WO2008023597A1 - Corps poreux de nano-aiguille de dioxyde de manganèse de type r, nano-aiguille de dioxyde de manganèse de type r constituant celui-ci, oxyde de manganèse hydrogénée, matériau absorbant le rayonnement infra-rouge, filtre infrarouge et leurs procédés de production - Google Patents

Corps poreux de nano-aiguille de dioxyde de manganèse de type r, nano-aiguille de dioxyde de manganèse de type r constituant celui-ci, oxyde de manganèse hydrogénée, matériau absorbant le rayonnement infra-rouge, filtre infrarouge et leurs procédés de production Download PDF

Info

Publication number
WO2008023597A1
WO2008023597A1 PCT/JP2007/065824 JP2007065824W WO2008023597A1 WO 2008023597 A1 WO2008023597 A1 WO 2008023597A1 JP 2007065824 W JP2007065824 W JP 2007065824W WO 2008023597 A1 WO2008023597 A1 WO 2008023597A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese dioxide
nanoneedle
manganese
type
infrared
Prior art date
Application number
PCT/JP2007/065824
Other languages
English (en)
French (fr)
Inventor
Hideki Koyanaka
Original Assignee
Toda Kogyo Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006229893A external-priority patent/JP5069881B2/ja
Application filed by Toda Kogyo Corp. filed Critical Toda Kogyo Corp.
Publication of WO2008023597A1 publication Critical patent/WO2008023597A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like

Definitions

  • the present invention relates to an R-type manganese dioxide nanoneedle porous body, an R-type manganese dioxide nanoneedle constituting the porous body, hydrogenated manganese oxide, an infrared absorbing material, an infrared filter, and a production method thereof. .
  • Porous material is a general term for solids having pores of various sizes inside and outside, making use of its structure and surface properties, heat insulating material, buffer material, sound absorbing material, or the present invention.
  • the adsorbents used in the field are used in many ways as catalyst carriers. This porous material is classified into microporous (2 nm or less), mesoporous (2 to 50 nm), and macroporous (50 nm or more) depending on the average pore diameter.
  • Non-Patent Document 3 a synthesis with an average pore diameter of 2 nm was reported in 1997 (see Non-Patent Document 3).
  • the average pore diameter of 2nm is a boundary region with microporous, and the catalytic reaction involving compounds with large molecular diameters such as natural gas and the adsorption and analysis of complexes in solution.
  • the pore size is small, so the manganese dioxide mesoporous material with an average pore diameter of around 10 to 20 nm has great expectation in every direction. Yes.
  • manganese dioxide is classified into ⁇ (alpha), ⁇ (beta), ⁇ (gamma), ⁇ (epsilon), ⁇ (delta), ⁇ (lambda), and R (R) types depending on the crystal structure. Has been.
  • the ⁇ type is a crystal structure in which the / 3 type, the ⁇ type, and the R type are mixed.
  • the difference in crystal structure is because the uniform and regular arrangement of octahedrons (octahedrons in which six oxygen atoms are coordinated around manganese atoms), which is the smallest unit constituting the crystal, is different. Is well known to occur.
  • R-type manganese dioxide is obtained by a hydrothermal synthesis method using a lithium manganese oxide as a starting material having a spinel crystal structure in which lithium is coordinated in a ⁇ (lambda) -type manganese dioxide crystal.
  • a lithium manganese oxide as a starting material having a spinel crystal structure in which lithium is coordinated in a ⁇ (lambda) -type manganese dioxide crystal.
  • ⁇ (lambda) -type manganese dioxide crystal there are no examples of synthesis of R-type manganese dioxide in the nanoscale and needle shape by other synthesis methods.
  • Non-Patent Document 1 J. S. Beck et al, J. Am. Chem. Soc., 1 14, 10834 (199 2)
  • Non-Patent Document 2 J. C. Vartuli et al., Chem. Mater., 6, 2317 (1994)
  • Non-Patent Document 3 Zheng— Rong Tian et al. Science vol. 276
  • Non-Patent Document 4 H. Rossouw, J. Mater, chem, vol. 2, 1992
  • Non-Patent Document 5 Iikubo et al., "Local structure analysis of manganese oxide nanoparticles", Proceedings of the 4th Annual Meeting of the Nano Society (issued May 19, 2006)
  • the present invention has been made from the background as described above, and is a nanoscale.
  • High-specific surface area R-type Manganese dioxide nanoneedle porous body composed of R-type manganese dioxide nanoneedles, R-type manganese dioxide nanoneedle, infrared absorbing material, infrared filter, and production method thereof It is an issue to provide.
  • the present invention is characterized by the following in order to solve the above problems.
  • a manganese dioxide nanoneedle porous body comprising needle-shaped nanoneedles mainly composed of R-type manganese dioxide, and a mesoporous porous structure formed by these nanoneedles.
  • the average pore diameter of the mesoporous structure is in the range of 15 nm to 30 nm, the BET specific surface area is in the range of 40 to 50 m 2 / g, and the total pore volume is in the range of 0 .;! To 0.3 cm 3 / g.
  • Needle-shaped R-type manganese dioxide nanoneedles that are nanometer-scale and mainly composed of R-type manganese dioxide.
  • ⁇ 6> A metal-supported R-type manganese dioxide nanoneedle, wherein a metal is supported on the R-type manganese dioxide nanoneedle of the above ⁇ 4> or ⁇ 5>.
  • Nanoparticles of hydrogenated manganese oxide HMnO according to the above ⁇ 8> which have a thickness of 2 to 10 nm and a length of 5 to 30 nm and are needle-shaped.
  • a method for producing a manganese dioxide nanoneedle porous body characterized by baking, acid-treating it into a paste, and then drying.
  • the drying treatment after forming a paste is performed by preliminary drying in a temperature range of 50 to 95 ° C, followed by drying in a temperature range of 100 to 120 ° C.
  • a method for producing hydrogenated manganese oxide HMnO nanoparticles which comprises subjecting the R-type manganese dioxide nanoneedles of ⁇ 4> or ⁇ 5> to an acid treatment.
  • a mesoporous porous body containing manganese dioxide as a chemical component, an R-type manganese dioxide nanoneedle constituting the mesoporous body, and a production method capable of easily producing these are provided.
  • the above manganese dioxide nanoneedle porous material is applied to a fuel cell electrode material or a base material such as a catalyst carrier, in addition to the properties of a solid acid and novel optical properties that are expressed by acid treatment. Is possible.
  • an infrared ray absorbing material using the above manganese dioxide nanoneedle porous body and an infrared filter containing the same are provided.
  • Infrared rays have a wavelength of the order of micrometers as electromagnetic waves, and are heat rays in terms of energy.
  • in order to make a material absorb infrared rays there are known methods for coating and coating a carbon material having a property of absorbing infrared rays on the surface of the material and adding it to the material. In order to obtain a higher absorption effect with the added amount, a material having a high heat capacity per unit volume and a high heat insulating property was required.
  • the infrared absorbing material of the present application is composed of a manganese dioxide nanoneedle porous body having a BET specific surface area of 40 to 200 m 2 / g, and is twice or more heavier than the specific gravity of a normal carbon material. Large heat capacity. For this reason, infrared rays can be efficiently absorbed with a smaller amount of coating and addition.
  • the above manganese dioxide nanoneedle porous body can be manufactured inexpensively and easily, it can be realized at a low cost even if it is one infrared absorbing material and an infrared filter. I'll do it.
  • Fig. 1 is a schematic view of the mechanism of synthesis of hydrogenated manganese oxide HMnO of the present application.
  • FIG. 4 is a transmission electron microscope image of nanoneedle aggregates in Reference Example.
  • FIG. 5 is a transmission electron microscope image of the tip of a nanoneedle in a reference example. Sono 6] This is a surface analysis result of the nanoneedle aggregate in the reference example by the nitrogen gas adsorption method.
  • Example 7 A transmission electron microscope image of the nanoneedle aggregate in Example 1.
  • Example 4 A transmission electron microscope image of another nanoneedle aggregate in Example 1.
  • FIG. 16 is a high resolution photograph of FIG.
  • FIG. 19 shows the analysis results of manganese valence by X-ray absorption edge analysis (XANES) of the paste in Example 6.
  • FIG. 20 is a schematic diagram of (H + , e 1) MnO.
  • FIG. 23 is a graph showing the infrared absorption characteristics of the manganese dioxide nanoneedle porous material in Example 10.
  • FIG. 24 is a graph showing the infrared transmission characteristics of the manganese dioxide nanoneedle porous material in Example 11.
  • FIG. 25 is a graph showing the infrared transmission characteristics of calcined manganese carbonate in Example 11.
  • FIG. 26 is a graph showing the infrared absorption characteristics of the manganese dioxide nanoneedle porous material in Example 12.
  • FIG. 27 is a graph showing infrared transmission characteristics of commercially available manganese dioxide in a comparative example.
  • FIG. 28 is a graph showing infrared transmission characteristics of commercially available manganese (III) oxide in a comparative example.
  • FIG. 29 is a diagram showing the infrared transmission characteristics of commercially available titanium (IV) oxide in a comparative example.
  • the manganese dioxide nanoneedle porous body of the present invention is composed of needle-shaped nanoneedles mainly composed of R-type manganese dioxide, and a mesoporous porous structure is formed by these nanoneedles. It is said.
  • the needle-shaped nanoneedle mainly composed of R-type manganese dioxide is generally composed of 50% or more by weight, preferably 80% or more, and more preferably 95% or more of R-type manganese dioxide as a component.
  • the size, that is, the thickness (average diameter) and length (distance between both ends) are on the nanometer scale, and the thickness is substantially uniform and has a needle-like shape (also called a rod). .
  • This manganese dioxide nanoneedle porous body has, for example, an average pore diameter of a mesoporous structure of 3 nm to 30 nm and a BET specific surface area of 40 to; 115 m 2 / g. Is considered. Particularly, an average pore diameter in the range of BET specific surface area force S50 ⁇ 200m 2 / g at 3 nm to 15 nm, inter alia average pore diameter 7nm ⁇ ; 80 ⁇ a BET specific surface area in the 14nm; 130m 2 / g Or an average pore diameter of 15 nm to 30 nm and a BET specific surface area of 40 to 50 m 2 / g. Diacid The total pore volume of the mesoporous porous structure of the manganese fluoride nanoneedle porous body is about 0.;! To 0 • 5 cm zg.
  • mangan dioxide nanoneedle porous bodies having different average pore diameters and different BET specific surface areas.
  • porous manganese dioxide nanoneedles with different average pore diameters and BET specific surface areas have different thicknesses (average diameters) and lengths (distances at both ends), which are obtained by different production conditions. This is due to the type of carbon dioxide nanoneedle.
  • Manganese dioxide nanoneedle porous bodies with different average pore diameters and BET specific surface areas, and R-type manganese dioxide nanoneedles with different thicknesses and lengths are made separately. The control of the specific surface area of the needle porous body has been made by the method discovered by the present inventors.
  • the present invention relates to a relatively large nanoneedle, specifically, a nanoneedle having a thickness of 10 to 30 nm and a length of 30 to 30 Onm, and an average pore diameter of 15 nm to 30 composed of the nanoneedle.
  • the following explains the manganese dioxide nanoneedle porous material having a BET specific surface area in the range of 40 to 50 m 2 / g, hydrogenated manganese oxide nanoparticles, their production method, etc.
  • the R-type manganese dioxide nanoneedles of the present invention have, for example, a thickness (average diameter) and length (distance between both ends) ranging from 1 to 100 nm in thickness and 3 to 900 nm in length.
  • High-purity R-type manganese dioxide nanoneedles can be synthesized in a short time.
  • the R-type manganese dioxide nanoneedles include those having a thickness of 2 to 10 nm and a length of 5 to 30 nm, and a thickness of 10 to 30 nm and a length of 30 to 300 nm.
  • the R-type manganese dioxide nanoneedles are aggregated and blocked to form a mesoporous porous structure, resulting in a manganese dioxide nanoneedle porous body.
  • a manganese dioxide nanoneedle porous body composed of nanoneedles having a thickness of 2 to 10 nm and a length of 5 to 30 nm has an average pore diameter of a mesoporous structure of 7 nm to 14 nm and a BET specific surface area of 80 to 80 nm.
  • a manganese dioxide nanoneedle porous body composed of nanoneedles having a thickness of 10 to 30 nm and a length of 30 to 300 nm has an average pore diameter of 15 ⁇ m to 30 nm and a BET specific surface area of 40 mesoporous structure.
  • a porous structure is formed in a range of ⁇ 50 m 2 / g and a total pore volume of 0.;! To 0.3 cm 3 / g.
  • the manganese dioxide nanoneedle porous body as described above is a block formed by entanglement of nanoneedles!
  • the surface hardness of the blocked manganese dioxide nanoneedle porous body is relatively hard. Specifically, the picker hardness is about 15 to 30 as measured by the Vickers hardness test method. Considering that the Vickers hardness of aluminum metal is 50 or more, it can be seen that the surface hardness of the porous manganese dioxide nanoneedle of the present invention is considerably high.
  • the manganese dioxide nanoneedle porous body described above for example, baked a powder of manganese carbonate n hydrate MnCO ⁇ ⁇ ⁇ , acid-treated to produce hydrogenated manganese oxide ⁇
  • the firing temperature is preferably in the range of 180 ° C to 205 ° C, for example.
  • the firing temperature is less than 180 ° C, the thickness of the outer shell of manganese oxide MnO obtained after firing is thin on average.
  • Manganese dioxide nanoneedles that make up the gunnanoneedle porous body cannot be produced sufficiently.
  • the firing temperature exceeds 205 ° C, the outer shell of manganese oxide Mn O on the surface of manganese carbonate obtained after firing becomes thick, and the amount of residual manganese carbonate as a raw material is small.
  • the surface of manganese carbonate n-hydrate powder is oxidized by firing, and the outer shell of manganese oxide Mn O
  • a powder of manganese carbonate MnCO with 2 3 is obtained.
  • the manganese carbonate powder having an outer shell of manganese oxide MnO was acid-treated.
  • manganese carbonate is dissolved and removed as manganese chloride to generate manganese ions Mn 2+ .
  • This manganese ion Mn 2 is in contact with hydrated manganese dioxide ⁇ ⁇ ⁇ ⁇
  • Fig. 1 (a) shows carbonic acid with an outer shell (coating) of manganese oxide MnO obtained after firing.
  • the manganese carbonate particles are produced by acid treatment, for example, by suspending manganese carbonate particles in an acid treatment solution such as dilute hydrochloric acid and suspending the manganese oxide Mn O in the outer shell from chlorine gas generated by contact with dilute hydrochloric acid. Influenced
  • Cancer MnCl becomes divalent manganese ion Mn 2+ and carbonic acid component is carbon dioxide C0 gas.
  • the above reaction is considered to be a catalytic reaction. That is, a powder obtained by mixing manganese oxide MnO, which is a component of the outer shell, and manganese carbonate MnCOn hydrate, is treated with acid in the same manner as described above. When processed and dried, beta-type MnO is obtained, but R-type MnO is not obtained.
  • manganese oxide Mn O which is a component of the outer shell, manganese carbonate MnC ⁇ n water
  • manganese carbonate ⁇ ⁇ hydrate (reagent special grade Wako Pure Chemical Industries) is used in the examples described later.
  • This powder of manganese carbonate ⁇ hydrate MnCO ⁇ ⁇ ⁇ is generally several nanometers to several tens nanometers in size.
  • the amorphous single crystal particles are aggregated to form grains having a particle size of about 1 to several tens of micrometers. Note that this manganese carbonate ⁇ hydrate MnCO ⁇ ⁇ ⁇ powder opens the reagent bottle.
  • the manganese carbonate ⁇ hydrate absorbs moisture and becomes coarse, resulting in a group of particles with non-uniform sizes. It is preferable because the thickness and shape of manganese oxide Mn O generated in the outer shell during firing may not be uniform.
  • the acid used for the acid treatment may be an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid, etc.
  • hydrochloric acid has an effect of promoting nanoneedle growth at the stage of the drying treatment after the acid treatment. Therefore, it is preferable.
  • the acid concentration is in the range of 0.;! To 3. Omol / L, more preferably in the range of 0.5 to O; 1. Omol / L.
  • O ⁇ ⁇ ⁇ powder is baked, and this is fired in acid treatment solution such as dilute hydrochloric acid for 1-5 hours
  • the number of acid treatments is determined by the generation of carbon dioxide bubbles generated from the fired manganese carbonate subjected to acid treatment. It is sufficient if it becomes invisible even after repeated.
  • concentrated hydrochloric acid is used in a timely manner so that the pH of dilute hydrochloric acid during acid treatment is kept at 4 or less in one beaker without repeating the acid treatment by re-pouring dilute hydrochloric acid into a 1L beaker each time.
  • dripping may be performed, the pH rises drastically due to the water generated from the dissolution reaction of manganese carbonate, especially during the first acid treatment. For this reason, it is not easy to keep the pH below 4 or less without a dedicated titrator. For this reason, in this method, the number of acid treatments is repeated several times.
  • the recovered material is a manganese oxide HMnO nanoparticle hydrogenated in a water-containing state.
  • Nano-particles are amorphous. After the paste is dried to synthesize R-type manganese dioxide nanoneedles, the R-type manganese dioxide nanoneedles are treated with acid again, and the R-type manganese dioxide Hydrogenated manganese oxide with the same size and shape as the nanoneedle of HMnO
  • the acid treatment of R-type manganese dioxide nanoneedles is the same as the acid treatment of the powder of manganese carbonate nhydrate MnCO ⁇ ⁇ ⁇ .
  • the manganese dioxide nanoneedle porous body is obtained by a drying process of a paste. During the drying process, moisture evaporates from the paste, resulting in an amorphous hydrogenated manganese oxide. Particles grow into R-type manganese dioxide ⁇ ⁇ ⁇ ⁇ nanoneedles,
  • nanoneedles are entangled with each other, and it is possible to obtain a block with a size of centimeter. If the manganese oxide nanoneedles are not obtained and the manganese oxide nanoparticles are simply obtained as the main component! /, Or if the removal of the raw material components is incomplete, it is obtained by the above drying treatment. The material does not block, becomes brittle sand, and the surface Vickers hardness is even difficult to measure.
  • the paste is applied to a metal mesh of about several hundred meshes (the material of the mesh can be changed depending on the application, such as Teflon (registered trademark) or carbon mesh) and dried.
  • the mesh becomes an aggregate, and it is possible to create a membrane that has a shape suitable for various applications.
  • it can be joined by heating at 150 to 220 ° C, preferably 200 ° C in a state where the film-like bodies thus obtained are in contact with each other. It is also possible to easily increase the film thickness.
  • the average pore diameter and the BET specific surface area of the block or film obtained after the above drying treatment were measured by the nitrogen gas adsorption method, the average pore diameter was in the range of 3 nm to 30 nm, and the BET ratio
  • the mesoporous structure has a surface area in the range of 40 to 200 m 2 / g.
  • Manganese carbonate n-hydrate is baked in the crucible as described above.
  • the shape of this crucible is that the raw material manganese carbonate MnCO ⁇ ⁇ ⁇ is manganese oxide ⁇
  • the shape is preferred. Specifically, a crucible shape having a lid with a small hole in the center is preferable. Carbon dioxide Obtained after firing by making CO gas flow direction one direction
  • Manganese oxide Mn O outer shell thickness can be made constant and finally obtained
  • the yield of needle-like manganese dioxide can be improved.
  • the raw material manganese carbonate MnCO ⁇ ⁇ ⁇ ⁇ is fired on a flat dish-type ceramic plate with a wide opening
  • the thickness of the outer shell of the gun Mn O is not constant, resulting in a needle-like
  • the power considered to use an electric furnace for firing In order to uniformly oxidize the surface of manganese carbonate, this electric furnace has a vent hole to the outside and sufficient capacity in the furnace. It is preferable that it has. When firing in an electric furnace that is sealed so that the volume in the furnace is about the size of the crucible containing the raw material, the surface of the manganese carbonate is not easily oxidized, which is not preferable.
  • the size of the resulting manganese dioxide nanoneedles is controlled by changing the drying conditions of the paste, and the average pore diameter and the BET specific surface area of the manganese dioxide nanoneedle porous material are controlled. Can be adjusted.
  • a drying condition the above paste is washed with pure water in a glass petri dish or the like with a drier etc. in the atmosphere to wash the acid adhering during acid treatment!
  • the paste thinly spread on a petri dish heated and maintained at 100 to 120 ° C and dried for 6 to 24 hours, that is, the moisture dehydration rate in the paste is reduced.
  • R-type manganese dioxide nanoneedles By speeding up, the size of the obtained R-type manganese dioxide nanoneedles can be reduced. Specifically, it is possible to make an R-type manganese dioxide nanoneedle having a thickness of 2 to 10 nm and a length of 5 to 30 nm.
  • the paste is preliminarily dried at 50 to 95 ° C, preferably 80 to 90 ° C for 6 to 12 hours. Then, the amount of hydrogen ions in the paste was increased by completely drying at 100 to 120 ° C for about 12 to 24 hours, or by adding dilute acid such as dilute hydrochloric acid to the paste. Then, perform the above pre-drying and then dry completely, or wrap the paste with filter paper moistened with dilute acid and dry it, etc. to slow the moisture dehydration rate from the paste. By doing so, it is possible to obtain nano-needles of larger R-type manganese dioxide.
  • an R-type manganese dioxide nanoneedle having a thickness of 10 to 30 nm and a length of 30 to 300 nm can be obtained.
  • the powder of manganese carbonate n hydrate MnCO ⁇ ⁇ ⁇ is fired and stirred in an acid treatment solution such as dilute hydrochloric acid.
  • the paste recovered by solid-liquid separation with a vacuum filter naturally contains dilute hydrochloric acid.
  • 2-8 ml of dilute hydrochloric acid may be newly added to about 10 grams of paste, but when collecting the paste with a vacuum filter, Alternatively, the filtration operation may be stopped when the dilute hydrochloric acid is not completely removed by suction, so that a large excess of dilute hydrochloric acid may be recovered while contained in the paste.
  • the size of the nano-needle of R-type manganese dioxide can be reduced. You can control power S.
  • a nanoneedle is prototyped and synthesized in advance under predetermined drying conditions, and the size of the nanoneedle is measured.
  • the target nanoneedle can be obtained by appropriately setting conditions. For example, if the size of the target nano needle is larger than the nano needles that have been pre-fabricated and synthesized in advance, use dilute hydrochloric acid for the acid treatment and slow the dehydration rate under the drying conditions, or pre-dry the paste. To implement.
  • the paste obtained after acid treatment was washed with pure water to wash away the adhering acid, and dehydration under dry conditions. Set the conditions so that the speed is increased or the paste is completely dried without pre-drying.
  • the manganese dioxide nanoneedle porous body in which the R-type manganese dioxide nanoneedles are aggregated to form a mesoporous porous structure has an average pore diameter and specific surface area that is the same as the thickness of the R-type manganese dioxide nanoneedles. Depends on length.
  • the average pore diameter is in the range of 7 nm to 14 nm
  • the BET specific surface area Is 80 to 30 m 2 / g and the total pore volume is in the range of 0.2 to 0.5 cm 3 / g.
  • the average pore diameter is in the range of 15 nm-30 nm, BET specific surface area force S40- 50 m 2 / g, and the total pore volume is in the range of 0 ⁇ ;! to 0 ⁇ 3 cm 3 / g.
  • the present invention provides a manganese dioxide mesoporous material having an average pore diameter and a specific surface area according to the purpose of use by adjusting the drying conditions and the amount of acid and type of acid contained in the paste. Can be synthesized.
  • the present invention is finally obtained by mixing bismuth carbonate carbonate with manganese carbonate hydrate as a raw material, and performing firing, acid treatment and drying treatment by the above-described series of methods.
  • the specific surface area of the mesoporous porous material composed of R-type manganese dioxide nanoneedles can be improved.
  • the BET specific surface area of the mesoporous material can be improved to about 200 m 2 / g, and the average pore diameter can be reduced to about 3 nm.
  • a material that can serve as such a template may be any material that has a lower solubility in an acid-treated solution where the temperature at which it turns into an oxide than that of carbonic acid mangan hydrate is higher than that of carbonic acid mangan. It is not limited to the above bismuth carbonate
  • the manganese dioxide nanoneedle porous body can be used as an infrared absorbing material. It is effective to evaluate the infrared absorption ability 'transmitting ability as an infrared absorbing material, for example, using an infrared spectrophotometer (FT' IR) as in the examples described later.
  • FT' IR infrared spectrophotometer
  • This infrared spectrophotometer is used to measure infrared rays in the wavelength range of 2.5 to 25 m emitted from a ceramic light source with a total output of 170 W onto a test body in which the above-mentioned manganese dioxide nanoneedle porous body is pressed with a press. Is being irradiated.
  • the specimen has a diameter of 10 mm and a thickness of 0.5 mm (error plus or minus 0.1 mm)
  • the weight of the porous manganese dioxide nanoneedle in the specimen is 0.2 g or more, the irradiated infrared ray is hardly transmitted. It was found that it absorbed without being absorbed. It was also found that when the weight of the manganese dioxide nanoneedle porous material in the test specimen was reduced to 0.115 g, infrared transmission was observed in the region of 10 m or more.
  • the manganese dioxide nanoneedle porous material powder after drying is applied to the surface of any material or added to the paint. Infrared absorbing ability can be added to the surface of In addition, by applying the paste before drying and solidifying to a cloth such as cloth, and then drying it, it is possible to add infrared absorption capability to the surface of an irregular material such as cloth cloth.
  • the present invention also provides an infrared filter containing the above infrared absorbing material.
  • This infrared filter has a specific wavelength in the infrared region with a wavelength of 10 m or more. Only infrared rays can be selectively transmitted. Specifically, for example, when infrared light of a wavelength range of 2.5 to 25 m is irradiated from a ceramic light source having a total output of 170 W, the wavelength range is 10 to 14 111, the half-width (transmittance from 0% to peak top transmission) (Peak width at half height up to rate) 1. 2 to; 1. Infrared rays in the range of 6 are transmitted, more preferably in the wavelength region 12 to 13 m, half width 1 to 3 to! Transmits infrared rays in the range of 5 m.
  • the above infrared filter can be manufactured by adding to a transparent material such as glass or resin or KBr powder described later, which transmits infrared rays.
  • the performance of the infrared filter can be evaluated by measuring with an infrared spectrophotometer like the above-described infrared absorbing material.
  • an infrared spectrophotometer like the above-described infrared absorbing material.
  • manganese dioxide nanoneedle porous powder and KBr powder are mixed well in an agate mortar at a weight mixing ratio of 1: 15.5, and this is mixed with a press machine with a diameter of 10 mm and a thickness of 0.5 mm (error plus or minus 0). 1mm) is emitted from a ceramic light source with a total output of 170W into a test piece. 2.
  • the test piece is irradiated with infrared rays in the wavelength range of 5 to 25 Hm, the infrared absorption and transmission capabilities are evaluated.
  • Infrared transmission intensity peak top wavelength is 12 ⁇ 3-12.5 m, half width (transmittance 0% force, peak width at half height to peak top transmittance) 1. 36 -1. It can be seen that it shows infrared transmittance of 49 m.
  • a peak due to adsorbed water was observed, and the half-value width of the transmission peak was nearly 10% wider. was gotten. For this reason, the infrared absorbing ability of the mangan dioxide nanoneedle porous material is high, the ability to transmit infrared light in the narrow wavelength region, and the excellent performance as an infrared filter! S
  • the infrared filter of the present application when a manganese dioxide nanoneedle porous body having a large specific surface area is used, the intensity of infrared rays transmitted through the test specimen tends to be low. Therefore, when the output of incident infrared rays is high, infrared rays can be effectively absorbed by using a manganese dioxide nanoneedle porous body having a large specific surface area.
  • the infrared filter of the present application can control the infrared transmittance by appropriately selecting the addition amount and specific surface area of the manganese dioxide nanoneedle porous material.
  • the hydrogenated manganese oxide HMnO of the present invention has a crystal structure of manganese dioxide MnO.
  • This hydrogenated manganese oxide can be converted into a metal complex such as HAuCl or palladium, such as PdCl or PdOH, in water without additional electrical energy.
  • Manganese is a chemical species produced by the reduction of manganese to +3 valence by invasion of proton H +, and contains at least 40% of +3 valent manganese. Furthermore, these X-ray diffraction patterns show a clear shift of the diffraction peak position depending on the proton content, compared to the X-ray diffraction pattern of R-type manganese dioxide.
  • the hydrogenated manganese oxide of the present invention shows 1) the same X-ray diffraction peak position as that of R-type manganese dioxide, and 2) + tetravalent manganese by X-ray absorption edge analysis. 3)
  • Groutite and G routellite which are known hydrogenated manganese oxides! /
  • Gold complex is strong against palladium complex! /
  • proton H + is a source of two oxygen atoms.
  • the vertical axis represents the vibration intensity
  • the horizontal axis represents the vibration energy.
  • the graph indicated by the black circle is the result of irradiating the hydrogenated manganese oxide of the present invention with neutrons
  • the other graph is the result of irradiating ice with neutrons for comparison.
  • (A) shown in the upper right of FIG. 2 is an enlarged view of the vibration energy range of 0 to 50 meV (horizontal axis).
  • the peak detected at 366 meV in the graph of hydrogenated manganese oxide shows the presence of proton H + trapped and oscillating between oxygen atoms with a bond distance of 2.57-2.60
  • A Water contained in manganese oxide hydrogenated by acid treatment
  • Vibration energy of hydrogen atom / oxygen atom bond which is different from 410 meV which is vibration energy of proton H +.
  • 410 meV vibration energy of proton H +.
  • ice graph there is no 366 meV peak originating from acid treatment, and only OH vibration originating from water is observed.
  • the measurement was performed using an inelastic neutron scattering energy measurement device HRMECS from the Intense Pulsed Neutron Source division at Argonne National Laboratory, USA, and the measurement temperature was 9K.
  • Table 1 shows the distances between oxygen atoms and oxygen atoms existing in manganese dioxide having various crystal structures.
  • Oxygen atom having an interatomic distance of 2.589A The bond of oxygen atoms forms a network along the b-axis direction of the crystal structure of R-type manganese dioxide, as shown in FIG.
  • the R-type manganese dioxide of the present application in which high-purity R-type crystals are obtained as highly reactive nanoparticles, has an energy loss due to the conductivity of protons H + and the electrons e accompanying the protons. It is expected to be applied as a low-conductivity conductive material.
  • the maximum number of protons H + and electrons e_ that can be dissolved in hydrogenated manganese oxide is the number of oxygen atoms and oxygen atom bonds with bond lengths of 2.573 and 2.589A existing in the crystal. It is considered equal.
  • protons H + and electrons e trapped between these oxygen atoms _ Is also thought to be distributed at a uniform density within the crystal. For this reason, compared to the case where only electrons e_ exist in the crystal of manganese dioxide, it is more difficult for local electric field concentration to occur on the surface of manganese dioxide! / .
  • metal gold nanoparticles or metal palladium nanoparticles can be reduced and deposited as described above. Can be formed on the surface.
  • hydrogen gas H is decomposed into protons H + to form palladium.
  • the manganese oxide deposited with high-density and uniformly-distributed palladium nanoparticles realized by the present application is used for hydrogen gas and carbonization. Applications in the field of hydrogen gas decomposition catalysts are expected.
  • porous mesoporous materials composed of R-type manganese dioxide nanoneedles with a thickness of 2 to 10 nm and a length of 5 to 30 nm
  • Norebo crucible inner diameter 6cm, depth 5cm, gas outlet hole inner diameter 5mm
  • the rate of temperature increase from room temperature to 195 ° C was 3 ° C / min.
  • 50 g of the powder obtained by firing was suspended in 1 L of dilute hydrochloric acid having a water temperature of 14 ° C. and a concentration of 0.5 M, and the mixture was stirred for 1 hour with a magnetic stirrer.
  • a magnetic stirrer was installed in a place where the suspension was exposed to sunlight through the ground glass of a laboratory window.
  • Manganese oxide was collected from the suspension after stirring for 1 hour on a filter paper with a vacuum filter to obtain a wet paste.
  • the paste was again acid-treated twice under the same conditions as described above. Therefore, the acid treatment was performed three times on the calcined manganese carbonate n-hydrate. Finally, the acid-treated paste was washed with pure water of lOOmL and then stored in a glass sealed container as it was.
  • the tip of the nanoneedle had a rounded shape (rounded corners).
  • the TEM photograph was taken using a JEOL transmission electron microscope! EM-ARM1000.
  • the surface analysis by nitrogen adsorption method (see FIG. 6) the average sampled material pore diameter 11. 7 nm, BET specific surface area 109. 35m 2 / g, total pore volume 0. 32cm 3 / It was confirmed to be a mesoporous porous material of g.
  • ASAP2020 made by Shimadzu Corporation Micromeritics was used.
  • the surface hardness of the block was measured by the Vickers hardness test method.
  • the surface of the block was covered with a gold thin film by the sputtering method to increase the reflectivity of the surface, and the size of the test indentation was measured.
  • the block surface had a Vickers hardness of 24.
  • a micro Vickers hardness tester HMV-2000 manufactured by Shimadzu Corporation was used for measurement of Vickers hardness.
  • porous mesoporous materials composed of R-type manganese dioxide nanoneedles with a thickness of 10-30 nm and a length of 30-300 nm
  • FIGS. 7 and 8 A photograph of the tip of the nanoneedle observed is shown in FIG. From Fig. 9, it was confirmed that the tip of the nano needle was rounded.
  • Figure 10 is a high-resolution photograph of Figure 7. In FIG. 10, the disorder of the crystal on the (101) plane can be observed. The high contrast of the electron diffraction pattern obtained by image processing in the lower right indicates the high crystallinity of this sample.
  • the TEM photograph was taken using a JEOL transmission electron microscope IlEM-ARM1000.
  • the surface analysis results by the nitrogen gas adsorption method (see FIG. 11), sampled FIG materials BJH desorption side average pore diameter 17. 81 nm, BET specific surface area 46. 5 m 2 / g, total pore It was confirmed to be a mesoporous material having a pore volume of 0.22 cm 3 / g.
  • ASAP2020 made by Shimadzu Corporation Ichi Micromeritics was used for measurement of average pore diameter, BET specific surface area, and total pore volume.
  • the block is mainly composed of R-type manganese dioxide, and the X-ray diffraction pattern has a diffraction pattern originating from manganese carbonate. No peaks were observed, confirming that there was no residual manganese carbonate! / (See Fig. 12).
  • the number next to the rhombus indicates the theoretical diffraction angle peak position of the X-ray diffraction peak of R-type manganese dioxide. It can be seen that the sample of the present invention shows a peak at the position of the theoretical diffraction angle peak of the R-type manganese dioxide.
  • an X-ray diffraction analyzer RAD-IV made by Rigaku was used.
  • the surface hardness of the block was measured by the Vickers hardness test method.
  • the surface of the block was coated with a gold thin film by the sputtering method, thereby increasing the reflectivity of the surface and confirming the size of the test indentation.
  • the block surface had a Vickers hardness of 27.
  • Shimadzu A MICRO-Vickers hardness tester HMV—2000 was used for the measurement of Vickers hardness.
  • porous mesoporous materials composed of R-type manganese dioxide nanoneedles with a thickness of 5-10 nm and length of 20-150 nm
  • Manganese oxide was collected from the suspension after stirring for 2 hours and 30 minutes on a filter paper with a vacuum filter to obtain a wet paste.
  • the paste was again acid-treated under the same conditions as described above twice and collected on a filter paper with a vacuum filter to obtain a wet paste. Therefore, the calcined manganese carbonate n-hydrate was acid-treated a total of 3 times.
  • the TEM photograph was taken using a JEOL transmission electron microscope (ILEM-ARM1000).
  • the sampled material was obtained from the surface analysis result by nitrogen gas adsorption method (see Fig. 13). Was confirmed to be a mesoporous porous material having a BJH desorption-side average pore diameter of 13.15 nm, a BET specific surface area of 53.7 m 2 / g, and a total pore volume of 0.20 cm 3 / g.
  • Shimadzu Corporation 1 Micromeritics ASAP2020 was used for the measurement of average pore diameter, BET specific surface area, and total pore volume.
  • the block is mainly composed of R-type manganese dioxide, and the X-ray diffraction pattern contains manganese carbonate. Since no origin diffraction peak was observed, it was confirmed that the raw material manganese carbonate did not remain.
  • the rhombus indicates the theoretical diffraction angle peak position of the X-ray diffraction peak of R-type manganese dioxide. From FIG. 14, it can be seen that the sample of the present invention shows a peak at the position of the theoretical diffraction angle peak of the R-type mangan dioxide.
  • an X-ray diffraction analyzer RAD-IV made by Rigaku was used.
  • the surface hardness of the block was measured by the Vickers hardness test method.
  • the surface of the block was coated with a gold thin film by the sputtering method, thereby increasing the reflectivity of the surface and confirming the size of the test indentation.
  • the Vickers hardness of the block surface was 30.
  • a micro Vickers hardness tester HMV-2000 manufactured by Shimadzu Corporation was used for measurement of Vickers hardness.
  • porous mesoporous materials composed of R-type manganese dioxide nanoneedles with a thickness of 2 to 10 nm and a length of 5 to 30 nm
  • Manganese oxide was collected from the suspension after stirring for 1 hour on a filter paper with a vacuum filter to obtain a wet paste.
  • the paste was again acid-treated twice under the same conditions as described above. Therefore, manganese carbonate n hydrated
  • the powder obtained by firing the mixed powder of the product and bismuth carbonate was subjected to acid treatment three times. Finally, the acid-treated paste was washed with lOOmL of pure water and then stored in a glass sealed container in a wet state.
  • the TEM photograph was taken using a JEOL transmission electron microscope (ILEM-ARM1000).
  • the sampled material was meso having a BJH desorption side average pore diameter of 9.26 nm, a BET specific surface area of 173. 29 m 2 / g, and a total pore volume of 0.40 cm 3 / g. It was confirmed to be a porous porous body.
  • the block is mainly composed of R-type manganese dioxide, and the X-ray diffraction pattern has a diffraction peak originating from carbonic acid manganese, It was confirmed that almost no peaks originating from bismuth carbonate and bismuth oxide were observed. Therefore, the raw material manganese carbonate and bismuth carbonate oxide hardly remain in the block, and calcination at a low temperature such as 195 ° C gives impurities from the viewpoint of the chemical composition of the porous body Bismuth oxide Bi O is raw
  • R-type manganese dioxide which is a component of the nanoneedle obtained in Example 2, was evaluated using the results of X-ray diffraction analysis.
  • Purity which is an index that represents a distortion of the manganese dioxide crystal 1 distortion factor "Jahn- Teller distortion lactor (Y. Chabre and J. Pannetie r, Structural and electrochemical properties of the proton Z gamm a -Mn02, Prog. Solid St. Chem., Vol. 23, pp. 1—130, 199 5), K. Suetsugu, K. Sekitani and T. Shoji, An investigation of structural water in electrolytic manganese dioxide (EMD), TO SOH, Research & Technology Review , Vol. 49, pp. 21— 27, 20
  • a is a three-dimensional axis that determines the crystal axis
  • Example 2 acid treatment was carried out using dilute sulfuric acid having a concentration of 0.5M instead of dilute hydrochloric acid having a concentration of 0.5M. Also, the acid added to the paste after acid treatment and the acid contained in the filter paper that wraps the paste were dried under the conditions of Example 1, using 0.5 M dilute sulfuric acid instead of dilute hydrochloric acid. The obtained sample was analyzed by X-ray diffraction. As a result, an X-ray diffraction pattern unique to R-type manganese dioxide was obtained even when dilute sulfuric acid was used. Therefore, it was found that R-type manganese dioxide can be obtained even when sulfuric acid, which is cheaper than hydrochloric acid, is used.
  • this paste is manganese dioxide in which the R type and the epsilon type are mixed crystals.
  • R—MnO R-type manganese dioxide
  • a pattern almost similar to the diffraction pattern of R-type manganese dioxide before acid treatment again was obtained. This indicates that once the paste is sufficiently dried to form R-type manganese dioxide, the R-type crystal structure is maintained even when it is acid-treated again.
  • LAH MacLean, FL Tye The structure of full y H. inserted gamma ⁇ manganese dioxide compounds j. Sold State Chemistry 123, pp.
  • Rigaku RAD-II B was used for laboratory X-ray measurements.
  • Figure 2 shows the 2 2 equation diagram.
  • (H + , e-) MnO present in the paste and acid treatment again.
  • Example 7 Synthesis of nano-needles of R-type manganese dioxide supported on metallic palladium
  • the paste manufactured by the procedure of Example 1 was wrapped in glass filter paper (Advantech GS '25) moistened with 0.5M dilute hydrochloric acid And placed in a dryer at 80 ° C. for 24 hours, and the resulting mass was sufficiently pulverized in an agate mortar.
  • the pulverized powder was suspended again in 1 L of dilute hydrochloric acid having a concentration of 0.5 M, stirred for 1 hour, and collected on a filter paper with a vacuum filter.
  • an aqueous palladium chloride solution (produced by Kishida Chemical Co., Ltd.) having a palladium concentration of lOOOOppm was transferred to a beaker, and adjusted to ⁇ 6.2 using sodium hydroxide pellets and an aqueous solution of sodium hydroxide.
  • the acid-treated powder collected on the filter paper was suspended and stirred for 24 hours. Since ⁇ of the aqueous palladium solution in which the nanoneedle is suspended decreases as precipitation of the radium proceeds, sodium hydroxide aqueous solution was added dropwise in a timely manner so that ⁇ 6.0 was maintained during the stirring.
  • Pd MnO is considered to be deposited as palladium Pd.
  • Example 7 instead of the palladium chloride aqueous solution with a palladium concentration of lOOOOppm, the HAuCl aqueous solution with a gold concentration of lOOOppm “reagent name: standard reagent for atomic absorption analysis gold ⁇
  • the paste When drying the acid-treated paste obtained during the synthesis of Examples 1 to 3 above, the paste was applied to a stainless steel net with a diameter of 3 cm and a mesh of 300 and dried at 100 ° C for 7 hours. Processed. As a result, the mesh became an aggregate, and it was possible to produce a membrane carrying a mesoporous material composed of R-type manganese dioxide nanoneedles having a shape corresponding to the shape and area of the mesh. Furthermore, the membranes were bonded to each other by leaving them in a heater heated to 200 ° C. with the surfaces of the membranes thus obtained in contact with each other. For this reason, the film thickness can be easily increased by increasing the number of joints according to the purpose. Proved to be possible.
  • the average BJH desorption side pore diameter obtained in Example 1 was 17.81 nm, the BET specific surface area was 46.5 m 2 / g, and the total pore volume was 0.22 cm 3 / g. Crush it in a know-how bowl, place it in a pressure molding jig, degas it with a rotary pump, compress it at a pressure of 4 MPa for 3 minutes, and test specimen pellets with a diameter of 10 mm and a thickness of 0.5 mm (infrared absorption) Material).
  • This specimen pellet was placed in an infrared spectrophotometer, irradiated with infrared rays having a wave number of AOOO OOcnT 1 (wavelength 2.5 to 25. O ⁇ m), and the intensity and wave number of infrared rays transmitted through the specimen pellet. (Wavelength) was examined.
  • Figure 23 shows the measurement results. In Fig. 23, when the wave number is 1000cm- 1 or less (10.0m or less), the transmittance on the vertical axis is 0.01% or less, indicating that infrared is absorbed in most wavelength regions.
  • Manganese dioxide nanoneedle porous material having an average pore diameter of 9.26 nm, a BET specific surface area of 173.29 m 2 / g, and a total pore volume of 0.40 cm 3 / g obtained in Example 3, 0.0286 g of KBr powder was used. Crush with 4362 g in an agate bowl and mix, place in a pressure molding jig, Compressed and molded at a pressure of 4 MPa for 3 minutes while degassing with a pump, specimen pellets having a diameter of 10 mm and a thickness of 0.5 mm (plus or minus 0.1 mm) were prepared. Accordingly, the mixing weight ratio of the manganese dioxide nanoneedle porous body and KBr in the specimen pellet is 1: 15.3. The concentration of manganese dioxide nanoneedle porous material is 6.15 wt%.
  • the specimen pellet was placed in an infrared spectrophotometer and the wave number AOOO OOcnT 1 (wavelength 2.
  • the intensity and wave number (wavelength) of the infrared rays transmitted through the test specimen pellets were examined by irradiating 5-25. O ⁇ m) infrared rays.
  • the measurement results are shown in FIG. In Fig. 24, the peak transmission peak on the vertical axis shows the wave number 799.74 cm _ 1 (12. ⁇ ⁇ ⁇ ), force, half width (half the transmittance from 0% to the peak top transmittance). Peak width at one height) Force OcnT 1 (1.36 [I m) of infrared is transmitted only. For this reason, the prepared specimen functions as a filter that transmits infrared rays in a specific wavelength region.
  • the calcined manganese carbonate powder 0 ⁇ 0283g which is a precursor for obtaining a manganese dioxide nanoneedle porous body, was pulverized and mixed together with KBr powder 0 ⁇ 4389g in an agate mortar, and a pressure molding jig
  • the sample pellets were 10 mm in diameter and 0.5 mm in thickness while being degassed with a rotary pump and compressed at a pressure of 4 MPa for 3 minutes (weight mixing ratio of calcined manganese carbonate and KBr was 1: 15.5, the concentration of calcined manganese carbonate in the test specimen pellet is 0.00606wt%).
  • the infrared transmission characteristics of this test specimen pellet are shown in FIG.
  • Example 1 An average pore diameter of 18.68 nm, a BET specific surface area of 46.5 m 2 / g, and a total pore volume of 0.22 cm 3 / g obtained in Example 1 Grind 0280g with KBr powder 0.435 5g in an agate bowl and put it in a pressure molding jig, deaerate it with a rotary pump, compress it at 4MPa for 3 minutes, diameter 10mm, thickness 0.5 mm (Plastic Specimen pellets were made. Therefore, the mixing weight ratio of the manganese dioxide nanoneedle porous material and KBr in this test specimen pellet is 1: 15.6. The concentration of manganese dioxide nanoneedle porous material is 6.04 wt%.
  • This specimen pellet was placed in an infrared spectrophotometer and a wave number AOOO OOcnT 1 (wavelength 2.
  • the intensity and wave number (wavelength) of the infrared rays transmitted through the test specimen pellets were examined by irradiating 5-25.
  • the measurement results are shown in FIG. In Figure 26, Pikuto-up of the transmittance on the vertical axis, the wave number 810. 92cm _ 1 (12. 3 111 ), the force, one, bisecting the half width (0% transmittance force, until the transmittance of the top al peaks The peak width at one height is transmitted only through infrared rays with l OOcnT 1 (1.9 ⁇ m). For this reason, the prepared specimen functions as a filter that transmits infrared rays in a specific wavelength region! Compared to FIG.
  • the transmission peak having a slightly wider half-value width is obtained in the present example using the manganese dioxide nanoneedole porous material having a small specific surface area and a large average pore diameter, Since the value of the peak transmittance is high, it can be seen that the transmittance of infrared rays in almost the same wavelength range is higher than that of the test specimen pellet of Example 11.
  • the acid-treated paste synthesized in Example 3 above was evenly applied to a smooth cloth and then naturally dried.
  • a white cloth coated with a porous powder composed of manganese dioxide nanoneedles was set up and observed with an infrared monitor night vision (Honda Giken Regend 2005). The distance between the paper cup and the car equipped with the infrared sensor is set to 10 m and 7 pieces.
  • manganese dioxide commercially available manganese dioxide (special grade manganese oxide IV manufactured by Wako Pure Chemical Industries), commercially available manganese oxide (special grade manganese oxide III MnO manufactured by Wako Pure Chemical Industries), commercially available titanium oxide (Wako Pure Chemical Industries, Ltd.)
  • Each material is pulverized and mixed in an agate mortar under the conditions shown in Table 2.
  • each test specimen pellet prepared was placed in an infrared spectrophotometer and irradiated with infrared rays having a wave number of 4000 to 400 cm- 1 (wavelength 2 ⁇ 5-25. 0 m).
  • the intensity and wave number (wavelength) of infrared rays that passed through the body pellet were examined. The measurement results are shown in Figs.
  • FIG. 27 shows infrared transmission characteristics of a test specimen pellet in which commercially available manganese dioxide and KBr are mixed.
  • This commercially available manganese dioxide (special grade manufactured by Wako Pure Chemical Industries, Ltd.) is a fine powder having a size of about 10 nanometers when observed with a transmission electron microscope. Therefore, the manganese needle nanoneedle porous material of the present invention is used.
  • Figure 24 and Figure 26 show the results when Although a similar transmission wavelength and transmission intensity are shown, an infrared transmission peak based on adsorbed water containing commercially available manganese dioxide is observed in the wave number range of 1500 to 1000 cm- 1 .
  • the commercially available manganese dioxide is simply an aggregate of fine particles, so that the irradiated infrared rays are diffusely reflected inside the material as in the case of using the manganese dioxide nanoneedle porous material of the present invention. This is probably because the effect of decreasing the strength cannot be obtained! For this reason, it can be said that the manganese dioxide nanoneedle porous body of the present invention is superior as an additive for making an infrared filter.
  • FIG. 28 shows infrared transmission characteristics of a test specimen pellet in which commercially available manganese (III) oxide (reagent 99% manufactured by STREM CHEMICALS) and KBr are mixed.
  • the transmission peak is absent transmission intensity is 7 times more adsorbed water to commercial wavenumber region of compared to manganese dioxide 1500-1000 Ji 111_ 1 of FIG. 27, infrared energy conservation incident If one is high! /, The filter characteristics are expected to deteriorate as the full width at half maximum increases.
  • FIG. 29 shows the infrared transmission characteristics of test specimen pellets in which KBr is mixed with commercially available titanium oxide (IV) (special grade reagent manufactured by Wako Pure Chemical Industries).
  • IV commercially available titanium oxide
  • FIG. 29 shows that the peak of the transmission wavelength is observed at 9.2 m compared to the case of FIG. 24 and FIG. 26, which are the results when the manganese dioxide nanoneedle porous material of the present invention is used. You can see the difference.
  • the transmission intensity is 6 to 10 times higher than in Fig. 24 and Fig. 26, the energy of the incident infrared ray is high. That power S expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

明 細 書
R型二酸化マンガンナノニードル多孔体とそれを構成する R型二酸化マン ガンナノニードル、水素化した酸化マンガン、赤外線吸収材料、赤外線フィルタ 一、およびそれらの製造方法
技術分野
[0001] 本願発明は、 R型二酸化マンガンナノニードル多孔体とそれを構成する R型二酸化 マンガンナノニードル、水素化した酸化マンガン、赤外線吸収材料、赤外線フィルタ 一、およびそれらの製造方法に関するものである。
背景技術
[0002] 多孔質材料 (ポーラス材料)とは、内部に大小さまざまな孔をもつ固体の総称であつ て、その構造や表面の性質を利用して断熱材、緩衝材、吸音材、あるいは本発明で 扱う吸着材ゃ触媒担体として多方面に利用されている。この多孔質材料は、平均細 孔直径の大きさに応じてマイクロポーラス(2nm以下)、メソポーラス(2〜50nm)、マ クロポーラス(50nm以上)と分類される。
[0003] 合成方法や構成元素の如何を問わず、平均細孔直径が均一なメソポーラス材料の 合成が世界で初めて報告されたのは 1992年であり、それらは界面活性剤の分子集 合体を铸型にして酸化ケィ素のメソポア構造を実現したメソポーラス多孔体であった( 非特許文献 1、 2参照)。このような平均細孔直径が均一なメソポーラス材料は、実際 に合成が成功してからまだ間がないため、現時点で工業的な実用例は存在しない。 しかし、ゼォライトに代表されるマイクロポーラスの細孔では小さすぎて入ることが困 難であった分子径の大きな化合物が絡む触媒反応や吸着反応、あるいはナノ材料 の物性を研究するために格好のモデル物質であるため、近年、合成方法や物性とそ の応用に関する研究論文が急増している。中でもマンガン酸化物に関する報告は現 在でも数件しか存在せず、その代表例として 1997年に平均細孔直径 2nmの合成が 報告された(非特許文献 3参照)。
[0004] しかしながら、平均細孔直径 2nmはマイクロポーラスとの境界領域であって、天然 ガスなど分子径の大きな化合物が絡む触媒反応や溶液中における錯体の吸着 -析 出反応、あるいはナノ機能性材料のホスト物質としての利用目的には孔径が細力、い ため、平均細孔直径が 10〜20nm近辺の二酸化マンガン'メソポーラス材料には各 方面で大きな期待力かかっている。通常、二酸化マンガンは、その結晶構造に応じ て、 α (アルファ)、 β (ベータ)、 γ (ガンマ)、 ε (ィプシロン)、 δ (デルタ)、 λ (ラムダ )、R (アール)型に分類されている。この内、 γ型は、 /3型と ε型、および R型が混在 した結晶構造である。これらの結晶構造の違いは、結晶を構成する最小ユニットであ る八面体(マンガン原子の周りに 6つの酸素原子が配位した八面体)の均一で規則 的な配列が異なっていることが理由で生じることが周知である。
[0005] R型二酸化マンガンに関しては、従来より、 λ (ラムダ)型二酸化マンガン結晶内に リチウムが配位したスピネル結晶構造を有するリチウム 'マンガン酸化物を出発原料と した水熱合成法によって得られることが報告されている(非特許文献 4参照) 、それ 以外の合成方法で、ナノスケールで、かつ、ニードルの形状の R型二酸化マンガンが 合成された例は存在しない。
[0006] なお、本発明者は、非特許文献 5で R型二酸化マンガンナノ粒子を報告している。
このものは、 2価のマンガン化合物を焼成、酸処理して得ること力 Sできるものである。し 力、しながら、ナノスケールで、かつ、ニードルの形状の R型二酸化マンガンの合成の 検討ははじまつたば力、りで具体的には報告されておらず、より最良のものへのァプロ ーチは以前として未踏のものであった。
非特許文献 1 :J. S . Beck et al, J. Am. Chem. Soc. , 1 14, 10834 ( 199 2)
非特許文献 2 :J. C. Vartuli et al. , Chem. Mater. , 6 , 2317 ( 1994) 非特許文献 3 : Zheng— Rong Tian et al. Science vol. 276
非特許文献 4 : H. Rossouw, J. Mater, chem, vol. 2, 1992
非特許文献 5 :飯久保ら、「マンガン酸化物ナノ粒子の局所構造解析」、ナノ学会第 4 回大会講演予稿集(2006年 5月 19日発行)
発明の開示
発明が解決しょうとする課題
[0007] そこで、本願発明は、以上のとおりの背景よりなされたものであって、ナノスケール の R型二酸化マンガンのナノニードルから構成された高比表面積の R型二酸化マン ガンナノニードル多孔体とそれを構成する R型二酸化マンガンナノニードル、赤外線 吸収材料、赤外線フィルター、およびそれらの製造方法を提供することを課題として いる。
課題を解決するための手段
本願発明は、上記の課題を解決するものとして、以下のことを特徴としている。
< 1 > R型二酸化マンガンを主成分とするニードル状のナノニードルで構成されて おり、これらナノニードルでメソポーラス多孔体構造が形成されていることを特徴とす る二酸化マンガンナノニードル多孔体。
< 2 > メソポーラス多孔体構造の平均細孔直径が 15nm〜30nmの範囲、 BET比 表面積が 40〜50m2/g、全細孔容積が 0.;!〜 0. 3cm3/gの範囲であることを特徴 とする上記 < 1〉に記載の二酸化マンガンナノニードル多孔体。
< 3 > 表面硬さは、ビッカース硬さ試験法による測定でビッカース硬度 15〜30の範 囲であることを特徴とする上記 < 1〉または < 2〉に記載の二酸化マンガンナノニー ドル多孔体。
< 4 > 大きさがナノメートルスケールであって、 R型二酸化マンガンを主成分とする ニードル状の R型二酸化マンガンのナノニードル。
< 5 > 太さ 10〜30nm、長さ 30〜300nmの範囲である上記く 4〉に記載の R型二 酸化マンガンのナノニードル。
< 6 > 上記 < 4〉または < 5〉の R型二酸化マンガンのナノニードルに、金属が担 持されていることを特徴とする金属担持 R型二酸化マンガンのナノニードル。
< 7 > 担持される金属は、金またはパラジウムであることを特徴とする上記く 6〉に 記載の金属担持 R型二酸化マンガンのナノニードル。
< 8 > R型二酸化マンガン MnOの結晶構造に、プロトン H+および電子 e—が含侵
2
したマンガン価数 + 4価の水素化した酸化マンガン HMnOのナノ微粒子。
2
< 9 > 太さ 2〜; 10nm、長さ 5〜30nmの範囲であって、ニードル状である上記く 8 >に記載の水素化した酸化マンガン HMnOのナノ微粒子。
2
く 10〉 太さ 10〜30nm、長さ 30〜300nmの範囲であって、ニードル状である上 記 < 8〉に記載の水素化した酸化マンガン HMnOのナノ微粒子。
2
< 11 > 上記 < 1〉から < 3〉の!/、ずれかの二酸化マンガンナノニードル多孔体で 形成されてなるメソポーラス多孔体材料。
< 12 > 膜状に形成された膜状体であることを特徴とする上記 < 11〉に記載のメソ ポーラス多孔体材料。
< 13 > 炭酸マンガン n水和物 MnCO ·ηΗ O粉末を 180〜205°Cの温度範囲で
3 2
焼成し、これを酸処理してペースト状とした後、乾燥処理することを特徴とする二酸化 マンガンナノニードル多孔体の製造方法。
< 14 > 上記 < 13〉の製造方法において、ペースト状とした後の乾燥処理は、 50 〜95°Cの温度範囲での予備乾燥と、それに続く 100〜; 120°Cの温度範囲での乾燥 処理であることを特徴とする二酸化マンガンナノニードル多孔体の製造方法。
< 15〉 炭酸マンガン n水和物とともに炭酸酸化ビスマスを混合して焼成することを 特徴とする上記く 13〉またはく 14〉に記載の二酸化マンガンナノニードル多孔体 の製造方法。
く 16〉 酸処理を少なくとも 1回以上行うこと特徴とする上記く 13〉からく 15〉の いずれかに記載の二酸化マンガンナノニードル多孔体の製造方法。
< 17 > 上記 < 4 >または < 5〉の R型二酸化マンガンのナノニードルを酸処理す ることを特徴とする水素化した酸化マンガン HMnOのナノ微粒子の製造方法。
2
< 18 > 上記く 1〉力、らく 3〉のいずれかに記載の二酸化マンガンナノニードル多 孔体からなる赤外線吸収材料。
< 19 > 上記く 18〉に記載の赤外線吸収材料が含有されて!/、ることを特徴とする 赤外線フィルター。
く 20〉 透過される赤外線は、波長領域 10〜; 14 mの範囲であることを特徴とする 上記 < 19〉に記載の赤外線フィルター。
発明の効果
以上のとおりの本願発明によれば、二酸化マンガンを化学成分とするメソポーラス 多孔体、それを構成する R型二酸化マンガンナノニードルや、これらを簡便に製造す ることができる製造方法が提供される。 [0010] 以上の二酸化マンガンナノニードル多孔体は、酸処理によって発現する固体酸の 性質や新規な光学特性の発現に加えて、燃料電池電極材料へ応用あるいは触媒担 体などの基盤材料への応用が可能となる。
[0011] さらに、本願発明によれば、以上の二酸化マンガンナノニードル多孔体を用いた赤 外線吸収材料とそれを含有する赤外線フィルターが提供される。赤外線は、電磁波 としての波長はマイクロメートル 'オーダーであり、エネルギー的には熱線である。一 般に、材料に赤外線を吸収させるためには、赤外線を吸収する性質を有する炭素材 料などを材料表面に塗布被覆することや材料に混入添加する手法が知られており、 より少ない被覆 ·添加量で、より高い吸収効果を得るためには、単位容積当たりの熱 容量が大きぐ断熱性が高い材料が必要であった。本願の赤外線吸収材料は、 BET 比表面積が 40〜200m2/gの二酸化マンガンナノニードル多孔体からなるもので、 通常の炭素材料の比重と比較して 2倍以上も重いため、単位体積当たりの熱容量も 大きい。このため、より少ない被覆 ·添加量で赤外線を効率よく吸収することができる
[0012] また、これまで、波長 10 m以上の赤外線領域にお!/、て、特定波長の赤外線だけ を選択的に透過するような特性をもった赤外線フィルタ一は実現されておらず、本願 の赤外線フィルターはこれを実現するものであり、産業上有用性が高い。
[0013] さらに、以上の二酸化マンガンナノニードル多孔体は安価でかつ簡便に製造するこ とが可能であるため、赤外線吸収材料および赤外線フィルタ一につレ、ても安価に実 現すること力 Sでさる。
図面の簡単な説明
[0014] [図 1]本願の水素化した酸化マンガン HMnOの合成のメカニズムの概略図である。
2
[図 2]水素化した酸化マンガンおよび氷に中性子を照射した結果である。
[図 3]R型二酸化マンガンの結晶構造中における結合距離が 2. 589 A (b方向)の酸 素原子 酸素原子、および 2. 573 A (a方向)の酸素原子 酸素原子によって構成 されるネットワークを模式的に示した図である。
[図 4]参考例におけるナノニードル凝集体の透過電子顕微鏡像である。
[図 5]参考例におけるナノニードルの先端部の透過電子顕微鏡像である。 園 6]参考例におけるナノニードル凝集体の窒素ガス吸着法による表面分析結果で ある。
園 7]実施例 1におけるナノニードル凝集体の透過電子顕微鏡像である。
園 8]実施例 1における別のナノニードル凝集体の透過電子顕微鏡像である。
園 9]実施例 1におけるナノニードルの先端部の透過電子顕微鏡像である。
園 10]図 9の高解像度写真である。
園 11]実施例 1におけるナノニードル凝集体の窒素ガス吸着法による表面分析結果 である。
園 12]実施例 1におけるナノユードル凝集体の X線回折パターンである。
園 13]実施例 2におけるナノニードル凝集体の窒素ガス吸着法による表面分析結果 である。
園 14]実施例 2におけるナノユードル凝集体の X線回折パターンである。
園 15]実施例 3におけるナノニードル凝集体の透過電子顕微鏡像である。
[図 16]図 15の高解像度写真である。
園 17]実施例 3におけるナノニードルの先端部の透過電子顕微鏡像である。
園 18]実施例 6におけるペーストおよびそれを乾燥処理して得た R型二酸化マンガン の X線回折分析結果である。
[図 19]実施例 6におけるペーストの X線吸収端分析 (XANES)によるマンガン価数の 分析結果である。
[図 20] (H+, e一) MnOの模式図である。
2
園 21]実施例 7における金属パラジウムのナノ粒子を担持した R型二酸化マンガンの ナノニードルの透過電子顕微鏡像である。
園 22]実施例 7における金属パラジウムのナノ粒子を担持した R型二酸化マンガンの 透過電子顕微鏡像である。
[図 23]実施例 10における二酸化マンガンナノニードル多孔体の赤外線吸収特性を 表した図である。
[図 24]実施例 11における二酸化マンガンナノニードル多孔体の赤外線透過特性を 表した図である。 [図 25]実施例 11における焼成炭酸マンガンの赤外線透過特性を表した図である。
[図 26]実施例 12における二酸化マンガンナノニードル多孔体の赤外線吸収特性を 表した図である。
[図 27]比較例における市販の二酸化マンガンの赤外線透過特性を表した図である。
[図 28]比較例における市販の酸化マンガン (III)の赤外線透過特性を表した図であ
[図 29]比較例における市販の酸化チタン (IV)の赤外線透過特性を表した図である。 発明を実施するための最良の形態
[0015] 本願発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態につ いて説明する。
[0016] 本願発明の二酸化マンガンナノニードル多孔体は、 R型二酸化マンガンを主成分と するニードル状のナノニードルで構成されており、これらナノニードルでメソポーラス 多孔体構造が形成されていることを特徴としている。ここで、 R型二酸化マンガンを主 成分とするニードル状のナノニードルとは、一般的に重量比で 50%以上好ましくは 8 0%以上、さらには 95%以上の R型二酸化マンガンが成分として構成されており、大 きさ、すなわち、太さ(平均直径)および長さ(両端距離)がナノメートルスケールであり 、太さが略均一で針状(ロッドともいう)の形状を有するものをいう。通常の溶液反応で は、ナノスケールで、かつ、 R型の結晶構造を高純度に合成することは非常に困難で あり、 /3型など他の結晶構造の二酸化マンガンが混相してしまう。また、 1本のニード ル内で表面の凹凸が生じてしまうため、太さが不均一であったり、数本のニードルが 束になった状態で得られたりするために、本願発明のように太さが略均一なニードノレ を得ることが極めて困難である。
[0017] この二酸化マンガンナノニードル多孔体は、たとえば、メソポーラス多孔体構造の平 均細孔直径が 3nm〜30nmの範囲であって、 BET比表面積 40〜; 115m2/gの範 囲であるものが考慮される。特には、平均細孔直径が 3nm〜15nmで BET比表面積 力 S50〜200m2/gの範囲のもの、なかでも平均細孔直径が 7nm〜; 14nmで BET比 表面積が 80〜; 130m2/gの範囲のもの、あるいは平均細孔直径が 15nm〜30nm で BET比表面積が 40〜50m2/gの範囲のものなどを挙げることができる。上記二酸 化マンガンナノニードル多孔体のメソポーラス多孔体構造の全細孔容積は、 0.;!〜 0 • 5cm z g程度である。
[0018] 本発明は、以上のように、平均細孔直径および BET比表面積が異なる二酸化マン ガンナノニードル多孔体を得ることができる。このように平均細孔直径および BET比 表面積が異なる二酸化マンガンナノニードル多孔体は、後述するが、製造条件の違 いによって得られる、太さ(平均直径)および長さ(両端距離)が異なる R型二酸化マ ンガンのナノニードルによるものである。このような平均細孔直径および BET比表面 積が異なる二酸化マンガンナノニードル多孔体や、太さおよび長さが異なる R型二酸 化マンガンのナノニードル等の作り分け、さらに後述する、二酸化マンガンナノニード ル多孔体の比表面積の制御等は、本発明者によって見出された方法によって、はじ めて成されたものである。
[0019] 本発明は、比較的大きなナノニードル、具体的には太さ 10〜30nmで長さ 30〜30 Onmのナノニードルと、そのナノニードルで構成される、平均細孔直径が 15nm〜30 nmで BET比表面積が 40〜50m2/gの範囲の二酸化マンガンナノニードル多孔体 、水素化した酸化マンガンのナノ粒子、それらの製造方法等について以下に説明し ていくが、あわせて、比較的小さなナノニードル、具体的には太さ 2〜; !Onmで長さ 5 〜30nmのナノニードルと、そのナノニードルで構成される、平均細孔直径が 7nm〜 14nmで BET比表面積が 80〜; 130m2/gの範囲の二酸化マンガンナノニードル多 孔体等についても、以下に説明する。
[0020] 本願発明の R型二酸化マンガンのナノニードルは、例えば、その太さ(平均直径)お よび長さ(両端距離)は、太さ 1〜; 100nm、長さ 3〜900nmの範囲であり、高純度の R型二酸化マンガンのナノニードルを短時間で合成することができる。上記 R型二酸 化マンガンのナノニードルとしては、太さ 2〜10nmで長さ 5〜30nmのものや、太さ 1 0〜30nmで長さ 30〜300nmのものを含む。この R型二酸化マンガンのナノニード ルが凝集しブロック化されて、メソポーラス多孔体構造が形成されて、二酸化マンガ ンナノニードル多孔体となるのである。特に、太さ 2〜10nmで長さ 5〜30nmのナノ ニードルで構成される二酸化マンガンナノニードル多孔体は、メソポーラス多孔体構 造の平均細孔直径が 7nm〜; 14nmで BET比表面積が 80〜; 130m2/g、全細孔容 積が 0· 2〜0· 5cm3/gの範囲の多孔体構造が形成される力 S、後述するように炭酸 マンガン n水和物とともに炭酸酸化ビスマスを混合して焼成することで、平均細孔直 径を 3nm程度まで小さくでき、 BET比表面積を 200m2/g程度まで大きくすることが できる。また、太さ 10〜30nmで長さ 30〜300nmのナノニードルで構成される二酸 化マンガンナノニードル多孔体は、メソポーラス多孔体構造の平均細孔直径が 15η m〜30nmで BET比表面積が 40〜50m2/g、全細孔容積が 0. ;!〜 0. 3cm3/gの 範囲の多孔体構造が形成される。
[0021] 以上のとおりの二酸化マンガンナノニードル多孔体は、ナノニードル同士が絡み合 つてブロック化されて!/、る。そのブロック化された二酸化マンガンナノニードル多孔体 の表面硬度は比較的硬ぐ具体的には、ビッカース硬さ試験法による測定でピッカー ス硬度 15〜30程度となる。アルミニウム金属のビッカース硬度が 50以上であることを 考慮すると、本願発明の二酸化マンガンナノニードル多孔体の表面硬度はかなり高 いことがわかる。
[0022] 以上の二酸化マンガンナノニードル多孔体は、たとえば、炭酸マンガン n水和物 M nCO ·ηΗ Οの粉末を焼成し、酸処理して水素化した酸化マンガン ΗΜηΟを生成
3 2 2 した後、これをペースト状にして乾燥固化することで得られる。
[0023] 焼成温度は、たとえば、 180°C〜205°Cの範囲が好ましい。焼成温度が 180°C未 満の場合には、焼成後に得られる酸化マンガン Mn Oの外殻の厚さが平均的に薄
2 3
くなる。この酸化マンガン Mn Oの外殻は、後述するが、酸処理の際に水和した二
2 3
酸化マンガン Μη〇 ·Η〇に相変化することで、酸処理溶液中のマンガンイオン Mn2
2 2
+を水素化した酸化マンガン ΗΜηΟに相変化させる役割をもつ力 S、酸化マンガン M
2
n Oの外殻の厚さが薄くなることで、この相変化を効率的に生じさせるための水和し
2 3
た二酸化マンガン Μη〇 ·Η〇が不足してしまい、結果として、最終的に二酸化マン
2 2
ガンナノニードル多孔体を構成する二酸化マンガンナノニードルを十分に生成するこ とができない。焼成温度が 205°Cを超える場合には、焼成後に得られる炭酸マンガン 表面の酸化マンガン Mn Oの外殻は厚くなり、原料である炭酸マンガンの残留量が
2 3
少なくなるため、酸処理時にマンガンイオン Mn2+として溶解するマンガン成分が不 足し、二酸化マンガンナノニードル多孔体を構成する二酸化マンガンナノニードルを 十分に生成することができない。なお、以上の二酸化マンガンナノニードル生成の詳 細な説明につレ、ては以下のとおりである。
[0024] まず所定量の炭酸マンガン n水和物 MnCO ·ηΗ Οの粉末をセラミックなどのルツ
3 2
ボに入れて、たとえば、大気下 180〜205°Cの温度範囲で所定時間焼成する。より 好ましくは 195〜200°C、 6時間(昇温時間を含む)の条件で焼成する。焼成によって 原料の炭酸マンガン n水和物粉末の表面が酸化されて酸化マンガン Mn Oの外殻
2 3 を有する炭酸マンガン MnCOの粉末が得られる。
3
[0025] 次いで、この酸化マンガン Mn Oの外殻を有する炭酸マンガンの粉末を酸処理し
2 3
て炭酸マンガンを塩化マンガンとして溶解除去してマンガンイオン Mn2+を発生させ る。このマンガンイオン Mn2了が水和した二酸化マンガン ΜηΟ ·Η Οと接触すること
2 2
で水素化した酸化マンガン ΗΜηΟを生成する。このメカニズムの概略を図 1に示す
2
[0026] 図 1の(a)は、焼成後に得られる酸化マンガン Mn Oの外殻 (被膜)を持った炭酸
2 3
マンガンの粒子を表している。この炭酸マンガンの粒子は、酸処理によって、たとえ ば希塩酸などの酸処理溶液に炭酸マンガン粒子を入れて懸濁させることによって、 外殻の酸化マンガン Mn Oが希塩酸との接触で発生した塩素ガスの影響を受けて
2 3
水和した二酸化マンガン Μη〇 ·Η〇に変化し、外殻内部の炭酸マンガン MnCO
2 2 3 は塩化マンガン MnClと二酸化炭素 COと水 H Oに変化する(図 1 (b) )。塩化マン
2 2 2
ガン MnClは、 2価のマンガンイオン Mn2+となり、炭酸成分は二酸化炭素 C〇のガ
2 2 スとなり外殻内部での内圧を高め、結果としてマンガンイオン Mn2+を含んだ二酸化 炭素の気泡が水 H Oと共に、水和した二酸化マンガン Μη 1〇Ο ·Η Ο化した外殻の表 面を通じて噴出する。この噴出の際に、マンガンイオン Mn2+が外殻の水和した二酸 化マンガン ΜηΟ ·Η Οと効率良く接触するため、マンガンイオン Μη2+を酸化して、
2 2
水素化した酸化マンガン ΗΜηΟを形成する(図 1 (c) )。そして、これをペースト状に
2
して乾燥することで、純度の高レ、R型二酸化マンガンのナノニードルで構成される二 酸化マンガンナノニードル多孔体を短時間で合成することができるのである。
[0027] 以上の反応は、触媒反応と考えられる。すなわち、外殻の成分である酸化マンガン Mn Oと、炭酸マンガン MnCO n水和物を混合した粉体を上記と同様にして酸処 理および乾燥処理したところ、ベータ型の Mn Oが得られ、 R型の MnOは得られな
2 3 2 かった。また、外殻の成分である酸化マンガン Mn Oと、炭酸マンガン MnC〇 n水
2 3 3 和物を混合した粉体を希塩酸の中に 4ヶ月保ち、これを濾過 ·乾燥して得られたもの は、 R型 MnOとベータ型 MnOが混合した二酸化マンガンである力 ナノスケール
2 2
の大きさのものは得られなかった。これらの実験結果から、純度の高い R型二酸化マ ンガンのナノニードルをナノスケールで短時間に合成することを可能とした本手法の 化学反応は触媒反応であるとレ、える。
[0028] 本願発明において、使用する炭酸マンガン n水和物 MnCO ·ηΗ Oの粉末として
3 2
は、市販品を用いることができる。たとえば本願発明では、後述する実施例において 炭酸マンガン ·η水和物 (試薬特級和光純薬工業製)を用いている。この炭酸マンガ ン η水和物 MnCO ·ηΗ Οの粉末は、一般的には、大きさ数ナノ〜数 10ナノメートル
3 2
の不定形の単結晶粒子が凝集して 1〜数 10マイクロメートル程度の粒径の粒が形成 されている。なお、この炭酸マンガン η水和物 MnCO ·ηΗ Οの粉末は、試薬瓶を開
3 2
封した直後の大きさの揃って!/、る状態のものを使用することが好ましレ、。試薬瓶を長 時間開放してレ、た場合には、時間の経過にともな!/、炭酸マンガン η水和物が吸湿し て粒が粗くなつて大きさが不均一な粒子群となるため、焼成時には外殻に生じる酸化 マンガン Mn Oの厚みや形を均一にすることができなくなる場合があるので好ましく
2 3
ない。
[0029] 酸処理に用いる酸としては、たとえば塩酸、硝酸、硫酸などの無機酸であってよぐ なかでも、塩酸が酸処理後の乾燥処理の段階でナノニードルの成長を促す効果が 得られるために好ましい。酸の濃度としては、 0. ;!〜 3. Omol/Lの範囲、より好まし くは 0. 5〜; 1. Omol/Lの範囲である。
[0030] 水素化した酸化マンガン HMnOは、上述したように、炭酸マンガン n水和物 MnC
2
O ·ηΗ Οの粉末を焼成し、これを希塩酸などの酸処理溶液中でたとえば 1〜5時間
3 2
程度攪拌して酸処理し、減圧ろ過器で固液分離して回収することで得られる。この処 理を少なくとも 1回以上繰り返すことで、 HMnO以外の不純物、例えば残留炭酸マ
2
ンガン成分や酸化マンガン微粒子などを溶解除去できる。なお、酸処理の回数は、 酸処理する焼成炭酸マンガンから発生する二酸化炭素の気泡の発生が酸処理を繰 り返しても目視できなくなれば充分である。たとえば、毎回容量 1Lのビーカーに希塩 酸を新たに注ぎなおして酸処理の回数を重ねずとも、 1つのビーカー内で、酸処理 時の希塩酸の pHが 4以下を保つように濃塩酸を適時滴下する操作でも構わないが、 特に 1回目の酸処理時には炭酸マンガンの溶解反応から発生する水の影響で pHの 上昇が激しく生じる。このため pHを常時 4以下に保つ操作は専用の滴定装置なしに は容易ではない。このため本手法では、酸処理の回数を数回重ねている。
[0031] 上記回収物は、水分を含んだ状態で水素化した酸化マンガン HMnOのナノ微粒
2 子が多数集まったペースト状となっている。この水素化した酸化マンガン HMn〇の
2 ナノ微粒子は不定形であるカ、このペーストを乾燥処理して R型二酸化マンガンのナ ノニードルを合成した後、再びこの R型二酸化マンガンのナノニードルを酸処理する ことで、その R型二酸化マンガンのナノニードルと同様の大きさおよび形状の水素化 した酸化マンガン HMnOのナノニードルである水素化した酸化マンガン HMnOの
2 2 ナノ微粒子を得ることができる。 R型二酸化マンガンのナノニードルへの酸処理につ いては、炭酸マンガン n水和物 MnCO ·ηΗ Οの粉末の焼成物への酸処理と同様で
3 2
ある。
[0032] 二酸化マンガンナノニードル多孔体は、上述したように、ペーストの乾燥処理によつ て得られるが、その乾燥処理の際にペーストから水分が蒸発して、不定形の水素化 した酸化マンガンの微粒子が R型二酸化マンガン ΜηΟのナノニードルへと成長し、
2
このナノニードル同士が絡み合うことで、大きさがセンチメートル単位のブロックを得る こと力 Sできる。なお、酸化マンガンのナノニードルが得られずに単に酸化マンガンの ナノ粒子が主成分として得られて!/、る場合や、原料成分の除去が不完全な場合には 、上記乾燥処理によって得られる材料はブロック化せずに、脆い砂状となり、表面の ビッカース硬度は測定することさえ困難となる。
[0033] また、乾燥処理の際に数百メッシュ程度の金属の網(網の材質は用途に応じてテフ ロン (登録商標)やカーボンメッシュなど変えることができる)に上記ペーストを塗布し て乾燥処理することで、メッシュが骨材となり、種々の用途に応じた形状を有する膜状 体を作ること力 Sできる。さらに、このようにして得られた膜状体同士を接触させた状態 で 150〜220°C、好ましくは 200°Cで加熱することで接合することができ、 目的に応じ て簡易に膜厚を増加させることも可能である。
[0034] 上記の乾燥処理後に得られたブロックや膜状体を窒素ガス吸着法によって平均細 孔直径と BET比表面積を計測すると、平均細孔直径が 3nm〜30nmの範囲であつ て、 BET比表面積が 40〜200m2/gの範囲であるメソポーラス多孔体構造であるこ とがわカゝる。
[0035] 炭酸マンガン n水和物の焼成は、以上のとおりルツボに入れて焼成している力 こ のルツボの形状としては、原料の炭酸マンガン MnCO ·ηΗ Οが酸化マンガン Μη
3 2 2
Οに酸化される際に発生する二酸化炭素 COガスの流出方向が一方向になるような
3 2
形状であることが好ましい。具体的には、中心に小孔の開いたフタをしたルツボの形 状が好ましい。二酸化炭素 COガスの流出方向を一方向にすることで、焼成後に得
2
られる酸化マンガン Mn Oの外殻の厚さが一定にすることができ、最終的に得られる
2 3
ニードル状の二酸化マンガンの収率を向上させることができる。開口部が広い、たと えば平たい皿型セラミック板上で原料の炭酸マンガン MnCO ·ηΗ Οを焼成した場
3 2
合には、 COガスの拡散が一方向に流出しないために、焼成後に得られる酸化マン
2
ガン Mn Oの外殻の厚さが一定化せず、結果として最終的にニードル状の二酸化
2 3
マンガンの収率が低下してしまう。
[0036] また、焼成には電気炉を用いることが考慮される力 この電気炉は炭酸マンガンの 表面を均一に酸化するために、外部との通気孔がついていてかつ充分な炉内の容 積を有するものであることが好ましい。炉内の容積が原料を入れたルツボの大きさ程 度しかなぐ密閉されているような電気炉を用いて焼成した場合は、炭酸マンガンの 表面の酸化が均一になりにくいため好ましくない。
[0037] 本願発明では、上記ペーストの乾燥条件を変えることによって、得られる二酸化マ ンガンナノニードルの大きさを制御するとともに、二酸化マンガンナノニードル多孔体 の平均細孔直径および BET比表面積の大きさを調節することができる。たとえば、乾 燥条件として、大気中、乾燥機などでガラスシャーレなどの容器に上記ペーストを純 水で通水洗浄して酸処理時に付着した酸を洗!/、流した後、乾燥のための熱が伝わり やすい状態、例えばペーストを薄くシャーレ上に広げた状態で 100〜120°Cに加熱 保持して 6時間〜 24時間乾燥することで、すなわちペースト中の水分の脱水速度を 速めることで、得られる R型二酸化マンガンのナノニードルの大きさをより小さくするこ と力 Sできる。具体的には、太さ 2〜; 10nm、長さ 5〜30nmの R型二酸化マンガンのナ ノニードルとすることが可能となる。
[0038] 一方で、より大きく成長した R型二酸化マンガンのナノニードルを得るためには、ぺ 一ストを、 50〜95°C、好ましくは 80〜90°Cで 6〜; 12時間程度予備乾燥し、次いで 1 00〜120°Cで 12〜24時間程度かけて完全乾燥処理したり、または、上記ペースト に希塩酸などの希酸を添加することにより、ペースト中の水素イオンの量を増大させ た後、上記の予備乾燥を行い、次いで完全乾燥処理したり、あるいは、希酸で湿らせ たろ紙等で上記ペーストを包み込み、これを乾燥処理したりするなど、ペーストからの 水分の脱水速度を遅くすることで、より大きく成長した R型二酸化マンガンのナノニー ドルを得ること力できる。具体的には、太さ 10〜30nm、長さ 30〜300nmの R型二酸 化マンガンのナノニードルとすることが可能となる。上述したように、炭酸マンガン n水 和物 MnCO ·ηΗ Οの粉末を焼成し、これを希塩酸などの酸処理溶液中で攪拌して
3 2
、減圧ろ過器で固液分離して回収したペーストには、当然希塩酸が含まれている。こ の回収したペーストからの水分の脱水速度が遅くなるように上記の処理を施すことで 、より大きく成長した R型二酸化マンガンのナノニードルを得ることができるのである。
[0039] この理由としては、ペーストの乾燥処理において、ペースト内の水分が蒸発するに つれて希塩酸の濃度が高まり、水素化した酸化マンガンがマンガンイオン Μη2+とし て溶解し、水素化した酸化マンガンの粒子同士の結合が生じるためと考えられる。特 に希塩酸は次亜塩素酸を生じさせるため、脱水速度を遅くすることで、前記次亜塩 素酸と、水素化した酸化マンガンとを互いに長時間接触させる効果が得られ、結果と してペーストを構成する水素化した酸化マンガンの溶解性が高まり、乾燥処理が終 了する際には水素化した酸化マンガンの粒子同士の結合が強く進行してナノニード ルのサイズ成長が生じるものと考えられる。
[0040] ペースト中の水素イオンの量を増大させる方法としては、ペースト 10グラム程度に 対して新たに希塩酸を 2〜8ミリリットル添加してもよいが、減圧ろ過器でペーストを回 収する際に、希塩酸が完全に吸引除去されない段階でろ過操作を止めることにより、 大過剰の希塩酸がペーストに含まれた状態で回収するようにしてもよい。 [0041] このように、酸処理後のペーストに対する純水による洗浄の有無や、予備乾燥条件 、およびペースト中の希酸の量を調整することで、 R型二酸化マンガンのナノニード ルの大きさを制御すること力 Sできるのである。したがって、 目的とする大きさの R型二 酸化マンガンのナノニードルを得るためには、あらかじめ所定の乾燥条件でナノニー ドルを試作合成して、そのナノニードルの大きさを測定しておくことで、適宜に条件を 設定して目的のナノニードルを得ることができる。たとえば、 目的とするナノニードノレ の大きさが、あらかじめ試作合成したナノニードルより大きい場合には、酸処理に希 塩酸を用いて、かつ乾燥条件の脱水速度を遅くする、あるいは該ペーストの予備乾 燥処理を実施する。一方、 目的とするナノニードルの大きさ力 あらかじめ試作合成し たナノニードルより小さい場合には、酸処理後に得られたペーストを純水で通水洗浄 して付着した酸を洗い流す、乾燥条件における脱水速度を速くする、または、予備乾 燥処理を経ずにペーストの完全乾燥処理を実施するように条件を設定する。これらの 操作を組み合わせながら繰り返すことにより、細くて短い R型二酸化マンガンのナノ二 一ドルと、太くて長い R型二酸化マンガンのナノニードルを作り分けることができる。こ の R型二酸化マンガンのナノニードルが凝集されてメソポーラス多孔体構造が形成さ れるニ酸化マンガンナノニードル多孔体は、その平均細孔直径と比表面積は R型二 酸化マンガンのナノニードルの太さと長さに依存する。たとえば、太さ 2〜; 10nm、長 さ 5〜30nmの R型二酸化マンガンのナノニードルで構成される酸化マンガンナノ二 一ドル多孔体では、平均細孔直径が 7nm〜14nmの範囲、 BET比表面積が 80〜1 30m2/g、全細孔容積が 0. 2〜0. 5cm3/gの範囲となる。そして、太さ 10〜30nm 、長さ 30〜300nmの R型二酸化マンガンのナノニードルで構成される酸化マンガン ナノニードル多孔体では、平均細孔直径が 15nm〜30nmの範囲、 BET比表面積 力 S40〜50m2/g、全細孔容積が 0· ;!〜 0· 3cm3/gの範囲となる。
[0042] したがって、本願発明は、乾燥条件およびペーストが含む酸の量や酸の種類を調 整することで、使用目的に応じた平均細孔直径と比表面積を有する二酸化マンガン のメソポーラス多孔体を合成することができる。
[0043] さらに、本願発明は、炭酸酸化ビスマスを原料である炭酸マンガン水和物に混合し て、上記の一連の手法で焼成と酸処理および乾燥処理行うことで、最終的に得られ た R型二酸化マンガンのナノニードルによって構成されたメソポーラス多孔体の比表 面積を向上させることができる。たとえば、炭酸酸化ビスマスを混合することによって、 メソポーラス多孔体の BET比表面積を約 200m2/g程度まで向上させ、平均細孔直 径を 3nm程度まで小さくすることができる。以上の炭酸酸化ビスマスは、酸処理の際 に炭酸マンガン水和物よりもゆっくり溶解することで、最終的に得られる二酸化マンガ ンのメソポーラス多孔体内に細孔を作るテンプレートの役割を果たしていると考えられ る。したがって、このようなテンプレートとしての役割を果たす材料としては、炭酸マン ガン水和物よりも酸化物に変わる温度が高ぐ酸処理溶液中での溶解度が炭酸マン ガンよりも低いものであればよぐ上記の炭酸酸化ビスマスに限定されるものではない
[0044] 上記二酸化マンガンナノニードル多孔体は赤外線吸収材料として用いることができ る。赤外線吸収材料としての赤外線吸収能'透過能の評価は、たとえば後述の実施 例のように赤外分光光度計 (FT' IR)を用いて評価することが有効である。この赤外 分光光度計による測定は、上記の二酸化マンガンナノニードル多孔体をプレス機で 加圧成形した試験体に総出力 170Wのセラミック光源から放出される 2. 5〜25 m の波長領域の赤外線を照射している。たとえば試験体が直径 10mm、厚さ 0. 5mm ( 誤差プラスマイナス 0· 1mm)である場合、試験体中の二酸化マンガンナノニードル 多孔体の重量が 0. 2g以上では、照射した赤外線をほとんど透過せずに吸収してし まうことがわかった。また、試験体中の二酸化マンガンナノニードル多孔体の重量を 0 . 115gまで減らすと、 10 m以上の領域で赤外線の透過が観察されることもわかつ た。
[0045] 実際に赤外線吸収材料として二酸化マンガンナノニードル多孔体を利用する際に は、乾燥後の二酸化マンガンナノニードル多孔体粉末を任意の材料の表面に塗布し たり、塗料に添加することで任意の表面に赤外線吸収能を付加することができる。ま た、乾燥固化前のペーストを布などの生地に塗り付けた後、乾燥処理することで布の 生地など不定形な材料表面に赤外線吸収能を付加することができる。
[0046] また、本願発明は上記の赤外線吸収材料を含有する赤外線フィルターをも提供す る。この赤外線フィルタ一は、波長 10 m以上の赤外線領域において、特定波長の 赤外線だけを選択的に透過することを可能とするものである。具体的には、たとえば 、総出力 170Wのセラミック光源から 2. 5〜25 mの波長領域の赤外線を照射した 場合、波長領域 10〜; 14 111、半値幅(透過率 0%からピークトップの透過率までの 二分の一の高さにおけるピーク幅) 1. 2〜; 1. 6の範囲の赤外線が透過され、より好適 には波長領域 12〜; 13 m、半値幅 1 · 3〜; ! · 5 mの範囲の赤外線が透過される。
[0047] 以上の赤外線フィルタ一は、赤外線が透過するような、ガラスや樹脂あるいは後述 する KBr粉末などの透明な材料に添加されて作製することができる。
[0048] この赤外線フィルターの性能は、上記の赤外線吸収材料のように赤外分光光度計 で測定することで評価すること力できる。たとえば、二酸化マンガンナノニードル多孔 体粉末と KBr粉末とを重量混合比 1 : 15. 5の割合でメノウ乳鉢でよく混合し、これを プレス機で直径 10mm、厚さ 0. 5mm (誤差プラスマイナス 0. 1mm)に加圧成形した 試験体に総出力 170Wのセラミック光源から放出される 2. 5〜25 H mの波長領域の 赤外線を試験体に照射して、赤外線吸収能 ·透過能を評価すると、赤外線透過強度 のピークトップ波長が 12· 3- 12. 5 m、半値幅(透過率 0%力、らピークトップの透 過率までの二分の一の高さにおけるピーク幅)が 1. 36- 1. 49 mである赤外線の 透過性を示すことがわかる。一方、後述するが、市販の二酸化マンガン粉末を同条 件でペレット化して赤外線透過性を測定したところ、吸着水に起因するピークが見ら れ、さらに透過ピークの半値幅も 10%近く広い結果が得られた。このため、二酸化マ ンガンナノニードル多孔体の赤外吸収能の高さと、狭!/、波長領域の赤外線が透過す ること力、ら、赤外線フィルターとしての性能が優れて!/、ること力 Sわ力、る。
[0049] さらに、本願の赤外線フィルタ一は、比表面積が大きい二酸化マンガンナノニード ル多孔体を用いた場合、試験体を透過する赤外線強度が低くなる傾向にある。した がって、入射する赤外線の出力が高い場合には、比表面積が大きい二酸化マンガン ナノニードル多孔体を用いることで、効果的に赤外線を吸収することできる。また、本 願の赤外線フィルタ一は、二酸化マンガンナノニードル多孔体の添加量や比表面積 を適宜に選択することで、赤外線透過性を制御することができる。
[0050] 本願発明の水素化した酸化マンガン HMnOは、二酸化マンガン MnOの結晶構
2 2 造に、プロトン H+および電子 e_が含侵したマンガン価数 + 4価のナノ微粒子であり、 この水素化した酸化マンガンは付加的な電気エネルギーなしに、水中で金の錯体、 例えば HAuClやパラジウムの錯体、例えば PdCl、または PdOHをそれぞれ金属
4 2 2
金ナノ粒子、金属パラジウムのナノ粒子として水素化した酸化マンガンの表面に析出 させる強い還元能力を有している。したがって、上述したような R型二酸化マンガンの ナノニードルを酸処理した水素化した酸化マンガンを用いることで、その表面に金属 金ナノ粒子、あるいは金属パラジウムのナノ粒子を析出させることができる。よって、 金属を担持させた金属担持 R型二酸化マンガンのナノニードルを得ることが可能とな
[0051] 従来報告されている水素化した酸化マンガンは、 Groutite (alpha ' MnOOH) ,お よび Groutemte (Mn Mn ) 0 (OH) )である力 S、これらはいずれも R型二酸
0. 5 0. 5 1. 5 0. 5
化マンガンがプロトン H+の侵入によってマンガンが + 3価に還元されることで生じる 化学種であり、少なくとも + 3価のマンガンを 40%以上含んでいる。さらに、これらの X線回折パターンは R型二酸化マンガンの X線回折パターンと比較して、プロトンの 含有量に応じて明確な回折ピーク位置のシフトをみせる。 C. Klingsberg and R . Roy, Amer. Mineral. , Vol. 44, pp. 819— 838, 1959、 L. A. H. MacLean and F. L. Tye, The Structure of fully H— Inserted gamma— Manganese Dioxide Conpoounds, J. Solid State Chem. ,
Vol. 123, pp. 150 - 160, 1996, J. E. Post and P. J. Heaney, Neutron and synchrotron X— ray diffraction study of the structure s and dehydration behaviors of ramsdellite and groutellite, Americ an Mineralogist, Vol. 89, pp. 969— 975, 2004。
[0052] 以上を考慮すると、本願発明の水素化した酸化マンガンは、 1) R型二酸化マンガン と同様の X線回折ピーク位置を示すこと、 2) X線吸収端分析によって + 4価のマンガ ンであること、 3)従来から既知の水素化した酸化マンガンである Groutite,および G routelliteには全く報告例が存在しな!/、金錯体ゃパラジウム錯体に対する強!/、還元 能力を有することなどから、新種の水素化した酸化マンガンであり、化学式は(H+, e ―) MnOであると考えられる。この酸化マンガンの中で、プロトン H+は 2つの酸素原
2
子 O— O間に存在することが予想されるため、(H+ , e_) MnOの化学式の中で Xは 1. 0以下の数値であると考えられる。そして、この水素化したマンガンは、 R型二酸化 マンガンの結晶構造の表面にプロトン H+と電子 e—が含浸した状態にあり、金の錯体 やパラジウムの錯体などと接触した際に自身の電子 e_をそれら錯体に供与し、プロト ン H+を水中に放出するものと考えられる。
[0053] さらに、本願発明の水素化した酸化マンガンについて詳細に説明する。
[0054] 本願発明の水素化した酸化マンガンに中性子を照射して非弾性散乱した中性子を 調べることで、水素化した酸化マンガンに含まれる、水素原子-酸素原子の結合に起 因する振動エネルギーを測定することができる。この結果を図 2に示す。
[0055] この図 2の縦軸は振動の強度、横軸は振動のエネルギーである。黒丸で示されたグ ラフが本願発明の水素化した酸化マンガンに中性子を照射した結果であり、もう一方 のグラフは、比較のために氷に中性子を照射した結果である。図 2中の右上に示した (a)図は、振動エネルギー 0〜50meVの範囲(横軸)を拡大した図である。水素化し た酸化マンガンのグラフにおいて 366meVに検出されたピークは 2. 57—2. 60 Aの 結合距離を有する酸素原子 酸素原子間に捕捉されて振動しているプロトン H+の 存在を示しており、酸処理によって水素化した酸化マンガンに含まれる水 H O内の
2 プロトン H+の振動エネルギーである 410meVとは異なる水素原子 酸素原子結合 の振動エネルギーである。一方で、氷のグラフには、酸処理起源の 366meVのピー クが存在せずに、水起源の O H振動のみが観察される。なお、測定には米国アル ゴンヌ国立研究所における Intense Pulsed Neutron Source部門の非弾性中 性子散乱エネルギー測定装置 HRMECSを使用し、計測温度 9Kである。
[0056] 表 1は種々の結晶構造の二酸化マンガン内に存在する、酸素原子 酸素原子間 距離である。
[0057] [表 1] Crystal structures O-O distances (Angstroms)
and references
R-Mn02 [1] 2.573, 2.589, 2.719, 2.734, 2.745, 2.848
Gamma-Mn02 [2] 2.419, 2.514, 2.705, 2.733, 2.767
Alpha- Mn02 [3] 2.505, 2.519, 2.722, 2.757, 2.768, 2.865
Beta- n02 [4] 2.434, 2.674, 2.877
Epcilon-Mn02 [5] 2.730, 2.768
Lambda-Mn02[6] 2.585, 2.890
[1] C. Fong, B.J. Kennedy, M,M. Elcombe, A powder neutron diffraction study of lambda and gamma manganese dioxide and of LiMri204, Zeitschrift Fuer KristaUographie, Vol. 209, pp. 941-945, 1994
[2] J. Haines, J. M. Leger and S. Hoyau, Second-order rutile-type to CaCla-type phase transition in β -MnOa at high pressure, J. Physics and Chemistry of Solids, VoL56, pp.965-973, 1995
[3] M.H. Rossouw, D. C. Liles, M.M. Thackeray, W.LF. David and S, Hull, Alpha manganese dioxide for lithium batteries: A structural and electrochemical study, Materials Research Bulletin, Vol. 27, pp. 221-230, 1992
[4] A. A. Bolzan, C. Fong, B.J. Kennedy, C.J. Howard, Powder Neutron Diffraction Study of Pyrolusite, beta-Mn02, A us. J. Chemistry, Vol. 46, pp. 939-944, 1993
[5] L.D. Konddrasev, A.I. Zaslavskii, Stucture of a modification of manganese dioxide,
Izvestiva Akademii Nauk SSSR, Seriya Fizicheskaya, Vol. 15, pp. 179- 186, 1951
[6] J. C. Hunter, Preparation of anew Crystal Form of Manganese Dioxide: lambda-MnOa, J, Solid State Chem., Vol. 39, pp.142- 147, 1981
[0058] 表 1中、 R型の二酸化マンガンの結晶構造には、 2. 573および 2. 589 Aの酸素原 子-酸素原子間距離が存在することがわかる。先の中性子照射実験の結果から得ら れた情報である 2. 57-2. 60Aの結合距離に相当する酸素 酸素力 S、このように R 型二酸化マンガンの結晶中に存在する。したがって、酸処理によって R型二酸化マ ンガンの結晶に侵入したプロトン H+は結合距離が 2. 573および 2. 589 Aの酸素原 子 酸素原子が構成する空間に捕捉されて結晶表面に含浸していることがわかる。
[0059] 原子間距離が 2. 589Aである酸素原子 酸素原子の結合は、図 3に示すように、 R型二酸化マンガンの結晶構造の b軸方向に沿ってネットワークを構成している。
[0060] このため、 R型二酸化マンガンの結晶に侵入したプロトン H+はこのネットワークをに 沿って拡散伝導して行くものと考えられる。また、このネットワークが存在する b方向は 、 R型二酸化マンガンナノニードルの長さの成長方向でもある。実際に、後述する実 施例における透過型電子顕微鏡写真では、 R型二酸化マンガンナノニードルは全て 結晶の b方向に成長している。このため、同ナノニードルの長さが成長するメカニズム には、酸処理によって結晶に含浸したプロトン H+が上述の R型結晶に特有の酸素一 酸素原子によって構成される空間ネットワークを導伝する現象が関係しているものと 考えられる。通常、電池材料として年間 20万トンが消費されているガンマ型二酸化マ ンガンは、 R型結晶構造の中にィプシロン型の結晶構造や、ベータ型の結晶構造が 不純物として混入している。これら不純物の結晶構造には、表 1に示すように、 2. 57 〜2. 60 Aの結合距離の酸素原子 酸素原子結合が存在しない。このためそれらの 不純物の結晶構造が存在する箇所ではプロトン H+を伝導するネットワークが途切れ てしまう。
[0061] このため、高純度の R型結晶が反応性の高いナノ粒子として得られる本願の R型二 酸化マンガンには、プロトン H+やプロトンに伴われた電子 e の伝導性に起因するェ ネルギーロスの少ない導伝物質としての応用が期待される。
[0062] 水素化した酸化マンガンに固溶可能なプロトン H+と電子 e_の数の最大値は、結晶 内に存在する結合距離が 2. 573および 2. 589Aの酸素原子 酸素原子結合の数 に等しいと考えられる。また、これらの原子間距離をもった酸素原子-酸素原子の結 合は結晶構造内で規則正しいネットワークを構成しているため、これらの酸素原子 酸素原子間に捕捉されているプロトン H+と電子 e_も結晶内で均一な密度で分布し ていると考えられる。このため、電子 e_だけが二酸化マンガンの結晶内に存在する場 合に比較して、二酸化マンガンの表面にお!/、て局部的な電界集中が起りにくいと!/、う 利点が発生する。よって、本願の水素化した酸化マンガンの表面には、上述したよう に金属金ナノ粒子、あるいは金属パラジウムのナノ粒子を還元析出させることができ る力 その析出状態は均一で高密度に金属ナノ粒子の析出を表面に生じさせること ができる。金属パラジウムには、水素ガス Hをプロトン H+に分解し、パラジウムの結
2
晶内に Pd— Hの結合として侵入させる性質が有るため、本願によって実現された高 密度 ·均一分布なパラジウムのナノ粒子を析出した酸化マンガンは、水素ガスや炭化 水素ガスの分解触媒分野での応用が期待される。
[0063] 以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって本願発明 が限定されることはない。
実施例
[0064] <参考例 >
太さが 2〜10nm、長さが 5〜30nmの R型二酸化マンガンのナノニードルによって 構成されたメソポーラス多孔体の合成と特性
試薬特級の炭酸マンガン n水和物 MnCO ·ηΗ Ο (和光純薬製) 25gをアルミナの
3 2
ノレッボ(ルツボの内径 6cm、深さ 5cm、フタの中心部のガス流出用の孔の内径 5mm )に入れて、大気圧下、 195°Cで、昇温時間も含めて計 6時間、電気炉を使って焼成 した。その際、室温から 195°Cまでの昇温速度は 3°C/分とした。つぎに、焼成によつ て得られた粉末 50gを水温 14°Cの濃度 0. 5Mの希塩酸 1Lに懸濁させてマグネチッ タスタラーで 1時間攪拌した。攪拌の際には、懸濁液に実験室の窓のすりガラスを透 過した太陽光があたる場所にマグネチックスタラーを設置して攪拌した。 1時間攪拌 後の懸濁液から酸化マンガンを減圧ろ過器で、ろ紙上に捕集し、湿ったペーストを得 た。このペーストを再び上記と同じ条件で酸処理することを 2回繰り返した。したがつ て、焼成した炭酸マンガン n水和物に対して計 3回酸処理を実施した。最後に、酸処 理後のペーストを lOOmLの純水で通水洗いした後、そのままガラス密閉容器内に保 管した。
[0065] ガラス密閉容器に保管した湿ったペーストから 10gを取り出し、ガラスシャーレに移 して、乾燥機内で大気圧下、 110°Cで 6時間乾燥した。乾燥後の固化したブロックか ら、透過電子顕微鏡による観察と窒素ガス吸着法による表面分析のための必要量を サンプリングし、それぞれの測定手順に従って、観察'分析した。その結果、透過電 子顕微鏡による観察では、太さ力 ¾〜10nm、長さが 5〜30nmのナノニードルが、空 隙を形成した状態で凝集している様子が観察された(図 4参照)。また、ナノニードル の先端部を観察した写真を図 5に示す。この図 5よりナノニードルの先端部は、丸み を帯びた(角が丸まった)形状をしていることが確認された。なお、 TEM写真の撮影 には、 日本電子製透過電子顕微 !EM— ARM1000を使用した。 [0066] また、窒素ガス吸着法による表面分析から、サンプリングした材料が平均細孔直径 11. 7nm (図 6参照)、 BET比表面積 109. 35m2/g、全細孔容積 0. 32cm3/gの メソポーラス多孔体であることを確認した。なお、平均細孔直径と BET比表面積の測 定には、島津製作所一マイクロメリテイクス製 ASAP2020を使用した。
[0067] また、同ブロックからサンプリングした材料を X線回折分析することによって、同ブロ ックの化学組成力 ¾型の二酸化マンガンであること、および X線回折パターンに炭酸 マンガン起源の回折ピークが観察されないことから原料の炭酸マンガンが残留してい ないことを確認した。なお、 X線回折分析には理学製 X線回折分析装置 RAD— ΠΒ を使用した。
[0068] また、同ブロックの表面硬さをビッカースの硬さ試験法により測定した。測定に当た つては、同ブロック表面に金薄膜をスッパッタリング法によって被覆することで、表面 の反射率を上げて試験圧痕のサイズを測定した。測定の結果、同ブロック表面のビッ カース硬度が 24であることがわ力 た。なお、ビッカース硬度の測定には、島津製作 所製マイクロビッカース固さ試験機 HMV— 2000を使用した。
<実施例 1〉
太さが 10〜30nm、長さが 30〜300nmの R型二酸化マンガンのナノニードルによ つて構成されたメソポーラス多孔体の合成と特性
試薬特級の炭酸マンガン n水和物 MnCO ·ηΗ Ο (和光純薬製) 25gをアルミナの
3 2
ノレッボ(ルツボの内径 6cm、深さ 5cm、フタの中心部のガス流出用の孔の内径 5mm )に入れて、大気圧下、 200°Cに予め加熱した状態の電気炉に素早く設置して、昇 温時間も含めて計 6時間焼成した。つぎに、焼成によって得られた粉末 50gを水温 3 2°C、濃度 0· 5Mの希塩酸 1Lに懸濁させてマグネチックスタラーで 2時間攪拌した。 2時間 30分攪拌後の懸濁液から酸化マンガンを減圧ろ過器で、ろ紙上に捕集し、湿 つたペーストを得た。このペーストを再び上記と同じ条件で酸処理することを 2回繰り 返し、減圧ろ過器でろ紙上に捕集し、湿ったペーストを得た。したがって、焼成した炭 酸マンガン n水和物に対して計 3回酸処理を実施した。
[0069] ろ紙上の湿ったペーストに、 0. 5M希塩酸 2mLを滴下して含ませ、さらにそのぺー ストを、 0. 5M希塩酸を充分含ませたろ紙 2枚で包装して、高さ 80mm、内径 30mm のガラス瓶に挿入した。その後、このガラス瓶を乾燥機内で大気圧下、 80°Cで 12時 間予備乾燥し、さらに 12時間 100〜120°Cで完全乾燥した。乾燥後の固化したプロ ック力、ら、透過電子顕微鏡 (TEM)による観察と窒素ガス吸着法による表面分析のた めに必要量をサンプリングし、それぞれの測定手順に従って、観察'分析した。その 結果、透過電子顕微鏡による観察では、太さ 10〜30nm、長さ 30〜300nmのナノ ニードルが空隙を形成した状態で凝集している様子が観察された(図 7、図 8参照)。 また、ナノニードルの先端部を観察した写真を図 9に示す。この図 9よりナノニードノレ の先端部は、丸みを帯びた形状をしていることが確認された。図 10は、図 7の高解像 度写真である。この図 10では(101)面の結晶の乱れが観察できる。右下の画像処 理により得られた電子線回折パターンのコントラストの高さが本サンプルの結晶性の 高さを示している。なお、 TEM写真の撮影には、 日本電子製透過電子顕微 I lEM —ARM1000を使用した。
[0070] また、窒素ガス吸着法による表面分析結果(図 11参照)から、サンプリングした図 7 の材料が BJH脱着側平均細孔直径 17. 81nm、 BET比表面積 46. 5m2/g、全細 孔容積 0. 22cm3/gのメソポーラス多孔体であることを確認した。なお、平均細孔直 径、 BET比表面積、全細孔容積の測定には、島津製作所一マイクロメリテイクス製 A SAP2020を使用した。
[0071] また、同ブロックからサンプリングされた材料の X線回折分析を行うことで、同ブロッ クが R型の二酸化マンガンを主成分とすること、および X線回折パターンに炭酸マン ガン起源の回折ピークが観察されなレ、ことから原料の炭酸マンガンが残留して!/、な いことを確認した(図 12参照)。図中、菱形印の横の数字は R型二酸化マンガンの X 線回折ピークの理論回折角ピーク位置を示す。本発明のサンプルは、 R型二酸化マ ンガンの理論回折角ピークの位置にピークを示していることがわかる。なお、 X線回 折分析には理学製 X線回折分析装置 RAD— ΠΒを使用した。
[0072] また、同ブロックの表面硬さをビッカースの硬さ試験法により測定した。測定に当た つては、同ブロック表面に金薄膜をスッパッタリング法によって被覆することで、表面 の反射率を上げて試験圧痕のサイズを確認した。測定の結果、同ブロック表面のビッ カース硬度が 27であることがわかった。なお、ビッカース硬度の測定には、島津製作 所製マイクロビッカース固さ試験機 HMV— 2000を使用した。
<実施例 2〉
太さが 5〜10nm、長さが 20〜150nmの R型二酸化マンガンのナノニードルによつ て構成されたメソポーラス多孔体の合成と特性
試薬特級の炭酸マンガン n水和物 MnCO ·ηΗ Ο (和光純薬製) 25gをアルミナの
3 2
ノレッボ(ルツボの内径 6cm、深さ 5cm、フタの中心部のガス流出用の孔の内径 5mm )に入れて、大気圧下、 200°Cに予め加熱した状態の電気炉に素早く設置して、昇 温時間も含めて計 6時間焼成した。つぎに、焼成によって得られた粉末 50gを水温 3 2°C、濃度 0· 5Mの希塩酸 1Lに懸濁させてマグネチックスタラーで 2時間攪拌した。
2時間 30分攪拌後の懸濁液から酸化マンガンを減圧ろ過器で、ろ紙上に捕集し、湿 つたペーストを得た。このペーストを再び上記と同じ条件で酸処理することを 2回繰り 返し、減圧ろ過器でろ紙上に捕集し、湿ったペーストを得た。したがって、焼成した炭 酸マンガン n水和物に対して計 3回酸処理を実施した。
[0073] ろ紙上の湿ったペーストに、 0. 5M希塩酸 2mLを滴下して含ませ、さらにそのぺー ストを、 0. 5M希塩酸を充分含ませたろ紙 2枚で包装して、高さ 80mm、内径 30mm のガラス瓶に挿入した。その後、このガラス瓶を乾燥機内で大気圧下、 120°Cで 12 時間かけて完全乾燥した。乾燥後の固化したブロックから、透過電子顕微鏡 (TEM) による観察と窒素ガス吸着法による表面分析のために必要量をサンプリングし、それ ぞれの測定手順に従って、観察'分析した。その結果、透過電子顕微鏡による観察 では、太さ 5〜; 10nm、長さ 20〜150nmのナノニードルが混在して空隙を形成した 状態で凝集している様子が観察された。また、ナノニードルの先端部を観察したとこ ろ、丸みを帯びた形状をしていることが確認された。これらの結果、実施例 1で行った 予備乾燥処理を行わずに完全乾燥処理を実施することでニードルの成長を抑制す ると、結果としてニードルが凝集して形成するメソポーラス構造の比表面積を増加さ せ、かつ細孔直径が小さレ、方にシフトすることが確認された。
なお、 TEM写真の撮影には、 日本電子製透過電子顕微 I lEM— ARM1000を使 用レた。
[0074] また、窒素ガス吸着法による表面分析結果(図 13参照)から、サンプリングした材料 が BJH脱着側平均細孔直径 13. 15nm、 BET比表面積 53. 7m2/g、全細孔容積 0 . 20cm3/gのメソポーラス多孔体であることを確認した。なお、平均細孔直径、 BET 比表面積、全細孔容積の測定には、島津製作所一マイクロメリテイクス製 ASAP202 0を使用した。
[0075] また、同ブロックからサンプリングされた材料の X線回折分析(図 14参照)を行うこと で、同ブロックが R型の二酸化マンガンを主成分とすること、および X線回折パターン に炭酸マンガン起源の回折ピークが観察されないことから原料の炭酸マンガンが残 留していないことを確認した。図 14中、菱形で R型二酸化マンガンの X線回折ピーク の理論回折角ピーク位置を示した。図 14から本発明のサンプルは、 R型二酸化マン ガンの理論回折角ピークの位置にピークを示していることがわかる。なお、 X線回折 分析には理学製 X線回折分析装置 RAD— ΠΒを使用した。
[0076] また、同ブロックの表面硬さをビッカースの硬さ試験法により測定した。測定に当た つては、同ブロック表面に金薄膜をスッパッタリング法によって被覆することで、表面 の反射率を上げて試験圧痕のサイズを確認した。測定の結果、同ブロック表面のビッ カース硬度が 30であることがわ力 た。なお、ビッカース硬度の測定には、島津製作 所製マイクロビッカース固さ試験機 HMV— 2000を使用した。
<実施例 3〉
太さが 2〜10nm、長さが 5〜30nmの R型二酸化マンガンのナノニードルによって 構成されたメソポーラス多孔体の合成
試薬特級の炭酸マンガン n水和物 MnCO ·ηΗ Ο (和光純薬製) 25gと試薬特級
3 2
の炭酸酸化ビスマス(111)、 Bi (CO ) 0 2. 5gをメノウ乳鉢でよく混合する。混合した
2 3 2
粉末をアルミナのルツボ(ルツボの内径 6cm、深さ 5cm、フタの中心部のガス流出用 の孔の内径 5mm)に移し、大気圧下、 195°Cで、昇温時間も含めて計 6時間、電気 炉を使って焼成した。その際、室温から 195°Cまでの昇温速度は 3°C/分とした。つ ぎに、焼成によって得られた粉末 25gを水温が 12°C、濃度 0. 5Mの希塩酸 1Lに懸 濁させてマグネチックスタラーで 1時間攪拌した。 1時間攪拌後の懸濁液から酸化マ ンガンを減圧ろ過器で、ろ紙上に捕集し、湿ったペーストを得た。このペーストを再び 上記と同じ条件で酸処理することを 2回繰り返した。したがって、炭酸マンガン n水和 物と炭酸酸化ビスマスの混合粉体を焼成して得た粉体に対して計 3回酸処理を実施 した。最後に、酸処理後のペーストを lOOmLの純水で通水洗いした後、湿った状態 のままガラス密閉容器内に保管した。
[0077] ガラス密閉容器に保管した湿ったペーストから 2gを取り出し、ガラスシャーレに移し て、乾燥機内で大気圧下、 110°Cで 12時間乾燥した。乾燥後の固化したブロックか ら、透過電子顕微鏡 (TEM)による観察と窒素ガス吸着法による表面分析のために 必要量をサンプリングし、それぞれの測定手順に従って、観察'分析した。その結果、 透過電子顕微鏡による観察では、太さ力 ¾〜8nm、長さが 10〜30nmのナノニード ルが空隙を形成した状態で凝集している様子が観察された(図 15参照)。また、 1本 のナノニードルの拡大写真を図 16に示す。この図 16によれば、太さ 6nm程度の均 一なナノニードルであることが観察された。また、ナノニードルの先端部を観察した写 真を図 17に示す。この図 17よりナノニードルの先端部は、丸みを帯びた形状をして いることが確認された。
なお、 TEM写真の撮影には、 日本電子製透過電子顕微 I lEM— ARM1000を使 用レた。
[0078] 窒素ガス吸着法による表面分析から、サンプリングされた材料が BJH脱着側平均細 孔直径 9. 26nm、 BET比表面積 173. 29m2/g、全細孔容積 0. 40cm3/gのメソ ポーラス多孔体であることを確認した。
[0079] また、炭酸マンガン n水和物 25gに混合する炭酸酸化ビスマスを 5gと増やした場合 には、上記と同条件の方法によって、最終的に同じサイズの二酸化マンガンのナノ二 一ドルが得られ、それが凝集することで、 BJH脱着側平均細孔直径 5. 487nm、 BE T比表面積 190. 93m2/g、全細孔容積 0. 263cm3/gのメソポーラス多孔体が得 られることを確言忍した。
[0080] このように酸処理後のペーストを純水で通水洗いすること、および炭酸酸化ビスマス を少量混合することで、最終的に得られる R型の二酸化マンガンのナノニードルから 構成されたメソポーラス多孔体ブロックの BET比表面積を増加させる効果が得られる ことを確認した。なお、平均細孔直径と BET比表面積の測定には島津製作所製 AS AP2020を使用した。 また、同ブロックからサンプリングされた材料の X線回折分析を行うことで、同ブロッ クが R型の二酸化マンガンを主成分とすること、および X線回折パターンに炭酸マン ガン起源の回折ピークと、炭酸酸化ビスマスおよび酸化ビスマス起源のピークがほと んど観察されないことを確認した。したがって、原料の炭酸マンガンおよび炭酸酸化 ビスマスが同ブロックにはほとんど残留していないこと、および 195°Cの様な低温の 焼成では同多孔体の化学成分的な観点からは不純物となる酸化ビスマス Bi Oが生
2 3 じていないことを確認した。なお、 X線回折分析には理学製 X線回折分析装置 RAD ΠΒを使用した。
<実施例 4〉 R型二酸化マンガンの純度の評価
実施例 2で得たナノニードルの成分である R型二酸化マンガンの純度を、 X線回折 分析結果を用いて評価した。純度は、二酸化マンガン結晶の歪みを表す指標である 1歪み係数」 Jahn— Teller distortion lactor (Y. Chabre and J. Pannetie r, Structural and electrochemical properties of the proton Z gamm a -Mn02, Prog. Solid St. Chem. , Vol. 23, pp. 1— 130, 199 5)を、 K. Suetsugu, K. Sekitani and T. Shoji, An investigation of structural water in electrolytic manganese dioxide (EMD) , TO SOH, Research & Technology Review, Vol. 49, pp. 21— 27, 20
05の算出方法にしたがって算出 '評価した。算出の結果、本 R型二酸化マンガンに 関して得られた歪み係数は 0. 957であり、ベータ型やィプシロン型など他の結晶構 造が混じっていない純度が 100%の R型二酸化マンガンとしての理論的な歪み係数 の値である 0. 95に非常に近い値が得られた。純度の比較例として、工業的に二酸 化マンガンを合成する一般的な手法である電解法を用いて高純度の R型二酸化マン ガンを得る条件(アノード電流 12A/m2, 9 X 104C、二酸化マンガンが析出する電 極に 50mm X 100mmを使ったとすると析出には 17日必要)で合成した場合に得ら れる R型二酸化マンガンの歪み係数が 0. 96以上であることが挙げられる。この値を 考慮すると、本願の R型二酸化マンガンは極めて高純度であり、しかも付加的な電気 エネルギーを必要としなレ、水溶液中の触媒反応よつて 1〜 3時間と極めて短時間で 合成できることが明らかになった。 なお、歪み係数の算出に当たっては、本願の方法で得た R型二酸化マンガンの X 線(Cu— Κ α )回折パターンから求められた格子乗数である d = 2. 424、 d
(210) (211)
= 2. 127、 d = 1. 359 Aが使われた。その際、結晶軸を決める三次元軸である a
(610)
, b, c軸の設定は C. Fong, B. J. Kennedy, M. M. Elcombe, A pow der neutron diffraction study of lambda and gamma manganese di oxide and of LiMn204, Zeitschrift Fuer Kristallographie , Vol. 2 09, pp. 941 - 945, 1994に従った。
<実施例 5〉 酸処理に使用する酸の種類がニードル成長に与える影響
実施例 2において、濃度 0. 5Mの希塩酸の代わりに濃度 0. 5Mの希硫酸を用いて 酸処理を実施した。また、酸処理後のペーストに添加する酸およびそのペーストを包 装するろ紙に含ませる酸についても、希塩酸の代わりに濃度 0. 5Mの希硫酸を用い て、実施例 1の条件下で乾燥処理し、得たサンプルを X線回折分析した。その結果、 希硫酸を用いた場合にも R型の二酸化マンガンに特有な X線回折パターンが得られ た。このため、塩酸よりも単価の安い硫酸を用いた場合でも R型二酸化マンガンが得 られることがわかった。ただし、同条件下で酸処理に希塩酸を用いた場合に比較して 、希硫酸を用いた場合には、最終的に得られる R型二酸化マンガンの X線回折バタ ーンの強度が明らかに低い結果が得られた。したがって、 R型二酸化マンガンのニー ドルの成長を促すためには希硫酸よりも希塩酸を酸処理に用いた方が好適であるこ とがわかった。また、希塩酸の代わりに希硝酸を酸処理に用いても R型二酸化マンガ ンが得られた。
<実施例 6〉 酸処理によって得られる水素化した酸化マンガンに関する組成の評 価
200°Cで 6時間、炭酸マンガン n水和物(和光純薬試薬特級)を加熱して得た粉末 40gを 0. 5M希塩酸 2Lに懸濁させて 1時間攪拌後希塩酸中で発生した水素化した 酸化マンガンを濾過回収して、水素化した酸化マンガンのペーストを得た。これをガ ラスプレートに塗布し、ただちに粉末 X線回折分析装置に装填して分析した。また、こ のペーストに 2mLの 0. 5M希塩酸を滴下し、同希塩酸を含んだろ紙で包装した後、 高さ 80mm、内径 30mmのガラス瓶に挿入して乾燥機内に 12時間大気圧下 100°C に保持'乾燥処理して R型二酸化マンガンを得た。この R型二酸化マンガンの塊をメ ノウ乳鉢で粉砕し、ガラスプレートに圧着して粉末 X線回折分析を実施した。上記ぺ 一スト、およびそれを乾燥処理して得た R型二酸化マンガン (R— MnO )に関する X
2
線回折分析結果を図 18に示す。
図 18では、上から順に、放射光施設 SPing ' 8において得られたペーストに関する X線回折パターン、ペーストに関する実験室 X線回折パターン、ペーストを上述の条 件で乾燥して得られた R型二酸化マンガン(R— MnO )のパターン、および、この R
2
型二酸化マンガン (R— MnO )粉末 2gを再度 0· 5M濃度希塩酸 1Lに懸濁させた後
2
に得られた再度酸処理した R型二酸化マンガンの X線回折パターンを示す。なお、 図 18の最下段に線で示した回折ピークは文献値(C. Fong, B. J. Kennedy,
M. M. Elcombe, A powder neutron diffraction study of lambda and gamma manganese dioxide and of LiMn204, Zeitschrift Fuer
Kristallographie, Vol. 209, pp. 941— 945, 1994)による理論的な R 型二酸化マンガンの回折ピーク位置を示す。図 18より、まず本手法で合成した R型 二酸化マンガンが文献値と同じ回折パターンを示すことから、 R型の結晶構造を有し た二酸化マンガンであることがわかる。次に、ペーストに関する実験室 X線回折バタ ーンはブロードであり酸化マンガンを構成する基本ユニットであるマンガン原子を中 心とした酸素八面体に起因するピーク(210)、 (211)、 (212)らが確認できる。しか しながら、 R型の二酸化マンガンには存在しないブロードなピークが(020)と(610) の間に観察される。このペーストを SPing ' 8における放射光 X線を使って高精度に調 ベた結果を図 18の最上段に示す。放射光 X線の結果では、ペーストに関して実験室 X線で得られた(020)と(610)の間に観察されたピークが 67. 5° 付近に明確に観 察された。これは文献値(L. A. H. MacLean, F. L. Tye, The structure of fully H. inserted gamma 'manganese dioxide compoundsj. Soid Stat e Chemistry 123, pp. 150 - 160, 1996) ίこよれ ίίこれ ίま R型の結曰曰曰構造 ίこィプ シロン型の結晶構造が混入した二酸化マンガンに特徴的なピークである。したがって 、本ペーストは R型とィプシロン型が混晶した二酸化マンガンであると言える。次に、 R型二酸化マンガン (R— MnO )を再度酸処理した場合の実験室 X線回折パターン では、再度の酸処理以前の R型二酸化マンガンの回折パターンとほぼ同様なパター ンが得られている。このことは、一度ペーストを充分乾燥処理することで R型二酸化マ ンガンとした場合には、それを再度酸処理した場合も R型の結晶構造が保たれること を示している。文献(L. A. H. MacLean, F. L. Tye, The structure of full y H. inserted gamma · manganese dioxide compoundsj. Sold State C hemistry 123, pp. 150 - 160, 1996)によれば、電池反応などにおける R型結晶 を主相とした二酸化マンガンではプロトン H+を R型の結晶内に存在するトンネル構 造内に含侵すると、その結晶構造が僅かに膨らみ、その結果、ほとんどの X線回折ピ 一クが低角側にシフトすることが明らかにされている。ところ力 本例における R型二 酸化マンガン (R— MnO )を再度酸処理した場合の実験室 X線回折パターン(図 18
2
参照)では、そのようなピークシフトは全く見られない。このことは、 R型の結晶のトンネ ル構造内にプロトン H+が含侵するのではなぐ R型の結晶の表面にプロトン H+を保 持していることを示す。
なお、実験室 X線計測には、 Rigaku RAD -II Bを使用した。
[0084] さらに、ペーストの X線吸収端分析 (XANES)によるマンガン価数の分析結果を図
19に示す。なお、 XANESの測定に当たっては、ペーストの乾燥を防ぐため、 X線に 対して透明なポリエチレンの袋に密閉して測定サンプルとし、計測には、 Rigaku R
-XAS Looperを使用した。
[0085] 図 19では、ペーストの X線吸収端(横軸 6530eVから 6550eVにかけて見られる曲 線の立ち上がり)の位置は、標準試料として測定した二酸化マンガン MnOとほぼ同
2 じ位置に生じており、 + 3価のマンガンである Mn Oの標準試料の吸収端とは異なる
2 3
位置で生じることが明らかとなった。一般的に、電池反応などにおける R型結晶を主 相とした二酸化マンガンではプロトン H+を含侵すると、マンガンの価数が + 3価に還 元された HMnOという組成をとることが知られている。ところが、本例では酸処理に
2
よってプロトン H+を含侵させて水素化したペースト状態において、マンガンの価数は + 4価と計測されている。したがって、電化中性の原理に従うと、この + 4価の価数を 有する水素化した酸化マンガン HMnOは e_を含侵した状態にあると考えられ、その
2
より正確な組成は(H+, e_) Mn〇であると言える。 [0086] 以上の結果より、上記ペーストは、 R型二酸化マンガン MnOの結晶構造に、プロト
2
ン H+および電子 e_が含侵したマンガン価数 + 4価の水素化した酸化マンガン(H+, e_) MnOにィプシロン型の二酸化マンガンが混晶していることが判明した。また、 R
2
型二酸化マンガン (R— MnO )を再度酸処理した場合には、その表面組成が水素
2
化した酸化マンガン(H+, e_) MnOであることが確認された。 (H+, e_) MnOの模
2 2 式図を図 20に示す。図 20では、ペースト中に存在する(H+, e— ) MnOや再度酸処
2
理された R型二酸化マンガン表面における(H+, e— ) MnOを模式的に拡大図示し
2
た。
<実施例 7〉 金属パラジウム担持 R型二酸化マンガンのナノニードルの合成 実施例 1の手順で製造したペーストを濃度 0. 5Mの希塩酸で湿ったガラスろ紙 (ァ ドバンテック GS ' 25)で包んだ状態で乾燥器内に置き、 80°Cで 24時間乾燥後、得ら れた塊をメノウ乳鉢で充分粉砕した。次に、この粉砕した粉末を再度濃度 0. 5Mの希 塩酸 1Lに懸濁させて 1時間攪拌した後、減圧ろ過器でろ紙上に捕収した。つぎに、 パラジウム濃度 lOOOOppmの塩化パラジウム水溶液(キシダ化学製) lOOmLをビー カーに移し、水酸化ナトリウムのペレットと、水酸化ナトリウムの水溶液を用いて ρΗ6· 2に調整した。この ρΗ調整した塩化パラジウム水溶液に、ろ紙上に捕収された再度 酸処理された粉末を懸濁させて 24時間攪拌保持した。ナノニードルを懸濁したパラ ジゥム水溶液の ρΗは、ノ ラジウムの析出が進行するにつれて低下するため、攪拌の 間中は ρΗ6. 0を保つように、適時水酸化ナトリウム水溶液を滴下した。 24時間の攪 拌終了後、減圧ろ過器でパラジウム水溶液に懸濁させたペーストをろ紙上に捕収し、 次いでガラスシャーレに移し、電気炉を用いて大気圧下、 100°Cで 12時間乾燥した 。この様な一連の操作によって、金属パラジウムのナノ粒子を担持した R型二酸化マ ンガンのナノニードルを得た。これを透過電子顕微鏡で観察した結果を図 21に示す
[0087] なお、ナノニードルにパラジウムを析出させるためには、ナノニードル自身が含む電 子をパラジウム錯体に渡して還元させる必要がある。また、このパラジウムの還元-祈 出反応の際にナノニードルを懸濁したパラジウム水溶液の pHが低下して!/、る。これら のこと力、ら、プロトン H+および電子 e_が R型二酸化マンガンのナノニードル表面に含 浸しており、水溶液中のパラジウム錯体にその電子を渡して金属パラジウムのナノ粒 子として還元析出させ、かつプロトン H+を水中に放出して電価中性を保っていると考 えられる。したがって、金属パラジウムを担持した R型二酸化マンガンの化学式は、水 素化した酸化マンガン(H+, e_) MnOのナノ微粒子が水溶液中の塩化パラジウム
2
や水酸化パラジウム(+ 2価のパラジウム) PdCl、PdOHに電子を 2個供給して金属
2 2
パラジウム Pdとして析出させるため、 Pd MnOであると考えられる。
x/2 2
この合成方法で重要な点は、一度、 R型二酸化マンガンのナノニードルを 80〜90 °C程度の予備乾燥によって成長させてから、湿り気を残した非完全乾燥の状態で再 度酸処理することによって R型二酸化マンガンのナノニードル表面を充分に水素化し た後、パラジウム錯体を含む水溶液に懸濁させてナノニードルの表面にパラジウムを 析出させることである。一方、焼成炭酸マンガンを酸処理した直後に予備乾燥せずに ペーストの状態でに、塩化パラジウム水溶液と同条件下で接触させた場合には、図 2 2に示すような、金属パラジウムのナノ粒子(濃いコントラストの点達)が析出した塊状 の R型二酸化マンガンが得られ、図 21の様なニードル状で得ることができない。 <実施例 8 > 金属金担持 R型二酸化マンガンのナノニードルの合成
実施例 7において、パラジウム濃度 lOOOOppmの塩化パラジウム水溶液の代わりに 金濃度 lOOOppmの HAuCl水溶液「試薬名:原子吸光分析用標準試薬 金 ΙΟΟΟρ
4
pmj (和光純薬工業)を用いて同様の操作をおこなったところ、金属金のナノ粒子を 担持した R型二酸化マンガンのナノニードルが得られることが確認された。
<実施例 9 > 酸処理後のペーストから R型二酸化マンガンのメソポーラス多孔体膜 を作成する方法
上記実施例 1〜3の合成中に得られた酸処理後のペーストを乾燥処理する際に、 直径 3cm、 300メッシュのステンレス製の網に、同ペーストを塗布して 100°Cで 7時間 乾燥処理した。その結果、メッシュが骨材となり、メッシュの形と面積に応じた形状を 有する R型二酸化マンガンのナノニードルで構成されたメソポーラス材料を担持した 膜を作ること力できた。さらに、このようにして得られた膜同士の面と面を接触させた 状態で、 200°Cに加熱されたヒーター中に静置することで、膜どうしを接合することが できた。このため、 目的に応じて接合枚数を増やすことで、簡易に膜厚を増加させる ことが可能であることが証明された。
<実施例 10〉 二酸化マンガンナノニードル多孔体からなる赤外線吸収材料の赤 外線吸収能の評価
実施例 1で得られた BJH脱着側平均細孔直径 17. 81nm、 BET比表面積 46. 5m 2/g、全細孔容積 0. 22cm3/gの二酸化マンガンナノニードル多孔体 0. 115gをメ ノウ鉢で粉砕し、加圧成型治具に入れ、これをロータリーポンプで脱気しながら、圧 力 4MPa、 3分間で圧縮成型して、直径 10mm、厚さ 0.5mmの試験体ペレット(赤外線 吸収材料)を作成した。
この試験体ペレットを赤外分光光度計に設置し、波数 AOOO OOcnT1 (波長 2. 5 〜25. O ^ m)の赤外線を照射して試験体ペレットを透過してくる赤外線の強度と波 数 (波長)を調べた。この測定結果を図 23に示す。図 23では、波数 1000cm— 1以下( 10. 0 m以下)では縦軸の透過率が 0. 01 %以下であり、ほとんどの波長領域にお いて赤外線が吸収されていることがわかる。波数 1000cm— 1以上(10. O ^ m以上)に おいては、透過が観察されるが、これは本試験体ペレット中の二酸化マンガンナノ二 一ドル多孔体の量が 0. 115gと極めて少ないためであり、ペレット中の二酸化マンガ ンナノニードル多孔体の量を増加させるに従って、波数 1000cm— 1以上(10. O ^ m 以上)における透過強度が速やかに低下することを確認した。測定には、 日本分光 製のフーリヱ変換赤外分光光度計 FT— IR4200TYPE— Aを使用した。また、本試 験体ペレットを光学顕微鏡で観察することを試みることは強力な観察光光源を照射し ても、極めて困難であることを確認した。これは、二酸化マンガンナノニードル多孔体 1S グラフアイトなどに代表されるカーボン材料に比べて、赤外線だけではなぐ可視 光に対しても高い吸収性を有するためであり、単に赤外線だけの吸収能に優れる力 一ボン材料などに比べた場合の長所である。なお、赤外線吸収の測定には、 日本分 光製のフーリヱ変換赤外分光光度計 FT— IR4200TYPE— Aを使用した。
<実施例 11 > 赤外線フィルターの赤外線吸収能の評価(1)
実施例 3で得られた平均細孔直径 9. 26nm、 BET比表面積 173. 29m2/g、全細 孔容積 0. 40cm3/gの二酸化マンガンナノニードル多孔体 0. 0286gを KBr粉末 0 . 4362gとともにメノウ鉢で粉砕 ·混合し、加圧成型治具に入れ、これをロータリーポ ンプで脱気しながら、圧力 4MPa、 3分間で圧縮成型して、直径 10mm、厚さ 0. 5m m (プラス.マイナス 0. 1mm)の試験体ペレットを作成した。したがって、この試験体 ペレット中の二酸化マンガンのナノニードル多孔体と KBrとの混合重量比は、 1 : 15. 3である。また、二酸化マンガンナノニードル多孔体濃度は 6. 15wt%である。
[0090] この試験体ペレットを、赤外分光光度計に設置し、波数 AOOO OOcnT1 (波長 2.
5-25. O ^ m)の赤外線を照射して試験体ペレットを透過する赤外線の強度と波数( 波長)を調べた。この測定結果を図 24に示す。図 24では、縦軸の透過率のピークト ップが、波数 799. 74cm_ 1 (12. δ ^ πι)、力、つ、半値幅(透過率 0%からピークトップ の透過率までの二分の一の高さにおけるピーク幅)力 OcnT1 (1. 36 [I m)の赤外線 のみを透過している。このため、作成した試験体は、特定の波長領域の赤外線を透 過させるフィルタ一として機能して!/、ること力 Sわ力、る。
[0091] また、二酸化マンガンナノニードル多孔体を得るための前駆体である焼成された炭 酸マンガン粉末 0· 0283gを、 KBr粉末 0· 4389gとともにメノウ乳鉢で粉砕 '混合し、 加圧成型治具に入れ、これをロータリーポンプで脱気しながら、圧力 4MPa、 3分間 で圧縮成型して、直径 10mm、厚さ 0. 5mmの試験体ペレットを作成した(焼成炭酸 マンガンと KBrの重量混合比は 1: 15. 5、試験体ペレット中での焼成炭酸マンガン の濃度は 0. 00606wt%)。この試験体ペレットの赤外線透過特性を図 25に示した。 図 25では、炭酸塩に起因する赤外線透過成分が観察されることから、二酸化マンガ ンナノニードル多孔体を合成する手順にお!/、て、酸処理を充分に行うことで炭酸成 分を除去することが、赤外線のフィルター特性を高めるために重要であることがわか る。なお、赤外線透過の測定には、パーキンエルマ一社製のフーリエ変換赤外分光 力、析装置 spectrum One Image system FT— IR Spectrometerを使用し 7こ
<実施例 12〉 赤外線フィルターの赤外線吸収能の評価(2)
実施例 1で得た平均細孔直径 18. 68nm、 BET比表面積 46. 5m2/g、全細孔容 積 0. 22cm3/gの二酸ィ匕マンガンナノニードノレ多孑し体 0. 0280gを KBr粉末 0. 435 5gとともにメノウ鉢で粉砕 '混合し、加圧成型治具に入れ、これをロータリーポンプで 脱気しながら、圧力 4MPa、 3分間で圧縮成型して、直径 10mm、厚さ 0. 5mm (プラ ス 'マイナス 0· 1mm)の試験体ペレットを作成した。したがって、この試験体ペレット 中の二酸化マンガンナノニードル多孔体と KBrとの混合重量比は、 1 : 15. 6である。 また、二酸化マンガンナノニードル多孔体濃度は 6.04wt%である。
[0092] この試験体ペレットを、赤外分光光度計に設置し、波数 AOOO OOcnT1 (波長 2.
5-25. O ^ m)の赤外線を照射して試験体ペレットを透過する赤外線の強度と波数( 波長)を調べた。この測定結果を図 26に示す。図 26では、縦軸の透過率のピークト ップが、波数 810. 92cm_ 1 ( 12. 3 111)、力、つ、半値幅(透過率 0%力、らピークトップ の透過率までの二分の一の高さにおけるピーク幅)が l OOcnT1 ( 1. 9 μ m)の赤外 線のみを透過している。このため、作成した試験体は、特定の波長領域の赤外線を 透過させるフィルターとして機能して!/、ること力 Sわ力、る。実施例 1 1の結果である図 21 と比べると、比表面積が小さぐ平均細孔直径が大きい二酸化マンガンナノニードノレ 多孔体を用いた本例の方が、若干半値幅が広い透過ピークとなり、ピークの透過率 の値が高いことから、実施例 1 1の試験体ペレットに比べて、ほぼ同じ波長域の赤外 線の透過性が高レ、ことがわかる。
[0093] また、グラフアイトや活性炭などのカーボン材料を KBrに添加して、同様の試験体 ペレットを作成し、同様の手法で赤外線透過特性を確認した力 カーボン材料を添 加した場合には、 2. 5〜25 mの全波長領域に渡って赤外線の吸収が生じるため、 本発明のようなフィルター効果が得られないことを確認した。なお、赤外線透過の測 定には、パーキンエルマ一社製のフーリエ変換赤外分光分析装置 Spectrum One
Image System FT— IR spectrometerを使用した。
<実施例 13〉
上記実施例 3で合成した酸処理後のペーストをサラシ布に均一に塗布した後、自 然乾燥させた。約 50°Cのお湯が入った紙コップ(高さ 10cm、直径 6cm)を用意し、こ の紙コップを台の上において、紙コップの手前 10mmの位置に、 1 )何もない、 2)白 いウェス、 3)二酸化マンガンのナノニードルから構成された多孔体の粉末を塗布した サラシ布を設置して、赤外線モニター ·ナイトビジョン (本田技研レジエンド 2005年式 搭載)で観察した。なお、紙コップと赤外線センサーを搭載した自動車との距離は 10 mに設定し 7こ。 [0094] その結果、 1)では、白く紙コップがはっきりモニターに浮かび上がる。 2)ぼんやり白 く紙コップが浮かび上がる。 3)グレー色に映って物がありそうなことはわ力、る力 S、 1)や 2)の様に白くはならない。という結果が得られた。この結果から、布に塗布した二酸 化マンガンのナノニードルから構成された多孔体の粉末がお湯を入れた紙コップか ら発する赤外線を吸収遮断していることがわかった。したがって、本発明の材料が、 市販の自動車に組み込まれた信頼性の高!/、高感度の赤外線モニターを使った場合 でも、効果的な赤外線吸収体の性能を発揮することが証明された。
<比較例 >
市販の二酸化マンガン (和光純薬製特級酸化マンガン IV化学処理品)、市販の酸 化マンガン(和光純薬製特級酸化マンガン III Mn O )、市販の酸化チタン (和光純
2 3
薬製特級酸化チタン III TiO )を表 2の条件で、各材料をメノウ乳鉢で粉砕 ·混合し
2
、加圧成型治具に入れ、ロータリーポンプで脱気しながら、圧力 4MPa、 3分間で圧 縮成型して、直径 10mm、厚さ 0. 5mm (プラス ·マイナス 0· 1mm)の試験体ペレット を作成した。
[0095] [表 2]
Figure imgf000038_0001
[0096] つぎに、作成した各試験体ペレットを、赤外分光光度計に設置して、波数 4000〜4 00cm— 1 (波長 2· 5-25. 0 m)の赤外線を照射して各試験体ペレットを透過する 赤外線の強度と波数 (波長)を調べた。この測定結果を図 27〜29に示す。
[0097] 図 27は、市販の二酸化マンガンと KBrを混合した試験体ペレットに関する赤外線 透過特性を示す。この市販の二酸化マンガン (和光純薬工業製試薬特級)は、透過 型電子顕微鏡観察すると大きさが 10ナノメートル程度の微粉体であるため、本発明 の二酸化マンガンのナノニードル多孔体を用レ、た場合の結果である図 24や図 26に 類似した透過波長や透過強度を示すが、 1500〜; 1000cm— 1の波数領域に市販の 二酸化マンガンが含んでいる吸着水に基づく赤外線の透過ピークが観察される。こ れは、市販の二酸化マンガンが単なる微粒子の集合体であるために、本発明の二酸 化マンガンのナノニードル多孔体を用いた場合のように、照射された赤外線が材料 内部で拡散反射されて強度が減衰する効果が得られな!/、ためであると考えられる。こ のため、赤外線フィルターを作るための添加材としては、本発明の二酸化マンガンの ナノニードル多孔体の方が優れてレ、ると言える。
[0098] つぎに、図 28は市販の酸化マンガン(III) (STREM CHEMICALS製試薬 99% )と KBrを混合した試験体ペレットに関する赤外線透過特性を示す。図 27の市販の ニ酸化マンガンに比べると1500〜1000じ111_ 1の波数領域に吸着水の透過ピークは 存在しないが透過強度が 7倍以上高ぐ半値幅も広いため、入射する赤外線のエネ ルギ一が高!/、場合には、半値幅が広がることでフィルター特性が悪化することが予想 される。
[0099] また、図 29は市販の酸化チタン (IV) (和光純薬工業製試薬特級)と KBrを混合し た試験体ペレットに関する赤外線透過特性を示す。図 29の結果は、本発明の二酸 化マンガンのナノニードル多孔体を用いた場合の結果である図 24や図 26の場合に 比べて、透過波長のピークが 9· 2 mに見られるといった違いがあることがわかる。し 力、しながら透過強度が図 24や図 26に比べると 6倍から 10倍高いため、入射する赤 外線のエネルギーが高レ、場合には、半値幅が広がることでフィルター特性が悪化す ること力 S予想、される。
[0100] なお、以上の赤外線透過の測定には、パーキンエルマ一社製のフーリエ変換赤外 力、光分ネ T装置 Spectrum One Image System FT— IR spectrometerを使 用した。

Claims

請求の範囲
[I] R型二酸化マンガンを主成分とするニードル状のナノニードルで構成されており、こ れらナノニードルでメソポーラス多孔体構造が形成されていることを特徴とする二酸 化マンガンナノニードル多孔体。
[2] メソポーラス多孔体構造の平均細孔直径が 15nm〜30nmの範囲、 BET比表面積 力 S40〜50m2/g、全細孔容積が 0· ;!〜 0· 3cm3/gの範囲であることを特徴とする 請求項 1に記載の二酸化マンガンナノニードル多孔体。
[3] 表面硬さは、ビッカース硬さ試験法による測定でビッカース硬度 15〜30の範囲で あることを特徴とする請求項 1または 2に記載の二酸化マンガンナノニードル多孔体。
[4] 大きさがナノメートルスケールであって、 R型二酸化マンガンを主成分とするニード ル状の R型二酸化マンガンのナノニードル。
[5] 太さ 10〜30nm、長さ 30〜300nmの範囲である請求項 4に記載の R型二酸化マ ンガンのナノニードノレ。
[6] 請求項 4または 5の R型二酸化マンガンのナノニードルに、金属が担持されているこ とを特徴とする金属担持 R型二酸化マンガンのナノニードル。
[7] 担持される金属は、金またはパラジウムであることを特徴とする請求項 6に記載の金 属担持 R型二酸化マンガンのナノニードル。
[8] R型二酸化マンガン MnOの結晶構造に、プロトン H+および電子 e—が含侵したマ
2
ンガン価数 + 4価の水素化した酸化マンガン HMnOのナノ微粒子。
2
[9] 太さ 2〜; 10nm、長さ 5〜30nmの範囲であって、ニードル状である請求項 8に記載 の水素化した酸化マンガン HMnOのナノ微粒子。
2
[10] 太さ 10〜30nm、長さ 30〜300nmの範囲であって、ニードル状である請求項 8に 記載の水素化した酸化マンガン HMnOのナノ微粒子。
2
[I I] 請求項 1から 3のいずれかの二酸化マンガンナノニードル多孔体で形成されてなる メソポーラス多孔体材料。
[12] 膜状に形成された膜状体であることを特徴とする請求項 11に記載のメソポーラス多 孔体材料。
[13] 炭酸マンガン n水和物 MnCO ·ηΗ Ο粉末を 180〜205°Cの温度範囲で焼成し、 これを酸処理してペースト状とした後、乾燥処理することを特徴とする二酸化マンガン ナノニードル多孔体の製造方法。
[14] 請求項 13の製造方法において、ペースト状とした後の乾燥処理は、 50〜95°Cの 温度範囲での予備乾燥と、それに続く 100〜; 120°Cの温度範囲での乾燥処理である ことを特徴とする二酸化マンガンナノニードル多孔体の製造方法。
[15] 炭酸マンガン n水和物とともに炭酸酸化ビスマスを混合して焼成することを特徴とす る請求項 13または 14に記載の二酸化マンガンナノニードル多孔体の製造方法。
[16] 酸処理を少なくとも 1回以上行うこと特徴とする請求項 13から 15のいずれかに記載 の二酸化マンガンナノニードル多孔体の製造方法。
[17] 請求項 4または 5の R型二酸化マンガンのナノニードルを酸処理することを特徴とす る水素化した酸化マンガン HMnOのナノ微粒子の製造方法。
2
[18] 請求項 1から 3の!/、ずれかに記載の二酸化マンガンナノニードル多孔体からなる赤 外線吸収材料。
[19] 請求項 18に記載の赤外線吸収材料が含有されていることを特徴とする赤外線フィ ルター。
[20] 透過される赤外線は、波長領域 10〜; 14 μ mの範囲であることを特徴とする請求項 19に記載の赤外線フィルター。
PCT/JP2007/065824 2006-08-25 2007-08-13 Corps poreux de nano-aiguille de dioxyde de manganèse de type r, nano-aiguille de dioxyde de manganèse de type r constituant celui-ci, oxyde de manganèse hydrogénée, matériau absorbant le rayonnement infra-rouge, filtre infrarouge et leurs procédés de production WO2008023597A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-229893 2006-08-25
JP2006229893A JP5069881B2 (ja) 2006-02-13 2006-08-25 R型二酸化マンガンナノニードル多孔体とそれを構成するr型二酸化マンガンナノニードル、水素化した酸化マンガン、赤外線吸収材料、赤外線フィルター、およびそれらの製造方法

Publications (1)

Publication Number Publication Date
WO2008023597A1 true WO2008023597A1 (fr) 2008-02-28

Family

ID=39106683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065824 WO2008023597A1 (fr) 2006-08-25 2007-08-13 Corps poreux de nano-aiguille de dioxyde de manganèse de type r, nano-aiguille de dioxyde de manganèse de type r constituant celui-ci, oxyde de manganèse hydrogénée, matériau absorbant le rayonnement infra-rouge, filtre infrarouge et leurs procédés de production

Country Status (1)

Country Link
WO (1) WO2008023597A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2140934A1 (en) * 2007-03-27 2010-01-06 Hideki Koyanaka Catalyst material for producing oxygen gas from water
CN102448887A (zh) * 2009-06-01 2012-05-09 Dic株式会社 金红石型氧化钛晶体及使用其的中红外线滤波器
JP2016108212A (ja) * 2013-12-20 2016-06-20 東ソー株式会社 二酸化マンガン及び二酸化マンガン混合物並びにそれらの製造方法及び用途
JP2016531832A (ja) * 2013-08-28 2016-10-13 インクロン リミテッドInkron Ltd 遷移金属酸化物粒子およびその製造方法
US9586836B2 (en) 2010-03-26 2017-03-07 Kyoto University Methods for synthesizing nanometer-sized manganese dioxides having ramsdellite-type crystal structures as well as methods for producing hydroxide ion-derived proton, electron and oxygen using manganese dioxides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263615A (ja) * 2004-02-19 2005-09-29 Japan Science & Technology Agency 酸化マンガン担持マンガン化合物粉末、酸化マンガンナノ微粒子凝集体粉末及びその製造方法、並びに金属吸着酸化マンガン担持マンガン化合物粉末及び金属吸着酸化マンガンナノ微粒子凝集体粉末

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263615A (ja) * 2004-02-19 2005-09-29 Japan Science & Technology Agency 酸化マンガン担持マンガン化合物粉末、酸化マンガンナノ微粒子凝集体粉末及びその製造方法、並びに金属吸着酸化マンガン担持マンガン化合物粉末及び金属吸着酸化マンガンナノ微粒子凝集体粉末

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALI A.A. ET AL.: "Surface texture, morphology and chemical composition of hydrothermally synthesized tunnel-structured manganese (IV) oxide", INTERNATIONAL JOURNAL OF INORGANIC MATERIALS, vol. 3, 2001, pages 427 - 435, XP003020259 *
DAVIS S.M. ET AL.: "Defining high power EMD through porosimetry", JOURNAL OF POWER SOURCES, vol. 139, 2005, pages 342 - 350, XP004694586 *
KOYANAKA H. ET AL.: "Mesoporous Manganese Sankubutsu Ryushi Hyomen eno Kikinzoku Nano Ryushi no Sekishutsu to Shokubai Koka", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 72 KAI TAIKAI KOEN YOSHISHU, 1 April 2005 (2005-04-01), pages 199, XP003020257 *
KOYANAKA H. ET AL.: "Palladium o Sekishutsu Saseta Sanka Manganese Takotai ni yoru Tanka Suiso no Suiso Gus eno Chokusetsu Henkan", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 73 KAI TAIKAI KOEN YOSHISHU, 1 April 2006 (2006-04-01), pages 166, XP003020258 *
WANG X. ET AL.: "Sol-gel template synthesis of highly ordered MnO2 nanowire arrays", JOURNAL OF POWER SOURCES, vol. 140, 2005, pages 211 - 215, XP004689371 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2140934A1 (en) * 2007-03-27 2010-01-06 Hideki Koyanaka Catalyst material for producing oxygen gas from water
EP2140934A4 (en) * 2007-03-27 2014-01-15 Univ Kyoto CATALYST MATERIAL FOR PRODUCING OXYGEN GASEOUS FROM WATER
CN102448887A (zh) * 2009-06-01 2012-05-09 Dic株式会社 金红石型氧化钛晶体及使用其的中红外线滤波器
US9586836B2 (en) 2010-03-26 2017-03-07 Kyoto University Methods for synthesizing nanometer-sized manganese dioxides having ramsdellite-type crystal structures as well as methods for producing hydroxide ion-derived proton, electron and oxygen using manganese dioxides
JP2016531832A (ja) * 2013-08-28 2016-10-13 インクロン リミテッドInkron Ltd 遷移金属酸化物粒子およびその製造方法
JP2016108212A (ja) * 2013-12-20 2016-06-20 東ソー株式会社 二酸化マンガン及び二酸化マンガン混合物並びにそれらの製造方法及び用途

Similar Documents

Publication Publication Date Title
JP5069881B2 (ja) R型二酸化マンガンナノニードル多孔体とそれを構成するr型二酸化マンガンナノニードル、水素化した酸化マンガン、赤外線吸収材料、赤外線フィルター、およびそれらの製造方法
Foletto et al. Application of Zn2SnO4 photocatalyst prepared by microwave-assisted hydrothermal route in the degradation of organic pollutant under sunlight
Zinatloo-Ajabshir et al. Nanocrystalline Pr 6 O 11: synthesis, characterization, optical and photocatalytic properties
Sun et al. A high-performance Bi 2 WO 6–graphene photocatalyst for visible light-induced H 2 and O 2 generation
Shi et al. Microwave-assisted hydrothermal synthesis of perovskite NaTaO 3 nanocrystals and their photocatalytic properties
Xu et al. Novel heterostructured Bi2S3/Bi2Sn2O7 with highly visible light photocatalytic activity for the removal of rhodamine B
JP5920478B2 (ja) 複合光触媒および光触媒材
Motlagh et al. Synthesis and characterization of Nickel hydroxide/oxide nanoparticles by the complexation-precipitation method
Kimijima et al. Hydrothermal synthesis of size-and shape-controlled CaTiO 3 fine particles and their photocatalytic activity
Jiang et al. Potassium niobate nanostructures: controllable morphology, growth mechanism, and photocatalytic activity
Said et al. Synthesis and characterization of nano CuO-NiO mixed oxides
Tang et al. Template-assisted hydrothermal synthesis and photocatalytic activity of novel TiO2 hollow nanostructures
Shahmirzaee et al. In situ crystallization of ZnAl 2 O 4/ZnO nanocomposite on alumina granule for photocatalytic purification of wastewater
Wang et al. Microwave hydrothermal synthesis of MSnO 3 (M 2+= Ca 2+, Sr 2+, Ba 2+): effect of M 2+ on crystal structure and photocatalytic properties
US20160121319A1 (en) Method for producing metal oxide particles
Shaker et al. Synthesis and characterization nano structure of MnO2 via chemical method
Sun et al. Controllable synthesis and morphology-dependent photocatalytic performance of anatase TiO 2 nanoplates
Yang et al. Fabrication of three-dimensional porous La-doped SrTiO 3 microspheres with enhanced visible light catalytic activity for Cr (VI) reduction
WO2008023597A1 (fr) Corps poreux de nano-aiguille de dioxyde de manganèse de type r, nano-aiguille de dioxyde de manganèse de type r constituant celui-ci, oxyde de manganèse hydrogénée, matériau absorbant le rayonnement infra-rouge, filtre infrarouge et leurs procédés de production
Edrissi et al. Synthesis and characterisation of copper chromite nanoparticles using coprecipitation method
Yeredla et al. An investigation of nanostructured rutile and anatase plates for improving the photosplitting of water
Feng et al. Preparation of novel porous hydroxyapatite sheets with high Pb2+ adsorption properties by self-assembly non-aqueous precipitation method
Zhang et al. Ionic liquid-assisted synthesis of morphology-controlled TiO 2 particles with efficient photocatalytic activity
Zhang et al. Construction and photocatalytic performance of fluorinated ZnO–TiO 2 heterostructure composites
Kondo et al. Sorption capacity of seaweed-like sodium titanate mats for Co 2+ removal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792467

Country of ref document: EP

Kind code of ref document: A1