WO2008023697A1 - Vapor phase growth system - Google Patents

Vapor phase growth system Download PDF

Info

Publication number
WO2008023697A1
WO2008023697A1 PCT/JP2007/066183 JP2007066183W WO2008023697A1 WO 2008023697 A1 WO2008023697 A1 WO 2008023697A1 JP 2007066183 W JP2007066183 W JP 2007066183W WO 2008023697 A1 WO2008023697 A1 WO 2008023697A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
viewport
chamber
vapor phase
phase growth
Prior art date
Application number
PCT/JP2007/066183
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Yamaguchi
Yuuichirou Kitamura
Original Assignee
Taiyo Nippon Sanso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006226733A external-priority patent/JP4980672B2/en
Priority claimed from JP2006226732A external-priority patent/JP5214862B2/en
Application filed by Taiyo Nippon Sanso Corporation filed Critical Taiyo Nippon Sanso Corporation
Publication of WO2008023697A1 publication Critical patent/WO2008023697A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Definitions

  • the present invention relates to a vapor phase growth apparatus provided with a viewport for optically observing a substrate surface in a chamber containing a flow channel, and in particular, an organometallic semiconductor thin film, particularly a nitride organic film.
  • the present invention relates to a horizontal vapor phase growth apparatus for growing a metal-based semiconductor film on a substrate surface.
  • a gas stream for example, thermal convection
  • a light beam for example, a laser beam
  • fluctuations due to the height and rotation of the substrate surface during film formation can be measured by the force measured by the reflection position of the laser beam irradiated on the substrate surface at an appropriate angle, and the noise increases when the laser beam fluctuates due to airflow.
  • a film in a compound semiconductor thin film manufacturing apparatus, may be formed by reacting raw materials at a high temperature exceeding 800 to 1000 ° C at a pressure close to normal pressure. Under such a high temperature, the entire substrate may be warped due to the difference in thermal expansion coefficient between the films or between the substrate and the thin film. Even when trying to measure the degree of warpage of this substrate using laser light, an air flow is generated in the chamber 1 due to the temperature difference between the water-cooled chamber outer wall and the inside of the chamber. Measurement was difficult due to the large fluctuation.
  • Patent Document 1 JP 2001-68415 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 62-188218
  • the present invention can efficiently prevent the reaction product from adhering to the inner surface of the viewport, and suppresses the influence of the airflow in the chamber, thereby ensuring optical observation and measurement using a laser beam or the like.
  • the purpose is to provide a vapor phase growth apparatus that can be performed!
  • a vapor phase growth apparatus includes a chamber, a flow channel disposed in the chamber, a substrate installed in the flow channel, and a heating unit that heats the substrate.
  • a reaction gas supply means for supplying a reaction gas into the flow channel; and a viewport provided in the chamber.
  • the substrate surface of the flow channel is optically disposed on the opposite wall of the flow channel via the viewport.
  • a purge gas flow path is provided between the outer surface of the flow channel wall provided with the through hole and the inside of the chamber of the viewport.
  • Purge gas introduction means for flowing a purge gas in a laminar flow state in the same direction as the flow direction of the reaction gas flowing in the flow channel, at substantially the same speed and pressure. It is characterized by having established.
  • the viewport is arranged near the outer surface of the flow channel wall, or the viewport is in the flow direction of the reaction gas. It is preferable that it is located downstream.
  • the purge gas flow path includes a pair of side plates erected on the outer surface of the flow channel wall, an end plate closing the upstream side of both side plates, and the opposite flow channel side of the end plates and both side plates. It is preferable that the end plate is provided with a purge gas introduction part, and the exhaust port is formed by opening the downstream side of both side plates! /.
  • the cover plate has a through-hole serving as an optical path when optically observing the substrate surface through the viewport, and the cover plate is a front end on the inner side of the Puport chamber. It is preferable to have an annular protrusion covering the outer periphery of the part, or to have a through-hole through which the front end of the viewport inside the chamber passes.
  • a vapor phase growth apparatus includes a chamber and a chamber.
  • a flow channel a substrate installed in the flow channel, a heating unit for heating the substrate, a reaction gas supply unit for supplying a reaction gas into the flow channel, and a view provided in the chamber.
  • the viewport is characterized in that the inside of the chamber of the viewport extends toward the flow channel, and the distal end surface of the extension is arranged near the outer surface of the flow channel.
  • the extension part of the viewport has a hollow structure having a hollow part inside, and the hollow part is in a vacuum state,
  • the front end surface of the viewport is inclined with respect to the surface of the substrate, the viewport is provided so as to be adjustable with respect to the chamber, and the viewport has a flow direction of the reaction gas. It is preferable that it is located downstream.
  • optical observation of the substrate surface can be performed even if a reaction product adheres to the inner surface of the flow channel by providing a through hole in the flow channel. It can be done reliably.
  • the purge gas under specific conditions, it is possible to prevent the reaction gas and reaction product from flowing out from the through hole to the viewport side with a small amount of purge gas, and the reaction product adheres to the inner surface of the viewport. As a result, it is possible to prevent the purge gas from flowing into the flow channel and adversely affecting the thin film being formed.
  • the purge gas flow path is provided only on the substrate facing wall, the amount of purge gas can be reduced, and the cost of the purge gas itself can be reduced.
  • the equipment cost can also be reduced by downsizing the exhaust pump.
  • a heater or the like for heating the susceptor holding the substrate can be arranged in the same manner as a conventional general horizontal vapor phase growth apparatus, and an increase in apparatus cost can be suppressed.
  • the air flow in the chamber 1 is converted into laser light. It is possible to optically reliably and accurately observe and measure the state of the substrate during film formation that does not adversely affect the film.
  • FIG. 1 is a cross-sectional view of a main part showing a first embodiment of a vapor phase growth apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • FIG. 4 is a cross-sectional view of a relevant part showing a second embodiment of the vapor phase growth apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a relevant part showing a third embodiment of the vapor phase growth apparatus according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a main part showing a fourth embodiment of the vapor phase growth apparatus according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a relevant part showing a fifth embodiment of the vapor phase growth apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a relevant part showing a first embodiment of a vapor phase growth apparatus according to a second aspect of the present invention.
  • FIG. 9 is a cross-sectional view of a main part showing a second example of the vapor phase growth apparatus according to the second aspect of the present invention.
  • FIG. 10 is a cross-sectional view of a relevant part showing a third embodiment of the vapor phase growth apparatus according to the second aspect of the present invention.
  • FIG. 11 is a cross-sectional view of a relevant part showing a fourth example of the vapor phase growth apparatus according to the second aspect of the present invention.
  • FIG. 12 is a cross-sectional view of a relevant part showing a fifth embodiment of the vapor phase growth apparatus according to the second aspect of the present invention.
  • FIG. 13 is a diagram showing the result of measuring the height of the upper surface on the outer periphery side of a rotating substrate. Explanation of symbols
  • exhaust pump 31 ... view port, 31a ... same as the moon ⁇ 31b ... flange, 31c ... tip, 32 ⁇ 41b ... Window member, 41c ... Tip member, 42 ... Airtight bellows member, 42a ... Bellows part, 42b ... Mounting flange, 42c ... Sealing material, 43 ... Lid member, 43a ... Through hole for incident light, 43b ... Through hole for reflected light
  • FIG. 1 to 3 show a first embodiment of the vapor phase growth apparatus according to the first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of the main part
  • FIG. 2 is II II of FIG.
  • Fig. 3 is a cross-sectional view of III-III in Fig. 1.
  • the plurality of substrates 11 are concentrically held on the upper surface of the susceptor 12, and are flow channels.
  • the substrate surface of the substrate 11 is substantially parallel to the upper surface of the susceptor 12.
  • the flow channel 13 and the like are housed in a sealed chamber 14.
  • a reaction gas A is introduced into the flow channel 13 in a laminar flow state in a direction parallel to the substrate surface from a reaction gas supply means (not shown).
  • Gas (exhaust gas B) that has passed through the substrate surface is connected to the flow channel 13. Exhausted from the exhaust section 15.
  • the reaction gas supply means is not particularly limited, and a known one can be used.
  • a heater 17, which is a heating means, housed in a box-shaped reflector 16.
  • the substrate 17 is heated to a predetermined temperature via the susceptor 12 by the heater 17.
  • the susceptor 12 is supported by a support shaft 18. By rotating the susceptor 12 with the support shaft 18, the substrate 11 is rotated to average the thickness of the thin film formed on the substrate. And then,
  • a viewport opening 14b is provided on the downstream side in the reaction gas flow direction from the center of the susceptor 12 in the top plate portion 14a of the chamber 14, and the viewport 20 is provided in the viewport opening 14b.
  • the window member 21 to be formed is fitted.
  • the window member 21 is made of a disc-like light-transmitting material, for example, quartz glass having corrosion resistance and heat resistance, and is detachably fixed to the upper surface of the top plate portion 14a by a fastening member 23. .
  • the lower surface of the outer peripheral portion of the window member 21 is hermetically sealed to the upper surface of the top plate portion 14a by the sealing material 22.
  • a through hole 13b is provided in a position corresponding to the center of the viewport 20 on the substrate facing wall (upper wall) 13a of the flow channel 13, and the outer surface of the upper wall 13a and the pure port 20 are provided.
  • a purge gas flow path 24 is provided between the chamber 14 and the inside of the chamber 14 so as to surround the through hole 13b.
  • the purge gas flow path 24 is formed on the upper surface of the upper wall 13a of the flow channel 13 with respect to the flow direction of the reaction gas in the flow channel 13.
  • the upper side of both side plates 24a, 24a that is, the cover plate 24c covering the side opposite to the flow channel, has a flat shape with a height direction of several mm to 10 mm, and the end plate 24b
  • a purge gas introduction part 24d is provided at the center in the width direction
  • an exhaust port 24e is formed by opening the downstream side of both side plates 24a, 24a, and a through hole 24f corresponding to the through hole 13b is provided in the cover plate 24c. It has been.
  • the purge gas P flowing through the purge gas passage 24 has a flow rate adjustment function and a pressure adjustment function.
  • the purge gas introduction means 25 is introduced into the purge gas flow path 24 at a predetermined pressure and flow rate through the purge gas introduction section 24d, flows out from the exhaust port 24e, and exhaust gas B discharged from the exhaust section 15 of the flow channel 13 They are merged or individually sucked into the exhaust pump 26 and sent to an abatement facility.
  • the purge gas P flowing through the purge gas flow path 24 is substantially the same in flow direction as the reaction gas flowing in a laminar flow state in the flow channel 13 in a direction parallel to the upper surface of the substrate 11. Are set to flow at the same speed, the same pressure, and laminar flow. Further, the flow path cross-sectional shape of the purge gas flow path 24 is set so as to be sufficient to satisfy these conditions.
  • the flow rate and pressure of the purge gas flowing in the purge gas flow path 24 are preferably the same as the flow rate and pressure of the reaction gas flowing in the flow channel 13, but the conditions of both gases, the flow channel There are appropriate ranges for the flow rate and pressure of the purge gas depending on the shape of the purge gas flow path 13 and the shape of the purge gas passage 24 and the shape and position of the through-hole 13b provided in the flow channel 13. For example, even if the flow rate and pressure of the purge gas are lower than the flow rate and pressure of the reaction gas, and the reaction gas in the flow channel 13 flows out to the purge gas flow path 24 through the through hole 13b, it is quickly discharged with the purge gas. As long as the cover plate 24c and the viewport 20 of the purge gas flow path 24 are not reached! /, The optical observation of the substrate surface and the film formation are not affected.
  • the space between the two can be reduced by bringing the viewport 20 closer to the flow channel 13, it is possible to suppress the generation of airflow such as thermal convection, and to prevent the measurement light from fluctuating accurately. Measurements can be made. Furthermore, by making the purge gas flow in the purge gas passage 24 into a laminar flow state, the light generated by the airflow is less than that in the turbulent state. Fluctuation can be suppressed and more precise measurement can be performed.
  • FIG. 4 is a cross-sectional view of a main part showing a second embodiment of the vapor phase growth apparatus according to the first aspect of the present invention.
  • the same components as those shown in the first embodiment of the previous year are denoted by the same reference numerals, and detailed description thereof is omitted.
  • This embodiment shows a corresponding example in the case where the top plate portion 14a of the chamber 14 has to be raised to some extent due to the surrounding devices of the flow channel 13. That is, a concave portion 14c is formed at a predetermined position with respect to the susceptor 12 in the top plate portion 14a, and a viewport opening 14b is provided at the bottom of the concave portion 14c to attach the pew port member 21, whereby the view port 20 is It is lowered below the section 14a and is positioned near the outer surface of the flow channel 13.
  • the purge gas flow path 24 is formed flat in the height direction in the same manner as in the first embodiment, and the flow path is cut off.
  • the area can be reduced, and the state of the substrate 11 can be optically observed from the outside without being affected by the gas flow in the chamber 14.
  • the cover plate 24c is provided on the side opposite to the flow channel of the purge gas passage 24! /, But this cover / plate 24c is omitted. It is also possible to use the top plate part 14a as a cover / board.
  • FIG. 5 is a cross-sectional view of a main part showing a third example of the vapor phase growth apparatus according to the first aspect of the present invention.
  • This embodiment shows a corresponding example when the flow channel 13 and the top plate portion 14a of the chamber 14 are separated from each other as in the second embodiment.
  • the top 14a of the chamber 14 remains flat, and is fixed to the viewport opening 14b to the cylindrical body 31a protruding into the chamber 14 and the top 14a.
  • a viewport member 31 made of a solid translucent material having a hat-shaped (T-shaped) longitudinal cross section having a flange 31b at the upper end of the head is attached.
  • the front end of the body 31a protruding into the chamber 14 passes through a through hole 24g formed in the cover plate 24c of the purge gas flow path 24, and the front end surface 31c reaches the vicinity of the upper wall 13a of the flow channel 13. Yes.
  • FIG. 6 is a cross-sectional view of a main part showing a fourth example of the vapor phase growth apparatus according to the first aspect of the present invention.
  • This embodiment replaces the solid viewport member 31 in the third embodiment.
  • a disc-shaped window member 32 mounted in the viewport opening 14b and a hollow member 33 provided below the window member 32 are provided.
  • the hollow member 33 airtightly closes both ends of the pipe-shaped member 33a made of a translucent member such as quartz glass by the disk-shaped member 33b, and exhaust pipe 34 for evacuating the hollow portion of the hollow member 33.
  • the inside of the hollow member 33 is evacuated and kept in a vacuum state to such an extent that the air current does not affect the optical observation.
  • the exhaust pipe 34 may be sealed after the inside of the hollow member 33 is exhausted to a predetermined degree of vacuum.
  • the distal end portion of the hollow member 33 protruding into the chamber 14 penetrates the through hole 24g formed in the cover plate 24c of the purge gas flow path 24, and the distal end surface 33c is the flow channel 13. To the vicinity of the upper wall 13a.
  • the distal end portions of the viewport member 31 and the hollow member 33 protrude into the purge gas flow channel 24, so that the flow channel height is lowered at this portion and the flow channel is cut off. Since the area becomes small, the force that causes the flow velocity and the like to be different from the peripheral portion.
  • the purge gas may be flowed so as to satisfy the above-described condition at the position of the through hole 13b of the flow channel 13. Further, by making the distal end surface 31c of the viewpoint member 31 and the distal end surface 33c of the hollow member 33 flush with the lower surface of the covering plate 24c, it is possible to eliminate the change in the flow path cross-sectional area.
  • FIG. 7 is a cross-sectional view of a relevant part showing a fifth embodiment of the vapor phase growth apparatus according to the first aspect of the present invention.
  • the viewport member 41 shown in the present embodiment includes a conical cylindrical portion 41a having a reduced diameter on the lower side, a disk-like window member 41b that hermetically closes the upper opening of the cylindrical portion 41a, and a cylindrical shape It is a hollow member formed by a disc-shaped tip member 41c that hermetically closes the lower opening of the portion 41a, and the tip member 41c is inclined with respect to the surface of the substrate 11.
  • the hollow portion in the viewport member 41 is evacuated by a vacuum pump and then sealed to be in a vacuum state.
  • the viewport member 41 is attached to the top plate portion 14a of the chamber 14 via an airtight bellows member 42 provided so as to surround the Puport opening 14b of the chamber 14. .
  • the airtight bellows member 42 has mounting flanges 42b at both ends of the bellows portion 42a.
  • the lower mounting flange 42b is fixed to the upper surface of the top plate portion 14a via a sealing material 42c
  • the upper mounting flange 42b is fixed to the window member via the sealing material 42c.
  • the viewport member 41 is attached to the chamber 14 by mounting the outer periphery of the 41b and fixing the lid member 43 covering the upper surface of the window member 41b to the upper mounting flange 42b.
  • the lid member 43 is provided with two through holes, an incident light through hole 43a and a reflected light through hole 43b.
  • Laser light La is transmitted from the incident light through hole 43a to the surface of the substrate 11. In this way, the state of the light Lb reflected on the substrate surface is received outside the reflected light through hole 43b.
  • the reflected light is used in this way, the light reflected by the tip member 41c and the light reflected by the substrate surface can be separated by slightly tilting the tip member 41c with respect to the substrate surface. Only reflected light from the substrate surface can be reliably received.
  • the tilt direction is arbitrary, it is preferable that the tilt direction is not perpendicular to the incident light or reflected light.
  • the purge gas flowing in the purge gas flow path 24 flows from the through hole 24f into the chamber 14 through the tip member 41c portion. Conversely, the gas in the chamber 14 can be prevented from flowing into the tip member 41c.
  • the cover plate 24c and the tip member 41c of the purge gas channel 24 may be integrally formed without providing the through hole 24f of the purge gas channel 24.
  • an arbitrary position adjusting mechanism formed of an arbitrary material is adopted as long as it can withstand the use environment, not limited to the airtight bellows group material. can do.
  • any holding means such as a bolt can be used as a means for holding the viewport member 41 in a predetermined position.
  • the type of purge gas is arbitrary, and nitrogen, hydrogen, argon, or the like that is normally used as a purge gas in this type of apparatus can be used.
  • view The position where one port is provided can be arbitrarily selected within a range where the state of the substrate surface can be observed and measured, but in order to prevent the reaction gas flow from being disturbed by the through holes, the flow of the reaction gas is as much as possible. It is preferable to arrange in the direction downstream.
  • an infrared reflecting film should be provided outside or inside the viewport.
  • FIG. 8 is a cross-sectional view of a main part showing a first embodiment (embodiment) of the vapor phase growth apparatus according to the second aspect of the present invention.
  • This vapor phase growth apparatus basically has the same configuration as the vapor phase growth apparatus described in Patent Document 1 described above.
  • the plurality of substrates 111 are concentrically held on the upper surface of the susceptor 112 and are arranged at predetermined positions on the flow channel 113.
  • the substrate surface of the substrate 111 is substantially parallel to the upper surface of the susceptor 112.
  • the flow channel 113 and the like are housed in a sealed chamber 114, and from a reaction gas supply means (not shown) through the reaction gas inlet provided at one end of the chamber 114, The reaction gas is introduced into the gas, and the gas that has passed through the substrate surface is exhausted from the exhaust part 115 connected to the flow channel 113.
  • the reaction gas supply means is not particularly limited, and a known one can be used.
  • a heater 117 which is a heating means, housed in a box-shaped reflector 116.
  • the heater 117 causes the base plate 111 to reach a predetermined temperature via the susceptor 112. Heat.
  • the susceptor 112 is supported by a support shaft 118. By rotating the susceptor 112 with the support shaft 118, the thickness of the thin film formed on the substrate is averaged by rotating the substrate 111. ing.
  • a viewport member 121 that forms a viewport 120 is fitted into a viewport opening 114b provided in the top plate portion 114a of the chamber 114.
  • This view port member 121 has a cylindrical translucent material having a cylindrical body 121a and a flange 121b at the upper end, and a solid translucent material having a hat shape (T shape), for example, corrosion resistance and heat resistance. It is made of stone glass with The body 121a is inserted into the viewport opening 114b from above, and the viewport member 121 is fixed in a state where the bottom surface of the flange 121b is hermetically sealed to the top surface of the top plate portion 114a by the sealing material 122. Detachable by member 123 It is fixed to Noh.
  • the front end surface 121c of the body 121a which is an extended portion extending into the chamber 114, is disposed near the outer surface of the upper plate of the flow channel 113, that is, in the immediate vicinity of a distance of about several mm to 10 mm.
  • the thickness of the gas layer between the front end surface 121c and the outer surface of the flow channel is made as small as possible.
  • the thickness of the gas layer is preferably 1 mm or more and 10 mm or less, more preferably 1 mm or more and 8 mm or less, and most preferably 1 mm or more and 6 mm or less.
  • the viewport 120 By forming the viewport 120 using such a viewport member 121, even if an airflow due to thermal convection is generated in the chamber 114, the front end face 121c and the flow channel are affected by the airflow. Since it is limited to a gas layer that is only slightly in contact with the outer surface, fluctuations in the laser beam for measurement can be suppressed, and the ability to perform accurate measurements in a stable state can be achieved. In addition, if necessary, the reaction product adheres to the inner surface of the flow channel 113 by providing a through hole 113a in the flow channel 113 where the measurement light such as laser light or observation light passes. However, accurate measurement can be performed.
  • FIG. 9 is a cross-sectional view of the main part showing a second embodiment of the vapor phase growth apparatus according to the second aspect of the present invention.
  • the same components as those shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the viewport 120 includes a disk-shaped window member 131 attached to the viewport opening 114b, and a hollow portion provided continuously below the window member 131. And a vacuum pump 133 for evacuating the hollow portion of the hollow member 132.
  • the hollow member 132 is formed by sealing both ends of a pipe-shaped member 132a made of a translucent member such as quartz glass with a disk-shaped member 132b, and protrudes into the chamber 114.
  • the distal end surface 132c of the hollow member 132 is disposed in the vicinity of the outer surface of the flow channel 113, similarly to the distal end surface 121c in the first embodiment.
  • the hollow member 132 is provided with a connecting portion 132d of an exhaust pipe 134 connected to the vacuum pump 133.
  • the inside of the hollow member 132 is connected to the vacuum pump 133 through the exhaust pipe 134 from the connecting portion 132d.
  • the hollow member 132 is evacuated (including a reduced pressure state) so that no airflow is generated in the hollow member 132.
  • a hollow structure is used. As a result, the effects of light refraction and transmission loss due to thermal expansion and vibration can be reduced compared to the case of a solid structure.
  • the window member 131 can be attached in the same manner as the flange 121b of the first embodiment.
  • FIG. 10 is a cross-sectional view of a principal part showing a third example of the vapor phase growth apparatus according to the second aspect of the present invention.
  • the hollow member 132 in the second embodiment is formed by combining a light transmissive member and a non-light transmissive member. That is, a metal ring member 135 that is a non-translucent member is hermetically connected to an upper portion of a pipe-shaped member 132 a made of a translucent member, and the exhaust pipe 134 that is connected to the vacuum pump 133 is connected to the ring member 135.
  • the connecting portion 135a is provided.
  • connection part of the exhaust pipe 134 made of metal, for example, stainless steel, the exhaust pipe connection part can be easily formed as compared with the case of quartz glass.
  • a part of the hollow member 132 is formed of a non-translucent member, but the entire pipe-shaped member 132a may be formed of a non-translucent member.
  • FIG. 11 is a cross-sectional view of a principal part showing a fourth embodiment of the vapor phase growth apparatus according to the second aspect of the present invention.
  • the upper portion of the hollow member 132 in the second embodiment is formed integrally with the window member 131, and after the inside of the hollow member 132 is evacuated by a vacuum pump, the exhaust pipe connecting portion 132d is sealed.
  • the hollow member 132 is kept in a vacuum state by cutting.
  • the hollow member 132 can be attached to the chamber 114 in the same manner as the viewport member 121 of the first embodiment.
  • FIG. 12 is a cross-sectional view of a relevant part showing a fifth embodiment of the vapor phase growth apparatus according to the second aspect of the present invention.
  • the Puport member 141 shown in the present embodiment includes a conical cylindrical portion 141a having a reduced diameter on the lower side, a disk-shaped window member 141b that hermetically closes an upper opening of the cylindrical portion 141a, and a cylindrical portion 141a.
  • the hollow member is formed of a disc-shaped tip member 141c that hermetically closes the lower opening of the tip member 141c, and the tip member 141c is inclined with respect to the surface of the substrate 111. Further, the hollow portion in the viewport member 141 is evacuated by a vacuum pump and then sealed to be in a vacuum state.
  • This viewport member 141 is attached to the top plate portion 114a of the chamber 114 via an airtight bellows member 142 provided so as to surround the viewport opening 114b of the chamber 114. Yes.
  • the airtight bellows member 142 is attached to both end openings of the bellows portion 142a. Respectively.
  • the lower mounting flange 142b is fixed to the upper surface of the top plate portion 114a via the sealing material 142c, and the outer periphery of the window member 141b is placed on the upper mounting flange 142b via the sealing material 142c, and the window member
  • the view port member 141 is attached to the chamber 114 by fixing the lid member 143 covering the upper surface of the 141b to the upper attachment flange 142b.
  • the mounting position of the viewport member 141 with respect to the chamber 114 is changed using the deformation of the bellows 142a.
  • the front and rear, left and right, top and bottom directions and mounting angle can be adjusted. That is, the view port 120 is provided so that the position of the view port 120 can be adjusted with respect to the chamber 114.
  • a purge gas flow path 144 is provided between the distal end member 141c of the viewport member 141 and the upper surface of the flow channel 113.
  • This purge gas flow path 144 has a purge gas introduction part 144a on the upstream side in the reaction gas flow direction, and an exhaust port 144b opened on the downstream side.
  • the lower part of the flow path is connected to the upper plate member of the flow channel 113. It is common and has a shape in which the upstream side, both sides, and the upper part of the flow path are surrounded by a plate member made of quartz glass.
  • the ceiling member of the flow channel 113 and the upper member of the purge gas flow path 144 are provided with through holes 113a and 144c, respectively, in the portions through which laser light and other measurement and observation light passes.
  • An annular protrusion 144d is provided on the upper surface of the upper member to cover the outer periphery of the distal end of the viewport member 141.
  • the lid member 143 is provided with two through holes, an incident light through hole 143a and a reflected light through hole 143b.
  • Laser light La is incident on the surface of the substrate 111 from the incident light through hole 143a. It is formed so that the state of the light Lb irradiated toward and reflected by the substrate surface is received outside the anti-potential light through hole 143b.
  • the light reflected by the tip member 141c and the light reflected by the substrate surface can be separated by slightly tilting the tip member 141c with respect to the substrate surface. It is possible to reliably receive only the reflected light from the substrate surface.
  • the tilt direction is arbitrary, but it is preferable to make the direction perpendicular to the incident light or reflected light.
  • a purge gas flow path 144 is provided between the viewport member 141 and the flow channel 113.
  • an annular protrusion 144d that covers the outer periphery of the distal end of the viewport member 141, the purge gas flowing in the purge gas flow path 144 flows from the through hole 144c through the distal member 141c into the chamber 114 or vice versa. Further, the gas in the chamber 114 can be prevented from flowing into the tip member 141c.
  • the type of the noble gas is arbitrary, and nitrogen, hydrogen, argon, etc., which are usually used as a purge gas in this type of apparatus can be used.
  • the means for mounting the viewport member 141 to the chamber 114 is not limited to the airtight bellows member, and an arbitrary position adjusting mechanism formed of any material can be used as long as it can withstand the use environment. Can be adopted.
  • any holding means such as a bolt can be used as a bolt.
  • the position at which the viewport is provided is a force that can be arbitrarily selected within a range in which the state of the substrate surface can be observed and measured.
  • the gas flow be arranged as downstream as possible in the reaction gas flow direction.
  • an infrared reflective film can be provided outside or inside the viewport to avoid thermal effects on the measurement equipment.
  • FIG. 13 is a schematic view of the height of the upper surface on the outer peripheral side of a substrate rotated during film formation using a laser distance meter in a vapor phase growth apparatus provided with a viewport having the structure shown in the fifth embodiment. It is a figure which shows the result of having measured the thickness.
  • the temperature during film formation is 500 ° C and the pressure is normal pressure.
  • line A in FIG. 13 the vertical movement synchronized with the rotation of the substrate could be observed.
  • the noise increased as shown by line B in Fig. 13 even at a temperature of 200 ° C. It was not possible to observe the vertical movement synchronized with the rotation of.
  • Example [0064] In the vapor phase growth apparatus having the configuration shown in the first embodiment of the first aspect of the present invention, a through hole 13b having a diameter of 5 mm is provided in the upper wall 13a of the flow channel 13, and the internal height force A purge gas passage 24 of mm was provided. Hydrogen was passed through the purge gas flow path 24 as a purge gas so that the flow velocity and pressure were equal to the reaction gas in the flow channel 13 at the position of the through hole 13b.
  • the vapor phase growth apparatus of the present invention it is possible to efficiently prevent the reaction product from adhering to the inner surface of the viewport, and to suppress the influence of the air flow in the chamber and to optically use a laser beam or the like. Observation and measurement can be performed reliably. Therefore, the present invention is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A vapor phase growth system comprising a chamber, a flow channel arranged in the chamber, a substrate arranged in the flow channel, a heating means for heating the substrate, a reaction gas supply means for supplying a reaction gas into the flow channel, and a view port provided onto the chamber. A through hole serving as an optical path when the substrate surface is observed optically through the view port is provided in the wall of the flow channel facing the substrate, a purge gas channel is provided between the outer surface of the flow channel wall provided with the through hole and a portion of the view port on the inner side of the chamber, and a purge gas introducing means for introducing a purge gas into the purge gas channel in the state of layer flow at the substantially same speed and the same pressure in the same direction as the reaction gas flowing through the flow channel is provided.

Description

明 細 書  Specification
気相成長装置  Vapor growth equipment
技術分野  Technical field
[0001] 本発明は、フローチャンネルを収納したチャンバ一に、基板面を光学的に観測する ためのビューポートを備えた気相成長装置に関し、特に、有機金属系半導体薄膜、 特に窒化物系有機金属系半導体膜を基板面に成長させる横型の気相成長装置に 関する。  TECHNICAL FIELD [0001] The present invention relates to a vapor phase growth apparatus provided with a viewport for optically observing a substrate surface in a chamber containing a flow channel, and in particular, an organometallic semiconductor thin film, particularly a nitride organic film. The present invention relates to a horizontal vapor phase growth apparatus for growing a metal-based semiconductor film on a substrate surface.
本願 (ま、 2006年 8月 23曰 ίこ曰本国 ίこ出願された特願 2006— 226732号及び 20 06年 8月 23日に日本国に出願された特願 2006— 226733号に基づく優先権を主 張し、その内容をここに援用する。  This application (May 23, 2006, Japanese Patent Application No. 2006-226732, and Japanese Patent Application No. 2006-226733, filed August 23, 2006, in Japan. The content of this is used here.
背景技術  Background art
[0002] 気相成長装置として、気相成長中における基板面の温度や反り、成長中の薄膜の 膜厚や組成等を光学的機器によって観察、測定するため、チャンバ一の天板部に耐 腐食生 ·耐熱性を有する石英ガラスを嵌め込んだ観察窓(ビューポート、 view port)を 設けたものが知られている。このビューポートの内面に反応生成物等が付着して曇る ことを防止するためにパージガスを流通させたり、基板温度測定時の熱的影響を回 避するためにビューポートの一部を熱反射率の低い材料で遮蔽したりしている(例え ば、特許文献 1参照。)。  [0002] As a vapor phase growth apparatus, the temperature and warpage of the substrate surface during vapor phase growth, and the thickness and composition of the thin film being grown are observed and measured by optical equipment. It is known to have an observation window (view port) fitted with quartz glass with corrosion resistance and heat resistance. In order to prevent reaction products from adhering to the inner surface of the viewport and clouding it, a purge gas is circulated, and a part of the viewport is heat-reflected in order to avoid thermal effects during substrate temperature measurement. (E.g., see Patent Document 1).
[0003] また、光エネルギーを利用する光励起型の気相成長装置として、光導入窓を有す る外部管の内部に、光導入穴 (通孔)を有する内部管を収納した二重管構造の反応 管を有する装置が提案されている。この装置においては、内部管の内側に原料ガス を流し、外部管と内部管との間にキャリアガス (パージガス)を流し、光導入穴の近傍で 原料ガスとキャリアガスとの流速を略等しくする。これにより、光導入穴を通して内部 管内から原料ガスが流出することを防止するとともに、光導入窓の内面に反応生成 物が付着して曇りを生じることを防止する (例えば、特許文献 2参照。)。  [0003] Further, as a photo-excited vapor phase growth apparatus using light energy, a double tube structure in which an inner tube having a light introduction hole (through hole) is housed inside an outer tube having a light introduction window An apparatus having the following reaction tubes has been proposed. In this apparatus, a raw material gas is flowed inside the inner tube, a carrier gas (purge gas) is flowed between the outer tube and the inner tube, and the flow rates of the raw material gas and the carrier gas are made substantially equal in the vicinity of the light introduction hole. . This prevents the raw material gas from flowing out of the inner tube through the light introduction hole and prevents the reaction product from adhering to the inner surface of the light introduction window to cause fogging (see, for example, Patent Document 2). .
[0004] 特許文献 1に記載された構成と特許文献 2に記載された構成とを組み合わせれば、 フローチャンネル内面に付着する反応生成物による悪影響を通孔を設けることによつ て解決できるとともに、通孔の外部側にキャリアガスを原料ガスの流速に対して略等 速で流して原料ガスの流出を防止することによってビューポート内面に反応生成物が 付着することを防止できる。 [0004] When the configuration described in Patent Document 1 and the configuration described in Patent Document 2 are combined, an adverse effect of reaction products adhering to the inner surface of the flow channel is provided. In addition, it is possible to prevent the reaction product from adhering to the inner surface of the viewport by flowing the carrier gas to the outside of the through hole at a substantially constant speed relative to the flow rate of the raw material gas to prevent the raw material gas from flowing out. .
[0005] しかし、特許文献 2に記載されているような二重管構造では、キャリアガス (パージガ ス)が流れる流路の断面積が大きくなり、大量のキャリアガスを流す必要があり、キヤリ ァガス自体のコストが増加するだけでなぐ排気ポンプも大容量のものが必要になる。 さらに、基板をサセプタ(susc印 tor)により保持して回転させるととともに、サセプタ裏 面に設けたヒーターによって基板を加熱する横型の気相成長装置では、反応管ゃヒ ータ部分、サセプタ支持部分等の構造が複雑になり、装置コストが大幅に上昇してし まう。 [0005] However, in the double pipe structure as described in Patent Document 2, the cross-sectional area of the flow path through which the carrier gas (purge gas) flows becomes large, and it is necessary to flow a large amount of carrier gas. Exhaust pumps that have a large capacity are also required, as well as their own cost increases. Furthermore, in a horizontal type vapor phase growth apparatus in which the substrate is heated by a heater provided on the back surface of the susceptor while the substrate is held and rotated by a susceptor (susc mark tor), the reaction tube has a heater portion and a susceptor support portion. Such a structure becomes complicated, and the cost of the equipment increases significantly.
[0006] また、薄膜を常圧に近い圧力で成膜する場合、チャンバ一内のガスの気流 (例えば 、熱対流)で、光線、例えばレーザー光が揺らぎ、基板面を正確に観測できなくなるこ とがあった。例えば、成膜中の基板面の高さや回転による揺れは、適当な角度で基 板面に照射したレーザー光の反射位置によって測定する力、気流によってレーザー 光が揺らぐとノイズが大きくなり、測定が不可能になることがあった。  [0006] In addition, when a thin film is formed at a pressure close to normal pressure, a gas stream (for example, thermal convection) in the chamber causes a light beam, for example, a laser beam, to fluctuate so that the substrate surface cannot be observed accurately. There was. For example, fluctuations due to the height and rotation of the substrate surface during film formation can be measured by the force measured by the reflection position of the laser beam irradiated on the substrate surface at an appropriate angle, and the noise increases when the laser beam fluctuates due to airflow. Sometimes it became impossible.
[0007] また、化合物半導体薄膜の製造装置では、常圧近くの圧力で、 800〜; 1000°Cを 超える高温で原料を反応させて成膜を行うことがある。このような高温下では、膜同士 又は基板と薄膜との熱膨張係数の差により、基板全体が反ってしまう場合がある。こ の基板の反りの度合いをレーザー光を用いて測定しょうとしても、水冷されたチャン バー外壁付近とチャンバ一内との温度差でチャンバ一内に気流が発生しやすぐレ 一ザ一光の揺らぎが大きくなつて測定が困難な状況となっていた。  [0007] In addition, in a compound semiconductor thin film manufacturing apparatus, a film may be formed by reacting raw materials at a high temperature exceeding 800 to 1000 ° C at a pressure close to normal pressure. Under such a high temperature, the entire substrate may be warped due to the difference in thermal expansion coefficient between the films or between the substrate and the thin film. Even when trying to measure the degree of warpage of this substrate using laser light, an air flow is generated in the chamber 1 due to the temperature difference between the water-cooled chamber outer wall and the inside of the chamber. Measurement was difficult due to the large fluctuation.
[0008] このような気流による光の揺らぎを少なくするため、チャンバ一内の圧力を低くする ことも考えられる力 成膜条件が変わってしまうという大きな問題がある。また、レーザ 一光の通る光路をできるだけ細く形成することで揺らぎを抑制することも可能であるが 、設置時の調整が困難で、実用性に問題がある。  [0008] In order to reduce the fluctuation of light caused by such an air flow, there is a big problem that the film forming conditions change, which can be considered to reduce the pressure in the chamber. In addition, it is possible to suppress fluctuations by forming an optical path through which one laser beam passes as much as possible. However, adjustment during installation is difficult, and there is a problem in practicality.
特許文献 1 :特開 2001— 68415号公報  Patent Document 1: JP 2001-68415 A
特許文献 2:特開昭 62— 188218号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 62-188218
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0009] そこで本発明は、ビューポート内面への反応生成物の付着を効率よく防止すること ができ、チャンバ一内の気流の影響を抑制してレーザー光等による光学的な観察、 測定を確実に行うことができる気相成長装置を提供することを目的として!/、る。 [0009] Therefore, the present invention can efficiently prevent the reaction product from adhering to the inner surface of the viewport, and suppresses the influence of the airflow in the chamber, thereby ensuring optical observation and measurement using a laser beam or the like. The purpose is to provide a vapor phase growth apparatus that can be performed!
課題を解決するための手段  Means for solving the problem
[0010] 上記目的を達成するため、 [0010] To achieve the above objective,
本発明の第 1の態様の気相成長装置は、チャンバ一と、該チャンバ一内に配置さ れたフローチャンネルと、該フローチャンネル内に設置された基板と、該基板を加熱 する加熱手段と、前記フローチャンネル内に反応ガスを供給する反応ガス供給手段 と、前記チャンバ一に設けられたビューポートとを備え、前記フローチャンネルの基板 対向壁に、前記ビューポートを介して基板面を光学的に観測する際の光路となる通 孔を設け、該通孔を設けたフローチャンネル壁外面とビューポートのチャンバ一内側 部との間にパージガス流路を設けるとともに、該パージガス流路内に、前記フローチ ヤンネル内を流れる反応ガスの流れ方向と同一方向で、実質的に同一速度、同一圧 力で、かつ、層流状態でパージガスを流すためのパージガス導入手段を設けたこと を特徴としている。  A vapor phase growth apparatus according to a first aspect of the present invention includes a chamber, a flow channel disposed in the chamber, a substrate installed in the flow channel, and a heating unit that heats the substrate. A reaction gas supply means for supplying a reaction gas into the flow channel; and a viewport provided in the chamber. The substrate surface of the flow channel is optically disposed on the opposite wall of the flow channel via the viewport. And a purge gas flow path is provided between the outer surface of the flow channel wall provided with the through hole and the inside of the chamber of the viewport. Purge gas introduction means for flowing a purge gas in a laminar flow state in the same direction as the flow direction of the reaction gas flowing in the flow channel, at substantially the same speed and pressure. It is characterized by having established.
[0011] さらに、本発明の第 1の態様の気相成長装置においては、前記ビューポートをフロ 一チャンネル壁外面近傍に配置してレ、ること、又は前記ビューポートが前記反応ガス の流れ方向下流側に位置していることが好ましい。  [0011] Further, in the vapor phase growth apparatus according to the first aspect of the present invention, the viewport is arranged near the outer surface of the flow channel wall, or the viewport is in the flow direction of the reaction gas. It is preferable that it is located downstream.
[0012] また、前記パージガス流路は、前記フローチャンネル壁外面に立設した一対の側 板と、両側板の上流側を閉塞する端板と、該端板及び両側板の反フローチャンネル 側を覆う覆い板とで形成され、前記端板にパージガス導入部を設けるとともに、両側 板の下流側を開口させて排気口を形成することが好まし!/、。  [0012] The purge gas flow path includes a pair of side plates erected on the outer surface of the flow channel wall, an end plate closing the upstream side of both side plates, and the opposite flow channel side of the end plates and both side plates. It is preferable that the end plate is provided with a purge gas introduction part, and the exhaust port is formed by opening the downstream side of both side plates! /.
[0013] さらに、前記覆い板が前記ビューポートを介して基板面を光学的に観測する際の光 路となる通孔を有していること、前記覆い板がピューポートのチャンバ一内部側先端 部外周を覆う環状突起を有していること、又はビューポートのチャンバ一内部側先端 部が貫通する貫通孔を有してレ、ることが好ましレ、。  [0013] Further, the cover plate has a through-hole serving as an optical path when optically observing the substrate surface through the viewport, and the cover plate is a front end on the inner side of the Puport chamber. It is preferable to have an annular protrusion covering the outer periphery of the part, or to have a through-hole through which the front end of the viewport inside the chamber passes.
[0014] 本発明の第 2の態様の気相成長装置は、チャンバ一と、該チャンバ一内に配置さ れたフローチャンネルと、該フローチャンネル内に設置された基板と、該基板を加熱 する加熱手段と、前記フローチャンネル内に反応ガスを供給する反応ガス供給手段 と、前記チャンバ一に設けられたビューポートとを備え、前記ビューポートのチャンバ 一内部側をフローチャンネルに向けて延出し、該延出部の先端面をフローチャンネ ルの外面近傍に配置したことを特徴として!/、る。 [0014] A vapor phase growth apparatus according to a second aspect of the present invention includes a chamber and a chamber. A flow channel, a substrate installed in the flow channel, a heating unit for heating the substrate, a reaction gas supply unit for supplying a reaction gas into the flow channel, and a view provided in the chamber. The viewport is characterized in that the inside of the chamber of the viewport extends toward the flow channel, and the distal end surface of the extension is arranged near the outer surface of the flow channel.
[0015] 本発明の第 2の態様の気相成長装置においては、前記ビューポートの延出部が内 部に中空部を有する中空構造であり、前記中空部が真空状態となっていること、前記 ビューポートの先端面が前記基板の表面に対して傾斜していること、前記ビューポー トが前記チャンバ一に対して位置調節可能に設けられていること、前記ビューポート が前記反応ガスの流れ方向下流側に位置していることが好ましい。 [0015] In the vapor phase growth apparatus according to the second aspect of the present invention, the extension part of the viewport has a hollow structure having a hollow part inside, and the hollow part is in a vacuum state, The front end surface of the viewport is inclined with respect to the surface of the substrate, the viewport is provided so as to be adjustable with respect to the chamber, and the viewport has a flow direction of the reaction gas. It is preferable that it is located downstream.
発明の効果  The invention's effect
[0016] 本発明の第 1の態様に係る気相成長装置によれば、フローチャンネルに通孔を設 けることによってフローチャンネル内面に反応生成物が付着しても、基板面の光学的 観測を確実に行うことができる。また、特定の条件でパージガスを流すことにより、少 ないパージガス量で反応ガスや反応生成物が通孔からビューポート側へ流出するこ とを防止でき、ビューポート内面に反応生成物等が付着して曇ることを防止できるとと もに、パージガスがフローチャンネル内に流入して成膜中の薄膜に悪影響を及ぼす ことを防止できる。  [0016] According to the vapor phase growth apparatus according to the first aspect of the present invention, optical observation of the substrate surface can be performed even if a reaction product adheres to the inner surface of the flow channel by providing a through hole in the flow channel. It can be done reliably. In addition, by flowing the purge gas under specific conditions, it is possible to prevent the reaction gas and reaction product from flowing out from the through hole to the viewport side with a small amount of purge gas, and the reaction product adheres to the inner surface of the viewport. As a result, it is possible to prevent the purge gas from flowing into the flow channel and adversely affecting the thin film being formed.
[0017] また、基板対向壁にのみパージガス流路を設けて!/、るので、パージガス量を少なく でき、パージガス自体のコスト低減を図れる。また、排気ポンプの小型化によって装 置コストも低減できる。さらに、基板を保持するサセプタゃ基板を加熱するためのヒー ター等の配置を従来の一般的な横型気相成長装置と同様にして行うことができ、装 置コストの上昇を抑えることができる。  [0017] Further, since the purge gas flow path is provided only on the substrate facing wall, the amount of purge gas can be reduced, and the cost of the purge gas itself can be reduced. The equipment cost can also be reduced by downsizing the exhaust pump. Furthermore, a heater or the like for heating the susceptor holding the substrate can be arranged in the same manner as a conventional general horizontal vapor phase growth apparatus, and an increase in apparatus cost can be suppressed.
[0018] 本発明の第 2の態様に係る気相成長装置によれば、ビューポートのチャンバ一内 部側をフローチャンネルの外面近傍まで延出しているので、チャンバ一内の気流が レーザー光に悪影響を与えることがなぐ製膜中の基板の状態を光学的に確実かつ 正確に観察、測定することができる。  [0018] According to the vapor phase growth apparatus according to the second aspect of the present invention, since the inner side of the chamber of the viewport extends to the vicinity of the outer surface of the flow channel, the air flow in the chamber 1 is converted into laser light. It is possible to optically reliably and accurately observe and measure the state of the substrate during film formation that does not adversely affect the film.
図面の簡単な説明 [0019] [図 1]本発明の第 1の態様に係る気相成長装置の第 1形態例を示す要部の断面図で ある。 Brief Description of Drawings FIG. 1 is a cross-sectional view of a main part showing a first embodiment of a vapor phase growth apparatus according to a first embodiment of the present invention.
[図 2]図 1の II II断面図である。  FIG. 2 is a sectional view taken along line II-II in FIG.
[図 3]図 1の III III断面図である。  FIG. 3 is a sectional view taken along line III-III in FIG.
[図 4]本発明の第 1の態様に係る気相成長装置の第 2形態例を示す要部の断面図で ある。  FIG. 4 is a cross-sectional view of a relevant part showing a second embodiment of the vapor phase growth apparatus according to the first embodiment of the present invention.
[図 5]本発明の第 1の態様に係る気相成長装置の第 3形態例を示す要部の断面図で ある。  FIG. 5 is a cross-sectional view of a relevant part showing a third embodiment of the vapor phase growth apparatus according to the first embodiment of the present invention.
[図 6]本発明の第 1の態様に係る気相成長装置の第 4形態例を示す要部の断面図で ある。  FIG. 6 is a cross-sectional view of a main part showing a fourth embodiment of the vapor phase growth apparatus according to the first embodiment of the present invention.
[図 7]本発明の第 1の態様に係る気相成長装置の第 5形態例を示す要部の断面図で ある。  FIG. 7 is a cross-sectional view of a relevant part showing a fifth embodiment of the vapor phase growth apparatus according to the first embodiment of the present invention.
[図 8]本発明の第 2の態様に係る気相成長装置の第 1形態例を示す要部の断面図で ある。  FIG. 8 is a cross-sectional view of a relevant part showing a first embodiment of a vapor phase growth apparatus according to a second aspect of the present invention.
[図 9]本発明の第 2の態様に係る気相成長装置の第 2形態例を示す要部の断面図で ある。  FIG. 9 is a cross-sectional view of a main part showing a second example of the vapor phase growth apparatus according to the second aspect of the present invention.
[図 10]本発明の第 2の態様に係る気相成長装置の第 3形態例を示す要部の断面図 である。  FIG. 10 is a cross-sectional view of a relevant part showing a third embodiment of the vapor phase growth apparatus according to the second aspect of the present invention.
[図 11]本発明の第 2の態様に係る気相成長装置の第 4形態例を示す要部の断面図 である。  FIG. 11 is a cross-sectional view of a relevant part showing a fourth example of the vapor phase growth apparatus according to the second aspect of the present invention.
[図 12]本発明の第 2の態様に係る気相成長装置の第 5形態例を示す要部の断面図 である。  FIG. 12 is a cross-sectional view of a relevant part showing a fifth embodiment of the vapor phase growth apparatus according to the second aspect of the present invention.
[図 13]回転している基板の外周側上面の高さを測定した結果を示す図である。 符号の説明  FIG. 13 is a diagram showing the result of measuring the height of the upper surface on the outer periphery side of a rotating substrate. Explanation of symbols
[0020] 11···基板、 12···サセプタ、 13···フローチャンネノレ、 13a…上咅壁、 13b…通孑し、 1 4…チャンバ一、 14a…天板部、 14b…ビューポート用開口、 14c…凹状部、 15…排 気部、 16…リフレタター、 17…ヒーター、 18…支持軸、 20…ビューポート、 21…窓部 材、 22···シーノレ材、 23--- , 24···ノ ージガス流路、 24a- ··ィ則板、 24b- ··端 板、 24c…覆い板、 24d…ノ ージガス導入き ^ 24e…お気口、 24f…通?し、 24g…貫 通孔、 24h…環状突起、 25···パージガス導入手段、 26···排気ポンプ、 31…ビュー ポートき 才、 31a…月同き ^ 31b…フランジ、 31c…先端面、 32···窓き 才、 33···中空 部材、 33a…パイプ状部材、 33b…円盤状部材、 33c…先端面、 34···排気管、 41··· ビューポート部材、 41a…筒状部、 41b…窓部材、 41c…先端部材、 42···気密性蛇 腹部材、 42a…蛇腹部(bellows part)、 42b…取付フランジ、 42c…シール材、 43··· 蓋部材、 43a…入射光用通孔、 43b…反射光用通孔 [0020] 11 ··· substrate, 12 ··· susceptor, 13 ··· flow channel, 13a ... upper wall, 13b ... through, 1 4 ... chamber one, 14a ... top plate, 14b ... view Port opening, 14c ... concave part, 15 ... exhaust part, 16 ... reflector, 17 ... heater, 18 ... support shaft, 20 ... viewport, 21 ... window material, 22 ... sinore material, 23 --- 24 gas nozzle, 24a -... plate, 24b- end Plate, 24c ... Cover plate, 24d ... Noge gas introduction ^ 24e ... Mouth, 24f ... Communication? 24g ... through hole, 24h ... annular protrusion, 25 ... purge gas introduction means, 26 ... exhaust pump, 31 ... view port, 31a ... same as the moon ^ 31b ... flange, 31c ... tip, 32 ················································································································································· 41b ... Window member, 41c ... Tip member, 42 ... Airtight bellows member, 42a ... Bellows part, 42b ... Mounting flange, 42c ... Sealing material, 43 ... Lid member, 43a ... Through hole for incident light, 43b ... Through hole for reflected light
111···基板、 112···サセプタ、 113···フローチャンネノレ、 113a…通孑し、 114···チヤ ンノ一、 114a…天板部、 114b…ビューポート用開口、 115…排気部、 116…リフレ クタ一、 117…ヒーター、 118…支持軸、 120…ビューポート、 121…ピューポート部 材、 121a…月同咅 ^ 121b…フランジ、 121c…先端面、 122···シーノレ材、 123···止着 部材、 131···窓部材、 132···中空部材、 132a…パイプ状部材、 132b…円盤状部材 、 132c…先端面、 132d…接続部、 133···真空ポンプ、 134···排気管、 135···リング 部材、 135a…接続部、 141···ビューポート部材、 141a…筒状部、 141b…窓部材、 141c…先端部材、 142···気密性蛇腹部材、 142a…蛇腹部、 142b…取付フランジ 、 142c…シール材、 143···蓋部材、 143a…入射光用通孔、 143b…反射光用通孔 、 144···ノ ージガス^ E 、 144&···ノ ージガス 入 ^、 144b-—お^ ¼口、 144じ 通 孔、 144d…環状突起  111 ... Substrate, 112 ... Susceptor, 113 ... Flow channel nore, 113a ... Pass through, 114 ··· No. 114a ... Top plate, 114b ... Opening for viewport, 115 ... Exhaust , 116 ... Reflector, 117 ... Heater, 118 ... Support shaft, 120 ... Viewport, 121 ... Pewport member, 121a ... Moon joint ^ 121b ... Flange, 121c ... Tip face, 122 ... Sinole material , 123 ··· Fastening member, 131 ··· Window member, 132 ··· Hollow member, 132a ... Pipe-like member, 132b ... Disc-like member, 132c ... Tip surface, 132d ... Connection part, 133 ··· Vacuum Pump, 134 ... Exhaust pipe, 135 ... Ring member, 135a ... Connection part, 141 ... Viewport member, 141a ... Cylindrical part, 141b ... Window member, 141c ... Tip member, 142 ... Airtight 142a ... bellows part, 142b ... mounting flange, 142c ... sealing material, 143 ... lid member, 143a ... incident light through hole, 143b ... reflected light through hole, 144 ... Jigasu ^ E, 144 & ··· Roh Jigasu input ^, 144b-- your ^ ¼ ports, 144 Ji hole, 144d ... annular projection
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 図 1乃至図 3は、本発明の第 1の態様に係る気相成長装置の第 1形態例を示すもの で、図 1は要部の断面図、図 2は図 1の II II断面図、図 3は図 1の III III断面図であ 1 to 3 show a first embodiment of the vapor phase growth apparatus according to the first embodiment of the present invention. FIG. 1 is a cross-sectional view of the main part, and FIG. 2 is II II of FIG. Cross-sectional view, Fig. 3 is a cross-sectional view of III-III in Fig. 1.
[0022] 複数枚の基板 11は、サセプタ 12の上面に同心円上に保持され、フローチャンネル [0022] The plurality of substrates 11 are concentrically held on the upper surface of the susceptor 12, and are flow channels.
13の所定位置に配置される。この基板 11の基板面はサセプタ 12の上面に対して略 平行である。フローチャンネル 13等は、密閉状態のチャンバ一 14内に収納されてい る。該チャンバ一 14の一端に設けられた反応ガス導入口を通して、反応ガス供給手 段(図示せず)からフローチャンネル 13内に反応ガス Aが基板面と平行な方向に層 流状態で導入され、基板面を通過したガス (排ガス B)は、フローチャンネル 13に連設 した排気部 15から排出される。なお、反応ガス供給手段としては、特に限定されず、 公知のものを使用することができる。 Arranged at 13 predetermined positions. The substrate surface of the substrate 11 is substantially parallel to the upper surface of the susceptor 12. The flow channel 13 and the like are housed in a sealed chamber 14. Through a reaction gas inlet provided at one end of the chamber 14, a reaction gas A is introduced into the flow channel 13 in a laminar flow state in a direction parallel to the substrate surface from a reaction gas supply means (not shown). Gas (exhaust gas B) that has passed through the substrate surface is connected to the flow channel 13. Exhausted from the exhaust section 15. The reaction gas supply means is not particularly limited, and a known one can be used.
[0023] 前記サセプタ 12の下方には、箱状のリフレタター 16に収容された、加熱手段である ヒーター 17が設けられており、このヒーター 17によりサセプタ 12を介して基板 11を所 定温度に加熱する。また、サセプタ 12は、支持軸 18によって支持されており、この支 持軸 18でサセプタ 12を回転させることにより、基板 11を回転させて基板上に形成す る薄膜の膜厚を平均化させるようにしてレ、る。  [0023] Below the susceptor 12, there is provided a heater 17, which is a heating means, housed in a box-shaped reflector 16. The substrate 17 is heated to a predetermined temperature via the susceptor 12 by the heater 17. To do. The susceptor 12 is supported by a support shaft 18. By rotating the susceptor 12 with the support shaft 18, the substrate 11 is rotated to average the thickness of the thin film formed on the substrate. And then,
[0024] 前記チャンバ一 14の天板部 14aにおけるサセプタ 12の中心より反応ガス流れ方向 下流側にはビューポート用開口 14bが設けられており、このビューポート用開口 14b には、ビューポート 20を形成する窓部材 21が嵌め込まれている。この窓部材 21は、 円盤状の透光性材料、例えば、耐腐食性'耐熱性を有する石英ガラスからなるもので 、天板部 14aの上面に止着部材 23によって着脱可能に固定されている。また、窓部 材 21の外周部下面はシール材 22によって天板部 14aの上面に気密にシールされて いる。  [0024] A viewport opening 14b is provided on the downstream side in the reaction gas flow direction from the center of the susceptor 12 in the top plate portion 14a of the chamber 14, and the viewport 20 is provided in the viewport opening 14b. The window member 21 to be formed is fitted. The window member 21 is made of a disc-like light-transmitting material, for example, quartz glass having corrosion resistance and heat resistance, and is detachably fixed to the upper surface of the top plate portion 14a by a fastening member 23. . The lower surface of the outer peripheral portion of the window member 21 is hermetically sealed to the upper surface of the top plate portion 14a by the sealing material 22.
[0025] また、前記フローチャンネル 13の基板対向壁(上部壁) 13aには、ビューポート 20 の中心部に対応した位置に通孔 13bが設けられており、上部壁 13aの外面とピュー ポート 20のチャンバ一 14内部側との間には、通孔 13bを囲むようにしてパージガス 流路 24が設けられている。  Further, a through hole 13b is provided in a position corresponding to the center of the viewport 20 on the substrate facing wall (upper wall) 13a of the flow channel 13, and the outer surface of the upper wall 13a and the pure port 20 are provided. A purge gas flow path 24 is provided between the chamber 14 and the inside of the chamber 14 so as to surround the through hole 13b.
[0026] このパージガス流路 24は、図 1乃至図 3に図示されているように、前記フローチャン ネノレ 13の上部壁 13aの上面に、フローチャンネル 13内の反応ガスの流れ方向に対 して平行な方向に所定間隔で立設した一対の側板 24a, 24aと、両側板 24a, 24aの 上流側を閉塞するパージガス流れ方向下流側が拡がった略 V字状の端板 24bと、該 端板 24b及び両側板 24a, 24aの上部、すなわち反フローチャンネル側を覆う覆い 板 24cとで形成される、高さ方向が数 mm乃至 10mm程度の偏平な形状を有してお り、前記端板 24bの幅方向中心にはパージガス導入部 24dが設けられるとともに、両 側板 24a, 24aの下流側が開口して排気口 24eが形成され、覆い板 24cには、前記 通孔 13bに対応した通孔 24fが設けられている。  As shown in FIGS. 1 to 3, the purge gas flow path 24 is formed on the upper surface of the upper wall 13a of the flow channel 13 with respect to the flow direction of the reaction gas in the flow channel 13. A pair of side plates 24a, 24a erected at a predetermined interval in a parallel direction, a substantially V-shaped end plate 24b extending downstream in the purge gas flow direction closing the upstream side of both side plates 24a, 24a, and the end plate 24b And the upper side of both side plates 24a, 24a, that is, the cover plate 24c covering the side opposite to the flow channel, has a flat shape with a height direction of several mm to 10 mm, and the end plate 24b A purge gas introduction part 24d is provided at the center in the width direction, an exhaust port 24e is formed by opening the downstream side of both side plates 24a, 24a, and a through hole 24f corresponding to the through hole 13b is provided in the cover plate 24c. It has been.
[0027] パージガス流路 24を流れるパージガス Pは、流量調節機能及び圧力調整機能を備 えたパージガス導入手段 25からパージガス導入部 24dを通って所定圧力、所定流 量でパージガス流路 24内に導入され、排気口 24eから流出し、フローチャンネル 13 の排気部 15から排出される排ガス Bと合流して、あるいはそれぞれ単独で排気ボン プ 26に吸引され、除害設備等に送られる。 [0027] The purge gas P flowing through the purge gas passage 24 has a flow rate adjustment function and a pressure adjustment function. The purge gas introduction means 25 is introduced into the purge gas flow path 24 at a predetermined pressure and flow rate through the purge gas introduction section 24d, flows out from the exhaust port 24e, and exhaust gas B discharged from the exhaust section 15 of the flow channel 13 They are merged or individually sucked into the exhaust pump 26 and sent to an abatement facility.
[0028] ここで、前記パージガス流路 24を流れるパージガス Pは、フローチャンネル 13内を 基板 11の上面と平行な方向に層流状態で流れる反応ガスに対して、流れ方向が同 一方向、実質的に同一速度、同一圧力で、かつ、層流状態で流れるように設定され る。また、前記パージガス流路 24の流路断面形状ゃ流路断面積は、これらの条件を 満たすことカでさるように設定される。  Here, the purge gas P flowing through the purge gas flow path 24 is substantially the same in flow direction as the reaction gas flowing in a laminar flow state in the flow channel 13 in a direction parallel to the upper surface of the substrate 11. Are set to flow at the same speed, the same pressure, and laminar flow. Further, the flow path cross-sectional shape of the purge gas flow path 24 is set so as to be sufficient to satisfy these conditions.
[0029] なお、パージガス流路 24内を流れるパージガスの流速及び圧力は、フローチャン ネル 13内を流れる反応ガスの流速及び圧力に対して同一であることが望ましいが、 両ガスの条件、フローチャンネル 13及びパージガス流路 24の形状、フローチャンネ ノレ 13に設けた通孔 13bの形状や位置によってパージガスの流速や圧力には適正な 範囲が存在する。例えば、パージガスの流速や圧力が反応ガスの流速や圧力より低 く、フローチャンネル 13内の反応ガスが通孔 13bを通ってパージガス流路 24に流出 しても、パージガスに同伴されて速やかに排出され、パージガス流路 24の覆い板 24 cやビューポート 20にまで至らな!/、状態ならば、基板面の光学的観測及び成膜に影 響を与えることはない。  [0029] The flow rate and pressure of the purge gas flowing in the purge gas flow path 24 are preferably the same as the flow rate and pressure of the reaction gas flowing in the flow channel 13, but the conditions of both gases, the flow channel There are appropriate ranges for the flow rate and pressure of the purge gas depending on the shape of the purge gas flow path 13 and the shape of the purge gas passage 24 and the shape and position of the through-hole 13b provided in the flow channel 13. For example, even if the flow rate and pressure of the purge gas are lower than the flow rate and pressure of the reaction gas, and the reaction gas in the flow channel 13 flows out to the purge gas flow path 24 through the through hole 13b, it is quickly discharged with the purge gas. As long as the cover plate 24c and the viewport 20 of the purge gas flow path 24 are not reached! /, The optical observation of the substrate surface and the film formation are not affected.
[0030] 逆に、パージガスの流速や圧力が反応ガスの流速や圧力より高くてパージガスがフ ローチャンネル 13内に流入する条件でも、パージガスが基板面に達することがなぐ また、パージガスが反応ガスの流れを大きく乱すことがなければ、薄膜の膜厚分布や 膜質に影響を与えることはない。さらに、通孔 13bをサセプタ 12の中心より下流側に 設けることにより、フローチャンネル 13からの反応ガスの流出や、フローチャンネル 1 3内へのパージガスの流入による影響をより少なくすることができる。  [0030] Conversely, even if the purge gas flow rate or pressure is higher than the reaction gas flow rate or pressure and the purge gas flows into the flow channel 13, the purge gas does not reach the substrate surface. If the flow is not significantly disturbed, the film thickness distribution and film quality will not be affected. Furthermore, by providing the through hole 13b on the downstream side of the center of the susceptor 12, the influence of the outflow of the reaction gas from the flow channel 13 and the inflow of the purge gas into the flow channel 13 can be reduced.
[0031] また、ビューポート 20をフローチャンネル 13に近付けることによって両者間の空間 を小さくできるので、熱対流等の気流の発生を抑えることができ、測定光の揺らぎを 防止して正確な観察、測定を行うことができる。さらに、パージガス流路 24内のパー ジガスの流れを層流状態とすることにより、乱流状態のときに比べて気流による光の 揺らぎを抑えることができ、より精密な測定を行うことができる。 [0031] In addition, since the space between the two can be reduced by bringing the viewport 20 closer to the flow channel 13, it is possible to suppress the generation of airflow such as thermal convection, and to prevent the measurement light from fluctuating accurately. Measurements can be made. Furthermore, by making the purge gas flow in the purge gas passage 24 into a laminar flow state, the light generated by the airflow is less than that in the turbulent state. Fluctuation can be suppressed and more precise measurement can be performed.
[0032] 図 4は、本発明の第 1の態様に係る気相成長装置の第 2形態例を示す要部の断面 図である。なお、以下の説明において、前紀第 1形態例に示した各構成要素と同一 の構成要素には、それぞれ同一符号を付して詳細な説明は省略する。 FIG. 4 is a cross-sectional view of a main part showing a second embodiment of the vapor phase growth apparatus according to the first aspect of the present invention. In the following description, the same components as those shown in the first embodiment of the previous year are denoted by the same reference numerals, and detailed description thereof is omitted.
[0033] 本形態例は、フローチャンネル 13の周囲の機器の関係で、チャンバ一 14の天板部 14aをある程度高くしなければならない場合の一対応例を示している。すなわち、天 板部 14aにおけるサセプタ 12に対する所定位置に凹状部 14cを形成し、この凹状部 14cの底部にビューポート用開口 14bを設けてピューポート部材 21を取り付けること により、ビューポート 20を天板部 14aより下方に下げてフローチャンネル 13の外面近 傍に位置させている。 This embodiment shows a corresponding example in the case where the top plate portion 14a of the chamber 14 has to be raised to some extent due to the surrounding devices of the flow channel 13. That is, a concave portion 14c is formed at a predetermined position with respect to the susceptor 12 in the top plate portion 14a, and a viewport opening 14b is provided at the bottom of the concave portion 14c to attach the pew port member 21, whereby the view port 20 is It is lowered below the section 14a and is positioned near the outer surface of the flow channel 13.
[0034] このようにして、ビューポート 20をフローチャンネル 13の外面近傍に位置させること により、パージガス流路 24を、前記第 1形態例と同様に高さ方向を偏平に形成して流 路断面積を小さくできるとともに、チャンバ一 14内のガスの気流に影響されずに基板 11の状態を外部から光学的に観測することができる。  [0034] By thus positioning the viewport 20 in the vicinity of the outer surface of the flow channel 13, the purge gas flow path 24 is formed flat in the height direction in the same manner as in the first embodiment, and the flow path is cut off. The area can be reduced, and the state of the substrate 11 can be optically observed from the outside without being affected by the gas flow in the chamber 14.
[0035] なお、第 1、第 2形態例では、パージガス流路 24の反フローチャンネル側に覆い板 24cを設けて!/、るが、この覆!/、板 24cを省略してチャンバ一 14の天板部 14aを覆!/ヽ 板として兼用することも可能である。  In the first and second embodiments, the cover plate 24c is provided on the side opposite to the flow channel of the purge gas passage 24! /, But this cover / plate 24c is omitted. It is also possible to use the top plate part 14a as a cover / board.
[0036] 図 5は、本発明の第 1の態様に係る気相成長装置の第 3形態例を示す要部の断面 図である。本形態例は、前記第 2形態例と同様に、フローチャンネル 13とチャンバ一 14の天板部 14aとが離れている場合の対応例を示している。本形態例では、チャン バー 14の天板部 14aは平板状のままとし、ビューポート用開口 14bに、チャンバ一 1 4内に突出する円柱状の胴部 31aと、天板部 14aに固定される上端部のフランジ 31b とを有する縦断面がハット状 (T字状)の中実の透光性材料からなるビューポート部材 31を取り付けている。チャンバ一 14内に突出した胴部 31aの先端部は、パージガス 流路 24の覆い板 24cに形成した貫通孔 24gを貫通し、先端面 31cはフローチャンネ ル 13の上部壁 13aの近傍まで達している。  FIG. 5 is a cross-sectional view of a main part showing a third example of the vapor phase growth apparatus according to the first aspect of the present invention. This embodiment shows a corresponding example when the flow channel 13 and the top plate portion 14a of the chamber 14 are separated from each other as in the second embodiment. In this embodiment, the top 14a of the chamber 14 remains flat, and is fixed to the viewport opening 14b to the cylindrical body 31a protruding into the chamber 14 and the top 14a. A viewport member 31 made of a solid translucent material having a hat-shaped (T-shaped) longitudinal cross section having a flange 31b at the upper end of the head is attached. The front end of the body 31a protruding into the chamber 14 passes through a through hole 24g formed in the cover plate 24c of the purge gas flow path 24, and the front end surface 31c reaches the vicinity of the upper wall 13a of the flow channel 13. Yes.
[0037] 図 6は、本発明の第 1の態様に係る気相成長装置の第 4形態例を示す要部の断面 図である。本形態例は、前記第 3形態例における中実のビューポート部材 31に代え て、ビューポート用開口 14bに装着される円盤状の窓部材 32と、この窓部材 32の下 方に連設される中空部材 33とを設けている。中空部材 33は、石英ガラス等の透光性 部材からなるパイプ状部材 33aの両端開口を円盤状部材 33bによってそれぞれ気密 に閉塞するとともに、中空部材 33の中空部を真空排気するための排気管 34を設け たものであって、中空部材 33の内部は、気流が光学的観測に影響を与えない程度 に真空排気されて真空状態に保持されている。なお、中空部材 33の内部を所定の 真空度まで排気した後、排気管 34を封じきるようにしてもよい。 FIG. 6 is a cross-sectional view of a main part showing a fourth example of the vapor phase growth apparatus according to the first aspect of the present invention. This embodiment replaces the solid viewport member 31 in the third embodiment. In addition, a disc-shaped window member 32 mounted in the viewport opening 14b and a hollow member 33 provided below the window member 32 are provided. The hollow member 33 airtightly closes both ends of the pipe-shaped member 33a made of a translucent member such as quartz glass by the disk-shaped member 33b, and exhaust pipe 34 for evacuating the hollow portion of the hollow member 33. The inside of the hollow member 33 is evacuated and kept in a vacuum state to such an extent that the air current does not affect the optical observation. The exhaust pipe 34 may be sealed after the inside of the hollow member 33 is exhausted to a predetermined degree of vacuum.
[0038] 本形態例においても、チャンバ一 14内に突出した中空部材 33の先端部は、パー ジガス流路 24の覆い板 24cに形成した貫通孔 24gを貫通し、先端面 33cはフローチ ヤンネル 13の上部壁 13aの近傍まで達している。  [0038] Also in this embodiment, the distal end portion of the hollow member 33 protruding into the chamber 14 penetrates the through hole 24g formed in the cover plate 24c of the purge gas flow path 24, and the distal end surface 33c is the flow channel 13. To the vicinity of the upper wall 13a.
[0039] 第 3,第 4形態例では、ビューポート部材 31や中空部材 33の先端部がパージガス 流路 24内に突出していることから、この部分で流路高さが低くなつて流路断面積が 小さくなるので、周辺部とは流速等が異なることになる力 フローチャンネル 13の通 孔 13bの位置で前述の条件を満たすようにパージガスを流せばよい。また、ビューポ 一ト部材 31の先端面 31cや中空部材 33の先端面 33cを覆い板 24cの下面と面一に することにより、流路断面積の変化をなくすことができる。  [0039] In the third and fourth embodiments, the distal end portions of the viewport member 31 and the hollow member 33 protrude into the purge gas flow channel 24, so that the flow channel height is lowered at this portion and the flow channel is cut off. Since the area becomes small, the force that causes the flow velocity and the like to be different from the peripheral portion. The purge gas may be flowed so as to satisfy the above-described condition at the position of the through hole 13b of the flow channel 13. Further, by making the distal end surface 31c of the viewpoint member 31 and the distal end surface 33c of the hollow member 33 flush with the lower surface of the covering plate 24c, it is possible to eliminate the change in the flow path cross-sectional area.
[0040] 図 7は、本発明の第 1の態様に係る気相成長装置の第 5形態例を示す要部の断面 図である。本形態例に示すビューポート部材 41は、下方が縮径した円錐形の筒状部 41 aと、該筒状部 41 aの上部開口を気密に閉塞する円盤状の窓部材 41bと、筒状部 41 aの下部開口を気密に閉塞する円盤状の先端部材 41cとで形成された中空状の ものであって、先端部材 41cは、基板 11の表面に対して傾斜した状態となっている。 また、ビューポート部材 41内の中空部は、真空ポンプによって真空排気した後、封じ 切りを行って真空状態として!/、る。  [0040] FIG. 7 is a cross-sectional view of a relevant part showing a fifth embodiment of the vapor phase growth apparatus according to the first aspect of the present invention. The viewport member 41 shown in the present embodiment includes a conical cylindrical portion 41a having a reduced diameter on the lower side, a disk-like window member 41b that hermetically closes the upper opening of the cylindrical portion 41a, and a cylindrical shape It is a hollow member formed by a disc-shaped tip member 41c that hermetically closes the lower opening of the portion 41a, and the tip member 41c is inclined with respect to the surface of the substrate 11. In addition, the hollow portion in the viewport member 41 is evacuated by a vacuum pump and then sealed to be in a vacuum state.
[0041] このビューポート部材 41は、チャンバ一 14のピューポート用開口 14bを囲むように して設けられた気密性蛇腹部材 42を介してチャンバ一 14の天板部 14aに取り付けら れている。気密性蛇腹部材 42は、蛇腹部 42aの両端開口部に取付フランジ 42bをそ れぞれ有するものである。また、下部の取付フランジ 42bをシール材 42cを介して天 板部 14aの上面に固定し、上部の取付フランジ 42bにシール材 42cを介して窓部材 41bの外周を載置し、窓部材 41bの上面を覆う蓋部材 43を上部の取付フランジ 42b に固定することにより、ビューポート部材 41がチャンバ一 14に取り付けられている。 [0041] The viewport member 41 is attached to the top plate portion 14a of the chamber 14 via an airtight bellows member 42 provided so as to surround the Puport opening 14b of the chamber 14. . The airtight bellows member 42 has mounting flanges 42b at both ends of the bellows portion 42a. In addition, the lower mounting flange 42b is fixed to the upper surface of the top plate portion 14a via a sealing material 42c, and the upper mounting flange 42b is fixed to the window member via the sealing material 42c. The viewport member 41 is attached to the chamber 14 by mounting the outer periphery of the 41b and fixing the lid member 43 covering the upper surface of the window member 41b to the upper mounting flange 42b.
[0042] このように、気密性蛇腹部材 42を介してビューポート部材 41をチャンバ一 14に装 着することにより、蛇腹部 42aの変形を利用してチャンバ一 14に対するビューポート 部材 41の取付位置を前後、左右、上下の各方向及び取付角度を調節可能としてい る。また、ピューポート部材 41の先端部材 41cは、パージガス流路 24の覆い板 24c の上面に近接しており、覆い板 24cの上面には、ビューポート部材 41の先端外周を 覆う環状突起 24hが設けられて!/、る。  [0042] In this manner, by attaching the viewport member 41 to the chamber 14 through the airtight bellows member 42, the mounting position of the viewport member 41 with respect to the chamber 14 using the deformation of the bellows portion 42a. The front / rear, left / right, up / down directions and mounting angle can be adjusted. Further, the tip member 41c of the Puport member 41 is close to the upper surface of the cover plate 24c of the purge gas flow path 24, and an annular protrusion 24h that covers the outer periphery of the tip of the viewport member 41 is provided on the upper surface of the cover plate 24c. Being! /
[0043] 前記蓋部材 43には、入射光用通孔 43a及び反射光用通孔 43bの二つの通孔が設 けられており、入射光用通孔 43aからレーザー光 Laを基板 11の表面に向けて照射し 、基板表面で反射した光 Lbの状態を反射光用通孔 43bの外部で受光するように形 成されている。このように反射光を利用する場合、先端部材 41cを基板表面に対して 僅かに傾斜させておくことにより、先端部材 41cで反射した光と基板表面で反射した 光とを分離することができ、基板表面からの反射光のみを確実に受光することができ る。なお、傾斜方向は任意であるが、入射光や反射光と垂直に交わらない方向にす ることが好ましい。  The lid member 43 is provided with two through holes, an incident light through hole 43a and a reflected light through hole 43b. Laser light La is transmitted from the incident light through hole 43a to the surface of the substrate 11. In this way, the state of the light Lb reflected on the substrate surface is received outside the reflected light through hole 43b. When the reflected light is used in this way, the light reflected by the tip member 41c and the light reflected by the substrate surface can be separated by slightly tilting the tip member 41c with respect to the substrate surface. Only reflected light from the substrate surface can be reliably received. Although the tilt direction is arbitrary, it is preferable that the tilt direction is not perpendicular to the incident light or reflected light.
[0044] また、ビューポート部材 41の先端外周を覆う環状突起 24hを設けておくことにより、 パージガス流路 24内を流れるパージガスが通孔 24fから先端部材 41c部分を通って チャンバ一 14内へ流れたり、逆にチャンバ一 14内のガスが先端部材 41c部分に流 入したりすることを防止できる。なお、パージガス流路 24の通孔 24fは設けなくてもよ ぐパージガス流路 24の覆い板 24cと先端部材 41cとを一体的に形成することも可能 である。さらに、ビューポート部材 41をチャンバ一 14に装着する手段としては、前記 気密性蛇腹郡材に限るものではなぐ使用環境に耐えられるものならば任意の材質 で形成された任意の位置調整機構を採用することができる。また、ビューポート部材 4 1を所定位置に保持する手段としては、ボルトを利用するなど、任意の保持手段を採 用できる。  [0044] Further, by providing an annular protrusion 24h covering the outer periphery of the distal end of the viewport member 41, the purge gas flowing in the purge gas flow path 24 flows from the through hole 24f into the chamber 14 through the tip member 41c portion. Conversely, the gas in the chamber 14 can be prevented from flowing into the tip member 41c. Note that the cover plate 24c and the tip member 41c of the purge gas channel 24 may be integrally formed without providing the through hole 24f of the purge gas channel 24. Furthermore, as a means for attaching the viewport member 41 to the chamber 14, an arbitrary position adjusting mechanism formed of an arbitrary material is adopted as long as it can withstand the use environment, not limited to the airtight bellows group material. can do. As a means for holding the viewport member 41 in a predetermined position, any holding means such as a bolt can be used.
[0045] 各形態例において、パージガスの種類は任意であり、この種の装置で通常パージ ガスとして用いられている窒素、水素、アルゴン等を使用することができる。また、ビュ 一ポートを設ける位置は、基板表面の状態を観察したり、測定したりできる範囲で任 意に選択できるが、通孔によって反応ガスの流れに乱れが生じることを抑えるため、 できるだけ反応ガスの流れ方向下流側に配置することが好ましい。また、測定機器へ の熱的影響を避けるため、ビューポートの外側あるいは内側に赤外線反射膜を設け ることあでさる。 [0045] In each embodiment, the type of purge gas is arbitrary, and nitrogen, hydrogen, argon, or the like that is normally used as a purge gas in this type of apparatus can be used. Also, view The position where one port is provided can be arbitrarily selected within a range where the state of the substrate surface can be observed and measured, but in order to prevent the reaction gas flow from being disturbed by the through holes, the flow of the reaction gas is as much as possible. It is preferable to arrange in the direction downstream. In addition, in order to avoid thermal influence on the measuring equipment, an infrared reflecting film should be provided outside or inside the viewport.
[0046] 図 8は本発明の第 2の態様に係る気相成長装置の第 1形態例(embodiment)を示す 要部の断面図である。この気相成長装置は、基本的に、前述の特許文献 1に記載さ れた気相成長装置と同様の構成を有している。  FIG. 8 is a cross-sectional view of a main part showing a first embodiment (embodiment) of the vapor phase growth apparatus according to the second aspect of the present invention. This vapor phase growth apparatus basically has the same configuration as the vapor phase growth apparatus described in Patent Document 1 described above.
[0047] 複数枚の基板 111は、サセプタ 112の上面に同心円上に保持され、フローチャン ネル 1 13の所定位置に配置される。この基板 111の基板面はサセプタ 112の上面に 対して略平行である。フローチャンネル 113等は、密閉状態のチャンバ一 114内に収 納されており、該チャンバ一 114の一端に設けられた反応ガス導入口を通して、反応 ガス供給手段(図示せず)からフローチャンネル 113内に反応ガスが導入され、基板 面を通過したガスは、フローチャンネル 113に連設した排気部 115から排出される。 なお、反応ガス供給手段としては、特に限定されず、公知のものを使用することがで きる。  The plurality of substrates 111 are concentrically held on the upper surface of the susceptor 112 and are arranged at predetermined positions on the flow channel 113. The substrate surface of the substrate 111 is substantially parallel to the upper surface of the susceptor 112. The flow channel 113 and the like are housed in a sealed chamber 114, and from a reaction gas supply means (not shown) through the reaction gas inlet provided at one end of the chamber 114, The reaction gas is introduced into the gas, and the gas that has passed through the substrate surface is exhausted from the exhaust part 115 connected to the flow channel 113. The reaction gas supply means is not particularly limited, and a known one can be used.
[0048] 前記サセプタ 112の下方には、箱状のリフレタター 116に収容された、加熱手段で あるヒーター 117が設けられており、このヒーター 117によりサセプタ 112を介して基 板 11 1を所定温度に加熱する。また、サセプタ 112は、支持軸 118によって支持され ており、この支持軸 118でサセプタ 112を回転させることにより、基板 11 1を回転させ て基板上に形成する薄膜の膜厚を平均化させるようにしている。  [0048] Below the susceptor 112 is provided a heater 117, which is a heating means, housed in a box-shaped reflector 116. The heater 117 causes the base plate 111 to reach a predetermined temperature via the susceptor 112. Heat. The susceptor 112 is supported by a support shaft 118. By rotating the susceptor 112 with the support shaft 118, the thickness of the thin film formed on the substrate is averaged by rotating the substrate 111. ing.
[0049] そして、前記チャンバ一 114の天板部 114aに設けたビューポート用開口 114bに は、ビューポート 120を形成するビューポート部材 121が嵌め込まれている。このビュ 一ポート部材 121は、円柱状の胴部 121aと上端部のフランジ 121bとを有する縦断 面がハット状 (T字状)の中実の透光性材料、例えば、耐腐食性'耐熱性を有する石 英ガラスからなるものである。また、胴部 121aを前記ビューポート用開口 114b内に 上方から揷入し、フランジ 121bの下面をシール材 122によって天板部 114aの上面 に気密にシールした状態で、ビューポート部材 121は止着部材 123によって着脱可 能に固定されている。チャンバ一 114内に延出した延出部である胴部 121aの先端 面 121cは、フローチャンネル 113の上板外面近傍、すなわち、両者の間隔が数 mm 乃至 10mm程度の直近に配置されており、先端面 121cとフローチャンネル外面との 間のガス層の厚さをできるだけ小さくするようにしている。また、前記ガス層の厚さは、 lmm以上 10mm以下であることが好ましぐ 1mm以上 8mm以下であることがさらに 好ましく、 1mm以上 6mm以下であることが最も好ましい。 [0049] A viewport member 121 that forms a viewport 120 is fitted into a viewport opening 114b provided in the top plate portion 114a of the chamber 114. This view port member 121 has a cylindrical translucent material having a cylindrical body 121a and a flange 121b at the upper end, and a solid translucent material having a hat shape (T shape), for example, corrosion resistance and heat resistance. It is made of stone glass with The body 121a is inserted into the viewport opening 114b from above, and the viewport member 121 is fixed in a state where the bottom surface of the flange 121b is hermetically sealed to the top surface of the top plate portion 114a by the sealing material 122. Detachable by member 123 It is fixed to Noh. The front end surface 121c of the body 121a, which is an extended portion extending into the chamber 114, is disposed near the outer surface of the upper plate of the flow channel 113, that is, in the immediate vicinity of a distance of about several mm to 10 mm. The thickness of the gas layer between the front end surface 121c and the outer surface of the flow channel is made as small as possible. The thickness of the gas layer is preferably 1 mm or more and 10 mm or less, more preferably 1 mm or more and 8 mm or less, and most preferably 1 mm or more and 6 mm or less.
[0050] このようなビューポート部材 121を用いてビューポート 120を形成することにより、チ ヤンバー 114内に熱対流による気流が発生したとしても、気流の影響を受けるのが先 端面 121cとフローチャンネル外面との聞の僅かなガス層だけに限定されるから、測 定用のレーザー光等の揺らぎを抑えることができ、安定した状態で正確な測定を行う こと力 Sできる。また、必要に応じて、レーザー光等の測定用、観察用の光が通過する 部分のフローチャンネル 113に通孔 113aを設けておくことにより、フローチャンネル 1 13の内面に反応生成物が付着しても正確な測定を行うことができる。  [0050] By forming the viewport 120 using such a viewport member 121, even if an airflow due to thermal convection is generated in the chamber 114, the front end face 121c and the flow channel are affected by the airflow. Since it is limited to a gas layer that is only slightly in contact with the outer surface, fluctuations in the laser beam for measurement can be suppressed, and the ability to perform accurate measurements in a stable state can be achieved. In addition, if necessary, the reaction product adheres to the inner surface of the flow channel 113 by providing a through hole 113a in the flow channel 113 where the measurement light such as laser light or observation light passes. However, accurate measurement can be performed.
[0051] 図 9は本発明の第 2の態様に係る気相成長装置の第 2形態例を示す要部の断面図 である。なお、以下の説明において、前記第 1形態例に示した各構成要素と同一の 構成要素には、それぞれ同一符号を付して詳細な説明は省略する。  [0051] FIG. 9 is a cross-sectional view of the main part showing a second embodiment of the vapor phase growth apparatus according to the second aspect of the present invention. In the following description, the same components as those shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0052] 本形態例に示す気相成長装置では、ビューポート 120を、ビューポート用開口 114 bに装着される円盤状の窓部材 131と、この窓部材 131の下方に連設される中空部 材 132とで形成するとともに、前記中空部材 132の中空部を真空排気する真空ボン プ 133を備えている。中空部材 132は、前記同様に、石英ガラス等の透光性部材か らなるパイプ状部材 132aの両端開口を円盤状部材 132bによってそれぞれ気密に 閉塞したものであって、チャンバ一 114内に突出した中空部材 132の先端面 132cは 、前記第 1形態例における先端面 121cと同様に、フローチャンネル 113の外面近傍 に配置されている。  [0052] In the vapor phase growth apparatus shown in the present embodiment, the viewport 120 includes a disk-shaped window member 131 attached to the viewport opening 114b, and a hollow portion provided continuously below the window member 131. And a vacuum pump 133 for evacuating the hollow portion of the hollow member 132. As described above, the hollow member 132 is formed by sealing both ends of a pipe-shaped member 132a made of a translucent member such as quartz glass with a disk-shaped member 132b, and protrudes into the chamber 114. The distal end surface 132c of the hollow member 132 is disposed in the vicinity of the outer surface of the flow channel 113, similarly to the distal end surface 121c in the first embodiment.
[0053] また、中空部材 132には、真空ポンプ 133に接続する排気管 134の接続部 132d が設けられており、この接続部 132dから排気管 134を介して中空部材 132内を真空 ポンプ 133で真空排気することにより、中空部材 132内を真空状態(減圧状態を含む )にして中空部材 132内で気流が発生しないようにしている。さらに、中空構造にする ことで、中実構造の場合に比べて熱膨張や振動等による光の屈折や透過損失による 影響を軽減することができる。なお、窓部材 131の取り付けは、第 1形態例のフランジ 121bと同様にして fiうことカできる。 [0053] Further, the hollow member 132 is provided with a connecting portion 132d of an exhaust pipe 134 connected to the vacuum pump 133. The inside of the hollow member 132 is connected to the vacuum pump 133 through the exhaust pipe 134 from the connecting portion 132d. By evacuating, the hollow member 132 is evacuated (including a reduced pressure state) so that no airflow is generated in the hollow member 132. Furthermore, a hollow structure is used. As a result, the effects of light refraction and transmission loss due to thermal expansion and vibration can be reduced compared to the case of a solid structure. The window member 131 can be attached in the same manner as the flange 121b of the first embodiment.
[0054] 図 10は本発明の第 2の態様に係る気相成長装置の第 3形態例を示す要部の断面 図である。本形態例では、前記第 2形態例における中空部材 132を、透光性部材と 非透光性部材とを組み合わせて形成している。すなわち、透光性部材からなるパイ プ状部材 132aの上部に非透光性部材である金属製のリング部材 135を気密に接続 し、このリング部材 135に真空ポンプ 133に接続する前記排気管 134の接続部 135a を設けている。このように、排気管 134の接続部を金属製、例えばステンレス製とする ことにより、石英ガラスの場合に比べて排気管接続部を容易に形成することができる 。なお、本形態例では中空部材 132の一部を非透光性部材で形成したが、パイプ状 部材 132aの全体を非透光性部材で形成することもできる。  [0054] FIG. 10 is a cross-sectional view of a principal part showing a third example of the vapor phase growth apparatus according to the second aspect of the present invention. In this embodiment, the hollow member 132 in the second embodiment is formed by combining a light transmissive member and a non-light transmissive member. That is, a metal ring member 135 that is a non-translucent member is hermetically connected to an upper portion of a pipe-shaped member 132 a made of a translucent member, and the exhaust pipe 134 that is connected to the vacuum pump 133 is connected to the ring member 135. The connecting portion 135a is provided. Thus, by making the connection part of the exhaust pipe 134 made of metal, for example, stainless steel, the exhaust pipe connection part can be easily formed as compared with the case of quartz glass. In the present embodiment, a part of the hollow member 132 is formed of a non-translucent member, but the entire pipe-shaped member 132a may be formed of a non-translucent member.
[0055] 図 11は本発明の第 2の態様に係る気相成長装置の第 4形態例を示す要部の断面 図である。本形態例では、前記第 2形態例における中空部材 132の上部を窓部材 1 31と一体的に形成するとともに、中空部材 132内を真空ポンプで真空排気した後、 排気管の接続部 132dを封じ切って中空部材 132内を真空状態に保つようにしてい る。なお、中空部材 132のチャンバ一 114への取り付けは、第 1形態例のビューポー ト部材 121と同様にして行うことができる。  [0055] FIG. 11 is a cross-sectional view of a principal part showing a fourth embodiment of the vapor phase growth apparatus according to the second aspect of the present invention. In this embodiment, the upper portion of the hollow member 132 in the second embodiment is formed integrally with the window member 131, and after the inside of the hollow member 132 is evacuated by a vacuum pump, the exhaust pipe connecting portion 132d is sealed. The hollow member 132 is kept in a vacuum state by cutting. The hollow member 132 can be attached to the chamber 114 in the same manner as the viewport member 121 of the first embodiment.
[0056] 図 12は本発明の第 2の態様に係る気相成長装置の第 5形態例を示す要部の断面 図である。本形態例に示すピューポート部材 141は、下方が縮径した円錐形の筒状 部 141aと、該筒状部 141aの上部開口を気密に閉塞する円盤状の窓部材 141bと、 筒状部 141aの下部開口を気密に閉塞する円盤状の先端部材 141cとで形成された 中空状のものであって、先端部材 141cは、基板 111の表面に対して傾斜した状態と なっている。また、ビューポート部材 141内の中空部は、真空ポンプによって真空排 気した後、封じ切りを行って真空状態としている。  [0056] FIG. 12 is a cross-sectional view of a relevant part showing a fifth embodiment of the vapor phase growth apparatus according to the second aspect of the present invention. The Puport member 141 shown in the present embodiment includes a conical cylindrical portion 141a having a reduced diameter on the lower side, a disk-shaped window member 141b that hermetically closes an upper opening of the cylindrical portion 141a, and a cylindrical portion 141a. The hollow member is formed of a disc-shaped tip member 141c that hermetically closes the lower opening of the tip member 141c, and the tip member 141c is inclined with respect to the surface of the substrate 111. Further, the hollow portion in the viewport member 141 is evacuated by a vacuum pump and then sealed to be in a vacuum state.
[0057] このビューポート部材 141は、チャンバ一 114のビューポート用開口 114bを囲むよ うにして設けられた気密性蛇腹部材 142を介してチャンバ一 114の天板部 114aに取 り付けられている。気密性蛇腹部材 142は、蛇腹部 142aの両端開口部に取付フラン ジ 142bをそれぞれ有するものである。また、下部の取付フランジ 142bをシール材 14 2cを介して天板部 114aの上面に固定し、上部の取付フランジ 142bにシール材 142 cを介して窓部材 141bの外周を載置し、窓部材 141bの上面を覆う蓋部材 143を上 部の取付フランジ 142bに固定することにより、ビューポート部材 141がチャンバ一 11 4に取り付けられている。 [0057] This viewport member 141 is attached to the top plate portion 114a of the chamber 114 via an airtight bellows member 142 provided so as to surround the viewport opening 114b of the chamber 114. Yes. The airtight bellows member 142 is attached to both end openings of the bellows portion 142a. Respectively. In addition, the lower mounting flange 142b is fixed to the upper surface of the top plate portion 114a via the sealing material 142c, and the outer periphery of the window member 141b is placed on the upper mounting flange 142b via the sealing material 142c, and the window member The view port member 141 is attached to the chamber 114 by fixing the lid member 143 covering the upper surface of the 141b to the upper attachment flange 142b.
[0058] このように、気密性蛇腹部材 142を介してビューポート部材 141をチャンバ一 114 に装着することにより、蛇腹部 142aの変形を利用してチャンバ一 114に対するビュー ポート部材 141の取付位置を前後、左右、上下の各方向及び取付角度を調節可能 としている。すなわち、ビューポート 120がチャンバ一 114に対して位置調節可能に 設けられている。 In this way, by attaching the viewport member 141 to the chamber 114 via the airtight bellows member 142, the mounting position of the viewport member 141 with respect to the chamber 114 is changed using the deformation of the bellows 142a. The front and rear, left and right, top and bottom directions and mounting angle can be adjusted. That is, the view port 120 is provided so that the position of the view port 120 can be adjusted with respect to the chamber 114.
[0059] また、ビューポート部材 141の先端部材 141cと、フローチャンネル 113の上面との 問には、パージガス流路 144が設けられている。このパージガス流路 144は、反応ガ ス流れ方向上流側にパージガス導入部 144aを有し、下流側に排気口 144bを開口 させたものであって、流路下部はフローチャンネル 113の上板部材と共通化し、流路 の上流側、両側及び上部を石英ガラス製の板状部材で囲った形状を有してる。フロ 一チャンネル 113の天井部材及びパージガス流路 144の上部材には、レーザー光 等の測定用、観察用の光が通過する部分に通孔 113a, 144cがそれぞれ設けられ ており、パージガス流路 144の上部材上面にはビューポート部材 141の先端外周を 覆う環状突起 144dが設けられて!/、る。  Further, a purge gas flow path 144 is provided between the distal end member 141c of the viewport member 141 and the upper surface of the flow channel 113. This purge gas flow path 144 has a purge gas introduction part 144a on the upstream side in the reaction gas flow direction, and an exhaust port 144b opened on the downstream side. The lower part of the flow path is connected to the upper plate member of the flow channel 113. It is common and has a shape in which the upstream side, both sides, and the upper part of the flow path are surrounded by a plate member made of quartz glass. The ceiling member of the flow channel 113 and the upper member of the purge gas flow path 144 are provided with through holes 113a and 144c, respectively, in the portions through which laser light and other measurement and observation light passes. An annular protrusion 144d is provided on the upper surface of the upper member to cover the outer periphery of the distal end of the viewport member 141.
[0060] 前記蓋部材 143には、入射光用通孔 143a及び反射光用通孔 143bの二つの通孔 が設けられており、入射光用通孔 143aからレーザー光 Laを基板 111の表面に向け て照射し、基板表面で反射した光 Lbの状態を反鉢光用通孔 143bの外部で受光す るように形成されている。このように反射光を利用する場合、先端部材 141cを基板表 面に対して僅かに傾斜させておくことにより、先端部材 141cで反射した光と基板表 面で反射した光とを分離することができ、基板表面からの反射光のみを確実に受光 すること力 Sできる。なお、傾斜方向は任意であるが、入射光や反射光と垂直に交わら なレ、方向にすることが好ましレ、。  [0060] The lid member 143 is provided with two through holes, an incident light through hole 143a and a reflected light through hole 143b. Laser light La is incident on the surface of the substrate 111 from the incident light through hole 143a. It is formed so that the state of the light Lb irradiated toward and reflected by the substrate surface is received outside the anti-potential light through hole 143b. When using reflected light in this way, the light reflected by the tip member 141c and the light reflected by the substrate surface can be separated by slightly tilting the tip member 141c with respect to the substrate surface. It is possible to reliably receive only the reflected light from the substrate surface. The tilt direction is arbitrary, but it is preferable to make the direction perpendicular to the incident light or reflected light.
[0061] また、ビューポート部材 141とフローチャンネル 113との間にパージガス流路 144を 設けておくことにより、フローチャンネル 113の通孔 113aから外部に流出した反応ガ スゃ反応生成物がビューポート部材 141の先端部材 141cに付着することを防止でき る。さらに、ビューポート部材 141の先端外周を覆う環状突起 144dを設けておくこと により、パージガス流路 144内を流れるパージガスが通孔 144cから先端部材 141c 部分を通ってチャンバ一 114内へ流れたり、逆にチャンバ一 114内のガスが先端部 材 141c部分に流入したりすることを防止できる。なお、パージガス流路 144の通孔 1 44cは設けなくてもよぐパージガス流路 144の上部材と先端部材 141cとを一体的 に形成することも可能である。また、ノ ージガスの種類も任意であり、この種の装置で 通常パージガスとして用いられている窒素、水素、アルゴン等を使用することができる 。さらに、ビューポート部材 141をチャンバ一 114に装着する手段としては、前記気密 性蛇腹部材に限るものではなく、使用環境に耐えられるものならば任意の材質で形 成された任意の位置調整機構を採用することができる。また、ビューポート部材 141 を所定位置に保持する手段としては、ボルトを利用するなど、任意の保持手段を採用 できる。 Further, a purge gas flow path 144 is provided between the viewport member 141 and the flow channel 113. By providing, it is possible to prevent the reaction gas reaction product flowing out from the flow hole 113a of the flow channel 113 from adhering to the tip member 141c of the viewport member 141. Furthermore, by providing an annular protrusion 144d that covers the outer periphery of the distal end of the viewport member 141, the purge gas flowing in the purge gas flow path 144 flows from the through hole 144c through the distal member 141c into the chamber 114 or vice versa. Further, the gas in the chamber 114 can be prevented from flowing into the tip member 141c. Note that it is possible to integrally form the upper member of the purge gas channel 144 and the tip member 141c without providing the through hole 144c of the purge gas channel 144. Further, the type of the noble gas is arbitrary, and nitrogen, hydrogen, argon, etc., which are usually used as a purge gas in this type of apparatus can be used. Furthermore, the means for mounting the viewport member 141 to the chamber 114 is not limited to the airtight bellows member, and an arbitrary position adjusting mechanism formed of any material can be used as long as it can withstand the use environment. Can be adopted. As a means for holding the viewport member 141 at a predetermined position, any holding means such as a bolt can be used.
[0062] 各形態例において、ビューポートを設ける位置は、基板表面の状態を観察したり、 測定したりできる範囲で任意に選択できる力 フローチャンネル上面に通孔を設ける 場合は、通孔によって反応ガスの流れに乱れが生じることを抑えるため、できるだけ 反応ガスの流れ方向下流側に配置することが好ましい。また、測定機器への熱的影 響を避けるため、ビューポートの外側あるいは内側に赤外線反射膜を設けることもで きる。  [0062] In each embodiment, the position at which the viewport is provided is a force that can be arbitrarily selected within a range in which the state of the substrate surface can be observed and measured. In order to suppress the occurrence of turbulence in the gas flow, it is preferable that the gas flow be arranged as downstream as possible in the reaction gas flow direction. In addition, an infrared reflective film can be provided outside or inside the viewport to avoid thermal effects on the measurement equipment.
[0063] 図 13は、前記第 5形態例に示す構造のビューポートを設けた気相成長装置におい て、レーザー距離計を使用して成膜中に回転している基板の外周側上面の高さを測 定した結果を示す図である。成膜時の温度は 500°C、圧力は常圧である。その結果 、図 13の線 Aに示すように、基板の回転に同期した上下動を観察することができた。 一方、ビューポートをチャンバ一内に突出させない従来のビューポートを通して同じ 上面高さの測定を行ったところ、 200°Cの温度でも、図 13の線 Bに示すように、ノイズ が多くなり、基板の回転に同期した上下動を観察することはできなかった。  [0063] FIG. 13 is a schematic view of the height of the upper surface on the outer peripheral side of a substrate rotated during film formation using a laser distance meter in a vapor phase growth apparatus provided with a viewport having the structure shown in the fifth embodiment. It is a figure which shows the result of having measured the thickness. The temperature during film formation is 500 ° C and the pressure is normal pressure. As a result, as shown by line A in FIG. 13, the vertical movement synchronized with the rotation of the substrate could be observed. On the other hand, when the same top surface height was measured through a conventional viewport where the viewport did not protrude into the chamber, the noise increased as shown by line B in Fig. 13 even at a temperature of 200 ° C. It was not possible to observe the vertical movement synchronized with the rotation of.
実施例 [0064] 本発明の第 1の態様の第 1形態例に示す構成を備える気相成長装置において、フ ローチャンネル 13の上部壁 13aに直径 5mmの通孔 13bを設けるとともに、内法高さ 力 mmのパージガス流路 24を設けた。パージガス流路 24には、通孔 13bの位置に おいて、フローチャンネル 13内の反応ガスと等しい流速、圧力となるようにパージガ スとして水素を流した。 Example [0064] In the vapor phase growth apparatus having the configuration shown in the first embodiment of the first aspect of the present invention, a through hole 13b having a diameter of 5 mm is provided in the upper wall 13a of the flow channel 13, and the internal height force A purge gas passage 24 of mm was provided. Hydrogen was passed through the purge gas flow path 24 as a purge gas so that the flow velocity and pressure were equal to the reaction gas in the flow channel 13 at the position of the through hole 13b.
[0065] フローチャンネル 13内に、反応ガスとして水素、トリメチルガリウム (TMG)、アンモニ ァを導入し、バッファ層の形成された 2インチ径サファイア基板を lOrpmで回転させ ながら 1100°Cに加熱して GaN膜を成長した。このとき、ビューポート 20の外部に放 射温度計を設置し、基板 11の温度を測定した。サセプタ裏に設置した温度調整用熱 電対の温度が 1100°C—定で 1時間成膜した後、ビューポート 20の内面を観察した が付着物は見られず、放射温度計の測定温度も 1080°Cで安定していた。また、成 膜した GaNの膜厚分布は Δ 5%であり、フローチャンネルに通孔を設けない場合と同 程度であった。ホール測定での不純物レベルも 7 X 1015/cm3程度で変化は無かつ た。 [0065] Hydrogen, trimethylgallium (TMG), and ammonia are introduced as reaction gases into the flow channel 13, and the 2-inch sapphire substrate on which the buffer layer is formed is heated to 1100 ° C while rotating at lOrpm. GaN film was grown. At this time, a radiation thermometer was installed outside the viewport 20, and the temperature of the substrate 11 was measured. The temperature of the thermocouple for temperature adjustment installed on the back of the susceptor was 1100 ° C—constant for 1 hour, and then the inner surface of the viewport 20 was observed. It was stable at 1080 ° C. In addition, the film thickness distribution of the deposited GaN was Δ5%, which was similar to the case where no through hole was provided in the flow channel. The impurity level in the hole measurement was also about 7 × 10 15 / cm 3 and there was no change.
産業上の利用可能性  Industrial applicability
[0066] 本発明の気相成長装置によれば、ビューポート内面への反応生成物の付着を効率 よく防止することができ、チャンバ一内の気流の影響を抑制してレーザー光等による 光学的な観察、測定を確実に行うことができる。よって、本発明は産業上有用である[0066] According to the vapor phase growth apparatus of the present invention, it is possible to efficiently prevent the reaction product from adhering to the inner surface of the viewport, and to suppress the influence of the air flow in the chamber and to optically use a laser beam or the like. Observation and measurement can be performed reliably. Therefore, the present invention is industrially useful.
Yes

Claims

請求の範囲 The scope of the claims
[1] チャンバ一と、  [1] With chamber one,
該チャンバ一内に配置されたフローチャンネルと、  A flow channel disposed within the chamber;
該フローチャンネル内に設置された基板と、  A substrate installed in the flow channel;
該基板を加熱する加熱手段と、  Heating means for heating the substrate;
前記フローチャンネル内に反応ガスを供給する反応ガス供給手段と、  Reactive gas supply means for supplying a reactive gas into the flow channel;
前記チャンバ一に設けられたビューポートとを備え、  A viewport provided in the chamber,
前記フローチャンネルの基板対向壁に、前記ビューポートを介して基板面を光学的 に観測する際の光路となる通孔を設け、  A through hole serving as an optical path for optically observing the substrate surface through the viewport is provided in the substrate facing wall of the flow channel,
該通孔を設けたフローチャンネル壁外面とビューポートのチャンバ一内側部との間 にパージガス流路を設けるとともに、  A purge gas flow path is provided between the outer surface of the flow channel wall provided with the through hole and the inside of the chamber of the viewport.
該パージガス流路内に、前記フローチャンネル内を流れる反応ガスの流れ方向と 同一方向で、実質的に同一速度、同一圧力で、かつ、層流状態でパージガスを流す ためのパージガス導入手段を設けた気相成長装置。  In the purge gas flow path, purge gas introduction means for flowing the purge gas in a laminar flow state in the same direction as the flow direction of the reaction gas flowing in the flow channel at substantially the same speed and pressure is provided. Vapor growth equipment.
[2] 前記ビューポートをフローチャンネル壁外面近傍に配置した請求項 1記載の気相 成長装置。  2. The vapor phase growth apparatus according to claim 1, wherein the viewport is disposed in the vicinity of the outer surface of the flow channel wall.
[3] 前記ピューポートが前記反応ガスの流れ方向下流側に位置して!/、る請求項 1記載 の気相成長装置。  [3] The vapor phase growth apparatus according to [1], wherein the pureport is located downstream of the reactive gas in the flow direction.
[4] 前記パージガス流路は、前記フローチャンネル壁外面に立設した一対の側板と、 両側板の上流側を閉塞する端板と、該端板及び両側板の反フローチャンネル側を覆 う覆い板とで形成され、前記端板にパージガス導入部を設けるとともに、両側板の下 流側を開口させて排気口を形成した請求項 1記載の気相成長装置。  [4] The purge gas flow path includes a pair of side plates erected on the outer surface of the flow channel wall, an end plate that closes the upstream side of the side plates, and a cover that covers the end plate and the opposite flow channel side of the side plates. 2. The vapor phase growth apparatus according to claim 1, wherein the end plate is provided with a purge gas introduction portion, and an exhaust port is formed by opening a downstream side of both side plates.
[5] 前記覆い板は、前記ビューポートを介して基板面を光学的に観測する際の光路と なる通孔を有していることを特徴とする請求項 4記載の気相成長装置。  5. The vapor phase growth apparatus according to claim 4, wherein the cover plate has a through hole serving as an optical path when optically observing the substrate surface through the viewport.
[6] 前記覆い板は、ビューポートのチャンバ一内部側先端部外周を覆う環状突起を有 してレ、る請求項 4記載の気相成長装置。  6. The vapor phase growth apparatus according to claim 4, wherein the cover plate has an annular protrusion that covers the outer periphery of the inner end of the viewport chamber.
[7] 前記覆い板は、ビューポートのチャンバ一内部側先端部が貫通する貫通孔を有し ていることを特徴とする請求項 4記載の気相成長装置。 7. The vapor phase growth apparatus according to claim 4, wherein the cover plate has a through-hole through which a front end portion on the inside of the chamber of the viewport passes.
[8] チャンバ一と、 [8] With chamber one,
該チャンバ一内に配置されたフローチャンネルと、  A flow channel disposed within the chamber;
該フローチャンネル内に設置された基板と、  A substrate installed in the flow channel;
該基板を加熱する加熱手段と、  Heating means for heating the substrate;
前記フローチャンネル内に反応ガスを供給する反応ガス供給手段と、 前記チャンバ一に設けられたビューポートとを備え、  A reaction gas supply means for supplying a reaction gas into the flow channel; and a viewport provided in the chamber,
前記ビューポートのチャンバ一内部側をフローチャンネルに向けて延出し、 該延出部の先端面をフローチャンネルの外面近傍に配置した気相成長装置。  A vapor phase growth apparatus in which the inner side of the chamber of the viewport extends toward the flow channel, and the distal end surface of the extended portion is disposed near the outer surface of the flow channel.
[9] 前記ビューポートの延出部は、内部に中空部を有する中空構造であり、前記中空 部が真空状態となっている請求項 8記載の気柏成長装置。 9. The vapor growth apparatus according to claim 8, wherein the extension portion of the viewport has a hollow structure having a hollow portion therein, and the hollow portion is in a vacuum state.
[10] 前記ビューポートの先端面が前記基板の表面に対して傾斜している請求項 8記載 の気相成長装置。 10. The vapor phase growth apparatus according to claim 8, wherein a front end surface of the view port is inclined with respect to a surface of the substrate.
[11] 前記ビューポートが前記チャンバ一に対して位置調節可能に設けられている請求 項 8記載の気相成長装置。  11. The vapor phase growth apparatus according to claim 8, wherein the view port is provided so that the position of the view port can be adjusted with respect to the chamber.
[12] 前記ビューポートが前記反応ガスの流れ方向下流側に位置して!/、る請求項 8記載 の気相成長装置。 12. The vapor phase growth apparatus according to claim 8, wherein the viewport is located on the downstream side in the flow direction of the reaction gas! /.
PCT/JP2007/066183 2006-08-23 2007-08-21 Vapor phase growth system WO2008023697A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006226733A JP4980672B2 (en) 2006-08-23 2006-08-23 Vapor growth equipment
JP2006-226732 2006-08-23
JP2006226732A JP5214862B2 (en) 2006-08-23 2006-08-23 Vapor growth equipment
JP2006-226733 2006-08-23

Publications (1)

Publication Number Publication Date
WO2008023697A1 true WO2008023697A1 (en) 2008-02-28

Family

ID=39106782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066183 WO2008023697A1 (en) 2006-08-23 2007-08-21 Vapor phase growth system

Country Status (2)

Country Link
TW (1) TW200818276A (en)
WO (1) WO2008023697A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182880A3 (en) * 2012-06-07 2014-07-03 Soitec Deposition systems having deposition chambers configured for in-situ metrology with radiation deflection and related methods
US9644285B2 (en) 2011-08-22 2017-05-09 Soitec Direct liquid injection for halide vapor phase epitaxy systems and methods
WO2018135422A1 (en) * 2017-01-17 2018-07-26 国立大学法人名古屋大学 Vapor-phase growth device
CN114318516A (en) * 2021-12-24 2022-04-12 国宏中宇科技发展有限公司 Crystal growth furnace air inlet structure and crystal growth furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333568A (en) * 1986-07-26 1988-02-13 Ulvac Corp Cvd device
JP2005101222A (en) * 2003-09-24 2005-04-14 Laserfront Technologies Inc Interconnection correction system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333568A (en) * 1986-07-26 1988-02-13 Ulvac Corp Cvd device
JP2005101222A (en) * 2003-09-24 2005-04-14 Laserfront Technologies Inc Interconnection correction system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644285B2 (en) 2011-08-22 2017-05-09 Soitec Direct liquid injection for halide vapor phase epitaxy systems and methods
WO2013182880A3 (en) * 2012-06-07 2014-07-03 Soitec Deposition systems having deposition chambers configured for in-situ metrology with radiation deflection and related methods
CN104471107A (en) * 2012-06-07 2015-03-25 索泰克公司 Deposition systems having deposition chambers configured for in-situ metrology with radiation deflection and related methods
WO2018135422A1 (en) * 2017-01-17 2018-07-26 国立大学法人名古屋大学 Vapor-phase growth device
JP2018117005A (en) * 2017-01-17 2018-07-26 国立大学法人名古屋大学 Vapor growth device
CN114318516A (en) * 2021-12-24 2022-04-12 国宏中宇科技发展有限公司 Crystal growth furnace air inlet structure and crystal growth furnace

Also Published As

Publication number Publication date
TW200818276A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
KR101682914B1 (en) Curvature measurement apparatus and curvature measurement method
JP4980672B2 (en) Vapor growth equipment
WO2008023697A1 (en) Vapor phase growth system
JP2007523261A (en) CVD apparatus having photodiode array
JPS59112611A (en) Vapor growth apparatus
US20110299282A1 (en) Window assembly for use in substrate processing systems
JP2010225743A (en) Vapor deposition apparatus
EP2230326B1 (en) Evaporator, coating installation, and method for use thereof
JP5214862B2 (en) Vapor growth equipment
JP2012018985A (en) Gas treatment apparatus
US11189508B2 (en) Purged viewport for quartz dome in epitaxy reactor
US20210233787A1 (en) Warp measurement device, vapor deposition apparatus, and warp measurement method
KR100400856B1 (en) Molecular beam source and molecular beam epitaxy apparatus
JPS622698B2 (en)
JP6571503B2 (en) Vapor growth equipment
JP3200197B2 (en) Vapor phase growth apparatus and its exhaust pipe
TWI840414B (en) Purged viewport for quartz dome in epitaxy reactor
WO2023248780A1 (en) Vapor phase growth apparatus
JP2013251479A (en) Vapor-phase growth apparatus
TWI829249B (en) Growth monitor system and methods for film deposition
JP2001068415A (en) Vapor-phase growth device
JP2008277673A (en) Cvd device
US20230375460A1 (en) Epi self-heating sensor tube as in-situ growth rate sensor
JP4641268B2 (en) Vapor growth apparatus and vapor growth method
CN115712000A (en) Speed measuring equipment for tray base

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07805957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07805957

Country of ref document: EP

Kind code of ref document: A1