7) Example 2
TDMASを用いて、プラズマ CVD法により、シリコン窒化膜を形成したときの、条件 を表 1に示す。  Table 1 shows the conditions when a silicon nitride film is formed by plasma CVD using TDMAS.
[0121] [表 1] [0121] [Table 1]
水素導入は気化管 5分で 1000 Aで計算  Hydrogen introduction calculated at 1000 A in 5 minutes vaporization tube
上部電極 120°C 圧力 300Pa 気化管温度 120°C 原料化合物 0.2ccm(TDMAS) その他 120°C H2 1500sccm  Upper electrode 120 ° C Pressure 300Pa Evaporation tube temperature 120 ° C Raw material compound 0.2ccm (TDMAS) Others 120 ° C H2 1500sccm
N2 1500sccm  N2 1500sccm
RF 1000w  RF 1000w
Figure imgf000024_0001
Figure imgf000024_0001
[0122] 表 2に形成したシリコン窒化膜の膜厚を測定した結果を示す。 [0123] [表 2] [0122] Table 2 shows the results of measuring the thickness of the formed silicon nitride film. [0123] [Table 2]
Figure imgf000025_0001
Figure imgf000025_0001
[0124] シリコン窒化膜は、堆積速度約 lOOnm/min形成できることが分力つた。また、シリコ ン窒化膜の組成は、 Si:34at%, N:7at%, C:34at%, 0:25at%であった。酸素の含有量 が多かったのは、薄膜形成前の反応室 2の排気が不足していたためと考えられる。  [0124] It was found that the silicon nitride film can be formed at a deposition rate of about lOOnm / min. The composition of the silicon nitride film was Si: 34 at%, N: 7 at%, C: 34 at%, and 0: 25 at%. The high oxygen content is thought to be due to the lack of exhaust in the reaction chamber 2 before the thin film formation.
[0125] 分子中にシリコンと窒素を含む化合物をプラズマで分解して、シリコン窒化膜を形 成する場合、 TDMASや、 HMDSを使用することができる。ところが、 TDMASや、 HMDSでは、窒素が不足するので、 RFプラズマの周波数を 13. 56MHzとし、アン モ-ァガスを採用することが有効である。  [0125] When a silicon nitride film is formed by decomposing a compound containing silicon and nitrogen in the molecule with plasma, TDMAS or HMDS can be used. However, since TDMAS and HMDS lack nitrogen, it is effective to set the RF plasma frequency to 13.56 MHz and use ammonia gas.
[0126] また、有機シリコンィ匕合物と、窒素ガス、アンモニア (NH )を反応させることによって  [0126] Further, by reacting the organic silicon compound with nitrogen gas and ammonia (NH 2),
3  Three
も、シリコン窒化膜を形成することができる。この場合、有機シリコンィ匕合物としては、 テトラエチルシラン(以下 4ES、融点≤0°C、沸点 154〜155°C)、トリェチルシラン( 以下 3ES、沸点 107〜108°C)、トリメチルビ-ルシラン(以下 TMVS、融点≤0°C、 沸点 55〜57°C)、フエ-ルシラン(以下 PhS、沸点 119〜 121°C)、ジフエ-ルシラン (以下 DPS、沸点113〜114°C [9mmHg])などの、いずれも安価で危険性がない材 料を用いることができる。  Alternatively, a silicon nitride film can be formed. In this case, organic silicon compounds include tetraethylsilane (hereinafter 4ES, melting point ≤0 ° C, boiling point 154 to 155 ° C), triethylsilane (hereinafter 3ES, boiling point 107 to 108 ° C), trimethylvinylsilane (hereinafter TMVS). Melting point ≤0 ° C, boiling point 55-57 ° C), phenol silane (hereinafter PhS, boiling point 119-121 ° C), diphenylsilane (hereinafter DPS, boiling point 113-114 ° C [9mmHg]), In either case, materials that are inexpensive and non-hazardous can be used.
[0127] 但し、 RFプラズマの周波数が 50KHz〜380KHzの場合、窒素ガスを十分に分解 •ラジカル化することができないので、 TDMAS, 4ES, 3ES, TMVS, PhSと窒素ガ スを反応させても、形成した薄膜に十分な窒素が含有されない。  [0127] However, when the frequency of the RF plasma is 50KHz to 380KHz, nitrogen gas cannot be decomposed sufficiently. • Since it cannot be radicalized, even if TDMAS, 4ES, 3ES, TMVS, PhS and nitrogen gas are reacted, The formed thin film does not contain sufficient nitrogen.
[0128] これに対し、 RFプラズマの周波数を 13. 56MHzにアップすることにより、窒素ガス を十分に分解'ラジカルィ匕することができる。これにより、十分な窒素を含有したシリコ ン窒化膜を形成することができる。また、アンモニアガスを採用することにより、 RFプ ラズマの周波数が 50KHz〜380KHzの場合でも、形成したシリコン窒化膜の窒素 含有量を増加させることができる。  On the other hand, by increasing the frequency of the RF plasma to 13.56 MHz, the nitrogen gas can be sufficiently decomposed and radicalized. Thereby, a silicon nitride film containing sufficient nitrogen can be formed. In addition, by using ammonia gas, the nitrogen content of the formed silicon nitride film can be increased even when the frequency of the RF plasma is 50 KHz to 380 KHz.
(8)その他 本発明は、上記した実施形態に限定されるものではなぐ本発明の要旨の範囲内 で種々の変形実施が可能である。例えば、 CVD装置は、被成膜テープ 16の表裏を 反転させるため、第 1の成膜ローラ 24から第 2の成膜ローラ 25へ、 S字を描くように被 成膜テープ 16を誘導するようにした構成について説明したが、本発明はこれに限ら ず、被成膜テープ 16を進行方向に対し、ねじるようにして表裏を反転させることとして ちょい。 (8) Other The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist of the present invention. For example, in order to reverse the front and back of the film-forming tape 16, the CVD apparatus guides the film-forming tape 16 from the first film-forming roller 24 to the second film-forming roller 25 so as to draw an S-shape. Although the present invention has been described, the present invention is not limited to this, and it is appropriate to reverse the front and back by twisting the film-forming tape 16 in the direction of travel.
[0129] また、 CVD装置では、第 1の成膜機構 21及び第 2の成膜機構 22がそれぞれ 1個の 場合について説明したが、本発明はこれに限らず、第 1の成膜機構 21及び第 2の成 膜機構 22をそれぞれ複数個(2個、 3個、 4個など)設けることとしてもよい。こうするこ とにより、より効率的に任意の積層構造力もなる多層膜を形成することができる。この 場合、被成膜テープ 16は、第 1の卷取りローラ 17と第 2の卷取りローラ 18との間におい て、少なくとも 1回、表裏が反転されればよい。  [0129] In the CVD apparatus, the case where each of the first film formation mechanism 21 and the second film formation mechanism 22 is one has been described. However, the present invention is not limited to this, and the first film formation mechanism 21 is provided. In addition, a plurality of (two, three, four, etc.) second film forming mechanisms 22 may be provided. By so doing, it is possible to more efficiently form a multilayer film having an arbitrary laminated structural force. In this case, the film forming tape 16 may be reversed at least once between the first scraping roller 17 and the second scraping roller 18.
[0130] また、被成膜テープ 16は、第 1の卷取りローラ 17と第 2の卷取りローラ 18との間にお いて、 1回、反転する場合について説明したが、本発明はこれに限らず、成膜ローラ の数に合わせて任意の回数反転させることとしてもよい。  [0130] Further, the case where the film-forming tape 16 is reversed once between the first scraping roller 17 and the second scraping roller 18 has been described. Not limited to this, the number of film forming rollers may be reversed any number of times according to the number.
[0131] また、上記した CVD装置では、 CVD部がプラズマ発生手段を備えるプラズマ CVD 装置について説明したが、本発明はこれに限らず、熱 CVD装置としてもよい。  [0131] In the above-described CVD apparatus, the plasma CVD apparatus in which the CVD unit includes the plasma generating means has been described. However, the present invention is not limited to this and may be a thermal CVD apparatus.

Claims

請求の範囲 The scope of the claims
[1] 反応室と、前記反応室内に原料ガスを供給する CVD部と、前記反応室内の気体を 排気する排気手段とを備える CVD装置において、  [1] In a CVD apparatus comprising: a reaction chamber; a CVD unit that supplies a source gas into the reaction chamber; and an exhaust unit that exhausts the gas in the reaction chamber.
前記反応室に、  In the reaction chamber,
被成膜テープが第 1の卷取りローラ力 第 2の卷取りローラへ至る走行経路と、 前記 CVD部を備え、前記走行経路に沿って一方向へ走行する前記被成膜テープ の両面に薄膜を形成する両面成膜機構とを設けた  A thin film is formed on both surfaces of the film-forming tape, which includes a traveling path where the film-forming tape reaches the first scoring roller force and a second scoring roller, and travels in one direction along the traveling path. And a double-sided film forming mechanism to form
ことを特徴とする CVD装置。  A CVD apparatus characterized by that.
[2] 前記両面成膜機構は、 [2] The double-sided film forming mechanism includes:
前記被成膜テープの一面に薄膜を形成する第 1の成膜機構と、  A first film forming mechanism for forming a thin film on one surface of the film-forming tape;
前記被成膜テープの他面に薄膜を形成する第 2の成膜機構と、  A second film-forming mechanism for forming a thin film on the other surface of the film-forming tape;
前記第 1の成膜機構と前記第 2の成膜機構との間の走行経路において前記被成膜 テープの表裏を反転させる反転手段とを備える  Reversing means for reversing the front and back of the film-deposited tape in a travel path between the first film-forming mechanism and the second film-forming mechanism.
ことを特徴とする請求項 1記載の CVD装置。  The CVD apparatus according to claim 1, wherein:
[3] 前記 CVD部は、 [3] The CVD unit
キャリアガス中に原料溶液を微粒子状又は霧状に分散させるオリフィス管と、 前記オリフィス管のガス通路に連通された前記原料溶液を供給する原料溶液用通 路と、  An orifice pipe for dispersing the raw material solution in a fine particle or mist form in a carrier gas; a raw material solution passage for supplying the raw material solution communicated with a gas passage of the orifice pipe;
前記オリフィス管に前記キャリアガスを供給するキャリアガス管と、  A carrier gas pipe for supplying the carrier gas to the orifice pipe;
前記オリフィス管で分散された前記原料溶液を気化する気化管と、  A vaporizing tube for vaporizing the raw material solution dispersed in the orifice tube;
前記気化管内に挿入され前記オリフィス管のガスを噴出する細孔と、  Pores inserted into the vaporization pipe and ejecting gas from the orifice pipe;
前記気化管を加熱する加熱手段とを有する  Heating means for heating the vaporizing tube
ことを特徴とする請求項 1又は 2記載の CVD装置。  The CVD apparatus according to claim 1 or 2, wherein:
[4] 前記 CVD部は、前記反応室内に RF電圧の印加によりプラズマを形成する RFブラ ズマ発生手段を備え、  [4] The CVD unit includes RF plasma generating means for forming plasma by applying an RF voltage in the reaction chamber,
前記反応室内において、隣合う前記 CVD部を互いに分離する隔離部材を設けた ことを特徴とする請求項 1〜3のうちいずれか 1項に記載の CVD装置。  The CVD apparatus according to any one of claims 1 to 3, wherein an isolation member that separates adjacent CVD parts from each other is provided in the reaction chamber.
[5] 前記第 1の卷取りローラと前記第 2の卷取りローラとは、正逆両方向に回転できるこ とを特徴とする請求項 1〜4のうちいずれ力 1項に記載の CVD装置。 [5] The first scraping roller and the second scraping roller can be rotated in both forward and reverse directions. 5. The CVD apparatus according to claim 1, wherein the force is any one of claims 1 to 4.
[6] 反応室内の気体を排気手段により排気する排気ステップと、前記反応室に原料ガ スを供給する原料ガス供給ステップと、前記反応室内において被成膜テープに薄膜 を形成する成膜ステップとを備える薄膜形成方法において、 [6] An exhaust step for exhausting the gas in the reaction chamber by an exhaust means, a source gas supply step for supplying source gas to the reaction chamber, and a film formation step for forming a thin film on the film-forming tape in the reaction chamber; In a thin film forming method comprising:
前記成膜ステップは、  The film forming step includes
前記被成膜テープが第 1の卷取りローラ力 第 2の卷取りローラへ至る走行経路を 形成する走行経路形成ステップと、  A travel path forming step for forming a travel path for the film-forming tape to reach the first scraping roller force and the second scraping roller;
前記走行経路に沿って一方向へ走行する前記被成膜テープの両面に薄膜を形成 する両面成膜ステップとを備える  A double-sided film forming step of forming a thin film on both surfaces of the film-forming tape that travels in one direction along the travel path.
ことを特徴とする薄膜形成方法。  A method for forming a thin film.
[7] 前記両面成膜ステップは、 [7] The double-sided film forming step includes
第 1の成膜機構により前記被成膜テープの一面に薄膜を形成する第 1の成膜ステ ップと、  A first film-forming step of forming a thin film on one surface of the film-forming tape by a first film-forming mechanism;
第 2の成膜機構により前記被成膜テープの他面に薄膜を形成する第 2の成膜ステ ップと、  A second film-forming step of forming a thin film on the other surface of the film-forming tape by a second film-forming mechanism;
前記第 1の成膜機構と前記第 2の成膜機構との間の走行経路において前記被成膜 テープの表裏を反転させる反転ステップとを備える  A reversing step of reversing the front and back of the film-deposited tape in a travel path between the first film-forming mechanism and the second film-forming mechanism.
ことを特徴とする請求項 6記載の薄膜形成方法。  The thin film forming method according to claim 6.
[8] キャリアガス管力もオリフィス管にキャリアガスを供給するキャリアガス供給ステップと 原料溶液用通路から前記オリフィス管に原料溶液を供給する原料溶液供給ステツ プと、 [8] A carrier gas supply step for supplying a carrier gas to the orifice pipe, a raw material solution supply step for supplying the raw material solution from the raw material solution passage to the orifice pipe,
前記原料溶液を、前記オリフィス管で微粒子状又は霧状にしてキャリアガス中に分 散させて、前記オリフィス管の流出口に設けられた気化管に供給する気化管供給ス テツプと、  A vaporization pipe supply step for supplying the raw material solution to a vaporization pipe provided at an outlet of the orifice pipe by dispersing the raw material solution into a carrier gas in the form of fine particles or mist in the orifice pipe;
前記気化管で前記原料溶液を前記気化管の加熱手段により加熱して気化する気 化ステップとを備える  A vaporizing step in which the raw material solution is heated by the heating means of the vaporizing tube and vaporized in the vaporizing tube.
ことを特徴とする請求項 6又は 7記載の薄膜形成方法。 8. The thin film forming method according to claim 6 or 7, wherein:
[9] 前記反応室内に RFプラズマを発生させて薄膜を形成する RFプラズマ発生ステツ プを備えることを特徴とする請求項 6〜8のうちいずれか 1項に記載の薄膜形成方法 [9] The method of forming a thin film according to any one of [6] to [8], further comprising an RF plasma generation step of forming a thin film by generating RF plasma in the reaction chamber.
[10] 前記被成膜テープを正逆両方向に走行させ、薄膜を形成する薄膜形成ステップを 備えることを特徴とする請求項 6〜9のうちいずれか 1項に記載の薄膜形成方法。 [10] The thin film forming method according to any one of [6] to [9], further comprising a thin film forming step of forming the thin film by running the film-forming tape in both forward and reverse directions.
PCT/JP2006/316885 2006-08-28 2006-08-28 Cvd apparatus and method for thin film formation using the same WO2008026242A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2006/316885 WO2008026242A1 (en) 2006-08-28 2006-08-28 Cvd apparatus and method for thin film formation using the same
JP2007525120A JPWO2008026242A1 (en) 2006-08-28 2006-08-28 CVD apparatus and thin film forming method using the same
TW096123744A TW200817531A (en) 2006-08-28 2007-06-29 CVD apparatus and method for thin film formation using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/316885 WO2008026242A1 (en) 2006-08-28 2006-08-28 Cvd apparatus and method for thin film formation using the same

Publications (1)

Publication Number Publication Date
WO2008026242A1 true WO2008026242A1 (en) 2008-03-06

Family

ID=39135534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316885 WO2008026242A1 (en) 2006-08-28 2006-08-28 Cvd apparatus and method for thin film formation using the same

Country Status (3)

Country Link
JP (1) JPWO2008026242A1 (en)
TW (1) TW200817531A (en)
WO (1) WO2008026242A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042848A (en) * 2009-08-24 2011-03-03 Fujifilm Corp Film-forming apparatus
JP2011137208A (en) * 2009-12-28 2011-07-14 Sony Corp Apparatus and method for forming film
JP2014152351A (en) * 2013-02-06 2014-08-25 Toray Eng Co Ltd Thin film formation system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213582A (en) * 2004-01-29 2005-08-11 Toppan Printing Co Ltd Vacuum apparatus for forming films on both sides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213582A (en) * 2004-01-29 2005-08-11 Toppan Printing Co Ltd Vacuum apparatus for forming films on both sides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042848A (en) * 2009-08-24 2011-03-03 Fujifilm Corp Film-forming apparatus
JP2011137208A (en) * 2009-12-28 2011-07-14 Sony Corp Apparatus and method for forming film
JP2014152351A (en) * 2013-02-06 2014-08-25 Toray Eng Co Ltd Thin film formation system

Also Published As

Publication number Publication date
TW200817531A (en) 2008-04-16
JPWO2008026242A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JPWO2006093168A1 (en) CVD apparatus, multilayer film forming method using the same, and multilayer film formed thereby
JP5841156B2 (en) Oxide film forming method and oxide film forming apparatus
US7246796B2 (en) Carburetor, various types of devices using the carburetor, and method of vaporization
KR100377707B1 (en) Vaporizing device for cvd source materials and cvd device employing the same
WO2001099165A1 (en) Method for forming thin film and apparatus for forming thin film
TW201111544A (en) In-situ deposition of battery active lithium materials by plasma spraying
WO2010038515A1 (en) Vaporizer and deposition system using the same
WO2007097024A1 (en) Vaporizer, semiconductor production apparatus and process of semiconductor production
JP5059371B2 (en) Vaporizer and deposition system
US20060070575A1 (en) Solution-vaporization type CVD apparatus
KR20040078643A (en) Chemical vapor deposition vaporizer
JP2007308774A (en) Thin-film-forming apparatus and thin-film-forming method
JP4841338B2 (en) Film forming method and apparatus
WO2008026242A1 (en) Cvd apparatus and method for thin film formation using the same
JP4192008B2 (en) Vaporizer, vaporizer cleaning method, and apparatus using vaporizer
WO1998055668A1 (en) Method and apparatus for vapor generation and film deposition
JP2001064777A (en) Gas jet head
JP4255742B2 (en) Deposition equipment
JP2008219026A (en) Method for vaporizing material solution
WO2007036997A1 (en) Liquid-material feeder and control method for liquid-material feeder
JP2006303534A (en) Vaporizer for cvd, solution vaporizing cvd apparatus and vaporization method for cvd
JP4360186B2 (en) Thin film forming apparatus and thin film forming method
JP4831526B2 (en) Thin film forming apparatus and thin film forming method
JPH06206796A (en) Generator of raw material gas for cvd
JP2006028578A (en) Thin film deposition apparatus and thin film deposition method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007525120

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06783114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06783114

Country of ref document: EP

Kind code of ref document: A1