JP2009192472A - Neutron bream shield - Google Patents

Neutron bream shield Download PDF

Info

Publication number
JP2009192472A
JP2009192472A JP2008035830A JP2008035830A JP2009192472A JP 2009192472 A JP2009192472 A JP 2009192472A JP 2008035830 A JP2008035830 A JP 2008035830A JP 2008035830 A JP2008035830 A JP 2008035830A JP 2009192472 A JP2009192472 A JP 2009192472A
Authority
JP
Japan
Prior art keywords
boron
coarse aggregate
concrete
neutron
colemanite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008035830A
Other languages
Japanese (ja)
Other versions
JP4918727B2 (en
Inventor
Masahiro Taniguchi
雅弘 谷口
Hiroyuki Aoki
弘之 青木
Akio Anno
章夫 安納
Satoru Namiki
哲 並木
Sivakumaran Wignarajah
ウィグナラ シバクマラン
Yoshiki Yamamoto
佳城 山本
Masanori Tokiyoshi
正憲 時吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2008035830A priority Critical patent/JP4918727B2/en
Publication of JP2009192472A publication Critical patent/JP2009192472A/en
Application granted granted Critical
Publication of JP4918727B2 publication Critical patent/JP4918727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a neutron shield which makes it possible to make the thickness dimension of concrete thinner than ever because the shield is excellent in neutron beam shielding effects through the effective utilization of neutron absorption of boron and also ensures a desired mechanical strength. <P>SOLUTION: The neutron beam shield built of concrete is characterized in that a boron-containing coarse aggregate made of stone containing boron whose surface is covered with a coating material restraining boron from eluting is used as a part of a coarse aggregate in the concrete. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、中性子線の遮蔽が要求される原子力施設等の構造体として用いられるコンクリート造の中性子線遮蔽体に関するものである。   The present invention relates to a concrete neutron beam shield used as a structure of a nuclear facility or the like that requires shielding of neutron beams.

従来より、原子炉等を格納した原子力施設や放射線発生装置を収納した施設等の躯体は、内部で発生した放射性物質の外部への放出を防止するために、鉄筋コンクリート等の構造体によって遮蔽されている。
このような構造体を、鉄筋コンクリート造によって構成する場合には、要求される中性子線の遮蔽効果を得るために、その厚さ寸法が極めて大きなものになっている。
Conventionally, the structures of nuclear facilities that contain nuclear reactors and facilities that contain radiation generators are shielded by structures such as reinforced concrete in order to prevent the release of radioactive materials generated inside. Yes.
When such a structure is formed of reinforced concrete, its thickness dimension is extremely large in order to obtain a required neutron beam shielding effect.

一方、ホウ素(ボロン)は、中性子を効果的に吸収し得る元素として知られている。
ところが、ホウ素の中性子吸収性を利用すべく、セメント系材料中に直にホウ素やその化合物を添加すると、ホウ素がセメント系材料の水和反応を阻害し、この結果セメントの硬化不良を生じて所定の強度発現も妨げてしまうという問題点があった。
On the other hand, boron is known as an element that can effectively absorb neutrons.
However, when boron or its compound is added directly to the cementitious material in order to utilize the neutron absorbability of boron, the boron inhibits the hydration reaction of the cementitious material, resulting in poor hardening of the cement. There was also a problem that the strength development of hindered was hindered.

そこで、例えば、セメントの硬化阻害作用の少ないホウ素化合物や粒状ボロン鉱物の表面を、プラスチック等の水に難溶性の物資でコーディングしたものを使用することも考えられたが、下記特許文献1にもセメントモルタルへの適用例として記載されているように、原料が入手困難であるとともに、細骨材となる粒状ボロン鉱物等の表面を、個々にコーティングすること自体が困難であり、かつ所望の含有量を得ることが難しい等の理由から、実現には至っていない。
特公昭58−6704号公報
Therefore, for example, it is considered to use a material obtained by coding the surface of a boron compound or granular boron mineral having a small cement inhibiting action with a material that is hardly soluble in water such as plastic. As described as an example of application to cement mortar, it is difficult to obtain raw materials, and it is difficult to individually coat the surface of granular boron mineral or the like that becomes a fine aggregate, and the desired content It has not been realized because it is difficult to obtain a quantity.
Japanese Patent Publication No.58-6704

本発明は、かかる事情に鑑みてなされたもので、ホウ素の中性子吸収性を有効に活用することにより中性子線の遮蔽効果に優れ、よって従来よりもコンクリートの厚さ寸法を薄くすることができるとともに、所望の機械的強度も確保することができる中性子線遮蔽体を提供することを課題とするものである。   The present invention has been made in view of such circumstances, and by effectively utilizing the neutron absorbability of boron, it is excellent in the shielding effect of neutron beams, and therefore the thickness dimension of concrete can be made thinner than before. An object of the present invention is to provide a neutron beam shield that can ensure a desired mechanical strength.

上記課題を解決するために、請求項1に記載の発明は、コンクリート造の中性子線遮蔽体であって、上記コンクリートに必要とされる粗骨材の総量の一部として、上記粗骨材に代えて表面がホウ素の溶出を抑制するコーティング材によって覆われたホウ素含有石からなるホウ素含有粗骨材を用いたことを特徴とするものである。   In order to solve the above-mentioned problems, the invention according to claim 1 is a concrete neutron beam shielding body, in which the coarse aggregate is part of the total amount of coarse aggregate required for the concrete. Instead, a boron-containing coarse aggregate made of a boron-containing stone whose surface is covered with a coating material that suppresses elution of boron is used.

ここで、上記粗骨材とは、一般的なコンクリートの製造に用いられている砂利、砕石である。また、上記ホウ素含有石としては、ホウ酸カルシウムが天然で存在するコレマナイト(2CaO・3B23・5H2O)や、クーナコバイト(2MgO・3B23・13H2O)、メーヤーホツフェライト(2CaO・3B23・7H2O)等を用いることができる。 Here, the said coarse aggregate is gravel and crushed stone used for manufacture of general concrete. Examples of the boron-containing stone include colemanite (2CaO · 3B 2 O 3 · 5H 2 O) in which calcium borate is naturally present, kunacovite (2MgO · 3B 2 O 3 · 13H 2 O), Mayer's ferrite ( 2CaO.3B 2 O 3 .7H 2 O) or the like can be used.

そして、請求項2に記載の発明は、請求項1に記載の発明において、上記ホウ素含有石が、コレマナイトであり、かつ上記粗骨材の総量に対する上記ホウ素含有粗骨材の重量比が、1〜20wt%の範囲であることを特徴とするものである。   The invention according to claim 2 is the invention according to claim 1, wherein the boron-containing stone is colemanite, and the weight ratio of the boron-containing coarse aggregate to the total amount of the coarse aggregate is 1 It is characterized by being in the range of ˜20 wt%.

請求項1または2に記載の発明によれば、コンクリート内に、表面がホウ素の溶出を抑制するコーティング材によって覆われたホウ素含有石からなるホウ素含有粗骨材を、粗骨材に混入させているために、当該ホウ素含有石が有する中性子吸収性によって中性子線の遮蔽効果を向上させることができる。この結果、遮蔽体を構成するコンクリートの厚さ寸法を、従来よりも薄くすることが可能になり、経済性に優れる。   According to the invention described in claim 1 or 2, boron-containing coarse aggregate made of boron-containing stone whose surface is covered with a coating material that suppresses elution of boron is mixed in the coarse aggregate. Therefore, the shielding effect of a neutron beam can be improved by the neutron absorbability of the boron-containing stone. As a result, it becomes possible to make the thickness dimension of the concrete which comprises a shielding body thinner than before, and it is excellent in economical efficiency.

しかも、ホウ素含有石の表面を、ホウ素の溶出を抑制するコーティング材によって覆っているために、上記コンクリート打設時に、上記ホウ素がセメントの水和反応を阻害して硬化不良に起因する強度発現の低下が生じることを防ぐことができる。   Moreover, since the surface of the boron-containing stone is covered with a coating material that suppresses boron elution, the boron inhibits the hydration reaction of the cement during the concrete placement and exhibits strength development due to poor hardening. It is possible to prevent a decrease from occurring.

ところで、上記コンクリートに必要とされる粗骨材の総量の全てを、粗骨材に代えてホウ素含有粗骨材を用いると、一般に上記ホウ素含有粗骨材は、砕石や砂利等からなる上記粗骨材よりも強度に劣るために、上記コンクリートの圧縮強度の低下を招いてしまう。
この点、本発明においては、上記コンクリートに必要とされる粗骨材の総量の一部として上記ホウ素含有粗骨材を用いているために、所望の圧縮強度を得ることができる。
By the way, when the total amount of coarse aggregate required for the concrete is replaced with the coarse aggregate, and the boron-containing coarse aggregate is used, the boron-containing coarse aggregate is generally composed of crushed stone or gravel. Since the strength is inferior to that of the aggregate, the compressive strength of the concrete is reduced.
In this regard, in the present invention, since the boron-containing coarse aggregate is used as a part of the total amount of coarse aggregate required for the concrete, a desired compressive strength can be obtained.

ここで、上記粗骨材の総量に対するホウ素含有粗骨材の混合割合(重量比)は、ホウ素含有粗骨材を構成するホウ素含有石の強度や中性子線の遮蔽効果、上記遮蔽体を構築する際に敷地面積等に基づいて要求されるコンクリートの厚さ寸法、上記遮蔽体を構成する上記コンクリートとして必要とされる圧縮強度等により、適宜選択することができる。   Here, the mixing ratio (weight ratio) of the boron-containing coarse aggregate with respect to the total amount of the coarse aggregate is the strength of the boron-containing stones constituting the boron-containing coarse aggregate, the shielding effect of neutron beams, and the shielding body. At this time, the thickness can be selected as appropriate depending on the thickness of concrete required based on the site area and the like, the compressive strength required for the concrete constituting the shield, and the like.

ちなみに、請求項2に記載の発明のように、上記ホウ素含有石としてコレマナイトを用いた場合には、上記粗骨材の総量に対する上記ホウ素含有粗骨材の重量比を、1〜20wt%の範囲に設定することにより、後述するように、上記ホウ素含有粗骨材が有するホウ素の中性子線遮蔽効果により、従来よりもコンクリートの厚さ寸法を薄くすることができるとともに、所望の機械的強度も確保することができ、さらに上記コンクリートによって構築される中性子線遮蔽体の全体としてのコストも合理的に低減させることが可能になる。   Incidentally, as in the invention according to claim 2, when using colemanite as the boron-containing stone, the weight ratio of the boron-containing coarse aggregate to the total amount of the coarse aggregate is in the range of 1 to 20 wt%. As described later, the boron neutron beam shielding effect of the boron-containing coarse aggregate makes it possible to reduce the thickness of the concrete as compared with the prior art and to secure the desired mechanical strength. Further, the overall cost of the neutron beam shield constructed by the concrete can be reduced reasonably.

図1〜図4に基づいて、本発明に係る中性子線遮蔽体を、コレマナイトの表面をホウ素の溶出を抑制するコーティング材によって覆ったコレマナイト粗骨材(ホウ素含有粗骨材)を用いたコンクリートによって中性子線遮蔽体を構成する場合に適用した実施形態について説明する。
ここで、上記コーティング材としては、大別してアクリル系エマルジョンや油脂系エマルジョン等の浸透性防水剤を主体とするものを用いることができ、より具体的には、アクリル樹脂系エマルジョン、アクリルスチレン系エマルジョン、シラン系、油脂系エマルジョン等を用いることができる。ただし、セメントの水和反応にコーティングが破壊されないように、アルカリに耐性を有していないものは除外する必要がある。
Based on FIGS. 1 to 4, the neutron beam shielding body according to the present invention is made of concrete using a colemanite coarse aggregate (boron-containing coarse aggregate) in which the surface of colemanite is covered with a coating material that suppresses boron elution. An embodiment applied in the case of configuring a neutron beam shield will be described.
Here, as the coating material, those mainly comprising a permeable waterproofing agent such as an acrylic emulsion or an oil-based emulsion can be used, and more specifically, an acrylic resin emulsion or an acrylic styrene emulsion. Silane-based and oil-based emulsions can be used. However, it is necessary to exclude those that are not resistant to alkali so that the coating is not destroyed by the cement hydration reaction.

そして先ず、上記中性子線遮蔽体を構成するに好適なコンクリートを得るために、水セメント比(55%)、セメント(324kg/m3)、水(178kg/m3)、細骨材(828kg/m3)、粗骨材(総量:1000kg/m3)、混和剤(2.6kg/m3)による比重約2.2のコンクリートであって、上記粗骨材の総量の一部として用いるコレマナイト粗骨材(ホウ素含有粗骨材)の混合率(粗骨材の総量に対するコレマナイト粗骨材の重量比)を変化させたものについて、各々のコンクリートにおける圧縮強度や遮蔽効果等の変化をみた。 First, in order to obtain concrete suitable for constituting the neutron beam shield, water-cement ratio (55%), cement (324 kg / m 3 ), water (178 kg / m 3 ), fine aggregate (828 kg / m 3 ), coarse aggregate (total amount: 1000 kg / m 3 ), concrete having a specific gravity of about 2.2 with an admixture (2.6 kg / m 3 ), and used as part of the total amount of the coarse aggregate Changes in the mixing strength of coarse aggregates (boron-containing coarse aggregates) (weight ratio of colemanite coarse aggregate to the total amount of coarse aggregates), such as compressive strength and shielding effect in each concrete, were observed.

先ず、図1に示すように、コレマナイトは、砂利や砕石等の一般的な粗骨材と比較して強度が低いために、当該コレマナイト粗骨材の含有率を増加させると、得られたコンクリートの圧縮強度が次第に低下し、最終的に全ての粗骨材としてコレマナイト粗骨材を用いると、上記中性子線遮蔽体を構成するコンクリートとしての使用には耐え得なくなってしまうことが判明した。   First, as shown in FIG. 1, since the colemanite has a lower strength than general coarse aggregates such as gravel and crushed stone, the concrete content obtained is increased by increasing the content of the colemanite coarse aggregate. It has been found that the compressive strength of the strontium gradually decreases, and eventually when the colemanite coarse aggregate is used as all the coarse aggregates, it cannot be used as the concrete constituting the neutron beam shield.

そこで、普通コンクリートの最低圧縮強度を、30N/mm2と設定した場合に、当該条件を満足できるコレマナイト粗骨材の重量比は、20wt%以下であるとの知見を得た。 Therefore, when the minimum compressive strength of ordinary concrete is set to 30 N / mm 2 , the weight ratio of the colemanite coarse aggregate that can satisfy the conditions is 20 wt% or less.

他方、上記コレマナイト粗骨材の含有率を低下させると、上記圧縮強度は増加するものの、逆に中性子線の遮蔽効果は低減する。
すなわち、図2に示すように、コレマナイト粗骨材の含有率を低下させると、これに応じて10分の1価層(中性子線の強度(線量率)を10分の1にするための厚さ寸法)も小さくなる。しかしながら、少なくともコレマナイト粗骨材の重量比を1wt%以上とすることにより、当該重量比が0wt%の場合よりも上記10分の1価層を小さくする効果は得られるために、従来よりもコンクリートの厚さ寸法を薄くすることが可能になる。
On the other hand, when the content of the coarse colemanite aggregate is lowered, the compressive strength is increased, but conversely, the shielding effect of neutron beams is reduced.
That is, as shown in FIG. 2, when the content of the colemanite coarse aggregate is decreased, a tenth valence layer (thickness for reducing the intensity (dose rate) of the neutron beam to one tenth) according to this. (Size) is also reduced. However, since at least the weight ratio of the colemanite coarse aggregate is 1 wt% or more, the effect of making the 1/10 layer smaller than the case where the weight ratio is 0 wt% can be obtained. It becomes possible to reduce the thickness dimension of the.

これに対して、コレマナイト粗骨材の含有率を増加させた場合に付いてみると、重量比が20wt%を超えると、遮蔽効果の増加程度が緩慢になり、よって後述するコレマナイト粗骨材を混入させることによるコストの増加との対比から、経済的ではない。
このため、中性子線の遮蔽効果の観点からは、コレマナイト粗骨材の重量比を1wt%〜20wt%とすることにより、要請される中性子線の遮蔽効果およびこれによる遮蔽体のコンパクト化に合理的に対応することができることが判った。
On the other hand, when the content ratio of the colemanite coarse aggregate is increased, when the weight ratio exceeds 20 wt%, the degree of increase in the shielding effect becomes slow. It is not economical because of the increase in cost due to mixing.
For this reason, from the viewpoint of the shielding effect of neutron beams, the weight ratio of the colemanite coarse aggregate is 1 wt% to 20 wt%, which is rational for the required shielding effect of neutron beams and the compactness of the shielding body by this. It was found that it can cope with.

さらに、コレマナイトは、一般的な粗骨材として用いられている砕石や砂利よりも高価であるために、図3に示すように、コレマナイト粗骨材の含有率を高めると、これにほぼ比例してコスト比も増加してしまう。   Furthermore, since colemanite is more expensive than crushed stone and gravel used as a general coarse aggregate, as shown in FIG. 3, when the content of the colemanite coarse aggregate is increased, it is almost proportional to this. As a result, the cost ratio also increases.

しかしながら、図2に見られるように、コレマナイト粗骨材の含有率を高めて、中性子線の遮蔽効果が高まれば、上記コンクリートの厚さ寸法を従来よりも薄くすることができ、よって遮蔽体の一層のコンパクト化を図ることができる。そしてこの結果、いずれもコンクリートに比べて高価な機器、配管等の寸法を低減させることができために、当該関連機器類におけるコストダウンを図ることが可能になる。   However, as shown in FIG. 2, if the content of the colemanite coarse aggregate is increased and the shielding effect of neutron rays is increased, the thickness dimension of the concrete can be made thinner than before, and thus the shielding body Further downsizing can be achieved. As a result, it is possible to reduce the size of expensive equipment, piping, etc., as compared with concrete, so that it is possible to reduce the cost of the related equipment.

そこで、コレマナイト粗骨材の含有率を高めることによるコストアップと、これによる上記コンクリートの厚さ寸法の低減によるコストダウンとを総合的に試算したところ、図4に示すように、上記コストは、上記重量比が0〜20wt%の範囲において徐々に低下し、約20wt%において最小になるとともに、20wt%を超えても、変動が少ないことが判明した。そしてさらに、上記コスト効果に限れば、粗骨材の総量に対するコレマナイト粗骨材の重量比が15〜40wt%の範囲が好ましいことも判った。   Therefore, when comprehensively calculating the cost increase by increasing the content of the colemanite coarse aggregate and the cost reduction by reducing the thickness dimension of the concrete due to this, as shown in FIG. It has been found that the weight ratio gradually decreases in the range of 0 to 20 wt%, reaches a minimum at about 20 wt%, and has less fluctuation even when it exceeds 20 wt%. Furthermore, it was also found that the weight ratio of the colemanite coarse aggregate to the total amount of the coarse aggregate is preferably in the range of 15 to 40 wt% as far as the cost effect is limited.

以上のことから、本実施形態においては、中性子線遮蔽体を構成するコンクリートとして、当該コンクリートに必要とされる粗骨材の総量の1〜20wt%を、砕石や砂利等からなる一般的な粗骨材に代えて、表面がホウ素の溶出を抑制するコーティング材によって覆われたコレマナイトからなるコレマナイト粗骨材を用いた。   From the above, in this embodiment, as the concrete constituting the neutron beam shield, 1 to 20 wt% of the total amount of coarse aggregate required for the concrete is used as a general coarse material made of crushed stone or gravel. Instead of the aggregate, a colemanite coarse aggregate made of colemanite whose surface is covered with a coating material that suppresses elution of boron was used.

この結果、中性子線遮蔽体によれば、コンクリート内に、表面がホウ素の溶出を抑制するコーティング材によって覆われたコレマナイト粗骨材を、粗骨材に混入させているために、当該ホウ素の中性子吸収性によって中性子線の遮蔽効果を向上させることができ、よって遮蔽体を構成するコンクリートの厚さ寸法を、従来よりも薄くすることが可能になり、経済性に優れる。   As a result, according to the neutron beam shield, since the colemanite coarse aggregate whose surface is covered with a coating material that suppresses boron elution is mixed in the coarse aggregate, The absorption effect of the neutron beam can be improved by the absorbability, and therefore the thickness dimension of the concrete constituting the shield can be made thinner than before, which is excellent in economic efficiency.

しかも、コレマナイトの表面を、ホウ素の溶出を抑制するコーティング材によって覆っているために、上記コンクリート打設時に、上記ホウ素がセメントの水和反応を阻害して硬化不良に起因する強度発現の低下が生じることを防ぐことができる。   Moreover, since the surface of colemanite is covered with a coating material that suppresses boron elution, the boron inhibits the hydration reaction of the cement when the concrete is placed, resulting in a decrease in strength due to poor hardening. It can be prevented from occurring.

さらに、コンクリートの強度上必要とされる粗骨材の総量に対して、一般的な粗骨材に代えて混入させた上記コレマナイト粗骨材の重量比を1〜20%にしているために、上記コレマナイトが有するホウ素の中性子線遮蔽効果により、従来よりもコンクリートの厚さ寸法を薄くすることができるとともに、所望の機械的強度も確保することができ、さらに全体としてのコストも合理的に低減させることが可能になる。   Furthermore, for the total amount of coarse aggregate required for the strength of the concrete, the weight ratio of the above-mentioned colemanite coarse aggregate mixed instead of the general coarse aggregate is 1 to 20%, Due to the boron neutron shielding effect of the colemanite, the thickness of concrete can be made thinner than before, the desired mechanical strength can be secured, and the overall cost can be reduced reasonably. It becomes possible to make it.

なお、上記実施の形態においては、上記ホウ素含有石としてコレマナイトを用いた場合についてのみ説明したが、本発明は、これに限定されるものではなく、上述したように、クーナコバイト(2MgO・3B23・13H2O)、メーヤーホツフェライト(2CaO・3B23・7H2O)等の他のホウ素含有石も同様に用いることができる。 In the above embodiment, only the case where colemanite is used as the boron-containing stone has been described. However, the present invention is not limited to this, and as described above, Kunacobite (2MgO · 3B 2 O Other boron-containing stones such as 3 · 13H 2 O) and Meyerhot ferrite (2CaO · 3B 2 O 3 · 7H 2 O) can be used as well.

本発明の一実施形態においてコレマナイト粗骨材の含有率とコンクリートの圧縮強度との関係を示すグラフである。It is a graph which shows the relationship between the content rate of a colemanite coarse aggregate and the compressive strength of concrete in one Embodiment of this invention. 同、コレマナイト粗骨材の含有率とコンクリートの遮蔽効果との関係を示すグラフである。It is a graph which shows the relationship between the content rate of a colemanite coarse aggregate, and the shielding effect of concrete similarly. 同、コレマナイト粗骨材の含有率とコンクリートのコストとの関係を示すグラフである。It is a graph which shows the relationship between the content rate of a colemanite coarse aggregate, and the cost of concrete. 同、コレマナイト粗骨材の含有率と遮蔽体全体のコストとの関係を示すグラフである。It is a graph which shows the relationship between the content rate of a colemanite coarse aggregate and the cost of the whole shielding body.

Claims (2)

コンクリート造の中性子線遮蔽体であって、
上記コンクリートに必要とされる粗骨材の総量の一部として、上記粗骨材に代えて表面がホウ素の溶出を抑制するコーティング材によって覆われたホウ素含有石からなるホウ素含有粗骨材を用いたことを特徴とする中性子線遮蔽体。
A concrete neutron shield,
As a part of the total amount of coarse aggregate required for the concrete, a boron-containing coarse aggregate made of boron-containing stone covered with a coating material whose surface suppresses elution of boron instead of the coarse aggregate is used. A neutron beam shield characterized by
上記ホウ素含有石は、コレマナイトであり、かつ上記粗骨材の総量に対する上記ホウ素含有粗骨材の重量比は、1〜20wt%の範囲であることを特徴とする請求項1に記載の中性子線遮蔽体。   2. The neutron beam according to claim 1, wherein the boron-containing stone is colemanite, and a weight ratio of the boron-containing coarse aggregate to a total amount of the coarse aggregate is in a range of 1 to 20 wt%. Shield.
JP2008035830A 2008-02-18 2008-02-18 Neutron beam shield Expired - Fee Related JP4918727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008035830A JP4918727B2 (en) 2008-02-18 2008-02-18 Neutron beam shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008035830A JP4918727B2 (en) 2008-02-18 2008-02-18 Neutron beam shield

Publications (2)

Publication Number Publication Date
JP2009192472A true JP2009192472A (en) 2009-08-27
JP4918727B2 JP4918727B2 (en) 2012-04-18

Family

ID=41074605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035830A Expired - Fee Related JP4918727B2 (en) 2008-02-18 2008-02-18 Neutron beam shield

Country Status (1)

Country Link
JP (1) JP4918727B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112037956A (en) * 2015-06-19 2020-12-04 南京中硼联康医疗科技有限公司 Shielding material for shielding radioactive ray and preparation method thereof
US20210402217A1 (en) * 2019-03-18 2021-12-30 Neuboron Therapy System Ltd. Neutron capture therapy system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586704B2 (en) * 1979-06-28 1983-02-05 秩父セメント株式会社 Neutron beam shielding material
JPS5886496A (en) * 1982-09-16 1983-05-24 秩父セメント株式会社 Neutron ray shieding mold
JPH061645A (en) * 1992-06-22 1994-01-11 Ishikawajima Constr Materials Co Ltd Neutron shielding concrete
JP2007303953A (en) * 2006-05-11 2007-11-22 Fujita Corp Concrete for radiation shielding
WO2008016053A1 (en) * 2006-08-02 2008-02-07 Hazama Corporation Concrete for neutron shielding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586704B2 (en) * 1979-06-28 1983-02-05 秩父セメント株式会社 Neutron beam shielding material
JPS5886496A (en) * 1982-09-16 1983-05-24 秩父セメント株式会社 Neutron ray shieding mold
JPH061645A (en) * 1992-06-22 1994-01-11 Ishikawajima Constr Materials Co Ltd Neutron shielding concrete
JP2007303953A (en) * 2006-05-11 2007-11-22 Fujita Corp Concrete for radiation shielding
WO2008016053A1 (en) * 2006-08-02 2008-02-07 Hazama Corporation Concrete for neutron shielding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112037956A (en) * 2015-06-19 2020-12-04 南京中硼联康医疗科技有限公司 Shielding material for shielding radioactive ray and preparation method thereof
US20210402217A1 (en) * 2019-03-18 2021-12-30 Neuboron Therapy System Ltd. Neutron capture therapy system
US11826583B2 (en) * 2019-03-18 2023-11-28 Neuboron Therapy System Ltd. Neutron capture therapy system

Also Published As

Publication number Publication date
JP4918727B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
Tyagi et al. Radiation Shielding Concrete with alternate constituents: An approach to address multiple hazards
AU756455B2 (en) Radiation protective concrete and radiation protective casing
Binici et al. Mechanical and radioactivity shielding performances of mortars made with cement, sand and egg shells
US10636534B2 (en) Shielding material for shielding radioactive ray and preparation method thereof
US20100258751A1 (en) Borated Concrete-Rubber
Khalaf et al. Physicomechanical and gamma-ray shielding properties of high-strength heavyweight concrete containing steel furnace slag aggregate
CN102219459A (en) Radiation shield concrete and preparation method thereof
Nikbin et al. An experimental investigation on combined effects of nano-WO3 and nano-Bi2O3 on the radiation shielding properties of magnetite concretes
WO2008016053A1 (en) Concrete for neutron shielding
CN102246245A (en) Radiation shielding structure composition
JP2008157801A (en) Neutron shielding low-activation concrete and mortar
WO2008080282A1 (en) A protective concrete for weakening the intensity of proton radiation
Gijbels et al. Radon immobilization potential of alkali-activated materials containing ground granulated blast furnace slag and phosphogypsum
JP5729995B2 (en) Neutron absorber
JP4918727B2 (en) Neutron beam shield
El Shazly et al. Effect of slag as a fine aggregate on mechanical, corrosion, and nuclear attenuation properties of concrete
JP2007303953A (en) Concrete for radiation shielding
CN104649605A (en) Radiation-resistant concrete protective agent and preparation method thereof
JP6646960B2 (en) Method for improving hardening delay of neutron shielding concrete and neutron shielding concrete produced by this method
JP2004256376A (en) Low-activation concrete
RU2029399C1 (en) Aggregate of radiation-proof cement concrete
Lee et al. Radiation Shielding Property of Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate
COMPOZITE et al. IN MEMORIAM Prof. Dr. Ing. PETRU BALTĂ
Saca et al. MODELE EXPERIMENTALE DE MATERIALE COMPOZITE, CU CAPACITATE POTENTIALA DE INCAPSULARE A DESEURILOR CU NIVEL SCAZUT DE RADIOACTIVITATE/EXPERIMENTAL MODELS OF GROUT TYPE COMPOSITE MATERIALS, WITH POTENTIAL CAPACITY OF LOW LEVEL RADIOACTIVITY WASTES ENCAPSULATION
JPS62133394A (en) Low activation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees