WO2008019617A1 - Procédé, système et appareil de mise en oeuvre de la commande centrale d'une antenne de régulation électrique de réseau 2g - Google Patents

Procédé, système et appareil de mise en oeuvre de la commande centrale d'une antenne de régulation électrique de réseau 2g Download PDF

Info

Publication number
WO2008019617A1
WO2008019617A1 PCT/CN2007/070431 CN2007070431W WO2008019617A1 WO 2008019617 A1 WO2008019617 A1 WO 2008019617A1 CN 2007070431 W CN2007070431 W CN 2007070431W WO 2008019617 A1 WO2008019617 A1 WO 2008019617A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
network
control
base station
esc
Prior art date
Application number
PCT/CN2007/070431
Other languages
English (en)
French (fr)
Inventor
Weidong Sun
Guotian Ma
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to AT07785421T priority Critical patent/ATE546022T1/de
Priority to EP07785421A priority patent/EP2031764B1/en
Publication of WO2008019617A1 publication Critical patent/WO2008019617A1/zh
Priority to US12/366,926 priority patent/US8271018B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, system and device for implementing centralized control of a 2G network electrical tune antenna.
  • the technology of mobile communication antennas has developed rapidly. Initially, ordinary directional and omnidirectional mobile antennas were mainly used. Now some mobile networks have begun to use ESC antennas.
  • the so-called electric adjustment antenna means that the amplitude of the vertical component and the horizontal component is changed by using the electronic modulation, and the intensity of the composite component field strength is changed, so that the vertical directional pattern of the antenna is tilted down. Since the field strength of each direction of the antenna increases and decreases at the same time, it is ensured that the antenna pattern changes little after changing the tilt angle, so that the coverage distance of the main lobe direction is shortened, and at the same time, the entire directional pattern is reduced in the serving cell sector. Area without interference.
  • the antenna pattern is approximately the same as that of the mechanical antenna; when the down-tilt angle is 5. -10.
  • the antenna pattern is slightly better than that of the mechanical antenna; when the downtilt angle is 10. -15.
  • the antenna pattern changes more than the mechanical antenna.
  • the ESC antenna is tilted down by 15°, the antenna pattern is significantly different from that of the mechanical antenna.
  • the shape of the ESC antenna pattern changes little, the main lobe
  • the direction coverage distance is obviously shortened.
  • the entire antenna pattern is in the sector of the base station. Increasing the downtilt angle can reduce the coverage area of the sector, but it does not cause interference.
  • the antenna can reduce the call loss and reduce the interference.
  • the use of an electric adjustable antenna can greatly reduce the operation and maintenance cost of the antenna downtilt angle and improve work efficiency. Therefore, with the maturity of related technologies for electrical tune antennas and the construction of 3G networks, operators are increasingly inclined to use ESCs.
  • the common antenna device in the 2G network has been replaced with an ESC antenna device, or an ESC antenna is used in the newly added 2G network.
  • an ESC antenna is used in the newly added 2G network.
  • the prior art mainly uses the 2G base station equipment to control the electrical adjustment antenna device.
  • the electrical adjustment antenna equipment is a new type of equipment.
  • the control of the 2G base station equipment to the ESC antenna device can currently be obtained in two ways:
  • Control with a separate maintenance terminal of the ESC equipment For the specific system, refer to Figure 1.
  • the user sends the control command to the control ESC of the ESC through a separate maintenance terminal, which is not controlled by the original 2G device.
  • the ESC antenna device Since the ESC antenna device has a one-to-one correspondence with the sector in the NodeB of the base station, if the antenna device and the NodeB are separately maintained, the user needs to maintain the corresponding relationship, which greatly increases the complexity of the maintenance.
  • the 3G device can directly control the ESC antenna, so that a separate maintenance terminal for the 2G network is formed, and the 3G network directly uses the 3G device. Controlling the ESC antenna results in different costs due to different maintenance methods. If the separate maintenance terminal is purchased by the user, the cost of the user will be further increased.
  • the prior art can solve the problem of replacing the common antenna device in the existing 2G network with the ESC antenna device or adding the electric adjustment antenna in the 2G network, the upgrade risk is high and the cost is high. , maintenance complexity and high maintenance costs.
  • the embodiments of the present invention provide a method, a system, and a device for implementing centralized control of a 2G network electrical tune antenna, and the system and the method can implement centralized control of a 2G network electronically adjustable antenna with convenient user operation and low maintenance cost.
  • a method for implementing centralized control of a 2G network ESC antenna comprising:
  • the 3G base station device sends a control command to the electrical adjustment antenna of the 2G network to control the electrical adjustment antenna of the 2G network.
  • a system for implementing centralized control of a 2G network ESC antenna comprising: a control platform and 3G base station equipment, where:
  • the control platform is configured to receive and send, to the 3G base station, an identifier and a control action of the 2G network electrical adjustment antenna to be controlled;
  • the 3G base station device is configured to receive an identifier and a control action of the electrical tune antenna sent by the control platform, search for an electrical tune antenna corresponding to the 2G network by using the identifier, and issue a control command to the electrical tune antenna device to control 2G.
  • the ESC antenna of the network is configured to receive an identifier and a control action of the electrical tune antenna sent by the control platform, search for an electrical tune antenna corresponding to the 2G network by using the identifier, and issue a control command to the electrical tune antenna device to control 2G.
  • a 3G base station device including:
  • a storage unit configured to save a 2G network electrical tone antenna identifier
  • a control unit configured to issue a control command to the electrical tune antenna of the 2G network corresponding to the 2G network electrical tune antenna identifier.
  • the ESC antennas of different networks can be installed at a relatively close distance. Since the functions of modems in different networks are not different, a single modem can be used. To demodulate the signal.
  • the 3G base station is used to centrally control the electronically modulated antenna of the 2G network, and the 2G base station equipment is not required to be upgraded, thereby avoiding the upgrade risk and reducing the upgrade cost; since the user does not need to separately maintain the base station sector and the ESC
  • the corresponding relationship of the antennas greatly reduces the maintenance cost; and is convenient for the user to operate.
  • FIG. 2 is a flow chart according to a first embodiment of the present invention
  • Embodiment 3 is a flow chart according to Embodiment 2 of the present invention.
  • FIG. 5 is a network diagram of a system according to an embodiment of the invention.
  • FIG. 6 is a network diagram of a system according to another embodiment of the present invention.
  • Embodiments of the present invention provide a method for implementing centralized control of a 2G network electrical tune antenna, which centrally controls an electrical tune antenna of a 2G network through a 3G base station. Because both 2G networks and 3G networks are allocated different frequency bands and there is no interference, the ESC antennas of different networks can be installed at a relatively close distance, and the control signals are demodulated by a single modem (SBT). Each antenna is identified at the link layer by the Advanced Data Link Control (HDLC) address specified in the AISG and uses the world's only sequence. The column number is distinguished. Since there is no difference between the ESC antenna and the modem in the 2G network and the 3G network, the 3G base station can be used to control the ESC antenna in the 2G network by setting the software.
  • HDLC Advanced Data Link Control
  • Step 110 The user inputs the serial number and control action of the 2G antenna device to be controlled to the control platform; the 2G power to be controlled by the control platform Adjusting the antenna serial number and control actions to the 3G base station device;
  • Step 120 The 3G base station device searches for the serial number of the 2G electrical adjustment antenna device. If the search is successful, step 130 is performed. If the search is unsuccessful, the process ends.
  • Step 130 The 3G base station device determines whether the control link is normal, and if yes, performs step 140, if otherwise, ends the process;
  • the process of determining whether the control link is normal is mainly that the 3G base station device sends a Receive Ready (RR) frame in the HDLC protocol to the ESC antenna device, and defines that the timeout period for transmitting the RR frame is 100 ms, and if the RR frame is sent for more than five times, Then it is judged that the link is abnormal.
  • RR Receive Ready
  • the process of determining whether the control link is normal may also use other methods, such as a timeout period of 70 ms, and more than 3 times, the link is abnormal.
  • Step 140 The 3G base station device sends an analog signal control command to the ESC antenna device.
  • Step 150 The analog signal control command is modulated into a digital signal and sent to the ESC antenna.
  • Step 160 The ESC antenna performs a control command to perform tilt adjustment.
  • Step 170 After performing the control command, the ESC antenna demodulates the operation success or failure information into an analog signal, and then sends the information to the control platform through the 3G base station device.
  • the second embodiment is implemented by the user setting the name of the ESC antenna to correspond to the global unique serial number of the ESC antenna device. See Figure 3:
  • Step 210 The user inputs the name and control action of the 2G ESC antenna to be controlled to the control platform; the control platform transmits the name and control action of the 2G ESC antenna to be controlled to the 3G base station device;
  • Step 220 The 3G base station device searches for the serial number of the 2G ESC antenna device corresponding to the name. If the search is successful, step 230 is performed. If not, the control process ends.
  • Step 230 The 3G base station device determines whether the control link is normal. If yes, step 240 is performed. If not, the control process ends.
  • control link determination process is the same as that in the first embodiment, and is not described here;
  • Step 240 The 3G base station device sends an analog signal control command to the electrical adjustment antenna.
  • Step 250 The analog signal control command is modulated into a digital signal and sent to the electrical adjustment antenna.
  • Step 260 The electrical adjustment antenna performs a control command to perform a tilt adjustment.
  • Step 270 After performing the control command, the ESC antenna demodulates the operation success or failure information into an analog signal, and then sends the information to the control platform through the 3G base station device.
  • the user input of the 2G ESC antenna name to be controlled by the user input described in step 210 of the method is:
  • Antenna port The port number of the antenna connected to the base station;
  • Radio frequency sub-sector number In the case of sector splitting, for each radio sub-sector number, if there is no sector split, it is fixed by 0;
  • TMA tower top amplifier
  • RET Remote Electrical Tilt
  • Network type Currently 2G network, or 3G network.
  • the antenna name and the specific antenna serial number can be bound to achieve the purpose of maintaining a specific antenna.
  • An ESC antenna in a 2G network the supplier is KA, and the device serial number is 012345678901234.
  • the correspondence can be as follows:
  • the steering antenna naming rules described in the method are not limited to the above forms, as long as they are convenient for the user to operate and can uniquely identify the tuned antenna.
  • the 3G base station needs to be installed in the corresponding relationship. Adjust the device serial number to match the 2G ESC antenna.
  • the third embodiment is implemented by the user setting the name of the ESC antenna to correspond to the global unique serial number of the ESC antenna device.
  • the difference from the second embodiment is that the correspondence relationship is saved in the control platform, as shown in FIG. 4:
  • Step 310 User input needs to be controlled
  • the 2G ESC antenna name and control action are sent to the control platform;
  • Step 320 The control platform searches for the 2G antenna device serial number. If the search is successful, step 330 is performed. If not, the process ends.
  • Step 330 The control platform sends the found 2G antenna device serial number to the 3G base station device.
  • control link determination process is the same as that in the first embodiment, and is not described here;
  • Step 350 The 3G base station device sends an analog signal control command to the electrical adjustment antenna.
  • Step 360 modulating the analog signal control command into a digital signal and transmitting the signal to the electrical tune antenna;
  • Step 370 performing an inclination control on the electronically modulated antenna to perform a control command;
  • Step 380 After performing the control command, the ESC antenna demodulates the operation success or failure information into an analog signal, and then sends the information to the control platform through the 3G base station device.
  • the naming rule of the name of the electrical tune antenna in the method is the same as the method in the second embodiment.
  • the problem that the 2G network does not have the information of the 2G network and cannot be identified according to the site, the cell mode or the physical location in the 3G network needs to be found according to the preset correspondence when the electronically modulated antenna is installed.
  • the serial number of the ESC antenna device is sent to the 3G base station, and the 3G base station needs to store the serial number of the 2G network ESC antenna device to match the 2G network ESC antenna.
  • the modulation and demodulation process described in the above three embodiments may be performed in a 3G base station device or an electrical adjustment antenna device, or in a separate modem device, or the modulation process may be performed in a 3G base station device.
  • the tuning process takes place in an ESC antenna device.
  • the embodiment of the invention further provides a system for implementing centralized control of a 2G network electronically tuned antenna, which is used for implementing a centralized control method for a 2G network electronically tuned antenna with low user operation and low maintenance cost.
  • the control ESCs of all the ESC antennas in the system are connected to the 3G base station through the modem using the AISG control signal line. Since the ESC antenna and the modem in the 2G network and the 3G network are the same, as long as the software is set, The 3G base station is used to control the ESC antenna in the 2G network.
  • the system includes a control platform, a 3G base station device, an ESC antenna device, and a modulation and demodulation module.
  • the control platform is equivalent to a human machine interface and is software running on the server, which is not shown in FIG.
  • the control platform is mainly used for receiving the serial number and control action of the 2G antenna device to be controlled by the user, sending the serial number and control action of the 2G antenna device to be controlled to the 3G base station, and receiving the execution result signal fed back by the 3G base station;
  • the 3G base station is mainly used for storing the serial number of the 2G electrical adjustment antenna device, receiving the serial number and control action of the antenna device sent by the control platform, searching for the serial number of the antenna device sent by the received control platform, and determining whether the control link is normal or not.
  • the antenna device sends an analog signal control command to receive a control success command returned by the ESC antenna;
  • the modem module is mainly used for receiving the analog signal control command sent by the 3G base station, then modulating the signal, and then transmitting the modulated control command to the electronically adjustable antenna, receiving the control success signal returned by the electronically adjustable antenna, and demodulating the signal. Then sent to the 3G base station;
  • the ESC antenna is mainly used to execute the command after receiving the control command, and returns the execution result signal.
  • the line is centrally controlled, and the correspondence between the name of the ESC antenna and the serial number is stored in the 3G base station:
  • the control platform is mainly used to receive the name and control action of the 2G antenna device to be controlled by the user, and to send a control to the 3G base station. 2G antenna device name and control action, receiving an execution result signal fed back by the 3G base station;
  • the 3G base station is mainly used for storing the correspondence between the name of the 2G ESC antenna and the serial number of the device, receiving the name and control action of the antenna device sent by the control platform, and searching for the received day according to the stored correspondence relationship.
  • the device serial number corresponding to the line device name determines whether the control link is normal, sends an analog signal control command to the ESC antenna device, receives a control success command returned by the ESC antenna, and transmits the command to the control platform;
  • the modem module is mainly used for receiving the analog signal control command issued by the 3G base station, then modulating the signal, and then transmitting the modulated control command to the electronically adjustable antenna, receiving the execution result signal returned by the electronically adjustable antenna, and demodulating the signal. Then sent to the 3G base station;
  • the ESC antenna is mainly used to execute the command after receiving the control command, and returns the execution result signal.
  • the corresponding relationship between the name of the 2G electrical control antenna and the device serial number saved by the 3G base station is described in detail in the second embodiment of the control method, and is not repeated here.
  • the line is centrally controlled, and the correspondence between the name of the ESC antenna and the serial number is saved in the control platform:
  • the control platform is mainly used to store the correspondence between the name of the 2G ESC antenna and the serial number of the device, and receive the 2G antenna that needs to be controlled by the user.
  • the device name and the control action search for the device serial number corresponding to the received antenna device name according to the stored correspondence relationship, and send the serial number of the 2G antenna device to be controlled to the 3G base station, and receive the execution result signal of the electronically adjustable antenna through the 3G base station feedback. ;
  • the 3G base station is mainly used for receiving the serial number and control action of the antenna device sent by the control platform, determining whether the control link is normal, issuing an analog signal control command to the electronically adjustable antenna device, receiving an execution result signal returned by the electronically adjustable antenna, and transmitting the signal. Passed to the control platform;
  • the modem module is mainly used for receiving the analog signal control command issued by the 3G base station, then modulating the signal, and then transmitting the modulated control command to the electronically adjustable antenna, receiving the execution result signal returned by the electronically adjustable antenna, and demodulating the signal. Then sent to the 3G base station;
  • the ESC antenna is mainly used to execute the command after receiving the control command, and returns the execution result signal. It has been described in detail in the second embodiment and will not be repeated here.
  • the modulation and demodulation module may be built in the 3G base station device, the electrical adjustment antenna device, or the modulation and demodulation function respectively for the 3G base station device and the electrical Adjust the antenna device.
  • All ESC antennas are connected in a cascade manner, but in the implementation process, it is not excluded that the EDM antennas in each 2G network are connected in parallel to a modem device through the AISG control signal line.
  • the modem is connected to the 3G device, and the control commands are uniformly sent by the 3G device; each 2G ESC antenna is connected to the 2G device through the RF signal line, and all the RF signals are still transmitted between the 2G ESC antenna and the 2G device, see FIG. 6. .
  • the 3G base station device sends an analog signal control command to the ESC antenna device. After the modulation command is demodulated, the control command reaches the 2G ESC antenna to be regulated. The execution result signal of the 2G ESC antenna feedback is modulated and demodulated to reach the 3G base station device.
  • the signal control command and the execution result signal may also be directly sent in the form of a digital signal, so that the modem operation may be omitted, and the corresponding system also A modem module may not be needed.
  • a system for implementing centralized control of a 2G network ESC antenna may include only a control platform and a 3G base station device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Selective Calling Equipment (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

一种实现 2G网络电调天线集中控制的方法、 系统及设备 本申请要求于 2006 年 8 月 8 日提交中国专利局、 申请号为 200610109549.X, 发明名称为"一种实现 2G 网络电调天线集中控制的方法及 系统"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域, 特别是涉及一种实现 2G网络电调天线集中控制的 方法、 系统及设备。
背景技术
移动通信天线的技术发展很快,最初主要使用普通的定向和全向型移动天 线, 现在一些移动网已经开始使用电调天线。 所谓电调天线, 即指使用电子调 改变垂直分量和水平分量的幅值大小, 改变合成分量场强强度,从而使天线的 垂直方向性图下倾。 由于天线各方向的场强强度同时增大和减小,保证在改变 倾角后天线方向图变化不大,使主瓣方向覆盖距离缩短, 同时又使整个方向性 图在服务小区扇区内减小覆盖面积但又不产生干扰。
实践证明, 电调天线下倾角度在 1°-5°变化时, 其天线方向图与机械天线 的大致相同; 当下倾角度在 5。-10。变化时, 其天线方向图较机械天线的稍有改 善; 当下倾角度在 10。-15。变化时, 其天线方向图较机械天线的变化较大; 当 电调天线下倾 15°后, 其天线方向图较机械天线的明显不同, 这时电调天线方 向图形状改变不大, 主瓣方向覆盖距离明显缩短, 整个天线方向图都在本基站 扇区内, 增加下倾角度, 可以使扇区覆盖面积缩小, 但不产生干扰, 这样的方 向图是我们需要的, 因此釆用电调天线能够降低呼损, 减小干扰。 而且釆用电 调天线可以大幅度降低天线下倾角的运营维护成本,提高工作效率。 因此随着 电调天线相关技术的成熟与 3G网络的建设, 运营商越来越倾向于使用电调天 线。
目前已有将 2G网络中普通天线设备更换为电调天线设备,或者在新增 2G 网络中釆用电调天线。对釆用电调天线后的控制问题目前也有解决的方法,现 有技术主要釆用将电调天线设备用 2G基站设备进行控制。
由于 2G基站设备已经比较成熟稳定, 而电调天线设备为一种新型设备, 2G基站设备对电调天线设备的控制, 目前可以釆取两种方法:
1、 开发电调天线功能集成到操作维护中心 (OMC ) 中并对现网的 2G设 备进行升级。 这样需要增加 2G软件的开发投入, 并且原有硬件不支持天线接 口标准集团 (AISG )协议的通讯方式, 会造成硬件的修改。 由于软硬件的修 改, 会对产品的稳定性造成一定的冲击, 并且硬件升级是釆用更换单板形式, 成本较高。
2、 釆用电调设备的单独维护终端进行控制。 具体系统参见图一, 用户将 控制命令通过单独维护终端发送到电调天线的控制电调动作单元 RCU, 不通 过原有 2G设备进行控制。由于电调天线设备是和基站 NodeB中的扇区存在一 一对应关系的, 如果天线设备和 NodeB分开维护, 就需要用户来维护这种对 应关系, 造成了维护的复杂性大大提高。 并且如果同时用户建设 3G网络, 由 于 NodeB已经支持统一维护 3G的电调设备, 3G设备是能够直接控制电调天 线的, 这样就会形成 2G网络釆用单独的维护终端, 3G网络直接用 3G设备控 制电调天线,造成维护方式的不同带来成本提高。 若单独维护终端为用户自行 购买, 将进一步提高用户的成本。
综上所述, 现有技术虽然能够解决对已有 2G网络中普通天线设备更换为 电调天线设备, 或者新增 2G网络中釆用电调天线后的控制, 但是存在升级风 险大、 成本高, 维护复杂及维护成本高等问题。
发明内容
本发明实施例在于提供实现 2G网络电调天线集中控制的方法、 系统及设 备, 运用该系统及方法能够实现方便用户操作、 维护成本低的 2G网络电调天 线的集中控制。
本发明实施例的技术方案包括:
一种实现 2G 网络电调天线集中控制的方法, 该方法包括:
接收需要控制的 2G 网络电调天线的标识及控制命令;
才艮据所述标识查找对应的 2G 网络电调天线;
3G基站设备向所述 2G网络的电调天线发出控制命令, 控制 2G 网络的 电调天线。
一种实现 2G 网络电调天线集中控制的系统, 该系统包括: 控制平台和 3G基站设备, 其中:
所述控制平台, 用于接收并向 3G基站发送需要控制的 2G 网络电调天线 的标识及控制动作;
所述 3G基站设备, 用于接收控制平台发送的所述电调天线的标识及控制 动作, 通过所述标识查找对应 2G 网络的电调天线, 向所述电调天线设备发出 控制命令, 控制 2G 网络的电调天线。
一种 3G基站设备, 包括:
存储单元, 用于保存 2G网络电调天线标识;
控制单元, 用于向所述 2G网络电调天线标识对应的 2G网络的电调天线 发出控制命令。
由于 2G网络和 3G网络都分配有不同的频段, 不存在干扰, 因此不同网 络的电调天线可以釆用较近距离安装,由于不同网络中的调制解调器的作用并 没有差别, 因此可以釆用单个调制解调器来对信号进行解调。本发明实施例釆 用 3G基站集中控制 2G网络的电调天线的方式, 不需对 2G基站设备进行升 级, 避免了升级风险、 降低了升级成本; 由于不需用户单独维护基站扇区同电 调天线的对应关系所以大大降低了维护成本; 且方便了用户操作。
附图说明
图 1为现有技术二的组网示意图;
图 2 为根据本发明实施例一的流程图;
图 3为根据本发明实施例二的流程图;
图 4为根据本发明实施例三的流程图;
图 5为根据本发明一实施例的系统组网图;
图 6为根据本发明另一实施例的系统组网图。
具体实施方式
本发明实施例提供了一种实现 2G网络电调天线集中控制的方法, 该方法 通过 3G基站集中控制 2G网络的电调天线。 因为 2G网络和 3G网络都分配有 不同的频段, 不存在干扰, 因此不同网络的电调天线可以釆用较近距离安装, 釆用单个调制解调器 (SBT )对控制信号进行解调。 各个天线在链路层釆用 AISG 中规定的高级数据链路控制 (HDLC )地址标识, 并釆用全球唯一的序 列号进行区分。由于 2G网络和 3G网络中的电调天线和调制解调器都无差别, 只要通过设置软件, 就可用 3G基站来完成控制 2G网络中的电调天线。
具体实施例一釆用查找电调天线设备全球唯一序列号实现, 参见图 2: 步骤 110: 用户向控制平台输入需要控制的 2G天线设备序列号及控制动 作; 由控制平台将需要控制的 2G电调天线序列号及控制动作传递至 3G基站 设备;
步骤 120: 3G基站设备查找该 2G电调天线设备序列号, 若查找成功则执 行步骤 130, 若查找不成功则结束该流程;
步骤 130: 3G基站设备判断控制链路是否正常, 若是则执行步骤 140, 若 否则结束该流程;
判断控制链路是否正常的过程主要为 3G基站设备向电调天线设备发送 HDLC协议中的接收就绪( RR )帧,并且定义发送 RR帧的超时时间为 100ms, 如果发送 RR帧超过五次超时, 那么就判断该链路是不正常的。
当然这个判断控制链路是否正常的过程也可以釆用其他方法,比如超时时 间为 70ms, 超过 3次为链路不正常等。
步骤 140: 3G基站设备向电调天线设备发出模拟信号控制命令; 步骤 150: 将该模拟信号控制命令调制成数字信号发送至电调天线; 步骤 160: 电调天线执行控制命令进行倾角调整;
步骤 170: 电调天线执行完控制命令后, 将操作成功或失败信息解调成模 拟信号后通过 3G基站设备向控制平台发送该信息。
该方法中, 为解决 3G网络中并没有 2G网络的相关信息, 无法按照 3G 网络中的站点、 小区的方式或物理位置进行标识的问题, 需要在安装电调天线 为了用户便于记忆及操作更加方便,可以釆用让用户自己创建电调天线设 备名称的方式进行管理。
具体实施例二为通过用户设置电调天线名称来对应电调天线设备全球唯 一序列号实现, 参见图 3:
步骤 210:用户输入需要控制的 2G电调天线名称及控制动作到控制平台; 由控制平台将需要控制的 2G电调天线名称及控制动作传递至 3G基站设备; 步骤 220: 3G基站设备查找名称对应的 2G电调天线设备序列号, 查找成 功则执行步骤 230, 若不成功则结束该控制流程;
步骤 230: 3G基站设备判断控制链路是否正常, 若正常则执行步骤 240, 若不成功则结束该控制流程;
该控制链路判断过程与实施例一相同, 在此不再累述;
步骤 240: 3G基站设备向电调天线发出模拟信号控制命令;
步骤 250: 将该模拟信号控制命令调制成数字信号发送至电调天线; 步骤 260: 电调天线执行控制命令进行倾角调整;
步骤 270: 电调天线执行完控制命令后, 将操作成功或失败信息解调成模 拟信号后通过 3G基站设备向控制平台发送该信息。
该方法步骤 210中所述的用户输入需要控制的 2G电调天线名称的命名方 式为:
站点—扇区 +天线口 +射频子扇区编号 +设备类型―网络类型
其中:
站点: 同"增加站点"所用站点编号;
扇区: 同"扇区编号"所用扇区编号;
天线口: 天线连接到基站的端口编号;
射频子扇区编号: 扇区分裂情况下, 对于每一个射频子扇区的编号, 如果没有扇区分裂此处固定添 0;
设备类型: 区分当前连接设备是塔顶放大器( TMA )还是远端电角度 ( RET, Remote Electrical Tilt )单元;
网络类型:当前为 2G网络, 还是 3G网络。
例如: 0号站点; 0号扇区; A口连接; 0号射频子扇区; RET; 2G 标识为 :0— 0A0RET— 2G
3G 网络中可釆用将天线名称和具体的天线序列号进行绑定, 以达到 维护具体天线的目的。 例如: 一个 2G网络中的电调天线, 供应商为 KA, 设备序列号为 012345678901234。 对应关系可如下:
天线设备名称 供应商编码 设备序列号 设备类型
0 0A0RET 2G KA 012345678901234 RET 该方法中所述的电调天线命名规则不限于上述形式,只要是能够便于用户 操作并且可唯一标识电调天线的方式即可。
该方法中, 为解决 3G网络中并没有 2G网络的相关信息, 无法按照 3G 网络中的站点、 小区的方式或物理位置进行标识的问题, 需要在安装电调天线 由 3G基站按照对应关系扫描电调设备序列号进行与 2G电调天线的匹配。
具体实施例三为通过用户设置电调天线名称来对应电调天线设备全球唯 一序列号实现, 与实施例二不同的是将对应关系保存在控制平台, 参见图 4: 步骤 310:用户输入需要控制的 2G电调天线名称及控制动作到控制平台; 步骤 320: 控制平台查找 2G天线设备序列号, 查找成功则执行步骤 330, 若不成功则结束本流程;
步骤 330: 控制平台将查找到的 2G天线设备序列号发送至 3G基站设备; 步骤 340: 3G基站设备判断控制链路是否正常, 若是则执行步骤 350 , 若 否则结束本流程;
该控制链路判断过程与实施例一相同, 在此不再累述;
步骤 350: 3G基站设备向电调天线发出模拟信号控制命令;
步骤 360: 将该模拟信号控制命令调制成数字信号发送至电调天线; 步骤 370: 电调天线执行控制命令进行倾角调整;
步骤 380: 电调天线执行完控制命令后, 将操作成功或失败信息解调成模 拟信号后通过 3G基站设备向控制平台发送该信息。
该方法中所述电调天线名称的命名规则同实施例二中的方法。
该方法中为解决 3G网络中并没有 2G网络的相关信息, 无法按照 3G网 络中的站点、 小区的方式或物理位置进行标识的问题, 需要在安装电调天线时 平台根据预设对应关系查找出电调天线设备序列号发送 3G基站, 3G基站需 存储 2G网络电调天线设备序列号来与 2G网络电调天线匹配。
以上 3个实施例中所述的调制解调过程可以放置于 3G基站设备或电调天 线设备中进行, 也可以在单独的调制解调设备中进行, 或者调制过程在 3G基 站设备中进行, 解调过程在电调天线设备中进行。 本发明实施例还提供了一种实现 2G网络电调天线集中控制的系统, 该系 统用于实现便于用户操作、 维护成本低的 2G网络电调天线集中控制方法。 该 系统中所有的电调天线的控制电调动作单元都用 AISG控制信号线通过调制解 调器与 3G基站相连接, 由于 2G网络和 3G网络中的电调天线和调制解调器 都无差别, 只要通过设置软件, 用 3G基站来控制 2G网络中的电调天线。
参见图 5, 该系统包括控制平台、 3G基站设备、 电调天线设备和调制解 调模块。 其中, 控制平台相当于人机接口, 是运行在服务器中的软件, 图 5 中未示出。
釆用查找电调天线设备全球唯一序列号实现 2G网络电调天线集中控制 时:
控制平台主要用于接收用户输入的需要控制的 2G天线设备序列号及控制 动作, 向 3G基站发出需要控制的 2G天线设备序列号及控制动作, 接收电调 天线经 3G基站反馈的执行结果信号;
3G基站主要用于存储 2G电调天线设备序列号, 接收控制平台发送的天 线设备序列号及控制动作, 查找接收到的控制平台发送的天线设备序列号,判 断控制链路是否正常, 向电调天线设备发出模拟信号控制命令,接收电调天线 返回的控制成功命令;
调制解调模块主要用于接收 3G基站发出模拟信号控制命令后对该信号进 行调制,再将调制过的控制命令发送至电调天线,接收电调天线返回的控制成 功信号, 将该信号解调后发送至 3G基站;
电调天线主要用于接收控制命令后执行该命令, 并返回执行结果信号。
线集中控制, 并将电调天线设备名称与序列号的对应关系保存于 3G基站时: 控制平台主要用于接收用户输入的需要控制的 2G天线设备名称及控制动 作, 向 3G基站发出需要控制的 2G天线设备名称及控制动作, 接收电调天线 经 3G基站反馈的执行结果信号;
3G基站主要用于存储 2G电调天线名称与设备序列号对应关系, 接收控 制平台发送的天线设备名称及控制动作,根据存储的对应关系查找接收到的天 线设备名称所对应的设备序列号, 判断控制链路是否正常, 向电调天线设备发 出模拟信号控制命令,接收电调天线返回的控制成功命令, 并将该命令传递至 控制平台;
调制解调模块主要用于接收 3G基站发出模拟信号控制命令后对该信号进 行调制,再将调制过的控制命令发送至电调天线,接收电调天线返回的执行结 果信号, 将该信号解调后发送至 3G基站;
电调天线主要用于接收控制命令后执行该命令, 并返回执行结果信号。 所述 3G基站保存的 2G电调天线名称与设备序列号对应关系在控制方法 具体实施例二中已经详细描述, 在此不再重复。
线集中控制, 并将电调天线设备名称与序列号的对应关系保存于控制平台时: 控制平台主要用于存储 2G电调天线名称与设备序列号对应关系, 接收用 户输入的需要控制的 2G天线设备名称及控制动作, 根据存储的对应关系查找 接收到的天线设备名称所对应的设备序列号, 向 3G基站发出需要控制的 2G 天线设备序列号, 接收电调天线经 3G基站反馈的执行结果信号;
3G基站主要用于接收控制平台发送的天线设备序列号及控制动作, 判断 控制链路是否正常, 向电调天线设备发出模拟信号控制命令,接收电调天线返 回的执行结果信号, 并将该信号传递至控制平台;
调制解调模块主要用于接收 3G基站发出模拟信号控制命令后对该信号进 行调制,再将调制过的控制命令发送至电调天线,接收电调天线返回的执行结 果信号, 将该信号解调后发送至 3G基站;
电调天线主要用于接收控制命令后执行该命令, 并返回执行结果信号。 具体实施例二中已经详细描述, 在此不再重复。
在上述实现 2G网络电调天线集中控制的系统的三个实施例中, 所述的调 制解调模块可以内置于 3G基站设备、 电调天线设备, 或者调制解调功能分别 至于 3G基站设备和电调天线设备中。
在上述实现 2G网络电调天线集中控制系统的三个实施例中,如图 5所示, 所有电调天线都釆用级连的方式进行连接, 但在实现过程中并不排除每个 2G 网络中的电调天线都通过 AISG控制信号线连接到一个调制解调设备的并联的 方式, 这个调制解调器与 3G设备相连接, 控制命令统一由 3G设备发出; 每 个 2G电调天线又与 2G设备通过射频信号线相连,所有的射频信号仍然在 2G 电调天线与 2G设备间传送, 参见图 6。
上述所有实施例中, 包括方法实施例和系统实施例, 3G基站设备向电调 天线设备发出的是模拟信号控制命令, 该控制命令经调制解调后, 到达待调控 的 2G电调天线,相应的 2G电调天线反馈的执行结果信号经调制解调到达 3G 基站设备。对上述信号的调制解调的过程可以参考现有技术中各种模拟信号与 数字信号之间的调制解调方法, 其具体实现过程并不构成对于本发明的限制。 同时, 可以理解的是, 上述仅为具体的实施方式, 在实际应用中上述信号控制 命令及执行结果信号也可以直接以数字信号的形式发送,从而可以省略调制解 调操作, 相应的系统中也可以不需要调制解调模块。
由于图 5仅是一实施例, 因此, 对于一种实现 2G网络电调天线集中控制 的系统可以仅包括控制平台和 3G基站设备。
需要说明的是,本领域普通技术人员可以理解实现上述实施例方法中的全 部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储 于一计算机可读取存储介质中, 该程序在执行时, 包括上述方法的步骤; 所述 的存储介质, 如: ROM/RAM、 磁碟、 光盘等。
以上对本发明实施例所提供的实现 2G网络电调天线集中控制的方法及系 阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时, 对于本领域的一般技术人员,依据本发明的思想, 在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种实现 2G 网络电调天线集中控制的方法, 其特征在于, 该方法包 括:
接收需要控制的 2G 网络电调天线的标识及控制命令;
才艮据所述标识查找对应的 2G 网络电调天线;
3G基站设备向所述 2G网络的电调天线发出控制命令, 控制 2G 网络的 电调天线。
2、 根据权利要求 1所述的实现 2G 网络电调天线集中控制的方法, 其特 征在于,
所述 3G基站设备通过控制平台接收需要控制的电调天线的标识及控制命 令;
所述标识为 2G电调天线的设备序列号;
根据所述标识查找 2G 网络电调天线的过程包括: 3G设备通过控制平台 接收控制命令及设备序列号, 通过所述设备序列号查找到需要控制的电调天 线。
3、 根据权利要求 1所述的实现 2G 网络电调天线集中控制的方法, 其特 征在于,
所述 3G基站设备通过控制平台接收需要控制的电调天线的标识及控制命 令;
所述标识为按照预置规则设定的电调天线名称;
根据所述标识查找 2G 网络电调天线的过程包括: 3G基站设备通过控制 平台接收控制命令及电调天线名称,根据预先设置的命名规则查找该名称对应 的设备序列号,找到对应的设备序列号后再通过该设备序列号查找到需要控制 的电调天线。
4、 根据权利要求 1所述的实现 2G 网络电调天线集中控制的方法, 其特 征在于,
所述 3G基站设备通过控制平台接收需要控制的电调天线的标识及控制命 令;
所述标识为按照预置规则设定的电调天线名称; 根据所述标识查找 2G 网络电调天线的过程包括:所述控制平台接收到需 要控制的电调天线名称及控制命令后,通过预先设置的命名规则查找该名称对 应的设备序列号, 找到对应的设备序列号后发送至 3G基站设备, 3G基站设 备通过设备序列号找到需要控制的电调天线。
5、 根据权利要求 1所述的实现 2G 网络电调天线集中控制的方法, 其特 征在于, 所述 3G基站设备向所述 2G网络的电调天线发出控制命令之前, 进 一步包括:
3G基站设备判断与需要控制的电调天线的控制链路是否正常, 若正常则 再向所述 2G网络的电调天线发出控制命令, 若不正常则跳出本流程。
6、 根据权利要求 1或 5所述的实现 2G 网络电调天线集中控制的方法, 其特征在于, 3G基站设备向所述 2G网络的电调天线发出控制命令之后, 进 一步包括:
接收电调天线反馈的执行结果信号, 传送给用户终端;
所述执行结果包括成功或失败信息。
7、 根据权利要求 1所述的实现 2G 网络电调天线集中控制的方法, 其特 征在于, 所述 3G基站设备向所述 2G网络的电调天线发出控制命令经过调制 解调后到达 2G 网络电调天线。
8、 一种实现 2G 网络电调天线集中控制的系统, 其特征在于, 该系统包 括: 控制平台和 3G基站设备, 其中:
所述控制平台, 用于接收并向 3G基站发送需要控制的 2G 网络电调天线 的标识及控制动作;
所述 3G基站设备, 用于接收控制平台发送的所述电调天线的标识及控制 动作, 通过所述标识查找对应 2G 网络的电调天线, 向所述电调天线设备发出 控制命令, 控制 2G 网络的电调天线。
9、 根据权利要求 8所述的实现 2G 网络电调天线集中控制的系统, 其特 征在于,
所述控制平台接收并发送的电调天线的标识为 2G电调天线设备序列号。 所述 3G基站设备通过所述设备序列号查找到需要控制的电调天线。
10、根据权利要求 8所述的实现 2G 网络电调天线集中控制的系统, 其特 征在于,
所述控制平台接收并发送的电调天线的标识为 2G电调天线设备名称; 3G基站设备进一步用于存储 2G电调天线名称与设备序列号对应关系, 通过存储的对应关系查找接收到的天线设备名称所对应的设备序列号,由序列 号找到需要控制的电调天线设备。
11、根据权利要求 8所述的实现 2G 网络电调天线集中控制的系统, 其特 征在于,
所述控制平台接收的电调天线的标识为 2G电调天线设备名称; 所述控制
2G电调天线设备名称, 通过存储的对应关系查找接收到的天线设备名称所对 应的设备序列号,向 3G基站发出需要控制的 2G天线设备序列号及控制动作。
12、 根据权利要求 8~11其中之一所述的实现 2G 网络电调天线集中控制 的系统, 其特征在于,
所述 3G基站设备进一步用于确定与需要控制的电调天线的控制链路正常 后, 再向电调天线设备发出控制命令。
13、根据权利要求 8 ~ 11其中之一所述的实现 2G 网络电调天线集中控制 的系统, 其特征在于, 所述的电调天线进一步用于向 3G基站设备返回执行结 果信号;
3G基站设备进一步用于接收并向控制平台返回该执行结果信号。
14、 根据权利要求 13所述的实现 2G 网络电调天线集中控制的系统, 其 特征在于, 所述系统还包括:
调制解调器, 用于 3G基站发出控制命令后对该信号进行调制, 再将调制 过的控制命令发送至所述 2G电调天线, 接收所述电调天线返回的执行结果信 号, 将该信号解调后发送至 3G基站。
15、 根据权利要求 14其中之一所述的实现 2G 网络电调天线集中控制的 系统, 其特征在于, 所述 2G网络中的一个电调天线与调制解调器相连, 其它 电调天线与该电调天线釆用级连的方式连接; 或者, 所述 2G网络中的每个电 调天线分别与调制解调器相连。
16、 一种 3G基站, 其特征在于, 包括:
存储单元, 用于保存 2G网络电调天线标识;
控制单元, 用于向所述 2G网络电调天线标识对应的 2G网络的电调天线 发出控制命令。
17、 根据权利要求 16所述的基站, 其特征在于, 所述 2G网络电调天线 标识为 2G网络电调天线序列号。
18、 根据权利要求 16所述的基站, 其特征在于, 所述 2G网络电调天线 标识为按照预置规则设定的电调天线名称。
PCT/CN2007/070431 2006-08-08 2007-08-08 Procédé, système et appareil de mise en oeuvre de la commande centrale d'une antenne de régulation électrique de réseau 2g WO2008019617A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT07785421T ATE546022T1 (de) 2006-08-08 2007-08-08 Verfahren, anordnung und gerät zum aufbau einer zentralen steuerung einer elektrisch geregelten antenne eines 2g netzes
EP07785421A EP2031764B1 (en) 2006-08-08 2007-08-08 A method, a system and an apparatus for implementing the central control of a 2g network electric regulating antenna
US12/366,926 US8271018B2 (en) 2006-08-08 2009-02-06 Method, system, and equipment for implementing central control of a 2G network electric regulating antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB200610109549XA CN100558001C (zh) 2006-08-08 2006-08-08 一种实现2g网络电调天线集中控制的方法及系统
CN200610109549.X 2006-08-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/366,926 Continuation US8271018B2 (en) 2006-08-08 2009-02-06 Method, system, and equipment for implementing central control of a 2G network electric regulating antenna

Publications (1)

Publication Number Publication Date
WO2008019617A1 true WO2008019617A1 (fr) 2008-02-21

Family

ID=37674546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070431 WO2008019617A1 (fr) 2006-08-08 2007-08-08 Procédé, système et appareil de mise en oeuvre de la commande centrale d'une antenne de régulation électrique de réseau 2g

Country Status (5)

Country Link
US (1) US8271018B2 (zh)
EP (1) EP2031764B1 (zh)
CN (1) CN100558001C (zh)
AT (1) ATE546022T1 (zh)
WO (1) WO2008019617A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101072041B (zh) * 2007-06-05 2010-06-02 中兴通讯股份有限公司 电调天线设备的地址冲突检测方法及系统
CN101087449B (zh) * 2007-07-02 2010-05-26 华为技术有限公司 调整电调塔放增益的方法、系统及基站
CN101262683B (zh) * 2008-04-14 2011-05-11 中兴通讯股份有限公司 一种电调天线协议软件的模拟测试系统和方法
CN101740864B (zh) * 2008-11-21 2013-10-16 中兴通讯股份有限公司 一种电调天线通信系统和方法
CN101621156B (zh) * 2009-08-05 2012-11-07 宁波天韵天线科技有限公司 一种电调天线控制装置
US8164520B2 (en) * 2009-10-15 2012-04-24 Andrew Llc Master antenna controller
US8774717B2 (en) * 2009-10-15 2014-07-08 Andrew Llc Portable AISG controller with smartphone interface and system
CN101827374B (zh) * 2009-12-31 2013-08-07 中兴通讯股份有限公司 用于管理电调天线的操作维护系统、控制器和射频子系统
CN101827375B (zh) * 2009-12-31 2014-11-05 中兴通讯股份有限公司 电调天线的管理系统和管理方法
CN101938768B (zh) 2010-08-20 2012-12-19 华为技术有限公司 级联rcu链路扫描的方法和电调天线系统
CN102544731A (zh) * 2012-02-08 2012-07-04 华为技术有限公司 一种天线系统与装置
CN102780090B (zh) * 2012-07-24 2015-01-07 华为技术有限公司 一种电调天线以及控制方法、系统
CN102905279B (zh) * 2012-09-28 2015-06-03 华为技术有限公司 远端控制单元序列号和天线扇区号的匹配方法及装置
US9730081B2 (en) * 2013-08-27 2017-08-08 Cisco Technology, Inc. Rapid and precise methodology for massive small cell deployment
CN104904258B (zh) * 2013-09-18 2020-01-31 华为技术有限公司 天线调整处理方法、装置及系统
US9491763B2 (en) * 2013-11-07 2016-11-08 Cellwize Wireless Technologies Ltd. Methods and systems of adjusting antenna electrical tilt
WO2015135102A1 (zh) * 2014-03-10 2015-09-17 华为技术有限公司 多频电调天线管理方法、装置和系统
CN103945414B (zh) * 2014-04-23 2017-04-26 华为技术有限公司 一种确认频段与远程电调倾角之间映射关系的方法、设备
CN105517667B (zh) 2014-07-18 2018-10-09 华为技术有限公司 一种信号传输方法、接口扩展装置和通信系统
CN105487412B (zh) * 2014-09-30 2018-06-22 中国电信股份有限公司 一种获取远程电调天线控制单元级联的方法和系统
CN106486768A (zh) * 2015-09-02 2017-03-08 中兴通讯股份有限公司 电调天线参数值调整方法及装置
CN108987894B (zh) * 2017-06-05 2021-07-27 中兴通讯股份有限公司 一种天线控制方法和天线装置
CN112804061B (zh) * 2021-01-04 2022-11-01 武汉虹信科技发展有限责任公司 电调天线控制器的数据传输方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079484A2 (en) * 2002-03-15 2003-09-25 Andrew Corp. Antenna interface protocol
JP2004229220A (ja) * 2003-01-27 2004-08-12 Ntt Docomo Inc 基地局、アンテナの制御方法及びアンテナ制御装置
CN1578523A (zh) * 2003-06-27 2005-02-09 诺基亚公司 天线调整方法、系统和网络单元
WO2005048401A1 (en) * 2003-11-07 2005-05-26 Quintel Technology Limited Phased array antenna system with controllable electrical tilt
GB2414137A (en) 2004-05-12 2005-11-16 Univ Sheffield Control of Antenna Line Device.
WO2006057613A1 (en) * 2004-11-26 2006-06-01 Powerwave Technologies Sweden Ab Antenna control system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260369B2 (en) * 2005-08-03 2007-08-21 Kamilo Feher Location finder, tracker, communication and remote control system
JP3936834B2 (ja) * 2000-09-11 2007-06-27 株式会社日立製作所 加入者系無線アクセスシステム及びそれに用いる装置
WO2002076115A2 (en) * 2001-03-19 2002-09-26 Remec, Inc. Intelligent multiplexers in an antenna line management system
RU2346363C2 (ru) * 2003-05-17 2009-02-10 Квинтел Текнолоджи Лимитед Система фазированной антенной решетки с регулируемым электрическим наклоном

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152492A1 (en) 2001-05-14 2004-08-05 Andrew Gray Antenna interface protocol
WO2003079484A2 (en) * 2002-03-15 2003-09-25 Andrew Corp. Antenna interface protocol
JP2004229220A (ja) * 2003-01-27 2004-08-12 Ntt Docomo Inc 基地局、アンテナの制御方法及びアンテナ制御装置
CN1578523A (zh) * 2003-06-27 2005-02-09 诺基亚公司 天线调整方法、系统和网络单元
WO2005048401A1 (en) * 2003-11-07 2005-05-26 Quintel Technology Limited Phased array antenna system with controllable electrical tilt
GB2414137A (en) 2004-05-12 2005-11-16 Univ Sheffield Control of Antenna Line Device.
WO2006057613A1 (en) * 2004-11-26 2006-06-01 Powerwave Technologies Sweden Ab Antenna control system

Also Published As

Publication number Publication date
EP2031764A4 (en) 2010-09-15
EP2031764B1 (en) 2012-02-15
ATE546022T1 (de) 2012-03-15
US20090197634A1 (en) 2009-08-06
EP2031764A1 (en) 2009-03-04
CN100558001C (zh) 2009-11-04
US8271018B2 (en) 2012-09-18
CN1905399A (zh) 2007-01-31

Similar Documents

Publication Publication Date Title
WO2008019617A1 (fr) Procédé, système et appareil de mise en oeuvre de la commande centrale d'une antenne de régulation électrique de réseau 2g
US20040152492A1 (en) Antenna interface protocol
CN102456948B (zh) 电调天线的控制方法及系统、电调天线控制器及维护终端
CN103634170B (zh) 一种家庭网络互联方法及装置
JP2000509579A (ja) セルラ基地局用の分割可能送信アンテナアレイ及び関連する方法
RU2538294C2 (ru) Система технического обслуживания, контроллер и радиочастотная подситема для управления электрически регулируемыми антеннами
WO2008040143A1 (fr) Station de base et procédé de réglage de l'angle d'inclinaison de l'antenne vers le bas
CN104521152A (zh) 多运营商共享天线的方法、系统和射频数字转换单元
JPH09510595A (ja) 電力効率を向上させたフェーズドアレイセルラー基地局および関連した方法
WO2011124180A2 (zh) 天线设备、基站系统和调整天线设备的方法
JP3631083B2 (ja) 無線基地局及び移動局
JPH11317688A (ja) 無線トランシ―バの無線通信を介した再プログラミング方法
CN103036603A (zh) 智能天线波束赋形权值的处理方法及装置
CN102752775B (zh) 一种智能天线参数配置的发送和接收方法及装置
WO2011079597A1 (zh) 电调天线的管理系统和管理方法
WO2012163206A1 (zh) Aisg设备控制方法、系统及aisg设备控制器
CN102833770A (zh) 电调天线设备及其关联小区的方法、天线组件及基站
CN108987894A (zh) 一种天线控制方法和天线装置
CN101114855B (zh) 针对塔顶放大器增益操作的响应方法
CN111294800A (zh) 中频资源配置方法及装置
JPH1013326A (ja) 無線通信システム、基地局、移動端末及び無線通信方法
US7031715B1 (en) Generating cellsite data transmittals
Cirullo et al. Network solutions for employing COTS radios in multi-sector directional architectures
CN101114853B (zh) 一种塔顶放大器增益调节的方法及系统及塔顶放大器
JP2000236294A (ja) 移動通信方法およびその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007785421

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU