WO2008018555A1 - HBsAg PARTICLE HAVING LOW ANTIGENICITY AND METHOD FOR PRODUCTION THEREOF - Google Patents

HBsAg PARTICLE HAVING LOW ANTIGENICITY AND METHOD FOR PRODUCTION THEREOF Download PDF

Info

Publication number
WO2008018555A1
WO2008018555A1 PCT/JP2007/065646 JP2007065646W WO2008018555A1 WO 2008018555 A1 WO2008018555 A1 WO 2008018555A1 JP 2007065646 W JP2007065646 W JP 2007065646W WO 2008018555 A1 WO2008018555 A1 WO 2008018555A1
Authority
WO
WIPO (PCT)
Prior art keywords
hbsag
protein
msl
amino acid
cell
Prior art date
Application number
PCT/JP2007/065646
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Yamada
Masaharu Seno
Hiroko Tada
Original Assignee
National University Corporation Okayama University
Beacle Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Okayama University, Beacle Inc. filed Critical National University Corporation Okayama University
Priority to JP2008528881A priority Critical patent/JP5147697B2/en
Publication of WO2008018555A1 publication Critical patent/WO2008018555A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5176Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5184Virus capsids or envelopes enclosing drugs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to a low antigenic HBsAg particle and a method for producing the same.
  • DDS drug delivery system
  • the viral coat protein used as a protein forming the hollow nanoparticles exhibits antigenicity and antibody inducing ability similar to those of viruses when administered into the human body. For this reason, 1) the virus-infected patients who already possess antiviral antibodies by administering the virus vaccine, the administered hollow nanoparticles are neutralized by the antiviral antibodies. In the case of continuous administration, the antibody against itself is induced and neutralized by the antibody, so that the administered hollow nanoparticles may not be able to exert the intended drug delivery ability. Furthermore, the concern of anaphylaxis cannot be excluded as a side effect. Therefore, overcoming this antigenicity and immunogenicity has been a challenge for pharmaceutical applications of hollow nanoparticles.
  • Patent Literature l WO03 / 82344
  • Patent Document 2 JP 2003-286198 A
  • Patent Document 3 JP 2004-2313
  • Patent Document 4 WO03 / 82330
  • An object of the present invention is to provide hollow nanoparticles having a lower antigenicity / immunogenicity and a constituent tamper thereof. It is to provide a protein, a particle comprising the protein as a constituent element, and a preparation method thereof. Means for solving the problem
  • hepatitis B virus coat protein hepatitis B virusless surface antigen protein: HBsAg
  • HBsAg hepatitis B virusless surface antigen protein
  • the present invention includes the following inventions.
  • HBsAg human hepatitis B virus surface antigen protein containing an S polypeptide part, wherein at least amino acids at positions 105 to 148 of the S polypeptide part are deleted, HBsAg Protein variant.
  • HBsAg protein variant according to Item 1, wherein the HBsAg protein variant further comprises a cell recognition moiety.
  • HBsAg protein modification strength In addition to the S polypeptide portion, it contains a non-cell recognition site or a part of the PreS portion, and further, a hepatocyte recognition portion derived from the PreS portion, an antibody, a growth factor, a cyto force-in, Item 4.
  • the HBsAg according to any one of Items 1 to 3, comprising at least one cell recognition moiety selected from the group consisting of a cell surface antigen, a tissue-specific antigen, a receptor, a molecule derived from a virus and a microorganism, and a sugar chain. Protein variant.
  • HBsAg protein variant according to any one of Items 1 to 4, which has a linker peptide at a deletion site including positions 105 to 148.
  • An HBsAg hollow particle comprising the HBsAg protein variant according to any one of Items 1 to 8 as a constituent element.
  • An expression vector containing a gene encoding the HBsAg protein variant according to any one of Items 1 to 8 is introduced into a eukaryotic cell, the cell is transformed, and the resulting transformed cell is cultured.
  • HBsAg hollow particle there is at least one selected from the group consisting of DNA, RNA, protein, lipid, carbohydrate, labeling substance, drug, and physiologically active substance that can function in cells.
  • Material carrier with the following substances.
  • hollow nanoparticles with low antigenicity can be obtained in high yield, and the hollow nanoparticles are excellent in the ability to introduce substances such as genes and proteins into cells.
  • FIG.3 Reactivity of MSL-deficient mutants with goat anti-HBsAg antibody M6_d54-3xFLAG (HBsAg positive control, PC), MSL (108_148) / PD-d54, MSL (108_148) / QE-d54 mutant expression
  • Cos7 cells transfected with the vector were analyzed by western blotting using anti-FLAG-tag antibody and western blotting using goat anti-HBsAg antibody.
  • the MSL-deficient mutant protein was detected to the same extent by the anti-FLAG antibody, but was hardly detected by the anti-HBsAg antibody.
  • mutant proteins that can be used for the formation of the above hollow nanoparticles include human hepatitis B virus coat protein (surface antigen protein, HBsAg).
  • Hepatitis B virus surface antigen L protein has the ability to form particles and recognize target cells.
  • HBsAgL protein consists of N-terminal PreS region and C-terminal S protein region.
  • the PreS region bears the ability to recognize target cells (human hepatocytes), but is replaced with another target recognition sequence when creating hollow nanoparticles with converted target tissues. Therefore, the PreS region is not a region common to all hollow nanoparticles.
  • the S protein part since the S protein part is involved in particle structure formation, it is common to all hollow nanoparticles.
  • Pre-S2 consisting of 55 amino acids added to S protein is M protein (M particle constituent protein), and Pre-Si consisting of 108 amino acids (subtype y) or 119 amino acids (subtype d) is added to M protein.
  • M protein M particle constituent protein
  • Pre-Si consisting of 108 amino acids (subtype y) or 119 amino acids (subtype d) is added to M protein.
  • L protein the protein that constitutes the L particle.
  • the numbering of amino acid positions in the Pre-Sl region is based on a subtype y of 108 amino acids.
  • HBsAg There are three types of HBsAg: adr type, adw type, and ayw type.
  • Pre-Si adr type is 108 a. A.
  • the adw type is 115 a.a. and the ayw type is 119 a.a.
  • Pre_S2 is 55 a.a for all adr, adw and ayw types. Furthermore, S is 226 a.a. for all adr, adw, and ayw types.
  • the adr type L protein (SEQ ID NO: 45) is a 389 amino acid protein consisting of Pre-S1 (108 a.a.), Pre-S2 (55 a.a.) and S (226 a.a.) forces.
  • pGLDLIIP39_RcT L protein (Pre_Sl ⁇ 108 aa, Pre-S2 ⁇ 49 aa, S ⁇ 226 aa) is positions 152 to 15 7 in the adr type L protein of SEQ ID NO: 45
  • SIFSRT prote sensitive self-sequence
  • L protein and M protein have the ability to form particles, similar to S protein. Therefore, the two regions of PreSl and PreS2 may be arbitrarily substituted, attached, deleted, or inserted. For example, by using a modified protein in which a hepatocyte recognition site contained in amino acids 3 to 77 of the Pre-Sl region is deleted, hollow particles that have lost the ability to recognize hepatocytes can be obtained. In addition, since the PreS2 region includes a site that recognizes hepatocytes via albumin! /, This albumin recognition site can also be deleted.
  • hollow bio-nanoparticles composed of hepatitis B virus protein or a protein capable of recognizing hepatocytes, such as L protein and M protein
  • cell recognition sites can be introduced to recognize any cell other than hepatocytes, and the polymer / nucleic acid complex can be introduced into various target cells.
  • cell recognition sites for recognizing specific cells include cells and tissues such as cell function regulatory molecules, cell surface antigens, tissue-specific antigens, receptors, etc. composed of polypeptides such as growth factors and cytoforce-ins.
  • Polypeptide molecules for identification, polypeptide molecules derived from viruses and microorganisms, antibodies, sugar chains and the like are preferably used. Specifically, antibodies against EGF receptor and IL 2 receptor that appear specifically in cancer cells, EGF, and receptors presented by HBV are also included.
  • a protein capable of binding an antibody Fc domain for example, a ZZ tag
  • a strept tag showing biotin-like activity to display a biorecognition molecule labeled with biotin via streptavidin can also be used.
  • the cell recognition site is a polypeptide
  • a DNA encoding a hepatitis B virus protein or a variant thereof and a DNA encoding a cell recognition site if necessary, a DNA encoding a spacer peptide
  • a hollow bio-nanoparticle recognizing an arbitrary target cell can be obtained by linking it in frame, incorporating it into a vector or the like, and expressing it in a eukaryotic cell.
  • the DNA encoding the hepatitis B virus protein or a variant thereof and the DNA encoding the ZZ tag are optionally passed through the DNA encoding the spacer peptide. Connected in-frame and incorporated into a vector etc.
  • the desired hollow bionanoparticles can be obtained by mixing the hollow bionanoparticles that are expressed in the vesicles and an antibody that can recognize the target cells.
  • the cell recognition site is a sugar chain
  • it is obtained by linking a sugar chain capable of recognizing cells such as Sialyl Lewis X to a hollow bionanoparticle having no cell recognition ability using a glycosyltransferase. That's the power S.
  • the Pre-S (Pre_Sl, Pre_S2) of the HBsAg L protein plays an important role when HBV binds to hepatocytes.
  • the S protein part has the ability to form a particle structure.
  • S protein has transmembrane 1! 6 (& 113016011 ⁇ & 116 sequence, TM1 and TM2 from the N-terminal side) at 8-26 residue and 80-98 residue, C-terminal 156-226 residue In addition, it has a membrane interaction region that exhibits very high hydrophobicity.
  • MSL major surface loop
  • An antibody recognition epitope is also mapped to the C-terminal hydrophobic region (156-226).
  • HBsAg L protein, HBsAg M protein, or HBsAg S protein When HBsAg L protein, HBsAg M protein, or HBsAg S protein is expressed in eukaryotic cells, the protein is synthesized and accumulated as a membrane protein on the endoplasmic reticulum membrane, and then aggregates between molecules, causing the endoplasmic reticulum membrane to While taking up, it is released as particles to the lumen side in the form of budding, and finally it is separated into the culture supernatant.
  • linker-amino acid / linker peptide in addition to 105-148, part or all of 101-104 and 149-154 can be deleted, and a linker-amino acid / linker peptide can be introduced as necessary.
  • Preferred linker lengths include 2 to 4 amino acids.
  • a substitution sequence derived from a restriction enzyme site introduced for convenience of DNA construction one amino acid (Gly (G)) on the N-terminal side and the C-terminal side on both sides of the MSL to be deleted) 2 amino acids Ser-Trp (SW); substitution of a total of 3 residues.
  • the MSL (108_148) PD variant MSL108-148 deficient PD linker insertion
  • MSL107_150 MSL107- 150 deficient GPDSW linker purchase.
  • substitution sequences derived from restriction enzyme sites that can be introduced on both sides of the linker can vary depending on the selection of restriction enzymes (sites), the nucleotide sequences on both sides of the deleted amino acid sequence, and the like.
  • TM2 transmembrane helix 2
  • C-terminal hydrophobic region is linked. Between these two structures, we first stop the TM2 helix structure, pull its C-terminal part out of the membrane, and then turn to introduce a sequence that goes back into the membrane and connects to the C-terminal hydrophobic region. Is desirable.
  • the length of the linker is preferably exemplified by 2 to 4 residues because the so-called folded structure has 4 residues but may not be completely folded.
  • Amino acids introduced as linkers include amino acid residues that break the helix (Gly, Pro, Asn, Tyr), amino acid residues that are many in the turn structure ( ⁇ , Glv. Pro. ASP. Ser. Tro), membrane interface Examples include combinations of amino acid residues (Sl, As ⁇ , Lys, His, Arg, Gki, Pro, Agn) that are difficult to stay (prone to go out of the membrane), and are not particularly limited.
  • Pro-Asp (PD), Gln_Glu (QE), Pro-Asp-A sn-Gly (PDNG), Pro_Ser-Ser-Ser (PSSS), Pro_Lys, Asp-Pro, and the like.
  • the Cys residue contained in the S protein portion can be substituted with other amino acids such as Ser and Ala.
  • Cys at positions 76, 90, 107, 137, and 149 can be substituted with other amino acids such as Ser and Ala.
  • Examples of preferred substitutions include Cys76 / Ala, Cys 90 / Ala, Cys 107 / Ser, Cys 137 / Ser, Cys 139 / Ser, Cys 149 / Ser, and Cys 221 / Ala.
  • Non-Patent Document 1 describes the ability to delete S-protein 107-146 for its production efficiency, usefulness as a substance introduction agent, etc.! It is not listed. Rather, it has been described that the efficiency of gene transfer is reduced by this deletion.
  • 105-148 can be deleted with respect to the major antigen loop, and 101-104, 149-154 amino acids, and also the lack of the 54 amino acid residue region on the C-terminal side of the C-terminal hydrophobic region. Loss is possible. For example, deletion of the amino acid sequence (101-154) or (105-154) is particularly preferred. For the purposes of the present invention, the more deleted regions, the more desirable.
  • Proteins that constitute particles such as HBsAg mutant protein are linked to S protein directly or through a linker, or introduced into the PreS region by targeting a molecule that recognizes a specific cell. Substances can also be introduced specifically into tissues. Examples of such molecules that recognize specific cells include cell function regulatory molecules such as growth factors and cytokines, cell surface antigens, tissue-specific antigens, molecules for identifying cells and tissues such as receptors, Molecules derived from viruses and microorganisms, antibodies, sugar chains (eg, Sialyl Lewis X) and the like are preferably used. Specifically, it includes antibodies to EGF receptor and IL2 receptor that appear specifically in cancer cells, EGF, and receptors presented by HBV.
  • cell function regulatory molecules such as growth factors and cytokines, cell surface antigens, tissue-specific antigens, molecules for identifying cells and tissues such as receptors
  • Molecules derived from viruses and microorganisms antibodies, sugar chains (eg, Sialyl Lewis X) and
  • a protein capable of binding an antibody Fc domain for example, a ZZ tag
  • a strept tag showing biotin-like activity to display a biorecognition molecule labeled with biotin via streptavidin can also be used.
  • These are appropriately selected according to the target cell or tissue.
  • Cell recognition molecules can be introduced into HBsAg mutant proteins according to known methods!
  • Examples of the low antigenic particles of the present invention include those obtained by expressing HBsAg mutein in eukaryotic cells.
  • the method for producing particles is described in Patent Documents 1 to 4, etc., and the preparation method for H BsAg is Vaccine. 2001 Apr 30; 19 (23-24): 3154-63 ⁇ Physicochemical an a immunological cnaractenzation or nepatitis B virus envelope particles exclusively c onsisting of the entire L (pre ⁇ Sl + pre ⁇ S2 + S) protein.
  • the protein is preferably expressed and accumulated as a membrane protein on the endoplasmic reticulum membrane and released as a nanoparticle.
  • eukaryotic cells include animal cells such as mammals (for example, CHO cells), insect cells (such as expression systems using baculowinoles), and yeast. Such particles are extremely safe for the human body because they do not contain any HBV genome.
  • the cell selectivity of the nanoparticle of the present invention for hepatocytes or other cells can be enhanced by introducing a cell recognition molecule into at least a part of the protein constituting the particle as necessary.
  • HBsAg represents hepatitis B virus surface antigen (H mark atitis B virus surface Antigen) which is a coat protein of HBV.
  • HBsAg contains an S protein composed of 226 amino acids.
  • M protein has 55 amino acids (Pre_S2 peptide) added to the N-terminal side of S protein, and L protein has 108 or 119 amino acids (PreSl p-marked tide) added to the N-terminal side of M protein ( The addition of 108 amino acids is shown in Figure 1).
  • a secretory signal sequence was added to the N-terminus, and a protease-sensitive sequence IJ (six amino acids at positions 152-157 of SEQ ID NO: 45) in the PreS2 region was removed. I used something.
  • an L protein was prepared by fusing a C-terminal detection epitope tag sequence. That is, the plasmid pB0747 for animal expression of a mutant (L-d54-FLAG) in which the C-terminal 54 amino acids of the wild-type L protein were deleted and the FL AG tag sequence was fused was cleaved with Xho I and the FLAG-tag sequence twice
  • the plasmid pB0982 for expression of the protein (L-d54-3xFLAG) in which the FLAG-tag sequence was fused three times was constructed by inserting and ligating the synthetic DNA (SEQ ID NO: 1 & 2).
  • L-d54_3xFLAG A plasmid pB0851 for expressing a mutant (M6_d54-3xFLAG) in which 6 of 13 Cys residues in the S region of the protein were replaced with Ser residues or Ala residues was constructed. Specifically, substitution mutations of Cys76 / Ala, Cys 90 / Ala, Cys 107 / Ser, Cys 137 / Ser, Cys 139 / Ser, Cys 147 / Ser, and Cys 149 / Ser were introduced. The subsequent amino acid sequence numbers are the S protein sequence numbers.
  • the above-mentioned MSL (108_148) / PD-d54 expression plasmid pB0941 is a saddle type, and site characteristics using 3 sets of synthetic DNAs shown in Table 1, SEQ ID NOs: 15 & 16, 17 & 18, or 19 & 20.
  • Apal site By introducing the second restriction enzyme Apal site into the position corresponding to Leu98, TyrlOO, and Glyl02, respectively, by introducing different mutations, the resulting plasmid DNA was cleaved with Apal and recombined, so that the S protein MSL Three MSL deletion L proteins (MSL (99) with deletion of residues 99-148, 101-148, or 103-148, respectively, and a PD linker sequence inserted.
  • MSL (99) Three MSL deletion L proteins
  • mutant HBsAg included in the present invention can be obtained by replacing the synthetic DNA used for site-directed mutagenesis by the same method as described above.
  • Table 3 shows the name of the MSL-deleted L protein expression vector constructed as described above, the name of the encoded MS L-deleted L protein, and the amino acid sequence around the deletion site.
  • the monkey kidney-derived cell line COS 7 was cultured in Danolebecko's modified Eagle's medium (DMEM) containing 5% ushi fetal serum (FBS) in the presence of 37 ° C and 5% C02.
  • COS7 cells were suspended in 10% FBS-containing DMEM so as to have lxlO 5 cells / ml, seeded in 2 ml in 3.5 cm dishes, and cultured for 14 to 16 hours.
  • DMEM 95 1 and the transfection reagent FuGene6 (Roche Diagnostics) 41 was mixed.
  • the entire amount was added to the COS7 cells. After culturing for 14 to 16 hours, the medium was replaced with 1.5 ml of serum-free medium CHO-S-SFMII (Invitrogen), and further cultured for 2 days, and then the culture supernatant and cells were collected.
  • serum-free medium CHO-S-SFMII Invitrogen
  • a 0-phenylenediamine solution (0.4 mg / ml o_phenylenediamine, 23 mM citrate, 51.4 mM Na2HP04, 0.0012% H 2 O 2) was used as the HRP substrate, and quantified by measuring the absorbance at 495 nm. Wild-type L particle-expressing COS7 cell culture supernatant was used as a negative control, and L-d54-3xFLAG particle-expressing COS7 cell culture supernatant was used as a positive control.
  • Tables 4 and 5 show the results of measuring each of the collected MSL-deleted L protein-expressing COS7 cell culture supernatants by 2-fold to 4-fold dilution and measuring by the above FLAG-ELISA.
  • Table 4 When comparing the effects of insertion linker sequences in MSL (108_148) deletions (Table 4), 2 amino acid residue insertion type (QE, PD) rather than 4 amino acid residue insertion type (PSSS, P DNG) ) Had more particle secretion.
  • QE, PD 2 amino acid residue insertion type
  • PSSS 4 amino acid residue insertion type
  • P DNG amino acid residue insertion type
  • the IMX HBsAg Atsy system (Dynabot) is an automated HBsAg measurement system based on an enzyme immunoassay using mouse anti-HBsAg monoclonal antibody, biotinylated anti-HBsAg polyclonal antibody and alkaline phosphatase (AP) -labeled anti-biotin antibody. Yes, it is used for blood diagnosis of HBV infection. Using this system, the reactivity of various MSL-deleted L particles secreted into the culture supernatant and anti-HBsAg antibody was measured.
  • AP alkaline phosphatase
  • MS recovered L-depleted L protein expression COS7 cell culture supernatant was diluted with Dulbecco's phosphate buffer (PBS) containing 1% FBS and measured.
  • PBS Dulbecco's phosphate buffer
  • V and misplaced MSL-deleted L particles were also determined to be HBsAg-negative. (Tables 4 and 5). Therefore, the anti-HBs Ag antibody response value per L particle amount of the MSL mutant that showed good particle secretion was 1 to 4% or less of L-d54-3xFLAG, and anti-HBsAg antibody reactivity due to MSL deletion was significantly reduced.
  • M6_d54-3xFLAG particle-expressing COS7 cells or MSL-deficient L protein expressing COS7 cells were subjected to SDS-polyacrylamide gel electrophoresis and then transferred to a PVDF membrane. After blocking PV DF membrane with 5% skim milk, analysis using biotinylated anti-FLAG M2 antibody or biotinylated anti-HBsAg polyclonal antibody (Dynabot MX HBsAg Atsy system liquid phase antibody) and HRP-labeled streptavidin (Figure 3).
  • M6_d54-3xFL AG showed a clear band around 40 kDa when detected with anti-FLAG antibody and with anti-HB sAg antibody.
  • MSL-deleted L protein mutants (MSL (108-148) / QE-d54 and MSL (108_148) / PD-d54) detected a clear band with anti-FLAG antibody, but with anti-HBsAg antibody was not detected, indicating decreased reactivity to goat anti-HBsAg polyclonal antibody.
  • MSL (105_152) / PD-d54 MSL (105_154) / PD-d54 is more reactive to goat anti-HBs polyclonal antibody than MSL (105-148) / PD-d54 ( Figure 4, Table 1).
  • Hebsbrin (Wuerfid) is an anti-HB sAg human immunoglobulin product prepared from sera of anti-HBsAg antibody positive patients. Whether this human anti-HBsAg polyclonal antibody recognizes MSL-deficient L particles by Western blotting and enzyme immunoassay. taking measurement.
  • L-d54-3xFLAG protein-expressing COS7 cells or MSL-deficient L protein SL (105_154) / PD-d54] -expressing COS7 cells were subjected to SDS-polyacrylamide gel electrophoresis and then transferred to a PVDF membrane. After blocking the PVDF membrane with 5% skim milk, it is reacted with a herbsulin solution, and further detected with an HRP-labeled-anti-HgG (H + L) antibody. The PVDF membrane is then reprobed with biotinylated anti-FLAG antibody and HRP-labeled streptavidin.
  • biotinylated anti-FLAG antibody reacts with L-d54-3xFLAG and MSL-deficient L protein to the same extent and shows a clear band around 40 kDa.
  • hebsbrin human anti-H BsAg polyclonal antibody
  • L-d54-3xFLAG particle expression COS7 cells or MSL-deficient L protein [MSL (105_154) / PD-d54] expression COS7 cell culture supernatant was added with anti-FLAG antibody-agarose gel (Sigma), 4 After reacting at ° C, recover the agarose gel. The obtained gel is washed with TBST (0.1% Tween 20, 150 mM NaCL, lOmMTris-HCl buffer ⁇ 7.5), and then TBST containing 5% skim milk is added and reacted at 4 ° C for 2 hours. After washing with TBST, add hebrin solution and react at 4 ° C for 2 hours.
  • AP labeled anti-HgG (H + L) antibody is further added and allowed to react at room temperature for 1 hour.
  • AP chromogenic substrate solution CDP-star, New England BioLabs
  • the reaction between MSL-deficient L particles and hebusulin is significantly lower than that with L-d54-FLAG particles.
  • WT-d54-3xFLAG particle-expressing COS7 cells are available! /, Is an MSL-deleted L protein [MSL (105-154) / PD-d54] -expressing COS7 cells solubilized with l% TritonX-100-PBS It was diluted with 1% FBS-TBS (150 mM NaCl, 50 mM Tris_HCl buffer ⁇ 5 ⁇ 5). This was measured by an enzyme immunoassay using an anti-FLAG antibody as a solid phase and a human anti-HBsAg antibody (Hevesbulin) and an HRP-labeled anti-HgG antibody (Prozyme) in the liquid phase.
  • WT -d54-3xFLAG showed a binding reaction with an absorbance of 0.051 when 9 ng particles were added, but MSL (105_154) / PD-d54 had a detection limit. It was below the boundary (negative control Cos7 cell extract).
  • Anti-HBs antigenic determinant d Monoclonal antibody (Special Immunology Laboratories) or anti-HBs antigenic determinant r Monoclonal antibody (Special Immunology Laboratories) in solid phase, biotinylated anti-FLAG M2 antibody and HRP-labeled streptavidin MSL-deficient L protein-expressing Cos7 cell culture supernatants were measured using the enzyme immunoassay used for the phases (subtype d-ELISA and subtype r-ELISA, respectively).
  • Anti-subtype d monoclonal antibody reactivity of MSL (105_152) / PD-d54 particles and MSL (105_154) / PD-d54 particles is 1-3% of WT-d54-3xFLAG particles, anti-subtype r Monoclonal antibody reaction Sex dropped to 13-14%.
  • HBsAg diagnostic kit _EIA b 1.0 0 0. 2 1. 7 Sat 0.3 subtype d -ELISA c) 1.3 3 0. 9 3. 2 Sat 2. 0 subtype r-ELISA d) 12. 8 people 2. 6 14. 4 ⁇ 2. 9
  • MSL (105_154 / PD) -d54 sample was measured by each ELISA, and the reactivity to each antibody (reaction value per particle amount (absorbance)) was calculated. The relative reactivity of each mutant to the reactivity of WT-d54-3xFLAG is shown.
  • Dynabot Mx-HBsAg kit mainly recognizes common antigenic determinant a.
  • All of the MSL-deleted L protein expression vectors constructed in Example 1 are the L protein C A FLAG-tag for detecting the expressed protein is added to the end. Therefore, first, FLAGtag added to the C-terminus of MSL-deleted L protein by site-directed mutagenesis using MSL-deleted L protein [MSL (105_154) / PD-d54] expression vector and synthetic DNA SEQ ID NO: 25 & 26 A stop codon is inserted in front of the sequence to construct a vector pBO1077 for expressing the absence of the C-terminal FLAGtag sequence and the MSL-deleted L protein [MSL (105_154) / PD-d54].
  • the L protein [MSL (105_154) / PD-d54] expression vector pBO1077 is constructed. This was introduced into the Sac charomyces serevisiae AH22R strain, and transformant colonies were selected according to leu requirements. Among the obtained transformant clones, select a clone with high expression of MSL-deleted L particles.
  • the obtained high expression strain was mass-cultured in the same manner as wild-type HBsL particles, and the ultracentrifugation method described in J. Biol. Chem. Vol. 267 (3) pl953-1961 (1992) Purify the MSL-deficient L particles using.
  • Reference Example 1 Enzyme-linked immunosorbent assay for antibodies to wild-type L particles and MSL-deficient L particles
  • the purified wild-type L particle was dissolved in PBS to a concentration of 20 g / ml, and then dispensed into a 96-well plate at 100 1 / well, at 4 ° C Soot was adsorbed. After washing with PBS containing 0.05% Tween 80 (PBST), 150% PBS containing 5% Block Ace (snow mark) was dispensed and stored at 4 ° C.
  • Mouse antiserum for dilution (containing 10% FBS) Diluted 20 times to 20,000 times with PBST), added to each well, and allowed to react at room temperature for 2 hours.
  • MSL deletion mutants MSL ([deletion region]) / [linker sequence] -d [number of C-terminal deletion residues]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Nanotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

Disclosed are: a hollow nanoparticle having a lower antigenicity/immunogenicity; a protein constituting the hollow nanoparticle; a particle composed of the protein; and a method for preparing the particle. Specifically disclosed is a human hepatitis B virus surface antigen (HBsAg) protein mutant which has the deletion of at least amino acid residues lying between position-105 to position-148 in an S-polypeptide segment in an HBsAg protein that contains the S-polypeptide segment.

Description

明 細 書  Specification
低抗原性の HBsAg粒子及びその作製法  Low antigenic HBsAg particles and method for producing the same
技術分野  Technical field
[0001] 本発明は、低抗原性の HBsAg粒子及びその作製法に関する。  The present invention relates to a low antigenic HBsAg particle and a method for producing the same.
背景技術  Background art
[0002] 近年医学の分野において、 目的細胞あるいは目的組織に対して特異的に薬剤等 の有効成分を運搬し目的箇所のみで作用発現させる事を目的とするドラッグデリバリ 一システム(DDS)が注目されて!/、る。我々は目的細胞あるいは目的組織に対して特 異的に薬剤を送達しうる有効な DDSとして、粒子形成能を有するタンパク質に生体認 識部位が導入された中空ナノ粒子を用いて、 目的とする細胞や組織に物質を特異的 かつ安全に運搬する方法を提案してきた (特許文献 1〜4)。  [0002] In recent years, in the field of medicine, a drug delivery system (DDS) aimed at delivering an active ingredient such as a drug specifically to a target cell or target tissue and causing it to act only at the target site has attracted attention. /! As an effective DDS that can deliver drugs specifically to target cells or tissues, we use hollow nanoparticles in which bio-recognized sites are introduced into proteins with particle-forming ability to target cells. In addition, a method for specifically and safely transporting substances to tissues and tissues has been proposed (Patent Documents 1 to 4).
[0003] しかし、この中空ナノ粒子を形成するタンパク質として利用しているウィルス外皮タン ノ ク質は、人体内に投与された時ウィルス同様の抗原性と抗体誘導能を示してしまう 。そのため、 1)該ウィルス感染患者ゃ該ウィルスワクチン投与によりすでに抗ウィルス 抗体を保有している患者では、投与された中空ナノ粒子が抗ウィルス抗体により中和 されるために、 2)中空ナノ粒子を連続投与した場合には、自身に対する抗体が誘導 されてその抗体により中和されるために、投与された中空ナノ粒子が目的とする薬剤 送達能を発揮できない可能性がある。さらに、副作用としてアナフィラキシーの懸念も 排除できない。そのため、この抗原性および免疫原性の克服は、中空ナノ粒子の医 薬応用のための課題となっていた。  [0003] However, the viral coat protein used as a protein forming the hollow nanoparticles exhibits antigenicity and antibody inducing ability similar to those of viruses when administered into the human body. For this reason, 1) the virus-infected patients who already possess antiviral antibodies by administering the virus vaccine, the administered hollow nanoparticles are neutralized by the antiviral antibodies. In the case of continuous administration, the antibody against itself is induced and neutralized by the antibody, so that the administered hollow nanoparticles may not be able to exert the intended drug delivery ability. Furthermore, the concern of anaphylaxis cannot be excluded as a side effect. Therefore, overcoming this antigenicity and immunogenicity has been a challenge for pharmaceutical applications of hollow nanoparticles.
特許文献 l : WO03/82344  Patent Literature l: WO03 / 82344
特許文献 2:特開 2003-286198  Patent Document 2: JP 2003-286198 A
特許文献 3 :特開 2004-2313  Patent Document 3: JP 2004-2313
特許文献 4 : WO03/82330  Patent Document 4: WO03 / 82330
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明の目的は、より抗原性/免疫原性の低い中空ナノ粒子及びその構成タンパ ク質、該タンパク質を構成要素とする粒子並びにその調製法を提供することである。 課題を解決するための手段 [0004] An object of the present invention is to provide hollow nanoparticles having a lower antigenicity / immunogenicity and a constituent tamper thereof. It is to provide a protein, a particle comprising the protein as a constituent element, and a preparation method thereof. Means for solving the problem
[0005] 本発明者は、粒子形成能を有する B型肝炎ウィルス外皮タンパク質 (B型肝炎ウイ ノレス表面抗原タンパク質: HBsAg)配列から、中空粒子表面に存在し、抗原ェピトープ になりやすぐかつ粒子形成能を損なわない配列を欠失させる事により、抗原性およ び免疫原性の低い中空ナノ粒子を形成し得ることを見出した。 [0005] From the sequence of hepatitis B virus coat protein (hepatitis B virusless surface antigen protein: HBsAg), which has particle-forming ability, the present inventor is present on the surface of hollow particles and immediately forms an antigenic epitope. It was found that hollow nanoparticles with low antigenicity and immunogenicity can be formed by deleting sequences that do not impair the ability.
[0006] 本発明は、以下の発明を包含する。 [0006] The present invention includes the following inventions.
1. Sポリペプチド部分を含むヒト B型肝炎ウィルス表面抗原タンパク質 (HBsAg)にお いて、該 Sポリペプチド部分の少なくとも 105位〜 148位のアミノ酸を欠失していること を特徴とする、 HBsAgタンパク質改変体。  1. A human hepatitis B virus surface antigen protein (HBsAg) containing an S polypeptide part, wherein at least amino acids at positions 105 to 148 of the S polypeptide part are deleted, HBsAg Protein variant.
2. 前記 HBsAgタンパク質改変体がさらに細胞認識部分を含む、項 1に記載の HBsA gタンパク質改変体。  2. The HBsAg protein variant according to Item 1, wherein the HBsAg protein variant further comprises a cell recognition moiety.
3. Sポリペプチド部分において、さらに以下の (a)〜(c)の少なくとも 1種の欠失を有す る項 1または 2に記載の HBsAgタンパク質改変体:  3. The HBsAg protein variant according to Item 1 or 2, wherein the S polypeptide portion further has at least one deletion of the following (a) to (c):
(a) 101〜104位の少なくとも 1個のアミノ酸の欠失、  (a) a deletion of at least one amino acid from position 101 to 104;
(b) 149〜154位の少なくとも 1個のアミノ酸の欠失、  (b) a deletion of at least one amino acid at positions 149-154,
(c) HBsAgの C末端の 54個のポリペプチドにおける少なくとも 1個のアミノ酸の欠失。  (c) A deletion of at least one amino acid in the 54 polypeptides at the C-terminus of HBsAg.
4. HBsAgタンパク質改変体力 Sポリペプチド部分に加えて、 PreS部分の非細胞認 識部位又はその一部を含み、さらに、 PreS部分に由来する肝細胞認識部分、抗体、 成長因子、サイト力イン、細胞表面抗原、組織特異的抗原、レセプター、ウィルスおよ び微生物に由来する分子並びに糖鎖からなる群から選ばれる少なくとも 1種の細胞 認識部分を含む、項 1〜3のいずれかに記載の HBsAgタンパク質改変体。  4. HBsAg protein modification strength In addition to the S polypeptide portion, it contains a non-cell recognition site or a part of the PreS portion, and further, a hepatocyte recognition portion derived from the PreS portion, an antibody, a growth factor, a cyto force-in, Item 4. The HBsAg according to any one of Items 1 to 3, comprising at least one cell recognition moiety selected from the group consisting of a cell surface antigen, a tissue-specific antigen, a receptor, a molecule derived from a virus and a microorganism, and a sugar chain. Protein variant.
5. 105位〜 148位を含む欠失部位に、リンカ一ペプチドを有する項 1〜4のいずれか に記載の HBsAgタンパク質改変体。  5. The HBsAg protein variant according to any one of Items 1 to 4, which has a linker peptide at a deletion site including positions 105 to 148.
6. リンカ一ペプチドが、 2〜4個のアミノ酸残基からなる項 5に記載の HBsAgタンパク 質改変体。  6. The modified HBsAg protein according to item 5, wherein the linker peptide is composed of 2 to 4 amino acid residues.
7. リンカ一ペプチドが、ヘリックスを壊すアミノ酸残基(Gly, Pro, Asn, Tyr)、ターン 構造に多いアミノ酸残基 (Asn, Gly, Pro, Asp, Ser, Trp)、膜界面に留まりにくいアミノ 酸残基(Glu, Asp, Lys, His, Arg, Gin, Pro, Asn)からなる群から選ばれるアミノ酸の 組み合わせからなる項 5又は 6に記載の HBsAgタンパク質改変体。 7. Amino acid residues that break the helix (Gly, Pro, Asn, Tyr), amino acid residues with many turn structures (Asn, Gly, Pro, Asp, Ser, Trp), amino acids that are difficult to stay at the membrane interface Item 7. The modified HBsAg protein according to Item 5 or 6, comprising a combination of amino acids selected from the group consisting of acid residues (Glu, Asp, Lys, His, Arg, Gin, Pro, Asn).
8. リンカ一ペプチドが、 PD、 QE、 PSSSまたは PDNGである項 5〜7のいずれかに記 載の HBsAgタンパク質改変体。  8. The modified HBsAg protein according to any one of Items 5 to 7, wherein the linker peptide is PD, QE, PSSS, or PDNG.
9. 項 1〜8のいずれかに記載の HBsAgタンパク質改変体を構成要素とする、 HBsAg 中空粒子。  9. An HBsAg hollow particle comprising the HBsAg protein variant according to any one of Items 1 to 8 as a constituent element.
10. 項 1〜8のいずれかに記載の HBsAgタンパク質改変体をコードする遺伝子を含 む発現ベクターを真核生物細胞に導入して該細胞を形質転換し、得られた形質転 換細胞を培養し、項 9に記載の HBsAg粒子を回収することを特徴とする、 HBsAg粒子 の製造方法。  10. An expression vector containing a gene encoding the HBsAg protein variant according to any one of Items 1 to 8 is introduced into a eukaryotic cell, the cell is transformed, and the resulting transformed cell is cultured. The method for producing HBsAg particles, wherein the HBsAg particles according to Item 9 are recovered.
11. 項 9に記載の HBsAg中空粒子の内部に、 DNA, RNA、タンパク質、脂質、糖 質、標識物質、薬物、細胞内で機能し得る生理活性物質からなる群から選ばれる少 なくとも 1種の物質を有する物質運搬体。  11. Inside the HBsAg hollow particle according to Item 9, there is at least one selected from the group consisting of DNA, RNA, protein, lipid, carbohydrate, labeling substance, drug, and physiologically active substance that can function in cells. Material carrier with the following substances.
発明の効果  The invention's effect
[0007] 本発明によれば、抗原性の低い中空ナノ粒子を高収率で得ることができ、該中空 ナノ粒子は、細胞への遺伝子、タンパク質などの物質導入能に優れている。  [0007] According to the present invention, hollow nanoparticles with low antigenicity can be obtained in high yield, and the hollow nanoparticles are excellent in the ability to introduce substances such as genes and proteins into cells.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]野生型エンベロープタンパク質(HBsAg Lタンパク質)と MSL欠損変異体の構造 [図 2]各種 MSL欠失 Lタンパク質発現ベクターの構築  [0008] [Figure 1] Structure of wild type envelope protein (HBsAg L protein) and MSL deletion mutant [Figure 2] Construction of various MSL deletion L protein expression vectors
[図 3]MSL欠損変異体とャギ抗 HBsAg抗体との反応性 M6_d54-3xFLAG (HBsAg陽性 対照、 PC)、 MSL(108_148)/PD-d54、 MSL(108_148)/QE-d54各変異体発現ベクター でトランスフエタトした Cos7細胞を抗 FLAG-tag抗体を用いた western blottingとャギ抗 HBsAg抗体を用いた western blottingで解析した。陽性対照 M6_d54-3xFLAG変異体 と比較して、 MSL欠損変異体タンパク質は抗 FLAG抗体では同程度検出されるのに 対し、抗 HBsAg抗体ではほとんど検出されなかった。  [Fig.3] Reactivity of MSL-deficient mutants with goat anti-HBsAg antibody M6_d54-3xFLAG (HBsAg positive control, PC), MSL (108_148) / PD-d54, MSL (108_148) / QE-d54 mutant expression Cos7 cells transfected with the vector were analyzed by western blotting using anti-FLAG-tag antibody and western blotting using goat anti-HBsAg antibody. Compared to the positive control M6_d54-3xFLAG mutant, the MSL-deficient mutant protein was detected to the same extent by the anti-FLAG antibody, but was hardly detected by the anti-HBsAg antibody.
[図 4]WT-d54-3xFLAG、 MSL(105_148)/PD-d54、 MSL(105_152)/PD-d54、 MSL(1 05_154/PD)-d54粒子を抗 HBsAg抗体(下段)と抗 FLAG抗体(上段)によるウェスタン プロティングで検出した。右表は、左図の各バンドの濃さをイメージソフトで数値化し、 陽性対照(WT-d54-3xFLAG)を 100として表記した。欠失変異体のバンドは、抗 FLA G抗体では WT-d54-3xFLAGと同等の以上に反応した力 抗 HBsAg抗体に対する反 応性は欠損領域が広くなるにつれ低下した。 [Figure 4] WT-d54-3xFLAG, MSL ( 105_148) / PD-d54, MSL (105_152) / PD-d54, MSL (1 05_15 4 / PD) -d5 4 particles Anti-HBsAg antibodies (the lower) anti-FLAG Detection was performed by Western plotting with an antibody (upper). In the right table, the darkness of each band in the left figure is quantified with image software, The positive control (WT-d54-3xFLAG) was expressed as 100. The band of the deletion mutant decreased in response to the force anti-HBsAg antibody, which reacted more than or equal to WT-d54-3xFLAG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 上記の中空ナノ粒子形成のために利用し得る変異タンパク質として、ヒト B型肝炎ゥ ィルス外皮タンパク質 (表面抗原タンパク質、 HBsAg)が挙げられる。  [0009] Examples of mutant proteins that can be used for the formation of the above hollow nanoparticles include human hepatitis B virus coat protein (surface antigen protein, HBsAg).
[0010] B型肝炎ウィルス表面抗原 Lタンパク質 (HBsAgL)は、粒子形成能力と標的細胞認 識能力を有する。 HBsAgLタンパク質は N末端側の PreS領域と C末端側の Sタンパク質 領域からなる。このうち PreS領域は標的細胞(ヒト肝細胞)認識能力を担うが、標的組 織を変換した中空ナノ粒子作成の際には、別の標的認識配列と置換される。従って 、 PreS領域は中空ナノ粒子全てに共通する領域ではない。一方、 Sタンパク質部分は 粒子構造形成に関与することから、中空ナノ粒子全てに共通する。  [0010] Hepatitis B virus surface antigen L protein (HBsAgL) has the ability to form particles and recognize target cells. HBsAgL protein consists of N-terminal PreS region and C-terminal S protein region. Of these, the PreS region bears the ability to recognize target cells (human hepatocytes), but is replaced with another target recognition sequence when creating hollow nanoparticles with converted target tissues. Therefore, the PreS region is not a region common to all hollow nanoparticles. On the other hand, since the S protein part is involved in particle structure formation, it is common to all hollow nanoparticles.
HBsAgに包含され、 S粒子の構成要素である Sタンパク質 (226アミノ酸)は、粒子形成 能を有して!/、る。 Sタンパク質に 55アミノ酸からなる Pre_S2を付加したのが Mタンパク質 (M粒子の構成蛋白)であり、 M蛋白に 108アミノ酸 (サブタイプ y)または 119アミノ酸 (サ ブタイプ d)からなる Pre-Siを付加したものが Lタンパク質(L粒子の構成蛋白)である。 なお、本願明細書では特に断らない限り、 Pre-Sl領域のアミノ酸位置の番号付けは、 108アミノ酸のサブタイプ yに基づ!/、て行う。  S protein (226 amino acids), which is included in HBsAg and is a component of S particles, has particle-forming ability! Pre-S2 consisting of 55 amino acids added to S protein is M protein (M particle constituent protein), and Pre-Si consisting of 108 amino acids (subtype y) or 119 amino acids (subtype d) is added to M protein. This is the L protein (the protein that constitutes the L particle). In the present specification, unless otherwise specified, the numbering of amino acid positions in the Pre-Sl region is based on a subtype y of 108 amino acids.
[0011] HBsAgは、 adr型、 adw型、 ayw型の 3種類のタイプがあり、 Pre-Siの adr型は 108 a. a.  [0011] There are three types of HBsAg: adr type, adw type, and ayw type. Pre-Si adr type is 108 a. A.
、 adw型は 115 a.a.、 ayw型は 119 a.a.である。 Pre_S2は、 adr型、 adw型、 ayw型ともに、 55 a.a.である。さらに、 Sは、 adr型、 adw型、 ayw型ともに、 226 a.a.である。  The adw type is 115 a.a. and the ayw type is 119 a.a. Pre_S2 is 55 a.a for all adr, adw and ayw types. Furthermore, S is 226 a.a. for all adr, adw, and ayw types.
[0012] adr型の Lタンパク質 (配列番号 45)は、 Pre- S1 (108 a.a.)、 Pre- S2 (55 a.a.)、 S (226 a .a.)力、らなる 389アミノ酸のタンパク質である。  [0012] The adr type L protein (SEQ ID NO: 45) is a 389 amino acid protein consisting of Pre-S1 (108 a.a.), Pre-S2 (55 a.a.) and S (226 a.a.) forces.
[0013] なお、本明細書において、 pGLDLIIP39_RcTの Lタンパク質(Pre_Sl→108 a.a. , Pre -S2→49 a.a. , S→226 a.a.)は、配列番号 45の adr型の Lタンパク質において 152位- 15 7位の SIFSRTの 6個のアミノ酸残基 (プロテアーゼ感受性酉己列)が欠失したものである。  [0013] In this specification, pGLDLIIP39_RcT L protein (Pre_Sl → 108 aa, Pre-S2 → 49 aa, S → 226 aa) is positions 152 to 15 7 in the adr type L protein of SEQ ID NO: 45 The 6 amino acid residues of SIFSRT (protease sensitive self-sequence) are deleted.
[0014] Lタンパク質、 Mタンパク質は Sタンパク質と同様に粒子形成能を有している。従って 、 PreSlおよび PreS2の 2つの領域は任意に置換、付カロ、欠失、揷入を行ってもよい。 例えば Pre-Sl領域の 3から 77アミノ酸残基に含まれる肝細胞認識部位を欠失させた 改変タンパク質を用いることで、肝細胞認識能を失った中空粒子を得ることができる。 また、 PreS2領域にはアルブミンを介して肝細胞を認識する部位が含まれて!/、るので 、このアルブミン認識部位を欠失させることもできる。 [0014] L protein and M protein have the ability to form particles, similar to S protein. Therefore, the two regions of PreSl and PreS2 may be arbitrarily substituted, attached, deleted, or inserted. For example, by using a modified protein in which a hepatocyte recognition site contained in amino acids 3 to 77 of the Pre-Sl region is deleted, hollow particles that have lost the ability to recognize hepatocytes can be obtained. In addition, since the PreS2 region includes a site that recognizes hepatocytes via albumin! /, This albumin recognition site can also be deleted.
[0015] B型肝炎ウィルスタンパク質またはその改変体として Lタンパク質、 Mタンパク質など の肝細胞を認識可能なタンパク質から構成される中空バイオナノ粒子の場合には、 細胞認識部位を導入する必要はない。一方、 Pre-Sl領域の 3から 77アミノ酸残基に 含まれる肝細胞認識部位を欠失させた改変タンパク質、或いは PreSlと PreS2の両方 の領域を欠失させたタンパク質から構成される中空バイオナノ粒子の場合、そのまま では細胞認識ができないので、細胞認識部位を導入して、肝細胞以外の任意の細 胞を認識させ、前記ポリマー/核酸複合体を種々の標的細胞に導入することができ る。このような特定の細胞を認識する細胞認識部位としては、例えば成長因子、サイト 力イン等のポリペプチドからなる細胞機能調節分子、細胞表面抗原、組織特異的抗 原、レセプターなどの細胞および組織を識別するためのポリペプチド分子、ウィルス および微生物に由来するポリペプチド分子、抗体、糖鎖などが好ましく用いられる。 具体的には、癌細胞に特異的に現れる EGF受容体や IL 2受容体に対する抗体や EGF、また HBVの提示するレセプターも含まれる。或いは、抗体 Fcドメインを結合可 能なタンパク質 (例えば、 ZZタグ)、ストレプトアビジンを介してビォチン標識した生体 認識分子を提示するためにビォチン様活性を示すストレプトタグなどを使用すること もできる。 [0015] In the case of hollow bio-nanoparticles composed of hepatitis B virus protein or a protein capable of recognizing hepatocytes, such as L protein and M protein, it is not necessary to introduce a cell recognition site. On the other hand, a hollow bio-nanoparticle composed of a modified protein lacking the hepatocyte recognition site contained in amino acid residues 3 to 77 of the Pre-Sl region or a protein lacking both the PreSl and PreS2 regions. In this case, since cell recognition cannot be performed as it is, cell recognition sites can be introduced to recognize any cell other than hepatocytes, and the polymer / nucleic acid complex can be introduced into various target cells. Examples of such cell recognition sites for recognizing specific cells include cells and tissues such as cell function regulatory molecules, cell surface antigens, tissue-specific antigens, receptors, etc. composed of polypeptides such as growth factors and cytoforce-ins. Polypeptide molecules for identification, polypeptide molecules derived from viruses and microorganisms, antibodies, sugar chains and the like are preferably used. Specifically, antibodies against EGF receptor and IL 2 receptor that appear specifically in cancer cells, EGF, and receptors presented by HBV are also included. Alternatively, a protein capable of binding an antibody Fc domain (for example, a ZZ tag), a strept tag showing biotin-like activity to display a biorecognition molecule labeled with biotin via streptavidin, and the like can also be used.
[0016] 細胞認識部位がポリペプチドである場合には、 B型肝炎ウィルスタンパク質または その改変体をコードする DNAと細胞認識部位をコードする DNAを必要に応じてス ぺーサ一ペプチドをコードする DNAを介してインフレームに連結し、これをベクター 等に組み込み、真核細胞で発現させることにより、任意の標的細胞を認識する中空 バイオナノ粒子を得ることができる。  [0016] When the cell recognition site is a polypeptide, a DNA encoding a hepatitis B virus protein or a variant thereof and a DNA encoding a cell recognition site, if necessary, a DNA encoding a spacer peptide A hollow bio-nanoparticle recognizing an arbitrary target cell can be obtained by linking it in frame, incorporating it into a vector or the like, and expressing it in a eukaryotic cell.
[0017] 細胞認識部位が抗体である場合、 B型肝炎ウィルスタンパク質またはその改変体を コードする DNAと ZZタグをコードする DNAを必要に応じてスぺーサーペプチドをコ ードする DNAを介してインフレームに連結し、これをベクター等に組み込み、真核細 胞で発現させ、得られた中空バイオナノ粒子と標的細胞を認識し得る抗体を混合す ることにより、 目的とする、中空バイオナノ粒子を得ることができる。 [0017] When the cell recognition site is an antibody, the DNA encoding the hepatitis B virus protein or a variant thereof and the DNA encoding the ZZ tag are optionally passed through the DNA encoding the spacer peptide. Connected in-frame and incorporated into a vector etc. The desired hollow bionanoparticles can be obtained by mixing the hollow bionanoparticles that are expressed in the vesicles and an antibody that can recognize the target cells.
[0018] 細胞認識部位が糖鎖の場合、糖転移酵素を使用して、細胞認識能を持たない中 空バイオナノ粒子にシァリルルイス Xなどの細胞を認識可能な糖鎖を連結することに より、得ること力 Sでさる。 [0018] When the cell recognition site is a sugar chain, it is obtained by linking a sugar chain capable of recognizing cells such as Sialyl Lewis X to a hollow bionanoparticle having no cell recognition ability using a glycosyltransferase. That's the power S.
[0019] HBsAg Lタンパク質の上記 Pre-S (Pre_Sl、 Pre_S2)は、 HBVが肝細胞に結合する 際に重要な役割を担う。一方、 Sタンパク質部分は、粒子構造形成能を持つ。 Sタンパ ク質は、 8— 26残基部および 80— 98残基部に膜貫通1!6 ( &113016011^&116配列、 N 末端側より TM1および TM2)を持ち、 C末端部 156-226残基にも非常に高い疎水性 を示す膜相互作用領域を持つ。 TM2と C末端疎水部に挟まれた領域 (Sタンパク質の 99〜; 154残基)は、 HBsAg粒子の外側に出ており、そのため抗 HBsAg抗体に認識さ れるェピトープがこの領域に多いことから、 major surface loop (以下 MSLと略す)ある いは major antigenic loopと呼ばれる。また、 C末端疎水領域 (156-226)にも抗体認識 ェピトープがマッピングされている。 HBsAg Lタンパク質、 HBsAg Mタンパク質、ある いは HBsAg Sタンパク質を真核細胞で発現させると、同タンパク質は小胞体膜上に 膜タンパク質として合成蓄積され、その後分子間で凝集を起こし、小胞体膜を取り込 みながら出芽形式でルーメン側に粒子として放出され、最終的には培養上清中に分 泌、される。  [0019] The Pre-S (Pre_Sl, Pre_S2) of the HBsAg L protein plays an important role when HBV binds to hepatocytes. On the other hand, the S protein part has the ability to form a particle structure. S protein has transmembrane 1! 6 (& 113016011 ^ & 116 sequence, TM1 and TM2 from the N-terminal side) at 8-26 residue and 80-98 residue, C-terminal 156-226 residue In addition, it has a membrane interaction region that exhibits very high hydrophobicity. The region sandwiched between TM2 and the C-terminal hydrophobic region (99 to 154 residues of S protein) appears outside the HBsAg particle, and therefore there are many epitopes recognized by anti-HBsAg antibodies in this region. It is called major surface loop (hereinafter abbreviated as MSL) or major antigenic loop. An antibody recognition epitope is also mapped to the C-terminal hydrophobic region (156-226). When HBsAg L protein, HBsAg M protein, or HBsAg S protein is expressed in eukaryotic cells, the protein is synthesized and accumulated as a membrane protein on the endoplasmic reticulum membrane, and then aggregates between molecules, causing the endoplasmic reticulum membrane to While taking up, it is released as particles to the lumen side in the form of budding, and finally it is separated into the culture supernatant.
[0020] 抗体認識部位除去の方法としては、特定の主要抗原ェピトープに対応するアミノ酸 残基を置換する事により抗原性および免疫原性を減弱できることも報告されているが 、広範囲に渡って複数箇所存在する他の抗原ェピトープに対する効果はほとんどな いし、弱まったとは言え置換変異導入後の配列が抗原性を示す可能性も排除できな い。  [0020] As a method for removing an antibody recognition site, it has been reported that antigenicity and immunogenicity can be attenuated by substituting amino acid residues corresponding to a specific major antigen epitope, but it has been reported at multiple sites over a wide range. Although it has little effect on other antigenic epitopes present, the possibility that the sequence after substitution mutation introduction shows antigenicity cannot be ruled out although it has weakened.
[0021] そこで、これらの抗体認識部位をコードする配列そのものをできる限り大きく欠失さ せた中空ナノ粒子の作成を検討した結果、主要親水性領域ほぼ全域に相当する 44 アミノ酸 (105-148)と、必要であればさらに (a) 101〜104位、(b) 149〜154位、(c) HBsA gの C末端の 71個(156-226)のポリペプチドの少なくとも 1個のアミノ酸の欠失とを組み 合わせた HBsAg変異体が粒子を形成し得、かつ、粒子発現量も十分に高いことを見 出した。 [0021] Therefore, as a result of examining the creation of hollow nanoparticles in which the sequences encoding these antibody recognition sites themselves were deleted as much as possible, 44 amino acids corresponding to almost the entire major hydrophilic region (105-148) And if necessary, (a) positions 101 to 104, (b) positions 149 to 154, (c) the absence of at least one amino acid from the C-terminal 71 (156-226) polypeptide of HBsA g. The HBsAg mutant combined with the loss can form particles and has a sufficiently high particle expression level. I put it out.
[0022] 本発明では、 105-148に加えて、 101-104と 149-154の一部又は全部を欠失し、必 要に応じてリンカ一アミノ酸/リンカーペプチドを導入することができる。好ましいリン カーの長さとしては、 2〜4個のアミノ酸が挙げられる。  In the present invention, in addition to 105-148, part or all of 101-104 and 149-154 can be deleted, and a linker-amino acid / linker peptide can be introduced as necessary. Preferred linker lengths include 2 to 4 amino acids.
本発明の実施例では、欠失される MSLの両側に、 DNA構築の都合で導入される制限 酵素サイト由来の置換配列(N末端側の 1アミノ酸 (Gly(G))と、 C末端側の 2アミノ酸 Se r-Trp(SW) ;合計 3残基の置換)が導入される。この場合、リンカ一配列を考える際に は、 MSL(108_148)PD変異体(MSL108-148欠損 PDリンカー揷入)は、リンカ一配列と 置換配列を一体として MSL(107_150)GPDSW変異体(MSL107-150欠損 GPDSWリン カー揷入)と考えることもできる。このような、リンカ一の両側に導入され得る制限酵素 サイト由来の置換配列は、制限酵素 (サイト)の選択、欠失されるアミノ酸配列の両側 の塩基配列などにより変わり得る。  In the example of the present invention, a substitution sequence derived from a restriction enzyme site introduced for convenience of DNA construction (one amino acid (Gly (G)) on the N-terminal side and the C-terminal side on both sides of the MSL to be deleted) 2 amino acids Ser-Trp (SW); substitution of a total of 3 residues). In this case, when considering the linker sequence, the MSL (108_148) PD variant (MSL108-148 deficient PD linker insertion) is integrated into the MSL (107_150) GPDSW variant (MSL107- 150 deficient GPDSW linker purchase). Such substitution sequences derived from restriction enzyme sites that can be introduced on both sides of the linker can vary depending on the selection of restriction enzymes (sites), the nucleotide sequences on both sides of the deleted amino acid sequence, and the like.
[0023] 図 1に示されるように、 MSLを欠失させると、 TM2 (膜貫通へリックス 2)と C末端疎水 性領域とが連結される。この 2つの構造の間には、まず TM2ヘリックス構造を打止め、 その C末端部を膜外に引っぱり出し、そして引き続きターンして、膜内に戻って C末端 疎水領域に繋げる配列を導入するのが望ましい。  [0023] As shown in FIG. 1, when MSL is deleted, TM2 (transmembrane helix 2) and the C-terminal hydrophobic region are linked. Between these two structures, we first stop the TM2 helix structure, pull its C-terminal part out of the membrane, and then turn to introduce a sequence that goes back into the membrane and connects to the C-terminal hydrophobic region. Is desirable.
[0024] リンカ一の長さとしては、いわゆる折り返し構造は 4残基であるが完全に折り返さな い方が良い可能性もある事から、 2〜4残基が好ましく例示される。リンカ一として導 入されるアミノ酸としては、ヘリックスを壊すアミノ酸残基(Gly, Pro, Asn, Tyr)、ターン 構造に多いアミノ酸残基 ( ^, Glv. Pro. ASP. Ser. Tro)、膜界面に留まりにくい(膜 外に出易い)アミノ酸残基(Sl, As^, Lys, His, Arg, Gki, Pro, Agn)の組み合わせが 挙げられ、特に限定されない。具体的には、 Pro-Asp(PD), Gln_Glu(QE)、 Pro-Asp-A sn-Gly(PDNG), Pro_Ser-Ser-Ser(PSSS)、 Pro_Lys、 Asp-Proなどが挙げられる。  [0024] The length of the linker is preferably exemplified by 2 to 4 residues because the so-called folded structure has 4 residues but may not be completely folded. Amino acids introduced as linkers include amino acid residues that break the helix (Gly, Pro, Asn, Tyr), amino acid residues that are many in the turn structure (^, Glv. Pro. ASP. Ser. Tro), membrane interface Examples include combinations of amino acid residues (Sl, As ^, Lys, His, Arg, Gki, Pro, Agn) that are difficult to stay (prone to go out of the membrane), and are not particularly limited. Specific examples include Pro-Asp (PD), Gln_Glu (QE), Pro-Asp-A sn-Gly (PDNG), Pro_Ser-Ser-Ser (PSSS), Pro_Lys, Asp-Pro, and the like.
[0025] 本発明にお!/、て、 Sタンパク質部分に含まれる Cys残基を Ser、 Ala等の他のアミノ酸 に置換することもできる。具体的には、 76位、 90位, 107位、 137位、 149位の Cysを Ser 、 Ala等の他のアミノ酸に置換することができる。好ましい置換の例示としては、 Cys76 /Ala, Cys 90/ Ala、 Cys 107/Ser、 Cys 137/ Ser、 Cys 139/ Ser、 Cys 149/ Ser、 Cys 221/ Alaが例示される。 [0026] 非特許文献 1には、 S蛋白の 107-146を欠失させることは記載されている力 その欠 失タンパク質の製造効率、物質導入剤としての有用性などにつ!/、ては記載されてレ、 ない。むしろ、遺伝子の導入効率はこの欠失により低下することが記載されている。 非特許文献 l : 0'Malley B, Lazinski D. J Virol. 2002 Oct;76(19): 10060- 3 [0025] In the present invention, the Cys residue contained in the S protein portion can be substituted with other amino acids such as Ser and Ala. Specifically, Cys at positions 76, 90, 107, 137, and 149 can be substituted with other amino acids such as Ser and Ala. Examples of preferred substitutions include Cys76 / Ala, Cys 90 / Ala, Cys 107 / Ser, Cys 137 / Ser, Cys 139 / Ser, Cys 149 / Ser, and Cys 221 / Ala. [0026] Non-Patent Document 1 describes the ability to delete S-protein 107-146 for its production efficiency, usefulness as a substance introduction agent, etc.! It is not listed. Rather, it has been described that the efficiency of gene transfer is reduced by this deletion. Non-patent literature l: 0'Malley B, Lazinski D. J Virol. 2002 Oct; 76 (19): 10060-3
[0027] 本発明では、主要抗原ループに関して、 105-148が欠失可能であり、 101-104、 149 -154のアミノ酸、さらには C末端疎水性領域の C末端側 54アミノ酸残基領域の欠失が 可能である。例えば、(101-154)あるいは(105-154)のアミノ酸配列の欠失が特に好 ましい。本発明の目的から考えると、欠失領域は多ければ多いほど望ましい。  [0027] In the present invention, 105-148 can be deleted with respect to the major antigen loop, and 101-104, 149-154 amino acids, and also the lack of the 54 amino acid residue region on the C-terminal side of the C-terminal hydrophobic region. Loss is possible. For example, deletion of the amino acid sequence (101-154) or (105-154) is particularly preferred. For the purposes of the present invention, the more deleted regions, the more desirable.
[0028] HBsAg変異タンパク質などの粒子を構成するタンパク質には、特定の細胞を認識 する分子を Sタンパク質に直接或いはリンカ一を介して連結し、あるいは PreS領域に 導入することによって、標的細胞あるいは標的組織に特異的に物質を導入することも できる。このような特定の細胞を認識する分子としては、例えば成長因子、サイトカイ ン等の細胞機能調節分子、細胞表面抗原、組織特異的抗原、レセプターなどの細 胞および組織を識別するための分子、ウィルスおよび微生物に由来する分子、抗体 、糖鎖 (例えばシァリルルイス X)などが好ましく用いられる。具体的には、癌細胞に特 異的に現れる EGF受容体や IL 2受容体に対する抗体や EGF、また HBVの提示 するレセプターも含まれる。或いは、抗体 Fcドメインを結合可能なタンパク質(例えば 、 ZZタグ)、ストレプトアビジンを介してビォチン標識した生体認識分子を提示するた めにビォチン様活性を示すストレプトタグなどを使用することもできる。これらは、 目的 とする細胞、あるいは組織に応じて適宜選択される。細胞認識分子は、公知の方法 に従!/、HBsAg変異タンパク質に導入できる。  [0028] Proteins that constitute particles such as HBsAg mutant protein are linked to S protein directly or through a linker, or introduced into the PreS region by targeting a molecule that recognizes a specific cell. Substances can also be introduced specifically into tissues. Examples of such molecules that recognize specific cells include cell function regulatory molecules such as growth factors and cytokines, cell surface antigens, tissue-specific antigens, molecules for identifying cells and tissues such as receptors, Molecules derived from viruses and microorganisms, antibodies, sugar chains (eg, Sialyl Lewis X) and the like are preferably used. Specifically, it includes antibodies to EGF receptor and IL2 receptor that appear specifically in cancer cells, EGF, and receptors presented by HBV. Alternatively, a protein capable of binding an antibody Fc domain (for example, a ZZ tag), a strept tag showing biotin-like activity to display a biorecognition molecule labeled with biotin via streptavidin, and the like can also be used. These are appropriately selected according to the target cell or tissue. Cell recognition molecules can be introduced into HBsAg mutant proteins according to known methods!
[0029] 本発明の低抗原性の粒子は、真核細胞で HBsAg変異タンパク質を発現させること により得られるものが挙げられる。粒子の製造法は、特許文献 1〜4等に記載され、 H BsAgの調製法は、 Vaccine. 2001 Apr 30; 19(23- 24):3154- 63· Physicochemical an a immunological cnaractenzation or nepatitis B virus envelope particles exclusively c onsisting of the entire L (pre~Sl + pre~S2 + S) protein. Yamada T, Iwabuki H, ann o T, Tanaka H, awai , Fukuda H, ondo A, Seno M, Tanizawa , uroda 5. (こ 己 載されている。 [0030] 真核細胞で本発明の HBsAg変異タンパク質を発現させると、該タンパク質は、小胞 体膜上に膜蛋白として発現、蓄積され、ナノ粒子として放出されるので好ましい。真 核細胞としては、哺乳類等の動物細胞(例えば CHO細胞)、昆虫細胞(バキュロウィ ノレスを用いる発現系など)、酵母等が挙げられる。このような粒子は、 HBVゲノムを全 く含まないので、人体への安全性が極めて高い。また、必要に応じて細胞認識分子 を粒子を構成するタンパク質の少なくとも一部に導入することにより、肝細胞或いは 他の細胞に対する本発明のナノ粒子の細胞選択性を高めることができる。 [0029] Examples of the low antigenic particles of the present invention include those obtained by expressing HBsAg mutein in eukaryotic cells. The method for producing particles is described in Patent Documents 1 to 4, etc., and the preparation method for H BsAg is Vaccine. 2001 Apr 30; 19 (23-24): 3154-63 · Physicochemical an a immunological cnaractenzation or nepatitis B virus envelope particles exclusively c onsisting of the entire L (pre ~ Sl + pre ~ S2 + S) protein. Yamada T, Iwabuki H, anno T, Tanaka H, awai, Fukuda H, ondo A, Seno M, Tanizawa, uroda 5. (This is written. [0030] When the HBsAg mutant protein of the present invention is expressed in a eukaryotic cell, the protein is preferably expressed and accumulated as a membrane protein on the endoplasmic reticulum membrane and released as a nanoparticle. Examples of eukaryotic cells include animal cells such as mammals (for example, CHO cells), insect cells (such as expression systems using baculowinoles), and yeast. Such particles are extremely safe for the human body because they do not contain any HBV genome. Moreover, the cell selectivity of the nanoparticle of the present invention for hepatocytes or other cells can be enhanced by introducing a cell recognition molecule into at least a part of the protein constituting the particle as necessary.
実施例  Example
[0031] 以下、添付した図面に沿って実施例を示し、この発明の実施の形態についてさらに 詳しく説明する。もちろん、この発明は以下の例に限定されるものではなぐ細部につ V、ては様々な態様が可能で有る事は言うまでもなレ、。  [0031] Embodiments of the present invention will now be described in more detail with reference to the accompanying drawings. Of course, the present invention is not limited to the following examples. It goes without saying that various aspects are possible.
[0032] 以下の図 1において、 HBsAgとは HBVの外被タンパク質である B型肝炎ウィルス表 面抗原(H印 atitis B virus surface Antigen)を示す。 HBsAgは 226個のアミノ酸から構 成される Sタンパク質を含んでいる。 Sタンパク質の N末端側に 55アミノ酸(Pre_S2 pept ide)が付加したものが Mタンパク質、 Mタンパク質の N末端側に 108もしくは 119ァミノ 酸(PreSl p印 tide)が付加したものが Lタンパク質である(108アミノ酸が付加したもの を図 1に示す)。なお、以下の実施例では、 L蛋白質として、 N末端に分泌シグナル配 列を付加し、 PreS2領域内のプロテアーゼ感受性配歹 IJ (配列番号 45の 152— 157位 の 6個のアミノ酸)を除去したものを使用した。  [0032] In Fig. 1 below, HBsAg represents hepatitis B virus surface antigen (H mark atitis B virus surface Antigen) which is a coat protein of HBV. HBsAg contains an S protein composed of 226 amino acids. M protein has 55 amino acids (Pre_S2 peptide) added to the N-terminal side of S protein, and L protein has 108 or 119 amino acids (PreSl p-marked tide) added to the N-terminal side of M protein ( The addition of 108 amino acids is shown in Figure 1). In the following examples, as a L protein, a secretory signal sequence was added to the N-terminus, and a protease-sensitive sequence IJ (six amino acids at positions 152-157 of SEQ ID NO: 45) in the PreS2 region was removed. I used something.
[0033] 実施例 1 · Major surface loop (MSL)欠失 Lタンパク質発現ベクターの構築  Example 1 · Construction of major surface loop (MSL) -deficient L protein expression vector
(1) C末端に検出用 FLAGタグ配列を付加した HBsAg Lタンパク質発現プラスミドの 構築  (1) Construction of an HBsAg L protein expression plasmid with a detection FLAG tag sequence added to the C-terminus
MSL欠失変異体作成に先立ち、 C末端に検出用ェピトープタグ配列を融合した Lタ ンパク質を作成した。すなわち、野生型 Lタンパク質の C末端 54アミノ酸を欠損させ FL AGタグ配列を融合した変異体(L-d54-FLAG)の動物発現用プラスミド pB0747を Xho Iで切断し、 FLAG-tag配列を 2回含む合成 DNA (配列番号 1 &2)を揷入連結すること により、 FLAG-tag配列 3回が融合したタンパク質(L-d54-3xFLAG)発現用プラスミド p B0982を構築した。さらに得られたプラスミド pB0982を铸型として、 L-d54_3xFLAG タンパク質の S領域に存在する 13個の Cys残基のうち 6個を Ser残基あるいは Ala残基 に置換した変異体(M6_d54-3xFLAG)発現用プラスミド pB0851を構築した。具体的 には、 Cys76/Ala、 Cys 90/ Ala、 Cys 107/Ser、 Cys 137/ Ser、 Cys 139/ Ser、 Cys 14 7/ Ser、 Cys 149/ Serの置換変異を導入した。なお、以後のアミノ酸配列番号は、 Sタ ンパク質の配列番号である。 Prior to the creation of the MSL deletion mutant, an L protein was prepared by fusing a C-terminal detection epitope tag sequence. That is, the plasmid pB0747 for animal expression of a mutant (L-d54-FLAG) in which the C-terminal 54 amino acids of the wild-type L protein were deleted and the FL AG tag sequence was fused was cleaved with Xho I and the FLAG-tag sequence twice The plasmid pB0982 for expression of the protein (L-d54-3xFLAG) in which the FLAG-tag sequence was fused three times was constructed by inserting and ligating the synthetic DNA (SEQ ID NO: 1 & 2). Furthermore, using the obtained plasmid pB0982 as a cage, L-d54_3xFLAG A plasmid pB0851 for expressing a mutant (M6_d54-3xFLAG) in which 6 of 13 Cys residues in the S region of the protein were replaced with Ser residues or Ala residues was constructed. Specifically, substitution mutations of Cys76 / Ala, Cys 90 / Ala, Cys 107 / Ser, Cys 137 / Ser, Cys 139 / Ser, Cys 147 / Ser, and Cys 149 / Ser were introduced. The subsequent amino acid sequence numbers are the S protein sequence numbers.
[0034] (2) MSL欠失 Lタンパク質発現ベクターの構築  [0034] (2) Construction of MSL-deficient L protein expression vector
上記の M6_d54-3xFLAG発現用プラスミド pB0851を铸型とし、合成 DNA配列番号 3 & 4 (表 1)を用いた部位特異的変異導入により、 Sタンパク質 Cysl07残基相当位置に 制限酵素 Apalサイトを導入し、さらに合成 DNA配列番号 5 & 6 (表 1 )を用!/、た部位特 異的変異導入を重ねて行う事により Cysl49残基相当位置に制限酵素 PvuIIサイトが 導入されたプラスミド PBO900を得た。この pBO900を制限酵素 Apalと PvuIIで切断した 後、表 2に示す酉己歹 IJ番号 7 & 8、 9& 10、 11 & 12、 13& 14の合成 DNA4糸且を各々挿 入連結することにより、 Sタンパク質の第 108-148残基を欠失し、リンカ一配列として Pr 0- Asp(PD)、 Gin- Glu(QE)、 Pro- Asp-Asn_Gly(PDNG)、あるいは Pro- Ser- Ser- Ser(PS SS)が揷入された 4種の MSL欠失 Lタンパク質変異体(MSL(108_148)/QE-d54, MSL( 108-148)/PD-d54, MSL(108-148)/PDNG_d54,あるいは MSL(108-148)/PSSS_d54) 発現ベクター(pBO940、 pB0941、 pB0942、 pB0943)を構築した。  Using the above-mentioned plasmid pB0851 for M6_d54-3xFLAG expression as a saddle type, site-directed mutagenesis using synthetic DNA SEQ ID NOs: 3 & 4 (Table 1), the restriction enzyme Apal site was introduced into the Cysl07 residue equivalent position. Furthermore, by using synthetic DNA SEQ ID NOs: 5 & 6 (Table 1)! /, Repeated site-specific mutagenesis was performed to obtain plasmid PBO900 in which the restriction enzyme PvuII site was introduced at the position corresponding to Cysl49 residue. . After cutting this pBO900 with restriction enzymes Apal and PvuII, the synthetic DNA 4 strands of IJ numbers 7 & 8, 9 & 10, 11 & 12, and 13 & 14 shown in Table 2 were inserted and ligated, respectively. Delete residues 108-148 of the protein and use Pr 0- Asp (PD), Gin- Glu (QE), Pro- Asp-Asn_Gly (PDNG), or Pro- Ser- Ser- Ser ( 4 MSL deletion L protein variants (MSL (108_148) / QE-d54, MSL (108-148) / PD-d54, MSL (108-148) / PDNG_d54, or MSL) (108-148) / PSSS_d54) Expression vectors (pBO940, pB0941, pB0942, pB0943) were constructed.
[0035] 同様に、上記の MSL(108_148)/PD-d54発現用プラスミド pB0941を铸型とし、表 1に 示す配列番号 15& 16、 17& 18、あるいは 19 & 20の合成 DNA3組を用いた部位特 異的変異導入により、各々 Leu98, TyrlOO, Glyl02に相当する位置に 2つ目の制限 酵素 Apalサイトを導入した後、得られたプラスミド DNAを Apalで切断し再結合させるこ とによって、 Sタンパク質 MSL領域の第 99-148残基、第 101-148残基、あるいは第 103 -148残基を各々欠失させ、 PDリンカ一配列を揷入された 3種の MSL欠失 Lタンパク質 (MSL(99-148)/PD-d54, MSL(101-148)/PD_d54, MSL(103_148)/PD-d54)発現べク ター(pB0987、 pB0989、 pB0991)を各々構築した。  [0035] Similarly, the above-mentioned MSL (108_148) / PD-d54 expression plasmid pB0941 is a saddle type, and site characteristics using 3 sets of synthetic DNAs shown in Table 1, SEQ ID NOs: 15 & 16, 17 & 18, or 19 & 20. By introducing the second restriction enzyme Apal site into the position corresponding to Leu98, TyrlOO, and Glyl02, respectively, by introducing different mutations, the resulting plasmid DNA was cleaved with Apal and recombined, so that the S protein MSL Three MSL deletion L proteins (MSL (99) with deletion of residues 99-148, 101-148, or 103-148, respectively, and a PD linker sequence inserted. -148) / PD-d54, MSL (101-148) / PD_d54, MSL (103_148) / PD-d54) expression vectors (pB0987, pB0989, pB0991) were constructed.
[0036] また、上記で作成されたプラスミド DNA、 pB0987、 pB0989、 pB0991、および pB09 41に、さらに表 1の合成 DNA配列番号 21 & 22を用!/、た部位特異的変異導入を加え る事により、 Serl55残基相当位置へ制限酵素 PvuIIサイトを導入した。得られたプラス ミド DNAを制限酵素 Apalと PvuIIで切断した後、表 2の合成 DNA配列番号 9 & 10を揷 入連結させることにより、 MSL領域第 99-154残基、第 101-154残基、第 103-154残基、 あるいは第 108-154残基を各々欠失し PDリンカ一配列が揷入された合計 4種の MSL 欠失 Lタンパク質 (MSL(99_154)/PD-d54, MSL(101-154)/PD_d54, MSL(103_154)/P D-d54, MSL(108_154)/PD-d54)発現ベクター(pB0995、 pB0997、 pB0999、 BOlO 03)を構築した。 [0036] Further, site-directed mutagenesis using synthetic DNA SEQ ID NOs: 21 & 22 shown in Table 1 should be added to the plasmid DNAs pB0987, pB0989, pB0991, and pB0941 prepared above! To introduce a restriction enzyme PvuII site into the Serl55 residue equivalent position. Obtained plus After cleaving the DNA with restriction enzymes Apal and PvuII, the synthetic DNA SEQ ID NOs: 9 and 10 in Table 2 were inserted and ligated, so that residues 99-154, 101-154, and 103- A total of four MSL-deleted L proteins (MSL (99_154) / PD-d54, MSL (101-154)) with 154 residues or residues 108-154 deleted and a PD linker sequence inserted. / PD_d54, MSL (103_154) / PD-d54, MSL (108_154) / PD-d54) expression vectors (pB0995, pB0997, pB0999, BO1003) were constructed.
[0037] さらに、上記の MSL(108_148)/PD-d54および MSL(108_154)/PD-d54発現用プラス ミド(pB0941、 pBO1003)を铸型とし、表 1の合成 DNA配列番号 21 &22を用いた部 位特異的変異導入により 3残基(Prol05, Vail 06, Glyl07残基)を欠失させることによ り、 Sタンパク質の第 105-148残基あるいは第 105-154残基を欠失し、 PDリンカ一酉己歹 IJ が揷入された 2種の MSL欠失 Lタンパク質(MSL(105_148)/PD-d54, MSL(105_154)/P D-d54)発現ベクター (ρΒ0993、 ρΒΟΙΟΟΙ)を各々構築した。  [0037] Furthermore, the above-mentioned plasmids for expression of MSL (108_148) / PD-d54 and MSL (108_154) / PD-d54 (pB0941, pBO1003) were used as a saddle type, and the synthetic DNA sequence numbers 21 & 22 shown in Table 1 were used. By deleting three residues (Prol05, Vail 06, Glyl07 residues) by site-specific mutagenesis, residues 105-148 or 105-154 of S protein were deleted, Construction of two MSL-deleted L proteins (MSL (105_148) / PD-d54, MSL (105_154) / PD-d54) expression vectors (ρΒ0993, ρ 各 々), each of which incorporates PD linker IJ did.
[0038] なお、上記と同様の方法により、部位特異的変異導入に使用される合成 DNAを代 えることにより、本発明に包含される他の変異 HBsAgを得ることができる。  [0038] It should be noted that other mutant HBsAg included in the present invention can be obtained by replacing the synthetic DNA used for site-directed mutagenesis by the same method as described above.
[0039] 以上により構築された MSL欠失 Lタンパク質発現ベクターの名称と、コードされる MS L欠失 Lタンパク質の名称、および欠失部位周辺のアミノ酸配列を表 3に示す。  [0039] Table 3 shows the name of the MSL-deleted L protein expression vector constructed as described above, the name of the encoded MS L-deleted L protein, and the amino acid sequence around the deletion site.
[0040] 実施例 2  [0040] Example 2
(1) MSL欠失 Lタンパク質粒子の動物細胞による発現  (1) Expression of MSL-deficient L protein particles by animal cells
サル腎由来細胞株 COS 7は、ゥシ胎児血清 (FBS)5%を含むダノレべッコ改変イーグル 培地(DMEM)中で、 37°C、 5%C02存在下で培養した。 COS7細胞を lxlO5 cells/ml となるように 10%FBS含有 DMEMに浮遊し、 3.5cmディッシュへ 2mlずつ播種して 14〜1 6時間培養した。 1.5mlチューブに DMEM 95 1とトランスフエクシヨン試薬 FuGene6 (R oche Diagnostics社) 4 1とを混合した後、実施例 1で構築した各 MSL欠失 Lタンパク 質発現プラスミド DNA (1 μ g/ 1溶液)を 1 μ 1加えて混合した。室温で 15分放置して 複合体を形成させた後、その全量を上記 COS7細胞に添加した。 14〜; 16時間培養 した後、培地を 1.5mlの無血清培地 CHO-S-SFMII (インビトロージェン社)に交換し、 さらに 2日間培養後、培養上清と細胞を各々回収した。 The monkey kidney-derived cell line COS 7 was cultured in Danolebecko's modified Eagle's medium (DMEM) containing 5% ushi fetal serum (FBS) in the presence of 37 ° C and 5% C02. COS7 cells were suspended in 10% FBS-containing DMEM so as to have lxlO 5 cells / ml, seeded in 2 ml in 3.5 cm dishes, and cultured for 14 to 16 hours. After mixing DMEM 95 1 and the transfection reagent FuGene6 (Roche Diagnostics) 41 in a 1.5 ml tube, each MSL-deleted L protein expression plasmid DNA constructed in Example 1 (1 μg / 1 solution) 1 μl) was added and mixed. After leaving at room temperature for 15 minutes to form a complex, the entire amount was added to the COS7 cells. After culturing for 14 to 16 hours, the medium was replaced with 1.5 ml of serum-free medium CHO-S-SFMII (Invitrogen), and further cultured for 2 days, and then the culture supernatant and cells were collected.
[0041] (2)抗 FLAG抗体を用いた酵素免疫測定法(FLAG-ELISA)による MSL欠失 L粒子の 定量 [0041] (2) MSL-deficient L particles by enzyme immunoassay (FLAG-ELISA) using anti-FLAG antibody Quantitative
マウス抗 FLAG M2抗体 (Sigma社)を固相に、ビォチン化抗 FLAG M2抗体(Sigma社 )と西洋ヮサビパーォキシダーゼ (HRP)標識ストレプトアビジン (Prozyme社)とを液相 に用いた酵素免疫測定法 (FLAG-ELISA)により、培養上清あるいは細胞抽出液中 の MSL欠失 L粒子濃度を測定した。 被検試料、液相抗体および液相標識体の希釈 には、 1%ゥシ血清アルブミン (BSA)を含む TBS (150mM NaCl, 10mM Tris-HCl, pH7. 5)を用い、 96wellマイクロプレート表面のブロッキングには 5%スキムミルクを含む TBS を用いた。 HRP基質には 0-フエ二レンジァミン溶液(0.4mg/ml o_フエ二レンジァミン, 23mMクェン酸、 51.4mM Na2HP04、 0.0012%H O )を用い、 495nmにおける吸光度 測定により定量した。野生型 L粒子発現 COS7細胞培養上清を陰性コントロールとし て、 L-d54-3xFLAG粒子発現 COS7細胞培養上清を陽性コントロールとして、各々用 いた。  Enzyme immunization using mouse anti-FLAG M2 antibody (Sigma) in solid phase and biotinylated anti-FLAG M2 antibody (Sigma) and horse radish peroxidase (HRP) labeled streptavidin (Prozyme) in liquid phase The concentration of MSL-deleted L particles in the culture supernatant or cell extract was measured by the measurement method (FLAG-ELISA). TBS (150 mM NaCl, 10 mM Tris-HCl, pH 7.5) containing 1% ushi serum albumin (BSA) was used to dilute the test sample, liquid phase antibody, and liquid phase label. TBS containing 5% skim milk was used for blocking. A 0-phenylenediamine solution (0.4 mg / ml o_phenylenediamine, 23 mM citrate, 51.4 mM Na2HP04, 0.0012% H 2 O 2) was used as the HRP substrate, and quantified by measuring the absorbance at 495 nm. Wild-type L particle-expressing COS7 cell culture supernatant was used as a negative control, and L-d54-3xFLAG particle-expressing COS7 cell culture supernatant was used as a positive control.
[0042] 回収した各 MSL欠失 Lタンパク質発現 COS7細胞培養上清を 2倍〜 4倍希釈した後 、上記 FLAG-ELISAで測定した結果を表 4および表 5に示す。 MSL(108_148)欠失 体で揷入リンカ一配列の影響を比較した場合 (表 4)、 4アミノ酸残基揷入型 (PSSS、 P DNG)よりも 2アミノ酸残基揷入型(QE、 PD)の方が粒子分泌量が多かった。また PD 揷入型で MSL欠失領域を比較した場合 (表 5)、 MSL(105_154)欠失 L蛋白質が最も高 い粒子分泌量(WT-d54-3xFLAGの 1.65倍)を示した。一方、 MSL(99_148)および MS U99-154)欠失 Lタンパク質および MSL(108_148)および MSL(108-154)欠失 Lタンパク 質の分泌量は低かった。 その他は WT-d54-3xFLAGの 59-108%の粒子分泌量を 示した。  [0042] Tables 4 and 5 show the results of measuring each of the collected MSL-deleted L protein-expressing COS7 cell culture supernatants by 2-fold to 4-fold dilution and measuring by the above FLAG-ELISA. When comparing the effects of insertion linker sequences in MSL (108_148) deletions (Table 4), 2 amino acid residue insertion type (QE, PD) rather than 4 amino acid residue insertion type (PSSS, P DNG) ) Had more particle secretion. When comparing the MSL deletion region in the PD insertion type (Table 5), the MSL (105_154) deletion L protein showed the highest particle secretion (1.65 times that of WT-d54-3xFLAG). On the other hand, the secreted amounts of MSL (99_148) and MS U99-154) -deleted L protein and MSL (108_148) and MSL (108-154) -deleted L protein were low. Others showed 59-108% particle secretion of WT-d54-3xFLAG.
[0043] 実施例 3 MSL欠失 L粒子と抗 HBsAg抗体との反応性  Example 3 Reactivity of MSL-deficient L particles with anti-HBsAg antibody
(l) HBsAg診断用キットによる検出  (l) Detection with HBsAg diagnostic kit
IMX HBsAgアツセィシステム(ダイナボット社)はマウス抗 HBsAgモノクローナル抗 体とビォチン化ャギ抗 HBsAgポリクローナル抗体およびアルカリフォスファターゼ (AP) 標識抗ビォチン抗体を用いた酵素免疫測定法に基づく HBsAg自動測定システムで あり、 HBV感染の血液診断に用いられている。このシステムを用いて、培養上清中に 分泌された各種 MSL欠失 L粒子と抗 HBsAg抗体との反応性を測定した。回収した MS L欠失 Lタンパク質発現 COS7細胞培養上清を 1%FBSを含むダルベッコリン酸緩衝液( PBS)で 2倍希釈後測定した結果、 V、ずれの MSL欠失 L粒子も HBsAg陰性と判定され た(表 4、 5)。従って、良好な粒子分泌を示した MSL変異体の L粒子量あたりの抗 HBs Ag抗体反応値は、 L-d54-3xFLAGの 1〜4%以下であり、 MSL欠失により抗 HBsAg抗 体反応性が大きく低下したことが示された。 The IMX HBsAg Atsy system (Dynabot) is an automated HBsAg measurement system based on an enzyme immunoassay using mouse anti-HBsAg monoclonal antibody, biotinylated anti-HBsAg polyclonal antibody and alkaline phosphatase (AP) -labeled anti-biotin antibody. Yes, it is used for blood diagnosis of HBV infection. Using this system, the reactivity of various MSL-deleted L particles secreted into the culture supernatant and anti-HBsAg antibody was measured. MS recovered L-depleted L protein expression COS7 cell culture supernatant was diluted with Dulbecco's phosphate buffer (PBS) containing 1% FBS and measured. As a result, V and misplaced MSL-deleted L particles were also determined to be HBsAg-negative. (Tables 4 and 5). Therefore, the anti-HBs Ag antibody response value per L particle amount of the MSL mutant that showed good particle secretion was 1 to 4% or less of L-d54-3xFLAG, and anti-HBsAg antibody reactivity due to MSL deletion Was significantly reduced.
[0044] (2)ウェスタンブロッテイングによる検出 [0044] (2) Detection by Western blotting
回収した M6_d54-3xFLAG粒子発現 COS7細胞あるいは各 MSL欠失 Lタンパク質発 現 COS7細胞を SDS-ポリアクリルアミドゲル電気泳動した後、 PVDF膜に転写した。 PV DF膜を 5%スキムミルクでブロッキングした後、ビォチン化抗 FLAG M2抗体あるいはビ ォチン化ャギ抗 HBsAgポリクローナル抗体(ダイナボット社 MX HBsAgアツセィシス テム液相抗体)と HRP標識ストレプトアビジンを用いて解析した(図 3)。 M6_d54-3xFL AGは抗 FLAG抗体で検出した場合も抗 HB sAg抗体で検出した場合も 40kDa付近に 明瞭なバンドを示した。しかし MSL欠失 Lタンパク質変異体(MSL (108-148) /QE-d54 および MSL(108_148)/PD-d54)では抗 FLAG抗体では明瞭なバンドが検出されたが 、抗 HBsAg抗体では明瞭なバンドが検出されなかったことから、ャギ抗 HBsAgポリクロ ーナル抗体に対する反応性の低下が示された。  The collected M6_d54-3xFLAG particle-expressing COS7 cells or MSL-deficient L protein expressing COS7 cells were subjected to SDS-polyacrylamide gel electrophoresis and then transferred to a PVDF membrane. After blocking PV DF membrane with 5% skim milk, analysis using biotinylated anti-FLAG M2 antibody or biotinylated anti-HBsAg polyclonal antibody (Dynabot MX HBsAg Atsy system liquid phase antibody) and HRP-labeled streptavidin (Figure 3). M6_d54-3xFL AG showed a clear band around 40 kDa when detected with anti-FLAG antibody and with anti-HB sAg antibody. However, the MSL-deleted L protein mutants (MSL (108-148) / QE-d54 and MSL (108_148) / PD-d54) detected a clear band with anti-FLAG antibody, but with anti-HBsAg antibody Was not detected, indicating decreased reactivity to goat anti-HBsAg polyclonal antibody.
欠失領域のより広レ、MSL(105_152)/PD-d54、 MSL(105_154)/PD-d54では、 MSL(105 -148)/PD-d54に比べてさらにャギ抗 HBsポリクローナル抗体に対する反応性が低下 していた (図 4、表 1)。  More extensive deletion region, MSL (105_152) / PD-d54, MSL (105_154) / PD-d54 is more reactive to goat anti-HBs polyclonal antibody than MSL (105-148) / PD-d54 (Figure 4, Table 1).
[0045] [表 1] [0045] [Table 1]
Figure imgf000015_0001
Figure imgf000015_0001
[0046] (3)ヒト抗 HBsAg血清との反応性 [0046] (3) Reactivity with human anti-HBsAg serum
へブスブリン (ゥエルフアイド社)は抗 HBsAg抗体陽性患者血清より調製された抗 HB sAgヒト免疫グロブリン製品である。このヒト抗 HBsAgポリクローナル抗体により MSL欠 失 L粒子が認識されるかどうかを、ウェスタンブロッテイングおよび酵素免疫測定法で 測定する。 Hebsbrin (Wuerfid) is an anti-HB sAg human immunoglobulin product prepared from sera of anti-HBsAg antibody positive patients. Whether this human anti-HBsAg polyclonal antibody recognizes MSL-deficient L particles by Western blotting and enzyme immunoassay. taking measurement.
[0047] まず、 L-d54-3xFLAGタンパク質発現 COS7細胞あるいは MSL欠失 Lタンパク質お SL (105_154) /PD-d54]発現 COS7細胞を SDS-ポリアクリルアミドゲル電気泳動した後 、 PVDF膜に転写した。 PVDF膜を 5%スキムミルクでブロッキングした後、へブスブリン 溶液と反応させ、さらに HRP標識 -抗ヒ HgG(H+L)抗体により検出する。その後、この P VDF膜をビォチン化抗 FLAG抗体と HRP-標識ストレプトアビジンでリプロービングす る。その結果、ビォチン化抗 FLAG抗体は、 L-d54-3xFLAGとも MSL欠失 Lタンパク質 とも同程度に反応し 40kDa付近に明瞭なバンドを示す。しかし、へブスブリン (ヒト抗 H BsAgポリクローナル抗体)は L-d54-3xFLAGには反応する力 MSL欠失 Lタンパク質 にはほとんど反応しない。  [0047] First, L-d54-3xFLAG protein-expressing COS7 cells or MSL-deficient L protein SL (105_154) / PD-d54] -expressing COS7 cells were subjected to SDS-polyacrylamide gel electrophoresis and then transferred to a PVDF membrane. After blocking the PVDF membrane with 5% skim milk, it is reacted with a herbsulin solution, and further detected with an HRP-labeled-anti-HgG (H + L) antibody. The PVDF membrane is then reprobed with biotinylated anti-FLAG antibody and HRP-labeled streptavidin. As a result, biotinylated anti-FLAG antibody reacts with L-d54-3xFLAG and MSL-deficient L protein to the same extent and shows a clear band around 40 kDa. However, hebsbrin (human anti-H BsAg polyclonal antibody) reacts with L-d54-3xFLAG and reacts little with MSL-deleted L protein.
[0048] L-d54-3xFLAG粒子発現 COS7細胞あるいは MSL欠失 Lタンパク質 [MSL (105_154 ) /PD-d54]発現 COS7細胞の培養上清に抗 FLAG抗体-ァガロースゲル(Sigma社)を 加えて、 4°Cでー晚反応させた後、ァガロースゲルを回収する。得られたゲルを TBST (0.1%Tween20、 150mM NaCL、 lOmMTris-HCl緩衝液 ρΗ7·5)で洗浄した後、 5%ス キムミルクを含む TBSTを加えて 4°Cで 2時間反応させる。これを TBSTで洗浄後、へブ スブリン溶液を加えて 4°Cで 2時間反応する。 TBSTで洗浄後さらに AP標識抗ヒ HgG( H+L)抗体を加えて室温で 1時間反応させる。ァガロースゲルを回収し洗浄した後、沈 殿に AP発色基質液(CDP-star、 New England BioLabs社)を 200 L加えて良く懸濁 し、ノレミノメーターにて AP活性を測定する。その結果、 MSL欠失 L粒子とへブスブリン (ヒト抗 HBsAgポリクローナル抗体)との反応は、 L-d54-FLAG粒子との反応に比べて 顕著に低下する。  [0048] L-d54-3xFLAG particle expression COS7 cells or MSL-deficient L protein [MSL (105_154) / PD-d54] expression COS7 cell culture supernatant was added with anti-FLAG antibody-agarose gel (Sigma), 4 After reacting at ° C, recover the agarose gel. The obtained gel is washed with TBST (0.1% Tween 20, 150 mM NaCL, lOmMTris-HCl buffer ρΗ7.5), and then TBST containing 5% skim milk is added and reacted at 4 ° C for 2 hours. After washing with TBST, add hebrin solution and react at 4 ° C for 2 hours. After washing with TBST, AP labeled anti-HgG (H + L) antibody is further added and allowed to react at room temperature for 1 hour. After collecting and washing the agarose gel, add 200 L of AP chromogenic substrate solution (CDP-star, New England BioLabs) to the precipitate, suspend well, and measure AP activity with a noreluminometer. As a result, the reaction between MSL-deficient L particles and hebusulin (human anti-HBsAg polyclonal antibody) is significantly lower than that with L-d54-FLAG particles.
[0049] (4)ヒト感染防御用抗 HBsAg抗体との反応性  [0049] (4) Reactivity with anti-HBsAg antibody for protection against human infection
WT-d54-3xFLAG粒子発現 COS7細胞ある!/、は MSL欠失 Lタンパク質 [MSL (105-154 ) /PD-d54]発現 COS7細胞を l%TritonX-100-PBSで可溶化した細胞抽出液を 1%FBS -TBS (150mM NaCl、 50mMTris_HCl緩衝液 ρΗ7·5)で希釈した。これを、抗 FLAG抗 体を固相に、ヒト抗 HBsAg抗体(へブスブリン)と HRP標識抗ヒ HgG抗体 (Prozyme社) を液相に用いた酵素免疫測定法で測定した。その結果、 WT -d54-3xFLAGは粒子 9 • 5ng添加で吸光度 0.051の結合反応を示したが、 MSL (105_154) /PD-d54は検出限 界(陰性対照の Cos7細胞抽出液)以下であった。 WT-d54-3xFLAG particle-expressing COS7 cells are available! /, Is an MSL-deleted L protein [MSL (105-154) / PD-d54] -expressing COS7 cells solubilized with l% TritonX-100-PBS It was diluted with 1% FBS-TBS (150 mM NaCl, 50 mM Tris_HCl buffer ρΗ5 · 5). This was measured by an enzyme immunoassay using an anti-FLAG antibody as a solid phase and a human anti-HBsAg antibody (Hevesbulin) and an HRP-labeled anti-HgG antibody (Prozyme) in the liquid phase. As a result, WT -d54-3xFLAG showed a binding reaction with an absorbance of 0.051 when 9 ng particles were added, but MSL (105_154) / PD-d54 had a detection limit. It was below the boundary (negative control Cos7 cell extract).
[0050] (5) HBsAgサブタイプ診断用抗体による検出  [0050] (5) Detection with HBsAg subtype diagnostic antibody
抗 HBs抗原決定基 dモノクローナル抗体(特殊免疫研究所)あるいは抗 HBs抗原決定 基 rモノクローナル抗体(特殊免疫研究所)を各々固相に、ビォチン化抗 FLAG M2抗 体と HRP標識ストレプトアビジンとを液相に用いた酵素免疫測定法 (各々、サブタイプ d-ELISAおよびサブタイプ r-ELISA)を用いて、 MSL欠失 L蛋白質発現 Cos7細胞培養 上清を測定した。 MSL(105_152)/PD-d54粒子および MSL(105_154)/PD-d54粒子の 抗サブタイプ dモノクローナル抗体反応性は WT-d54-3xFLAG粒子の 1〜3%、抗サ ブタイプ rモノクロ一ナル抗体反応性は 13〜 14 %に低下した。  Anti-HBs antigenic determinant d Monoclonal antibody (Special Immunology Laboratories) or anti-HBs antigenic determinant r Monoclonal antibody (Special Immunology Laboratories) in solid phase, biotinylated anti-FLAG M2 antibody and HRP-labeled streptavidin MSL-deficient L protein-expressing Cos7 cell culture supernatants were measured using the enzyme immunoassay used for the phases (subtype d-ELISA and subtype r-ELISA, respectively). Anti-subtype d monoclonal antibody reactivity of MSL (105_152) / PD-d54 particles and MSL (105_154) / PD-d54 particles is 1-3% of WT-d54-3xFLAG particles, anti-subtype r Monoclonal antibody reaction Sex dropped to 13-14%.
[0051] [表 2] 抗 HBsAg抗体の種類 相対反応性 (% to WT) a) [0051] [Table 2] Types of anti-HBsAg antibodies Relative reactivity (% to WT) a)
MSL (105-152) /PD MSL (105-154/PD)  MSL (105-152) / PD MSL (105-154 / PD)
HBsAg診断キット _EIA b) 1. 0 士 0. 2 1. 7 土 0. 3 サブタイプ d -ELISA c) 1. 3 士 0. 9 3. 2 土 2. 0 サブタイプ r - ELISA d) 12. 8 士 2. 6 14. 4 ± 2. 9 HBsAg diagnostic kit _EIA b ) 1.0 0 0. 2 1. 7 Sat 0.3 subtype d -ELISA c) 1.3 3 0. 9 3. 2 Sat 2. 0 subtype r-ELISA d) 12. 8 people 2. 6 14. 4 ± 2. 9
[0052] a) FLAG- ELISAで粒子濃度を揃えた WT_d54_3xFLAG、 MSL(105_152)/PD-d54、 [0052] a) WT_d54_3xFLAG, MSL (105_152) / PD-d54, with the same particle concentration by FLAG-ELISA,
MSL(105_154/PD)-d54試料を各々の ELISAで測定して、各抗体に対する反応性( 粒子量あたりの反応値(吸光度) )を算出した。 WT-d54-3xFLAGの反応性に対する 各変異体の相対反応性で示した。  MSL (105_154 / PD) -d54 sample was measured by each ELISA, and the reactivity to each antibody (reaction value per particle amount (absorbance)) was calculated. The relative reactivity of each mutant to the reactivity of WT-d54-3xFLAG is shown.
b)ダイナボット社 Mx-HBsAgキット;主に共通抗原決定基 aを認識。  b) Dynabot Mx-HBsAg kit; mainly recognizes common antigenic determinant a.
c)抗 HBsモノクローナル抗体 (抗原決定基 d)と抗 FLAG抗体により反応性検出。 (欠 損領域内にェピトープ。 )  c) Reactivity detection with anti-HBs monoclonal antibody (antigenic determinant d) and anti-FLAG antibody. (Epitope in the defect area.)
d)抗 HBsモノクローナル抗体 (抗原決定基 r)と抗 FLAG抗体により反応性検出。 (ェピ トープは欠損領域外に隣接。 )  d) Reactivity detection with anti-HBs monoclonal antibody (antigenic determinant r) and anti-FLAG antibody. (Epitope is adjacent outside the defect area.)
[0053] 実施例 4 MSL欠失 L粒子の大量調製  Example 4 Mass preparation of MSL-deficient L particles
実施例 1で構築した MSL欠失 Lタンパク質発現ベクターは全て、その Lタンパク質 C 末端に発現タンパク質検出用の FLAG-tagが付加されている。そこでまず、 MSL欠失 Lタンパク質 [MSL(105_154)/PD-d54]発現ベクターと合成 DNA配列番号 25 & 26とを 用いた部位特異的変異導入により、 MSL欠失 Lタンパク質 C末端に付加した FLAGtag 配列の前に stopコドンを挿入して、 C末端 FLAGtag配列の無!/、MSL欠失 Lタンパク質 [ MSL(105_154)/PD-d54]発現用ベクター pBO1077を構築する。得られた MSL欠失 Lタ ンパク質遺伝子を J. Biol. Chem. Vol. 267(3) pl953_1961 (1992)記載の酵母発現用 p lasmid pGLDLIIP39_RcTの GLDプロモーター下流に揷入することにより、 MSL欠失 L タンパク質 [MSL(105_154)/PD-d54]発現用ベクター pBO1077を構築する。これを Sac charomyces serevisiae AH22R—株に導入し、 leu要求性により形質転換体コロニーを 選択した。得られた形質転換体クローン中、 MSL欠失 L粒子の発現が高いクローンを 選ぶ。得られた高発現株を野生型 HBsL粒子と同様の方法により大量培養し、得られ た発現菌体より J. Biol. Chem. Vol. 267(3) pl953-1961 (1992)記載の超遠心法を用 いて MSL欠失 L粒子を精製する。 All of the MSL-deleted L protein expression vectors constructed in Example 1 are the L protein C A FLAG-tag for detecting the expressed protein is added to the end. Therefore, first, FLAGtag added to the C-terminus of MSL-deleted L protein by site-directed mutagenesis using MSL-deleted L protein [MSL (105_154) / PD-d54] expression vector and synthetic DNA SEQ ID NO: 25 & 26 A stop codon is inserted in front of the sequence to construct a vector pBO1077 for expressing the absence of the C-terminal FLAGtag sequence and the MSL-deleted L protein [MSL (105_154) / PD-d54]. By inserting the obtained MSL-deleted L protein gene downstream of the GLD promoter of plasmid pGLDLIIP39_RcT for yeast expression described in J. Biol. Chem. Vol. 267 (3) pl953_1961 (1992) The L protein [MSL (105_154) / PD-d54] expression vector pBO1077 is constructed. This was introduced into the Sac charomyces serevisiae AH22R strain, and transformant colonies were selected according to leu requirements. Among the obtained transformant clones, select a clone with high expression of MSL-deleted L particles. The obtained high expression strain was mass-cultured in the same manner as wild-type HBsL particles, and the ultracentrifugation method described in J. Biol. Chem. Vol. 267 (3) pl953-1961 (1992) Purify the MSL-deficient L particles using.
[0054] 実施例 5 MSL欠失 L粒子の抗体誘導能 [0054] Example 5 Antibody Inducibility of MSL-Deleted L Particles
精製 MSL欠失粒子あるいは野生型粒子各々 100 gをダルベッコリン酸緩衝生理食 塩水(PBS) 0.2mlに溶解する。これを 6週齢メス BALBんマウス各 4匹の尾静脈へ 2週 間おきに 5回投与する。粒子投与 2週間後に各マウスより採血し、血清を得る。得られ た血清について、野生型 L粒子に対する抗体および MSL欠失 L粒子に対する抗体の 誘導を Vaccine Vol.19(23-24) p.3154-3163 (2001)に準じ参考例 1に示す方法で測 疋 。  Dissolve 100 g of purified MSL-deficient particles or wild-type particles in 0.2 ml of Dulbecco's phosphate buffered saline (PBS). This is administered 5 times every 2 weeks to the tail vein of four 6-week-old female BALB mice. Two weeks after the administration of the particles, blood is collected from each mouse to obtain serum. For the serum obtained, the induction of antibodies against wild-type L particles and MSL-deleted L particles was measured by the method shown in Reference Example 1 according to Vaccine Vol.19 (23-24) p.3154-3163 (2001).疋.
[0055] 野生型 L粒子投与マウス抗血清では、野生型 L粒子に対する抗体が初回投与 6週 間後から強く誘導される。 MSL欠失 L粒子投与マウス抗血清では、野生型 L粒子およ び MSL欠失 L粒子に対する抗体はほとんど検出されない。  [0055] In the wild-type L particle-administered mouse antiserum, antibodies against wild-type L particles are strongly induced from 6 weeks after the first administration. In antisera of mice administered with MSL-deleted L particles, antibodies against wild-type L particles and MSL-deleted L particles are hardly detected.
[0056] 参考例 1 野生型 L粒子および MSL欠失 L粒子に対する抗体の酵素免疫測定法  [0056] Reference Example 1 Enzyme-linked immunosorbent assay for antibodies to wild-type L particles and MSL-deficient L particles
抗野生型 L粒子抗体用酵素免疫測定法では、まず精製野生型 L粒子を 20 g/mlと なるよう PBSに溶解した後、 96well plateに 100 1/wellづっ分注し、 4°Cでー晚吸着さ せた。 0.05%Tween80を含む PBS (PBST)で洗浄後、 5%ブロックエース(雪印)を含む PBS 150 しを分注して 4°Cでー晚保存した。マウス抗血清を希釈用液(10%FBSを含 む PBST)で 20倍〜 2万倍希釈して各 wellに加え、室温で 2時間反応させた。 PBSTで 洗浄後、希釈用液で 5000倍希釈した HRP標識-杭マウス IgG (H + L)抗体を 50 1ず つ添加し、室温で 2時間反応させる。 PBST液で洗浄後、基質液(0.4mg/ml 0-フエ二 レンジァミン, 23mMクェン酸、 51.4mM Na2HP04、 0.0012%H O )を 50 μ 1づっ添カロ して 30分間反応させた後、 50 1の 2Μ H SOで反応を停止させ、 495nmにおける吸光 In the enzyme immunoassay for anti-wild-type L particle antibody, first, the purified wild-type L particle was dissolved in PBS to a concentration of 20 g / ml, and then dispensed into a 96-well plate at 100 1 / well, at 4 ° C Soot was adsorbed. After washing with PBS containing 0.05% Tween 80 (PBST), 150% PBS containing 5% Block Ace (snow mark) was dispensed and stored at 4 ° C. Mouse antiserum for dilution (containing 10% FBS) Diluted 20 times to 20,000 times with PBST), added to each well, and allowed to react at room temperature for 2 hours. After washing with PBST, add HRP-labeled-spig mouse IgG (H + L) antibody diluted 5000-fold with the dilution solution, and incubate for 2 hours at room temperature. After washing with PBST solution, substrate solution (0.4mg / ml 0- phenylenediamine, 23mM citrate, 51.4mM Na2HP04, 0.0012% HO) was added for 50μ1 and allowed to react for 30 minutes. Stop the reaction with 2Μ H 2 SO and absorb at 495 nm
2 4  twenty four
度を測定する。  Measure the degree.
[0057] 抗 MSL欠失粒子抗体用酵素免疫測定法では、まず精製 MSL欠失粒子を 20 μ g/ml となるよう PBSに溶解した後、 96well plateに 100 1/wellづっ分注し、 4°Cでー晚吸着 させる。その後、上述の抗野生型 HBsAgL粒子抗体用酵素免疫測定法と同様の操作 により、 MSL欠失 L粒子に結合したマウス抗体を検出する。  [0057] In the enzyme immunoassay for anti-MSL-deficient particle antibody, first, purified MSL-deficient particles were dissolved in PBS to a concentration of 20 μg / ml, and then poured into a 96-well plate at 100 1 / well. Adsorb at ~ ° C. Thereafter, mouse antibodies bound to the MSL-deleted L particles are detected by the same operation as the above-described enzyme immunoassay for anti-wild type HBsAgL particle antibodies.
[0058] [表 3] [0058] [Table 3]
Figure imgf000020_0001
表 3. 制限酵素導入用/欠損導入用合成 DNAリス卜 配列番号 整理番号 配 列 コメン卜
Figure imgf000020_0001
Table 3. Synthetic DNA List for Restriction Enzyme Introduction / Deficiency Introduction Sequence ID Reference Number Sequence Comment
3 975 GGTATGTTGCCCGTGGGCCCTCTACTTCC Apalサイ卜 at107 3 975 GGTATGTTGCCCGTGGGCCCTCTACTTCC Apal size at107
4 976 GGAAGTAGAGGGCCCACGGGCAACATACC 4 976 GGAAGTAGAGGGCCCACGGGCAACATACC
5 977 GGACGGAAACAGCACCAGCTGGCCCATCCCATCATCC Pvullサイ卜 at149 5 977 GGACGGAAACAGCACCAGCTGGCCCATCCCATCATCC Pvull size at149
6 978 GGATGATGGGATGGGCCAGCTGGTGCTG I I I CCGTCC 6 978 GGATGATGGGATGGGCCAGCTGGTGCTG I I I CCGTCC
15 1117 CTTGTTGGTTCTGGGCCCCTACCAAGGTATGTTGCCC Apalサイ卜 at98 15 1117 CTTGTTGGTTCTGGGCCCCTACCAAGGTATGTTGCCC Apal size at98
16 1118 GGGCAACATACCTTGGTAGGGGCCCAGAACCAACAAG 16 1118 GGGCAACATACCTTGGTAGGGGCCCAGAACCAACAAG
17 1119 GTTGGTTCTTCTGGAGGGCCCAGGTATGTTGCCCG Apalサイ卜 at101 17 1119 GTTGGTTCTTCTGGAGGGCCCAGGTATGTTGCCCG Apal site at101
18 1120 CGGGCAACATACCTGGGCCCTCCAGAAGAACCAAC 18 1120 CGGGCAACATACCTGGGCCCTCCAGAAGAACCAAC
19 1121 CTTCTGGACTACCAGGGCCCGTTGCCCGTGGG Apalサイト at108 19 1121 CTTCTGGACTACCAGGGCCCGTTGCCCGTGGG Apal site at108
20 1122 CCCACGGGCAACGGGCCCTGGTAGTCCAGAAG 20 1122 CCCACGGGCAACGGGCCCTGGTAGTCCAGAAG
21 1115 CTGGCCCATCCCATCCAGCTGGGC I I I CGC Pvullサイト at155 21 1115 CTGGCCCATCCCATCCAGCTGGGC I I I CGC Pvull site at155
22 1116 GCGAAAGCCCAGCTGGATGGGATGGGCCAG 22 1116 GCGAAAGCCCAGCTGGATGGGATGGGCCAG
23 1123 CTGGACTACCAAGGTATGGGCCCAGACTCCTGGCCCATCCC 105-107欠損用 23 1123 CTGGACTACCAAGGTATGGGCCCAGACTCCTGGCCCATCCC For 105-107 defect
24 1124 GGGATGGGCCAGGAGTCTGGGCCCATACCTTGGTAGTCCAG 24 1124 GGGATGGGCCAGGAGTCTGGGCCCATACCTTGGTAGTCCAG
25 1207 G i l l CTCCTGGCTCTAGGGTGGCTCGAG stop コドン導入用 25 1207 G i l l CTCCTGGCTCTAGGGTGGCTCGAG stop For codon introduction
26 1208 CTCGAGCCACCCTAGAGCCAGGAGAAAC 26 1208 CTCGAGCCACCCTAGAGCCAGGAGAAAC
表 4. リンカ一挿入用合成 DNA Table 4. Synthetic DNA for linker insertion
配列番号 整理番号 配 列 コメン卜 Sequence number Reference number Array Comment
1 965 TCGAGTGACTACAAAGACCATGACGGTGATTATAAAGATCATGAC 2XFLAG挿入用リンカ- 1 965 TCGAGTGACTACAAAGACCATGACGGTGATTATAAAGATCATGAC 2XFLAG insertion linker
2 966 TCGAGTCATGATCTTTATAATCACCGTCATGGTCTTTGTAGTCAC 2 966 TCGAGTCATGATCTTTATAATCACCGTCATGGTCTTTGTAGTCAC
7 1043 AGGAGTC QE揷入用  7 1043 AGGAGTC QE insertion
8 1044 GACTCCTGGCC  8 1044 GACTCCTGGCC
9 1045 CAGACTC PD挿入用  9 1045 CAGACTC For PD insertion
10 1046 GAGTCTGGGCC  10 1046 GAGTCTGGGCC
11 1047 CAGATAACGGTTC PDNG挿入用  11 1047 CAGATAACGGTTC PDNG insertion
12 1048 GAACCGTTATCTGGGCC  12 1048 GAACCGTTATCTGGGCC
13 1049 CATCCTCCTCCTC PSSS挿入用  13 1049 CATCCTCCTCCTC PSSS insertion
14 1050 GAGGAGGAGGATGGGCC 14 1050 GAGGAGGAGGATGGGCC
〕〔^0061 ] (^ 0061
表 5 MSL欠失 L蛋白質発現用プラスミド  Table 5 MSL-deleted L protein expression plasmid
Plasmid Protein Amino acid Sequence (90th-160th residue of S protein)  Plasmid Protein Amino acid Sequence (90th-160th residue of S protein)
Expression vectors for animal cells 90 107 149 160  Expression vectors for animal cells 90 107 149 160
...UFLL VLLDY QGMLPVCPLL PGTSTTSTGP CKTCTIPAQG TS FPSCCCT KPSDGNCTCI pB0441 L protein (WT) P\PSS ^lAFAR...  ... UFLL VLLDY QGMLPVCPLL PGTSTTSTGP CKTCTIPAQG TS FPSCCCT KPSDGNCTCI pB0441 L protein (WT) P \ PSS ^ lAFAR ...
...UFLL VLLDY QGMLPVCPLL PGTSTTSTGP CKTCTIPAQG TSMFPSCCCT KPSDGNCTCI pB0982 WTd54-3xFLAG P\PSSIA/AFAR...  ... UFLL VLLDY QGMLPVCPLL PGTSTTSTGP CKTCTIPAQG TSMFPSCCCT KPSDGNCTCI pB0982 WTd54-3xFLAG P \ PSSIA / AFAR ...
...UFLL VLLDY QG LPVSPLL PGTSTTSTGP SKTSTIPAQG TS FPSSCST KPSDGNSTSI pB0851 6d54-3xFLAG P\PSS I \AFAR...  ... UFLL VLLDY QG LPVSPLL PGTSTTSTGP SKTSTIPAQG TS FPSSCST KPSDGNSTSI pB0851 6d54-3xFLAG P \ PSS I \ AFAR ...
(MSL deletion mutants with 3xFLAG-tag)  (MSL deletion mutants with 3xFLAG-tag)
pBO940 MSL(108-148)/QE-d54 .UFLLVLLDY QGMLPVGQES \NP\PSS AFA R..  pBO940 MSL (108-148) / QE-d54 .UFLLVLLDY QGMLPVGQES \ NP \ PSS AFA R ..
pB0941 MSL(108-148)/PD-d54 ...UFLLVLLDY QG LPVGPDS WPIPSSH^F^ R...  pB0941 MSL (108-148) / PD-d54 ... UFLLVLLDY QG LPVGPDS WPIPSSH ^ F ^ R ...
pB0942 MSL(108-148)/PDNG-d54 ...UFLLVLLDY QGMLPVGPDN GSWPIPSS WA FAR..  pB0942 MSL (108-148) / PDNG-d54 ... UFLLVLLDY QGMLPVGPDN GSWPIPSS WA FAR ..
e.B0943 MSL( 108-148)/PSSS-d54 ...UFLLVLLDY QG LPVGPSS SSWPIPSS i 4 FAR...  e.B0943 MSL (108-148) / PSSS-d54 ... UFLLVLLDY QG LPVGPSS SSWPIPSS i 4 FAR ...
pB0993 MSL( 105-148)/PD-d54 ..ilFLLVLLU^ QQ GPDSWP\ P WAFAR...  pB0993 MSL (105-148) / PD-d54 ..ilFLLVLLU ^ QQ GPDSWP \ P WAFAR ...
pB0991 MSL(103-148)/PD-d54 • "UFLLVU Y QGPDSWPIPS SWAFAR...  pB0991 MSL (103-148) / PD-d54 • "UFLLVU Y QGPDSWPIPS SWAFAR ...
pB0989 MSL(101-148)/PD-d54 ..丄 IFLL VLLEG PDSWPIPSS ίΦΤ ?…  pB0989 MSL (101-148) / PD-d54 .. 丄 IFLL VLLEG PDSWPIPSS ίΦΤ? ...
pB0987 MSU99-148)/PD-d54 ...LIFLL VLQPO SWPIPSS H^ ^...  pB0987 MSU99-148) / PD-d54 ... LIFLL VLQPO SWPIPSS H ^ ^ ...
PBO1003 MSL(108-154)/PD-d54 ...UFLL VLLDY QGMLPVGPDS WAFAR..  PBO1003 MSL (108-154) / PD-d54 ... UFLL VLLDY QGMLPVGPDS WAFAR ..
pBO1001 MSL(105-154)/PD-d54 ...UFLL VLLDY QGMGPDS iA^AFAR...  pBO1001 MSL (105-154) / PD-d54 ... UFLL VLLDY QGMGPDS iA ^ AFAR ...
pB0999 MSL(103-154)/PD-d54 ...UFLLVLLDY QGPDS Ι /AFAR ...  pB0999 MSL (103-154) / PD-d54 ... UFLLVLLDY QGPDS Ι / AFAR ...
pB0997 MSL(101-154)/PD-d54 ...UFLLVUEG PDS i l/AFAR...  pB0997 MSL (101-154) / PD-d54 ... UFLLVUEG PDS i l / AFAR ...
pB0995 MSLj99-154)_/PD-d54 ...UFLLVLQPD S WAFAR...  pB0995 MSLj99-154) _ / PD-d54 ... UFLLVLQPD S WAFAR ...
(MSL deletion mutants without 3xFLAG-tag)  (MSL deletion mutants without 3xFLAG-tag)
pBO1056 MSL(101-154)/PD-d54 . LIFLL ん EG PDS WAFAR.. · (without 3xFLAG)_  pBO1056 MSL (101-154) / PD-d54 .LIFLL EG PDS WAFAR .. (without 3xFLAG) _
Expression vector for yeast (MSL deletion mutant without 3x FLAG-tag)  Expression vector for yeast (MSL deletion mutant without 3x FLAG-tag)
― pBO1077 SL(101-154)/PD-d54 ...LIFLL VLLEG PDSWAFAR.. (without 3xFLAG)  ― PBO1077 SL (101-154) / PD-d54 ... LIFLL VLLEG PDSWAFAR .. (without 3xFLAG)
1) MSL deletion mutants: MSL ( [欠損領域] ) / [リンカ一配列] -d[C末端欠損残基数] 1) MSL deletion mutants: MSL ([deletion region]) / [linker sequence] -d [number of C-terminal deletion residues]
2 )イタリツク文字:疎水性領域 (脂質二重膜結合部位)、 下線: リンカ一配列および制限酵素導入による置換変異残基、 標準文字: major surface loop(MSL)部位  2) Italic letters: Hydrophobic region (lipid bilayer binding site), underline: Substituent mutation residue due to linker sequence and restriction enzyme introduction, Standard characters: major surface loop (MSL) site
〕〔^a0060 MSL欠損変異体の粒子分泌と HBs抗原性 ( 1 ) ] [^ A0060 Particle secretion and HBs antigenicity of MSL-deficient mutants (1)
HBsAg変異体 粒子分泌濃度 (A405) HBsAg濃度 (RATE)  HBsAg mutant Particle secretion concentration (A405) HBsAg concentration (RATE)
M6d54-3xFLAG 0.313 12.6  M6d54-3xFLAG 0.313 12.6
MSL(l08-148)/QE-d54 0.336 7.2  MSL (l08-148) / QE-d54 0.336 7.2
MSL(l08-148)/PD-d54 0.297 9.0  MSL (l08-148) / PD-d54 0.297 9.0
MSL(l08-148)/PSSS-d54 0.144 5.0  MSL (l08-148) / PSSS-d54 0.144 5.0
MSL(l08-148)/PDNG-d54 0.131 5.0  MSL (l08-148) / PDNG-d54 0.131 5.0
a) COS7細胞培養上清を 2倍希釈して、 FLAG-ELISAで粒子量を測定した。 Blankと して希釈液を用いて測定した時の 405nmにおける吸光度を示した。 a) The COS7 cell culture supernatant was diluted 2-fold, and the amount of particles was measured by FLAG-ELISA. Absorbance at 405 nm when measured using a diluted solution as blank was shown.
b) COS7細胞培養上清を 2倍希釈して、 IMx-HBsAgキットを用いて HBsAg量を測定 した。 各試料の測定値 (RATE値)よりキット付属のネガティブコントロール液の RATE 値を差し引いた値を示した。 この時 RATE 6.0以下は、 HBsAg陰性と判定された。 [表 7] b) The COS7 cell culture supernatant was diluted 2-fold and the amount of HBsAg was measured using the IMx-HBsAg kit. The value obtained by subtracting the RATE value of the negative control solution included in the kit from the measured value (RATE value) of each sample is shown. At this time, HBsAg was determined to be negative for RATE 6.0 or lower. [Table 7]
表 7 A. MSL欠損変異体の粒子分泌と HBs抗原性 ( 1 ) Table 7 A. Particle secretion and HBs antigenicity of MSL-deficient mutants (1)
HBsAg変異体 粒子分泌濃度  HBsAg mutant Particle secretion concentration
(ng/ml)  (ng / ml)
WT (26.4)  WT (26.4)
WTd54-3xFLAG 20.8  WTd54-3xFLAG 20.8
MSL(99-148)/PD-d54 7.2± 1.3  MSL (99-148) / PD-d54 7.2 ± 1.3
MSL(l01-148)/PD-d54 12.2±3.4  MSL (l01-148) / PD-d54 12.2 ± 3.4
MSL(l03-148)/PD-d54 13.5±5.1  MSL (l03-148) / PD-d54 13.5 ± 5.1
MSL(l05-148)/PD-d54 22.5 ±5.1  MSL (l05-148) / PD-d54 22.5 ± 5.1
MSL(l08-148)/PD-d54 8.5±2.2  MSL (l08-148) / PD-d54 8.5 ± 2.2
MSL(99-154)/PD-d54 8.1 ±2.2  MSL (99-154) / PD-d54 8.1 ± 2.2
MSL(l01-154)/PD-d54 13.9± 5.0  MSL (l01-154) / PD-d54 13.9 ± 5.0
MSL(l03-154)/PD-d54 13.9± 5.7  MSL (l03-154) / PD-d54 13.9 ± 5.7
MSL(l05-154)/PD-d54 34.3± 3.9  MSL (l05-154) / PD-d54 34.3 ± 3.9
MSL(l08-154)/PD-d54 7.4± 1.3 表 7 B . MSL欠損変異体の粒子分泌と HBs抗原性 ( 1 )  MSL (l08-154) / PD-d54 7.4 ± 1.3 Table 7 B. Particle secretion and HBs antigenicity of MSL-deficient mutants (1)
HBsAg変異体 HBsAg濃度 HBsAg 1粒子比  HBsAg mutant HBsAg concentration HBsAg 1 particle ratio
(RATE) (WT=100%)  (RATE) (WT = 100%)
WT 229 100  WT 229 100
WTd54-3xFLAG 180 100  WTd54-3xFLAG 180 100
MSL(99-148)/PD-d54 1.7± 0.1 3.9  MSL (99-148) / PD-d54 1.7 ± 0.1 3.9
MSL(l05-148)/PD-d54 1·1 ± 0·7 1.1  MSL (l05-148) / PD-d54 1 ± 1 ± 0 ・ 7 1.1
MSL(l08-148)/PD-d54 0.7 ± 0.3 1.0  MSL (l08-148) / PD-d54 0.7 ± 0.3 1.0
MSL(99-154)/PD-d54 1.9±0.1 7.6  MSL (99-154) / PD-d54 1.9 ± 0.1 7.6
MSL(l05-154)/PD-d54 2.3±0.5 1.5  MSL (l05-154) / PD-d54 2.3 ± 0.5 1.5
A)タンパク質濃度既知の酵母由来精製 WT粒了-を標準試料として、 WTd54-3xFLAG培養 上清の粒子濃度 (ng/ml)を IMx-HBsAgキットで求め、 WTd54-3xFLAG培養上清を標準試 料として各変異体培養上清の粒子濃度 (ng/ml)を FLAG-ELISAで測定した。 WT粒子培養 上清の分泌粒子濃度は、 IMx-HBsAgキットで測定した。  A) Purified WT granule from yeast with known protein concentration. Using WTd54-3xFLAG culture supernatant as the standard sample, determine the particle concentration (ng / ml) of the WTd54-3xFLAG culture supernatant using the IMx-HBsAg kit, and use the WTd54-3xFLAG culture supernatant as the standard sample. The particle concentration (ng / ml) of each mutant culture supernatant was measured by FLAG-ELISA. The secretory particle concentration of the WT particle culture supernatant was measured with the IMx-HBsAg kit.
B)各変異体の培養上清を 2倍希釈し、 IMx-HBsAgキットを用いて HBsAg量を測定した。 各試料の測定値 (RATE)から Cos7培養上清の測定値 (RATE) を差し引いた値を示した。 なお、 キット付属のネガテイブコント口ール液の RATE値の 2倍 (RATE= 2) 以下の検体 は、 通常 HBsAg陰性と判定される。  B) The culture supernatant of each mutant was diluted 2-fold, and the amount of HBsAg was measured using the IMx-HBsAg kit. The value obtained by subtracting the measured value (RATE) of the Cos7 culture supernatant from the measured value (RATE) of each sample is shown. Samples with a negative control solution supplied with the kit that are twice the RATE value (RATE = 2) or less are usually judged negative for HBsAg.

Claims

請求の範囲 The scope of the claims
[1] Sポリペプチド部分を含むヒト B型肝炎ウィルス表面抗原タンパク質 (HBsAg)にお!/、て 、該 Sポリペプチド部分の少なくとも 105位〜 148位のアミノ酸を欠失していることを特 徴とする、 HBsAgタンパク質改変体。  [1] A human hepatitis B virus surface antigen protein (HBsAg) containing an S polypeptide portion is characterized by lacking at least amino acids at positions 105 to 148 of the S polypeptide portion. A modified HBsAg protein.
[2] 前記 HBsAgタンパク質改変体がさらに細胞認識部分を含む、請求項 1に記載の HBs Agタンパク質改変体。  [2] The HBsAg protein variant according to [1], wherein the HBsAg protein variant further comprises a cell recognition moiety.
[3] Sポリペプチド部分において、さらに以下の (a)〜(c)の少なくとも 1種の欠失を有する請 求項 1に記載の HBsAgタンパク質改変体:  [3] The HBsAg protein variant according to claim 1, further comprising at least one deletion of the following (a) to (c) in the S polypeptide portion:
(a) 101〜104位の少なくとも 1個のアミノ酸の欠失、  (a) a deletion of at least one amino acid from position 101 to 104;
(b) 149〜154位の少なくとも 1個のアミノ酸の欠失、  (b) a deletion of at least one amino acid at positions 149-154,
(c) HBsAgの C末端の 54個のポリペプチドにおける少なくとも 1個のアミノ酸の欠失。  (c) A deletion of at least one amino acid in the 54 polypeptides at the C-terminus of HBsAg.
[4] HBsAgタンパク質改変体力 Sポリペプチド部分に加えて、 PreS部分の非細胞認識 部位又はその一部を含み、さらに、 PreS部分に由来する肝細胞認識部分、抗体、成 長因子、サイト力イン、細胞表面抗原、組織特異的抗原、レセプター、ウィルスおよび 微生物に由来する分子並びに糖鎖からなる群から選ばれる少なくとも 1種の細胞認 識部分を含む、請求項 1に記載の HBsAgタンパク質改変体。 [4] HBsAg protein modification strength In addition to the S polypeptide portion, it contains a non-cell recognition site or part of the PreS portion, and further, a hepatocyte recognition portion derived from the PreS portion, antibody, growth factor, cyto force 2. The HBsAg protein variant according to claim 1, comprising at least one cell recognition moiety selected from the group consisting of: a cell surface antigen, a tissue-specific antigen, a receptor, a molecule derived from a virus and a microorganism, and a sugar chain.
[5] 105位〜 148位を含む欠失部位に、リンカ一ペプチドを有する請求項 1に記載の HBs Agタンパク質改変体。 [5] The modified HBs Ag protein according to claim 1, which has a linker peptide at a deletion site including positions 105 to 148.
[6] リンカ一ペプチドが、 2〜4個のアミノ酸残基からなる請求項 5に記載の HBsAgタンパ ク質改変体。  6. The modified HBsAg protein according to claim 5, wherein the linker peptide consists of 2 to 4 amino acid residues.
[7] リンカ一ペプチドが、ヘリックスを壊すアミノ酸残基(Gly, Pro, Asn, Tyr)、ターン構造 に多いアミノ酸残基 (Asn, Gly, Pro, Asp, Ser, Trp)、膜界面に留まりにくいアミノ酸残 基(Glu, Asp, Lys, His, Arg, Gin, Pro, Asn)からなる群から選ばれるアミノ酸の組み 合わせからなる請求項 5に記載の HBsAgタンパク質改変体。  [7] Linker peptide has amino acid residues that break the helix (Gly, Pro, Asn, Tyr), amino acid residues that are many in the turn structure (Asn, Gly, Pro, Asp, Ser, Trp), and hardly stays at the membrane interface 6. The modified HBsAg protein according to claim 5, comprising a combination of amino acids selected from the group consisting of amino acid residues (Glu, Asp, Lys, His, Arg, Gin, Pro, Asn).
[8] リンカ一ペプチドが、 PD、 QE、 PSSSまたは PDNGである請求項 5に記載の HBsAgタン パク質改変体。  [8] The HBsAg protein variant according to claim 5, wherein the linker peptide is PD, QE, PSSS or PDNG.
[9] 請求項 1〜8のいずれかに記載の HBsAgタンパク質改変体を構成要素とする、 HBsA g中空粒子。 [9] An HBsAg hollow particle comprising the HBsAg protein variant according to any one of claims 1 to 8 as a constituent element.
[10] 請求項 1〜8のいずれかに記載の HBsAgタンパク質改変体をコードする遺伝子を含 む発現ベクターを真核生物細胞に導入して該細胞を形質転換し、得られた形質転 換細胞を培養し、請求項 9に記載の HBsAg粒子を回収することを特徴とする、 HBsAg 粒子の製造方法。 [10] An transformed vector obtained by introducing an expression vector containing a gene encoding the HBsAg protein variant according to any one of claims 1 to 8 into a eukaryotic cell, and transforming the cell. A method for producing HBsAg particles, wherein the HBsAg particles according to claim 9 are collected.
[11] 請求項 9に記載の HBsAg中空粒子の内部に、 DNA, RNA、タンパク質、脂質、糖質 、標識物質、薬物、細胞内で機能し得る生理活性物質からなる群から選ばれる少なく とも 1種の物質を有する物質運搬体。  [11] Inside the HBsAg hollow particle according to claim 9, at least 1 selected from the group consisting of DNA, RNA, protein, lipid, carbohydrate, labeling substance, drug, and physiologically active substance that can function in a cell. A substance carrier with a seed substance.
PCT/JP2007/065646 2006-08-11 2007-08-09 HBsAg PARTICLE HAVING LOW ANTIGENICITY AND METHOD FOR PRODUCTION THEREOF WO2008018555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008528881A JP5147697B2 (en) 2006-08-11 2007-08-09 Low antigenic HBsAg particles and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006220346 2006-08-11
JP2006-220346 2006-08-11

Publications (1)

Publication Number Publication Date
WO2008018555A1 true WO2008018555A1 (en) 2008-02-14

Family

ID=39033084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065646 WO2008018555A1 (en) 2006-08-11 2007-08-09 HBsAg PARTICLE HAVING LOW ANTIGENICITY AND METHOD FOR PRODUCTION THEREOF

Country Status (2)

Country Link
JP (1) JP5147697B2 (en)
WO (1) WO2008018555A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064930A1 (en) * 2000-02-28 2001-09-07 Japan Science And Technology Corporation Protein hollow nano particles, transporter with the use of the same and method of introducing substance into cells
WO2003082330A1 (en) * 2002-03-29 2003-10-09 Japan Science And Technology Agency Therapeutic drug using antibody-presenting hollow protein nanoparticles and hollow protein nanoparticles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064930A1 (en) * 2000-02-28 2001-09-07 Japan Science And Technology Corporation Protein hollow nano particles, transporter with the use of the same and method of introducing substance into cells
WO2003082330A1 (en) * 2002-03-29 2003-10-09 Japan Science And Technology Agency Therapeutic drug using antibody-presenting hollow protein nanoparticles and hollow protein nanoparticles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KONDO A. ET AL.: "Chuku Bio Nano Ryushi o Mochiita DDS no Kaihatsu to Sono Sangyoka", DRUG DELIVERY SYSTEM, vol. 21, no. 4, 31 July 2006 (2006-07-31), pages 435 - 443, XP003020247 *
O'MALLEY B. AND LAZINSKI D.: "A Hepatitis B Surface Antigen Mutant That Lacks the Antigenic Loop Region Can Self-Assemble and Interact with the Large Hepatitis Delta Antigen", J. VIROL., vol. 76, no. 19, 2002, pages 10060 - 10063, XP003020248 *
TADA H. ET AL.: "Ryushi Keisei ni Hitsuyo na Hito B-gata Kan'en Virus Envelope Tanpakushitsu Hairetsu no Tokutei", PROTEIN SCIENCE SOCIETY OF JAPAN NENKAI PROGRAM YOSHISHU, vol. 7TH, 7 May 2007 (2007-05-07), pages 135, XP003020249 *

Also Published As

Publication number Publication date
JP5147697B2 (en) 2013-02-20
JPWO2008018555A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP4713809B2 (en) Hepatitis B core antigen fusion protein
KR101639216B1 (en) Hydrophobic modified pres-derived peptides of hepatitis b virus (hbv) and their use as hbv and hdv entry inhibitors
Charbit et al. Presentation of two epitopes of the preS2 region of hepatitis B virus on live recombinant bacteria.
JP2003529319A (en) Methods of eliciting broadly neutralizing antibodies targeting HIV-1 gp41
JPH06507303A (en) Composition used as a therapeutic agent for chronic viral liver disease
Leclerc et al. The cellular location of a foreign B cell epitope expressed by recombinant bacteria determines its T cell-independent or T cell-dependent characteristics.
Gedvilaite et al. Segments of puumala hantavirus nucleocapsid protein inserted into chimeric polyomavirus-derived virus-like particles induce a strong immune response in mice
US20230399364A1 (en) Immunogenic Coronavirus Fusion Proteins and Related Methods
US8258257B2 (en) Claudin-4 binding peptides, compositions and methods of use
Tite et al. Inverse Ir gene control of the antibody and T cell proliferative responses to human basement membrane collagen.
JPH05505616A (en) Purified gp120 composition retaining native conformation
Lawrence et al. Influence of FcRn binding properties on the gastrointestinal absorption and exposure profile of Fc molecules
JP4307838B2 (en) Peptide showing affinity for GP120 viral protein and use thereof
Lambert et al. Functional incorporation of green fluorescent protein into hepatitis B virus envelope particles
EP1806142B1 (en) Method for the production of (poly)peptides by using truncated variants of the SV 40 large T antigen with an intact N terminus
JP5147697B2 (en) Low antigenic HBsAg particles and production method thereof
JPH02211881A (en) Recombinant hybrid hbsag particle having morphological feature of hbsag antigen with immunogen arrangement inducing neutral antibody or being recognized by such antibody, nucleotide arrangement which codes such particle, and vaccine containing nucleus particle
EP0941346A1 (en) Secretory immunoglobulin a as a mucosal vaccine delivery system
Cook et al. Recombinant antibodies containing an engineered B-cell epitope capable of eliciting conformation-specific antibody responses
JPH03504729A (en) A fusion CD4 polypeptide produced by the fusion of a substance with affinity for maltose (MalE) and a CD4 protein fragment with neutralizing properties against the HIV virus.
Neurath et al. Immunological cross-reactivity between preS2 sequences of the hepatitis B virus envelope proteins corresponding to serological subtypes adw2 and ayw
JPS61233700A (en) Molecularly cloned aids related polypeptide
WO2024109611A1 (en) Mutant respiratory syncytial virus pre-fusion f protein and use thereof
Xiao et al. Epitope-vaccines: a new strategy to induce high levels of neutralizing antibodies against HIV-1
US11028132B1 (en) Half-life optimized linker composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008528881

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792296

Country of ref document: EP

Kind code of ref document: A1