TWI536673B - Dipole antenna for rfid tag - Google Patents

Dipole antenna for rfid tag Download PDF

Info

Publication number
TWI536673B
TWI536673B TW101133611A TW101133611A TWI536673B TW I536673 B TWI536673 B TW I536673B TW 101133611 A TW101133611 A TW 101133611A TW 101133611 A TW101133611 A TW 101133611A TW I536673 B TWI536673 B TW I536673B
Authority
TW
Taiwan
Prior art keywords
path
dipole antenna
antenna
gap
wafer
Prior art date
Application number
TW101133611A
Other languages
Chinese (zh)
Other versions
TW201411945A (en
Inventor
楊菘斐
邱垂錡
粘金重
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW101133611A priority Critical patent/TWI536673B/en
Priority to CN201210397284.3A priority patent/CN103682647A/en
Publication of TW201411945A publication Critical patent/TW201411945A/en
Application granted granted Critical
Publication of TWI536673B publication Critical patent/TWI536673B/en

Links

Description

用於無線射頻之偶極天線 Dipole antenna for wireless radio frequency

本揭露係關於一種用於無線射頻之偶極天線,特別是關於一種具有增加磁通量面積與共軛匹配所需高電感值之環(loop)之偶極天線。 The present disclosure relates to a dipole antenna for a radio frequency, and more particularly to a dipole antenna having a loop that increases the magnetic flux area and conjugate matching required high inductance values.

無線射頻辨識(Radio Frequency Identification,RFID)是近年來迅速發展的一項技術,是由讀取器(Reader)、電子標籤(Tag)和天線(Antenna)所組成的。此技術的論文最早在西元1948年就被提出,但是以當時的技術水準,沒有辦法完全的呈現,直到現今才真正應用於現實生活之中。 Radio Frequency Identification (RFID) is a rapidly evolving technology in recent years. It consists of a reader (Reader), an electronic tag (Tag), and an antenna (Antenna). The paper of this technology was first proposed in 1948, but at the time of the technical level, there is no way to fully present it, until now it is really applied to real life.

目前最常見的應用如交通運輸、圖書管理、保全系統、醫療應用等。此系統所使用的頻帶主要有低頻(125KHz)、高頻(13.56MHz)、超高頻(860~960MHz)及微波(2.4~2.483GHz和5.72~5.87GHz)等頻段。 Currently the most common applications such as transportation, library management, security systems, medical applications, etc. The frequency bands used in this system are mainly low frequency (125KHz), high frequency (13.56MHz), ultra high frequency (860~960MHz) and microwave (2.4~2.483GHz and 5.72~5.87GHz).

射頻辨識(RFID)係辨識產業的一種重要技術,且具有各種應用。RFID標籤或標記廣泛用於將物體與辨識代碼關聯起來。例如,RFID標籤已用於建築物的進出控制、車輛的安全鎖、以及追蹤存貨。 Radio Frequency Identification (RFID) is an important technology in the identification industry and has a variety of applications. RFID tags or tags are widely used to associate objects with identification codes. For example, RFID tags have been used for access control of buildings, security locks for vehicles, and tracking of inventory.

儲存於RFID標籤上之資訊可辨識希望進入設有安全設施之建築物的人員或具有唯一辨識號碼之存貨項目。RFID標籤可保留並傳輸足夠的資訊,以唯一地辨識個人、包裝、存貨等。一般而言,在RFID系統中,為從RFID標籤擷取 資訊,RFID讀取器可使用射頻(RF)反向散射技術將一激發信號傳送至RFID標籤。該激發信號激發該RFID標籤,該RFID標籤進而將所儲存之資訊反向散射至該讀取器。然後,該讀取器從該RFID標籤接收資訊並對其進行解碼。 The information stored on the RFID tag identifies the person who wishes to enter the building with the security facility or an inventory item with a unique identification number. RFID tags retain and transmit enough information to uniquely identify individuals, packages, inventory, and more. In general, in RFID systems, to capture from RFID tags Information, RFID readers can transmit an excitation signal to an RFID tag using radio frequency (RF) backscatter. The excitation signal excites the RFID tag, which in turn backscatters the stored information to the reader. The reader then receives the information from the RFID tag and decodes it.

RFID標籤一般可包括用於資料處理之晶片以及用於資料通信之天線。在RFID產業中,重要的係,RFID標籤有效地接收或使用從RFID讀取器接收的能量,以促進對讀取器之後續回應或增加標籤可以無線方式與讀取器通信之可用無線電範圍。可藉由RFID標籤之晶片與天線之間的阻抗匹配來提高效率。 RFID tags can generally include a wafer for data processing and an antenna for data communication. In the RFID industry, an important system is that the RFID tag effectively receives or uses the energy received from the RFID reader to facilitate subsequent responses to the reader or to increase the available radio range in which the tag can communicate wirelessly with the reader. Efficiency can be improved by impedance matching between the RFID tag's wafer and the antenna.

由於晶片一般表現出相對較高之容抗,因此,可將天線設計成具有相對較高之感抗,以實現共軛匹配。然而,此類高感抗可能會縮小RFID標籤之頻寬。而且,攜帶RFID標籤之基板的材料可能會引起標籤之所需感抗的變化。而且,晶片之容抗可能會因為半導體製程而變化。 Since the wafer generally exhibits a relatively high capacitive reactance, the antenna can be designed to have a relatively high inductive reactance to achieve conjugate matching. However, such high inductance may reduce the bandwidth of the RFID tag. Moreover, the material of the substrate carrying the RFID tag may cause a change in the desired inductive reactance of the tag. Moreover, the capacitive reactance of the wafer may vary due to the semiconductor process.

因此,最好能具有一種能夠與對應晶片形成複共軛之RFID標籤天線。而且,最好是能增加RFID標籤之頻寬,同時實現標籤天線與晶片之間之阻抗匹配的複共軛。 Therefore, it is preferable to have an RFID tag antenna capable of forming a complex conjugate with a corresponding wafer. Moreover, it is preferable to increase the bandwidth of the RFID tag while achieving a complex conjugate of impedance matching between the tag antenna and the wafer.

目前以操作於902~928MHZ的超高頻(UHF)頻段最受業界的期待與注意,因其工作於UHF時有較遠的讀取距離、更大的資料傳輸率及較小的標籤尺寸,而RFID的操作頻寬在各個國家有所不同,像北美洲和南美洲操作頻寬為902~928MHz,而台灣則是應用於922~928MHz。 At present, the ultra-high frequency (UHF) frequency band operating at 902~928MHZ is most expected and paid attention by the industry, because it has a long reading distance, a larger data transmission rate and a smaller label size when working in UHF. The operating bandwidth of RFID varies from country to country, with operating bandwidths ranging from 902 to 928 MHz in North and South America, and 922 to 928 MHz in Taiwan.

一個合適的標籤天線必須有一些特性,首先必須可以 小到足以附上或黏貼上被要求辨識的物體,而且通常需要全向性或者是半全向性,足夠好的阻抗匹配,以及在應用上要求線性極化或者是雙極化作用,結構必須不容易被破壞損毀,而且最重要的一點是必須非常便宜。由於先天上尺寸受到限制,導致相對狹小的阻抗頻寬(在VSWR<2的情況大約2%左右)。 A suitable tag antenna must have some characteristics, first of all must be Small enough to attach or adhere to the object being identified, and usually requires omnidirectional or semi-omnidirectional, good enough impedance matching, and requires linear polarization or dual polarization in the application, the structure must Not easily damaged and destroyed, and the most important thing is that it must be very cheap. Due to the limited size of the innate, the relatively narrow impedance bandwidth (about 2% in the case of VSWR < 2).

本揭露提供一種用於無線射頻之偶極天線,其包含位於一基板上之一第一導電元件以及位於該基板上之一第二導電元件。 The present disclosure provides a dipole antenna for a radio frequency radio, comprising a first conductive element on a substrate and a second conductive element on the substrate.

該第一導電元件包含延伸於一第一端與一第二端間的一第一路徑、從該第一端延伸至一第三端間的一第二路徑及從該第一端延伸至一第四端間的一第三路徑。 The first conductive element includes a first path extending between a first end and a second end, a second path extending from the first end to a third end, and extending from the first end to the first end A third path between the fourth ends.

該第二導電元件包含延伸於一第五端與一第六端間的一第四路徑。此外,該第二端與該第五端間具有一第一間隙,該第三端及該第六端間具有一第二間隙,且該第一間隙係配置供決定該偶極天線之一頻寬或一耦合量之至少一者。 The second conductive element includes a fourth path extending between a fifth end and a sixth end. In addition, a first gap is formed between the second end and the fifth end, and a second gap is disposed between the third end and the sixth end, and the first gap is configured to determine a frequency of the dipole antenna. At least one of a width or a coupling amount.

本揭露之該第三路徑的長度為四分之一波長。 The length of the third path of the present disclosure is a quarter wavelength.

本揭露之該第一路徑及該第三路徑形成一長度,該長度配置供決定該偶極天線之一電阻。 The first path and the third path of the present disclosure form a length configured to determine a resistance of the dipole antenna.

本揭露之該第一路徑及該第二路徑形成一寬度,該寬度配置供決定該偶極天線之一感抗。 The first path and the second path of the present disclosure form a width configured to determine an inductive reactance of the dipole antenna.

本揭露之該第一間隙係配置供決定該偶極天線之一頻寬或一耦合量之至少一者。 The first gap of the present disclosure is configured to determine at least one of a bandwidth or a coupling amount of the dipole antenna.

本揭露之該第三路徑包含一曲折結構。 The third path of the present disclosure includes a meandering structure.

本揭露之該第三端配置供電性連接至一晶片之一第一引腳,該第六端配置供電性連接至該晶片之一第二引腳。 The third end configuration of the present disclosure is electrically connected to one of the first pins of a wafer, and the sixth end is configured to be electrically connected to one of the second pins of the wafer.

本揭露另提供一種用於無線射頻之偶極天線,包含位於一基板上之一第一路徑、位於該基板上之一第二路徑、位於該基板上之一第三路徑以及位於該基板上之一第四路徑。 The present disclosure further provides a dipole antenna for a radio frequency, comprising a first path on a substrate, a second path on the substrate, a third path on the substrate, and a third path on the substrate. A fourth path.

該第一路徑延伸於一第一端與一第二端間,該第二路徑延伸於該第一端與一第三端間,該第三路徑的長度四分之一波長並延伸於該第一端與一第四端間,該第四路徑延伸於一第五端與一第六端間,該第二端與該第五端間具有一第一間隙,該第三端及該第六端間具有一第二間隙。 The first path extends between a first end and a second end, and the second path extends between the first end and a third end, the third path having a length of a quarter wavelength and extending Between one end and a fourth end, the fourth path extends between a fifth end and a sixth end, and the second end and the fifth end have a first gap, the third end and the sixth end There is a second gap between the ends.

該第二路徑及該第三路徑形成一長度,該長度配置供決定該偶極天線之一電阻。該第一路徑及該第二路徑形成一寬度,該寬度配置供決定該偶極天線之一感抗。 The second path and the third path form a length configured to determine a resistance of the dipole antenna. The first path and the second path form a width configured to determine an inductive reactance of the dipole antenna.

本揭露進一步包含位於該基板上之一第五路徑,該第五路徑從該第五端及該第六端間之一第七端延伸至一第八端。 The disclosure further includes a fifth path on the substrate, the fifth path extending from a seventh end to an eighth end between the fifth end and the sixth end.

本揭露之該第五路徑的長度為四分之一波長。 The fifth path of the present disclosure has a length of a quarter wavelength.

本揭露之該第一間隙係配置供決定該偶極天線之一頻寬或一耦合量之至少一者。且該第三路徑包含一曲折結構。 The first gap of the present disclosure is configured to determine at least one of a bandwidth or a coupling amount of the dipole antenna. And the third path includes a meandering structure.

本揭露之該第三端配置供電性連接至一晶片之一第一引腳,該第五端配置供電性連接至該晶片之一第二引腳。 The third end configuration of the present disclosure is electrically connected to one of the first pins of a wafer, and the fifth end is configured to be electrically connected to one of the second pins of the wafer.

本揭露另提供一種用於無線射頻之偶極天線,其包含位於一基板上之一第一導電元件以及位於該基板上之一第二導電元件。 The present disclosure further provides a dipole antenna for a radio frequency, comprising a first conductive element on a substrate and a second conductive element on the substrate.

該第一導電元件包含延伸於一第一端與一第二端間的一第一路徑、從該第一端延伸至一第三端間的一第二路徑及從該第一端延伸至一第四端間的一第三路徑。 The first conductive element includes a first path extending between a first end and a second end, a second path extending from the first end to a third end, and extending from the first end to the first end A third path between the fourth ends.

該第二導電元件包含延伸於一第五端與一第六端間的一第四路徑。該第二端與該第五端間具有一第一間隙,該第三端及該第六端間具有一第二間隙,該第一間隙配置供決定該偶極天線之一頻寬或一耦合量之至少一者。 The second conductive element includes a fourth path extending between a fifth end and a sixth end. a first gap is formed between the second end and the fifth end, and a second gap is disposed between the third end and the sixth end, the first gap is configured to determine a bandwidth or a coupling of the dipole antenna At least one of the quantities.

本揭露另包含位於該基板上之一第五路徑,該第五路徑從該第五端及該第六端間之一第七端延伸至一第八端,該第五路徑的長度為四分之一波長。 The disclosure further includes a fifth path on the substrate, the fifth path extending from a seventh end of the fifth end and the sixth end to an eighth end, the fifth path having a length of four points One wavelength.

該第二路徑及該第三路徑形成一長度,該長度配置供決定該偶極天線之一電阻。該第一路徑及該第二路徑形成一寬度,該寬度配置供決定該偶極天線之一感抗。該第三路徑的長度為四分之一波長。 The second path and the third path form a length configured to determine a resistance of the dipole antenna. The first path and the second path form a width configured to determine an inductive reactance of the dipole antenna. The third path has a length of a quarter wavelength.

本揭露之該第一路徑及該第三路徑形成一長度,該長度配置供決定該偶極天線之一電阻。 The first path and the third path of the present disclosure form a length configured to determine a resistance of the dipole antenna.

本揭露之該第三端配置供電性連接至一晶片之一第一引腳,該第六端配置供電性連接至該晶片之一第二引腳。 The third end configuration of the present disclosure is electrically connected to one of the first pins of a wafer, and the sixth end is configured to be electrically connected to one of the second pins of the wafer.

本揭露之該第一間隙之寬度範圍介於0.01公分至1公 分之間。 The width of the first gap of the disclosure ranges from 0.01 cm to 1 Between the points.

上文已相當廣泛地概述本揭露之技術特徵,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其他技術特徵將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其他結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。 The technical features of the present disclosure have been broadly described above, and the detailed description of the present disclosure will be better understood. Other technical features that form the subject matter of the claims of the present disclosure will be described below. It is to be understood by those of ordinary skill in the art that the present invention may be practiced otherwise. It is also to be understood by those of ordinary skill in the art that this invention is not limited to the spirit and scope of the disclosure as defined by the appended claims.

本揭露在此所探討的方向為用於無線射頻之偶極天線。為了能徹底地瞭解本揭露,將在下列的描述中提出詳盡的步驟及結構。顯然地,本揭露的施行並未限定於相關領域之技藝者所熟習的特殊細節。另一方面,眾所周知的結構或步驟並未描述於細節中,以避免造成本揭露不必要之限制。本揭露的較佳實施例會詳細描述如下,然而除了這些詳細描述之外,本揭露還可以廣泛地施行在其他實施例中,且本揭露的範圍不受限定,其以之後的申請專利範圍為準。 The directions discussed herein are dipole antennas for radio frequency. In order to fully understand the present disclosure, detailed steps and structures will be set forth in the following description. Obviously, the implementation of the present disclosure is not limited to the specific details familiar to those skilled in the relevant art. On the other hand, well-known structures or steps are not described in detail to avoid unnecessarily limiting the disclosure. The preferred embodiments of the present disclosure will be described in detail below, but the disclosure may be widely practiced in other embodiments, and the scope of the disclosure is not limited, which is subject to the scope of the following claims. .

在下文中本揭露的實施例係配合所附圖式以闡述細節。說明書所提及的「實施例」、「此實施例」、「其他實施例」等等,意指包含在本揭露之該實施例所述有關之特殊特性、構造、或特徵。說明書中各處出現之「在此實施例中 」的片語,並不必然全部指相同的實施例。 The embodiments disclosed herein are incorporated in the drawings to explain the details. The "embodiment", "this embodiment", "other embodiment" and the like referred to in the specification are intended to include the specific features, structures, or characteristics described in the embodiments of the present disclosure. "In this embodiment" The phrase "a" does not necessarily refer to the same embodiment.

此外,本揭露之申請專利範圍及發明說明描述的元件若無特別標示其數量時則為單數。若標示元件的量詞為一時,則量詞包含一單位或至少一單位。若標示元件的量詞為複數個時,則量詞包含兩個以上的單位。若標示元件的量詞未顯示時,則量詞包含一單位或兩個以上的單位。 In addition, the components described in the claims and the description of the invention are singular unless otherwise specified. If the quantifier of the marked element is one, the quantifier contains one unit or at least one unit. If the quantifier of the labeled component is plural, the quantifier contains more than two units. If the quantifier of the marked element is not displayed, the quantifier contains one unit or more than two units.

在下文中本揭露的實施例係配合所附圖式以闡述細節。以下舉一些實施例做為本揭露的描述,但是本揭露不受限於所舉的一些實施例。又,所舉的多個實施例之間有可以相互適當結合,達成另一些實施例。 The embodiments disclosed herein are incorporated in the drawings to explain the details. The following examples are presented to illustrate the disclosure, but the disclosure is not limited to the embodiments. Further, various embodiments may be combined as appropriate to each other to achieve other embodiments.

圖1為根據本揭露之一實施例之無線射頻辨識(RFID)標籤10之示意圖。參考圖1,RFID標籤(tag)10可包括晶片11與天線12。晶片11可耦合或固定於基板13上,並電性連接至基板13上面或上方之天線12。 1 is a schematic diagram of a radio frequency identification (RFID) tag 10 in accordance with an embodiment of the present disclosure. Referring to FIG. 1, an RFID tag 10 may include a wafer 11 and an antenna 12. The wafer 11 can be coupled or fixed to the substrate 13 and electrically connected to the antenna 12 above or above the substrate 13.

晶片11可包括適當的電氣組件,例如,電阻器、電容器、電感器、電池、記憶裝置以及處理器,以透過天線12來提供與RFID讀取器的適當互動。一般而言,晶片11可表現出相對較高的容抗(ZC),其可由晶片製造商規定且可表達如下:ZC=RC-jXCWafer 11 may include suitable electrical components, such as resistors, capacitors, inductors, batteries, memory devices, and processors to provide proper interaction with the RFID reader through antenna 12. In general, wafer 11 can exhibit a relatively high capacitive reactance (Z C ), which can be specified by the wafer manufacturer and can be expressed as follows: Z C = R C - jX C .

其中ZC的實部RC表示晶片11的電阻,而ZC的虛部XC表示晶片11的容抗。 Wherein Z C represents the real part of the resistance R C of the wafer 11, and the imaginary part of Z C X C represents the capacitance of the wafer 11.

基板13可形成個人辨識証、標記、包裝箱等之基礎。適用於基板13之材料可包括但不限於玻璃、環氧化物、陶瓷、Teflon與FR4等硬材料或紙、合成紙、塑膠與聚醯亞胺 等有機材料。天線12之共振頻率可隨基板13之材料、電氣特性及厚度的變化而變化。 The substrate 13 can form the basis of personal identification, marking, packaging, and the like. Materials suitable for the substrate 13 may include, but are not limited to, glass, epoxy, ceramics, hard materials such as Teflon and FR4 or paper, synthetic paper, plastic and polyimide. And other organic materials. The resonant frequency of the antenna 12 can vary with changes in the material, electrical characteristics, and thickness of the substrate 13.

天線12可包括電感材料,例如銅、銅合金、鋁與電感墨水。可透過蝕刻、沈積或印刷製程或其他製程在基板13上面或上方形成電感材料的天線圖案。一般而言,天線12可表現出相對較高的感抗(ZL),其可表達如下:ZL=RL+jXLAntenna 12 may include an inductive material such as copper, copper alloy, aluminum, and inductive ink. An antenna pattern of the inductive material can be formed on or over the substrate 13 by an etching, deposition or printing process or other process. In general, antenna 12 can exhibit a relatively high inductive reactance (Z L ), which can be expressed as follows: Z L = R L + jX L .

其中ZL的實部RL表示天線12的輻射電阻,而ZL的虛部XL表示天線12的感抗。設計天線12時,最好形成ZC與ZL之複共軛,同時改善天線12之頻寬。 Where Z L represents the real part R L of the radiation resistance of the antenna 12, and Z L represents the imaginary part of the inductive reactance X L of the antenna 12. When designing the antenna 12, it is preferable to form a complex conjugate of Z C and Z L while improving the bandwidth of the antenna 12.

再次參考圖1,天線12可包含一導電元件或更多,例如第一導電元件121與第二導電元件122。 Referring again to FIG. 1, antenna 12 can include a conductive element or more, such as first conductive element 121 and second conductive element 122.

第一導電元件121可包含:一第一路徑(下稱「第一路徑AB」),其延伸於第一端「A」與第二端「B」之間;一第二路徑(下稱「第二路徑AC」),其從第一端「A」延伸至第三端「C」;以及一第三路徑(下稱「第三路徑AD」),其從第一端「A」延伸至第四端「D」。 The first conductive element 121 can include: a first path (hereinafter referred to as "first path AB") extending between the first end "A" and the second end "B"; and a second path (hereinafter referred to as " a second path AC") extending from the first end "A" to the third end "C"; and a third path (hereinafter referred to as "third path AD") extending from the first end "A" to The fourth end is "D".

第一路徑AB及第二路徑AC形成一寬度W1,其配置供獲得所需的感抗值,即XL。在本揭露之一實施例中,XL的值隨著寬度W1的增加而增加。 The first path AB and the second path AC form a width W 1 configured to obtain a desired inductive value, X L . In one embodiment of the present disclosure, the value of X L increases as the width W 1 increases.

而且,第一路徑AB與第三路徑AD可形成具有長度L1之路徑BAD,其配置供獲得偶極天線所需的輻射電阻值,即RL。在本揭露之一實施例中,RL的值隨著長度L1的增加而增加。 Moreover, the first path AB and the third path AD may form a path BAD having a length L 1 configured to obtain a radiation resistance value required for the dipole antenna, that is, R L . In one embodiment of the present disclosure, the value of R L increases as the length L 1 increases.

第三路徑AD為四分之一波長傳輸路徑,其長度為四分之一波長,或四分之一波長之奇數倍。在此實施例中,RFID標籤10可接受各種頻率之一或多個頻率,例如三頻帶之至少一者。該等三頻帶之一範例可包括處於或接近2.45十億赫茲(GHz)之微波頻帶、位於860百萬赫茲(MHz)至960百萬赫茲(MHz)範圍內之超高頻率(UHF)頻帶以及處於或接近13.65百萬赫茲(MHz)之高頻(HF)頻帶。 The third path AD is a quarter-wavelength transmission path having a length of a quarter wavelength or an odd multiple of a quarter wavelength. In this embodiment, the RFID tag 10 can accept one or more of a variety of frequencies, such as at least one of the three bands. An example of such three frequency bands may include a microwave frequency band at or near 2.45 terahertz (GHz), an ultra high frequency (UHF) band in the range of 860 megahertz (MHz) to 960 megahertz (MHz), and At or near the high frequency (HF) band of 13.65 megahertz (MHz).

在其他實施例中,RFID標籤10可接受另一或其他頻帶組合,視其應用或地區而定。天線12可配置成獲得足夠的天線增益,以收發所需波段的電波。 In other embodiments, the RFID tag 10 can accept another or other combination of frequency bands, depending on its application or region. Antenna 12 can be configured to obtain sufficient antenna gain to transmit and receive radio waves of the desired band.

第二導電元件122可包括第五端「E」和第六端「F」,其可分別用作RFID天線12的短路點與饋入點,第五端「E」和第六端「F」可形成一第四路徑EF。而且,第二導電元件122之第五端「E」可與第一路徑AB之一端「B」相分離,但與其接近。換言之,第二端B與該第五端E間具有一第一間隙d1。端E與B之間的距離為d1,其可影響電場的耦合,進而影響天線12的頻寬。換言之,第一間隙d1係配置供決定偶極天線之頻寬或耦合量之至少一者。 The second conductive element 122 can include a fifth end "E" and a sixth end "F", which can be used as a short-circuit point and a feed point of the RFID antenna 12, respectively, and the fifth end "E" and the sixth end "F" A fourth path EF can be formed. Moreover, the fifth end "E" of the second conductive element 122 can be separated from, but close to, one end "B" of the first path AB. In other words, the second end B and the fifth end E have a first gap d 1 . The distance between the ends E and B is d 1 , which can affect the coupling of the electric field, thereby affecting the bandwidth of the antenna 12. In other words, the first gap d 1 is configured to determine at least one of a bandwidth or a coupling amount of the dipole antenna.

在本揭露的一實施例中,電性耦合的量隨著距離d1的增加而降低。可藉由改變電性耦合的量來獲得所需的頻寬。第一導電元件121的特徵在於「開路」耦合至第二導電元件122。明確地說,第二導電元件122係「開路」耦合至第一路徑AB之端「B」。 In an embodiment of the present disclosure, the amount of electrical coupling decreases as the distance d 1 increases. The required bandwidth can be obtained by varying the amount of electrical coupling. The first conductive element 121 is characterized by an "open circuit" coupling to the second conductive element 122. In particular, the second conductive element 122 is "open" coupled to the end "B" of the first path AB.

此外,第二導電元件122之第六端「F」可電性連接至 晶片11之一引腳或一接點(未顯示),而第二路徑AC之一端「C」可電性連接至晶片11之另一引腳或一接點(未顯示)。換言之,第三端C與第六端F間具有一第二間隙。 In addition, the sixth end "F" of the second conductive element 122 can be electrically connected to One pin or a contact (not shown) of the wafer 11 and one end "C" of the second path AC can be electrically connected to another pin or a contact (not shown) of the wafer 11. In other words, there is a second gap between the third end C and the sixth end F.

另外,如圖1所示之實施例中,第三路徑AD的形狀可為曲折結構。 In addition, in the embodiment shown in FIG. 1, the shape of the third path AD may be a meandering structure.

熟習此項技藝者應瞭解,天線12可設計成具有各種天線圖案,同時獲得所需的電氣特性,例如,RFID標籤10的所需阻抗。圖2為根據本揭露之一實施例配置供應用於圖1所示之RFID標籤10之天線22的示意圖。 Those skilled in the art will appreciate that the antenna 12 can be designed to have a variety of antenna patterns while achieving the desired electrical characteristics, such as the desired impedance of the RFID tag 10. 2 is a schematic diagram of configuring an antenna 22 for use with the RFID tag 10 of FIG. 1 in accordance with an embodiment of the present disclosure.

參考圖2,在此實施例中,天線22可形成於相對介電常數為εr=4.4,損耗正切為0.0245的FR4基板的上面或上方,且可接受925百萬赫茲(MHz)的輻射頻率。 Referring to FIG. 2, in this embodiment, the antenna 22 can be formed on or above the FR4 substrate having a relative dielectric constant of εr = 4.4 and a loss tangent of 0.0245, and can accept a radiation frequency of 925 megahertz (MHz).

如圖2所示之偶極天線22的示意圖。偶極天線22包含一第一路徑AB、第二路徑AC、第三路徑AD以及第四路徑EF。 A schematic diagram of a dipole antenna 22 as shown in FIG. The dipole antenna 22 includes a first path AB, a second path AC, a third path AD, and a fourth path EF.

第一路徑AB延伸於一第一端A與一第二端B間。第二路徑AC延伸於該第一端A與一第三端C間。第三路徑AD的長度為四分之一波長並延伸於該第一端A與一第四端D間。第四路徑EF延伸於一第五端E與一第六端F間。此外,該第二端B與該第五端E間具有一第一間隙d1,該第三端C及該第六端F間具有一第二間隙d2The first path AB extends between a first end A and a second end B. The second path AC extends between the first end A and the third end C. The third path AD has a length of a quarter wavelength and extends between the first end A and the fourth end D. The fourth path EF extends between a fifth end E and a sixth end F. In addition, the second end B and the fifth end E have a first gap d 1 , and the third end C and the sixth end F have a second gap d 2 .

如圖2之實施例中,偶極天線22另包含第五路徑GH。該第五路徑GH從該第五端E及該第六端F間之一第七端G延伸至一第八端H,本第五路徑GH為一選擇性路徑,可與第 三路徑AD擇一或共同存在。此外,該第五路徑GH的長度為四分之一波長。如圖2所示,第五路徑GH及第三路徑AD皆為曲折結構。 In the embodiment of FIG. 2, the dipole antenna 22 further includes a fifth path GH. The fifth path GH extends from the seventh end G of the fifth end E and the sixth end F to an eighth end H, and the fifth path GH is a selective path. The three paths AD are either one or coexist. Further, the length of the fifth path GH is a quarter wavelength. As shown in FIG. 2, the fifth path GH and the third path AD are both meander structures.

如圖2所示之偶極天線22之主體,舉例為52.5×17.5×0.8mm3。換言之,L為52.5毫米,W為17.5毫米,厚度為0.8毫米。並且,長度L1與W1(其可分別決定偶極天線22的輻射電阻與感抗)可分別為26.1公釐(mm)與15.3mm。 The body of the dipole antenna 22 shown in Fig. 2 is exemplified by 52.5 × 17.5 × 0.8 mm 3 . In other words, L is 52.5 mm, W is 17.5 mm, and thickness is 0.8 mm. Also, the lengths L 1 and W 1 (which may determine the radiation resistance and the inductive reactance of the dipole antenna 22, respectively) may be 26.1 mm (mm) and 15.3 mm, respectively.

開路之第一間隙d1(其可決定電性耦合的量,進而決定偶極天線22的頻寬)可為0.1至10毫米之間。偶極天線22的其他參數亦可根據其應用或地區來設定。 The first gap d 1 of the open circuit (which may determine the amount of electrical coupling, which in turn determines the bandwidth of the dipole antenna 22) may be between 0.1 and 10 mm. Other parameters of the dipole antenna 22 can also be set according to their application or region.

例如,參數集可包括17.5mm之寬度W2、9mm之寬度W3、6.3mm之寬度W4、5.9mm之寬度W5以及3.6mm之長度L2。而且,第二間隙d2(其可取決於晶片11之引腳間隙)可為0.25至3mm。詳細參數可參照表一如下: For example, the parameter set may include W 3, 6.3mm of width W 4, 5.9mm and 3.6mm of the width W 5 of the length of the 17.5mm width W 2, 9mm of width L 2. Moreover, the second gap d 2 (which may depend on the pin gap of the wafer 11) may be 0.25 to 3 mm. For detailed parameters, please refer to Table 1 below:

圖2所示之天線22之上述參數,例如可借助模擬軟體來驗證。在一實施例中,可使用Ansoft Corporation之HFSSTM軟體。HFSS可支援高性能電子設計之三維(3D)電磁場模擬。 The above parameters of the antenna 22 shown in Fig. 2 can be verified, for example, by means of a simulation software. In an embodiment, Ansoft Corporation's HFSS (TM) software can be used. HFSS supports three-dimensional (3D) electromagnetic field simulation of high performance electronic design.

例如,HFSS可支援高頻及高速組件之電磁模擬,並廣泛應用於設計天線與RF及/或微波組件以及晶片上嵌入式被動組件、印刷電路板(PCB)互連與高頻積體電路(IC)封裝。 For example, HFSS supports electromagnetic simulation of high-frequency and high-speed components and is widely used to design antennas with RF and/or microwave components, as well as embedded passive components on printed circuits, printed circuit board (PCB) interconnects, and high-frequency integrated circuits ( IC) package.

藉由諸如HFSS之類的模擬軟體產品來提供曲線圖。該偶極天線可包括類似於圖2所示之偶極天線22的天線圖案及相關參數。晶片的容抗隨著頻率的增加而降低,而晶片的電阻可保持恆定,而不受頻率的影響。 The graph is provided by a simulated software product such as HFSS. The dipole antenna can include an antenna pattern and associated parameters similar to the dipole antenna 22 shown in FIG. The capacitive reactance of the wafer decreases as the frequency increases, and the resistance of the wafer can remain constant without being affected by the frequency.

偶極天線22的電阻與感抗可隨著不同間隙(例如,0.5mm、1.0mm與1.5mm)下的頻率變化而變化。因此,可決定每一不同間隙下晶片與天線之間的共軛阻抗匹配。此時功率反射係數為零,因此天線與晶片之間有著最大功率的傳輸,稱為共軛匹配。 The resistance and inductive reactance of the dipole antenna 22 may vary with frequency variations at different gaps (eg, 0.5 mm, 1.0 mm, and 1.5 mm). Therefore, the conjugate impedance matching between the wafer and the antenna under each different gap can be determined. At this time, the power reflection coefficient is zero, so there is a maximum power transmission between the antenna and the wafer, which is called conjugate matching.

由於現今電波無反射室的天線場型量測系統都是設計匹配於50Ω系統,因此天線無法與天線場型量測系統阻抗匹配,導致無法精確量到標籤天線的輻射場型,故本揭露利用HFSSTM來模擬此天線之輻射場型。 Since the antenna field measurement system of the current wave non-reflection chamber is designed to match the 50 Ω system, the antenna cannot be matched with the impedance of the antenna field measurement system, and the radiation field type of the tag antenna cannot be accurately measured, so the disclosure utilizes HFSS TM simulated radiation patterns of this antenna.

圖3為偶極天線在925MHz時模擬YZ平面之輻射場型,由YZ平面之場型圖可得知在正Y方向與負Y方向有著兩個零點,這意味著在此方向時會有接收不到的死角。 Figure 3 shows the radiation pattern of the dipole antenna simulating the YZ plane at 925 MHz. The field pattern of the YZ plane shows that there are two zeros in the positive Y direction and the negative Y direction, which means that there is reception in this direction. Not a dead end.

由於上述的實驗,本揭露可協助原廠RFID晶片獲得更遠的讀取距離為2~4.5m(因不同RFID讀取器會有不同結果及FIRMWARE不同的關係)。因而設計一種偶極天線可供原廠RFID晶片獲得更加的效能。 Due to the above experiments, the disclosure can assist the original RFID chip to obtain a farther reading distance of 2~4.5m (due to different RFID readers having different results and different FIRMWARE relationship). Therefore, designing a dipole antenna allows the original RFID chip to achieve more performance.

綜上所述,本揭露基於一般RFID Tag天線之設計,並應用耦合效應與調變天線設計參數,進行天線設計優化。此RFID Tag設計為長矩形型式,可依被放置物本身之物理特性與條件,擇優選取擺放位置。此RFID Tag包括四大部份:(1)具關鍵阻抗值之RFIC晶片;(2)雙邊為1/4波長之電磁波接收單元(例如路徑AD及路徑GH);(3)中間具增加磁通量面積與共軛匹配所需高電感值之環型天線(例如路徑CAB及路徑EF);(4)以間隙(例如d1)切斷環型天線,利用耦合效應產生較高電阻值以利共軛匹配設計。利用上述四項技術設計之天線整合於RFID Tag,可實現高效能遠距之RFID Tag,提升RFID Tag被成功讀取之機率。 In summary, the disclosure is based on the design of a general RFID Tag antenna, and uses the coupling effect and the modulation antenna design parameters to optimize the antenna design. The RFID Tag is designed as a long rectangular type, which can be selected according to the physical characteristics and conditions of the object itself. The RFID tag consists of four parts: (1) RFIC chips with critical impedance values; (2) electromagnetic wave receiving units with bilateral wavelengths of 1/4 wavelength (eg path AD and path GH); (3) increased magnetic flux area for intermediates Matching the conjugate with a high inductance value of the loop antenna (such as path CAB and path EF); (4) cutting the loop antenna with a gap (for example, d 1 ), using the coupling effect to generate a higher resistance value to facilitate conjugate Match the design. The antenna designed with the above four technologies is integrated into the RFID tag, which can realize high-efficiency long-distance RFID tags and improve the probability of successful RFID tag reading.

在說明本揭露之代表性範例時,本說明書可將本揭露之方法及/或製程表示為一特定之步驟次序。不過,由於該方法或製程的範圍並不繫於本文所提出之特定的步驟次序,故該方法或製程不應受限於所述之特定步驟次序。身為熟習本技藝者當會了解其它步驟次序也是可行的。所以,不應將本說明書所提出的特定步驟次序視為對申請專利範圍的限制。此外,亦不應將有關本揭露之方法及/或製程的申請專利範圍僅限制在以書面所載之步驟次序之實施,熟習此項技藝者易於瞭解,該等次序亦可加以改變,並且仍涵蓋於本揭露之精神與範疇之內。 In describing a representative example of the present disclosure, the present specification may represent the method and/or process of the present disclosure as a specific sequence of steps. However, the scope of the method or process is not limited to the particular order of steps described. It is also possible to be familiar with the sequence of other steps as a person skilled in the art. Therefore, the specific order of steps set forth in this specification should not be construed as limiting the scope of the application. In addition, the scope of application for the method and/or process of the present disclosure should not be limited to the implementation of the order of the steps in the written form, which is readily understood by those skilled in the art, and the order can be changed and still It is covered by the spirit and scope of this disclosure.

本揭露之技術內容及技術特點已揭示如上,然而本揭露所屬技術領域中具有通常知識者應瞭解,在不背離後附申請專利範圍所界定之本揭露精神和範圍內,本揭露之教 示及揭示可作種種之替換及修飾。例如,上文揭示之許多裝置或結構或方法步驟可以不同之方法實施或以其他結構予以取代,或者採用上述二種方式之組合。 The technical content and technical features of the present disclosure have been disclosed as above, but those skilled in the art should understand that the teachings of the present disclosure are within the spirit and scope of the disclosure as defined by the scope of the appended claims. The illustrations and disclosures can be used in various alternatives and modifications. For example, many of the devices or structures or method steps disclosed above may be implemented in different ways or substituted with other structures, or a combination of the two.

本案之權利範圍並不侷限於上文揭示之特定實施例的製程、機台、製造、物質之成份、裝置、方法或步驟。本揭露所屬技術領域中具有通常知識者應瞭解,基於本揭露教示及揭示製程、機台、製造、物質之成份、裝置、方法或步驟,無論現在已存在或日後開發者,其與本案實施例揭示者係以實質相同的方式執行實質相同的功能,而達到實質相同的結果,亦可使用於本揭露。因此,以下之申請專利範圍係用以涵蓋用以此類製程、機台、製造、物質之成份、裝置、方法或步驟。 The scope of the present invention is not limited to the process, machine, manufacture, compositions, means, methods, or steps of the particular embodiments disclosed. It should be understood by those of ordinary skill in the art that, based on the teachings of the present disclosure, the process, the machine, the manufacture, the composition of the material, the device, the method, or the steps, whether present or future developers, The revealer performs substantially the same function in substantially the same manner, and achieves substantially the same result, and can also be used in the present disclosure. Accordingly, the scope of the following claims is intended to cover such <RTIgt; </ RTI> processes, machines, manufactures, compositions, devices, methods or steps.

10‧‧‧RFID標籤 10‧‧‧RFID tags

11‧‧‧晶片 11‧‧‧ wafer

12‧‧‧天線 12‧‧‧Antenna

121‧‧‧第一導電元件 121‧‧‧First conductive element

122‧‧‧第二導電元件 122‧‧‧Second conductive element

13‧‧‧基板 13‧‧‧Substrate

22‧‧‧天線 22‧‧‧Antenna

AB‧‧‧第一路徑 AB‧‧‧First path

A‧‧‧第一端 A‧‧‧ first end

B‧‧‧第二端 B‧‧‧ second end

AC‧‧‧第二路徑 AC‧‧‧Second path

C‧‧‧第三端 C‧‧‧ third end

AD‧‧‧第三路徑 AD‧‧‧ third path

D‧‧‧第四端 D‧‧‧ fourth end

E‧‧‧第五端 E‧‧‧ fifth end

F‧‧‧第六端 F‧‧‧ sixth end

EF‧‧‧第四路徑 EF‧‧‧fourth path

GH‧‧‧第五路徑 GH‧‧‧ fifth path

G‧‧‧第七端 G‧‧‧ seventh end

H‧‧‧第八端 H‧‧‧ eighth end

d1‧‧‧第一間隙 d 1 ‧‧‧First gap

d2‧‧‧第二間隙 d 2 ‧‧‧second gap

W‧‧‧寬度 W‧‧‧Width

W1‧‧‧寬度 W 1 ‧‧‧Width

W2‧‧‧寬度 W 2 ‧‧‧Width

W3‧‧‧寬度 W 3 ‧‧‧Width

W4‧‧‧寬度 W 4 ‧‧‧Width

W5‧‧‧寬度 W 5 ‧‧‧Width

L‧‧‧長度 L‧‧‧ length

L1‧‧‧長度 L 1 ‧‧‧ length

L2‧‧‧長度 L 2 ‧‧‧ length

L3‧‧‧長度 L 3 ‧‧‧ length

L4‧‧‧長度 L 4 ‧‧‧ length

L5‧‧‧長度 L 5 ‧‧‧ length

L6‧‧‧長度 L 6 ‧‧‧ length

當併同各隨附圖式而閱覽時,即可更佳瞭解本發明之前揭摘要以及上文詳細說明。為達本發明之說明目的,各圖式裏圖繪有現屬較佳之各具體實施例。然應瞭解本發明並不限於所繪之精確排置方式及設備裝置。 The foregoing summary of the invention, as well as the above detailed description For the purposes of illustrating the invention, various embodiments are shown in the drawings. However, it should be understood that the invention is not limited to the precise arrangements and devices disclosed.

圖1為根據本發明之一實施例之射頻辨識(RFID)標籤之示意圖;圖2為根據本發明之一實施例配置用於圖1所示之RFID標籤之天線的示意圖;及圖3為說明配置用於RFID標籤之天線在一定開路距離下之波型示意圖。 1 is a schematic diagram of a radio frequency identification (RFID) tag according to an embodiment of the present invention; FIG. 2 is a schematic diagram of an antenna configured for the RFID tag shown in FIG. 1 according to an embodiment of the present invention; and FIG. A schematic diagram of a waveform of an antenna for an RFID tag at a certain open distance.

10‧‧‧RFID標籤 10‧‧‧RFID tags

11‧‧‧晶片 11‧‧‧ wafer

12‧‧‧天線 12‧‧‧Antenna

121‧‧‧第一導電元件 121‧‧‧First conductive element

122‧‧‧第二導電元件 122‧‧‧Second conductive element

13‧‧‧基板 13‧‧‧Substrate

22‧‧‧天線 22‧‧‧Antenna

AB‧‧‧第一路徑 AB‧‧‧First path

A‧‧‧第一端 A‧‧‧ first end

B‧‧‧第二端 B‧‧‧ second end

AC‧‧‧第二路徑 AC‧‧‧Second path

C‧‧‧第三端 C‧‧‧ third end

AD‧‧‧第三路徑 AD‧‧‧ third path

D‧‧‧第四端 D‧‧‧ fourth end

E‧‧‧第五端 E‧‧‧ fifth end

F‧‧‧第六端 F‧‧‧ sixth end

EF‧‧‧第四路徑 EF‧‧‧fourth path

d1‧‧‧第一間隙 d 1 ‧‧‧First gap

W1‧‧‧寬度 W 1 ‧‧‧Width

L1‧‧‧長度 L 1 ‧‧‧ length

Claims (22)

一種用於無線射頻之偶極天線,包含:位於一基板上之一第一導電元件,該第一導電元件包含:延伸於一第一端與一第二端間的一第一路徑;從該第一端延伸至一第三端間的一第二路徑;及從該第一端延伸至一第四端間的一第三路徑;以及位於該基板上之一第二導電元件,該第二導電元件包含:延伸於一第五端與一第六端間的一第四路徑:以及從該第五端及該第六端間之一第七端延伸至一第八端之一第五路徑,其中該第二端與該第五端間具有一第一間隙,該第三端及該第六端間具有一第二間隙。 A dipole antenna for a radio frequency, comprising: a first conductive element on a substrate, the first conductive element comprising: a first path extending between a first end and a second end; a first end extending to a second path between the third ends; and a third path extending from the first end to a fourth end; and a second conductive element on the substrate, the second The conductive component includes: a fourth path extending between a fifth end and a sixth end: and a fifth path extending from the seventh end of the fifth end and the sixth end to an eighth end The second end and the fifth end have a first gap, and the third end and the sixth end have a second gap. 根據請求項1所述之偶極天線,其中該第三路徑的長度為四分之一波長。 The dipole antenna of claim 1, wherein the length of the third path is a quarter wavelength. 根據請求項1所述之偶極天線,其中該第一路徑及該第三路徑形成一長度,該長度配置供決定該偶極天線之一電阻。 The dipole antenna of claim 1, wherein the first path and the third path form a length configured to determine a resistance of the dipole antenna. 根據請求項1所述之偶極天線,其中該第一路徑及該第二路徑形成一寬度,該寬度配置供決定該偶極天線之一感抗。 The dipole antenna of claim 1, wherein the first path and the second path form a width configured to determine an inductive reactance of the dipole antenna. 根據請求項1所述之偶極天線,其中該第一間隙係配置供 決定該偶極天線之一頻寬或一耦合量之至少一者。 The dipole antenna according to claim 1, wherein the first gap is configured for Determining at least one of a bandwidth or a coupling amount of the dipole antenna. 根據請求項1所述之偶極天線,其中該第三路徑包含一曲折結構。 The dipole antenna of claim 1, wherein the third path comprises a meandering structure. 根據請求項1所述之偶極天線,其中該第三端配置供電性連接至一晶片之一第一引腳,該第六端配置供電性連接至該晶片之一第二引腳。 The dipole antenna of claim 1, wherein the third end is configured to be electrically coupled to a first pin of a wafer, the sixth end configured to be electrically coupled to a second pin of the wafer. 一種用於無線射頻之偶極天線,包含:位於一基板上之一第一路徑,該第一路徑延伸於一第一端與一第二端間;位於該基板上之一第二路徑,該第二路徑延伸於該第一端與一第三端間;位於該基板上之一第三路徑,該第三路徑的長度為四分之一波長並延伸於該第一端與一第四端間;位於該基板上之一第四路徑,該第四路徑延伸於一第五端與一第六端間;以及位於該基板上之一第五路徑,該第五路徑從該第五端及該第六端間之一第七端延伸至一第八端,其中該第二端與該第五端間具有一第一間隙,該第三端及該第六端間具有一第二間隙。 A dipole antenna for a radio frequency, comprising: a first path on a substrate, the first path extending between a first end and a second end; and a second path on the substrate, the a second path extending between the first end and a third end; a third path on the substrate, the third path having a length of a quarter wavelength and extending from the first end and the fourth end a fourth path on the substrate, the fourth path extending between a fifth end and a sixth end; and a fifth path on the substrate, the fifth path from the fifth end The seventh end of the sixth end extends to an eighth end, wherein the second end and the fifth end have a first gap, and the third end and the sixth end have a second gap. 根據請求項8所述之偶極天線,其中該第五路徑的長度為四分之一波長。 The dipole antenna of claim 8, wherein the fifth path has a length of a quarter wavelength. 根據請求項8所述之偶極天線,其中該第一路徑及該第三路徑形成一長度,該長度配置供決定該偶極天線之一電阻。 The dipole antenna of claim 8, wherein the first path and the third path form a length configured to determine a resistance of the dipole antenna. 根據請求項8所述之偶極天線,其中該第一路徑及該第二路徑形成一寬度,該寬度配置供決定該偶極天線之一感抗。 The dipole antenna of claim 8, wherein the first path and the second path form a width configured to determine an inductive reactance of the dipole antenna. 根據請求項8所述之偶極天線,其中該第一間隙係配置供決定該偶極天線之一頻寬或一耦合量之至少一者。 The dipole antenna of claim 8, wherein the first gap is configured to determine at least one of a bandwidth or a coupling amount of the dipole antenna. 根據請求項8所述之偶極天線,其中該第三路徑包含一曲折結構。 The dipole antenna of claim 8, wherein the third path comprises a meandering structure. 根據請求項8所述之偶極天線,其中該第三端配置供電性連接至一晶片之一第一引腳,該第五端配置供電性連接至該晶片之一第二引腳。 The dipole antenna of claim 8, wherein the third end is configured to be electrically coupled to a first pin of a wafer, the fifth end configured to be electrically coupled to a second pin of the wafer. 一種用於無線射頻之偶極天線,包含:位於一基板上之一第一導電元件,該第一導電元件包含:延伸於一第一端與一第二端間的一第一路徑;從該第一端延伸至一第三端間的一第二路徑;及從該第一端延伸至一第四端間的一第三路徑;以及位於該基板上之一第二導電元件,該第二導電元件包含:延伸於一第五端與一第六端間的一第四路徑;以及從該第五端及該第六端間之一第七端延伸至一第八端之一第五路徑,其中該第二端與該第五端間具有一第一間隙,該第三端及該第六端間具有一第二間隙,該第一間隙配置供決定該偶極天線之一頻寬或一耦合量之至少一者。 A dipole antenna for a radio frequency, comprising: a first conductive element on a substrate, the first conductive element comprising: a first path extending between a first end and a second end; a first end extending to a second path between the third ends; and a third path extending from the first end to a fourth end; and a second conductive element on the substrate, the second The conductive element includes: a fourth path extending between a fifth end and a sixth end; and a fifth path extending from the seventh end of the fifth end and the sixth end to an eighth end a second gap between the second end and the fifth end, the third end and the sixth end having a second gap configured to determine a bandwidth of the dipole antenna or At least one of a coupling amount. 根據請求項15所述之偶極天線,其中該第五路徑的長度為四分之一波長。 The dipole antenna of claim 15, wherein the fifth path has a length of a quarter wavelength. 根據請求項15所述之偶極天線,其中該第三路徑的長度為四分之一波長。 The dipole antenna of claim 15, wherein the length of the third path is a quarter wavelength. 根據請求項15所述之偶極天線,其中該第一路徑及該第三路徑形成一長度,該長度配置供決定該偶極天線之一電阻。 The dipole antenna of claim 15 wherein the first path and the third path form a length configured to determine a resistance of the dipole antenna. 根據請求項15所述之偶極天線,其中該第一路徑及該第二路徑形成一寬度,該寬度配置供決定該偶極天線之一感抗。 The dipole antenna of claim 15, wherein the first path and the second path form a width configured to determine an inductive reactance of the dipole antenna. 根據請求項15所述之偶極天線,其中該第三路徑包含一曲折結構。 The dipole antenna of claim 15 wherein the third path comprises a meandering structure. 根據請求項15所述之偶極天線,其中該第三端配置供電性連接至一晶片之一第一引腳,該第六端配置供電性連接至該晶片之一第二引腳。 The dipole antenna of claim 15 wherein the third end is configured to be electrically coupled to a first pin of a wafer, the sixth end configured to be electrically coupled to a second pin of the wafer. 根據請求項15所述之偶極天線,其中該第一間隙之寬度範圍介於0.01公分至1公分之間。 The dipole antenna according to claim 15, wherein the first gap has a width ranging from 0.01 cm to 1 cm.
TW101133611A 2012-09-14 2012-09-14 Dipole antenna for rfid tag TWI536673B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101133611A TWI536673B (en) 2012-09-14 2012-09-14 Dipole antenna for rfid tag
CN201210397284.3A CN103682647A (en) 2012-09-14 2012-10-18 Dipole antenna for radio frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101133611A TWI536673B (en) 2012-09-14 2012-09-14 Dipole antenna for rfid tag

Publications (2)

Publication Number Publication Date
TW201411945A TW201411945A (en) 2014-03-16
TWI536673B true TWI536673B (en) 2016-06-01

Family

ID=50319409

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101133611A TWI536673B (en) 2012-09-14 2012-09-14 Dipole antenna for rfid tag

Country Status (2)

Country Link
CN (1) CN103682647A (en)
TW (1) TWI536673B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759881B (en) * 2020-09-25 2022-04-01 黃孟堯 Columnar package for encapsulating RF chip and antenna with enhanced reading distance, its manufacturing method, and antenna wiring structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642902B2 (en) * 2002-04-08 2003-11-04 Kenneth A. Hirschberg Low loss loading, compact antenna and antenna loading method
US7573425B2 (en) * 2007-03-20 2009-08-11 Industrial Technology Research Institute Antenna for radio frequency identification RFID tags
CN101604786B (en) * 2009-04-22 2013-12-04 江苏中科方盛信息科技有限公司 RFID antenna and label and electronic anti-fake bottle cover

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759881B (en) * 2020-09-25 2022-04-01 黃孟堯 Columnar package for encapsulating RF chip and antenna with enhanced reading distance, its manufacturing method, and antenna wiring structure

Also Published As

Publication number Publication date
CN103682647A (en) 2014-03-26
TW201411945A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
JP5076519B2 (en) tag
US7557757B2 (en) Inductively coupled feed structure and matching circuit for RFID device
JP6253588B2 (en) Antenna structure and RFID transponder system provided with antenna structure
Ren et al. A robust UHF near-field RFID reader antenna
JP5778155B2 (en) Antenna for RFID transponder system
Bhaskar et al. Folded-slot active tag antenna for 5.8 GHz RFID applications
El Hamraoui et al. A low cost miniature UHF RFID tag antenna using paper substrate
Choudhary et al. Development of compact inductive coupled meander line RFID tag for near-field applications
Ding et al. A novel magnetic coupling UHF near field RFID reader antenna based on multilayer-printed-dipoles array
JP2007527174A (en) Antenna structure for RFID tag
Tan et al. Compact dual band tag antenna design for radio frequency identification (RFID) application
TWI536673B (en) Dipole antenna for rfid tag
Alagiasundaram et al. Planar inverted antenna with embedded patch excitor for on-metal tag design
US7573425B2 (en) Antenna for radio frequency identification RFID tags
Nguyen et al. Novel design of RFID UHF passive tag for wideband applications by direct and contactless chip connection
Singh et al. A Nested Slot and T-Match Network Based Hybrid Antenna for UHF RFID Tag Applications.
Murugesh et al. On-Metal UHF Tag Antenna Design Using Concentric Step-Impedance Rings
El Yassini et al. Design of a miniaturized Microstrip Patch Antenna for a passive UHF RFID tag
Farchi Analysis, Design, and Manufacture of a Compact UHF RFID Tag Antenna for Operating in a Metallic or Non-Metallic Environments.
Fazilah et al. Design of compact UHF-RFID tag antenna with meander line technique
Ding et al. A broadband anti-metal RFID tag with AMC ground
Qing et al. UHF near-field RFID reader antenna
Chen et al. Research on U-shaped tuning stub RFID tag on different objects
Wickramasinghe et al. A Miniaturized Printed Dipole with Non-Uniform Meander Lines for Ultra High Frequency–Radio Frequency Identification Passive Tags
JP7115885B2 (en) resonant circuit, antenna device