WO2008023852A1 - Damping member and method for producing the same - Google Patents

Damping member and method for producing the same Download PDF

Info

Publication number
WO2008023852A1
WO2008023852A1 PCT/JP2007/067084 JP2007067084W WO2008023852A1 WO 2008023852 A1 WO2008023852 A1 WO 2008023852A1 JP 2007067084 W JP2007067084 W JP 2007067084W WO 2008023852 A1 WO2008023852 A1 WO 2008023852A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
foam
speaker
vibration damping
polyol
Prior art date
Application number
PCT/JP2007/067084
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Takagi
Keisuke Nakamura
Masamichi Komatuzaki
Original Assignee
Yukigaya Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yukigaya Kagaku Kogyo Kabushiki Kaisha filed Critical Yukigaya Kagaku Kogyo Kabushiki Kaisha
Priority to JP2008530990A priority Critical patent/JPWO2008023852A1/en
Priority to CN2007800315438A priority patent/CN101506541B/en
Publication of WO2008023852A1 publication Critical patent/WO2008023852A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material

Definitions

  • the present invention relates to a vibration damping material and a method for producing the same, and particularly to a vibration damping material and a polyurethane resin foam having a carbonate bond and a foam made of a polyurethane resin having a carbonate bond. It relates to the manufacturing method. Background art
  • ether-based polyurethane resins having an ether bond in the molecular structure and ester-based polyurethane resins having an ester bond in the molecular structure are known, and these forms are used as vibration damping materials.
  • damping material for foam made of polyurethane resin as a cushioning material, anti-vibration material, vibration damping material, sound absorbing material, and coupling member, it can be attached to, or brought into close contact with, various vibration suppression materials. Installed, connected, combined, etc. to prevent installation and unnecessary vibration. It is also installed in a space to absorb unnecessary and unpleasant vibrations.
  • Japanese Patent Application Laid-Open No. 7-6 2 0 5 1 Japanese Patent Application Laid-Open No.
  • Japanese Patent Application Laid-Open No. And those described in Japanese Patent No. 3 0 0 6 4 1 8.
  • the durability is not sufficient. If it is made of ether-based polyurethane resin, it will deteriorate due to heat and ultraviolet rays. As a result, it deteriorates during use outdoors or in high-temperature environments and cannot be used. Another problem is that it turns yellow when used with gases such as N O X, known as gas yellowing.
  • ester-based polyurethane resin In addition, if it is made of ester-based polyurethane resin, such durability is relatively good, but it is hydrolyzable and decomposes under high humidity conditions and cannot be used at all.
  • This hydrolyzability is a phenomenon in which a polymer is degraded by water, and it deteriorates in contact with water, in a humid or high humidity environment. It appears as a decrease in strength, discoloration, and a decrease in volume. It can even collapse if it is severely degraded.
  • the speaker edge described above is a member that connects the diaphragm and the frame in speakers used in various audio equipment, etc., and attenuates unnecessary vibration of the diaphragm while supporting the diaphragm. is there.
  • Speaker edges are required to be lightweight, high-strength, highly vibration-damping and free from reverse resonance. Some ether-based polyurethane resins are used for this speaker edge application, but the sound quality of the speaker is not sufficient. This is because the damping characteristics are not sufficient, the output deviation due to reverse resonance in the midrange is large, and the frequency characteristics do not become flat.
  • ester polyurethane resins have relatively little output deviation due to reverse resonance, good vibration damping, and good sound quality, but they have the above-mentioned hydrolysis and are used for a long time even in general indoor environments. Is not possible and not practical. For this reason, it has been proposed to use a mixture of an ester polyurethane resin and an ether polyurethane resin. However, if sufficient hydrolysis resistance is desired, the ether polyurethane resin will occupy most of the sound quality. In particular, it will be the characteristics of an ether polyurethane resin.
  • the present invention eliminates such conventional drawbacks, and is a polyurethane foam and vibration damping material having excellent vibration damping properties and excellent durability such as yellowing resistance, heat resistance, light resistance, hydrolysis, etc. And it aims at providing the manufacturing method. Disclosure of the invention
  • the present invention has found that a polyurethane resin having a carbonate bond in the molecule has an excellent durability, and further, as a result of intensive research, it is light in weight, high in strength and has a high loss factor. It came to complete this invention excellent as a vibrating material. That is, the present invention is a vibration damping material characterized by comprising a polyurethane resin having a carbonate bond.
  • the invention of claim 2 is characterized in that in the vibration damping material of the invention of claim 1, the polyurethane resin has a foam structure.
  • the invention of claim 3 is characterized in that the vibration damping material of claim 1 has a foam structure in which polyurethane resin is compressed.
  • the invention of claim 4 is characterized in that in the vibration damping material of the invention of claim 1, the polyurethane resin has a foam structure that is heat-compressed.
  • the damping material of the invention of claim 1, 2, 3 or 4 In the above, the loss coefficient of the polyurethane resin is 0.1 or more and 0.7 or less.
  • the invention of claim 6 is characterized in that the damping material of claims 1 to 5 is a speaker edge material.
  • the invention of claim 7 is the method for producing a vibration damping material of claim 4, wherein the polyurethane resin is heat compression molded.
  • each invention it is possible to provide a vibration damping material with excellent vibration damping properties, hydrolysis resistance, light deterioration resistance, and gas discoloration properties. It became possible. In addition, stable performance can be maintained over a long period of time, which has a significant effect on maintaining the performance of the built-in equipment.
  • the manufacturing method of the invention of claim 7 it is possible to obtain such an excellent vibration damping material and a foam with good workability of the material.
  • the invention of claim 6 it is possible to provide a speaker having high sound quality and durability.
  • FIG. 1 is a graph showing the output characteristics of a speaker when the material of Example 4 of the present invention is used for a speaker edge.
  • FIG. 2 is a graph showing the output characteristics of the speaker when the material of Comparative Example 1 is used for the speaker edge.
  • Fig. 3 is a graph showing the output characteristics of the speaker when the material of Comparative Example 2 is used for the speaker edge.
  • the polyurethane resin is a reaction product of a polyol compound and a polyisocyanate compound, and is a resin having a urethane bond in the molecule.
  • the polyurethane resin having a carbonate bond of the present invention is a resin having a carbonate bond (-0-0-C0-0-) in addition to a urethane bond in the molecule of the polyurethane resin.
  • the carbonate bond in the molecule of the polyurethane resin having a carbonate bond can be produced by using a polyol compound having a carbonate bond in the molecule of the polyol compound used as a raw material of the resin.
  • the polyol compound is a compound having an average of at least two hydroxyl groups in one molecule, such as a polymer diol compound having two hydroxyl groups in the molecule and a polymer triol compound having three hydroxyl groups.
  • the polyol compound includes poly -Use the Bonate polyol compound.
  • a polyether polyol compound and / or a polyester polyol compound can be used in combination.
  • various additives described later are added and used as a polyol composition.
  • polycarbonate small polyol compound examples include a polycarbonate diol compound having two hydroxyl groups in one molecule, a polycarbonate triol compound having three or more hydroxyl groups in one molecule, and a polycarbonate tetraol compound. It is done.
  • a polycarbonate polyol compound is formed by polymerizing from a monomer at a carbonate bond.
  • a diol compound can be used as the monomer.
  • a method for producing a carbonate bond using a diol compound for example, it can be synthesized by transesterifying a diol compound and a carbonate ester compound. ⁇
  • various diols can be used, aliphatic diols having aliphatic hydrocarbons as the skeleton can be used, and aliphatic diols having branched hydrocarbons as the skeleton can be preferably used.
  • the aliphatic diol having a branched hydrocarbon as a skeleton can impart a branched hydrocarbon structure to the polycarbonate polyol compound to be produced, and can reduce the viscosity of the polycarbonate polyol compound. As a result, stable production can be achieved by foam molding described later.
  • Examples of such a monomer include aliphatic diols having 4 or more carbon atoms.
  • a preferred monomer is an aliphatic diol having 5 to 16 carbon atoms, and more preferred is an aliphatic diol having 6 to 12 carbon atoms.
  • Examples of these diols include: methyl-1,4 monopentanediol, methyl-1,5-pentanediol, methyl 1,6 monohexanediol, methyl-1,7 heptanediol, methylol 1, Examples include 8-octanediol, methyl-1,9-nanonediol, methyl-1,10-decanediol, and methyl-1,11-undecanediol.
  • a linear aliphatic diol can be used in combination, and the resulting polycarbonate polyol has a branched portion and a non-branched portion, which can increase the loss factor of the resulting polyurethane resin. I can do it.
  • the average molecular weight of the polycarbonate polyol compound is preferably 5 0 0 to 5 0 0 0, If the polycarbonate polyol compound is in these ranges, a urethane resin having excellent vibration damping properties can be obtained, and a liquid polyol compound can be obtained.
  • the average number of hydroxyl groups in the polycarbonate polyol compound is 2 or more per molecule, preferably 2 or more and 4 or less. Particularly preferably, it is 2 or more and 3 or less. These can be used alone or in combination of several kinds.
  • a preferred combination in the case of using a combination of polycarbonate polyol compounds having different numbers of hydroxyl groups is a combination of a diol compound having two hydroxyl groups and a triol compound having three hydroxyl groups.
  • the weight ratio of diol compound: triol compound is from 10:90 to 50:50, more preferably from 15:85 to 40:60. Combining within this range will improve the vibration damping performance. When the triol compound exceeds 90, the resulting resin loses flexibility and the loss factor becomes small, resulting in poor vibration damping. When the triol compound is less than 50, the loss coefficient increases, but the strength decreases and the mechanical strength is insufficient. If this is outside the above range, the use of each product is limited.
  • a polyether polyol compound can be used as the polymer polyol compound in addition to the polycarbonate polyol compound.
  • Polyether polyol compounds can be used within the range that does not impair vibration damping, hydrolyzability, heat resistance, yellowing and light resistance, and within 100 parts by weight of polymer polyol compound More preferably, it is within 80 parts by weight, more preferably within 60 parts by weight. There is no particular lower limit to the use of the polyether polyol compound.
  • the weight ratio of the diol compound having two hydroxyl groups and the triol compound having three hydroxyl groups is diol compound: triol.
  • the compound is preferably 10:90 force to 50:50, more preferably 15:85 force to 30:70. Combining within this range will improve the vibration damping performance.
  • the vibration damping material comprising the polyurethane resin of the present invention can be produced using a foaming agent, a catalyst, and a foam stabilizer in addition to the polyisocyanate compound and the polymer polyol compound.
  • the blowing agent generates a gas that becomes the pores of the foam.
  • the foaming agent water, hydrocarbon, halogenated alkane, halogenated methane or a mixture thereof is preferable.
  • Water is used in an amount of 0.5 to 10, preferably 1 to 5 parts per 100 parts by weight of the polyol compound.
  • Hydrocarbons and halogenated alkanes are advantageously used in amounts of 5 to 75 parts per 100 parts by weight of the polyol compound.
  • water is preferable because it can produce a foam having an open cell structure, can have a higher loss factor than a foam having a closed cell structure, and does not swell or tear when thermoforming described later.
  • the catalyst promotes the reaction between the polyol compound and the isocyanate compound.
  • known metal catalysts and amine catalysts used for the production of polyurethane foam are used.
  • metal catalyst a tin compound, a zinc compound, an aluminum compound, a titanium compound and the like are preferable.
  • Amine-based catalysts include tertiary amines, diazabicycloalkenes and salts thereof, and these can be used in combination. Specific examples of the catalyst include dibutyltin laurate, dibutyl-rutin laurate, triethylamine, dimethylcyclohexylamine and the like.
  • the catalyst is preferably used in the range of 0.01 to 3 parts by weight of catalyst with respect to 100 parts by weight of the polyol compound.
  • the foam stabilizer adjusts the size, continuity and independence of the foam in the foam produced.
  • known ones used for the production of polyurethane foams can be used. Examples thereof include polydimethylsiloxane-polyalkyleneoxide block polymer and vinylsilane-polyalkylene polyol polymer.
  • the polyol composition containing the polycarbonate polyol compound is preferably in a liquid state, and the polymer polyol composition in which various auxiliary agents described below are mixed has a foam molding temperature. It is liquid at C to 60 ° C, more preferably at 25 ° C to 50 ° C, and even more preferably at 30 ° C to 45 ° C. This is suitable for the foaming method described later.
  • the vibration damping material of the present invention can be produced by adding various additives.
  • additives plasticizers, colorants, pigments, fillers, antioxidants, ultraviolet absorbers, and the like can be used. These can be added to and mixed with the polyisocyanate compound and the polyol composition, respectively.
  • the polyisocyanate compound in this invention has an average of at least two isocyanate groups per molecule.
  • the polyisocyanate compound is an aromatic polyisocyanate compound in which an isocyanate group is bonded to a carbon atom of an aromatic hydrocarbon compound, or an aliphatic polyisocyanate bonded to a carbon atom of an aliphatic hydrocarbon compound. Nate compounds can be used. Examples of preferred aromatic polyisocyanate compounds include
  • MDI diphenylmethane diisocyanate
  • p-phenylene diisocyanate polymethylene poly (polyethylenepolyiso) Cyanate
  • polymeric MDI polymethylene poly (polyethylenepolyiso) Cyanate
  • M D I and M D I prepolymers or quasi-prepolymer derivatives thereof can also be used.
  • Aliphatic polyisocyanate compounds include hydrogenated derivatives of aromatic isocyanates, hexane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and cyclohexane diisocyanate. .
  • the polyisocyanate compound can be a polymerized polyisocyanate compound, a polymerized diisocyanate compound, a polymerized triisocyanate having an average of at least three isocyanate groups per molecule.
  • a compound etc. can be used.
  • the polyisocyanate compound is 0.7 to 5 equivalents, preferably 0.8 to 1.5 equivalents, more preferably 0.9 to 5 to 1 equivalent to 1 equivalent of active hydrogen groups in the polymer polyol compound. 2. React at a rate of 2 equivalents.
  • the ratio of the isocyanate group of the polyisocyanate compound is 0.7 to 5 equivalents, preferably 0.8 to 1.5 equivalents with respect to 1 equivalent of the active hydrogen group of water. Increase the amount to use.
  • the polyurethane foam used in the vibration damping material of the present invention is a polyol composition in which a polymer polyol compound is mixed with a foaming agent, a catalyst, and a foam stabilizer, and this polyol composition is mixed with a polyisocyanate compound. At the same time, gas is generated and foamed.
  • the polyisocyanate compound and the polyol composition are 20 ° C to 60 ° C, more preferably 25 ° C to 50 ° C, and even more preferably 30 ° C to 45 ° C. It is preferable to mix at ° C. If the temperature is high, the reaction is fast and stable production cannot be achieved, and if the temperature is low, the liquid has a high viscosity and it is difficult to mix uniformly, and a foam with a uniform cell structure cannot be produced.
  • Mixing is preferably performed uniformly, and uniform bubbles can be obtained.
  • Mixing is preferably performed in as short a time as possible, and it is within 30 seconds, preferably within 10 seconds, more preferably within 5 seconds, from mixing the two liquids to casting.
  • a method in which two liquids of a polyisocyanate compound and a polyol composition are continuously supplied to a mixing chamber, mixed and discharged is preferable. As such a method, there is a stirring and mixing method, and a mixing chamber equipped with a stirring blade rotating at high speed can be used.
  • the stirring blade it is preferable to rotate the stirring blade at a high speed from the viewpoint of quick and uniform mixing, preferably 2 00 0 r or more, more preferably 3 0 0 0 rp ni or more, more preferably 5 0 00 rpm or more. is there.
  • High-pressure collision mixing is a method in which two liquids are supplied at high pressure and collided at high speed in a mixing chamber in a high-pressure mixer. By mixing by this method, a highly viscous liquid can be mixed, and the selection of materials that can be used is expanded. In addition, uniform mixing can be achieved in a short time, and a foam having a uniform cell structure can be obtained.
  • the foam of the present invention can have an apparent specific gravity of 0. Ol gZ cm 3 to 0.3 g Z cm 3 .
  • the tensile strength can be 2 N / cm 2 to 30 ONZ cm 2 .
  • the tensile strength per apparent weight can be set to 2550 to 10 ° 0NZcm 2 / g, and more preferably 450 to 600 cm 2 Zg.
  • a lightweight and high-strength damping material can be manufactured. Even with a high loss factor, the mechanical strength becomes insufficient when the tensile strength per apparent weight is less than 25 ON / cm 2 / g.
  • Speaker edges are not preferable because the diaphragm cannot be supported at the center of the speaker.
  • the vibration damping material of the present invention is manufactured from a polyisocyanate compound and a polycarbonate polyol compound, the hydrolysis resistance is good, and the strength retention after the hydrolysis test can be made 70% or more. More preferably, it can be 80% or more.
  • the hydrolysis test an environmental test is performed in which the sample is left suspended in an environmental test chamber maintained at a temperature of 70 ° C and humidity of 90% for 8 weeks, and the tensile strength before and after the environmental test is measured to calculate the retention rate. To do.
  • the urethane foam of the vibration damping material of the present invention can be used after being thermoformed.
  • Thermoforming is a molding method in which polyurethane foam is compressed and molded in a heated mold, and the foam can be made dense or a curved surface can be molded. If possible, it is advantageous in terms of thermal energy to form at low temperature if possible, and can be formed in a short time.
  • the damping material urethane foam of the present invention has a molding temperature of 220 ° C. or lower, more preferably 20 ° C. or lower. The lower limit is not limited, but it is 1700C or higher.
  • the damping material thus molded can have an apparent specific gravity of 0.2 to 1. Og / ctn 3 .
  • the damping material can be molded in three dimensions, the shape of the required damping material can be designed freely, and used for applications such as speaker wedges that efficiently absorb vibrations in complex shapes. Can do.
  • the vibration damping material of the present invention Since the vibration damping material of the present invention is configured as described above, it has excellent vibration damping properties. Although the damping performance varies depending on the frequency to be damped, the damping material of the present invention has excellent damping performance from 10 Hz to 1 MHz, particularly from 2 O Hz to 10 O KHz. Damping performance can be estimated by a loss factor (tan S value by dynamic viscoelasticity measuring device of JIS K 6 3 94), and the damping factor of this invention has a loss factor of 0.1 It becomes 0.7 and vibration damping is good. Furthermore, the present invention aims at a vibration control effect of an audible sound, and the loss coefficient at room temperature in the frequency band of 100 Hz to 100 Hz is 0.1 to 0.7, more preferably 0. It can be set from 2 to 0.5 and is excellent in sound quality when used as a speaker edge.
  • the speaker edge material of the present invention can achieve a larger loss factor at a lighter weight than the conventional speaker edge material, and at the same time has a high mechanical strength.
  • a speaker using one edge of such a speaker has good sound quality. This is because the unnecessary vibration of the diaphragm of the speaker is effectively damped and the linearity is improved due to its light weight. In addition, because the mechanical strength is sufficient, it is possible to make it lighter.
  • the output is flat in the frequency band of 100 Hz to 100 Hz, which is important for hearing. can do.
  • Example 1 the following two solutions were prepared.
  • Liquid B Polymer polyol composition
  • the polymer polyol, foaming agent, foam stabilizer, and catalyst were mixed to make B liquid.
  • a liquid and B liquid are set to 40 ° C, respectively, and the flow ratio of A liquid: B liquid is 4: 10 in a continuous mixer with rotating stirring blades rotating at 500 rpm. And mixed and stirred. Then, after mixing, it was poured into a mold and foamed to obtain a polyurethane foam.
  • the obtained polyurethane foam had a specific gravity of 0.1, was soft and rubbery. When this foam was compressed to a thickness of 1/5 with a hot plate at a constant temperature, it was molded at a hot plate temperature of 190 ° C or higher. At this time, the thermoforming temperature was 190 ° C.
  • a polyol diol and a polycarbonate triol of the polyol composition of the liquid B were prepared in the same manner as in Example 1 with the mixing ratio shown in Table 1.
  • Comparative Example 1 was as follows.
  • polycarbonate diol and polycarbonate triol in the above examples were replaced with polyether triol to obtain 100 parts by weight of polyether polyol.
  • Mixing and stirring, casting, and molding were performed in the same manner as in Example 1 above.
  • the obtained polyurethane foam had a specific gravity of 0.1, was soft and rubbery.
  • Comparative Example 2 was as follows.
  • polycarbonate diol and the polycarbonate triol in the above examples were replaced with polyester polyol to obtain 100 parts by weight of polyester polyol. Mixing, stirring, casting and molding were performed in the same manner as in Example 1 above.
  • the obtained polyurethane foam had a specific gravity of 0.1, was soft and rubbery.
  • the polyurethane foam prepared in the above example was cut to a thickness of 8 nun and the thickness was 0.
  • a single edge of a speaker with an S-shaped cross section was created by thermoforming it into a ring shape of 9 mm and an outer diameter of 18 O mni.
  • a cone-type speaker with a diameter of 18 cm and an impedance of 6 ⁇ was created with this speaker edge.
  • This speaker was mounted in a JIS C 5 3 2 standard sealed box, driven by an amplifier, and its sound quality was evaluated and confirmed as follows. The results are shown in Table 1 above.
  • Example 4 As shown in FIG. 1, from 100 Hz to L 0 00 Hz, the output sound pressure deviation was within 4 dB, and there was no sharp valley and no reverse resonance.
  • Comparative Example 1 As shown in FIG. 2, there are peaks and valleys with an output deviation of 12.5 dB from 300 Hz to 700 Hz, and reverse resonance occurs.
  • Comparative Example 2 As shown in FIG. 3, there are peaks and valleys with an output deviation of 9 dB from 300 Hz to 700 Hz, and reverse resonance occurs.
  • the speaker using the damping material of the present invention has excellent sound quality that faithfully reproduces the original sound because the output is flat in the frequency range of 100 Hz to 100 Hz, which characterizes the sound quality. It is a speaker and is particularly suitable for a mid-low range speaker.
  • the damping coefficient is 0.1 or more and the damping performance is good.
  • the strength maintenance rate is high for durability such as UV light inferiority and hydrolyzability.
  • Example 7 uses a large amount of diol and is excellent in vibration damping properties, but is too flexible and inferior in strength, so its usage is limited.
  • Example 8 the use of triol is 100, which is hard and lacks flexibility, and its usage is limited.
  • the vibration damping urethane foam of the present invention can be thermoformed at a lower temperature than conventional urethane foam and has excellent thermoformability.
  • the measuring method used in this invention is as follows.
  • Thermoformability was tested using the same sample as the hydrolyzability test. Each foam was cut into a thickness of 10 mm and compressed with a hot plate for 60 seconds so that the thickness became 1 Z5, and the lowest temperature at which thermoforming was possible was determined.
  • Specific gravity Apparent specific gravity calculated by cutting out a rectangular parallelepiped and calculating the weight and length of each side.
  • Loss coefficient tan S value by dynamic viscoelasticity measuring device of JISK 6 3 9 4
  • the foam was thermoformed with a hot plate so as to have a thickness of 1/5 (2 mm).
  • the damping material of the present invention is a buffer material, vibration preventing material, vibration attenuating material, sound absorbing material, or bonding material, which is attached to, closely attached to, connected to, or connected to various members to suppress vibration. For example, it can be used to suppress unnecessary and unpleasant vibrations. It is also installed in a space to absorb unnecessary and unpleasant vibrations. It can be used for building materials, various electrical equipment, prime movers, electric motors, home appliances, acoustic equipment, vehicles, sound absorbing materials in engine covers, and a single edge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Disclosed is a damping member which is excellent in vibration damping property and durability such as heat resistance, light resistance and hydrolysis resistance. Also disclosed is a method for producing such a damping member. Specifically disclosed is a damping member made of a polyurethane resin which is composed of a polyisocyanate compound and a polycarbonate polyol compound. This damping member may be particularly used for a speaker edge or a sound absorbing material within an engine cover.

Description

明細書  Specification
発明の名称 Title of invention
制振材及ぴその製造方法 Damping material and its manufacturing method
技術分野 Technical field
この発明は、 制振材及びその製造方法に関するもので、 特にカーボネート結合を有 するポリゥレタン榭脂製の制振材とカーボネート結合を有するポリ ゥレタン樹脂製の フォームを材料として用いた制振材及ぴその製造方法に関するものである。 背景技術  The present invention relates to a vibration damping material and a method for producing the same, and particularly to a vibration damping material and a polyurethane resin foam having a carbonate bond and a foam made of a polyurethane resin having a carbonate bond. It relates to the manufacturing method. Background art
従来から、 エーテル結合を分子構造に持つエーテル系ポリ ウウレタン樹脂や、 エス テル結合を分子構造に持つエステル系ポリウレタン樹脂が知られており、 それらのフ オームが制振材として使用されている。  Conventionally, ether-based polyurethane resins having an ether bond in the molecular structure and ester-based polyurethane resins having an ester bond in the molecular structure are known, and these forms are used as vibration damping materials.
また、 ポリ ウレタン樹脂製フォームの制振材の用途としては、 緩衝材、 振動防止材、 振動減衰材、 吸音材、 結合部材として、 種々の振動を抑えたい部材に貼り付る、 密着 させる、 近づけて設置する、 連結する、 結合するなどして設置して不要、 不快な振動 を抑える用途がある。 また、 空間に設置して不要、 不快な振動を吸収したりする。  In addition, as a damping material for foam made of polyurethane resin, as a cushioning material, anti-vibration material, vibration damping material, sound absorbing material, and coupling member, it can be attached to, or brought into close contact with, various vibration suppression materials. Installed, connected, combined, etc. to prevent installation and unnecessary vibration. It is also installed in a space to absorb unnecessary and unpleasant vibrations.
このような使用用途として、 建材、 各種電気機器、 原動機、 電動機、 家庭電化製品、 音響機器、 車両、 エンジンカバー内の吸音材、 スピーカーエッジ、 などに使用されて いる。  These are used for building materials, various electrical equipment, prime movers, electric motors, home appliances, audio equipment, vehicles, sound absorbing materials in engine covers, speaker edges, and so on.
これらの従来例としては特開 2 0 0 3— 2 8 6 3 2 5号公報、 特開平 7 - 6 2 0 5 1号公報、 特開 2 0 0 2— 3 2 7 0 3 8号公報、 及び特許 3 0 0 6 4 1 8号公報に記 載のものが挙げられる。  As these conventional examples, Japanese Patent Laid-Open No. 2 0 0 3-2 8 6 3 2 5, Japanese Patent Application Laid-Open No. 7-6 2 0 5 1, Japanese Patent Application Laid-Open No. And those described in Japanese Patent No. 3 0 0 6 4 1 8.
しかしながら、 これら従来のポリ ウレタン榭脂製の制振材の制振性能としては十分 とはいえなく、 より少量で大きな制振効果のある材料が求められている。  However, these conventional damping materials made of polyurethane resin cannot be said to have sufficient damping performance, and a material with a large damping effect is required in a smaller amount.
また、 耐久性も十分でない。 エーテル系ポリウウレタン樹脂製であれば、 熱、 紫外 線による劣化がある。 これにより、 屋外や温度の高い環境下では使用中に劣化が進行 し使用できない。 また、 ガス黄変として知られる、 N O Xなどのガスにより使用する につれ黄色く変色するという問題がある。  Also, the durability is not sufficient. If it is made of ether-based polyurethane resin, it will deteriorate due to heat and ultraviolet rays. As a result, it deteriorates during use outdoors or in high-temperature environments and cannot be used. Another problem is that it turns yellow when used with gases such as N O X, known as gas yellowing.
また、 エステル系ポリ ウレタン樹脂製であればこのような耐久性は比較的良好であ るが、 加水分解性があり高湿の条件では分解し全く使用できない。 この加水分解性は、 水によって高分子が分解する現象で、 水との接触、 湿気や高湿の環境で劣化する現象 であり、 強度の低下、 変色、 体積の減少などとなって現れる。 また、 劣化が激しい場 合には崩壊してしまうことさえある。 In addition, if it is made of ester-based polyurethane resin, such durability is relatively good, but it is hydrolyzable and decomposes under high humidity conditions and cannot be used at all. This hydrolyzability is a phenomenon in which a polymer is degraded by water, and it deteriorates in contact with water, in a humid or high humidity environment. It appears as a decrease in strength, discoloration, and a decrease in volume. It can even collapse if it is severely degraded.
前述のスピーカーエッジは、 各種音響機器等に使用されるスピーカーにおいて、 振 動板とフレームとを接続している部材であり、 振動板を支持しつつ不要な振動板の振 動を減衰するものである。 スピーカーエッジは、 軽量でかつ高強度、 高制振性であり、 逆共振のないことが求められている。 このスピーカーエッジの用途には、 エーテル系 ポリウレタン樹脂が一部使用されるが、 スピーカーの音質は十分ではない。 これは制 振性が十分でない、 中音域の逆共振による出力偏差が大きく周波数特性が平坦になら ないことが挙げられる。 一方、 エステル系ポリウレタン樹脂は、 逆共振による出力偏 差が比較的少なく、 制振性も良く、 音質が良いことが判っているが、 前述の加水分解 があり一般の屋内環境でも長期間の使用は出来なく、 実用になっていない。 この為、 エステル系ポリウレタン樹脂とエーテル系ポリウレタン樹脂を混合して使用すること が提案されているが、 十分な耐加水分解性を出そうとすると、 エーテル系ポリウレタ ン樹脂が大部分を占め、 音質的にはエーテル系ポリウレタン樹脂の特性となってしま う。  The speaker edge described above is a member that connects the diaphragm and the frame in speakers used in various audio equipment, etc., and attenuates unnecessary vibration of the diaphragm while supporting the diaphragm. is there. Speaker edges are required to be lightweight, high-strength, highly vibration-damping and free from reverse resonance. Some ether-based polyurethane resins are used for this speaker edge application, but the sound quality of the speaker is not sufficient. This is because the damping characteristics are not sufficient, the output deviation due to reverse resonance in the midrange is large, and the frequency characteristics do not become flat. On the other hand, ester polyurethane resins have relatively little output deviation due to reverse resonance, good vibration damping, and good sound quality, but they have the above-mentioned hydrolysis and are used for a long time even in general indoor environments. Is not possible and not practical. For this reason, it has been proposed to use a mixture of an ester polyurethane resin and an ether polyurethane resin. However, if sufficient hydrolysis resistance is desired, the ether polyurethane resin will occupy most of the sound quality. In particular, it will be the characteristics of an ether polyurethane resin.
この発明はこのような従来の欠点を解消するもので、 制振性に優れ、 かつ耐黄変性、 耐熱性, 耐光性、 加水分解性、 などの耐久性に優れたポリ ウレタンフォーム、 制振材 及びその製造方法を提供することを目的とする。 発明の開示  The present invention eliminates such conventional drawbacks, and is a polyurethane foam and vibration damping material having excellent vibration damping properties and excellent durability such as yellowing resistance, heat resistance, light resistance, hydrolysis, etc. And it aims at providing the manufacturing method. Disclosure of the invention
この発明は、 各種ポリウレタン樹脂を検討した結果、 カーボネート結合を分子中に 持つポリウレタン樹脂が優れた耐久性を有することを見出し、 さらに鋭意研究の結果、 軽量、 高強度で高損失係数であり、 制振材として優れたこの発明を完成するに至った。 即ち、 この発明は、 カーボネート結合を有するポリウレタン樹脂からなることを特徴 とする、 制振材である。  As a result of examining various polyurethane resins, the present invention has found that a polyurethane resin having a carbonate bond in the molecule has an excellent durability, and further, as a result of intensive research, it is light in weight, high in strength and has a high loss factor. It came to complete this invention excellent as a vibrating material. That is, the present invention is a vibration damping material characterized by comprising a polyurethane resin having a carbonate bond.
また、 クレーム 2の発明では、 クレーム 1の発明の制振材において、 ポリウレタン 樹脂がフォーム構造であることを特徴としている。 また、 クレーム 3の発明では、 ク レーム 1の発明の制振材において、 ポリ ウレタン樹脂が圧縮されたフォーム構造であ ることを特徴としている。 クレーム 4の発明では、 クレーム 1の発明の制振材におい て、 前記ポリウレタン樹脂が、 加熱圧縮されたフォーム構造であることを特徴として いる。 クレーム 5の発明では、 クレーム 1、 2、 3及び 4のいずれかの発明の制振材 において、 前記ポリ ウレタン樹脂の損失係数が 0 . 1以上 0 . 7以下であることを特 徴と している。 クレーム 6の発明では、 クレーム 1 ~ 5の制振材がスピーカーエッジ 材であることを特徴と している。 さらに、 クレーム 7の発明は、 前記ポリ ウレタン樹 脂を加熱圧縮成形することを特徴とする、 クレーム 4の制振材の製造方法とした。 The invention of claim 2 is characterized in that in the vibration damping material of the invention of claim 1, the polyurethane resin has a foam structure. The invention of claim 3 is characterized in that the vibration damping material of claim 1 has a foam structure in which polyurethane resin is compressed. The invention of claim 4 is characterized in that in the vibration damping material of the invention of claim 1, the polyurethane resin has a foam structure that is heat-compressed. In the invention of claim 5, the damping material of the invention of claim 1, 2, 3 or 4 In the above, the loss coefficient of the polyurethane resin is 0.1 or more and 0.7 or less. The invention of claim 6 is characterized in that the damping material of claims 1 to 5 is a speaker edge material. Further, the invention of claim 7 is the method for producing a vibration damping material of claim 4, wherein the polyurethane resin is heat compression molded.
各発明によれば、 制振性、 耐加水分解性、 耐光劣化性、 ガス変色性に優れた制振材を提 供でき、 コンパク 卜で従来では使用できなかった高温高湿の条件で使用することが可能と なった。 また、 長期に渡って安定した性能を維持することが可能となり、 組み込まれた機 器等の性能維持に著しい効果がある。 また、 前記クレーム 7の発明の製造方法によれば、 このような優れた制振材とその素材の加工性の良好なフォームを得ることができる。 また、 特に前記クレーム 6の発明によれば、 高音質で耐久性のあるスピーカーの提供が可能と なる。  According to each invention, it is possible to provide a vibration damping material with excellent vibration damping properties, hydrolysis resistance, light deterioration resistance, and gas discoloration properties. It became possible. In addition, stable performance can be maintained over a long period of time, which has a significant effect on maintaining the performance of the built-in equipment. In addition, according to the manufacturing method of the invention of claim 7, it is possible to obtain such an excellent vibration damping material and a foam with good workability of the material. In particular, according to the invention of claim 6, it is possible to provide a speaker having high sound quality and durability.
図面の簡単な説明 Brief Description of Drawings
図 1はこの発明の実施例 4の素材をスピーカーエツジに用いた場合のスピーカーの出力 特性を示すグラフ図である。 FIG. 1 is a graph showing the output characteristics of a speaker when the material of Example 4 of the present invention is used for a speaker edge.
図 2は比較例 1の素材をスピーカーエッジに用いた場合のスピーカーの出力特性を示すグ ラフ図である。 FIG. 2 is a graph showing the output characteristics of the speaker when the material of Comparative Example 1 is used for the speaker edge.
図 3は比較例 2の素材をスピーカーエッジに用いた場合のスピーカーの出力特性を示すグ ラフ図である。 発明を実施するための最良な形態 Fig. 3 is a graph showing the output characteristics of the speaker when the material of Comparative Example 2 is used for the speaker edge. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態例を説明する。  Embodiments of the present invention will be described below.
この発明において、 ポリ ウレタン樹脂とは、 ポリオール化合物とポリイソシァネー ト化合物の反応物であり、 分子中にウレタン結合を持つ樹脂である。 この発明のカー ボネート結合を有するポリ ウレタン樹脂とは、 ポリ ウレタン樹脂の分子中にウレタン 結合に加えてカーボネート結合(- 0- C0-0-) を持つ樹脂である。  In the present invention, the polyurethane resin is a reaction product of a polyol compound and a polyisocyanate compound, and is a resin having a urethane bond in the molecule. The polyurethane resin having a carbonate bond of the present invention is a resin having a carbonate bond (-0-0-C0-0-) in addition to a urethane bond in the molecule of the polyurethane resin.
カーボネート結合を有するポリ ウレタン樹脂の分子中のカーボネート結合は、 この 樹脂の原料となるポリオール化合物の分子中にカーボネート結合を有するものを使用 することにより製造することができる。  The carbonate bond in the molecule of the polyurethane resin having a carbonate bond can be produced by using a polyol compound having a carbonate bond in the molecule of the polyol compound used as a raw material of the resin.
ポリオール化合物とは、 分子中に水酸基を 2個持つポリマージオール化合物、 水酸 基を 3個持つポリマートリオール化合物、 などの 1分子に少なく とも 2個の水酸基を 平均して有する化合物である。 この発明においてポリオール化合物と しては、 ポリ力 ーボネートポリオール化合物を使用する。 また、 ポリマーポリオール化合物としては、 ポリカーボネートポリオ一ル化合物に加えて、 ポリエーテルポリオール化合物、 およ び 又は、 ポリエステルポリオール化合物を併用して使用することができる。 さらに、 後述する各種の添加剤を加え、 ポリオール組成物として使用する。 The polyol compound is a compound having an average of at least two hydroxyl groups in one molecule, such as a polymer diol compound having two hydroxyl groups in the molecule and a polymer triol compound having three hydroxyl groups. In the present invention, the polyol compound includes poly -Use the Bonate polyol compound. As the polymer polyol compound, in addition to the polycarbonate polyol compound, a polyether polyol compound and / or a polyester polyol compound can be used in combination. Furthermore, various additives described later are added and used as a polyol composition.
ポリカーボネー小ポリオール化合物としては、 たとえば、 水酸基を 1分子中に 2個 有しているポリカーボネートジオール化合物、 水酸基を 1分子中に 3個以上有してい るポリカーボネートトリオール化合物、 ポリカーボネートテトラオール化合物などが 挙げられる。 ポリカーボネートポリオール化合物は、 モノマーからカーボネート結合 にてポリマー化し生成する。 モノマーとしては、 ジオール化合物が使用できる。 ジォ ール化合物を使用しカーボネート結合を生成する方法としては、 たとえば、 ジオール 化合物と炭酸エステル化合物をエステル交換反応させることによって合成することが できる。 ·  Examples of the polycarbonate small polyol compound include a polycarbonate diol compound having two hydroxyl groups in one molecule, a polycarbonate triol compound having three or more hydroxyl groups in one molecule, and a polycarbonate tetraol compound. It is done. A polycarbonate polyol compound is formed by polymerizing from a monomer at a carbonate bond. A diol compound can be used as the monomer. As a method for producing a carbonate bond using a diol compound, for example, it can be synthesized by transesterifying a diol compound and a carbonate ester compound. ·
ポリカーボネートポリオール化合物を生成するモノマーとしては、 各種ジオールが 使用でき、 脂肪族炭化水素を骨格にした脂肪族ジオールが使用でき、 枝分かれした炭 化水素を骨格とした脂肪族ジオールが好ましく使用できる。 枝分かれした炭化水素を 骨格とした脂肪族ジオールは、 生成するポリカーボネートポリオール化合物に枝分か れした炭化水素構造を付与することができ、 ポリカーボネートポリオール化合物の粘 度を低くすることができる。 これにより、 後述する発泡成形で安定して生産すること ができる。  As the monomer for forming the polycarbonate polyol compound, various diols can be used, aliphatic diols having aliphatic hydrocarbons as the skeleton can be used, and aliphatic diols having branched hydrocarbons as the skeleton can be preferably used. The aliphatic diol having a branched hydrocarbon as a skeleton can impart a branched hydrocarbon structure to the polycarbonate polyol compound to be produced, and can reduce the viscosity of the polycarbonate polyol compound. As a result, stable production can be achieved by foam molding described later.
このようなモノマーとしては、 炭素数が 4以上の脂肪族ジオールが挙げられる。 好 ましいモノマーとしては、 炭素数が 5以上、 1 6以下の脂肪族ジオールが、 より好ま しくは、 炭素数 6以上、 1 2以下の脂肪族ジオールである。 これらのジオールの例と しては、 メチルー 1 , 4一プタンジオール、 メチルー 1, 5—ペンタンジオール、 メチ ルー 1 , 6 一へキサンジオール、 メチルー 1 , 7 一へプタンジォ一ノレ、 メチノレ一 1 , 8—オクタンジオール、 メチル一 1 , 9—ナノンジオール、 メチルー 1 , 1 0—デカ ンジオール、 メチルー 1 , 1 1—ゥンデカンジオールなどが挙げられる。 また、 直鎖 の脂肪族ジオールを併用することができ、 生成するポリカーボネートポリオールの骨 格に枝分かれしている部分と枝分かれしていない部分ができ、 生成するポリ ウレタン 樹脂の損失係数を高くすることが出来る。  Examples of such a monomer include aliphatic diols having 4 or more carbon atoms. A preferred monomer is an aliphatic diol having 5 to 16 carbon atoms, and more preferred is an aliphatic diol having 6 to 12 carbon atoms. Examples of these diols include: methyl-1,4 monopentanediol, methyl-1,5-pentanediol, methyl 1,6 monohexanediol, methyl-1,7 heptanediol, methylol 1, Examples include 8-octanediol, methyl-1,9-nanonediol, methyl-1,10-decanediol, and methyl-1,11-undecanediol. In addition, a linear aliphatic diol can be used in combination, and the resulting polycarbonate polyol has a branched portion and a non-branched portion, which can increase the loss factor of the resulting polyurethane resin. I can do it.
ポリカーボネートポリオール化合物の平均分子量は 5 0 0から 5 0 0 0が好ましく、 これらの範囲のポリカーボネートポリオール化合物であれば、 制振性の優れたなウレ タン樹脂を得ることができ、 かつ液状のポリオール化合物を得られる。 ポリカーボネ ートポリオール化合物中の水酸基は、 平均で 1分子中 2個以上であり、 2個以上 4個 以下が好ましい。 特に好ましくは、 2個以上 3個以下である。 これらは単独で、 また は数種を組み合わせて使用することができる。 The average molecular weight of the polycarbonate polyol compound is preferably 5 0 0 to 5 0 0 0, If the polycarbonate polyol compound is in these ranges, a urethane resin having excellent vibration damping properties can be obtained, and a liquid polyol compound can be obtained. The average number of hydroxyl groups in the polycarbonate polyol compound is 2 or more per molecule, preferably 2 or more and 4 or less. Particularly preferably, it is 2 or more and 3 or less. These can be used alone or in combination of several kinds.
水酸基の個数の異なるポリカーボネートポリオール化合物を組み合わせて使用する 場合の好ましい組み合わせは.、 水酸基が 2個のジオール化合物と水酸基が 3個のトリ オール化合物の組み合わせである。 この組み合わせは、 ジオール化合物: トリオール 化合物の重量比が、 1 0 : 9 0から 5 0 : 5 0であり、 より好ましくは 1 5 : 8 5 から 4 0 : 6 0である。 この範囲で組み合わせることにより、 制振性が良好となる。 トリオール化合物が 9 0を超えると、 得られる樹脂は柔軟性がなくなり、 損失係数も 小さくなり制振性に劣る。 また、 トリオール化合物が 5 0より少なくなると、 損失係 数は大きくなるものの、 強度が低下し機械的強度が不足する。 これにより上記範囲を 外れると、 各々製品の使用用途が限られる。  A preferred combination in the case of using a combination of polycarbonate polyol compounds having different numbers of hydroxyl groups is a combination of a diol compound having two hydroxyl groups and a triol compound having three hydroxyl groups. In this combination, the weight ratio of diol compound: triol compound is from 10:90 to 50:50, more preferably from 15:85 to 40:60. Combining within this range will improve the vibration damping performance. When the triol compound exceeds 90, the resulting resin loses flexibility and the loss factor becomes small, resulting in poor vibration damping. When the triol compound is less than 50, the loss coefficient increases, but the strength decreases and the mechanical strength is insufficient. If this is outside the above range, the use of each product is limited.
この発明において、 ポリマーポリオール化合物はポリカーボネートポリオール化合 物に加えて、 ポリエーテルポリオール化合物を使用することができる。  In the present invention, a polyether polyol compound can be used as the polymer polyol compound in addition to the polycarbonate polyol compound.
ポリエーテルポリオール化合物は、 制振性、 加水分解性、 耐熱性、 黄変性、 耐光性を 損なわない範囲で使用することができ、 ポリマーポリオール化合物 1 0 0重量部のう ち、 9 0重量部以内であり、 より好ましくは 8 0重量部以内、 さらに好ましくは 6 0 重量部以内である。 ポリエーテルポリオール化合物の使用の下限は特にはない。 Polyether polyol compounds can be used within the range that does not impair vibration damping, hydrolyzability, heat resistance, yellowing and light resistance, and within 100 parts by weight of polymer polyol compound More preferably, it is within 80 parts by weight, more preferably within 60 parts by weight. There is no particular lower limit to the use of the polyether polyol compound.
ポリエーテルポリオール化合物を併用する場合で、 水酸基の個数の異なるポリマー ポリオール化合物を組み合わせて使用する場合は、 水酸基が 2個のジオール化合物と 水酸基が 3個のトリオール化合物の重量比で、 ジオール化合物 : トリオール化合物が、 1 0 : 9 0力 ら 5 0 : 5 0が好ましく、 より好ましくは 1 5 : 8 5 力 ら 3 0 : 7 0である。 この範囲で組み合わせることにより、 制振性が良好となる。  When using a polyether polyol compound in combination with a polymer polyol compound having a different number of hydroxyl groups, the weight ratio of the diol compound having two hydroxyl groups and the triol compound having three hydroxyl groups is diol compound: triol. The compound is preferably 10:90 force to 50:50, more preferably 15:85 force to 30:70. Combining within this range will improve the vibration damping performance.
この発明のポリ ウレタン樹脂から成る制振材は、 ポリイソシァネート化合物とポリ マーポリオール化合物に加えて、 発泡剤、 触媒、 整泡剤を使用して製造することがで きる。  The vibration damping material comprising the polyurethane resin of the present invention can be produced using a foaming agent, a catalyst, and a foam stabilizer in addition to the polyisocyanate compound and the polymer polyol compound.
発泡剤は、 フォームの空孔となる気体を発生するものである。 発泡剤としては、 水、 炭化水素、 ハロゲン化アルカン、 ハロゲン化メタン又はその混合物が好ましい。 水は、 ポリオール化合物 1 0 0重量部に対し 0 . 5〜1 0、 好ましくは 1〜 5部で使用され るのが有利である。 炭化水素、 ハロゲン化アルカンはポリオール化合物 1 0 0重量部 に対し 5〜7 5部の量で使用されるのが有利である。 特に水は連続気泡構造のフォー ムが製造でき、 損失係数を独立気泡構造のフォームより高くすることが出来、 さらに 後述の熱成形をする上で膨れや裂けが生じず、 好ましい。 The blowing agent generates a gas that becomes the pores of the foam. As the foaming agent, water, hydrocarbon, halogenated alkane, halogenated methane or a mixture thereof is preferable. Water Advantageously, it is used in an amount of 0.5 to 10, preferably 1 to 5 parts per 100 parts by weight of the polyol compound. Hydrocarbons and halogenated alkanes are advantageously used in amounts of 5 to 75 parts per 100 parts by weight of the polyol compound. In particular, water is preferable because it can produce a foam having an open cell structure, can have a higher loss factor than a foam having a closed cell structure, and does not swell or tear when thermoforming described later.
触媒は、 ポリオール化合物とィソシァネート化合物の反応を促進するものである。 触媒としては、 ポリ ウレタンフォーム製造に使用される公知の金属触媒およびァミン 系触媒が用いられる。 金属触媒としては、 錫化合物、 亜鉛化合物、 アルミニウム化合 物、 チタン化合物などが好ましい。 アミン系触媒としては、 三級ァミン、 ジァザビシ クロアルケン類やその塩類であり、 これらはいずれも混合して用いることも可能であ る。 触媒の具体例としては、 ジブチルスズラウレート、 ジブヱ-ルスズラウレート、 トリェチルァミン、 ジメチルシクロへキシルァミンなどが挙げられる。 触媒は、 ポリ オール化合物 1 0 0重量部に対し触媒 0 . 0 1〜 3重量部範囲で用いるのが好ましい。 整泡剤は、 生成するフォームの気泡の大きさ、 連続性、 独立性を調整するものであ る。 整泡剤としては、 ポリウレタンフォーム製造に使用される公知のものを使用する ことができる。 例えば、 ポリジメチルシロキサン一ポリアルキレンォキシドブロック ポリマー、 ビニルシランーポリアルキレンポリオール重合体が挙げられる。  The catalyst promotes the reaction between the polyol compound and the isocyanate compound. As the catalyst, known metal catalysts and amine catalysts used for the production of polyurethane foam are used. As the metal catalyst, a tin compound, a zinc compound, an aluminum compound, a titanium compound and the like are preferable. Amine-based catalysts include tertiary amines, diazabicycloalkenes and salts thereof, and these can be used in combination. Specific examples of the catalyst include dibutyltin laurate, dibutyl-rutin laurate, triethylamine, dimethylcyclohexylamine and the like. The catalyst is preferably used in the range of 0.01 to 3 parts by weight of catalyst with respect to 100 parts by weight of the polyol compound. The foam stabilizer adjusts the size, continuity and independence of the foam in the foam produced. As the foam stabilizer, known ones used for the production of polyurethane foams can be used. Examples thereof include polydimethylsiloxane-polyalkyleneoxide block polymer and vinylsilane-polyalkylene polyol polymer.
ポリカーボネートポリオール化合物を含むポリオール組成物は、 液状であることが 好ましく、 後述の各種助剤を混合したポリマーポリオール組成物は、 発泡成形温度で ある 2 0。Cから 6 0 °Cで液状であり、 より好ましくは 2 5 °Cから 5 0 °Cにて、 さらに 好ましくは 3 0 °Cから 4 5 °Cにてそれぞれ液状である。 これにより、 後述する発泡方 法に適する。  The polyol composition containing the polycarbonate polyol compound is preferably in a liquid state, and the polymer polyol composition in which various auxiliary agents described below are mixed has a foam molding temperature. It is liquid at C to 60 ° C, more preferably at 25 ° C to 50 ° C, and even more preferably at 30 ° C to 45 ° C. This is suitable for the foaming method described later.
この発明の制振材には、 各種の添加剤を加えて製造することができる。 添加剤とし ては、 可塑剤、 着色剤、 顔料、 充填剤、 酸化防止剤、 紫外線吸収剤、 などを使用する ことができる。 これらは、 それぞれポリイソシァネート化合物やポリオール組成物に 添加、 混合して製造することができる。  The vibration damping material of the present invention can be produced by adding various additives. As additives, plasticizers, colorants, pigments, fillers, antioxidants, ultraviolet absorbers, and the like can be used. These can be added to and mixed with the polyisocyanate compound and the polyol composition, respectively.
この発明におけるポリイソシァネート化合物は、 1分子に少なくとも 2個のィソシ ァネート基を平均して有するものである。 ポリイソシァネート化合物は、 イソシァネ 一ト基が芳香族炭化水素化合物の炭素原子に結合している芳香族ポリイソシァネート 化合物、 または脂肪族炭化水素化合物の炭素原子に結合している脂肪族ポリイソシァ ネート化合物が使用できる。 好ましい芳香族ポリイソシァネート化合物の例と しては、The polyisocyanate compound in this invention has an average of at least two isocyanate groups per molecule. The polyisocyanate compound is an aromatic polyisocyanate compound in which an isocyanate group is bonded to a carbon atom of an aromatic hydrocarbon compound, or an aliphatic polyisocyanate bonded to a carbon atom of an aliphatic hydrocarbon compound. Nate compounds can be used. Examples of preferred aromatic polyisocyanate compounds include
2 , 4 _または 2 , 6—トルエンジイソシァネート、 ジフエニルメタンジイソシァネ ート (以下 「M D I」 と略す)、 p—フエ二レンジイシシァネート、 ポリメチレンポ リ フヱ二ルポリイソシァネート (以下 「ポリメ リ ック M D I」 と略す)、 及びこれら の混合物が挙げられる。 また、 M D I及び当該 M D I プレボリマー又はその準プレポ リマーの誘導体も使用できる。 2, 4_ or 2, 6-toluene diisocyanate, diphenylmethane diisocyanate (hereinafter abbreviated as “MDI”), p-phenylene diisocyanate, polymethylene poly (polyethylenepolyiso) Cyanate (hereinafter abbreviated as “polymeric MDI”), and mixtures thereof. In addition, M D I and M D I prepolymers or quasi-prepolymer derivatives thereof can also be used.
脂肪族ポリイソシァネート化合物は、 芳香族イソシァネートの水素化誘導体、 へキ サンジイソシァネート、 へキサメチレンジイソシァネート、 イソホロンジイソシァネ ート、 シクロへキサンジィソシァネートが挙げられる。  Aliphatic polyisocyanate compounds include hydrogenated derivatives of aromatic isocyanates, hexane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and cyclohexane diisocyanate. .
また、 ポリイソシァネート化合物には、 ポリマー化ポリイソシァネート化合物が使 用でき、 ポリマー化ジイソシァネート化合物、 1分子に少なく とも 3個のイソシァネ 一ト基を平均して有するポリマー化トリイソシァネート化合物などが使用できる。  The polyisocyanate compound can be a polymerized polyisocyanate compound, a polymerized diisocyanate compound, a polymerized triisocyanate having an average of at least three isocyanate groups per molecule. A compound etc. can be used.
ポリイソシァネート化合物はポリマーポリオール化合物中の活性水素基 1当量に対 しイソシァネート基 0 . 7〜 5当量、 好ましくは 0 . 8〜1 . 5当量、 さらに好まし く は 0 . 9 5〜1 . 2当量の割合で反応させる。 また、 後述の発泡剤に水を使用する 場合、 水の活性水素基 1当量に対し、 ポリイソシァネート化合物のイソシァネート基 0 . 7〜 5当量、 好ましくは 0 . 8〜1 . 5当量の割合で増量して使用する。  The polyisocyanate compound is 0.7 to 5 equivalents, preferably 0.8 to 1.5 equivalents, more preferably 0.9 to 5 to 1 equivalent to 1 equivalent of active hydrogen groups in the polymer polyol compound. 2. React at a rate of 2 equivalents. In addition, when water is used for the foaming agent described later, the ratio of the isocyanate group of the polyisocyanate compound is 0.7 to 5 equivalents, preferably 0.8 to 1.5 equivalents with respect to 1 equivalent of the active hydrogen group of water. Increase the amount to use.
この発明の制振材に使用するポリ ウレタンフォームは、 ポリマーポリオール化合物 と発泡剤、 触媒、 整泡剤とを混合したポリオール組成物と し、 このポリオール組成物 をポリイソシァネート化合物とを混合し反応させ、 同時に気体を発生させ発泡して製 造する。 混合は、 ポリイソシァネート化合物とポリオール組成物は、 2 0 °Cから 6 0 °Cで、 より好ましくは 2 5 °Cから 5 0 °Cにて、 さらに好ましくは 3 0 °Cから 4 5 °C にて混合することが好ましい。 高温であると、 反応が速く安定した製造ができなく、 低温であると、 液の粘度が高く均一に混合することが難しく均一な気泡構造のフォー ムが製造できない。  The polyurethane foam used in the vibration damping material of the present invention is a polyol composition in which a polymer polyol compound is mixed with a foaming agent, a catalyst, and a foam stabilizer, and this polyol composition is mixed with a polyisocyanate compound. At the same time, gas is generated and foamed. For mixing, the polyisocyanate compound and the polyol composition are 20 ° C to 60 ° C, more preferably 25 ° C to 50 ° C, and even more preferably 30 ° C to 45 ° C. It is preferable to mix at ° C. If the temperature is high, the reaction is fast and stable production cannot be achieved, and if the temperature is low, the liquid has a high viscosity and it is difficult to mix uniformly, and a foam with a uniform cell structure cannot be produced.
混合は均一に混合されることが好ましく、 均一な気泡とすることができる。 混合は できるだけ短時間で混合することが好ましく、 2液が混合されてから注型に至るまで 3 0秒以内であり、 好ましくは 1 0秒以内、 より好ましくは 5秒以内である。 連続的 にポリイソシァネート化合物とポリオール組成物の 2液を混合室に供給し混合し排出 する方法が好ましい。 このような方法としては、 攪拌混合方法があり、 高速で回転する攪拌羽根を取付け た混合室を使用することができる。 攪拌羽根は高速で回転させることが混合をすばや く均一に行うことから好ましく、 2 0 0 0 r 以上が好ましく、 より好ましくは 3 0 0 0 r p ni以上、 さらに好ましくは 5 0 0 0 r p m以上である。 Mixing is preferably performed uniformly, and uniform bubbles can be obtained. Mixing is preferably performed in as short a time as possible, and it is within 30 seconds, preferably within 10 seconds, more preferably within 5 seconds, from mixing the two liquids to casting. A method in which two liquids of a polyisocyanate compound and a polyol composition are continuously supplied to a mixing chamber, mixed and discharged is preferable. As such a method, there is a stirring and mixing method, and a mixing chamber equipped with a stirring blade rotating at high speed can be used. It is preferable to rotate the stirring blade at a high speed from the viewpoint of quick and uniform mixing, preferably 2 00 0 r or more, more preferably 3 0 0 0 rp ni or more, more preferably 5 0 00 rpm or more. is there.
また、 より好ましい別の方法としては、 高圧衝突混合である。 高圧衝突混合は、 高 圧式混合機において、 2液を高圧にて供給し混合室で高速で衝突させ混合する方法で ある。 この方法によって混合することによって、 高粘度の液を混合することができ、 使用することのできる材料の選択が広がる。 また、 短時間で均一に混合することが出 来、 均一な気泡構造のフォームとすることができる。  Another more preferable method is high-pressure collision mixing. High-pressure collision mixing is a method in which two liquids are supplied at high pressure and collided at high speed in a mixing chamber in a high-pressure mixer. By mixing by this method, a highly viscous liquid can be mixed, and the selection of materials that can be used is expanded. In addition, uniform mixing can be achieved in a short time, and a foam having a uniform cell structure can be obtained.
このように製造することで、 本発明のフォームは、 見かけ比重が、 0. O l gZ c m3 〜0. 3 g Z c m3とすることができる。 また、 引張り強さを 2 N/ c m2〜 3 0 ONZ c m2とすることができる。 これにより、 みかけ重量あたりの引張り強さは、 2 5 0〜 1 0 ◦ 0NZ c m2/ gとすることができ、 より好ましくは 4 5 0〜 6 0 0 cm2Zgとすることができる。 これにより、 軽量で高強度な制振材が製造できる。 高 損失係数であっても、 みかけ重量あたりの引張り強さが 2 5 ON/ c m2/ g以下とな ると機械的強度不足となる。 スピーカーエツジでは振動板をスピーカーの中心に支持 することが出来なくなり、 好ましくない。 By producing in this way, the foam of the present invention can have an apparent specific gravity of 0. Ol gZ cm 3 to 0.3 g Z cm 3 . Also, the tensile strength can be 2 N / cm 2 to 30 ONZ cm 2 . Thereby, the tensile strength per apparent weight can be set to 2550 to 10 ° 0NZcm 2 / g, and more preferably 450 to 600 cm 2 Zg. As a result, a lightweight and high-strength damping material can be manufactured. Even with a high loss factor, the mechanical strength becomes insufficient when the tensile strength per apparent weight is less than 25 ON / cm 2 / g. Speaker edges are not preferable because the diaphragm cannot be supported at the center of the speaker.
この発明の制振材は、 ポリイソシァネート化合物とポリカーボネートポリオール化合物 から製造されるため、 耐加水分解性が良好となり、 加水分解試験後の強度の保持率を 7 0 %以上とすることができ、 より好ましくは 8 0 %以上とすることができる。 加水分解試 験は、 温度 7 0°C、 湿度 9 0 %に保った環境試験室に試料を宙吊りに 8週間放置する環境 試験を行い、 環境試験前後の引張り強度を測定しその保持率を算出する。  Since the vibration damping material of the present invention is manufactured from a polyisocyanate compound and a polycarbonate polyol compound, the hydrolysis resistance is good, and the strength retention after the hydrolysis test can be made 70% or more. More preferably, it can be 80% or more. In the hydrolysis test, an environmental test is performed in which the sample is left suspended in an environmental test chamber maintained at a temperature of 70 ° C and humidity of 90% for 8 weeks, and the tensile strength before and after the environmental test is measured to calculate the retention rate. To do.
この発明の制振材のウレタンフォームは、 熱成形をして使用することができる。 熱 成形は、 ポリウレタンフォームを熱した金型内で圧縮し成形する成形方法であり、 フ オームを緻密にしたり、 曲面を成形したりできる。 熱成形は可能であれば低温で成形 することが熱エネルギー的に有利であり、 短時間で成形できる。 本発明の制振材ウレ タンフォームは、 成形温度が、 2 2 0°C以下であり、 より好ましくは 2 0 0°C以下で ある。 下限は限定されないが、 1 7 0°C以上である。  The urethane foam of the vibration damping material of the present invention can be used after being thermoformed. Thermoforming is a molding method in which polyurethane foam is compressed and molded in a heated mold, and the foam can be made dense or a curved surface can be molded. If possible, it is advantageous in terms of thermal energy to form at low temperature if possible, and can be formed in a short time. The damping material urethane foam of the present invention has a molding temperature of 220 ° C. or lower, more preferably 20 ° C. or lower. The lower limit is not limited, but it is 1700C or higher.
このように成形した制振材は、 見かけ比重が 0. 2〜 1. O g/ctn3とすることができ る。 これにより、 制振材を立体的に成形することができ、 必要とされる制振材の形状が 自由に設計でき、 複雑な形状で効率的に振動を吸収するスピーカーェッジなどの用途 に使用することができる。 The damping material thus molded can have an apparent specific gravity of 0.2 to 1. Og / ctn 3 . As a result, the damping material can be molded in three dimensions, the shape of the required damping material can be designed freely, and used for applications such as speaker wedges that efficiently absorb vibrations in complex shapes. Can do.
この発明の制振材は、 以上のように構成するため、 優れた制振性を有する。 制振性 は、 制振する周波数によって異なるが、 この発明の制振材は、 1 0 Hzから 1 MHzにて 制振性が優れ、 特に 2 O Hzから 1 0 O KHzにて優れる。 また、 制振性は損失係数 (JIS K 6 3 9 4の動的粘弾性測定装置による tan S値) に推定することができ、 この発明 の制振材は損出係数が、 0 . 1から 0 . 7となり制振性が良好である。 さらに、 この 発明は、 特に可聴音の制振効果を狙い、 1 0 0 Hz〜 1 0 0 0 Hzの周波数帯の、 室温に おける損失係数が、 0 . 1から 0 . 7、 より好ましくは 0 . 2から 0 . 5とすること ができスピーカーエッジとして使用した場合音質に優れる。  Since the vibration damping material of the present invention is configured as described above, it has excellent vibration damping properties. Although the damping performance varies depending on the frequency to be damped, the damping material of the present invention has excellent damping performance from 10 Hz to 1 MHz, particularly from 2 O Hz to 10 O KHz. Damping performance can be estimated by a loss factor (tan S value by dynamic viscoelasticity measuring device of JIS K 6 3 94), and the damping factor of this invention has a loss factor of 0.1 It becomes 0.7 and vibration damping is good. Furthermore, the present invention aims at a vibration control effect of an audible sound, and the loss coefficient at room temperature in the frequency band of 100 Hz to 100 Hz is 0.1 to 0.7, more preferably 0. It can be set from 2 to 0.5 and is excellent in sound quality when used as a speaker edge.
この発明のスピーカーェッジ材は、 従来のスピーカーエツジ材に比べより大きい損 失係数をより軽量にて達成でき、 同時に機械的強度も大である。 このようなスピーカ 一エッジを使用したスピーカ一は、 音質が良い。 これは、 スピーカーの振動板の不要 な振動を効果的に減衰すると共に、 軽量である為にリニアリティが良くなることによ る。 加えて、 機械的強度が十分であるため、 より軽量とすることが可能となっている c また、 聴感上重要な、 1 0 0 Hz〜 1 0 0 0 Hzの周波数帯にて出力がブラットとするこ とができる。  The speaker edge material of the present invention can achieve a larger loss factor at a lighter weight than the conventional speaker edge material, and at the same time has a high mechanical strength. A speaker using one edge of such a speaker has good sound quality. This is because the unnecessary vibration of the diaphragm of the speaker is effectively damped and the linearity is improved due to its light weight. In addition, because the mechanical strength is sufficient, it is possible to make it lighter. C In addition, the output is flat in the frequency band of 100 Hz to 100 Hz, which is important for hearing. can do.
実施例  Example
実施例 1は次の 2液を用意した。  In Example 1, the following two solutions were prepared.
A液 A liquid
ポリイソシァネート Polyisocyanate
TDI 4 0重量部 TDI 40 parts by weight
B液 (ポリマーポリオール組成物)  Liquid B (Polymer polyol composition)
ポリマーポリオール Polymer polyol
ポリカーボネートジオール 1 0重量部 Polycarbonate diol 10 parts by weight
ポリカーボネートトリオール 9 0重量部 Polycarbonate triol 90 parts by weight
発泡剤(水) Foaming agent (water)
シリコン整泡剤 Silicone foam stabilizer
触媒 0 . 着色剤 1重量部 Catalyst 0. 1 part by weight of colorant
ポリマーポリオールと発泡剤、 整泡剤、 触媒を混合し B液とした。 The polymer polyol, foaming agent, foam stabilizer, and catalyst were mixed to make B liquid.
A液と B液とをそれぞれ 4 0 °Cとし、 5 0 0 0 r p mで回転する回転撹拌羽根をも つ連続式混合機に、 A液: B液の流量比が 4 : 1 0となるように導入し混合撹拌した。 その後、 混合後金型に注入し、 発泡させ、 ポリウレタンフォームとした。 得られたポ リ ウレタンフォームは、 比重 0 . 1で、 軟質でゴム弾性があった。 このフォームを、 一定の温度の熱板にて厚み 1 / 5に圧縮し成形したところ、 熱板温度が 1 9 0 ° C以 上で成形できた。 このとき熱成形温度は 1 9 0 °Cとされた。  A liquid and B liquid are set to 40 ° C, respectively, and the flow ratio of A liquid: B liquid is 4: 10 in a continuous mixer with rotating stirring blades rotating at 500 rpm. And mixed and stirred. Then, after mixing, it was poured into a mold and foamed to obtain a polyurethane foam. The obtained polyurethane foam had a specific gravity of 0.1, was soft and rubbery. When this foam was compressed to a thickness of 1/5 with a hot plate at a constant temperature, it was molded at a hot plate temperature of 190 ° C or higher. At this time, the thermoforming temperature was 190 ° C.
実施例 2〜 8は以下のようにした。  Examples 2 to 8 were as follows.
B液のポリオール組成物の、 ポリカーボネートジオールとポリカーボネート トリオ一 ルを表 1の配合比にして、 実施例 1と同様に製造した。 A polyol diol and a polycarbonate triol of the polyol composition of the liquid B were prepared in the same manner as in Example 1 with the mixing ratio shown in Table 1.
比較例 1は以下のようにした。  Comparative Example 1 was as follows.
上記実施例のポリカーボネートジオールとポリカーボネート トリオールをポリエー テルトリオールに置き換え、 ポリエーテルポリオール 1 0 0重量部とした。 混合攪拌、 注型、 成形は上記実施例 1と同様に行った。  The polycarbonate diol and polycarbonate triol in the above examples were replaced with polyether triol to obtain 100 parts by weight of polyether polyol. Mixing and stirring, casting, and molding were performed in the same manner as in Example 1 above.
得られたポリウレタンフォームは、 比重 0 . 1、 軟質でゴム弾性があった。 The obtained polyurethane foam had a specific gravity of 0.1, was soft and rubbery.
比較例 2は以下のようにした。  Comparative Example 2 was as follows.
上記実施例のポリカーボネートジオールとポリカーボネート トリオールをポリエス テルポリオールに置き換え、 ポリエステルポリオール 1 0 0重量部とした。 混合攪拌、 注型、 成形は上記実施例 1 と同様に行った。  The polycarbonate diol and the polycarbonate triol in the above examples were replaced with polyester polyol to obtain 100 parts by weight of polyester polyol. Mixing, stirring, casting and molding were performed in the same manner as in Example 1 above.
得られたポリ ウレタンフォームは、 比重 0 . 1、 軟質でゴム弾性があった。 The obtained polyurethane foam had a specific gravity of 0.1, was soft and rubbery.
上記実施例、 比較例の制振材の熱成形性、 強度、 制振性(損失係数)、 耐久性(加水 分解性、 光促進劣化試験)を試験した。 結果を表 1に示した。  The vibration damping materials of the above examples and comparative examples were tested for thermoformability, strength, damping properties (loss factor), and durability (hydrolyzability, light accelerated degradation test). The results are shown in Table 1.
表 1
Figure imgf000013_0001
table 1
Figure imgf000013_0001
上記実施例にて作成したポリウレタンフォームを厚さ 8 nunに切りだし、 厚みが 0 .The polyurethane foam prepared in the above example was cut to a thickness of 8 nun and the thickness was 0.
9 mm, 外径 1 8 O mniのリング状となるよう熱成形を行い、 S字状断面をもつスピーカ 一エッジを作成した。 このスピーカーエッジを装着した、 口径 1 8 c m、 インピーダ ンス 6 Ωのコーン型スピーカーを作成した。 このスピーカーを JIS C 5 5 3 2の標 準密閉箱に装着し、 増幅器より駆動しその音質を下のように評価、 確認した。 結果を 上記表 1に示した。 A single edge of a speaker with an S-shaped cross section was created by thermoforming it into a ring shape of 9 mm and an outer diameter of 18 O mni. A cone-type speaker with a diameter of 18 cm and an impedance of 6 Ω was created with this speaker edge. This speaker was mounted in a JIS C 5 3 2 standard sealed box, driven by an amplifier, and its sound quality was evaluated and confirmed as follows. The results are shown in Table 1 above.
原音を聴くようなきれいな音質 ◎  A clean sound quality like listening to the original sound ◎
原音を聴くようなきれいな音質だが、 やや中音が痩せた音質 〇  Sound quality that is as good as listening to the original sound, but with a slightly thin sound
やせて貧弱な音質、 一部が誇張された音質 △  Thin and poor sound quality, partially exaggerated sound quality △
また、 このスピーカーを、 JIS C 5 5 3 2により出力周波数特性を測定した。 こ の結果、 実施例 4では、 図 1に示すように、 1 0 0 Hz〜: L 0 0 0 Hzにて、 出力音圧偏 差が 4デシベル以内で鋭い山谷はなく逆共振はなかった。 比較例 1では、 図 2に示す ように、 3 0 0 Hz〜 7 0 0 Hzに出力偏差が 1 2 . 5デシベルの山谷があり逆共振が生 じている。 また、 比較例 2では、 図 3に示すように、 3 0 0 Hz〜 7 0 0 Hzに出力偏差 が 9デシベルの山谷があり逆共振が生じている。 この発明の制振材を使用したスピー カーは、 音質を特徴づける 1 0 0 Hz〜 1 0 0 0 Hzの周波数帯にて出力がフラッ トにな り、 原音を忠実に再現する音質の優れたスピーカーであり、 特に中低音域用スピーカ 一に適している。  The output frequency characteristics of this speaker were measured according to JIS C 5 5 3 2. As a result, in Example 4, as shown in FIG. 1, from 100 Hz to L 0 00 Hz, the output sound pressure deviation was within 4 dB, and there was no sharp valley and no reverse resonance. In Comparative Example 1, as shown in FIG. 2, there are peaks and valleys with an output deviation of 12.5 dB from 300 Hz to 700 Hz, and reverse resonance occurs. In Comparative Example 2, as shown in FIG. 3, there are peaks and valleys with an output deviation of 9 dB from 300 Hz to 700 Hz, and reverse resonance occurs. The speaker using the damping material of the present invention has excellent sound quality that faithfully reproduces the original sound because the output is flat in the frequency range of 100 Hz to 100 Hz, which characterizes the sound quality. It is a speaker and is particularly suitable for a mid-low range speaker.
実施例 1〜8は、 制振性では損失係数が 0 . 1以上あり制振性は良好である。  In Examples 1 to 8, the damping coefficient is 0.1 or more and the damping performance is good.
また、 U V光劣勢、 加水分解性等の耐久性についても何れも強度維持率が高い。 In addition, the strength maintenance rate is high for durability such as UV light inferiority and hydrolyzability.
このうち、 実施例 7は、 ジオールの使用量が多く、 制振性では優秀であるが、 柔軟す ぎ、 強度も劣り使用用途は制限される。 実施例 8は、 トリオールの使用が 1 0 0であ り、 硬く柔軟性に欠け、 使用用途は制限される。 Of these, Example 7 uses a large amount of diol and is excellent in vibration damping properties, but is too flexible and inferior in strength, so its usage is limited. In Example 8, the use of triol is 100, which is hard and lacks flexibility, and its usage is limited.
一方、 比較例 1、 2とも制振性は良好であるが、 耐久性が劣っている。  On the other hand, both of Comparative Examples 1 and 2 have good vibration damping properties but poor durability.
熱成形性 Thermoformability
各フォームを 1 0 m m厚に切り出し、 厚みが 1 Z 5 ( 2 m m ) となるように一定の 温度に熱した熱板にて 6 0秒間圧縮し、 熱成形可能な最低温度を求めた。 結果を表 1 に示した。 この発明の制振材ウレタンフォームは従来のウレタンフォームより低い温 度で熱成形でき、 優れた熱成形性を持っている。  Each foam was cut into a thickness of 10 mm and compressed with a hot plate heated to a constant temperature so that the thickness became 1 Z 5 (2 mm) for 60 seconds to obtain the lowest temperature at which thermoforming was possible. The results are shown in Table 1. The vibration damping urethane foam of the present invention can be thermoformed at a lower temperature than conventional urethane foam and has excellent thermoformability.
測定方法 この発明にて使用した測定方法は次のとおりである。 Measuring method The measuring method used in this invention is as follows.
熱成形性: 加水分解性試験と同試料にて熱成形性を試験した。 各フォームを 1 0 m m厚に切り出し、 厚みが 1 Z5となるように熱板にて 6 0秒間圧縮し、 熱成形可能な 最低温度を求めた。 Thermoformability: Thermoformability was tested using the same sample as the hydrolyzability test. Each foam was cut into a thickness of 10 mm and compressed with a hot plate for 60 seconds so that the thickness became 1 Z5, and the lowest temperature at which thermoforming was possible was determined.
比重:直方体を切り出し、 重量と各辺長から算出した見かけの比重。 Specific gravity: Apparent specific gravity calculated by cutting out a rectangular parallelepiped and calculating the weight and length of each side.
引張り強さ、 伸び: J I S K 6 2 5 1 ダンベル状 1号型による破断強度。 Tensile strength, elongation: J I S K 6 2 5 1 Breaking strength of dumbbell-shaped type 1.
見かけ重量あたりの引張り強さ 次式により求めた。 Tensile strength per apparent weight Determined by the following equation.
(式) 見かけ重量あたりの引張り強さ = 引張り強さ(N/ctti2) / 見かけ比重(g/Cm3) 光促進劣化試験: J I S K 7 3 5 0 - 2 キセノンランプによる照射試験。 (Formula) Tensile strength per apparent weight = Tensile strength (N / ctti 2 ) / Apparent specific gravity (g / C m 3 ) Light accelerated degradation test: JISK 7 3 5 0-2 Irradiation test with xenon lamp.
A T L A S社 S UNT E S T X L S +による 1 0 0 0時間照射。 照射前後の引張 り強さの保持率を下式より求めた。 また、 試験後の損失係数を測定した。 A T L A S Company SUNT E S T X L S + Irradiation for 1 0 0 0 hours. The retention of tensile strength before and after irradiation was obtained from the following formula. In addition, the loss factor after the test was measured.
(式) 保持率 = (試験後引張り強さ) / (試験前引張り強さ)  (Formula) Retention rate = (Tensile strength after test) / (Tensile strength before test)
加水分解性:各フォームを 5 mm厚に切り出し、 7 0 ° C 9 0 % R Hの環境試験室に 宙づりにして 8週間放置した。 この環境試験前後で引張り強さを測定し上式により保 持率を求めた。 Hydrolyzability: Each foam was cut to 5 mm thickness and suspended in an environmental test room at 70 ° C. 90% RH for 8 weeks. The tensile strength was measured before and after this environmental test, and the retention rate was determined by the above formula.
損失係数: J I S K 6 3 9 4の動的粘弾性測定装置による tan S値。 実施例、 比 較例では、 フォームを厚みが 1 / 5 ( 2 mm) となるように熱板にて熱成形し測定した。 周波数 1 ΚΗζ。 温度 2 5 °Cの条件。 Loss coefficient: tan S value by dynamic viscoelasticity measuring device of JISK 6 3 9 4 In Examples and Comparative Examples, the foam was thermoformed with a hot plate so as to have a thickness of 1/5 (2 mm). Frequency 1 ΚΗζ. Temperature 25 ° C.
産業上の利用可能性 Industrial applicability
こ発明の制振材は、 緩衝材、 振動防止材、 振動減衰材、 吸音材、 結合材として、 種々の振動を抑えたい部材に貼り付ける、 密着させる、 近づけて設置する、 連結する、 結合するなどして設置し、 不要、 不快な振動を抑える用途がある。 また、 空間に設置 して不要、 不快な振動を吸収する。 このような使用用途として建材、 各種電気機器、 原動機、 電動機、 家庭電化製品、 音響機器、 車両、 エンジンカバー内の吸音材、 スピ 一力一エッジ、 などに使用することができる。  The damping material of the present invention is a buffer material, vibration preventing material, vibration attenuating material, sound absorbing material, or bonding material, which is attached to, closely attached to, connected to, or connected to various members to suppress vibration. For example, it can be used to suppress unnecessary and unpleasant vibrations. It is also installed in a space to absorb unnecessary and unpleasant vibrations. It can be used for building materials, various electrical equipment, prime movers, electric motors, home appliances, acoustic equipment, vehicles, sound absorbing materials in engine covers, and a single edge.

Claims

請求の範囲 The scope of the claims
1. カー^ t、一ト!^を有するポリウレタ^ g¾もなること繊敫とする、 鍵才。  1. A key talent that makes it easy to become a polyureta with a car!
2. 謝 &ポリウレタ fig^、 フォー あること ¾ 敷とする、言餘項 2〖 «¾1鍵才。  2. Xie & Polyureta fig ^, Four Be ¾ Lay, Word 2 〖«¾1 Key.
3. 歸5ポリウレタ «11 、 されたフォー あること «敫とする、言 t#頁 2d¾¾l 才。 3. 歸 5 Polyureta «11, the pho that was« 敫, say t # page 2d¾¾l years old.
4. sffsポリウレタ !^、力 i«gされたフォー あること 敷とする、
Figure imgf000016_0001
4. sffs polyureta! ^, Force i «g fo that there is a floor,
Figure imgf000016_0001
5. 膽 Ξポリウレタ ^德 So. l^L O. 7以下であること麵敷とする、言纖 2、 3、 4及び 5 の V、ず; Η^¾¾ι臓才。  5. Ξ ΞPolyureta ^ 德 So. l ^ L O. V, in words 2, 3, 4 and 5;
6. 膽 1臓^スピーカーエツ、:^れあること繊敫とする、言嫌頁 1、 2、 3、 4、 5及び 6のいずれカ 鶴 I謝。 6. 臓 One organ ^ Speaker Etsu: 敫 I want to make it a nuisance, one of my favorite pages 1, 2 , 3, 4, 5 and 6.
7. tif¾ポリウレタ^ ¾旨を力 ^ること ¾ 敷とする、 fW¾¾5(¾ Wc5$S *¾  7. tif¾Polyureta ^ ¾ To force ¾ Lay, fW¾¾5 (¾ Wc5 $ S * ¾
4 Four
PCT/JP2007/067084 2006-08-25 2007-08-27 Damping member and method for producing the same WO2008023852A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008530990A JPWO2008023852A1 (en) 2006-08-25 2007-08-27 Damping material and manufacturing method thereof
CN2007800315438A CN101506541B (en) 2006-08-25 2007-08-27 Damping member and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-229650 2006-08-25
JP2006229650 2006-08-25

Publications (1)

Publication Number Publication Date
WO2008023852A1 true WO2008023852A1 (en) 2008-02-28

Family

ID=39106923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067084 WO2008023852A1 (en) 2006-08-25 2007-08-27 Damping member and method for producing the same

Country Status (3)

Country Link
JP (1) JPWO2008023852A1 (en)
CN (1) CN101506541B (en)
WO (1) WO2008023852A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107002B2 (en) 2012-04-02 2015-08-11 Onkyo Corporation Loudspeaker diaphragm and loudspeaker using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951031B (en) * 2019-12-15 2021-12-17 安徽匠星联创新材料科技有限公司 High-hydrolysis-resistance polyurethane damping material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315413A (en) * 1988-03-09 1989-12-20 Sanyo Chem Ind Ltd Resin composition, vibration damper, thermoforming material and thermoforming method
JPH1025327A (en) * 1996-05-09 1998-01-27 Inoac Corp Flexible polyurethane foam and speaker edge using the same
JP2004320919A (en) * 2003-04-17 2004-11-11 Yazaki Corp Protection material for wire harness, and protective structure of wire harness

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1004077B (en) * 1985-06-25 1989-05-03 海军工程学院 High damping material in a wide temp. range

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315413A (en) * 1988-03-09 1989-12-20 Sanyo Chem Ind Ltd Resin composition, vibration damper, thermoforming material and thermoforming method
JPH1025327A (en) * 1996-05-09 1998-01-27 Inoac Corp Flexible polyurethane foam and speaker edge using the same
JP2004320919A (en) * 2003-04-17 2004-11-11 Yazaki Corp Protection material for wire harness, and protective structure of wire harness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107002B2 (en) 2012-04-02 2015-08-11 Onkyo Corporation Loudspeaker diaphragm and loudspeaker using the same

Also Published As

Publication number Publication date
CN101506541A (en) 2009-08-12
CN101506541B (en) 2011-08-31
JPWO2008023852A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
CN102174166B (en) Thermoplastic semihard polyurethane foam for automobile ceiling and preparation method thereof
JP4167673B2 (en) Membrane sound absorbing structure
JP2007106881A (en) Method for producing rigid polyurethane foam with open-cell structure
JP2007143946A (en) Gel for ultrasound phantom
JP2006342305A (en) Method for producing rigid polyurethane foam
JP3664441B2 (en) Foam, sound absorbing material using the same, and method for producing the same
JP2005060643A (en) Polyurethane foam and its preparation method
WO2008023852A1 (en) Damping member and method for producing the same
WO2018235515A1 (en) Composition for soft polyurethane foam, soft polyurethane foam, and vehicle seat pad
JP2010184655A (en) Laminated sound absorbing material
JP6955722B2 (en) Sound absorbing material containing a crosslinked body formed with polyrotaxane
JP4227074B2 (en) Sound absorbing material
JP2006348156A (en) Method for producing rigid polyurethane foam
JP4952898B2 (en) Flexible polyurethane foam
JP2005060414A (en) Open-cell rigid polyurethane foam, method for producing the same and sound absorbing material
JP2022079417A (en) Composition for molding soft polyurethane foam
JP4617659B2 (en) Sound absorbing material
JPS5998121A (en) Vibration damping material
JP4617793B2 (en) Soundproofing materials for automobile interior materials
JP2005213420A (en) Flexible polyurethane foam and laminated body
WO2001070838A1 (en) Flexible polyurethane foam
CN113348190A (en) Polyurethane foam formulations and sound insulation based on the same
JP3940599B2 (en) Water resistant polyurethane sealant with excellent vibration damping
KR20090062155A (en) Polyurethane foam acoustic absorbent using dash-panel of automobile
JP4227051B2 (en) Sound absorbing material and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031543.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806557

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530990

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07806557

Country of ref document: EP

Kind code of ref document: A1