WO2008018440A1 - Recording layer for optical information recording medium, sputtering target, and optical information recording medium - Google Patents

Recording layer for optical information recording medium, sputtering target, and optical information recording medium Download PDF

Info

Publication number
WO2008018440A1
WO2008018440A1 PCT/JP2007/065413 JP2007065413W WO2008018440A1 WO 2008018440 A1 WO2008018440 A1 WO 2008018440A1 JP 2007065413 W JP2007065413 W JP 2007065413W WO 2008018440 A1 WO2008018440 A1 WO 2008018440A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording layer
recording
optical information
recording medium
atomic
Prior art date
Application number
PCT/JP2007/065413
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Fujii
Hironori Kakiuchi
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007126210A external-priority patent/JP4110194B1/en
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to US12/376,484 priority Critical patent/US20100178446A1/en
Publication of WO2008018440A1 publication Critical patent/WO2008018440A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)

Definitions

  • the present invention relates to a recording layer for an optical information recording medium (particularly, a write once optical disk using a blue laser), an optical information recording medium, and a sputtering target for forming a recording layer of the optical information recording medium. .
  • organic dye material and an inorganic material thin film are broadly studied as a recording layer.
  • organic dyes have a proven track record in existing optical disks that use red lasers such as CD-R and DVD-R
  • organic dyes that can be recorded with blue lasers have problems in terms of light resistance.
  • BD-R BD-R
  • Inorganic material thin films have been mainly studied.
  • a thin film of an inorganic material 1) phase change by laser irradiation,
  • Te—O—M M is selected from metal elements, metalloid elements, and semiconductor elements 1 element
  • Patent Document 2 an alloy obtained by adding a 3B group, a 4B group, or a 5B group to a Sn alloy
  • Patent Document 3 an alloy obtained by adding a 3B group, a 4B group, or a 5B group to a Sn alloy
  • Patent Document 3 an alloy obtained by adding a 3B group, a 4B group, or a 5B group to a Sn alloy
  • the ratio of M is 0 ⁇ 02-0.8 (atomic ratio)]
  • Patent Document 4 In --- ( ⁇ , ⁇ , ⁇ ) is used as the first recording layer, and Se and / or Te_0- (Ti , Pd, Zr) have been proposed.
  • Patent Document 5 a light containing a metal containing In as a main component as a first recording layer and a metal other than an oxide containing 5B or 6B or a semimetal as a second recording layer. A recording medium has been proposed!
  • the method of making holes in the low melting point metal thin film has a high reflectivity of the recording film alone and a large degree of modulation by making holes, so that the total number of films constituting the disk can be reduced.
  • metal thin films generally have poor durability under high temperature and high humidity compared to oxides and nitrides, various improvements are being investigated by alloying. Since the characteristics also change, balancing various characteristics becomes a problem.
  • Patent Document 1 Japanese Patent No. 3638152
  • Patent Document 2 JP 2002-225433 A
  • Patent Document 3 US Patent Publication No. 2004/0241376
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-326848
  • Patent Document 5 Japanese Patent No. 3499724
  • An object of the present invention is to provide a layer (recording film), an optical recording medium provided with the recording layer, and a sputtering target for forming a recording layer of the optical information recording medium.
  • the present inventors have achieved a low melting point as a base metal element. Focusing on In, which has a low environmental impact, and adding an appropriate amount of one or more elements selected from Ni and Co to it, in addition, an appropriate amount of one or more elements selected from Sn, Bi, Ge, and Si It has been found that the above-mentioned problems can be advantageously solved by the inclusion, and the present invention has been completed here. That is, the present invention relates to the following (1) to (5).
  • the recording layer is further composed of an In alloy containing 19 atomic percent or less (excluding 0 atomic percent) of one or more elements selected from Sn, Bi, Ge, and Si.
  • the recording layer for optical information recording media as described.
  • An optical information recording medium comprising the recording layer according to any one of (1) to (2).
  • a sputtering target for forming a recording layer of an optical information recording medium comprising an In alloy power containing 20 to 65 atomic% of one or more elements selected from Ni and Co.
  • the sputtering target is further composed of an In alloy containing 19 atomic% or less (but not including 0 atomic%) of one or more elements selected from Sn, Bi, Ge, and Si. Sputtering target for forming a recording layer of an optical information recording medium.
  • a recording layer for an optical information recording medium having excellent characteristics having a high C / N ratio with a high reflectance (initial reflectance) and a low jitter value, and It is possible to provide an optical information recording medium.
  • it is most suitable as a write-once optical disc using a blue laser that employs a punching method, which is an advantageous recording method with a small total number of films.
  • it is possible to provide a sputtering target effective for producing the recording layer and the optical information recording medium.
  • FIG. 1 is a cross-sectional view showing a schematic structure of an optical disc according to an embodiment (and an example) of the present invention.
  • Substrate 2 Recording layer 3: Light transmission layer
  • FIG. 1 is a cross-sectional view showing a schematic structure of an optical disc according to a typical embodiment (and an example described later) of the present invention.
  • 1 is a substrate
  • 2 is a recording layer
  • 3 is a light transmission layer.
  • the reason for selecting In as the main component (base metal), one or more elements selected from Ni and Co, and further Sn, Bi, Ge The reason for using an In alloy containing one or more elements selected from the group consisting of Si force, including the definition of its component range will be described.
  • In is used as a main component, In is conventionally used, for example, the melting point is much lower than other metals such as Al, Ag or Cu! /, (Melting point: Therefore, the In alloy thin film can be easily melted and deformed, and can easily exhibit excellent recording characteristics even at low laser power. In particular, when considering application to next-generation optical discs that use blue lasers, it is difficult to form recording marks with A1-based alloys. Because there is no.
  • the In content is preferably 30 atomic% or more, and more preferably 45 atomic% or more, and particularly preferably 50 atomic% or more in order to sufficiently exhibit the above recording characteristics.
  • Ni and Co simultaneously achieves super-smoothness, microstructure, and surface tension adjustment.
  • a preferred lower limit for the content of one or more elements of Ni and Co is 20 atomic%, more preferably 30 atomic%, and even more preferably 40 atomic%.
  • the preferable upper limit is 56 atomic%, More preferably, it is 50 atomic%, More preferably, it is 45 atomic%.
  • the preferable range as the content when adding Ni alone is 20 to 45 atomic%, more preferably 25 to 35 atomic%. Further, the preferred range for the content when Co is added alone is 35 to 56 atomic%, more preferably 40 to 56 atomic%.
  • the content of one or more elements selected from Ni and Co is less than 20 atomic%, the super-smoothness of the recording film cannot be realized and the media noise becomes high. It cannot be obtained and is not preferable. On the other hand, if it exceeds 65 atomic%, the low melting point characteristics of In are greatly impaired, and the recording sensitivity is deteriorated (the recording laser power for obtaining high C / N is increased), which is not preferable.
  • In contains one or more of Ni and Co in an amount of 20 to 65 atomic%, and further contains one or more of Sn, Bi, Ge and Si in an amount of 19 atomic% or less. Jitter value can be reduced. Although this mechanism is not necessarily clear, it is presumed that Sn, Bi, Ge, and Si achieve the suppression of lateral heat bleeding by lowering the thermal conductivity without increasing the melting point.
  • the preferred lower limit for the content of one or more elements of Sn, Bi, Ge and Si is 1 atomic%, more preferably 5 atomic%.
  • the preferable upper limit is 19 atomic%, More preferably, it is 11 atomic%, More preferably, it is 10 atomic%.
  • the film thickness of the recording layer of the present invention is such that the optimum value fluctuates by inserting other layers such as metal, semi-metal, and dielectric above and below the recording layer.
  • other layers such as metal, semi-metal, and dielectric above and below the recording layer.
  • 8 to 25 nm, more preferably 10 to 20 nm is preferable.
  • the present invention is not limited to a structure formed of only one recording layer. Depending on the required range of reflectance, recording characteristics, and durability, a light transmission layer (cover layer) and a recording layer are used. A two-layer structure in which a light absorption layer is inserted between the two and a two-layer structure in which a wettability control layer is inserted between the substrate and the recording layer are also included in the range.
  • the recording layer made of the In alloy is preferably formed by a sputtering method because the film thickness distribution in the disk surface can be easily controlled.
  • composition of the sputtering target used to form the recording layer according to the present invention is basically the same as the alloy composition of the recording layer described above, and is adjusted to the alloy composition described above as the In alloy. Thus, a desired component composition can be easily realized.
  • the sputtering target is a force S produced by a vacuum melting method or the like, and in its production, the gas component (nitrogen, oxygen, etc.) in the atmosphere and the melting furnace component are contained in the sputtering target as an impurity although they are in a small amount. May be mixed.
  • the recording layer of the present invention the component composition of the sputtering target is not limited to the trace components that are inevitably mixed, so that the trace contamination of these unavoidable impurities is allowed as long as the above characteristics of the present invention are not impaired.
  • a polycarbonate substrate (thickness: 1. lmm, track pitch: 0.32 111, groove width: 0.14—0.16 mm, groove depth: 25 nm) is used as substrate 1, and DC magnetron sputtering is used.
  • the recording layer 2 was formed.
  • a sputtering target a composite target was used in which an additive element chip (5 mm square or 10 mm square) was placed on a 6-inch diameter In target. The film composition was measured by ICP emission spectrometry or ICP mass spectrometry.
  • the sputtering conditions the ultimate vacuum: 3 X 10- 6 Torr or less, Ar gas pressure: 2 mTorr, DC spatter deposition power: was 100W.
  • the film thickness was adjusted in the range of 12 to 21 nm so that the unrecorded SUM2 signal level of the BD-R disc (output signal correlating with reflectivity) was 280 mV or more. in the alloy, those force s Oh not be secured more than 280mV
  • an ultraviolet curable resin (“BRD-130” (trade name) manufactured by Nippon Kayaku Co., Ltd.) was spin-coated thereon, followed by ultraviolet curing to provide a light transmitting layer 3 having a thickness of 100 ⁇ 15 m. Formed.
  • optical disk evaluation equipment (trade name “ODU_1000” manufactured by Pulstec Industrial Co., Ltd., recording laser wavelength: 405 nm, NA (numerical aperture): 0.85), spectrum analyzer (manufactured by Advantest) (R3131R)), the linear velocity is 4.9 m / s, the unrecorded SUM2 level, the recording laser power from 4 mW to 12 mW, and a length of 0.6 111 recording mark (2508 : 6111-013 (corresponding to 8 signals), and the maximum C / N value at the time of recording / reproducing at the time of signal reading at a reproducing laser power of 0.3 mW was evaluated.
  • Time interval analyzer (Yokogawa Electric Co., Ltd.) TA520 (trade name)) with a recording laser power in the range of 4mW to 12mW! /, The shortest length 0 ⁇ 15 111, et al. 0.075m to the longest length 0 ⁇ 6m
  • the jitter value was evaluated when random recording marks (corresponding to 2T-8T signals of 25 GB Blu-ray Disc) were randomly formed. Note that the jitter value is an index of the uncertainty of the recorded signal mark edge position, and is a value corresponding to the variance ( ⁇ ) when the distribution of the rising / falling position of the edge is obtained and set as a normal distribution. It is.
  • the jitter value is evaluated after recording three consecutive tracks, and the value in the signal of the center track is the “jitter value (during continuous three-track recording)”. At the same time, the recording laser power at which the “jitter value (during continuous three-track recording)” is the minimum value was also evaluated.
  • Table 1 is a table showing the unrecorded SUM2 level and the C / N value at the time of 8 ⁇ signal recording / reproduction on the optical recording media of the examples and comparative examples
  • Table 2 shows the examples and Comparison Example Recording power and jitter values (continuous) for which the unrecorded SUM2 level on each optical recording medium, the C / N value during 8 ⁇ signal recording playback, and the jitter value (continuous 3-track recording) are minimum values.
  • It is a table showing (at the time of 3-track recording).
  • Table 1 shows the case where the In alloy corresponding to the above (1) is used as the recording layer
  • Table 2 shows the case where the In alloy corresponding to the above (2) is used as the recording layer.
  • the recording laser power that gives the maximum C / N value is in the range of 6 mW to 10 mW.
  • X is marked if the unrecorded SUM2 level is 280 mV or more, and X is marked if it is less than this.
  • a C / N value of 50 dB or more at the time of 8T signal recording / playback is marked with ⁇ , and X is marked when it is less than this.
  • Example 19 In-Go Co 65.1at 18 ⁇ 379mV ⁇ ⁇ 50dB 8.0m 11.6%
  • Example 20 In-Co-Sn Co 46.1at% Sn 1.05at% 12nm O 291mV O ⁇ 50dB 6.6mW 7.8%
  • Example 21 In-Co-Sn Co 47.1at% Sn 1.75at% 12nm ⁇ 289mV ⁇ ⁇ 50dB 6.OmW 7.9%
  • Example 22 In-Co-Bi Co 29at% Bi 19at% 15nm ⁇ 310mV ⁇ ⁇ 50dB 7.4mW 8.6%
  • Example 23 In-Ni-Sn Ni 31at% Sn 15at% 15nm ⁇ 311mV ⁇ ⁇ 50dB 7.8mW 8.8%
  • Example 24 In-Ni-Sn Ni 35at% Sn 15at% 15nm ⁇ 365mV O ⁇ 50dB 7.6mW 10.1%
  • Example 25 In-Ni-Sn Ni 37at% Sn 17at
  • Example 26 In-Co-Bi Co 39at% Bi 10at% 12nm ⁇ 280mV ⁇ ⁇ 50dB 7.2m 9.5%
  • Example 27 In-Co-Ge Co 50.4at% Ge 7. at% 14nm ⁇ 340mV ⁇ ⁇ 50dB 6.4m 9.0%
  • Example 28 In-Co-Si Co 42.8at% Si 6.4at% 15nm ⁇ 351mV O ⁇ 50dB 7.2m 8.7%
  • Example 29 In-Co-Ni-Sn Co 37.4at% Ni 9.2at% 12nm ⁇ 344mV O ⁇ 50dB 6.6mW 6.9%
  • Example 31 In-Co-Ni-Sn Go 41.4at% Ni 8.5at% 12nm ⁇ 309mV O ⁇ 50dB 6.4mW 6.9%
  • Example 32 In-Co-Ni-Sn Co 34.0at% Ni 16.6at% 12nm ⁇ 308mV ⁇ ⁇ 50dB 6.2mW 6.9%
  • Example 33 In-Co-i-Sn Co 34.1at% Ni 13.2at% 13nm ⁇ 346mV ⁇ ⁇ 50dB 6.6mW 7.4%
  • Example 34 In-Co-N ⁇ Sn Co 32.5at% Ni 10.7at% nm O 354mV O ⁇ 50dB 6.6mW 7.4%
  • Example 36 In-Co-Ni-Sn Co 32.2at% Ni 12.5at% 11nm ⁇ 286mV ⁇ ⁇ 50dB 6.2mW 7.8%
  • the optical disc provided with a recording layer made of an In alloy containing one or more elements selected from Ni and Co of the present invention is smaller than the comparative example (In alloy containing Pt Au or V).
  • the C level and the C / N value are excellent, and the deviation is high.
  • an optical disc having an In alloy recording layer containing N or Co of the present invention and containing one or more elements selected from Bi Sn Ge and Si is similarly SUM2 level and C Compared to the reference example corresponding to Example 1 in Table 1 that does not contain BiSnGe and Si, both the N / N value is high, and the jitter value is also low. It turns out! [0035]
  • a recording layer for an optical information recording medium having excellent characteristics having a high C / N ratio with a high reflectance (initial reflectance) and a low jitter value, and It is possible to provide an optical information recording medium.
  • it is most suitable as a write-once optical disc using a blue laser that employs a punching method, which is an advantageous recording method with a small total number of films.
  • it is possible to provide a sputtering target effective for producing the recording layer and the optical information recording medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

Disclosed is a recording layer for an optical information recording medium, on which a recording mark can be formed by irradiation with laser beam. The recording layer comprises an In alloy containing 20 to 65 at% of at least one element selected from Ni and Co and an In alloy containing 19 at% or less of at least one element selected from Sn, Bi, Ge and Si. Also disclosed is an optical information recording medium comprising the recording layer. Further disclosed is a sputtering target for use in the formation of the recording layer. The recording layer has a high reflectivity (initial reflectivity), a high C/N ratio and a low jitter value.

Description

明 細 書  Specification
光情報記録媒体用記録層、およびスパッタリングターゲット、ならびに光 情報記録媒体  Recording layer for optical information recording medium, sputtering target, and optical information recording medium
技術分野  Technical field
[0001] 本発明は、光情報記録媒体(特に青色レーザーを用いた追記型光ディスク)用の記 録層と光情報記録媒体、並びに光情報記録媒体の記録層形成用スパッタリングター ゲットに関するものである。  TECHNICAL FIELD [0001] The present invention relates to a recording layer for an optical information recording medium (particularly, a write once optical disk using a blue laser), an optical information recording medium, and a sputtering target for forming a recording layer of the optical information recording medium. .
背景技術  Background art
[0002] 青色レーザーを用いた追記型光ディスクにおいて、大別して有機色素材料と無機 材料薄膜が、記録層として検討されている。有機色素は、 CD— Rや DVD— Rなど赤 色レーザーを使用する既存光ディスクにおレ、て実績があるものの、青色レーザーで 記録出来る有機色素は、耐光性の面で問題があることから、特に BD— Rにおいては [0002] In a write once optical disk using a blue laser, an organic dye material and an inorganic material thin film are broadly studied as a recording layer. Although organic dyes have a proven track record in existing optical disks that use red lasers such as CD-R and DVD-R, organic dyes that can be recorded with blue lasers have problems in terms of light resistance. Especially in BD-R
、無機材料薄膜が主に検討されている。 Inorganic material thin films have been mainly studied.
[0003] 記録方式としては、レーザー照射によって、無機材料薄膜が、 1)相変化する方式、 [0003] As a recording method, a thin film of an inorganic material 1) phase change by laser irradiation,
2)孔を開ける方式、 3)層間反応する方式、などが知られている。  2) a method of opening a hole, 3) a method of reacting between layers, etc. are known.
[0004] 相変化する方式としては、記録膜として酸化物や窒化物が検討され、例えば、特許 文献 1では、 Te— O— M(Mは金属元素、半金属元素及び半導体元素から選ばれる 少なくとも 1種の元素)が提案されている。 [0004] As a method of phase change, oxides and nitrides have been studied as a recording film. For example, in Patent Document 1, Te—O—M (M is selected from metal elements, metalloid elements, and semiconductor elements) 1 element) has been proposed.
[0005] 次に、孔を開ける方式としては、記録膜として、低融点金属材料が検討され、例え ば、特許文献 2では、 Sn合金に 3B族、 4B族、 5B族を添加した合金、特許文献 3で は、 A(=Si, Sn)-M(=A1, Ag, Au, Zn, Yi, Ni, Cu, Co, Ta, Fe, W, Cr, V, Ga, Pb, Mo, I n, Te)合金 [但し Mの比率は 0· 02-0. 8 (原子比)]などがそれぞれ提案されている[0005] Next, as a method for opening a hole, a low melting point metal material has been studied as a recording film. For example, in Patent Document 2, an alloy obtained by adding a 3B group, a 4B group, or a 5B group to a Sn alloy, a patent In Reference 3, A (= Si, Sn) -M (= A1, Ag, Au, Zn, Yi, Ni, Cu, Co, Ta, Fe, W, Cr, V, Ga, Pb, Mo, In , Te) alloys [however, the ratio of M is 0 · 02-0.8 (atomic ratio)]
Yes
[0006] また、層間反応する方式としては、例えば、特許文献 4では、第一記録層として In- Ο-(Μ,Μη,Μο)が、第二記録層として Se and/or Te_0-(Ti,Pd,Zr)を含む光記録媒体 が提案されている。また、特許文献 5では、第一記録層として Inを主成分とする金属、 第二記録層として 5Bもしくは 6Bを含む酸化物以外の金属あるいは半金属を含む光 記録媒体が提案されて!/、る。 [0006] Also, as a method of interlayer reaction, for example, in Patent Document 4, In --- (Μ, Μη, Μο) is used as the first recording layer, and Se and / or Te_0- (Ti , Pd, Zr) have been proposed. In Patent Document 5, a light containing a metal containing In as a main component as a first recording layer and a metal other than an oxide containing 5B or 6B or a semimetal as a second recording layer. A recording medium has been proposed!
[0007] 酸化物を記録膜として用いた場合、記録膜単独での反射率が低ぐディスク状態で の反射率を高めるため反射膜が必要となり、かつ変調度を増加させるために記録膜 上下に ZnS-SiOなどの誘電体膜を設ける必要があり、ディスクを構成する膜総数が 多くなつてしまう。また、層間反応する方式では記録層自体が複数の薄膜で形成され ることから、膜総数が多くなつてしまう問題が残る。  [0007] When an oxide is used as a recording film, a reflective film is required to increase the reflectivity in a disk state where the reflectivity of the recording film alone is low, and to increase and decrease the modulation degree, It is necessary to provide a dielectric film such as ZnS-SiO, and the total number of films constituting the disk increases. In addition, since the recording layer itself is formed of a plurality of thin films in the method of interlayer reaction, there remains a problem that the total number of films increases.
[0008] 一方、低融点金属薄膜に孔を開ける方式は、記録膜単独での反射率が高ぐかつ 、孔開けによって変調度も大きく取れることから、ディスクを構成する膜総数を少なく する観点からは、有利な方式である。但し、一般的に金属薄膜は、酸化物や窒化物 に比べ、高温高湿下での耐久性に劣るため、合金化によって各種改善が検討されて いる力 合金化によって反射率は低下し、ディスク特性も変化することから、各種特性 のバランス取りが問題となる。  [0008] On the other hand, the method of making holes in the low melting point metal thin film has a high reflectivity of the recording film alone and a large degree of modulation by making holes, so that the total number of films constituting the disk can be reduced. Is an advantageous scheme. However, since metal thin films generally have poor durability under high temperature and high humidity compared to oxides and nitrides, various improvements are being investigated by alloying. Since the characteristics also change, balancing various characteristics becomes a problem.
特許文献 1 :特許第 3638152号公報  Patent Document 1: Japanese Patent No. 3638152
特許文献 2:特開 2002-225433号公報  Patent Document 2: JP 2002-225433 A
特許文献 3 :米国特許公開 2004/0241376号明細書  Patent Document 3: US Patent Publication No. 2004/0241376
特許文献 4:特開 2003-326848公報  Patent Document 4: Japanese Patent Laid-Open No. 2003-326848
特許文献 5:特許第 3499724号公報  Patent Document 5: Japanese Patent No. 3499724
発明の開示  Disclosure of the invention
[0009] 本発明は、上述の従来技術の問題点を解消し、反射率 (初期反射率)が高ぐ高 C /N比を有し、さらには低ジッター値を有する光情報記録媒体用記録層(記録膜)、 該記録層を備えた光記録媒体及び該光情報記録媒体の記録層形成用スパッタリン グターゲットを提供することをその課題としてなされたものである。  The present invention eliminates the above-mentioned problems of the prior art, has a high C / N ratio with a high reflectance (initial reflectance), and further has a low jitter value. An object of the present invention is to provide a layer (recording film), an optical recording medium provided with the recording layer, and a sputtering target for forming a recording layer of the optical information recording medium.
[0010] 本発明者らは、次世代の青色レーザを用いた良好な記録感度を持つ孔開け方式 の記録膜開発を目指し、鋭意、実験、検討を重ねた結果、基金属元素として低融点 かつ環境負荷の小さい Inに着目し、これに Ni及び Coから選ばれる 1種類以上の元 素を適量含有させることにより、さらに加えて Sn、 Bi、 Ge及び Siから選ばれる 1種類 以上の元素を適量含有させることにより、前記の課題を有利に解決することを知見し 、ここに本発明を完成させるに至った。 [0011] すなわち、本発明は以下の(1)〜(5)に関する。 [0010] As a result of diligent efforts, experiments, and studies aimed at developing a recording film with a good recording sensitivity using a next-generation blue laser, the present inventors have achieved a low melting point as a base metal element. Focusing on In, which has a low environmental impact, and adding an appropriate amount of one or more elements selected from Ni and Co to it, in addition, an appropriate amount of one or more elements selected from Sn, Bi, Ge, and Si It has been found that the above-mentioned problems can be advantageously solved by the inclusion, and the present invention has been completed here. That is, the present invention relates to the following (1) to (5).
(1) レーザー光の照射によって記録マークが形成される記録層であって、該記録 層は、 Ni及び Coから選ばれる 1種類以上の元素を 20〜65原子%含有する In合金 力 なる光情報記録媒体用記録層。  (1) A recording layer in which a recording mark is formed by irradiation with a laser beam, and the recording layer contains 20 to 65 atomic% of one or more elements selected from Ni and Co. Recording layer for recording media.
(2) 前記記録層は、さらに Sn、 Bi、 Ge及び Siから選ばれる 1種類以上の元素を 1 9原子%以下 (ただし、 0原子%を含まない)含有する In合金からなる(1)に記載の光 情報記録媒体用記録層。  (2) The recording layer is further composed of an In alloy containing 19 atomic percent or less (excluding 0 atomic percent) of one or more elements selected from Sn, Bi, Ge, and Si. The recording layer for optical information recording media as described.
(3) (1)〜(2)のいずれかに記載の記録層を備えてなる光情報記録媒体。  (3) An optical information recording medium comprising the recording layer according to any one of (1) to (2).
(4) Ni及び Coから選ばれる 1種類以上の元素を 20〜65原子%含有する In合金 力、らなる光情報記録媒体の記録層形成用スパッタリングターゲット。  (4) A sputtering target for forming a recording layer of an optical information recording medium, comprising an In alloy power containing 20 to 65 atomic% of one or more elements selected from Ni and Co.
(5) 前記スパッタリングターゲットは、さらに Sn、 Bi、 Ge及び Siから選ばれる 1種類 以上の元素を 19原子%以下 (ただし、 0原子%を含まない)含有する In合金からなる (4)に記載の光情報記録媒体の記録層形成用スパッタリングターゲット。  (5) The sputtering target is further composed of an In alloy containing 19 atomic% or less (but not including 0 atomic%) of one or more elements selected from Sn, Bi, Ge, and Si. Sputtering target for forming a recording layer of an optical information recording medium.
[0012] 本発明によれば、反射率 (初期反射率)が高ぐ高 C/N比を有し、さらには低ジッ ター値を有する優れた特性を備えた光情報記録媒体用記録層及び光情報記録媒 体を提供すること力できる。特に、ディスク構成の総膜数が少ない有利な記録方式で ある孔開け方式を採用する青色レーザーを用いた追記型光ディスクとして最適であ る。また、本発明によれば、上記記録層及び光情報記録媒体の作製に有効なスパッ タリングターゲットを提供することができる。  [0012] According to the present invention, a recording layer for an optical information recording medium having excellent characteristics having a high C / N ratio with a high reflectance (initial reflectance) and a low jitter value, and It is possible to provide an optical information recording medium. In particular, it is most suitable as a write-once optical disc using a blue laser that employs a punching method, which is an advantageous recording method with a small total number of films. In addition, according to the present invention, it is possible to provide a sputtering target effective for producing the recording layer and the optical information recording medium.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明の実施形態 (及び実施例)に係る光ディスクの模式構造を表した断面図 である。  FIG. 1 is a cross-sectional view showing a schematic structure of an optical disc according to an embodiment (and an example) of the present invention.
符号の説明  Explanation of symbols
[0014] 1:基板 2:記録層 3:光透過層 [0014] 1: Substrate 2: Recording layer 3: Light transmission layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 図 1は本発明の典型的な実施形態(及び後述の実施例)に係る光ディスクの模式 構造を表した断面図である。ここにおいて、 1は基板、 2は記録層および 3は光透過 層を示している。 [0016] 以下、本発明の上記記録層 2において、主成分(基金属)として Inを選定した理由、 またこの Inに Ni及び Coから選ばれる 1種類以上の元素、さらには Sn、 Bi、 Ge及び Si 力、ら選ばれる 1種類以上の元素を含有させた In合金を用いる理由についてその成分 範囲の規定を含めて述べる。 FIG. 1 is a cross-sectional view showing a schematic structure of an optical disc according to a typical embodiment (and an example described later) of the present invention. Here, 1 is a substrate, 2 is a recording layer, and 3 is a light transmission layer. [0016] Hereinafter, in the recording layer 2 of the present invention, the reason for selecting In as the main component (base metal), one or more elements selected from Ni and Co, and further Sn, Bi, Ge The reason for using an In alloy containing one or more elements selected from the group consisting of Si force, including the definition of its component range will be described.
[0017] まず、 Inを主成分として用いるのは、 Inが、従来用いられている、例えば Al, Agあ るいは Cuなどの他の金属に比べて融点が格段に低!/、(融点:約 156. 6°C)ため、 In 合金の薄膜が容易に溶融、変形し、低いレーザーパワーでも容易に優れた記録特 性を発揮すること力 Sできるカゝらである。また、特に、青色レーザーを使用する次世代 型光ディスクへの適用を考えた場合には、 A1基合金などでは記録マークの形成が困 難となる恐れがある力 In基合金ではこの様な心配は全くないからである。そして、こ の Inの含有量は上記記録特性を十分に発揮させるには 30原子%以上とすることが 好ましぐまたより好ましくは 45原子%以上、特に好ましくは 50原子%以上とする。  [0017] First, In is used as a main component, In is conventionally used, for example, the melting point is much lower than other metals such as Al, Ag or Cu! /, (Melting point: Therefore, the In alloy thin film can be easily melted and deformed, and can easily exhibit excellent recording characteristics even at low laser power. In particular, when considering application to next-generation optical discs that use blue lasers, it is difficult to form recording marks with A1-based alloys. Because there is no. The In content is preferably 30 atomic% or more, and more preferably 45 atomic% or more, and particularly preferably 50 atomic% or more in order to sufficiently exhibit the above recording characteristics.
[0018] 次に、本発明では、 Inに Ni及び Coの 1種以上を 20〜65原子%含有させることによ つて、高反射率を維持しながら、 8T信号の高 C/Nが実現できる。なお、この詳細な メカニズムは明確ではないが、 Niや Coの含有によって、超表面平滑性、微細組織、 表面張力調整が同時に実現されるものと推定される。 Ni及び Coの 1種以上の元素の 含有量として好ましい下限値は 20原子%、より好ましくは 30原子%、更に好ましくは 40原子%である。また、その好ましい上限値は 56原子%、より好ましくは 50原子%、 更に好ましくは 45原子%である。なお、 Niを単独で添加する場合の含有量として好 ましい範囲は、 20〜45原子%、更に好ましくは 25〜35原子%である。また、 Coを単 独で添加する場合の含有量として好ましい範囲は、 35〜56原子%、更に好ましくは 40〜56原子%である。  Next, in the present invention, by containing 20 to 65 atomic% of one or more of Ni and Co in In, high C / N of 8T signal can be realized while maintaining high reflectivity. . Although this detailed mechanism is not clear, it is estimated that the inclusion of Ni and Co simultaneously achieves super-smoothness, microstructure, and surface tension adjustment. A preferred lower limit for the content of one or more elements of Ni and Co is 20 atomic%, more preferably 30 atomic%, and even more preferably 40 atomic%. Moreover, the preferable upper limit is 56 atomic%, More preferably, it is 50 atomic%, More preferably, it is 45 atomic%. In addition, the preferable range as the content when adding Ni alone is 20 to 45 atomic%, more preferably 25 to 35 atomic%. Further, the preferred range for the content when Co is added alone is 35 to 56 atomic%, more preferably 40 to 56 atomic%.
[0019] Ni及び Coから選ばれる 1種類以上の元素の含有量が 20原子%未満では、記録膜 の超表面平滑性が実現出来なくなるためメディアノイズが高くなつてしまうことから高 C/Nが得られず、好ましくない。また、 65原子%を超えると、 Inの低融点の特徴を 大きく損ない、記録感度が劣化(高 C/Nを得るための記録レーザーパワーが増大) するため好ましくない。  [0019] If the content of one or more elements selected from Ni and Co is less than 20 atomic%, the super-smoothness of the recording film cannot be realized and the media noise becomes high. It cannot be obtained and is not preferable. On the other hand, if it exceeds 65 atomic%, the low melting point characteristics of In are greatly impaired, and the recording sensitivity is deteriorated (the recording laser power for obtaining high C / N is increased), which is not preferable.
[0020] なお、ジッターの観点では、 Niもしくは Coの単独添加より、 Niと Coの複合添加の方 が望ましい。 [0020] From the viewpoint of jitter, the combined addition of Ni and Co is better than the single addition of Ni or Co. Is desirable.
[0021] 一方、 Niや Co以外の添加元素として、 Pt、 Auでは、記録膜の超表面平滑性に効 果を発揮するものの、添加によって Niや Coの添加に比べ反射率が極端に低下する ため、十分な反射率を確保できなくなる。 Vでは、反射率は確保出来るものの、 Niや Coの添加に比べ、記録膜の超表面平滑性などに劣り、十分な高 C/Nが実現出来 ない。  [0021] On the other hand, Pt and Au as additive elements other than Ni and Co have an effect on the super-surface smoothness of the recording film, but the addition causes an extremely low reflectivity compared to the addition of Ni and Co. Therefore, sufficient reflectance cannot be secured. With V, the reflectivity can be secured, but the super-smoothness of the recording film is inferior to the addition of Ni or Co, and a sufficiently high C / N cannot be realized.
[0022] さらに、上記のように Inに Ni及び Coの 1種以上を 20〜65原子%含有させた上で、 Sn、 Bi、 Ge及び Siの一種以上を 19原子%以下含有させることによって、ジッター値 を低減することが出来る。なお、このメカニズムは必ずしも明らかではないが、 Sn、 Bi 、 Ge及び Siは、融点を上げずに低熱伝導率化による横方向の熱の滲み抑制を実現 していると推察される。 Sn、 Bi、 Ge及び Siの一種以上の元素の含有量として好まし い下限値は 1原子%であり、より好ましくは 5原子%である。また、その好ましい上限 値は 19原子%であり、より好ましくは 11原子%、更に好ましくは 10原子%である。  [0022] Furthermore, as described above, In contains one or more of Ni and Co in an amount of 20 to 65 atomic%, and further contains one or more of Sn, Bi, Ge and Si in an amount of 19 atomic% or less. Jitter value can be reduced. Although this mechanism is not necessarily clear, it is presumed that Sn, Bi, Ge, and Si achieve the suppression of lateral heat bleeding by lowering the thermal conductivity without increasing the melting point. The preferred lower limit for the content of one or more elements of Sn, Bi, Ge and Si is 1 atomic%, more preferably 5 atomic%. Moreover, the preferable upper limit is 19 atomic%, More preferably, it is 11 atomic%, More preferably, it is 10 atomic%.
[0023] 本発明の記録層の膜厚は、記録層上下に金属、半金属、誘電体などの他の層を 揷入することによって最適値は変動する力 S、記録層単層で使用する場合は、 8〜25n m、さらに好ましくは、 10〜20nmが好ましい。  The film thickness of the recording layer of the present invention is such that the optimum value fluctuates by inserting other layers such as metal, semi-metal, and dielectric above and below the recording layer. In this case, 8 to 25 nm, more preferably 10 to 20 nm is preferable.
[0024] なお、本発明は記録層 1層のみで形成される構造に限定されるものではなぐ反射 率や記録特性、耐久性の要求範囲に応じて、光透過層(カバー層)と記録層との間 に光吸収層を揷入した 2層構造、基板と記録層との間に濡れ性制御層を揷入した 2 層構造等も、その範囲に含まれる。  [0024] The present invention is not limited to a structure formed of only one recording layer. Depending on the required range of reflectance, recording characteristics, and durability, a light transmission layer (cover layer) and a recording layer are used. A two-layer structure in which a light absorption layer is inserted between the two and a two-layer structure in which a wettability control layer is inserted between the substrate and the recording layer are also included in the range.
[0025] 上記 In合金からなる記録層は、ディスク面内での膜厚分布を均一に制御しやすい 点から、スパッタリング法によって形成するのがよレ、。  [0025] The recording layer made of the In alloy is preferably formed by a sputtering method because the film thickness distribution in the disk surface can be easily controlled.
[0026] 本発明に係る上記記録層を形成するために用いるスパッタリングターゲットの組成 は、上述した記録層の合金組成と基本的に同一であり、先に In合金として記載した 合金組成に調整することで、所望の成分組成を容易に実現できる。  [0026] The composition of the sputtering target used to form the recording layer according to the present invention is basically the same as the alloy composition of the recording layer described above, and is adjusted to the alloy composition described above as the In alloy. Thus, a desired component composition can be easily realized.
[0027] なお、スパッタリングターゲットは、真空溶解法などによって製造される力 S、その製造 に当たっては、雰囲気中のガス成分(窒素、酸素など)や溶解炉成分が微量ながら不 純物としてスパッタリングターゲット中に混入することがある。しかし、本発明の記録層 やスパッタリングターゲットの成分組成は、それら不可避に混入してくる微量成分まで 規定するものではなぐ本発明の上記特性が阻害されない限り、それら不可避不純 物の微量混入は許容される。 [0027] It should be noted that the sputtering target is a force S produced by a vacuum melting method or the like, and in its production, the gas component (nitrogen, oxygen, etc.) in the atmosphere and the melting furnace component are contained in the sputtering target as an impurity although they are in a small amount. May be mixed. However, the recording layer of the present invention In addition, the component composition of the sputtering target is not limited to the trace components that are inevitably mixed, so that the trace contamination of these unavoidable impurities is allowed as long as the above characteristics of the present invention are not impaired.
実施例  Example
[0028] 以下では、本発明の実施例および比較例について説明する。なお、本発明はこの 実施例に限定されるものではなぐ本発明の趣旨に適合し得る範囲で適当に変更を 加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる [0028] Examples and comparative examples of the present invention will be described below. It should be noted that the present invention is not limited to this embodiment, and can be implemented with appropriate modifications within the scope that can be adapted to the gist of the present invention, all of which fall within the technical scope of the present invention. included
Yes
1)光ディスクの作製方法  1) Optical disc manufacturing method
基板 1としてポリカーボネート基板 (厚さ: 1. lmm、トラックピッチ: 0. 32 111、溝幅 : 0. 14—0. 16〃 m、溝深さ: 25nm)を用い、 DCマグネトロンスパッタリング法によつ て記録層 2を形成した。スパッタリングターゲットとしては、直径 6インチの Inターゲット 上に添加元素のチップ(5mm角もしくは 10mm角)を置いた複合ターゲットを用いた 。膜組成は、 ICP発光分析法または ICP質量分析法で測定した。  A polycarbonate substrate (thickness: 1. lmm, track pitch: 0.32 111, groove width: 0.14—0.16 mm, groove depth: 25 nm) is used as substrate 1, and DC magnetron sputtering is used. Thus, the recording layer 2 was formed. As a sputtering target, a composite target was used in which an additive element chip (5 mm square or 10 mm square) was placed on a 6-inch diameter In target. The film composition was measured by ICP emission spectrometry or ICP mass spectrometry.
[0029] スパッタ条件は、到達真空度: 3 X 10— 6Torr以下、 Arガス圧: 2mTorr、 DCスパッ タ成膜パワー: 100Wとした。膜厚は、 BD— Rディスクの未記録状態の SUM2信号( 反射率と相関ある出力信号)レベルが 280mV以上を確保出来る膜厚となるよう 12〜 21nmの範囲で調整した(なお、比較例の合金では、 280mV以上確保出来ないもの 力 s[0029] The sputtering conditions, the ultimate vacuum: 3 X 10- 6 Torr or less, Ar gas pressure: 2 mTorr, DC spatter deposition power: was 100W. The film thickness was adjusted in the range of 12 to 21 nm so that the unrecorded SUM2 signal level of the BD-R disc (output signal correlating with reflectivity) was 280 mV or more. in the alloy, those force s Oh not be secured more than 280mV
[0030] 次いで、その上に、紫外線硬化性樹脂(日本化薬社製「BRD-130」(商品名))を スピンコートした後、紫外線硬化させて膜厚 100 ± 15 mの光透過層 3を形成した。 そして、光ディスクの評価法については、光ディスク評価装置 (パルステック工業社製 の商品名「ODU_1000」、記録レーザー波長: 405nm、 NA (開口数) : 0. 85)、ス ぺクトラムアナライザー(アドバンテスト社製の商品名「R3131R」)を用いて、線速は 4 . 9m/sで、未記録状態の SUM2レベル、記録レーザパワー 4mWから 12mWの範 囲において長さ 0. 6 111の記録マーク(2508の:6111— 013。の8丁信号に相当) を繰り返して形成し、再生レーザパワー 0. 3mWにおける信号読み取り時の記録再 生時の最大 C/N値を評価した。またタイムインターバルアナライザー(横河電機社製 TA520 (商品名))を用い、記録レーザパワー 4mWから 12mWの範囲にお!/、て最短 長さ 0· 15 111カ、ら0. 075 m単位で最長長さ 0· 6 mまでの長さの記録マーク(2 5GBの Blu— ray Discの 2T〜8T信号に相当)をランダムに繰り返し形成した際のジ ッター値の評価を行った。なおジッター値とは、記録した信号マークエッジ位置の不 確定さの指標であり、エッジの立ち上がり/立ち下がり位置の分布を求め、それを正 規分布とした場合の分散( σ )に相当する値である。なおジッター値の評価は 3トラッ ク連続で記録した後、中心のトラックの信号における値を「ジッター値 (連続 3トラック 記録時)」としている。また同時に「ジッター値 (連続 3トラック記録時)」が最小値となる 記録レーザパワーも評価した。 Next, an ultraviolet curable resin (“BRD-130” (trade name) manufactured by Nippon Kayaku Co., Ltd.) was spin-coated thereon, followed by ultraviolet curing to provide a light transmitting layer 3 having a thickness of 100 ± 15 m. Formed. For optical disk evaluation methods, optical disk evaluation equipment (trade name “ODU_1000” manufactured by Pulstec Industrial Co., Ltd., recording laser wavelength: 405 nm, NA (numerical aperture): 0.85), spectrum analyzer (manufactured by Advantest) (R3131R)), the linear velocity is 4.9 m / s, the unrecorded SUM2 level, the recording laser power from 4 mW to 12 mW, and a length of 0.6 111 recording mark (2508 : 6111-013 (corresponding to 8 signals), and the maximum C / N value at the time of recording / reproducing at the time of signal reading at a reproducing laser power of 0.3 mW was evaluated. Time interval analyzer (Yokogawa Electric Co., Ltd.) TA520 (trade name)) with a recording laser power in the range of 4mW to 12mW! /, The shortest length 0 · 15 111, et al. 0.075m to the longest length 0 · 6m The jitter value was evaluated when random recording marks (corresponding to 2T-8T signals of 25 GB Blu-ray Disc) were randomly formed. Note that the jitter value is an index of the uncertainty of the recorded signal mark edge position, and is a value corresponding to the variance (σ) when the distribution of the rising / falling position of the edge is obtained and set as a normal distribution. It is. The jitter value is evaluated after recording three consecutive tracks, and the value in the signal of the center track is the “jitter value (during continuous three-track recording)”. At the same time, the recording laser power at which the “jitter value (during continuous three-track recording)” is the minimum value was also evaluated.
[0031] 表 1は、実施例及び比較例それぞれの光記録媒体における未記録状態の SUM2 のレベルと 8Τ信号記録再生時の C/N値を示した表であり、表 2は、実施例及び比較 例それぞれの光記録媒体における未記録状態の SUM2のレベル、 8Τ信号記録再 生時の C/N値、ジッター値 (連続 3トラック記録時)が最小値となる記録パワー及びジ ッター値 (連続 3トラック記録時)を示した表である。また、表 1は、上記(1)に対応する In合金、表 2は、上記(2)に対応する In合金をそれぞれ記録層とした場合である。な お、最大 C/N値が得られる記録レーザーパワーは、 6mWから 10mWの範囲で、表 中、未記録状態の SUM2のレベルが 280mV以上には〇を、これに満たないものは Xを付し、また 8T信号記録再生時の C/N値 50dB以上には〇を、これに満たないも のは Xを付している。  [0031] Table 1 is a table showing the unrecorded SUM2 level and the C / N value at the time of 8 再生 signal recording / reproduction on the optical recording media of the examples and comparative examples, and Table 2 shows the examples and Comparison Example Recording power and jitter values (continuous) for which the unrecorded SUM2 level on each optical recording medium, the C / N value during 8 、 signal recording playback, and the jitter value (continuous 3-track recording) are minimum values. It is a table showing (at the time of 3-track recording). Table 1 shows the case where the In alloy corresponding to the above (1) is used as the recording layer, and Table 2 shows the case where the In alloy corresponding to the above (2) is used as the recording layer. The recording laser power that gives the maximum C / N value is in the range of 6 mW to 10 mW. In the table, X is marked if the unrecorded SUM2 level is 280 mV or more, and X is marked if it is less than this. In addition, a C / N value of 50 dB or more at the time of 8T signal recording / playback is marked with ◯, and X is marked when it is less than this.
[0032] [表 1] [0032] [Table 1]
[z [εεοο] [z [εεοο]
Figure imgf000009_0001
Figure imgf000009_0001
£l S90/L00ZdT/13d 8 o 難 ooz OA 合金系 組成 (I CP) 膜厚 SU 2 8 T C/N 記録パワー ジッター 実施例 18 ln-Co Co 55.6at% 13nm 〇 338mV 〇 ≥50dB 7. Im 8.4% 実施例 19 In - Go Co 65.1at 18 〇 379mV 〇 ≥50dB 8.0m 11.6% 実施例 20 In-Co-Sn Co 46.1at% Sn 1.05at% 12nm O 291mV O ≥50dB 6.6mW 7.8% 実施例 21 In - Co - Sn Co 47.1at% Sn 1.75at% 12nm 〇 289mV 〇 ≥50dB 6. OmW 7.9% 実施例 22 In-Co-Bi Co 29at% Bi 19at% 15nm 〇 310mV 〇 ≥50dB 7.4mW 8.6% 実施例 23 In-Ni-Sn Ni 31at% Sn 15at% 15nm 〇 311mV 〇 ≥50dB 7.8mW 8.8% 実施例 24 In-Ni-Sn Ni 35at% Sn 15at% 15nm 〇 365mV O ≥50dB 7.6mW 10.1% 実施例 25 In-Ni-Sn Ni 37at% Sn 17at% 15nm 〇 335mV O ≥50dB 8. OmW 9.9% 実施例 26 In-Co-Bi Co 39at% Bi 10at% 12nm 〇 280mV 〇 ≥50dB 7.2m 9.5% 実施例 27 In-Co-Ge Co 50.4at% Ge 7. at% 14nm 〇 340mV 〇 ≥50dB 6.4m 9.0% 実施例 28 In- Co- Si Co 42.8at% Si 6.4at% 15nm 〇 351mV O ≥50dB 7.2m 8.7% 実施例 29 In-Co-Ni-Sn Co 37.4at% Ni 9.2at% 12nm 〇 344mV O ≥50dB 6.6mW 6.9% £ l S90 / L00ZdT / 13d 8 o Difficult ooz OA Alloy composition (ICP) Film thickness SU 2 8 TC / N Recording power jitter Example 18 ln-Co Co 55.6at% 13nm ○ 338mV ○ ≥50dB 7. Im 8.4% Example 19 In-Go Co 65.1at 18 ○ 379mV ○ ≥50dB 8.0m 11.6% Example 20 In-Co-Sn Co 46.1at% Sn 1.05at% 12nm O 291mV O ≥50dB 6.6mW 7.8% Example 21 In-Co-Sn Co 47.1at% Sn 1.75at% 12nm ○ 289mV ○ ≥50dB 6.OmW 7.9% Example 22 In-Co-Bi Co 29at% Bi 19at% 15nm ○ 310mV ○ ≥50dB 7.4mW 8.6% Example 23 In-Ni-Sn Ni 31at% Sn 15at% 15nm ○ 311mV ○ ≥50dB 7.8mW 8.8% Example 24 In-Ni-Sn Ni 35at% Sn 15at% 15nm ○ 365mV O ≥50dB 7.6mW 10.1% Example 25 In-Ni-Sn Ni 37at% Sn 17at% 15nm ○ 335mV O ≥50dB 8. OmW 9.9% Example 26 In-Co-Bi Co 39at% Bi 10at% 12nm ○ 280mV ○ ≥50dB 7.2m 9.5% Example 27 In-Co-Ge Co 50.4at% Ge 7. at% 14nm ○ 340mV ○ ≥50dB 6.4m 9.0% Example 28 In-Co-Si Co 42.8at% Si 6.4at% 15nm ○ 351mV O ≥50dB 7.2m 8.7% Example 29 In-Co-Ni-Sn Co 37.4at% Ni 9.2at% 12nm ○ 344mV O ≥50dB 6.6mW 6.9%
Sn 4. at%  Sn 4. at%
実施例 30 ln-Co - Ni-Sn Co 36.5at% Ni 10.7at% 12nm O 353mV 〇 ≥50dB 6.4mW 7.3%  Example 30 ln-Co-Ni-Sn Co 36.5at% Ni 10.7at% 12nm O 353mV ○ ≥50dB 6.4mW 7.3%
Sn 9.8at%  Sn 9.8at%
実施例 31 In-Co-Ni-Sn Go 41.4at% Ni 8.5at% 12nm 〇 309mV O ≥50dB 6.4mW 6.9%  Example 31 In-Co-Ni-Sn Go 41.4at% Ni 8.5at% 12nm ○ 309mV O ≥50dB 6.4mW 6.9%
Sn 8.4at%  Sn 8.4at%
実施例 32 In-Co-Ni-Sn Co 34.0at% Ni 16.6at% 12nm 〇 308mV 〇 ≥50dB 6.2mW 6.9%  Example 32 In-Co-Ni-Sn Co 34.0at% Ni 16.6at% 12nm ○ 308mV ○ ≥50dB 6.2mW 6.9%
Sn 5.7at  Sn 5.7at
実施例 33 In-Co- i-Sn Co 34.1at% Ni 13.2at% 13nm 〇 346mV 〇 ≥50dB 6.6mW 7.4%  Example 33 In-Co-i-Sn Co 34.1at% Ni 13.2at% 13nm ○ 346mV ○ ≥50dB 6.6mW 7.4%
Sn 10.9at%  Sn 10.9at%
実施例 34 In-Co - N卜 Sn Co 32.5at% Ni 10.7at% nm O 354mV O ≥50dB 6.6mW 7.4%  Example 34 In-Co-N 卜 Sn Co 32.5at% Ni 10.7at% nm O 354mV O ≥50dB 6.6mW 7.4%
Sn 5.2at%  Sn 5.2at%
実施例 35 In-Co-Ni-Sn Co 34.2at% Ni 14.7at% 14nm 〇 312mV O ≥50dB 6.6mW 8.1%  Example 35 In-Co-Ni-Sn Co 34.2at% Ni 14.7at% 14nm ○ 312mV O ≥50dB 6.6mW 8.1%
Sn 3.8at%  Sn 3.8at%
実施例 36 In-Co-Ni-Sn Co 32.2at% Ni 12.5at% 11nm 〇 286mV 〇 ≥50dB 6.2mW 7.8%  Example 36 In-Co-Ni-Sn Co 32.2at% Ni 12.5at% 11nm ○ 286mV ○ ≥50dB 6.2mW 7.8%
Sn 7.1at%  Sn 7.1at%
実施例 37 In-Co-Ni-Sn Co 34.4at% Ni 17.5at% 13nm 〇 333mV 〇 ≥50dB 6.6mW 7.8%  Example 37 In-Co-Ni-Sn Co 34.4at% Ni 17.5at% 13nm ○ 333mV ○ ≥50dB 6.6mW 7.8%
Sn 5.3at%  Sn 5.3at%
(実施例 1 ) ln-Co Co 22at% 12nm 〇 317mV O ≥50dB 6.8m 11.6%  (Example 1) ln-Co Co 22at% 12nm ○ 317mV O ≥50dB 6.8m 11.6%
表 1より、本発明の Ni及び Coから選ばれる 1種類以上の元素を含む In合金からな る記録層を備えた光ディスクは、比較例(Pt Auあるいは Vを含む In合金)比べて、 S UM2のレベル及び C/N値が!/、ずれも高ぐ優れた記録特性を発揮するものであるこ とがわカゝる。 According to Table 1, the optical disc provided with a recording layer made of an In alloy containing one or more elements selected from Ni and Co of the present invention is smaller than the comparative example (In alloy containing Pt Au or V). The C level and the C / N value are excellent, and the deviation is high.
また、表 2から、本発明の Nほたは Coを含みさらに Bi Sn Ge及び Siから選ばれる 1種類以上の元素を含有する In合金記録層を備えた光ディスクは同様に SUM2のレ ベル及び C/N値がいずれも高い上に、これら Bi Sn Ge及び Siを含まない表 1の実 施例 1に相当する参考例に比べ、ジッター値も低い値が得られており、さらに優れた 記録特性を有して!/、ること力 S判明する。 [0035] 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れる ことなく様々な変更および修正が可能であることは、当業者にとって明らかである。 なお、本出願は、 2006年 8月 8日付けで出願された日本特許出願(特願 2006— 2 15754)、 2007年 2月 8日付けで出願された日本特許出願(特願 2007— 029612) 及び 2007年 5月 11日付けで出願された日本特許出願(特願 2007— 126210)に 基づいており、その全体が引用により援用される。 Also, from Table 2, an optical disc having an In alloy recording layer containing N or Co of the present invention and containing one or more elements selected from Bi Sn Ge and Si is similarly SUM2 level and C Compared to the reference example corresponding to Example 1 in Table 1 that does not contain BiSnGe and Si, both the N / N value is high, and the jitter value is also low. It turns out! [0035] Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on August 8, 2006 (Japanese Patent Application 2006-2 15754) and a Japanese patent application filed on February 8, 2007 (Japanese Patent Application 2007-029612). And based on a Japanese patent application (Japanese Patent Application No. 2007-126210) filed on May 11, 2007, which is incorporated by reference in its entirety.
また、ここに引用されるすべての参照は全体として取り込まれる。  Also, all references cited herein are incorporated as a whole.
産業上の利用可能性  Industrial applicability
[0036] 本発明によれば、反射率 (初期反射率)が高ぐ高 C/N比を有し、さらには低ジッ ター値を有する優れた特性を備えた光情報記録媒体用記録層及び光情報記録媒 体を提供すること力できる。特に、ディスク構成の総膜数が少ない有利な記録方式で ある孔開け方式を採用する青色レーザーを用いた追記型光ディスクとして最適であ る。また、本発明によれば、上記記録層及び光情報記録媒体の作製に有効なスパッ タリングターゲットを提供することができる。 According to the present invention, a recording layer for an optical information recording medium having excellent characteristics having a high C / N ratio with a high reflectance (initial reflectance) and a low jitter value, and It is possible to provide an optical information recording medium. In particular, it is most suitable as a write-once optical disc using a blue laser that employs a punching method, which is an advantageous recording method with a small total number of films. In addition, according to the present invention, it is possible to provide a sputtering target effective for producing the recording layer and the optical information recording medium.

Claims

請求の範囲 The scope of the claims
[1] レーザー光の照射によって記録マークが形成される記録層であって、該記録層は、 [1] A recording layer on which a recording mark is formed by laser light irradiation, the recording layer comprising:
Ni及び Coから選ばれる 1種類以上の元素を 20〜65原子%含有する In合金からな る光情報記録媒体用記録層。 A recording layer for an optical information recording medium comprising an In alloy containing 20 to 65 atomic% of one or more elements selected from Ni and Co.
[2] 前記記録層は、さらに Sn、 Bi、 Ge及び Siから選ばれる 1種類以上の元素を 19原子[2] The recording layer further contains 19 atoms of one or more elements selected from Sn, Bi, Ge, and Si.
%以下 (ただし、 0原子%を含まな!/、)含有する In合金からなる請求項 1に記載の光 情報記録媒体用記録層。 2. The recording layer for an optical information recording medium according to claim 1, comprising an In alloy containing not more than% (however, 0 atomic% is not included! /).
[3] 請求項;!〜 2の!/、ずれかに記載の記録層を備えてなる光情報記録媒体。 [3] An optical information recording medium comprising the recording layer according to any one of claims 2 to!
[4] Ni及び Coから選ばれる 1種類以上の元素を 20〜65原子%含有する In合金からな る光情報記録媒体の記録層形成用スパッタリングターゲット。 [4] A sputtering target for forming a recording layer of an optical information recording medium made of an In alloy containing 20 to 65 atomic% of one or more elements selected from Ni and Co.
[5] 前記スパッタリングターゲットは、さらに Sn、 Bi、 Ge及び Siから選ばれる 1種類以上 の元素を 19原子%以下 (ただし、 0原子%を含まない)含有する In合金からなる請求 項 4に記載の光情報記録媒体の記録層形成用スパッタリングターゲット。 [5] The sputtering target according to claim 4, further comprising an In alloy containing 19 atomic% or less (excluding 0 atomic%) of one or more elements selected from Sn, Bi, Ge, and Si. Sputtering target for forming a recording layer of an optical information recording medium.
PCT/JP2007/065413 2006-08-08 2007-08-07 Recording layer for optical information recording medium, sputtering target, and optical information recording medium WO2008018440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/376,484 US20100178446A1 (en) 2006-08-08 2007-08-07 Recording layer for optical recording medium, sputtering target, and optical recording medium

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006215754 2006-08-08
JP2006-215754 2006-08-08
JP2007-029612 2007-02-08
JP2007029612 2007-02-08
JP2007126210A JP4110194B1 (en) 2006-08-08 2007-05-11 Optical information recording medium
JP2007-126210 2007-05-11

Publications (1)

Publication Number Publication Date
WO2008018440A1 true WO2008018440A1 (en) 2008-02-14

Family

ID=39032970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065413 WO2008018440A1 (en) 2006-08-08 2007-08-07 Recording layer for optical information recording medium, sputtering target, and optical information recording medium

Country Status (1)

Country Link
WO (1) WO2008018440A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195943A (en) * 1985-02-25 1986-08-30 Hitachi Ltd Alloy having variable spectral reflectance and recording material
JPS648521A (en) * 1987-06-30 1989-01-12 Sony Corp Optical recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195943A (en) * 1985-02-25 1986-08-30 Hitachi Ltd Alloy having variable spectral reflectance and recording material
JPS648521A (en) * 1987-06-30 1989-01-12 Sony Corp Optical recording medium

Similar Documents

Publication Publication Date Title
JP4377877B2 (en) Ag alloy reflecting film for optical information recording medium, optical information recording medium, and Ag alloy sputtering target for forming Ag alloy reflecting film for optical information recording medium
JP4969624B2 (en) Optical information recording medium
WO2005055209A1 (en) Optical recording medium, and recording/reproducing method for optical recording medium and optical recording/ reproducing device
US20060161942A1 (en) Optical recording medium and process for producing the same, method for recording data on optical recording medium and method for reproducing data from optical recording medium
WO2007046390A1 (en) Recording layer for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium
JP2007062108A (en) Recording layer for optical information recording medium, sputtering target and optical information recording medium
KR100770806B1 (en) Optical recording medium, method for producing the same, and data recording method and data reproducing method for optical recording medium
US7427431B2 (en) Write once optical recording medium
US20100227107A1 (en) Recording layer for optical information recording medium, optical information recording medium, and spattering target
JP4110194B1 (en) Optical information recording medium
US20070248783A1 (en) Optical information recording media
JP2006281751A (en) Write-once optical recording medium
JP2005339761A (en) Optical recording medium
JP4439357B2 (en) recoding media
WO2008018440A1 (en) Recording layer for optical information recording medium, sputtering target, and optical information recording medium
WO2008075683A1 (en) Optical information recording medium
JP2007196683A (en) Recording layer for optical information recording medium, optical information recording medium and sputtering target
JP2009090601A (en) Recording layer for optical information recording medium, optical information recording medium, and sputtering target
JP4560495B2 (en) recoding media
JP2009233952A (en) Optical information recording medium
JP5399184B2 (en) Optical information recording medium and sputtering target
JP2007301761A (en) Recording layer for optical information recording medium and optical information recording medium
KR20110086668A (en) Information recording medium, recording device, reproduction device, and reproduction method
JP4618300B2 (en) Information recording medium and manufacturing method thereof
JP2009233951A (en) Optical information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12376484

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792082

Country of ref document: EP

Kind code of ref document: A1