WO2008016327A1 - Antenna for near field and far field radio frequency identification - Google Patents
Antenna for near field and far field radio frequency identification Download PDFInfo
- Publication number
- WO2008016327A1 WO2008016327A1 PCT/SG2006/000216 SG2006000216W WO2008016327A1 WO 2008016327 A1 WO2008016327 A1 WO 2008016327A1 SG 2006000216 W SG2006000216 W SG 2006000216W WO 2008016327 A1 WO2008016327 A1 WO 2008016327A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiating element
- antenna
- radio frequency
- frequency identification
- mode
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 14
- 230000005670 electromagnetic radiation Effects 0.000 claims description 10
- 230000005672 electromagnetic field Effects 0.000 claims description 4
- 230000002457 bidirectional effect Effects 0.000 claims 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 26
- 239000000758 substrate Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/40—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
- H04B5/48—Transceivers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
- H04B5/24—Inductive coupling
- H04B5/26—Inductive coupling using coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/77—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
Definitions
- the invention relates generally to antennas.
- it relates to an antenna for near field and far field radio frequency identification applications.
- RFID radio frequency identification
- RFID reader antennas are used to transmit and receive RF signals to and from RFID tags.
- Information stored in the RFID tags is usually editable and therefore updateable.
- the RFID system is therefore commonly used in logistical applications, such as for managing the flow of articles in a warehouse or the inventory of books in a library.
- RFID systems are generally classified as near field or far field RFID systems.
- communication between the RFID reader and the tag is usually achieved by inductive coupling of magnetic fields, or by capacitive coupling of electric fields.
- Most of the near field RFID systems are inductive coupling systems where antenna coils are used to generate the required magnetic fields.
- the near field RFID systems are usually operated at frequencies that are lower than 30 megahertz (MHz), typically at 13.56MHz. Near field RFID systems typically have an operating distance of less than one meter.
- the communication between the RFID reader and the tag is achieved by transmission and reception of electromagnetic waves.
- the far field RFID reader emits RF energy through an antenna to the RFID tag, where part of the RF energy is then reflected from the RFID tag and detected by the RFID reader.
- the far field RFID systems have a comparatively longer operating distance to the near field RFID systems.
- the detection range of a typical far field RFID system operating at ultra-high frequency (UHF) band may exceed 4 meters.
- UHF ultra-high frequency
- an antenna for near field and far field radio frequency identification comprises a first radiating element for operating a first mode of radio frequency identification using a first current.
- the antenna further comprises a second radiating element for operating a second mode of radio frequency identification using a second current.
- at least one of a portion of the first radiating element forms a portion of the second radiating element and a portion of the second radiating element forms a portion of the first radiating element.
- a method for configuring an antenna for radio frequency identification involves the step of providing a first radiating element for operating a first mode of radio frequency identification using a first current.
- the method further involves the step of providing a second radiating element for operating a second mode of radio frequency identification using a second current. Specifically, at least one of a portion of the first radiating element forms a portion of the second radiating element and a portion of the second radiating element forms a portion of the first radiating element.
- the first radiating element When the first radiating element is excited by the first current, the first radiating element generates a first field for providing the first mode of radio frequency identification, and when the second radiating element is excited by the second current, the second radiating element generates a second field for providing the second mode of radio frequency identification.
- Fig. 1 is a perspective view of an antenna according to a first embodiment of the invention
- Fig. 2 illustrates the operational principles of the antenna of Fig. 1;
- Fig. 3a is a graph showing the measured returned loss of the antenna of Fig. 1 at 13.56MHz;
- Fig. 3b is a graph showing the measured field response of the antenna of Fig. 1 at 13.56MHz;
- Fig. 3 c is a graph showing the measured returned loss of the antenna of Fig. 1 at UHF band;
- Fig. 3d is a graph showing the measured gain and axial ratio of the antenna of Fig. 1 at UHF band;
- Figs. 4a to 4d illustrate further embodiments of the antenna of Fig. 1;
- Figs. 5a and 5b illustrate exemplary configurations of the first and second radiating elements of the antenna of Fig. 1; and Figs. 6a and 6b illustrate exemplary configurations of the second radiating element of the antenna of Fig. 1.
- RFID radio frequency identification
- Embodiments of the invention are described in greater detail hereinafter for an antenna for use in near field and far field RFID applications.
- the antenna 100 has a first radiating element 102.
- the first radiating element 102 is used for generating a magnetic field to power up RFID tags and detecting the signals from the RFID tags.
- the first radiating element 102 is preferably formed on a first side 103 of a substrate 104.
- the substrate 104 is preferably planar. Examples of the substrate 104 are printed circuit boards (PCBs) and boards made of non-conductive material such as foams.
- the first radiating element 102 comprises a loop element 106.
- the loop element 106 is preferably continuous and has a geometrical shape such as a polygon, an ellipse, a circle or a semi-circle.
- the loop element 106 further has a first free end 108 and a second free end 110.
- An impedance matching network 112 is preferably connectable to the first and second free ends 108, 110 of the first radiating element 102 such that the first and second free ends 108, 110 are interconnected.
- the impedance matching network 112 provides matching of the impedances between the antenna 100 and a first feed (not shown).
- the first feed is used to provide the first radiating element 102 with a first current for generating a first field.
- the first field powers up RFID tags and detect RFID signals from the RFID tags. The detected RFID signals are then received by the first feed via the first radiating element 102.
- the first feed is preferably comiected to the first radiating element via input terminals 114a, 114b of the impedance matching network 112.
- the first radiating element 102 is suitable for operating at high frequency (HF) mode and is capable of generating magnetic fields for near field RFID applications.
- An exemplary operating frequency of the first radiating element 102 is the regulatory frequency of 13.56MHz.
- the antenna 100 further comprises a second radiating element 116.
- the second radiating element 116 has a ground portion 118 connected to a first section 120 of the first radiating element 102 distal to the impedance matching network 112.
- the ground portion 118 is preferably formed on the same side 103 of the substrate 104 as the first radiating element 102.
- the ground portion 118 has a geometrical shape such as a polygon, an ellipse or a circle. The geometrical shape of the ground portion 118 is independent of the geometrical shape of the first radiating element 102.
- the ground portion 118 preferably has a loop-shaped slot 122 including a first slot 124 a and a second slot 124b formed therein.
- the loop-shaped slot 122 preferably has a geometrical shape such as a polygon, a circle or an ellipse.
- Each of the first and second slot 124a, 124b preferably extends substantially diagonally along a diagonal line 126 from the loop-shaped slot 122.
- the first and second slots 124a, 124b preferably extend towards each other.
- the ground portion 118 is preferably substantially symmetrical about the diagonal line 126.
- Each of the first and second slot 124a, 124b and the loop-shaped slot 122 preferably has uniform width therethroughout.
- the first and second slots 124a, 124b are preferably dimensionally similar.
- An impedance matching slot 128 is preferably formed in the ground portion 118 for matching the impedances of the second radiating element 116 and a second feed 130.
- the second feed 130 is connected to the second radiating element 116.
- the impedance matching slot 128 is preferably formed adjacent to the first section 120 of the first radiating element 102 and preferably has a uniform width therealong. In this way, a portion of the first section 120 of the first radiating element 102 forms one part of the ground portion 118 of the second radiating element 116 for defining a common portion between the first and second radiating elements 102, 116.
- the second feed 130 is preferably formed on a second side 105 of the substrate 104 opposite to the first side 103 of the substrate 104.
- the second feed 130 is used for providing a second current to the second radiating element 116 for generating a second field.
- the second field generates an electromagnetic field for propagating electromagnetic radiation in the radio or microwave frequency range.
- the second radiating element 116 is suitable for operating at ultra-high frequency (UHF) or microwave frequency mode.
- the second radiating element 116 is therefore capable of generating radio waves for use in far field RPID applications.
- Exemplary operating frequency bands of the second radiating element 102 are 860 to 870MHz, 902 to 928MHz, 950 to 960MHz 5 2.4GHz and 5GHz bands.
- the second radiating element 116 is advantageously configured for generating circular polarization radiation.
- the first and second radiating elements 102, 116 are preferably made of copper and are preferably formed as a continuous metallic strip or conductive wire.
- the first and second radiating elements 102, 116 may also be made of inductive ink and formed by using printing technology.
- first and second radiating elements 102, 116 may be curved for conforming to a curved surface or substrate on which the antenna 100 is formed.
- Fig. 2 shows a side view of the antenna 100 along the y-axis.
- the first current flows through the first radiating element 102 via the input terminals 114a, 114b and the second current flows through the second radiating element 116 via the second feed 130.
- the first current excites the loop element 106 of the first radiating element 102 to thereby produce a magnetic field 200 in which near field RPID is applicable.
- the magnetic field 200 energizes and powers up HF RPID tags 204 that are provided within the operating distance of the antenna 100.
- the HF RPID tags 204 subsequently produce RFID signals that contain tag data stored therein.
- the RPID signals are in turn received by the first feed via the first radiating element 102.
- the second current excites the second radiating element 116 to thereby produce far field electromagnetic radiation 202 for detecting and sensing UHF RPID tags 208.
- the far field electromagnetic radiation is radiated bi-directionally away from the antenna 100, as shown in Fig. 2.
- the antenna 100 is advantageously capable of simultaneously generating magnetic and electromagnetic fields for supporting near field and far field RPID applications respectively.
- the antenna 100 is desirably used for integrating RPID systems having separate antenna modules for operating in HF and UHF modes.
- Fig. 3a is a graph that shows measured return loss of the antenna 100 operating at 13.56MHz. The measured results show the antenna 100 having a well-matched impedance matching characteristic at the measured frequency of 13.56MHz.
- Fig. 3b shows the field response of the antenna 100 operating at 13.56MHz.
- Fig. 3c illustrates the measured return loss of the antenna 100 operating at UHF band.
- the measured return loss is less than -15dB over the UHF band of 902 to 928MHz.
- Fig. 3d is another graph showing measured gain and axial ratio of the antemia 100 operating at the UHF band.
- Desirable axial ratio measurements are observed along the positive and negative z-axis directions.
- the measured axial ratios along the positive and negative z-axis directions are less than IdB and less than 2dB respectively.
- Figs. 4 to 6 illustrate other embodiments of the antenna 100 having exemplary configurations and are described hereinafter.
- the impedance matching unit 112 is shown to be connectable to different sections of the first radiating element 102.
- Fig. 4b specifically shows that the second radiating element 116 is connectable to two adjacent sections of the first radiating element 102.
- Figs. 4c and 4d show that the loop element 106 of the first radiating element 102 is connectable to different parts of the ground portion 118 of the second radiating element 116.
- Fig. 5a shows alternative geometrical shapes of the loop element 106 of the first radiating element 102 and the ground portion 118 of the second radiating element 116.
- Fig. 5b shows that the first radiating element 102 comprises two interconnected loop elements 106 having different geometrical shapes for increasing the spatial extent of the magnetic field 200.
- the first radiation element 102 may consist of more than two loop elements 106 for further increasing the extent of the magnetic field 200.
- Figs. 6a and 6b show that the second radiating element 116 comprises a plate radiator 600 and a ground patch 602.
- the plate radiator 600 and the ground patch 602 are preferably planar and parallel to each other.
- the plate radiator 600 is preferably rectanglarly shaped including two diagonal corners that are beveled.
- the plate radiator 600 and ground patch 602 are further spatially displaced and interconnected by a connector (not shown).
- the ground patch 602 is directly connected to the loop element 106 of the first radiating element 102 and is further connected to the plate radiator 600 at a feed point 604 formed on the plate radiator 600.
- the plate radiator 600 is directly connected to the loop element 106 of the first radiating element 102 and is further connected to the ground patch 602 at the feed point 604 of the plate radiator 600.
- the embodiments of the antenna 100 as shown in Figs. 6a and 6b are capable of generating circular polarization radiation.
- the electromagnetic radiation generated by the embodiments of the invention as shown in Figs. 6a and 6b radiates unidirectionally away from the antenna 100.
- the second radiating element may be formed as a spiral radiator for generating bi-directional circular polarization radiation for supporting far field RFID applications.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
- Waveguide Aerials (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06769699A EP2052462A4 (en) | 2006-08-01 | 2006-08-01 | Antenna for near field and far field radio frequency identification |
PCT/SG2006/000216 WO2008016327A1 (en) | 2006-08-01 | 2006-08-01 | Antenna for near field and far field radio frequency identification |
AU2006346817A AU2006346817A1 (en) | 2006-08-01 | 2006-08-01 | Antenna for near field and far field radio frequency identification |
CN200680055993A CN101536344A (en) | 2006-08-01 | 2006-08-01 | Antenna for near field and far field radio frequency identification |
US12/375,846 US20100026439A1 (en) | 2006-08-01 | 2006-08-01 | Antenna For Near Field And Far Field Radio Frequency Identification |
TW096128272A TW200818607A (en) | 2006-08-01 | 2007-08-01 | Antenna for near field and far field radio frequency identification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/SG2006/000216 WO2008016327A1 (en) | 2006-08-01 | 2006-08-01 | Antenna for near field and far field radio frequency identification |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008016327A1 true WO2008016327A1 (en) | 2008-02-07 |
Family
ID=38997434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SG2006/000216 WO2008016327A1 (en) | 2006-08-01 | 2006-08-01 | Antenna for near field and far field radio frequency identification |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100026439A1 (en) |
EP (1) | EP2052462A4 (en) |
CN (1) | CN101536344A (en) |
AU (1) | AU2006346817A1 (en) |
TW (1) | TW200818607A (en) |
WO (1) | WO2008016327A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101752648A (en) * | 2008-11-28 | 2010-06-23 | 航天信息股份有限公司 | Broadband RFID UHF antenna and label with and manufacture method |
WO2012127097A1 (en) * | 2011-03-24 | 2012-09-27 | Nokia Corporation | An apparatus with a near field coupling member and method for communication |
CN105529520A (en) * | 2016-01-29 | 2016-04-27 | 华南师范大学 | Ultra-wideband circular polarized anti-metallic RFID tag antenna prone to impedance regulation |
EP3147996A1 (en) * | 2015-09-25 | 2017-03-29 | Johnson Electric S.A. | Multi-frequency antenna module |
GB2550103A (en) * | 2016-03-10 | 2017-11-15 | Paxton Access Ltd | Dual frequency RFID reader |
US10403979B2 (en) | 2015-03-13 | 2019-09-03 | Samsung Electro-Mechanics Co., Ltd. | Antenna apparatus and electronic device including the same |
US11836562B2 (en) * | 2018-12-21 | 2023-12-05 | Pragmatic Printing Ltd. | Multi-protocol RFID tag and system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG187866A1 (en) * | 2010-09-08 | 2013-03-28 | Bilcare Technologies Singapore Pte Ltd | An integrated unit for reading identification information based on inherent disorder |
CN102544756B (en) * | 2012-02-22 | 2013-10-30 | 浙江大学 | Near-field and far-field universal wireless charging tray antenna |
US9582750B2 (en) | 2014-12-22 | 2017-02-28 | Avery Dennison Retail Information Services, Llc | RFID devices with multi-frequency antennae |
JP6470132B2 (en) * | 2015-06-26 | 2019-02-13 | マスプロ電工株式会社 | Antenna device |
CN111476335B (en) * | 2020-04-02 | 2024-02-09 | 上海天臣射频技术有限公司 | RFID electronic tag, RFID chip and commodity |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020109636A1 (en) * | 2001-01-16 | 2002-08-15 | Johnson Daniel L. | Omnidirectional RFID antenna |
WO2005081808A1 (en) * | 2004-02-20 | 2005-09-09 | 3M Innovative Properties Company | Multi-loop antenna for radio frequency identification (rfid) communication |
US20050258966A1 (en) * | 2004-05-18 | 2005-11-24 | Quan Ralph W | Antenna array for an RFID reader compatible with transponders operating at different carrier frequencies |
US20060066441A1 (en) * | 2004-09-30 | 2006-03-30 | Knadle Richard T Jr | Multi-frequency RFID apparatus and methods of reading RFID tags |
US20060132312A1 (en) * | 2004-12-02 | 2006-06-22 | Tavormina Joseph J | Portal antenna for radio frequency identification |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5121127A (en) * | 1988-09-30 | 1992-06-09 | Sony Corporation | Microstrip antenna |
JP2537390B2 (en) * | 1988-12-23 | 1996-09-25 | 原田工業株式会社 | Plane antenna |
JP2001332930A (en) * | 2000-05-22 | 2001-11-30 | Sony Corp | Antenna device and radio communications equipment |
SE0004724D0 (en) * | 2000-07-10 | 2000-12-20 | Allgon Ab | Antenna device |
US6922173B2 (en) * | 2002-02-05 | 2005-07-26 | Theodore R. Anderson | Reconfigurable scanner and RFID system using the scanner |
RU2237322C1 (en) * | 2003-05-12 | 2004-09-27 | Арт Лаборатори Лтд. | Four-band aerial |
-
2006
- 2006-08-01 US US12/375,846 patent/US20100026439A1/en not_active Abandoned
- 2006-08-01 CN CN200680055993A patent/CN101536344A/en active Pending
- 2006-08-01 WO PCT/SG2006/000216 patent/WO2008016327A1/en active Application Filing
- 2006-08-01 AU AU2006346817A patent/AU2006346817A1/en not_active Abandoned
- 2006-08-01 EP EP06769699A patent/EP2052462A4/en not_active Withdrawn
-
2007
- 2007-08-01 TW TW096128272A patent/TW200818607A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020109636A1 (en) * | 2001-01-16 | 2002-08-15 | Johnson Daniel L. | Omnidirectional RFID antenna |
WO2005081808A1 (en) * | 2004-02-20 | 2005-09-09 | 3M Innovative Properties Company | Multi-loop antenna for radio frequency identification (rfid) communication |
US20050258966A1 (en) * | 2004-05-18 | 2005-11-24 | Quan Ralph W | Antenna array for an RFID reader compatible with transponders operating at different carrier frequencies |
US20060066441A1 (en) * | 2004-09-30 | 2006-03-30 | Knadle Richard T Jr | Multi-frequency RFID apparatus and methods of reading RFID tags |
US20060132312A1 (en) * | 2004-12-02 | 2006-06-22 | Tavormina Joseph J | Portal antenna for radio frequency identification |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101752648A (en) * | 2008-11-28 | 2010-06-23 | 航天信息股份有限公司 | Broadband RFID UHF antenna and label with and manufacture method |
CN101752648B (en) * | 2008-11-28 | 2013-02-06 | 航天信息股份有限公司 | Broadband RFID UHF antenna and tag and manufacturing method of tag |
WO2012127097A1 (en) * | 2011-03-24 | 2012-09-27 | Nokia Corporation | An apparatus with a near field coupling member and method for communication |
EP2689495A1 (en) * | 2011-03-24 | 2014-01-29 | Nokia Corp. | An apparatus with a near field coupling member and method for communication |
EP2689495A4 (en) * | 2011-03-24 | 2014-10-15 | Nokia Corp | An apparatus with a near field coupling member and method for communication |
US10403979B2 (en) | 2015-03-13 | 2019-09-03 | Samsung Electro-Mechanics Co., Ltd. | Antenna apparatus and electronic device including the same |
EP3147996A1 (en) * | 2015-09-25 | 2017-03-29 | Johnson Electric S.A. | Multi-frequency antenna module |
CN105529520A (en) * | 2016-01-29 | 2016-04-27 | 华南师范大学 | Ultra-wideband circular polarized anti-metallic RFID tag antenna prone to impedance regulation |
CN105529520B (en) * | 2016-01-29 | 2018-04-20 | 华南师范大学 | Ultra wide band circular polarisation anti-metal is easy to the RFID label antenna of impedance adjusting |
GB2550103A (en) * | 2016-03-10 | 2017-11-15 | Paxton Access Ltd | Dual frequency RFID reader |
US10637143B2 (en) | 2016-03-10 | 2020-04-28 | Paxton Access Limited | Dual frequency RFID reader |
US11836562B2 (en) * | 2018-12-21 | 2023-12-05 | Pragmatic Printing Ltd. | Multi-protocol RFID tag and system |
Also Published As
Publication number | Publication date |
---|---|
US20100026439A1 (en) | 2010-02-04 |
EP2052462A4 (en) | 2009-08-12 |
EP2052462A1 (en) | 2009-04-29 |
TW200818607A (en) | 2008-04-16 |
CN101536344A (en) | 2009-09-16 |
AU2006346817A1 (en) | 2008-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100026439A1 (en) | Antenna For Near Field And Far Field Radio Frequency Identification | |
US7557757B2 (en) | Inductively coupled feed structure and matching circuit for RFID device | |
KR101142577B1 (en) | Antenna device and system including antenna device | |
US7570225B2 (en) | Antenna and non-contact tag | |
US7183994B2 (en) | Compact antenna with directed radiation pattern | |
EP1895620B1 (en) | Rfid tag antenna and rfid tag | |
US20090033580A1 (en) | RFID Antenna | |
US20080309578A1 (en) | Antenna Using Proximity-Coupling Between Radiation Patch and Short-Ended Feed Line, Rfid Tag Employing the Same, and Antenna Impedance Matching Method Thereof | |
US8870077B2 (en) | Wireless IC device and method for manufacturing same | |
EP2448064A1 (en) | Radio communication device | |
CN101359767A (en) | Electronic label reading and writing device antenna and a RFID system | |
KR20160027446A (en) | Loop antenna for a rfid label printer and method of installing the same | |
US20080024305A1 (en) | Planar microstrip antenna integrated into container | |
Parthiban et al. | Scalable near-field fed far-field UHF RFID reader antenna for retail checkout counters | |
Toccafondi et al. | Compact load-bars meander line antenna for UHF RFID transponder | |
KR100976326B1 (en) | Multi-loop radio frequency identification tag antenna and tag using the same | |
WO2007089106A1 (en) | Antenna using proximity-coupling between radiation patch and short-ended feed line, rfid tag employing the same, and antenna impedance matching method thereof | |
Kim et al. | RFID tag antenna mountable on metallic plates | |
JP4772017B2 (en) | Antenna for radio frequency identification tag | |
KR20080037465A (en) | Apparatus and methoed for | |
KR101720688B1 (en) | Microstrip antenna | |
TWI536673B (en) | Dipole antenna for rfid tag | |
FI130267B (en) | A uhf rfid tag | |
Kamalvand | Design and studies of single sided dual-antenna structures for Rfid tags | |
CN111092286A (en) | Antenna for portable RFID reader and use and combination method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680055993.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06769699 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006346817 Country of ref document: AU Ref document number: 2006769699 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
ENP | Entry into the national phase |
Ref document number: 2006346817 Country of ref document: AU Date of ref document: 20060801 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12375846 Country of ref document: US |