WO2008016053A1 - Concrete for neutron shielding - Google Patents
Concrete for neutron shielding Download PDFInfo
- Publication number
- WO2008016053A1 WO2008016053A1 PCT/JP2007/064996 JP2007064996W WO2008016053A1 WO 2008016053 A1 WO2008016053 A1 WO 2008016053A1 JP 2007064996 W JP2007064996 W JP 2007064996W WO 2008016053 A1 WO2008016053 A1 WO 2008016053A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- concrete
- neutron shielding
- peridotite
- aggregate
- fine aggregate
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F1/00—Shielding characterised by the composition of the materials
- G21F1/02—Selection of uniform shielding materials
- G21F1/04—Concretes; Other hydraulic hardening materials
- G21F1/042—Concretes combined with other materials dispersed in the carrier
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00862—Uses not provided for elsewhere in C04B2111/00 for nuclear applications, e.g. ray-absorbing concrete
Definitions
- the present invention can be used mainly in a nuclear facility, an accelerator facility, an RI (radioisotope) research facility, a medical facility, etc., which can be used for a place requiring radiation shielding, particularly neutron shielding.
- JP-A-6-1645 discloses a boron-containing aggregate such as colemanite (apatite) and an oil admixture in which a surfactant that emulsifies the oil is mixed with an oil such as mineral oil.
- Neutron shielding concrete has been proposed in which each is mixed at a predetermined ratio.
- the scheelite used for the concrete has an excellent neutron shielding ability.
- the strength of the obtained concrete does not appear when a large amount of borohydrite is mixed in the concrete. Therefore, when ashstone is used as an aggregate, it is difficult to achieve both desired neutron shielding ability and strength.
- the neutron shielding concrete uses a special mineral oil, which makes it difficult to use in the field.
- An object of the present invention is to exhibit compressive strength comparable to that of concrete using ordinary aggregates, and to exhibit excellent neutron shielding ability without increasing the wall thickness of the concrete.
- the purpose is to provide concrete for neutron shielding that can be designed in a wide space during the construction of facilities that require a large amount of space.
- a neutron shielding concrete containing cement, water, coarse aggregate and fine aggregate, including peridotite quarry as coarse aggregate, and peridotite crushed sand as fine aggregate and A neutron shielding concrete is provided, characterized in that it contains a perovskite and the content ratio of the perovskite is 5 to 20% by weight based on the total amount of the concrete.
- the concrete for neutron shielding of the present invention includes peridotite quarry as coarse aggregate, includes peridotite crushed sand and peridotite as fine aggregates, and contains the perovskite at a specific ratio. It exhibits a compressive strength comparable to that of ordinary aggregates, and has excellent It can exhibit sexual barrier ability.
- peridotite quarry as coarse aggregate
- peridotite crushed sand and peridotite as fine aggregates
- contains the perovskite at a specific ratio It exhibits a compressive strength comparable to that of ordinary aggregates, and has excellent It can exhibit sexual barrier ability.
- it depends on the energy of the neutrons to be shielded and the thickness of the concrete compared to ordinary concrete of the same wall thickness. The difference in performance is a different force About 1.5 ⁇ ; 1. 7 times the shielding ability can be demonstrated, and the performance of secondary gamma ray generation can be less than about 1/2 to 1/10 Is possible.
- FIG. 1 is a graph showing changes in compressive strength of concrete in Example 1 and Reference Example 1 with age.
- FIG. 2 is a graph showing the calculation results of shielding performance of concrete in Example 1 and Reference Example 1 against a 252 C inertial source.
- FIG. 3 is a graph showing the calculation results of shielding performance of concrete in Example 1 and Reference Example 1 against a 14 MeV neutron source.
- FIG. 5 is a graph showing the calculation results of shielding performance of concrete in Example 2 and Reference Example 2 against a 252 C inertial source.
- FIG. 6 is a graph showing the calculation results of shielding performance of concrete in Example 2 and Reference Example 2 against a 14 MeV neutron source.
- the neutron shielding concrete of the present invention includes cement, water, specific coarse aggregate, and specific fine aggregate.
- cement various Portland cements such as normal, early strength, super early strength, low heat, and moderate heat can be used.
- the amount of cement used and the water / cement ratio are appropriately selected according to the facility to be constructed, based on the conditions during normal concrete production.
- the amount of aggregate can be selected as appropriate.
- the peridotite (Olivine rock) used in the present invention has a slightly different composition depending on the place of origin, but usually contains SiO and MgO as main components and contains about 12% by weight of crystal water.
- peridotite crushed stone used as coarse aggregate is usually crushed stone with a shortest diameter of about 5 mm that can pass through a 25 mm sieve.
- the coarse aggregate it is possible to contain other ordinary coarse aggregates other than peridotite crushed stone.
- the higher the content of peridotite crushed stone in the coarse aggregate the better.
- the content ratio of the coarse aggregate can be selected as appropriate, but is usually 40 45 wt%, preferably 41 42 wt%, based on the total amount of concrete.
- the peridotite crushed sand used as the fine aggregate is usually crushed sand having a particle size of a size that can pass through a 10-mm sieve from the viewpoint of dispersibility in concrete.
- the blending ratio of the crushed rock is usually 17 36% by weight, preferably 17 26% by weight, based on the total amount of reinforced concrete that can be selected as appropriate considering the desired effect. If it exceeds 36% by weight, the desired neutron shielding ability may be reduced. On the other hand, if it is less than 17% by weight, the desired strength cannot be ensured! /.
- the wollastonite used as the fine aggregate is a mineral containing 2Ca0.3B 0 ⁇ 5 ⁇ ⁇ 0 as a main component, and preferably containing 43.49% by weight or more of ⁇ 0.
- the boehmite has a particle size that normally passes through a 10 mm sieve, preferably a particle diameter that passes through a 5 mm sieve.
- the content ratio of the borohydrite is about 520% by weight, preferably about 1018% by weight, based on the total amount of concrete, and may satisfy the condition of 0.4 to 22% by weight on the basis of the total amount of aggregate. This is preferable in that the desired effect can be further improved. If the content ratio of borohydrite to the total amount of concrete is less than 5% by weight, the desired neutron shielding ability cannot be obtained, while if it exceeds 20% by weight, the desired strength cannot be obtained! /.
- the fine aggregate may be a general aggregate other than the peridotite crushed sand and the peridotite. It is also possible to include ordinary fine aggregate. However, in order to further improve the desired effect of the present invention, the content of other fine aggregates is low! /, And it is preferable!
- the content of fine aggregate can be selected as appropriate, but is usually 27 to 41% by weight, preferably 27 to 36% by weight, more preferably 28 to 35% by weight, based on the total amount of concrete. . If it is less than 27% by weight, the desired neutron shielding ability may be reduced, while if it exceeds 41% by weight, the desired strength may not be ensured.
- Neutron energy is divided into slow neutrons from OkeV to lkeV, medium neutrons from lkeV to 500 keV, and fast neutrons from 500 keV to 1 MeV.
- Elastic scattering is caused by slow neutrons and medium neutrons.
- the interaction with light nuclei such as hydrogen reduces neutron energy. To do.
- hydrogen atoms have the same mass as neutrons, neutron energy can be reduced efficiently.
- inelastic scattering is a phenomenon that occurs in fast neutrons, and the energy of neutrons decreases due to interaction with iron and the like.
- the peridotite employed in the present invention contains a large amount of water, so that hydrogen atoms and neutrons in the water cause elastic scattering, and slow and medium speed neutrons are decelerated.
- iron is also included because it is a rock, and it is thought that this iron can also reduce the speed of fast neutrons.
- the scheelite employed in the present invention is a natural rock and contains an average of 40% by weight or more of a boron component.
- Boron has been conventionally known to have the property of absorbing slow neutrons, and is a material used for nuclear reactor control rods. Therefore, in the neutron shielding concrete of the present invention, the neutrons decelerated by the peridotite are absorbed by the boron of the borohydrite, thereby efficiently shielding the neutrons. Can do. And since such an efficient neutron shielding ability is obtained, the desired neutron shielding ability can be achieved without increasing the content ratio of borohydrite as a fine aggregate that causes a decrease in strength. Degradation can be minimized. In addition, the use of peridotite as a coarse aggregate can further suppress the decrease in strength. In the present invention, it is considered that the desired effect can be achieved by the above-described action.
- the neutron shielding concrete of the present invention can be manufactured by a method similar to that of ordinary concrete, and can therefore be easily constructed on site. At this time, if necessary, various additives and admixtures usually used for concrete are appropriately selected and used.
- a concrete molding having a diameter of 100 mm and a height of 200 mm was prepared according to the composition shown in Table 1, and the compressive strength at the age of 7, 28, 56 and 91 days was measured according to JIS A 1108. The results are shown in Figure 1.
- the neutron shielding performance of the concrete composition of Example 1 was compared with the concrete composition of Reference Example 1 by simulation calculation.
- the calculation code used is MCNP version 5, a neutron behavior simulation code developed at the Los Samos National Laboratory.
- the nuclear data used is JE NDL-3.3 maintained by the Japan Atomic Energy Agency. As input data, elemental analysis of concrete actually produced in Example 1 was performed, and the analysis result was used as input data for simulation calculation. Both of these calculation codes and nuclear data are widely used all over the world, and have a great track record as calculation codes that accurately reproduce experimental values.
- the simulation calculation reproduces the energy range from slow neutrons to fast neutrons used in general nuclear facilities, so the shielding performance for 252 Cf neutron sources (reproducible from slow neutrons to near lOMeV) and fusion facilities
- the shielding performance was calculated. The results are shown in Fig. 2 and Fig. 3.
- Example 1 composition is more than 1.7 times for the 252 Cf neutron source and 1. It can be seen that the shielding performance is more than 5 times.
- a concrete molding having a diameter of 100 mm and a height of 200 mm was prepared according to the composition shown in Table 2, and the compressive strength at the age of 7, 28, 56 and 91 days was measured according to JIS A 1108. The results are shown in Fig. 4.
- the concrete according to Examples 2 and 3 has the same strength as the concrete according to Reference Example 2 that does not use coarse aggregate (A) and fine aggregate (A), which are peridotite.
- the concrete in Example 4 was also slightly lower than the concrete in Reference Example 2.
- Difficult example 2 100 278 198 78 0. 01 55. 0 76. 6 10. 0
- Example 4 100 278 141 129 0. 01 55. 0 76. 5 17. 0
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
A concrete for neutron shielding which has the same compressive strength as concretes made with an ordinary aggregate and can have the excellent ability to block neutrons without the need of thickening the concrete wall. The concrete enables a wide range of space designs in constructing facilities necessitating neutron shielding. The concrete for neutron shielding is characterized in that it comprises cement, water, a coarse aggregate, and a fine aggregate, the coarse aggregate comprises crushed stones of peridotite, the fine aggregate comprises crushed peridotite sand and colemanite, and the content of the colemanite is 5-20 wt.% based on the whole concrete.
Description
技術分野 Technical field
[0001] 本発明は、主に、原子力施設、加速器施設、 RI (放射性同位元素)研究施設、医療 施設等における、放射線遮蔽、特に中性子遮蔽を必要とする箇所に用いることがで きる、優れた中性子遮蔽能と強度とを兼ね備えた中性子遮蔽用コンクリートに関する 背景技術 [0001] The present invention can be used mainly in a nuclear facility, an accelerator facility, an RI (radioisotope) research facility, a medical facility, etc., which can be used for a place requiring radiation shielding, particularly neutron shielding. Background art on neutron shielding concrete with both neutron shielding ability and strength
[0002] 原子力関連施設や医療施設における放射線の遮蔽においては、施設内で使用す る機器の性能向上と共に、従来軽視されてきた中性子の遮蔽が重要となっている。 そこで、このような中性子の遮蔽を改善するために、例えば、コンクリートの壁厚を 厚くする方法、局所的に中性子遮蔽樹脂を使用する方法が提案されている。また、 国際核融合実験炉 ITER等において、中性子遮蔽のために、高価な炭化ホウ素 (B C) [0002] In radiation shielding in nuclear facilities and medical facilities, neutron shielding, which has been neglected in the past, is important as well as improving the performance of equipment used in the facility. Therefore, in order to improve such neutron shielding, for example, a method of increasing the wall thickness of concrete and a method of locally using a neutron shielding resin have been proposed. In addition, in the International Fusion Experimental Reactor ITER etc., expensive boron carbide (B C) is used for neutron shielding.
4 を混合したコンクリートが採用されている。 Concrete mixed with 4 is adopted.
しかし、コンクリートの壁厚を厚くする方法では、該壁の占有領域が大きくなるので、 施設の効率設計が困難である。一方、中性子遮蔽樹脂や炭化ホウ素を混合したコン クリートを用いる場合は、コスト的に問題があり、更に、中性子遮蔽材料の耐久性の 点も不安がある。 However, in the method of increasing the wall thickness of the concrete, the occupied area of the wall becomes large, and it is difficult to design the facility efficiently. On the other hand, when using concrete mixed with neutron shielding resin or boron carbide, there is a problem in terms of cost, and there is also concern about the durability of the neutron shielding material.
[0003] 特開平 6-1645号公報には、コレマナイト (灰ホウ石)等の含ホウ素骨材と、鉱油等の 油に該油を乳化する界面活性剤が混和された油混和剤とを、それぞれ所定の割合 で混和させた中性子遮蔽コンクリートが提案されている。該コンクリートに用いられる 灰ホウ石は、優れた中性子遮蔽能を有する。しかし、コンクリート中に灰ホウ石を多く 配合すると、得られるコンクリートの強度が発現しないという問題がある。従って、灰ホ ゥ石を骨材として用いた場合、所望の中性子遮蔽能と強度との両立が困難である。ま た、該中性子遮蔽コンクリートにおいては、特殊な鉱油を使用するため、現場におけ る使用が困難であるという問題もある。 [0003] JP-A-6-1645 discloses a boron-containing aggregate such as colemanite (apatite) and an oil admixture in which a surfactant that emulsifies the oil is mixed with an oil such as mineral oil. Neutron shielding concrete has been proposed in which each is mixed at a predetermined ratio. The scheelite used for the concrete has an excellent neutron shielding ability. However, there is a problem in that the strength of the obtained concrete does not appear when a large amount of borohydrite is mixed in the concrete. Therefore, when ashstone is used as an aggregate, it is difficult to achieve both desired neutron shielding ability and strength. In addition, the neutron shielding concrete uses a special mineral oil, which makes it difficult to use in the field.
一方、粗骨材として灰ホウ石を用いたコンクリートブロックの圧縮強度試験において
、ある程度多く配合してもその強度が維持できたことが報告されている (Journal of Nuc lear Materials 212— 215 (1994), pl720— 1723)。し力、し、灰ホウ石を細骨剤として用い た場合には、その配合割合を多くすると優れた圧縮強度が得られないことも報告され てレ、る (Volkman, D. h. ana Bussolini, P. L., Journal or esting and bvaiuation, J¾ VA, Vol. 20, No. l, Jan. 1992, pp.92— 96)。要するに、優れた中性子遮蔽能を付与 するために、灰ホウ石をコンクリート全体に分散させるように細骨剤として用いた場合 、所望の強度が得られていないのが実状であり、灰ホウ石を用いて、優れた中性子 遮蔽能と強度とを両立したコンクリートの開発が望まれている。 On the other hand, in the compressive strength test of concrete blocks using limestone as coarse aggregate It has been reported that the strength could be maintained even when blended to some extent (Journal of Nuclear Materials 212-215 (1994), pl720-1723). However, it has been reported that when borohydrite is used as a fine bone agent, an excellent compressive strength cannot be obtained when the blending ratio is increased (Volkman, D. h.ana Bussolini). , PL, Journal or esting and bvaiuation, J¾ VA, Vol. 20, No. l, Jan. 1992, pp.92-96). In short, in order to give excellent neutron shielding ability, when it is used as fine bone so as to disperse the borohydrite throughout the concrete, the actual condition is that the desired strength is not obtained. Therefore, it is desired to develop concrete that combines excellent neutron shielding ability and strength.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0004] 本発明の課題は、普通骨材を用いたコンクリートと同程度の圧縮強度を示し、コンク リートの壁厚を厚くすること無ぐ優れた中性子遮蔽能を発揮することができ、中性子 遮蔽を必要とする施設建設時において広範囲に渡る空間設計が可能な中性子遮蔽 用コンクリートを提供することにある。 課題を解決するための手段 [0004] An object of the present invention is to exhibit compressive strength comparable to that of concrete using ordinary aggregates, and to exhibit excellent neutron shielding ability without increasing the wall thickness of the concrete. The purpose is to provide concrete for neutron shielding that can be designed in a wide space during the construction of facilities that require a large amount of space. Means for solving the problem
[0005] 本発明者らは、上記課題を解決するために鋭意検討した結果、粗骨材としてかんら ん岩採石を、細骨材としてかんらん岩砕砂及び灰ホウ石を用い、し力、も前記灰ホウ石 を、コンクリート全体量に対して特定割合で含有させることにより、上記課題が解決し うることを見出し、本発明を完成した。 [0005] As a result of intensive studies to solve the above problems, the present inventors have used peridotite quarry as coarse aggregate and peridotite crushed sand and peridotite as fine aggregate. In addition, the inventors have found that the above-mentioned problems can be solved by incorporating the above-mentioned borohydrite in a specific ratio with respect to the total amount of concrete, and have completed the present invention.
即ち、本発明によれば、セメント、水、粗骨材及び細骨材を含む中性子遮蔽用コン クリートであって、粗骨材としてかんらん岩採石を含み、細骨材としてかんらん岩砕砂 及び灰ホウ石を含み、且つ前記灰ホウ石の含有割合が、コンクリート全量基準で 5〜 20重量%であることを特徴とする中性子遮蔽用コンクリートが提供される。 That is, according to the present invention, a neutron shielding concrete containing cement, water, coarse aggregate and fine aggregate, including peridotite quarry as coarse aggregate, and peridotite crushed sand as fine aggregate and A neutron shielding concrete is provided, characterized in that it contains a perovskite and the content ratio of the perovskite is 5 to 20% by weight based on the total amount of the concrete.
発明の効果 The invention's effect
[0006] 本発明の中性子遮蔽用コンクリートは、粗骨材としてかんらん岩採石を含み、細骨 材としてかんらん岩砕砂及び灰ホウ石を含み、且つ前記灰ホウ石を特定割合で含有 するので、普通骨材を用いたコンクリートと同程度の圧縮強度を示し、且つ優れた中
性子遮蔽能を発揮することができる。例えば、被曝線量評価において重要なェネル ギー領域の中性子を出す252 c冲性子源で評価した場合、同一壁厚の普通コンクリー トに比べて、遮蔽対象となる中性子のエネルギーや、コンクリートの厚さによって性能 差は異なる力 約 1. 5〜; 1. 7倍の遮蔽能を発揮することができ、また 2次ガンマ線生 成量で、約 1/2〜1/10より少ない性能を発揮させることが可能である。 [0006] The concrete for neutron shielding of the present invention includes peridotite quarry as coarse aggregate, includes peridotite crushed sand and peridotite as fine aggregates, and contains the perovskite at a specific ratio. It exhibits a compressive strength comparable to that of ordinary aggregates, and has excellent It can exhibit sexual barrier ability. For example, when evaluating with a 252 c source that emits neutrons in the energy region that is important for exposure dose evaluation, it depends on the energy of the neutrons to be shielded and the thickness of the concrete compared to ordinary concrete of the same wall thickness. The difference in performance is a different force About 1.5 ~; 1. 7 times the shielding ability can be demonstrated, and the performance of secondary gamma ray generation can be less than about 1/2 to 1/10 Is possible.
従って、原子力施設、加速器施設、 RI研究施設、医療施設等における、放射線遮 蔽、特に中性子遮蔽を必要とする施設へ好適に採用することができる。 Therefore, it can be suitably applied to facilities that require radiation shielding, particularly neutron shielding, in nuclear facilities, accelerator facilities, RI research facilities, medical facilities, and the like.
図面の簡単な説明 Brief Description of Drawings
[0007] [図 1]実施例 1及び参考例 1におけるコンクリートの材齢に対する圧縮強度変化を示 すグラフである。 [0007] FIG. 1 is a graph showing changes in compressive strength of concrete in Example 1 and Reference Example 1 with age.
[図 2]実施例 1及び参考例 1におけるコンクリートの252 C冲性子源に対する遮蔽性能 の計算結果を示すグラフである。 FIG. 2 is a graph showing the calculation results of shielding performance of concrete in Example 1 and Reference Example 1 against a 252 C inertial source.
[図 3]実施例 1及び参考例 1におけるコンクリートの 14MeV中性子源に対する遮蔽性 能の計算結果を示すグラフである。 FIG. 3 is a graph showing the calculation results of shielding performance of concrete in Example 1 and Reference Example 1 against a 14 MeV neutron source.
[図 4]実施例 2〜4及び参考例 2におけるコンクリートの材齢に対する圧縮強度変化を [Fig. 4] Changes in compressive strength with age of concrete in Examples 2 to 4 and Reference Example 2.
[図 5]実施例 2及び参考例 2におけるコンクリートの252 C冲性子源に対する遮蔽性能 の計算結果を示すグラフである。 FIG. 5 is a graph showing the calculation results of shielding performance of concrete in Example 2 and Reference Example 2 against a 252 C inertial source.
[図 6]実施例 2及び参考例 2におけるコンクリートの 14MeV中性子源に対する遮蔽性 能の計算結果を示すグラフである。 FIG. 6 is a graph showing the calculation results of shielding performance of concrete in Example 2 and Reference Example 2 against a 14 MeV neutron source.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、本発明を更に詳細に説明する。 [0008] Hereinafter, the present invention will be described in more detail.
本発明の中性子遮蔽用コンクリートは、セメント、水、特定の粗骨材及び特定の細 骨材を含む。 The neutron shielding concrete of the present invention includes cement, water, specific coarse aggregate, and specific fine aggregate.
前記セメントとしては、通常、普通、早強、超早強、低熱、及び中庸熱等の各種ポル トランドセメント等を用いることができる。 As the cement, various Portland cements such as normal, early strength, super early strength, low heat, and moderate heat can be used.
本発明の中性子遮蔽用コンクリートにおいて、セメントの使用量や、水/セメント比 は、通常のコンクリート製造時の条件に基づいて、建設する施設に応じて適宜選択
すること力 Sできる。また、骨材量も同様に適宜選択することができる。 In the neutron shielding concrete of the present invention, the amount of cement used and the water / cement ratio are appropriately selected according to the facility to be constructed, based on the conditions during normal concrete production. The power to do S. Similarly, the amount of aggregate can be selected as appropriate.
[0009] 本発明に用いるかんらん岩 (Olivine rock)はその産地により、その成分組成が多少 異なるが、通常、 SiOと MgOとを主成分とし、結晶水を約 1 2重量%含むものである 本発明において、粗骨材として用いるかんらん岩砕石は、通常、 25mm篩を通過し うる、最短径 5mm程度の砕石である。粗骨材としては、かんらん岩砕石以外の他の 通常の粗骨材等を含有させることも可能である。しかし、本発明の所望の優れた中性 子遮蔽能をより向上させるためには、粗骨材中のかんらん岩砕石の含有割合が高い ほど好ましい。 [0009] The peridotite (Olivine rock) used in the present invention has a slightly different composition depending on the place of origin, but usually contains SiO and MgO as main components and contains about 12% by weight of crystal water. In general, peridotite crushed stone used as coarse aggregate is usually crushed stone with a shortest diameter of about 5 mm that can pass through a 25 mm sieve. As the coarse aggregate, it is possible to contain other ordinary coarse aggregates other than peridotite crushed stone. However, in order to further improve the desired excellent neutron shielding ability of the present invention, the higher the content of peridotite crushed stone in the coarse aggregate, the better.
粗骨材の含有割合は適宜選択することができるが、コンクリート全量基準で、通常、 40 45重量% 好ましくは 41 42重量%である。 The content ratio of the coarse aggregate can be selected as appropriate, but is usually 40 45 wt%, preferably 41 42 wt%, based on the total amount of concrete.
[0010] 本発明において、細骨材として用いるかんらん岩砕砂は、通常、 10mmの篩を通過 しうる大きさの粒径を有する砕砂であることがコンクリートへの分散性の点で好ましい 該かんらん岩砕砂の配合割合は、所望の効果を勘案して適宜選択することができ る力 コンクリート全量基準で、通常 17 36重量%、好ましくは 17 26重量%であ る。 36重量%を超えると、所望の中性子遮蔽能が低下する恐れがあり、一方、 17重 量%未満では、所望の強度を確保することができな!/、恐れがある。 [0010] In the present invention, the peridotite crushed sand used as the fine aggregate is usually crushed sand having a particle size of a size that can pass through a 10-mm sieve from the viewpoint of dispersibility in concrete. The blending ratio of the crushed rock is usually 17 36% by weight, preferably 17 26% by weight, based on the total amount of reinforced concrete that can be selected as appropriate considering the desired effect. If it exceeds 36% by weight, the desired neutron shielding ability may be reduced. On the other hand, if it is less than 17% by weight, the desired strength cannot be ensured! /.
[0011] 本発明において、細骨材として用いる灰ホウ石は、 2Ca0.3B 0 · 5Η 0を主成分と して、好ましくは Β 0を 43. 49重量%以上含む鉱物である。灰ホウ石は、通常、 10m mの篩を通過する粒径、好ましくは 5mmの篩を通過する粒径を有する、粒子である ことが、所望の中性子遮蔽能及び強度を得るために好ましい。 [0011] In the present invention, the wollastonite used as the fine aggregate is a mineral containing 2Ca0.3B 0 · 5 主 成分 0 as a main component, and preferably containing 43.49% by weight or more of Β0. In order to obtain the desired neutron shielding ability and strength, it is preferable that the boehmite has a particle size that normally passes through a 10 mm sieve, preferably a particle diameter that passes through a 5 mm sieve.
該灰ホウ石の含有割合は、コンクリート全量基準で 5 20重量%、好ましくは 10 18重量%程度であり、更には、骨材全量基準において 0. 4 22重量%の条件をも 充足することが所望の効果をより改善しうる点で好ましい。コンクリート全量に対する 灰ホウ石の含有割合が、 5重量%未満では所望の中性子遮蔽能が得られず、一方、 20重量%を超える場合には、所望の強度が得られな!/、。 The content ratio of the borohydrite is about 520% by weight, preferably about 1018% by weight, based on the total amount of concrete, and may satisfy the condition of 0.4 to 22% by weight on the basis of the total amount of aggregate. This is preferable in that the desired effect can be further improved. If the content ratio of borohydrite to the total amount of concrete is less than 5% by weight, the desired neutron shielding ability cannot be obtained, while if it exceeds 20% by weight, the desired strength cannot be obtained! /.
[0012] 本発明において前記細骨材としては、上記かんらん岩砕砂及び灰ホウ石以外の通
常の細骨材を含有させることも可能である。しかし、本発明の所望の効果をより向上さ せるためには、他の細骨材の含有割合は低!/、方が好まし!/、。 [0012] In the present invention, the fine aggregate may be a general aggregate other than the peridotite crushed sand and the peridotite. It is also possible to include ordinary fine aggregate. However, in order to further improve the desired effect of the present invention, the content of other fine aggregates is low! /, And it is preferable!
本発明において細骨材の含有割合は、適宜選択することができるが、コンクリート 全量基準で、通常、 27〜41重量%、好ましくは 27〜36重量%、更に好ましくは 28 〜35重量%である。 27重量%未満では、所望の中性子遮蔽能が低下する恐れがあ り、一方、 41重量%を超える場合には、所望の強度を確保することができない恐れが ある。 In the present invention, the content of fine aggregate can be selected as appropriate, but is usually 27 to 41% by weight, preferably 27 to 36% by weight, more preferably 28 to 35% by weight, based on the total amount of concrete. . If it is less than 27% by weight, the desired neutron shielding ability may be reduced, while if it exceeds 41% by weight, the desired strength may not be ensured.
[0013] 本発明の中性子遮蔽用コンクリートにおいて、優れた圧縮強度と中性子遮蔽能とを 両立できる理由は、以下の作用によるものと考えられる。 [0013] In the neutron shielding concrete of the present invention, the reason why both excellent compressive strength and neutron shielding ability can be achieved is considered to be due to the following actions.
一般に、放射線の中でも中性子と物質の相互作用は複雑で、中性子のエネルギー の違いによって相互作用が変化する。中性子のエネルギーは、 OkeV〜lkeVの低速 中性子、 lkeV〜 500keVの中速中性子及び 500keV〜 1 MeVの高速中性子に分け られる。 In general, the interaction between neutrons and matter in radiation is complex, and the interaction changes depending on the difference in neutron energy. Neutron energy is divided into slow neutrons from OkeV to lkeV, medium neutrons from lkeV to 500 keV, and fast neutrons from 500 keV to 1 MeV.
中性子の相互作用には、大まかに弾性散乱と非弾性散乱とがあり、弾性散乱は、 低速中性子及び中速中性子が引き起こすもので、水素のような軽い原子核との相互 作用により中性子のエネルギーが減少する。特に、水素原子は中性子と同じ質量な ので、効率よく中性子のエネルギーを減少させることができる。一方、非弾性散乱は 、高速中性子に起こる現象で、鉄等との相互作用により中性子のエネルギーが減少 する。 There are roughly two types of neutron interaction: elastic scattering and inelastic scattering. Elastic scattering is caused by slow neutrons and medium neutrons. The interaction with light nuclei such as hydrogen reduces neutron energy. To do. In particular, since hydrogen atoms have the same mass as neutrons, neutron energy can be reduced efficiently. On the other hand, inelastic scattering is a phenomenon that occurs in fast neutrons, and the energy of neutrons decreases due to interaction with iron and the like.
本発明に採用するかんらん岩は、水分を多く含むので、該水分における水素原子 と中性子とが弾性散乱を起こし、低速及び中速中性子が減速される。また、岩石であ るために鉄分も含まれており、該鉄により高速中性子の減速効果も得られるからと考 X_られる。 The peridotite employed in the present invention contains a large amount of water, so that hydrogen atoms and neutrons in the water cause elastic scattering, and slow and medium speed neutrons are decelerated. In addition, iron is also included because it is a rock, and it is thought that this iron can also reduce the speed of fast neutrons.
[0014] 本発明に採用する灰ほう石は、天然の岩石であり、平均 40重量%以上のホウ素成 分を含んでいる。該ホウ素は、低速中性子を吸収する特性を持っていることが従来か ら知られており、原子力発電所の原子炉制御棒にも用いられている材料である。 従って、本発明の中性子遮蔽用コンクリートにおいては、かんらん岩によって減速さ れた中性子が灰ホウ石のホウ素に吸収されることで、効率良く中性子を遮蔽すること
ができる。そして、このような効率的な中性子遮蔽能が得られるので、強度低下の原 因となる細骨材としての灰ホウ石の含有割合を高くしなくても所望の中性子遮蔽能を 達成でき、強度低下を最小限に抑えることができる。しかも、かんらん岩を粗骨材に 用いることでより強度低下が抑制できる。本発明においては、以上の作用により、所 望の効果が達成できるものと考えられる。 [0014] The scheelite employed in the present invention is a natural rock and contains an average of 40% by weight or more of a boron component. Boron has been conventionally known to have the property of absorbing slow neutrons, and is a material used for nuclear reactor control rods. Therefore, in the neutron shielding concrete of the present invention, the neutrons decelerated by the peridotite are absorbed by the boron of the borohydrite, thereby efficiently shielding the neutrons. Can do. And since such an efficient neutron shielding ability is obtained, the desired neutron shielding ability can be achieved without increasing the content ratio of borohydrite as a fine aggregate that causes a decrease in strength. Degradation can be minimized. In addition, the use of peridotite as a coarse aggregate can further suppress the decrease in strength. In the present invention, it is considered that the desired effect can be achieved by the above-described action.
[0015] 本発明の中性子遮蔽用コンクリートは、通常のコンクリートと同様な方法により製造 すること力 Sできるので、現場においても容易に施工することが可能である。この際、必 要に応じて、コンクリートに通常使用される各種添加剤や混和剤等を適宜選択して用 いることあでさる。 [0015] The neutron shielding concrete of the present invention can be manufactured by a method similar to that of ordinary concrete, and can therefore be easily constructed on site. At this time, if necessary, various additives and admixtures usually used for concrete are appropriately selected and used.
実施例 Example
[0016] 以下、本発明を実施例により更に詳細に説明する力 本発明はこれらに限定されな い。 [0016] Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.
例に用いる材料は以下のとおりである。 The materials used in the examples are as follows.
粗骨材 (A): 25mm篩を通過する最短径 5mmのかんらん岩採石 Coarse aggregate (A): Peridotite quarry with a minimum diameter of 5 mm that passes through a 25 mm sieve
粗骨材 (B): 25mm篩を通過する j 11砂利 (普通粗骨材) Coarse aggregate (B): j 11 gravel passing through a 25mm sieve (ordinary coarse aggregate)
細骨材 (A) : 10mm篩を通過するかんらん岩の砕砂 Fine aggregate (A): Peridotite crushed sand passing through 10mm sieve
細骨材 (B) : 10mm篩を通過する灰ホウ石の砕石 Fine Aggregate (B): Crushed calcite passing through 10mm sieve
細骨材 (C): 1 Omm篩を通過する j 11砂 (普通細骨材) Fine Aggregate (C): 1 J 11 sand passing through Omm sieve (ordinary fine aggregate)
セメント:普通ポルトランドセメント Cement: Ordinary Portland cement
混和剤: AE減水剤 Admixture: AE water reducing agent
[0017] 実施例 1及び参考例 1 [0017] Example 1 and Reference Example 1
表 1に示す組成により、直径 100mm、高さ 200mmのコンクリート成型物を調製し、 材齢 7日、 28日、 56日及び 91日における圧縮強度を JIS A 1108に従って測定した。 結果を図 1に示す。 A concrete molding having a diameter of 100 mm and a height of 200 mm was prepared according to the composition shown in Table 1, and the compressive strength at the age of 7, 28, 56 and 91 days was measured according to JIS A 1108. The results are shown in Figure 1.
図 1より、実施例 1に係るコンクリートは、普通骨材を用いた参考例 1のコンクリートと 同等の強度が得られることが判った。 From Fig. 1, it was found that the concrete according to Example 1 has the same strength as the concrete of Reference Example 1 using ordinary aggregate.
[0018] [表 1]
セメント 粗骨材 (重量 ¾) 細骨材 (重麟 腳剤 水セメン 骨棚合 細骨剤 (B) (重量 a¾ (B) (重量 卜比 (%) 割合 (重量%) mmm i 1 0 0 3 3 5 2 0 9 8 2 0. 0 1 6 5. 0 7 9. 0 1 0. 0 m i 1 0 0 - 3 3 5 一 一 2 9 8 0. 0 1 6 5. 0 7 9. 0 0 [0018] [Table 1] Cement Coarse Aggregate (Weight ¾) Fine Aggregate (Heavy Aqueous Agent Water Cement Bone Shelving Fine Bone Agent (B) (Weight a¾ (B) (Weight Ratio (%) Ratio (Weight%) 3 3 5 2 0 9 8 2 0. 0 1 6 5. 0 7 9. 0 1 0. 0 mi 1 0 0-3 3 5 1 2 9 8 0. 0 1 6 5. 0 7 9. 0 0
[0019] 次に、実施例 1における組成のコンクリートの中性子遮蔽性能を、参考例 1における 組成のコンクリートとシミュレーション計算により比較した。使用した計算コードは、米 国ロスァモス国立研究所で開発された中性子挙動シミュレーションコード MCNPバー ジョン 5である。使用した原子核データは、 日本原子力研究開発機構で整備された JE NDL-3.3である。入力データには、実際に製造した実施例 1のコンクリートの元素分 析を行い、その分析結果をシミュレーション計算の入力データとした。これら計算コー ド及び原子核データは、共に世界中で広く用いられており、実験値を精度良く再現 する計算コードとして多大な実績を有するものである。 Next, the neutron shielding performance of the concrete composition of Example 1 was compared with the concrete composition of Reference Example 1 by simulation calculation. The calculation code used is MCNP version 5, a neutron behavior simulation code developed at the Los Samos National Laboratory. The nuclear data used is JE NDL-3.3 maintained by the Japan Atomic Energy Agency. As input data, elemental analysis of concrete actually produced in Example 1 was performed, and the analysis result was used as input data for simulation calculation. Both of these calculation codes and nuclear data are widely used all over the world, and have a great track record as calculation codes that accurately reproduce experimental values.
シミュレーション計算は、一般の原子力施設で用いられる低速中性子から高速中性 子までのエネルギー範囲を再現するため、252 Cf中性子源 (低速中性子から lOMeV付 近まで再現可能)に対する遮蔽性能と、核融合施設の遮蔽性能を再現するため、 14 MeV中性子源に対する遮蔽性能を計算した。それぞれの結果を図 2及び図 3に示すThe simulation calculation reproduces the energy range from slow neutrons to fast neutrons used in general nuclear facilities, so the shielding performance for 252 Cf neutron sources (reproducible from slow neutrons to near lOMeV) and fusion facilities In order to reproduce the shielding performance of the 14 MeV neutron source, the shielding performance was calculated. The results are shown in Fig. 2 and Fig. 3.
〇 Yes
図 2及び図 3から、実施例 1組成のコンクリートは、参考例 1組成のコンクリートに対 して、252 Cf中性子源に対しては 1. 7倍以上、 14MeV中性子源に対しては、 1. 5倍以 上の遮蔽性能を有することが判る。 From Fig. 2 and Fig. 3, the concrete of Example 1 composition is more than 1.7 times for the 252 Cf neutron source and 1. It can be seen that the shielding performance is more than 5 times.
[0020] 実施例 2〜4及び参考例 2 [0020] Examples 2 to 4 and Reference Example 2
表 2に示す組成により、直径 100mm、高さ 200mmのコンクリート成型物を調製し、 材齢 7日、 28日、 56日及び 91日における圧縮強度を JIS A 1108に従って測定した。 結果を図 4に示す。 A concrete molding having a diameter of 100 mm and a height of 200 mm was prepared according to the composition shown in Table 2, and the compressive strength at the age of 7, 28, 56 and 91 days was measured according to JIS A 1108. The results are shown in Fig. 4.
図 4より、実施例 2及び 3に係るコンクリートは、かんらん岩である粗骨材 (A)及び細 骨材 (A)を用いない参考例 2に係るコンクリートと同等の強度が得られ、実施例 4に係 るコンクリートも参考例 2に係るコンクリートより若干低下する程度であった。 From Fig. 4, the concrete according to Examples 2 and 3 has the same strength as the concrete according to Reference Example 2 that does not use coarse aggregate (A) and fine aggregate (A), which are peridotite. The concrete in Example 4 was also slightly lower than the concrete in Reference Example 2.
[0021] [表 2]
セメント 粗骨材 (A) 細骨材 (重職 混和剤 水セメン 骨棚合 細骨剤 (?) [0021] [Table 2] Cement Coarse Aggregate (A) Fine Aggregate (Heavy Work Admixture Water Cement Skeleton Combined Fine Aggregate (?)
(重量 (重量 (A) <B) (龍 ト比 (重量%) 割合 (Weight (Weight (A) <B) (Dragon ratio (wt%)
難例 2 100 278 198 78 0. 01 55. 0 76. 6 10. 0 Difficult example 2 100 278 198 78 0. 01 55. 0 76. 6 10. 0
m 3 100 278 169 104 0. 01 55. 0 76. 6 13. 0 m 3 100 278 169 104 0. 01 55. 0 76. 6 13. 0
実施例 4 100 278 141 129 0. 01 55. 0 76. 5 17. 0 Example 4 100 278 141 129 0. 01 55. 0 76. 5 17. 0
詩例 2 100 278 283 - 0. 01 55. 0 76. 9 0 次に、実施例 2における組成のコンクリートの中性子遮蔽性能を、参考例 2における 組成のコンクリートとシミュレーション計算により実施例 1及び参考例 1と同様に比較し た。252 C冲性子源 (低速中性子から lOMeV付近まで再現可能)に対する遮蔽性能の 計算結果を図 5に、 14MeV中性子源に対する遮蔽性能の計算結果を図 6に示す。 図 5及び図 6から、実施例 2に係る組成のコンクリートは、骨材としてかんらん岩を用 いていない参考例 2に係る組成のコンクリートよりも遮蔽性能に優れることが判る。
Psalm 2 100 278 283-0. 01 55. 0 76. 9 0 Next, the neutron shielding performance of the concrete of the composition in Example 2 was compared with that of the concrete of the composition of Reference Example 2 and Example 1 and Reference Example. Comparison was made in the same way as 1. Figure 5 shows the calculation results of shielding performance for a 252 C fertility source (reproducible from slow neutrons to around lOMeV), and Figure 6 shows the calculation results of shielding performance for a 14 MeV neutron source. From FIGS. 5 and 6, it can be seen that the concrete composition according to Example 2 has better shielding performance than the concrete composition according to Reference Example 2 that does not use peridotite as an aggregate.
Claims
[1] セメント、水、粗骨材及び細骨材を含む中性子遮蔽用コンクリートであって、 [1] neutron shielding concrete containing cement, water, coarse aggregate and fine aggregate,
粗骨材としてかんらん岩採石を含み、細骨材としてかんらん岩砕砂及び灰ホウ石を 含み、且つ前記灰ホウ石の含有割合が、コンクリート全量基準で 5〜20重量%である ことを特徴とする中性子遮蔽用コンクリート。 Peridotite quarry is included as coarse aggregate, peridotite crushed sand and peridotite are included as fine aggregate, and the content ratio of the perovskite is 5 to 20% by weight based on the total amount of concrete. Neutron shielding concrete.
[2] 灰ホウ石の含有割合が、コンクリート全量基準で 10〜; 18重量%であることを特徴と する請求項 1記載の中性子遮蔽用コンクリート。 [2] The neutron shielding concrete according to claim 1, wherein the content ratio of the borohydrite is 10 to 18% by weight based on the total amount of the concrete.
[3] 粗骨材の含有割合がコンクリート全量基準で 41〜42重量%、細骨剤の含有割合 力 Sコンクリート全量基準で 33〜36重量%であり、且つ細骨材としてのかんらん岩砕 砂の含有割合がコンクリート全量基準で 17〜26重量%であることを特徴とする請求 項 1又は 2記載の中性子遮蔽用コンクリート。 [3] The content of coarse aggregate is 41 to 42% by weight based on the total amount of concrete, the content rate of fine aggregate is 33 to 36% by weight based on the total amount of S concrete, and peridotite as fine aggregate The neutron shielding concrete according to claim 1 or 2, wherein the sand content is 17 to 26% by weight based on the total amount of concrete.
[4] 粗骨材としてのかんらん岩採石力 25mm篩を通過しうる、最短径 5mmの採石で あり、細骨材として用いるかんらん岩砕砂力 10mmの篩を通過しうる大きさの粒径を 有し、且つ細骨材として用いる灰ホウ石力 10mmの篩を通過する粒径を有すること を特徴とする請求項 1〜3のいずれ力、 1項記載の中性子遮蔽用コンクリート。
[4] Peridotite quarrying force as coarse aggregate A quarry with a minimum diameter of 5 mm that can pass through a 25 mm sieve, and a particle size that can pass through a 10 mm sieve peridotite used as fine aggregate The neutron shielding concrete according to any one of claims 1 to 3, wherein the neutron shielding concrete has a particle diameter that passes through a 10-mm sieve with a calcite strength used as a fine aggregate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006210671A JP4532447B2 (en) | 2006-08-02 | 2006-08-02 | Neutron shielding concrete |
JP2006-210671 | 2006-08-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008016053A1 true WO2008016053A1 (en) | 2008-02-07 |
Family
ID=38997227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/064996 WO2008016053A1 (en) | 2006-08-02 | 2007-07-31 | Concrete for neutron shielding |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4532447B2 (en) |
WO (1) | WO2008016053A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009192472A (en) * | 2008-02-18 | 2009-08-27 | Taisei Corp | Neutron bream shield |
ES2344290A1 (en) * | 2009-02-20 | 2010-08-23 | Consutrucciones Tecnicas De Radioterapia, S.L | Mass for manufacturing products with a high neutron radioprotection capacity. |
EP2345043A2 (en) * | 2008-10-06 | 2011-07-20 | Grancrete, Inc. | Waste storage vessels and compositions therefor |
US20140027676A1 (en) * | 2012-07-12 | 2014-01-30 | Petr Kovár | Shielding composite building materials with a low internal level of ionising radiation |
RU2545585C1 (en) * | 2013-10-22 | 2015-04-10 | Открытое акционерное общество "Инженерно-маркетинговый центр Концерна "Вега" ОАО "ИМЦ Концерна "Вега" | Radiation-proof structural concrete and method for production thereof |
CN108424107A (en) * | 2018-04-03 | 2018-08-21 | 济南大学 | A kind of radiation shield concrete |
CN109053093A (en) * | 2018-10-16 | 2018-12-21 | 成都宏基建材股份有限公司 | A kind of ungauged regions micro-expansion cement base radiation shield concrete and preparation method thereof |
CN109133803A (en) * | 2018-10-16 | 2019-01-04 | 成都宏基建材股份有限公司 | A kind of C40 ordinary portland cement base radiation shield concrete and preparation method thereof |
CN109231932A (en) * | 2018-10-16 | 2019-01-18 | 成都宏基建材股份有限公司 | A kind of barium aluminate cement base radiation shield concrete and preparation method thereof |
CN109231933A (en) * | 2018-10-16 | 2019-01-18 | 成都宏基建材股份有限公司 | A kind of radiation shield concrete and preparation method thereof |
CN109231920A (en) * | 2018-10-16 | 2019-01-18 | 成都宏基建材股份有限公司 | A kind of C20 ordinary portland cement base radiation shield concrete and preparation method thereof |
CN109231934A (en) * | 2018-10-16 | 2019-01-18 | 成都宏基建材股份有限公司 | A kind of fast calcium sulphoaluminate cement base radiation shield concrete and preparation method thereof firmly |
CN109231931A (en) * | 2018-10-16 | 2019-01-18 | 成都宏基建材股份有限公司 | A kind of aluminous cement base radiation shield concrete and preparation method thereof |
CN109320172A (en) * | 2018-10-16 | 2019-02-12 | 成都宏基建材股份有限公司 | A kind of quick setting and rapid hardening calcium aluminum fluoride cement base radiation shield concrete and preparation method thereof |
CN109320159A (en) * | 2018-10-16 | 2019-02-12 | 成都宏基建材股份有限公司 | A kind of low heat micro expanding cement base radiation shield concrete and preparation method thereof |
CN109336496A (en) * | 2018-10-16 | 2019-02-15 | 成都宏基建材股份有限公司 | A kind of ordinary portland cement base radiation shield concrete and preparation method thereof |
EP3810559A4 (en) * | 2018-05-09 | 2022-03-09 | Mirrotron Kft. | Neutron absorbing concrete wall and method for producing such concrete wall |
CN115321902A (en) * | 2022-08-01 | 2022-11-11 | 河北中耐新材料科技有限公司 | Anti-cracking radiation-proof concrete for preventing neutron radiation and preparation method thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5729995B2 (en) * | 2010-12-14 | 2015-06-03 | 株式会社太平洋コンサルタント | Neutron absorber |
CN103000242A (en) * | 2012-12-09 | 2013-03-27 | 大连理工大学 | High-performance radiation-shielding concrete |
JP5347075B1 (en) * | 2013-01-25 | 2013-11-20 | 石川島建材工業株式会社 | Neutron shielding concrete |
WO2014188577A1 (en) | 2013-05-24 | 2014-11-27 | 株式会社日立製作所 | Soft error rate computation device |
KR101688646B1 (en) * | 2014-12-02 | 2016-12-22 | 한국과학기술원 | Dual Layered Concrete for High-level Neutron Shielding Method for Manufacturing the Same |
JP6646960B2 (en) * | 2015-07-09 | 2020-02-14 | 株式会社安藤・間 | Method for improving hardening delay of neutron shielding concrete and neutron shielding concrete produced by this method |
CN111714786A (en) | 2019-03-18 | 2020-09-29 | 中硼(厦门)医疗器械有限公司 | Neutron capture therapy system |
JP7495832B2 (en) | 2020-07-03 | 2024-06-05 | 株式会社安藤・間 | Cement composition and hardened product thereof |
CN112079603B (en) * | 2020-09-01 | 2022-08-30 | 上海建工建材科技集团股份有限公司 | Large-fluidity neutron radiation prevention concrete and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147399A (en) * | 1987-12-02 | 1989-06-09 | Kuraray Co Ltd | Fiber-reinforced neutron shielding mortar concrete |
JP2002321961A (en) * | 2001-04-27 | 2002-11-08 | Taiheiyo Material Kk | Heavy weight mortar |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0725582B2 (en) * | 1992-06-22 | 1995-03-22 | 石川島建材工業株式会社 | Neutron shielding concrete |
JPH10300880A (en) * | 1997-04-23 | 1998-11-13 | Tadao Sakurai | Nuclear power station and radioactive waste treatment facility with radiation shielding outer periphery wall |
-
2006
- 2006-08-02 JP JP2006210671A patent/JP4532447B2/en active Active
-
2007
- 2007-07-31 WO PCT/JP2007/064996 patent/WO2008016053A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147399A (en) * | 1987-12-02 | 1989-06-09 | Kuraray Co Ltd | Fiber-reinforced neutron shielding mortar concrete |
JP2002321961A (en) * | 2001-04-27 | 2002-11-08 | Taiheiyo Material Kk | Heavy weight mortar |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009192472A (en) * | 2008-02-18 | 2009-08-27 | Taisei Corp | Neutron bream shield |
EP2345043A2 (en) * | 2008-10-06 | 2011-07-20 | Grancrete, Inc. | Waste storage vessels and compositions therefor |
EP2345043A4 (en) * | 2008-10-06 | 2012-06-20 | Grancrete Inc | Waste storage vessels and compositions therefor |
ES2344290A1 (en) * | 2009-02-20 | 2010-08-23 | Consutrucciones Tecnicas De Radioterapia, S.L | Mass for manufacturing products with a high neutron radioprotection capacity. |
US20140027676A1 (en) * | 2012-07-12 | 2014-01-30 | Petr Kovár | Shielding composite building materials with a low internal level of ionising radiation |
EP2684855A3 (en) * | 2012-07-12 | 2014-09-03 | Soletanche Freyssinet | Shielding composite building materials with a low internal level of ionising radiation. |
RU2545585C1 (en) * | 2013-10-22 | 2015-04-10 | Открытое акционерное общество "Инженерно-маркетинговый центр Концерна "Вега" ОАО "ИМЦ Концерна "Вега" | Radiation-proof structural concrete and method for production thereof |
CN108424107A (en) * | 2018-04-03 | 2018-08-21 | 济南大学 | A kind of radiation shield concrete |
EP3810559A4 (en) * | 2018-05-09 | 2022-03-09 | Mirrotron Kft. | Neutron absorbing concrete wall and method for producing such concrete wall |
CN109231932A (en) * | 2018-10-16 | 2019-01-18 | 成都宏基建材股份有限公司 | A kind of barium aluminate cement base radiation shield concrete and preparation method thereof |
CN109133803A (en) * | 2018-10-16 | 2019-01-04 | 成都宏基建材股份有限公司 | A kind of C40 ordinary portland cement base radiation shield concrete and preparation method thereof |
CN109231933A (en) * | 2018-10-16 | 2019-01-18 | 成都宏基建材股份有限公司 | A kind of radiation shield concrete and preparation method thereof |
CN109231920A (en) * | 2018-10-16 | 2019-01-18 | 成都宏基建材股份有限公司 | A kind of C20 ordinary portland cement base radiation shield concrete and preparation method thereof |
CN109231934A (en) * | 2018-10-16 | 2019-01-18 | 成都宏基建材股份有限公司 | A kind of fast calcium sulphoaluminate cement base radiation shield concrete and preparation method thereof firmly |
CN109231931A (en) * | 2018-10-16 | 2019-01-18 | 成都宏基建材股份有限公司 | A kind of aluminous cement base radiation shield concrete and preparation method thereof |
CN109320172A (en) * | 2018-10-16 | 2019-02-12 | 成都宏基建材股份有限公司 | A kind of quick setting and rapid hardening calcium aluminum fluoride cement base radiation shield concrete and preparation method thereof |
CN109320159A (en) * | 2018-10-16 | 2019-02-12 | 成都宏基建材股份有限公司 | A kind of low heat micro expanding cement base radiation shield concrete and preparation method thereof |
CN109336496A (en) * | 2018-10-16 | 2019-02-15 | 成都宏基建材股份有限公司 | A kind of ordinary portland cement base radiation shield concrete and preparation method thereof |
CN109053093A (en) * | 2018-10-16 | 2018-12-21 | 成都宏基建材股份有限公司 | A kind of ungauged regions micro-expansion cement base radiation shield concrete and preparation method thereof |
CN115321902A (en) * | 2022-08-01 | 2022-11-11 | 河北中耐新材料科技有限公司 | Anti-cracking radiation-proof concrete for preventing neutron radiation and preparation method thereof |
CN115321902B (en) * | 2022-08-01 | 2023-04-14 | 河北中耐新材料科技有限公司 | Anti-cracking radiation-proof concrete for preventing neutron radiation and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4532447B2 (en) | 2010-08-25 |
JP2008039453A (en) | 2008-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008016053A1 (en) | Concrete for neutron shielding | |
Maslehuddin et al. | Radiation shielding properties of concrete with electric arc furnace slag aggregates and steel shots | |
Azreen et al. | Simulation of ultra-high-performance concrete mixed with hematite and barite aggregates using Monte Carlo for dry cask storage | |
Janković et al. | The influence of nano-silica and barite aggregate on properties of ultra high performance concrete | |
Kharita et al. | Review on the addition of boron compounds to radiation shielding concrete | |
Al-Tersawy et al. | Experimental gamma-ray attenuation and theoretical optimization of barite concrete mixtures with nanomaterials against neutrons and gamma rays | |
Masoud et al. | Valorization of hazardous chrysotile by H3BO3 incorporation to produce an innovative eco-friendly radiation shielding concrete: Implications on physico-mechanical, hydration, microstructural, and shielding properties | |
Nikbin et al. | Effect of high temperature on the radiation shielding properties of cementitious composites containing nano-Bi2O3 | |
Gokul et al. | Additives in concrete to enhance neutron attenuation characteristics–A critical review | |
Milasi et al. | Improving the resistance of ultra-high-performance concrete against nuclear radiation: Replacing cement with Barite, hematite, and lead powder | |
Mansoori et al. | Elaboration of X-ray shielding of highly barite-loaded polyester concrete: structure, mechanical properties, and MCNP simulation | |
Malkapur et al. | Virgin and waste polymer incorporated concrete mixes for enhanced neutron radiation shielding characteristics | |
Gharieb et al. | Effect of using heavy aggregates on the high performance concrete used in nuclear facilities | |
Shi et al. | Valorization of steel slag into sustainable high-performance radiation shielding concrete | |
Shi et al. | Evaluation of technical and gamma radiation shielding properties of sustainable ultra-high performance geopolymer concrete | |
Külekçi | Investigation of gamma ray absorption levels of composites produced from copper mine tailings, fly ash, and brick dust | |
Azman et al. | Radiation attenuation ability of bentonite clay enriched with eggshell as recyclable waste for a physical rradiation barrier | |
Bayrak et al. | Synergic effect of some waste pozzolans on the mechanical and shielding properties of geopolymer concretes | |
Onaizi et al. | Radiation-shielding concrete: A review of materials, performance, and the impact of radiation on concrete properties | |
Piotrowski et al. | Polymers in Concrete–the shielding against neutron radiation | |
Xia et al. | Microstructure and radiation shielding characteristics of PVA fiber-reinforced ultra-high performance concrete | |
Aghajanian et al. | Colemanite filler from wastes in recycled concrete | |
Polat et al. | Radiation shielding properties of shotcrete containing different aggregates | |
Polivka et al. | Radiation effects and shielding | |
Elamin et al. | The effect of replacements 30% for each concrete component by iron filling in concrete on attenuation properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07791680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07791680 Country of ref document: EP Kind code of ref document: A1 |