WO2008016000A1 - Composite material and optical element - Google Patents

Composite material and optical element Download PDF

Info

Publication number
WO2008016000A1
WO2008016000A1 PCT/JP2007/064870 JP2007064870W WO2008016000A1 WO 2008016000 A1 WO2008016000 A1 WO 2008016000A1 JP 2007064870 W JP2007064870 W JP 2007064870W WO 2008016000 A1 WO2008016000 A1 WO 2008016000A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
compound
composite material
optical
optical element
Prior art date
Application number
PCT/JP2007/064870
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Ando
Hideaki Wakamatsu
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Publication of WO2008016000A1 publication Critical patent/WO2008016000A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons

Definitions

  • the present invention relates to a composite material suitably used as an optical element material and an optical element formed thereby.
  • glass materials and resin materials are mainly used as materials constituting optical elements, and among them, resin materials are often used because they are inexpensive and have excellent moldability.
  • resin materials are often used because they are inexpensive and have excellent moldability.
  • a resin material applicable to optical elements for example, a copolymer of cyclic olefin and ⁇ -olefin (see Patent Document 1) is known.
  • the resin material has a high coefficient of linear expansion, the refractive index is changed by temperature change. Fluctuating to obtain optical stability.
  • Patent Document 2 a composite material in which an inorganic filler (fine particles) is mixed in a resin material can be expected to suppress the linear expansion coefficient and to stabilize the refractive index.
  • Patent Document 2 an organic-inorganic composite material using silica-based particles has been proposed in order to improve the high linear expansion coefficient, which is a drawback of resin materials.
  • Silica alone has a relatively low refractive index, but using a composite material eliminates the disadvantages of silica, which has a low refractive index, and broadens the range of applications as an optical material.
  • Patent Document 1 JP 2002-105131 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-146042
  • the composite material has poor compatibility between the resin material and the inorganic filler and the inorganic filler is difficult to disperse in the resin material, the optical element itself is inferior in transparency (light transmittance is reduced).
  • Improving the transparency by increasing the affinity of the inorganic filler for the resin material requires a surface treatment, which increases costs and completely overcomes the transparency problem even if the surface treatment is applied. It does not lead to.
  • the moisture absorption rate increases and the installation environment It becomes difficult to stabilize the refractive index with respect to fluctuations in the range.
  • An object of the present invention is to improve the transparency and reduce the moisture absorption rate while suppressing the linear expansion coefficient.
  • the first aspect of the present invention provides:
  • the compound having an adamantyl group may be a compound having only an adamantane skeleton, a compound having an adamantane skeleton in the main chain, or a compound having an adamantane skeleton in the side chain. Also good.
  • the resin is preferably a cycloolefin resin.
  • the second aspect of the present invention is:
  • FIG. 1 is a schematic diagram showing an internal structure of an optical pickup device. Explanation of symbols
  • the composite material contains (1) a resin and (2) a compound having an adamantyl group.
  • (1) a resin and (2) a compound having an adamantyl group will be described, respectively, followed by (3) a method for producing a composite material, (4) properties of the composite material, and (5) a method for producing an optical element.
  • thermoplastic resin a thermosetting resin, a photocurable resin, or the like
  • the resin is thermoplastic due to the workability as an optical element and the molding cycle time.
  • An acrylic resin, a cyclic olefin resin, a polycarbonate resin, a polyester resin, a polyether resin, a polyamide resin, or a polyimide resin, which are preferable to be a hydrophobic resin, are particularly preferable from the viewpoint of low hygroscopicity.
  • a resin is preferred.
  • a silicon resin is preferably used as the curable resin which may be a curable resin such as a thermosetting resin or a photocurable resin.
  • the resin the compounds described in JP-A-2003-73559 can be listed, and preferred compounds are shown in Table 1 below. Of these resins, those having a moisture absorption rate of 0.5% or less are preferred, and those having a moisture absorption rate of 0.2% or less are more preferred.
  • the compounds having an adamantyl group include (2.1) a compound consisting only of an adamantane skeleton, (2.2) a compound having an adamantane skeleton in the main chain, and (2.3) having an adamantane skeleton in the side chain.
  • 1,3-dib mouth modamantane of the following formula (3) is used as a starting material
  • jetyl ether 1,3-Dehydroadamantane of the following formula (4) may be synthesized by reaction with potassium sodium alloy in a mixed solvent of HMPA and HMPA, and the 1,3-dehydroadamantane may be heated at 160 ° C.
  • R, R ′ is preferably a linear, branched or cyclic alkyl group.
  • N is an integer of 1 or more.
  • force-coupling polymerization As a method for synthesizing poly (1,3-adamantane) of the following formula (5) into which a substituent is introduced, force-coupling polymerization can be applied.
  • a novel monomer 3, 3 'in formula (6) below, 5'-dibutyl mouth 1, 5 '-dibutyl- 1, 1' biadamantane, 3, 3 'in formula (7) below, 5', jib mouth mode 5, 5 ', 7, 1'-Tetrabutyl-1, ⁇ 'Viadamantane may be synthesized and coupling polymerization using sodium metal in n-octane may be performed.
  • R is preferably a linear, branched or cyclic alkyl group! / ′.
  • N is an integer of 2 or more.
  • poly (1,3-adamantane) of the above formula (8) into which a substituent is introduced include poly (1,3, -adamantane) of the following formulas (9), (10), (11) Can be mentioned.
  • n is an integer of 1 or more.
  • an adamantane derivative may be synthesized as a main raw material.
  • n is an integer of 1 or more.
  • the compound having an adamantane skeleton in the side chain is a compound (copolymer) of the following formula (30).
  • R is a unit constituting the main chain of the compound
  • n is an integer of 1 or more.
  • examples of the compound corresponding to the “side chain” include compound forces S of the following formulas (3 ;!) to (40).
  • a polymerization method any method such as ordinary radical polymerization or canyon polymerization may be used.
  • the method for producing the composite material is to disperse the compound having an adamantyl group described in each item of “(2. 1 2. 3)” above in the resin! /.
  • the compound having an adamantyl group synthesized in the synthesis step and a resin (particularly a thermoplastic resin) are mixed, and the compound having an adamantyl group is dispersed in the resin.
  • a method for mixing the compound having an adamantyl group and the resin it is preferable to use a melt-kneading method from the viewpoint of reducing the amount of volatile substances used.
  • the compound having an adamantyl group and the resin may be added and kneaded all at once, or may be divided and added in stages.
  • a method of dividing addition a method of adding one component in several times, a method of adding one component at a time and adding other components stepwise, or a combination of these is used. I can do it.
  • the addition of the compound having an adamantyl group can be performed in a powder or agglomerated state. Force that can be added in a state where a compound having an adamantyl group is dispersed in a liquid. In this case, it is necessary to perform a devolatilization treatment after kneading, and the aggregated particles are previously formed into primary particles. It is preferable to add after being dispersed in.
  • melt-kneading method when a compound having an adamantyl group and a resin are kneaded in advance, components other than the resin (thermoplastic resin) that have not been added in advance are added and further melt kneaded. You can knead them! /, And you can add them in stages and knead them! /.
  • one kind of gas selected from the inert gases nitrogen, helium, neon, argon, krypton, and xenon, or a mixture of two or more kinds of gases is used. It is preferable to perform mixing in an atmosphere. However, even general gases such as carbon dioxide, ethylene gas, and hydrogen gas are not reactive to the material to be kneaded! /, If mixed with the inert gas described above, the gas is used.
  • general gases such as carbon dioxide, ethylene gas, and hydrogen gas are not reactive to the material to be kneaded! /, If mixed with the inert gas described above, the gas is
  • the melt-kneading method is used in the dispersion step, it is preferable to eliminate residual oxygen as much as possible in the reaction system in the melt-kneading apparatus.
  • the oxygen content is preferably 1% or less, and more preferably 0.2% or less. This is because the resin is deteriorated by the oxidation reaction with oxygen and coloration is likely to occur.
  • a closed kneading apparatus or a batch kneading apparatus such as a lab plast mill, a Brabender, a Banbury mixer, a kneader, and a roll can be cited.
  • a continuous melt kneading apparatus such as a single screw extruder or a twin screw extruder can be used.
  • a continuous melt-kneading apparatus such as an extruder, it is possible to add the components to be added step by step from the middle of the cylinder.
  • dispersion apparatus for the mixture various dispersion treatment machines such as a bead mill disperser, an ultrasonic disperser, a high-speed stirring disperser, and a high-pressure disperser can be applied. It can.
  • force S such as dinoreconia beads and glass beads, and zirconia beads are preferably used.
  • the diameter of the beads to be used is smaller, and the preferred diameter is in the range of 0.001 to 0.1 mm.
  • additives may be added alone or in combination as necessary in the composite material production process! /.
  • additives examples include antioxidants, light stabilizers, heat stabilizers, weather stabilizers, stabilizers such as ultraviolet absorbers and near infrared absorbers, resin modifiers such as lubricants and plasticizers, and soft polymers. And anti-clouding agents such as alcoholic compounds, coloring agents such as dyes and pigments, other antistatic agents, flame retardants and the like.
  • antioxidants include phenolic antioxidants, phosphorus antioxidants, and phenolic antioxidants. By blending these antioxidants, it is possible to prevent the coloring and strength of the lens from being deteriorated due to oxidative deterioration during molding without reducing transparency and heat resistance.
  • antioxidants can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention. However, it is preferably within a range of 0.00;! To 20 parts by mass with respect to 100 parts by mass of the composite material, more preferably within a range of 0.01 to 10 parts by mass.
  • phenolic antioxidant conventionally known ones can be applied.
  • 2-tbutyl-6- (3-tbutyl-2-hydroxyl-5) described in JP-B-63-179953.
  • (Methylbenzyl) 4 methylphenyl acrylate, 2, 4 di-tert-aminol-6- (1- (3,5 di-tert-aminol-2-hydroxyphenyl) ethynole) phenyl acrylate, etc.
  • Octadecinole 1- (3,5 di-tert-butyl-4-hydroxyphenyl) propionate and other acrylate compounds described in Japanese Patent No.
  • Alkyl-substituted phenolic compounds such as propionate), 6- (4-hydroxy-3,5-di-tert-butylanilino) -1,2,4 bisoctylthio-1,3,5 triazine, 4 bisoctylthio-1,3,5-triazine, Examples include 2-azine thiol 4,6-bis (3,5-di-t-butyl-4-oxyanilino) -triazine group-containing phenolic compounds such as 1,3,5-triazine.
  • the phosphorus antioxidant is not particularly limited as long as it is a substance usually used in the general resin industry.
  • triphenyl phosphite diphenylisodecyl. Phosphite, phenyl diisodecyl phosphite, tris (noyulpheninole) phosphite, tris (dinouylfeninore) phosphite, tris (2,4 di-t-butylphenolophosphite), 10— (3,5 di t-butyl-4-hydroxybenzyl) 9, 10 dihydro-9 oxa 10-phosphaphenanthrene 10-oxide and other monophosphite compounds, 4, A'-butylidenebis (3-methyl-6-t butylphenol tri Decyl phosphite), 4, A′-isopropylidene monobis (phenyl didialkyl (C 12 -C 15 phosphite))
  • tris (noyulphenyl) phosphite tris (dinoylphenyl) phosphite, and tris (2,4 di-tert-butylphenyl) phosphite are particularly preferred.
  • iow antioxidants include dilauryl 3, 3 thiodipropionate, dimyristinole 3, 3'-thiodipropionate, distearyl 3, 3-thiodipropionate, lauryl stearyl 3, 3 —Chiodipropionate, pentaerythritol-tetrakis (/ 3 lauryl thiopropionate), 3, 9 bis (2 dodecylthioethyl) 2, 4, 8, 10—tetraoxaspiro [5, 5] undecane Etc.
  • amine-based antioxidants such as diphenylamine derivatives, nickel or zinc thiocarbamate, etc. can also be applied as antioxidants. It is.
  • a compound group having a minimum temperature at the glass transition temperature of 30 ° C or less may be blended as the cloudiness inhibitor.
  • examples of the light-resistant stabilizer include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, and the like. From the viewpoint of properties and the like, it is preferable to use a hindered amine light-resistant stabilizer (hereinafter referred to as “HALS”). As such HALS, those having a low molecular weight, medium molecular weight and high molecular weight can be appropriately selected. However, when producing molded products from composite materials, low molecular weight or medium molecular weight HALS may be used. Particularly when a film-like molded body is produced, it is preferable to use high molecular weight HALS.
  • HALS hindered amine light-resistant stabilizer
  • HALS with a relatively small molecular weight includes LA-77 (Asahi Denka), Tinuvin765 (CSC), Tinuvinl23 (CSC), Tinuvin440 (CSC), Tinuvinl44 (CSC), HostavinN20 (Hoechst) Manufactured) and the like.
  • Examples of medium molecular weight HALS include LA-57 (Asahi Denka), LA-52 (Asahi Denka), LA-67 (Asahi Denka), LA-62 (Asahi Denka), and the like. It is done.
  • HALS with large molecular weights are LA-68 (Asahi Denka), LA-63 (Asahi Denka), Ho stavinN30 (Hoechst), Chimassorb944 (CSC), Chimassorb2020 (CSC), Chimassorbl l9 (CSC), Tinuvin622 (CSC), CyasorbUV-3346 (Cytec), CyasorbUV-3529 (Cytec), Uvasil299 (GLC), etc.
  • the light transmittance of the composite material produced as described above is preferably 50% or more, more preferably 70% or more, with respect to 405 nm light when the thickness is 3 mm. More preferably, it is 85% or more.
  • the Abbe number of the composite material it is preferable to use particles capable of obtaining anomalous force dispersibility in which various values can be selected by selecting a compound having an adamantyl group or a resin.
  • the composite material can be effectively used for achromatization, and its value may increase.
  • the water absorption rate of the composite material is preferably 2% or less, more preferably 1% or less in an environment of a temperature of 80 ° C and a relative humidity of 90%, more preferably 0.5%. It is most preferable that
  • the water absorption rate is expressed in mass% unless otherwise specified.
  • the water absorption rate can be measured from a change in mass when a pre-dried composite material is stored for a certain period of time under specific high temperature and high humidity conditions. This embodiment In the method, the water content when dried is measured by the Karl Fischer method, and the mass change is measured after the subsequent water absorption, thereby calculating the water absorption rate more accurately.
  • the composite material is preferably negative in the AMES test! /. This is because a positive result in the AMES test may impair the user's health, increase the environmental burden, and reduce the material stability.
  • the molding method is not particularly limited, but the melt molding method is preferable from the viewpoint of characteristics such as low birefringence, mechanical strength and dimensional accuracy in the molded product.
  • the melt molding method include press molding, extrusion molding, and injection molding. From the viewpoint of productivity, it is preferable to apply injection molding as the melt molding method.
  • injection molding as the melt molding method.
  • a molded product with a photocurable resin, cast polymerization or the like can be used.
  • the molding condition is a force that is appropriately selected according to the purpose of use or molding method.
  • the temperature of the composite material in injection molding an appropriate fluidity is imparted to the resin at the time of molding to reduce the distortion of the molded product.
  • the temperature is in the range of 150 ° C to 400 ° C from the viewpoints of preventing silver streaks due to thermal decomposition of the resin and effectively preventing yellowing of the molded product. More preferably, it is within the range of 200 ° C to 350 ° C, and particularly preferably within the range of 200 ° C to 330 ° C.
  • the molded product can be used in various forms such as a spherical shape, a rod shape, a plate shape, a cylindrical shape, a tubular shape, a tubular shape, a fibrous shape, a film or a sheet shape, and has a low birefringence, Since it is excellent in transparency, mechanical strength, heat resistance, low water absorption, etc., it can be applied to various optical components.
  • optical lens examples include an optical lens and an optical prism.
  • lenses include: camera imaging lenses; microscopes, endoscopes, telescope lenses, and other lenses; spectacle lenses and other light-transmissive lenses; CD, CD-ROM, WORM (write-once optical discs) ), MO (rewritable optical disk; magneto-optical disk), MD (laser scanning system lens such as mini-debeam printer f ⁇ lens, sensor lens, etc .; prism lens of camera lens system).
  • optical applications include light guide plates such as liquid crystal displays; optical films such as polarizing films, retardation films, and light diffusion films; light diffusion plates; optical cards; liquid crystal display element substrates.
  • optical element according to the present invention is also suitably used as various filters, gratings, optical fibers, flat optical waveguides, and the like.
  • the molded article is suitably used as an optical element such as a pickup lens requiring low birefringence or a laser scanning system lens.
  • optical pickup device 1 in which the optical element according to the present invention is used as the objective lens 7 will be described with reference to FIG.
  • FIG. 1 is a schematic diagram showing the internal structure of the optical pickup device 1.
  • the optical pickup device 1 includes a semiconductor laser oscillator 2 as a light source.
  • a semiconductor laser oscillator 2 As shown in FIG. 1, the optical pickup device 1 includes a semiconductor laser oscillator 2 as a light source.
  • the direction force away from the semiconductor laser oscillator 2 is collimator 3, beam splitter 4, 1/4 wavelength plate 5, aperture 6,
  • the objective lens 7 is sequentially arranged.
  • a sensor lens group 8 and a sensor 9 composed of two sets of lenses are sequentially disposed in a position close to the beam splitter 4 and in a direction perpendicular to the optical axis of the blue light described above.
  • the objective lens 7 as an optical element is disposed at a position facing the optical disc D, and collects the blue light emitted from the semiconductor laser oscillator 2 on one surface of the optical disc D. It is summer.
  • Such an objective lens 7 is provided with a two-dimensional actuator 10, and the objective lens 7 is movable on the optical axis by the operation of the two-dimensional actuator 10.
  • the optical pickup device 1 emits blue light from the semiconductor laser oscillator 2 at the time of recording information on the optical disc D or at the time of reproducing information recorded on the optical disc D. As shown in FIG. 1, the emitted blue light becomes a light beam L1, which is transmitted through the collimator 3 and collimated into infinite parallel light. Transparent. Further, after passing through the aperture 6 and the objective lens 7, a condensing spot is formed on the information recording surface D2 via the protective substrate D1 of the optical disc D.
  • the light that forms the focused spot is modulated by the information pits on the information recording surface D2 of the optical disc D and reflected by the information recording surface D2. Then, the reflected light becomes a light beam L 2, is sequentially transmitted through the objective lens 7 and the diaphragm 6, is changed in polarization direction by the quarter-wave plate 5, and is reflected by the beam splitter 4. After that, astigmatism is given through the sensor lens group 8 and received by the sensor 9, and finally converted into an electric signal by being photoelectrically converted by the sensor 9.
  • the numerical aperture NA required for the objective lens 7 varies depending on the thickness dimension of the protective substrate D1 and the size of the information pit in the optical disc D. In this embodiment, it is a high-density optical disc D, and its numerical aperture is set to 0.85.
  • the washed alumina was dried at 90 ° C to remove ethanol, and then calcined at 450 ° C.
  • the particle diameter was about 10 nm.
  • the alumina particles were referred to as “Compound 2”.
  • a dropping device, a thermometer, a nitrogen gas introduction tube, a stirring device, and a reflux condenser were installed in a 4-liter 4-separable flask, and 20 g of benzene was charged into the flask and heated at about 80 ° C.
  • the polymer was designated as “Compound 3”.
  • Cycloolefin resin (APEL5014 manufactured by Mitsui Chemicals) without kneading with the above compounds 1-4 As “Composite Material 5”.
  • the composite materials 1 to 5 were injection molded to obtain a molded sample for measurement (thickness 3 mm). These compacts were designated as “Samples !-5”.
  • Samples 1 and 3 have the same linear expansion coefficient as Sample 2. Suppressed linear expansion compared to Samples 4 and 5 It has an effect and is excellent in terms of light transmittance, moisture absorption, and refractive index. From the above, it can be seen that it is useful to include a compound having an adamantyl group in the resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is an optical element wherein transparency is improved and moisture absorptivity is lowered while suppressing linear expansion coefficient. An objective lens as the optical element is provided by molding a composite material. The composite material contains a compound having an adamantyl group in a resin.

Description

明 細 書  Specification
複合材料及び光学素子  Composite material and optical element
技術分野  Technical field
[0001] 本発明は光学素子材料として好適に用いられる複合材料、及びそれにより構成さ れた光学素子に関する。  [0001] The present invention relates to a composite material suitably used as an optical element material and an optical element formed thereby.
背景技術  Background art
[0002] 現在、光学素子を構成する材料としてガラス材料と樹脂材料とが主に用いられてお り、そのなかでも、安価で成型性にも優れるという理由で、樹脂材料を用いることが多 い。光学素子に適用可能な樹脂材料として、例えば環状ォレフィンと α—ォレフィン の共重合体 (特許文献 1参照)が知られているが、樹脂材料は線膨張率が高いため、 温度変化により屈折率が変動して光学的な安定性を得るのが困難となっている。  [0002] At present, glass materials and resin materials are mainly used as materials constituting optical elements, and among them, resin materials are often used because they are inexpensive and have excellent moldability. . As a resin material applicable to optical elements, for example, a copolymer of cyclic olefin and α-olefin (see Patent Document 1) is known. However, since the resin material has a high coefficient of linear expansion, the refractive index is changed by temperature change. Fluctuating to obtain optical stability.
[0003] この問題に対し、樹脂材料中に無機フィラー (微粒子)を混合した複合材料とするこ とで、線膨張率を抑制して屈折率の安定性を図ることが期待できる(特許文献 2参照 )。特許文献 2に開示された技術では、樹脂材料の欠点である高線膨張率を改善す るため、シリカ系の粒子を用いた有機無機複合材料が提案されている。シリカ単独で は比較的屈折率が低いが、複合材料とすることで、低屈折率であるシリカの欠点を解 消し、光学材料としての応用範囲を広げるものである。  [0003] To solve this problem, a composite material in which an inorganic filler (fine particles) is mixed in a resin material can be expected to suppress the linear expansion coefficient and to stabilize the refractive index (Patent Document 2). See). In the technique disclosed in Patent Document 2, an organic-inorganic composite material using silica-based particles has been proposed in order to improve the high linear expansion coefficient, which is a drawback of resin materials. Silica alone has a relatively low refractive index, but using a composite material eliminates the disadvantages of silica, which has a low refractive index, and broadens the range of applications as an optical material.
特許文献 1:特開 2002— 105131号公報  Patent Document 1: JP 2002-105131 A
特許文献 2:特開 2005— 146042号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-146042
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、当該複合材料では、樹脂材料と無機フィラーとの相溶性が悪く樹脂材料に 対して無機フィラーが分散し難いため、透明性に劣る(光線透過率が低下する)という 光学素子そのものの本来的な性質に問題がある。樹脂材料に対する無機フィラーの 親和性を高めて透明性を向上させようとすると、表面処理が必要となってコスト高とな り、たとえ表面処理を施したとしても透明性の問題を完全に克服するには至らない。 更に、樹脂材料中に無機フィラーを混合させた場合には吸湿率が高まり、設置環境 の変動に対し屈折率を安定させるのが難しくなる。 [0004] However, since the composite material has poor compatibility between the resin material and the inorganic filler and the inorganic filler is difficult to disperse in the resin material, the optical element itself is inferior in transparency (light transmittance is reduced). There is a problem with the intrinsic nature of. Improving the transparency by increasing the affinity of the inorganic filler for the resin material requires a surface treatment, which increases costs and completely overcomes the transparency problem even if the surface treatment is applied. It does not lead to. Furthermore, when an inorganic filler is mixed in the resin material, the moisture absorption rate increases and the installation environment It becomes difficult to stabilize the refractive index with respect to fluctuations in the range.
[0005] 他方、樹脂材料中に繊維等の有機フィラーを混合した複合材料とすることで線膨張 率を抑制して屈折率の安定性を図るということも検討できる。当該複合材料は表面処 理を施さなくても一定の透明性を得られるものの、線膨張率を抑制しょうとして有機フ イラ一の含有量を増やすと光学素子として十分な透明性が得られなくなり、たとえある 程度の透明性を維持したとしても複屈折が発生する。更に、樹脂材料中に有機フイラ 一を混合した場合には、無機フィラーを混合した場合と同様に、吸湿率が高まって設 置環境の変動に対し屈折率を安定させるのが難しくなる。  [0005] On the other hand, it is also possible to examine the stability of the refractive index by suppressing the linear expansion coefficient by using a composite material in which an organic filler such as fiber is mixed in a resin material. Although the composite material can achieve a certain level of transparency without surface treatment, increasing the organic filler content in an attempt to reduce the coefficient of linear expansion will not provide sufficient transparency as an optical element. Birefringence occurs even if a certain level of transparency is maintained. Furthermore, when an organic filler is mixed in the resin material, the moisture absorption rate is increased, and it is difficult to stabilize the refractive index against fluctuations in the installation environment, as in the case of mixing an inorganic filler.
[0006] 本発明の目的は、線膨張率を抑制しながら透明性を向上させかつ吸湿率を低下さ せることである。  [0006] An object of the present invention is to improve the transparency and reduce the moisture absorption rate while suppressing the linear expansion coefficient.
課題を解決するための手段  Means for solving the problem
[0007] 上記の目的を達成するための、本発明の第 1の形態は、 [0007] In order to achieve the above object, the first aspect of the present invention provides:
樹脂中にァダマンチル基を有する化合物を含有する複合材料である。  It is a composite material containing a compound having an adamantyl group in the resin.
[0008] 上記複合材料においては、 [0008] In the composite material,
前記ァダマンチル基を有する化合物が、ァダマンタン骨格のみからなる化合物であ つてもよいし、ァダマンタン骨格を主鎖中に有する化合物であってもよいし、ァダマン タン骨格を側鎖中に有する化合物であってもよい。  The compound having an adamantyl group may be a compound having only an adamantane skeleton, a compound having an adamantane skeleton in the main chain, or a compound having an adamantane skeleton in the side chain. Also good.
[0009] 上記複合材料においては、 [0009] In the composite material,
前記樹脂がシクロォレフイン樹脂であるのが好ましい。  The resin is preferably a cycloolefin resin.
[0010] 本発明の第 2の形態は、 [0010] The second aspect of the present invention is:
第 1の形態の複合材料を用いて成型された光学素子である。  An optical element molded using the composite material of the first form.
発明の効果  The invention's effect
[0011] 本発明によれば、線膨張率を抑制しながら透明性を向上させかつ吸湿率を低下さ せることが可能な複合材料及び光学素子を提供することができる(下記実施例参照) [0011] According to the present invention, it is possible to provide a composite material and an optical element that can improve transparency and reduce moisture absorption while suppressing the coefficient of linear expansion (see Examples below).
Yes
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]光ピックアップ装置の内部構造を示す模式図である。 符号の説明 FIG. 1 is a schematic diagram showing an internal structure of an optical pickup device. Explanation of symbols
1 光ピックアップ装置  1 Optical pickup device
2 半導体レーザ発振器  2 Semiconductor laser oscillator
3 コリメータ  3 Collimator
4 ビームスプリッタ  4 Beam splitter
5 1/4波長板  5 1/4 wave plate
6 絞り  6 Aperture
7 対物レンズ (光学素子)  7 Objective lens (optical element)
8 センサーレンズ群  8 Sensor lens group
9 センサー  9 Sensor
10 2次元ァクチユエータ  10 Two-dimensional actuator
D 光ディスク  D Optical disc
D1 保護基板  D1 Protection board
D2 情報記録面  D2 Information recording surface
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明を実施するための最良の形態について図面を用いて説明する。ただ し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の 限定が付されている力 S、発明の範囲を以下の実施形態及び図示例に限定するもの ではない。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. However, the embodiment described below has various technically preferable limitations S for carrying out the present invention, and the scope of the invention is not limited to the following embodiment and illustrated examples. .
[0015] まず始めに、本発明に係る複合材料について説明する。  [0015] First, the composite material according to the present invention will be described.
[0016] 当該複合材料には、(1)樹脂と(2)ァダマンチル基を有する化合物とが含有されて いる。以下、(1)樹脂と(2)ァダマンチル基を有する化合物とについてそれぞれ説明 し、その後に (3)複合材料の製造方法、(4)複合材料の性質及び (5)光学素子の製 造方法やその適用例についてそれぞれ説明する。  [0016] The composite material contains (1) a resin and (2) a compound having an adamantyl group. Hereinafter, (1) a resin and (2) a compound having an adamantyl group will be described, respectively, followed by (3) a method for producing a composite material, (4) properties of the composite material, and (5) a method for producing an optical element. Each application example will be described.
(1)樹脂  (1) Resin
樹脂としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂などが適用可能であ る。光学材料として一般的に用いられる透明樹脂であれば、特に限定されるものでは ないが、光学素子としての加工性、成型サイクルタイムの関係で、当該樹脂は熱可塑 性樹脂であることが好ましぐアクリル樹脂、環状ォレフィン樹脂、ポリカーボネート樹 脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂又はポリイミド樹脂であること がより好ましぐ吸湿性が低い観点で、特に環状ォレフィン樹脂であることが好ましい 。また、複合材料に用いられる目的によっては、熱硬化性樹脂又は光硬化性樹脂等 の硬化性樹脂が用いられてもよぐ硬化性樹脂としてはシリコン樹脂が好ましく用いら れる。例えば、当該樹脂として、特開 2003— 73559号公報等に記載の化合物を挙 げること力 Sでき、その好ましい化合物を下記表 1に示す。これらの樹脂のうち、吸湿率 が 0. 5%以下であるものが好ましぐ 0. 2%以下であるものが更に好ましい。 As the resin, a thermoplastic resin, a thermosetting resin, a photocurable resin, or the like can be applied. Although it is not particularly limited as long as it is a transparent resin generally used as an optical material, the resin is thermoplastic due to the workability as an optical element and the molding cycle time. An acrylic resin, a cyclic olefin resin, a polycarbonate resin, a polyester resin, a polyether resin, a polyamide resin, or a polyimide resin, which are preferable to be a hydrophobic resin, are particularly preferable from the viewpoint of low hygroscopicity. A resin is preferred. Further, depending on the purpose used for the composite material, a silicon resin is preferably used as the curable resin which may be a curable resin such as a thermosetting resin or a photocurable resin. For example, as the resin, the compounds described in JP-A-2003-73559 can be listed, and preferred compounds are shown in Table 1 below. Of these resins, those having a moisture absorption rate of 0.5% or less are preferred, and those having a moisture absorption rate of 0.2% or less are more preferred.
[表 1] [table 1]
Figure imgf000006_0001
Figure imgf000006_0001
(2)ァダマンチル基を有する化合物  (2) Compound having adamantyl group
ァダマンチル基を有する化合物としては、(2. 1)ァダマンタン骨格のみからなる化 合物、(2· 2)ァダマンタン骨格を主鎖中に有する化合物及び(2. 3)ァダマンタン骨 格を側鎖に有する化合物が挙げられる。 (2. 1)ァダマンタン骨格のみからなる化合物 The compounds having an adamantyl group include (2.1) a compound consisting only of an adamantane skeleton, (2.2) a compound having an adamantane skeleton in the main chain, and (2.3) having an adamantane skeleton in the side chain. Compounds. (2.1) Compound consisting only of adamantane skeleton
ァダマンタン骨格のみからなる一の化合物としては、下記式(1)の「ポリアダマンタ ンオリゴマー」が挙げられる。  As one compound consisting only of an adamantane skeleton, a “polyadamantane oligomer” of the following formula (1) can be mentioned.
[0019] 当該ポリアダマンタンオリゴマーの合成方法としては、下記式 (A)に示す通り、ァダ マンタノンとァダマンタン 2, 6 ジオンとのカルボニル基間の Ti (O)を触媒とした McMurryカップリング反応をおこなえばよい。  [0019] As a synthesis method of the polyadamantane oligomer, as shown in the following formula (A), a McMurry coupling reaction using Ti (O) as a catalyst between carbonyl groups of adamantanone and adamantane 2, 6 dione is performed. Just do it.
[0020] [化 1]  [0020] [Chemical 1]
Figure imgf000007_0001
Figure imgf000007_0001
(1) (1)
[0021] ァダマンタン骨格のみからなる他の化合物としては、橋頭炭素間で環同士が結合し た「ポリ(1 , 3—ァダマンタン)」が挙げられる。 [0021] Other compounds comprising only an adamantane skeleton include “poly (1,3-adamantane)” in which rings are bonded between bridgehead carbons.
[0022] 当該ポリ(1 , 3 ァダマンタン)の合成方法としては、下記式 (B)の上段に示す通り 、キシレン中、金属ナトリウムを用いた下記式(2)の 3, 3' ジブ口モー 1 , 1' ービ ァダマンタンの橋頭炭素間の Wurtzカップリング反応をおこなえばよい。  [0022] As a method for synthesizing the poly (1,3 adamantane), as shown in the upper part of the following formula (B), 3, 3 'jib mouth mode 1 of the following formula (2) using metallic sodium in xylene. The Wurtz coupling reaction between the bridgehead carbons of 1'-biadamantane may be performed.
[0023] 更に当該ポリ(1 , 3 ァダマンタン)の合成方法としては、下記式 (B)の下段に示す 通り、下記式(3)の 1 , 3—ジブ口モアダマンタンを出発原料に用い、ジェチルエーテ ルと HMPAの混合溶媒中、カリウム ナトリウム合金との反応により下記式 (4)の 1 , 3—デヒドロアダマンタンを合成し、その 1 , 3—デヒドロアダマンタンを 160°Cで加熱し てもよい。 [0024] [化 2] [0023] Further, as a method for synthesizing the poly (1,3 adamantane), as shown in the lower part of the following formula (B), 1,3-dib mouth modamantane of the following formula (3) is used as a starting material, and jetyl ether 1,3-Dehydroadamantane of the following formula (4) may be synthesized by reaction with potassium sodium alloy in a mixed solvent of HMPA and HMPA, and the 1,3-dehydroadamantane may be heated at 160 ° C. [0024] [Chemical 2]
Figure imgf000008_0001
Figure imgf000008_0001
(3): (4)  (3): (4)
[0025] 骨格のみからなる他の化合物としては、置換基を導入した下記式(5)  [0025] Other compounds having only a skeleton include the following formula (5) into which a substituent is introduced.
3—ァダマンタン)」が挙げられる。  3-Adamantane) ”.
[0026] 下記式(5)中、「R, R' 」は直鎖状、分岐状又は環状のアルキル基であることが好 ましい。「n」は 1以上の整数である。  In the following formula (5), “R, R ′” is preferably a linear, branched or cyclic alkyl group. “N” is an integer of 1 or more.
[0027] 置換基を導入した下記式(5)のポリ(1 , 3—ァダマンタン)の合成方法としては、力 ップリング重合が適用可能であり、例えば、下記式 (C)に示す通り、新規モノマーとし て下記式(6)の 3, 3' —ジブ口モー 5, 5' —ジブチルー 1 , 1' ビアダマンタンや 下記式(7)の 3, 3' —ジブ口モー 5, 5' , 7, 1' ーテトラブチルー 1 , \' ビアダ マンタンを合成し、 n オクタン中、金属ナトリウムを用いたカップリング重合をおこな えばよい。  As a method for synthesizing poly (1,3-adamantane) of the following formula (5) into which a substituent is introduced, force-coupling polymerization can be applied. For example, as shown in the following formula (C), a novel monomer 3, 3 'in formula (6) below, 5'-dibutyl mouth 1, 5 '-dibutyl- 1, 1' biadamantane, 3, 3 'in formula (7) below, 5', jib mouth mode 5, 5 ', 7, 1'-Tetrabutyl-1, \ 'Viadamantane may be synthesized and coupling polymerization using sodium metal in n-octane may be performed.
[0028] [化 3コ  [0028] [Chemical 3
Figure imgf000008_0002
Figure imgf000008_0002
ίδ)  ίδ)
(S) =C4H9, "=H (S) = C 4 H 9 , "= H
{?) R,R'=C H3 (?) R, R '= CH 3
[0029] [0029]
Figure imgf000008_0003
Figure imgf000008_0003
も適用可能である。  Is also applicable.
[0030] 下記式(8)中、「R」は直鎖状、分岐状又は環状のアルキル基であることが好まし!/ ' 。 「n」は 2以上の整数である。 [0031] 当該ポリ(1 , 3—ァダマンタン)の合成方法としては、 3- 導体の連鎖的な開環重合をおこなえばよ!/、。 In the following formula (8), “R” is preferably a linear, branched or cyclic alkyl group! / ′. “N” is an integer of 2 or more. [0031] As a method for synthesizing the poly (1,3-adamantane), a chain-opening polymerization of 3-conductors may be performed! / ,.
[0032] [化 4]  [0032] [Chemical 4]
Figure imgf000009_0001
Figure imgf000009_0001
(8)  (8)
[0033] 置換基を導入した上記式(8)のポリ(1 , 3—ァダマンタン)の具体例としては、下記 式(9) , (10) , (11)のポリ(1 , 3—ァダマンタン)を挙げることができる。  [0033] Specific examples of the poly (1,3-adamantane) of the above formula (8) into which a substituent is introduced include poly (1,3, -adamantane) of the following formulas (9), (10), (11) Can be mentioned.
[0034] 下記式(9) , (10) , (11)のポリ(1 , 3—ァダマンタン)の合成方法としては、下記式  [0034] As a synthesis method of poly (1,3-adamantane) represented by the following formulas (9), (10), (11),
(D)に示す通り、下記式(9a)の無置換体や下記式(10a)の 5—ブチルー 1 , 3—デヒ ドロアダマンタン、下記式(11a)の 5, 7—ジブチルー 1 , 3—デヒドロアダマンタンを、 新規ブチル置換モノマーとして合成し、これら合成物に対し、 AIBNや BPOを用いた ラジカル重合、無溶媒条件下における熱重合、更には Et OBFやトリフルォロメタン  As shown in (D), an unsubstituted form of the following formula (9a), 5-butyl-1,3-dehydroadamantan of the following formula (10a), 5,7-dibutyl-1,3— of the following formula (11a) Dehydroadamantane was synthesized as a novel butyl-substituted monomer, and these compounds were radically polymerized using AIBN and BPO, thermally polymerized under solvent-free conditions, and Et OBF and trifluoromethane.
3 4  3 4
スルホン酸によるカチオン重合をおこなえばよい。  What is necessary is just to perform cationic polymerization by a sulfonic acid.
[0035] [化 5]
Figure imgf000009_0002
[0035] [Chemical 5]
Figure imgf000009_0002
' (D) '(D)
(9a) R,R'sH (9) :R,R'=H(9a) R, R'sH (9): R, R '= H
Figure imgf000009_0003
Figure imgf000009_0003
(1 1 a) R, '-C4H9 (1 1 a) R, '-C 4 H 9
[0036] (2. 2)ァダマンタン骨格を主鎖中に有する化合物  [0036] (2.2) Compound having adamantane skeleton in main chain
ァダマンタン骨格を主鎖中に有する化合物の一の具体例としては、下記式(20) (25)の化合物が挙げられる。  Specific examples of the compound having an adamantane skeleton in the main chain include compounds of the following formulas (20) and (25).
[0037] 下記式(20) (25)中、「n」は 1以上の整数である。 In the following formula (20) (25), “n” is an integer of 1 or more.
[0038] 下記式(20) (25)の化合物の合成方法としては、ァダマンタン誘導体を主な原 料として合成すればよい。 [0039] [化 6」 [0038] As a method for synthesizing the compounds of the following formulas (20) and (25), an adamantane derivative may be synthesized as a main raw material. [0039] [Chemical 6]
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000010_0002
Figure imgf000010_0002
[0040] ァダマンタン骨格を主鎖中に有する化合物の他の具体例としては、下記式(26) , ( [0040] Other specific examples of the compound having an adamantane skeleton in the main chain include the following formulas (26), (
27)の化合物が挙げられる。 The compound of 27) is mentioned.
[0041] 下記式(26) , (27)中、「n」は 1以上の整数である。 In the following formulas (26) and (27), “n” is an integer of 1 or more.
[0042] 下記式(26) , (27)の化合物の合成方法としては、臭化ァダマンタンとトルエンゃァ 二ソールなどの芳香族化合物の Friedel— Crafts反応が位置選択的かつ定量的に 進行することを利用して、 Friedel - Craftsアルキル化反応を経由させるのがよ!/、。 具体的には、下記式(E)に示す通り、ハロゲン化アルキル成分として下記式(26a)の 1 , 3—ジブ口モアダマンタンや下記式(27a)の 3, 3' —ジブ口モー 1 , 1' ビアダ  [0042] As a method for synthesizing the compounds of the following formulas (26) and (27), Friedel-Crafts reaction of aromatic compounds such as adamantane bromide and toluene diazol proceeds regioselectively and quantitatively. Use the Friedel-Crafts alkylation reaction via /! Specifically, as shown in the following formula (E), as the alkyl halide component, 1, 3—jib mouth modamantane of the following formula (26a) or 3, 3′—jib mouth mode of the following formula (27a), 1 'Biada
Γ用い、求核性の芳香族成分として下記式(26b, 27b) ( a , ω—ジフエノ 鎖数 = 2, 6, 12)を使用し、塩化アルミニウムを触媒として、 1 , 2—ジクロロェタン中で重合させればよい。  Using Γ, the following formula (26b, 27b) (a, ω-diphenol chain number = 2, 6, 12) is used as the nucleophilic aromatic component, and aluminum chloride is used as a catalyst in 1,2-dichloroethane. What is necessary is just to superpose | polymerize.
[0043] [化 7]
Figure imgf000011_0001
[0043] [Chemical 7]
Figure imgf000011_0001
[0044] (2. 3)ァダマンタン骨格を側鎖に有する化合物  [2.3] (2.3) Compound having adamantane skeleton in side chain
ァダマンタン骨格を側鎖に有する化合物とは、下記式(30)の化合物(共重合物) である。  The compound having an adamantane skeleton in the side chain is a compound (copolymer) of the following formula (30).
[0045] 下記式(30)中、「R」は化合物の主鎖を構成する単位で、「n」は 1以上の整数であ  In the following formula (30), “R” is a unit constituting the main chain of the compound, and “n” is an integer of 1 or more.
[0046] [化 8] [0046] [Chemical 8]
側鎖Side chain
Figure imgf000011_0002
Figure imgf000011_0002
(30)  (30)
[0047] 上記式(30)中、「側鎖」に該当する化合物としては、下記式(3;!)〜(40)の化合物 力 S挙げられる。重合法として、通常のラジカル重合ゃァニオン重合等どのような手法 を用いてもよい。 In the above formula (30), examples of the compound corresponding to the “side chain” include compound forces S of the following formulas (3 ;!) to (40). As a polymerization method, any method such as ordinary radical polymerization or canyon polymerization may be used.
[0048] [化 9]
Figure imgf000012_0001
[0048] [Chemical 9]
Figure imgf000012_0001
(31) (32) (33) (34) (31) (32) (33) (34)
Figure imgf000012_0002
Figure imgf000012_0002
(35) (36) es?)
Figure imgf000012_0003
(35) (36) es?)
Figure imgf000012_0003
[0049] (3)複合材料の製造方法  [0049] (3) Manufacturing method of composite material
複合材料の製造方法は、上記「(2. 1 2. 3)」の各項目で説明したァダマンチ ル基を有する化合物を樹脂に分散させればよ!/、。  The method for producing the composite material is to disperse the compound having an adamantyl group described in each item of “(2. 1 2. 3)” above in the resin! /.
[0050] 当該分散工程では、上記合成工程で合成したァダマンチル基を有する化合物と樹 脂 (特に熱可塑性樹脂)とを混合して、ァダマンチル基を有する化合物を樹脂に分散 させる。ァダマンチル基を有する化合物と樹脂との混合方法としては、揮発性物質の 使用量を低減させる観点から、溶融混練法を利用することが好ましレ、。  [0050] In the dispersion step, the compound having an adamantyl group synthesized in the synthesis step and a resin (particularly a thermoplastic resin) are mixed, and the compound having an adamantyl group is dispersed in the resin. As a method for mixing the compound having an adamantyl group and the resin, it is preferable to use a melt-kneading method from the viewpoint of reducing the amount of volatile substances used.
[0051] 分散工程で溶融混練法を利用する場合には、ァダマンチル基を有する化合物と樹 脂とを一括で添加し混練してもょレ、し、段階的に分割添加して混練してもょレ、。  [0051] When the melt kneading method is used in the dispersion step, the compound having an adamantyl group and the resin may be added and kneaded all at once, or may be divided and added in stages. Yo.
[0052] 分割添加する方法としては、一成分を数回に分けて添加する方法や、一成分を一 括で添加し、他の成分を段階的に添加する方法、これらを組合せた方法を用いること 力できる。ァダマンチル基を有する化合物の添加は、粉体又は凝集状態のまま行うこ とが可能である。ァダマンチル基を有する化合物を液中に分散させた状態で添加す ることも可能である力 この場合には、混練後に脱揮処理を行うことが必要であり、ま た、予め凝集粒子を一次粒子に分散させた後に添加することが好ましい。また、ァダ マンチル基を有する化合物と樹脂とを予め混練した後、樹脂 (熱可塑性樹脂)以外の 成分で予め添加しなかった成分を添加して更に溶融混練する際も、これらを一括で 添加して混練してもよ!/、し、段階的に分割添加して混練してもよ!/、。 [0053] 分散工程で溶融混練法を利用する場合には、不活性ガスである窒素、ヘリウム、ネ オン、アルゴン、クリプトン及びキセノンの中から選択される一種のガス又は二種以上 の混合ガスの雰囲気下で混合を行うことが好ましい。ただし、炭酸ガス、エチレンガス 及び水素ガス等の一般的なガスであっても、混練される物質に対する反応性を有さ な!/、ガスであれば、上述した不活性ガスと混合して用いてもよ!/、。 [0052] As a method of dividing addition, a method of adding one component in several times, a method of adding one component at a time and adding other components stepwise, or a combination of these is used. I can do it. The addition of the compound having an adamantyl group can be performed in a powder or agglomerated state. Force that can be added in a state where a compound having an adamantyl group is dispersed in a liquid. In this case, it is necessary to perform a devolatilization treatment after kneading, and the aggregated particles are previously formed into primary particles. It is preferable to add after being dispersed in. Also, when a compound having an adamantyl group and a resin are kneaded in advance, components other than the resin (thermoplastic resin) that have not been added in advance are added and further melt kneaded. You can knead them! /, And you can add them in stages and knead them! /. [0053] When the melt-kneading method is used in the dispersion step, one kind of gas selected from the inert gases nitrogen, helium, neon, argon, krypton, and xenon, or a mixture of two or more kinds of gases is used. It is preferable to perform mixing in an atmosphere. However, even general gases such as carbon dioxide, ethylene gas, and hydrogen gas are not reactive to the material to be kneaded! /, If mixed with the inert gas described above, the gas is used. Anyway!
[0054] 分散工程で溶融混練法を利用する場合には、溶融混練装置における反応系内に おいて、残留する酸素を極力排除することが好ましぐ具体的には、反応系内におけ る酸素量は 1 %以下であることが好ましぐ 0. 2%以下であることがより好ましい。これ は、酸素による酸化反応によって樹脂が劣化するとともに、着色が発生しやすいため である。  [0054] When the melt-kneading method is used in the dispersion step, it is preferable to eliminate residual oxygen as much as possible in the reaction system in the melt-kneading apparatus. Specifically, in the reaction system The oxygen content is preferably 1% or less, and more preferably 0.2% or less. This is because the resin is deteriorated by the oxidation reaction with oxygen and coloration is likely to occur.
[0055] 溶融混練法に適用可能な装置としては、ラボプラストミル、ブラベンダー、バンバリ 一ミキサー、ニーダー及びロール等のような密閉式混練装置又はバッチ式混練装置 を挙げること力 Sできる。また、溶融混練法に用いられる装置としては、単軸押出機や、 二軸押出機等のように連続式の溶融混練装置を用いることも可能である。押出機等 の連続式の溶融混練装置を用いる場合におレ、ては、段階的に添加する成分をシリン ダ一の中途部から添加することも可能である。  [0055] As an apparatus applicable to the melt kneading method, a closed kneading apparatus or a batch kneading apparatus such as a lab plast mill, a Brabender, a Banbury mixer, a kneader, and a roll can be cited. As an apparatus used for the melt kneading method, a continuous melt kneading apparatus such as a single screw extruder or a twin screw extruder can be used. When using a continuous melt-kneading apparatus such as an extruder, it is possible to add the components to be added step by step from the middle of the cylinder.
[0056] 混合物の分散装置としては、ビーズミル分散機、超音波分散機、高速攪拌型分散 機及び高圧分散機等の各種分散処理機が適用可能であるが、ビーズミル分散機を 好適に用いること力できる。ビーズミル分散機で使用されるビーズとしては、ジノレコニ ァビーズや、ガラスビーズ等が挙げられる力 S、ジルコユアビーズが好適に用いられる。 また、使用されるビーズの径寸法は小さい方が好ましぐ直径が 0. 001 -0. 1mmの 範囲内であることがより好ましい。  [0056] As the dispersion apparatus for the mixture, various dispersion treatment machines such as a bead mill disperser, an ultrasonic disperser, a high-speed stirring disperser, and a high-pressure disperser can be applied. it can. As the beads used in the bead mill disperser, force S, such as dinoreconia beads and glass beads, and zirconia beads are preferably used. Further, it is more preferable that the diameter of the beads to be used is smaller, and the preferred diameter is in the range of 0.001 to 0.1 mm.
[0057] なお、複合材料の作製工程におレ、ては、必要に応じて各種添加剤を単独で又は 組合わせて添加してもよ!/、。  [0057] In addition, various additives may be added alone or in combination as necessary in the composite material production process! /.
[0058] 添加剤としては、酸化防止剤、耐光安定剤、熱安定剤、耐候安定剤、紫外線吸収 剤及び近赤外線吸収剤等の安定剤、滑剤や可塑剤等の樹脂改良剤、軟質重合体 やアルコール性化合物等の白濁防止剤、染料や顔料等の着色剤、その他帯電防止 剤や、難燃剤等が挙げられる。 [0059] これらの添加剤のうち、酸化防止剤としては、フエノール系酸化防止剤、リン系酸化 防止剤及びィォゥ系酸化防止剤等が挙げられる。これらの酸化防止剤を配合するこ とにより、透明性や耐熱性等を低下させることなぐ成型時の酸化劣化等によるレンズ の着色や強度低下を防止することができる。 [0058] Examples of additives include antioxidants, light stabilizers, heat stabilizers, weather stabilizers, stabilizers such as ultraviolet absorbers and near infrared absorbers, resin modifiers such as lubricants and plasticizers, and soft polymers. And anti-clouding agents such as alcoholic compounds, coloring agents such as dyes and pigments, other antistatic agents, flame retardants and the like. [0059] Among these additives, examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, and phenolic antioxidants. By blending these antioxidants, it is possible to prevent the coloring and strength of the lens from being deteriorated due to oxidative deterioration during molding without reducing transparency and heat resistance.
[0060] また、これらの酸化防止剤は、それぞれ単独で、あるいは 2種以上を組合わせて用 いることが可能であって、その配合量は、本発明の目的を損なわない範囲で適宜選 択されるが、複合材料 100質量部に対して 0. 00;!〜 20質量部の範囲内であること が好ましぐ 0. 01〜; 10質量部の範囲内であることがより好ましい。  [0060] Further, these antioxidants can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention. However, it is preferably within a range of 0.00;! To 20 parts by mass with respect to 100 parts by mass of the composite material, more preferably within a range of 0.01 to 10 parts by mass.
[0061] フエノール系酸化防止剤としては、従来公知のものが適用可能であり、例えば、特 開昭 63— 179953号公報に記載の 2—t ブチルー 6—(3— t ブチルー 2 ヒドロ キシ一 5 メチルベンジル) 4 メチルフエニルアタリレート、 2, 4 ジ一 t アミノレ - 6 - (1 - (3, 5 ジ一 t アミノレ一 2 ヒドロキシフエ二ノレ)ェチノレ)フエニルアタリレ ート等や、特開平; 1— 168643号公報に記載のォクタデシノレ一 3— (3, 5 ジ一 t— ブチルー 4ーヒドロキシフエニル)プロピオネート等のアタリレート系化合物や、 2, 2' ーメチレン ビス(4ーメチルー 6— t ブチルフエノール)、 1 , 1 , 3 トリス(2 メチ ノレ一 4—ヒドロキシ一 5— t ブチルフエ二ノレ)ブタン、 1 , 3, 5—トリメチノレー 2, 4, 6 ートリス(3, 5—ジ tーブチルー 4ーヒドロキシベンジル)ベンゼン、テトラキス(メチレ ン一 3— (3' , 5' —ジ一 t ブチノレ一 一ヒドロキシフエニルプロピオネート))メタ ン、すなわち、ペンタエリスリメチルーテトラキス(3— (3, 5—ジ tーブチルー 4ーヒド ロキシフエニルプロピオネート))、トリエチレングリコールビス(3—(3— t ブチルー 4 —ヒドロキシ一 5—メチルフエニル)  [0061] As the phenolic antioxidant, conventionally known ones can be applied. For example, 2-tbutyl-6- (3-tbutyl-2-hydroxyl-5) described in JP-B-63-179953. (Methylbenzyl) 4 methylphenyl acrylate, 2, 4 di-tert-aminol-6- (1- (3,5 di-tert-aminol-2-hydroxyphenyl) ethynole) phenyl acrylate, etc. — Octadecinole 1- (3,5 di-tert-butyl-4-hydroxyphenyl) propionate and other acrylate compounds described in Japanese Patent No. 168643, and 2,2′-methylene bis (4-methyl-6-t-butylphenol) 1, 1, 3 Tris (2 methinore 4-hydroxy-1-5-butyl butylenole) butane, 1, 3, 5-trimethinore 2, 4, 6 tris (3,5-di-tert-butyl-4-hydroxybenzyl) ) Benzene, tetra Kiss (methylene 3- (3 ', 5'-di-butynol-monohydroxyphenylpropionate)) methane, ie pentaerythrmethyl-tetrakis (3- (3, 5-di-tert-butyl-4) -Hydroxyphenylpropionate)), triethylene glycol bis (3- (3-t-butyl-4-hydroxy-5-methylphenyl)
プロピオネート)等のアルキル置換フエノール系化合物や、 6—(4ーヒドロキシー 3, 5 —ジ一 t ブチルァニリノ)一 2, 4 ビスォクチルチオ一 1 , 3, 5 トリァジン、 4 ビス ォクチルチオ一 1 , 3, 5—トリァジン、 2—ォクチルチオ一 4, 6—ビス一(3, 5—ジー t —ブチル— 4—ォキシァニリノ)— 1 , 3, 5—トリァジン等のトリアジン基含有フエノー ル系化合物等が挙げられる。  Alkyl-substituted phenolic compounds such as propionate), 6- (4-hydroxy-3,5-di-tert-butylanilino) -1,2,4 bisoctylthio-1,3,5 triazine, 4 bisoctylthio-1,3,5-triazine, Examples include 2-azine thiol 4,6-bis (3,5-di-t-butyl-4-oxyanilino) -triazine group-containing phenolic compounds such as 1,3,5-triazine.
[0062] リン系酸化防止剤としては、一般の樹脂工業において通常使用される物であれば、 特に限定されるものではなぐ例えば、トリフエニルホスファイト、ジフエ二ルイソデシル ホスファイト、フエニルジイソデシルホスフアイト、トリス(ノユルフェ二ノレ)ホスファイト、ト リス(ジノユルフェ二ノレ)ホスファイト、トリス(2, 4 ジ一 t ブチルフエ二ノレ)ホスフアイ ト、 10— (3, 5 ジ tーブチルー 4ーヒドロキシベンジル) 9, 10 ジヒドロー 9 ォキサ 10—ホスファフェナントレン 10—オキサイド等のモノホスファイト系化合物 や、 4, A' ーブチリデンービス(3—メチルー 6— t ブチルフエ二ルージートリデシル ホスファイト)、 4, A' —イソプロピリデン一ビス(フエ二ル一ジ一アルキル(C 12〜C 1 5)ホスファイト)等のジホスファイト系化合物等が挙げられる。これらの中でも、モノホ スフアイト系化合物が好ましぐトリス(ノユルフェニル)ホスファイト、トリス(ジノユルフェ ニル)ホスファイト、トリス(2, 4 ジ一 t ブチルフエニル)ホスファイト等が特に好まし い。 [0062] The phosphorus antioxidant is not particularly limited as long as it is a substance usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl. Phosphite, phenyl diisodecyl phosphite, tris (noyulpheninole) phosphite, tris (dinouylfeninore) phosphite, tris (2,4 di-t-butylphenolophosphite), 10— (3,5 di t-butyl-4-hydroxybenzyl) 9, 10 dihydro-9 oxa 10-phosphaphenanthrene 10-oxide and other monophosphite compounds, 4, A'-butylidenebis (3-methyl-6-t butylphenol tri Decyl phosphite), 4, A′-isopropylidene monobis (phenyl didialkyl (C 12 -C 15 phosphite)) and the like. Of these, tris (noyulphenyl) phosphite, tris (dinoylphenyl) phosphite, and tris (2,4 di-tert-butylphenyl) phosphite are particularly preferred.
[0063] ィォゥ系酸化防止剤としては、例えば、ジラウリル 3, 3 チォジプロピオネート、ジミ リスチノレ 3, 3' —チォジプロピピオネート、ジステアリル 3, 3—チォジプロピオネート 、ラウリルステアリル 3, 3—チォジプロピオネート、ペンタエリスリトールーテトラキスー ( /3 ラウリル チォープロピオネート)、 3, 9 ビス(2 ドデシルチオェチル) 2, 4, 8 , 10—テトラオキサスピロ [5, 5]ゥンデカン等が挙げられる。  [0063] Examples of iow antioxidants include dilauryl 3, 3 thiodipropionate, dimyristinole 3, 3'-thiodipropionate, distearyl 3, 3-thiodipropionate, lauryl stearyl 3, 3 —Chiodipropionate, pentaerythritol-tetrakis (/ 3 lauryl thiopropionate), 3, 9 bis (2 dodecylthioethyl) 2, 4, 8, 10—tetraoxaspiro [5, 5] undecane Etc.
[0064] さらに、上述したフエノール系、リン酸系及びィォゥ系酸化防止剤の他に、ジフエ二 ルァミン誘導体等のアミン系酸化防止剤や、ニッケル又は亜鉛のチォカルバメート等 も酸化防止剤として適用可能である。  [0064] Further, in addition to the above-mentioned phenol-based, phosphoric acid-based and xio-based antioxidants, amine-based antioxidants such as diphenylamine derivatives, nickel or zinc thiocarbamate, etc. can also be applied as antioxidants. It is.
[0065] また、上述した添加剤のうち、白濁防止剤としては、ガラス転移温度における最低 温度が 30°C以下である化合物群が配合されていてもよい。これにより、透明性、耐熱 性及び機械的強度等の諸特性の低下を抑制して、長時間に渡る高温高湿度の環境 下における白濁の発生を防止することができる。  [0065] Of the additives described above, a compound group having a minimum temperature at the glass transition temperature of 30 ° C or less may be blended as the cloudiness inhibitor. As a result, it is possible to prevent the occurrence of white turbidity in an environment of high temperature and high humidity for a long time by suppressing deterioration of various properties such as transparency, heat resistance and mechanical strength.
[0066] また、上述した添加剤のうち、耐光安定剤としては、ベンゾフヱノン系耐光安定剤、 ベンゾトリアゾール系耐光安定剤及びヒンダードアミン系耐光安定剤等が挙げられる 力 S、レンズの透明性ゃ耐着色性等の観点から、ヒンダードアミン系耐光安定剤(以下 「HALS」とする)を用いることが好ましい。このような HALSとしては、低分子量のもの から中分子量、高分子量のものを適宜選択することができる。ただし、複合材料から 成型体を作製する場合には、低分子量又は中分子量の HALSが用いられることが 好ましぐ特に膜状の成型体を作製する場合には、高分子量の HALSを用いること が好ましい。 [0066] Among the above-mentioned additives, examples of the light-resistant stabilizer include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, and the like. From the viewpoint of properties and the like, it is preferable to use a hindered amine light-resistant stabilizer (hereinafter referred to as “HALS”). As such HALS, those having a low molecular weight, medium molecular weight and high molecular weight can be appropriately selected. However, when producing molded products from composite materials, low molecular weight or medium molecular weight HALS may be used. Particularly when a film-like molded body is produced, it is preferable to use high molecular weight HALS.
[0067] 比較的分子量の小さい HALSとしては、 LA— 77 (旭電化製)、 Tinuvin765 (CS C製)、 Tinuvinl23 (CSC製)、 Tinuvin440 (CSC製)、 Tinuvinl44 (CSC製)、 HostavinN20 (へキスト製)等が挙げられる。  [0067] HALS with a relatively small molecular weight includes LA-77 (Asahi Denka), Tinuvin765 (CSC), Tinuvinl23 (CSC), Tinuvin440 (CSC), Tinuvinl44 (CSC), HostavinN20 (Hoechst) Manufactured) and the like.
[0068] 中程度の分子量の HALSとしては、 LA— 57 (旭電化製)、 LA— 52 (旭電化製)、 LA— 67 (旭電化製)、 LA— 62 (旭電化製)等が挙げられる。  [0068] Examples of medium molecular weight HALS include LA-57 (Asahi Denka), LA-52 (Asahi Denka), LA-67 (Asahi Denka), LA-62 (Asahi Denka), and the like. It is done.
[0069] 分子量の大きい HALSとしては、 LA— 68 (旭電化製)、 LA— 63 (旭電化製)、 Ho stavinN30 (へキスト製)、 Chimassorb944 (CSC製)、 Chimassorb2020 (CSC 製)、 Chimassorbl l9 (CSC製)、 Tinuvin622 (CSC製)、 CyasorbUV—3346 ( Cytec製)、 CyasorbUV— 3529 (Cytec製)、 Uvasil299 (GLC製)等が挙げられ  [0069] HALS with large molecular weights are LA-68 (Asahi Denka), LA-63 (Asahi Denka), Ho stavinN30 (Hoechst), Chimassorb944 (CSC), Chimassorb2020 (CSC), Chimassorbl l9 (CSC), Tinuvin622 (CSC), CyasorbUV-3346 (Cytec), CyasorbUV-3529 (Cytec), Uvasil299 (GLC), etc.
[0070] さらに成型時、押出時の加工助剤として、各種の滑剤や、フッ素エラストマ一を若干 酉己合することも好ましい。 [0070] Further, it is also preferable to slightly combine various lubricants and fluorine elastomers as processing aids during molding and extrusion.
(4)複合材料の性質  (4) Properties of composite materials
以上のようにして製造される複合材料の光線透過率は、 3mm厚の場合に 405nm の光に対して 50%以上であるのが好ましぐより好ましくは 70%以上であるのがより 好ましぐ 85%以上であるのが更に好ましい。  The light transmittance of the composite material produced as described above is preferably 50% or more, more preferably 70% or more, with respect to 405 nm light when the thickness is 3 mm. More preferably, it is 85% or more.
[0071] また、複合材料のアッベ数については、ァダマンチル基を有する化合物や樹脂の 選択で種々の値が選択可能である力 異常分散性を得られる粒子を用いることが好 ましい。この場合には、複合材料を色消しに有効に用いることができ、その価値が高 まる場合がある。 [0071] Regarding the Abbe number of the composite material, it is preferable to use particles capable of obtaining anomalous force dispersibility in which various values can be selected by selecting a compound having an adamantyl group or a resin. In this case, the composite material can be effectively used for achromatization, and its value may increase.
[0072] また、複合材料の吸水率は、温度 80°C,相対湿度 90%の環境下で 2%以下である ことが好ましぐ 1 %以下であることがさらに好ましぐ 0. 5%以下であることが最も好ま しい。  [0072] The water absorption rate of the composite material is preferably 2% or less, more preferably 1% or less in an environment of a temperature of 80 ° C and a relative humidity of 90%, more preferably 0.5%. It is most preferable that
[0073] なお、本実施の形態においては、特に記載のない限り、吸水率を質量%で表す。ま た、吸水率の測定は、あらかじめ乾燥させた複合材料を、特定の高温高湿条件化で 一定時間以上保存した時の質量変化から測定することが可能である。本実施の形態 においては、乾燥したときに含有されている水分量をカールフィッシャー法で測定し 、その後の吸水後に質量変化を測定することで、より正確に吸水率を算出している。 [0073] In the present embodiment, the water absorption rate is expressed in mass% unless otherwise specified. In addition, the water absorption rate can be measured from a change in mass when a pre-dried composite material is stored for a certain period of time under specific high temperature and high humidity conditions. This embodiment In the method, the water content when dried is measured by the Karl Fischer method, and the mass change is measured after the subsequent water absorption, thereby calculating the water absorption rate more accurately.
[0074] また、複合材料は AMES試験にお!/、て陰性であることが好まし!/、。これは、 AMES 試験において陽性であると、使用者の健康の阻害、環境負荷の増大、材料安定性の 低減等のおそれがあるからである。  [0074] The composite material is preferably negative in the AMES test! /. This is because a positive result in the AMES test may impair the user's health, increase the environmental burden, and reduce the material stability.
(5)光学素子の製造方法や適用例  (5) Optical element manufacturing methods and application examples
(5. 1)光学素子の製造方法  (5.1) Optical element manufacturing method
上記の通り得られる複合材料を成型することで、本発明に係る光学素子を製造する こと力 Sできる。成型方法としては、特に限定されるものではないが、成型物における低 複屈折性、機械強度及び寸法精度等の特性の観点から、溶融成型法が好ましい。 溶融成型法としては、例えば、プレス成型、押し出し成型、射出成型等が挙げられる 。生産性の観点から、当該溶融成型法として射出成型を適用するのが好ましい。また 、光硬化性樹脂で成型物を構成する場合、注型重合などを用いることが可能である。  By molding the composite material obtained as described above, it is possible to manufacture the optical element according to the present invention. The molding method is not particularly limited, but the melt molding method is preferable from the viewpoint of characteristics such as low birefringence, mechanical strength and dimensional accuracy in the molded product. Examples of the melt molding method include press molding, extrusion molding, and injection molding. From the viewpoint of productivity, it is preferable to apply injection molding as the melt molding method. In addition, in the case of forming a molded product with a photocurable resin, cast polymerization or the like can be used.
[0075] 成型条件は使用目的又は成型方法に応じて適宜選択される力 例えば、射出成型 における複合材料の温度としては、成型時に適度な流動性を樹脂に付与して成型品 のヒケゃ歪みを防止し、樹脂の熱分解によるシルバーストリークの発生を防止し、更 に、成型物の黄変を効果的に防止するなどの観点から、 150°C〜400°Cの範囲内で あることカ好ましく、 200°C〜350°Cの範囲内であることカより好ましく、 200°C〜330 °Cの範囲内であることが特に好ましい。  [0075] The molding condition is a force that is appropriately selected according to the purpose of use or molding method. For example, as the temperature of the composite material in injection molding, an appropriate fluidity is imparted to the resin at the time of molding to reduce the distortion of the molded product. It is preferable that the temperature is in the range of 150 ° C to 400 ° C from the viewpoints of preventing silver streaks due to thermal decomposition of the resin and effectively preventing yellowing of the molded product. More preferably, it is within the range of 200 ° C to 350 ° C, and particularly preferably within the range of 200 ° C to 330 ° C.
[0076] 成型法として射出成型を用いる場合には、炭酸ガスを可塑剤として用いる成型法や 、金型を誘導加熱して転写性を向上させる方法など、一般的な手法はすべて適用可 能である。  [0076] When injection molding is used as a molding method, all general methods such as a molding method using carbon dioxide gas as a plasticizer and a method of improving transferability by induction heating of a mold can be applied. is there.
[0077] 当該成型物は、球状、棒状、板状、円柱状、筒状、チューブ状、繊維状、フィルム 又はシート形状等の種々の形態で使用することが可能であり、低複屈折性、透明性、 機械強度、耐熱性及び低吸水性等に優れるため、各種光学部品への適用が可能で ある。  [0077] The molded product can be used in various forms such as a spherical shape, a rod shape, a plate shape, a cylindrical shape, a tubular shape, a tubular shape, a fibrous shape, a film or a sheet shape, and has a low birefringence, Since it is excellent in transparency, mechanical strength, heat resistance, low water absorption, etc., it can be applied to various optical components.
(5. 2)光学素子の適用例  (5.2) Application examples of optical elements
本発明に係る光学素子の光学部品への適用例としては、光学レンズや光学プリズ ムが挙げられ、その具体例としては、カメラの撮像系レンズ;顕微鏡、内視鏡、望遠鏡 レンズ等のレンズ;眼鏡レンズ等の全光線透過型レンズ; CD、 CD-ROM, WORM (追記型光ディスク)、 MO (書き変え可能な光ディスク;光磁気ディスク)、 MD (ミニデ ビームプリンターの f Θレンズ、センサー用レンズ等のレーザ走査系レンズ;カメラのフ アインダ一系のプリズムレンズ等が挙げられる。 Examples of application of the optical element according to the present invention to an optical component include an optical lens and an optical prism. Specific examples of such lenses include: camera imaging lenses; microscopes, endoscopes, telescope lenses, and other lenses; spectacle lenses and other light-transmissive lenses; CD, CD-ROM, WORM (write-once optical discs) ), MO (rewritable optical disk; magneto-optical disk), MD (laser scanning system lens such as mini-debeam printer fΘ lens, sensor lens, etc .; prism lens of camera lens system).
[0078] その他の光学用途としては、液晶ディスプレイなどの導光板;偏光フィルム、位相差 フィルム、光拡散フィルム等の光学フィルム;光拡散板;光カード;液晶表示素子基板 等が挙げられる。 Other optical applications include light guide plates such as liquid crystal displays; optical films such as polarizing films, retardation films, and light diffusion films; light diffusion plates; optical cards; liquid crystal display element substrates.
[0079] その他、本発明に係る光学素子は、各種のフィルターやグレーティング、光ファイバ 一、平板光導波路などとしても好適に用いられる。  In addition, the optical element according to the present invention is also suitably used as various filters, gratings, optical fibers, flat optical waveguides, and the like.
[0080] 上述した成型物の中でも、低複屈折性が要求されるピックアップレンズや、レーザ 走査系レンズ等の光学素子として好適に用いられる。 [0080] Among the above-described molded products, the molded article is suitably used as an optical element such as a pickup lens requiring low birefringence or a laser scanning system lens.
[0081] 以下、図 1を参照しながら、本発明に係る光学素子が対物レンズ 7として用いられた 光ピックアップ装置 1につレ、て説明する。 Hereinafter, the optical pickup device 1 in which the optical element according to the present invention is used as the objective lens 7 will be described with reference to FIG.
[0082] 図 1は、光ピックアップ装置 1の内部構造を示す模式図である。  FIG. 1 is a schematic diagram showing the internal structure of the optical pickup device 1.
[0083] 光ピックアップ装置 1には、図 1に示すように、光源である半導体レーザ発振器 2が 具備されている。この半導体レーザ発振器 2から出射される青色光の光軸上には、半 導体レーザ発振器 2から離間する方向に向力、つて、コリメータ 3、ビームスプリッタ 4、 1 /4波長板 5、絞り 6、対物レンズ 7が順次配設されている。  As shown in FIG. 1, the optical pickup device 1 includes a semiconductor laser oscillator 2 as a light source. On the optical axis of the blue light emitted from the semiconductor laser oscillator 2, the direction force away from the semiconductor laser oscillator 2 is collimator 3, beam splitter 4, 1/4 wavelength plate 5, aperture 6, The objective lens 7 is sequentially arranged.
[0084] ビームスプリッタ 4と近接した位置であって、上述した青色光の光軸と直交する方向 には、 2組のレンズからなるセンサーレンズ群 8、センサー 9が順次配設されている。  [0084] A sensor lens group 8 and a sensor 9 composed of two sets of lenses are sequentially disposed in a position close to the beam splitter 4 and in a direction perpendicular to the optical axis of the blue light described above.
[0085] 光学素子である対物レンズ 7は、光ディスク Dに対向した位置に配置されるものであ つて、半導体レーザ発振器 2から出射された青色光を、光ディスク Dの一面上に集光 するようになつている。このような対物レンズ 7には、 2次元ァクチユエータ 10が具備さ れており、この 2次元ァクチユエータ 10の動作により、対物レンズ 7は、光軸上を移動 自在となっている。  [0085] The objective lens 7 as an optical element is disposed at a position facing the optical disc D, and collects the blue light emitted from the semiconductor laser oscillator 2 on one surface of the optical disc D. It is summer. Such an objective lens 7 is provided with a two-dimensional actuator 10, and the objective lens 7 is movable on the optical axis by the operation of the two-dimensional actuator 10.
[0086] 次に、光ピックアップ装置 1の作用について説明する。 [0087] 光ピックアップ装置 1は、光ディスク Dへの情報の記録動作時や、光ディスク Dに記 録された情報の再生動作時に、半導体レーザ発振器 2から青色光を出射する。出射 された青色光は、図 1に示すように、光線 L1となって、コリメータ 3を透過して無限平 行光にコリメートされた後、ビームスプリッタ 4を透過して、 1/4波長板 5を透過する。 さらに、絞り 6及び対物レンズ 7を透過した後、光ディスク Dの保護基板 D1を介して情 報記録面 D2に集光スポットを形成する。 Next, the operation of the optical pickup device 1 will be described. The optical pickup device 1 emits blue light from the semiconductor laser oscillator 2 at the time of recording information on the optical disc D or at the time of reproducing information recorded on the optical disc D. As shown in FIG. 1, the emitted blue light becomes a light beam L1, which is transmitted through the collimator 3 and collimated into infinite parallel light. Transparent. Further, after passing through the aperture 6 and the objective lens 7, a condensing spot is formed on the information recording surface D2 via the protective substrate D1 of the optical disc D.
[0088] 集光スポットを形成した光は、光ディスク Dの情報記録面 D2で情報ピットによって変 調され、情報記録面 D2によって反射される。そして、この反射光は、光線 L2となって 、対物レンズ 7及び絞り 6を順次透過した後、 1/4波長板 5によって偏光方向が変更 され、ビームスプリッタ 4で反射する。その後、センサーレンズ群 8を透過して非点収 差が与えられ、センサー 9で受光されて、最終的には、センサー 9によって光電変換 されることによって電気的な信号となる。  [0088] The light that forms the focused spot is modulated by the information pits on the information recording surface D2 of the optical disc D and reflected by the information recording surface D2. Then, the reflected light becomes a light beam L 2, is sequentially transmitted through the objective lens 7 and the diaphragm 6, is changed in polarization direction by the quarter-wave plate 5, and is reflected by the beam splitter 4. After that, astigmatism is given through the sensor lens group 8 and received by the sensor 9, and finally converted into an electric signal by being photoelectrically converted by the sensor 9.
[0089] 以後、このような動作が繰り返し行われ、光ディスク Dに対する情報の記録動作や、 光ディスク Dに記録された情報の再生動作が完了する。  Thereafter, such an operation is repeatedly performed, and the operation of recording information on the optical disc D and the operation of reproducing information recorded on the optical disc D are completed.
[0090] なお、光ディスク Dにおける保護基板 D1の厚さ寸法及び情報ピットの大きさにより、 対物レンズ 7に要求される開口数 NAも異なる。本実施形態においては、高密度な光 ディスク Dであり、その開口数は 0. 85に設定されている。  Note that the numerical aperture NA required for the objective lens 7 varies depending on the thickness dimension of the protective substrate D1 and the size of the information pit in the optical disc D. In this embodiment, it is a high-density optical disc D, and its numerical aperture is set to 0.85.
実施例  Example
[0091] (1)試料の作製 [0091] (1) Sample preparation
(1. 1)化合物 1 (ァダマンタン骨格のみからなる化合物)の作製  (1. 1) Preparation of compound 1 (compound consisting only of adamantane skeleton)
Polym. Prepr. , Jpn. , 49 (2) , 150 (2000)  Polym. Prepr., Jpn., 49 (2), 150 (2000)
Polym. Prepr. , Jpn. , 49 (7) , 1359 (2000)  Polym. Prepr., Jpn., 49 (7), 1359 (2000)
Polym. Prepr. , Jpn. , 50 (2) , 277 (2001)  Polym. Prepr., Jpn., 50 (2), 277 (2001)
Polym. Prepr. , Jpn. , 50 (7) , 1270 (2001)  Polym. Prepr., Jpn., 50 (7), 1270 (2001)
Polvm. Prepr. , Jpn. , 52 (7) , 1422 (2003)  Polvm. Prepr., Jpn., 52 (7), 1422 (2003)
上記の文献を元に、 3, 3' —ジブ口モー 5, 5' —ジシクロへキシルー 1 , 1 ービ ァダマンタンを合成した。その合成物を、 n—オクタン中で金属ナトリウムを用いたカツ プリング反応に供して重合物(ポリアダマンタン)を得た。当該重合物を「化合物 1」と した。 Based on the above literature, we synthesized 3, 3'-jib mouth mo 5, 5'-dicyclohexyl lu 1, 1-biadamantane. The synthesized product was subjected to a coupling reaction using metallic sodium in n-octane to obtain a polymer (polyadamantane). The polymer is referred to as “Compound 1”. did.
(1. 2)化合物 2 (無機粒子)の作製  (1. 2) Preparation of compound 2 (inorganic particles)
アルミナ(大明化学製 TM— 300) 5gをエタノール 100g中に加え、ウルトラァペック スミノレ  Add 5g of Alumina (Daimei Chemicals TM-300) to 100g of ethanol.
(寿技研製)で 0. 05mmビーズを用いて周速 6m/SeCで 30分間分散した。得られた スラリーにエタノーノレ 680ml、 アンモニア水(28%関東化学) 230ml、を加えた。その 混合物を攪拌しながら、当該混合物に対し、テトラエトキシシラン (信越化学) 30gを エタノール 200ml、水 100mlに溶かした混合溶液を 6時間かけて滴下した。滴下終 了後は、混合物を一晩攪拌した。遠心分離機を用いて、混合物中からアルミナを分 離し、そのアルミナをエタノールで洗浄した。洗浄後のアルミナを 90°Cで乾燥させて エタノールを取り除き、その後 450°Cで焼成した。得られたアルミナ粒子を TEM観察 したところ、粒子径は約 10nmであった。当該アルミナ粒子を「化合物 2」とした。 (Manufactured by Kotobuki Giken Co., Ltd.) was dispersed with 0.05 mm beads at a peripheral speed of 6 m / SeC for 30 minutes. 680 ml of ethanol and 230 ml of aqueous ammonia (28% Kanto Chemical) were added to the resulting slurry. While stirring the mixture, a mixed solution of 30 g of tetraethoxysilane (Shin-Etsu Chemical) in 200 ml of ethanol and 100 ml of water was added dropwise to the mixture over 6 hours. After completion of the dropwise addition, the mixture was stirred overnight. Alumina was separated from the mixture using a centrifuge, and the alumina was washed with ethanol. The washed alumina was dried at 90 ° C to remove ethanol, and then calcined at 450 ° C. When the obtained alumina particles were observed with a TEM, the particle diameter was about 10 nm. The alumina particles were referred to as “Compound 2”.
(1. 3)化合物 3 (ァダマンタン骨格を側鎖に有する化合物)の作製  (1. 3) Preparation of compound 3 (compound having adamantane skeleton in the side chain)
0. 3リットルの四つロセパラブルフラスコに滴下装置、温度計、窒素ガス導入管、撹 拌装置及び還流冷却管を設置し、当該フラスコにベンゼン 20gを仕込んで約 80°Cで 加熱した。 2—メチノレ 2—ァダマンチノレメタタリレート 100g、 N, Nf —ァゾビスイソバ レロニトリル 2g、ベンゼン 80gを混合して均一とした溶液を、そのフラスコ中に 2時間 力、けて滴下し、同温度にて 5時間反応させた。得られた溶液を乾燥させ、重合物を得 た。当該重合物を「化合物 3」とした。 A dropping device, a thermometer, a nitrogen gas introduction tube, a stirring device, and a reflux condenser were installed in a 4-liter 4-separable flask, and 20 g of benzene was charged into the flask and heated at about 80 ° C. 2- Mechinore 2 § Dammann Chino Leme Tatari rate 100 g, N, N f - Azobisuisoba Reronitoriru 2g, a solution was uniformly mixed with benzene 80 g, the flask 2 hours in force, only was added dropwise, at the same temperature For 5 hours. The obtained solution was dried to obtain a polymer. The polymer was designated as “Compound 3”.
(1. 4)化合物 4 (芳香環を有する化合物)の作製  (1. 4) Preparation of compound 4 (compound having an aromatic ring)
シンジオタクチックポリスチレン(出光興産製ザレック S 100)を「化合物 4」とした。  Syndiotactic polystyrene (Idemitsu Kosan Zalek S 100) was designated as “Compound 4”.
(1. 5)複合材料;!〜 5の作製  (1.5) Fabrication of composite materials;! ~ 5
ポリラボシステム(HAAKE社製)を用いて、上記各化合物;!〜 4とシクロォレフィン 樹脂(三井化学製 APEL5014)とを 200°Cで 10分間溶融混練し、それら混練物を「 複合材料;!〜 4」とした。複合材料;!〜 4の作製では、あらかじめ質量を測ったサンプ ルから得られた混練物の体積から各化合物;!〜 4の比重を計算し、改めて各化合物 1〜4が体積分率で 30vol%となるように混練物を作製した。  Using a polylab system (manufactured by HAAKE), the above-mentioned compounds;! ~ 4 and cycloolefin resin (APEL5014 made by Mitsui Chemicals) were melt-kneaded at 200 ° C for 10 minutes. 4 ”. In the production of composite materials! ~ 4, the specific gravity of each compound;! ~ 4 is calculated from the volume of the kneaded material obtained from the sample weighed in advance, and each compound 1 ~ 4 is again 30 vol. A kneaded material was prepared so as to be%.
上記化合物 1〜4とは混練せずにシクロォレフイン樹脂(三井化学製 APEL5014) をそのまま「複合材料 5」とした。 Cycloolefin resin (APEL5014 manufactured by Mitsui Chemicals) without kneading with the above compounds 1-4 As “Composite Material 5”.
(1. 6)試料;!〜 5の作製  (1.6) Preparation of sample;! ~ 5
上記複合材料 1〜5を射出成形することによって、測定用のサンプル (厚さ 3mm)の 成形体を得た。これら成形体を「試料;!〜 5」とした。  The composite materials 1 to 5 were injection molded to obtain a molded sample for measurement (thickness 3 mm). These compacts were designated as “Samples !!-5”.
(2)試料 1〜5の物性測定 (2) Measurement of physical properties of samples 1-5
(2. 1)線膨張率の測定 (2.1) Measurement of linear expansion coefficient
SIIナノテクノロジー製 TMA/SS6100を用いて、 40〜80°Cの範囲で試料;!〜 5 の熱膨張を測定し、線膨張率を求めた。その結果を下記表 2に示す。  Using TMA / SS6100 made by SII Nanotechnology, sample in the range of 40-80 ° C; The thermal expansion of ˜5 was measured to determine the linear expansion coefficient. The results are shown in Table 2 below.
(2. 2)光線透過率の測定 (2.2) Measurement of light transmittance
島津製作所製分光光度計 UV— 3150を用いて、波長 587. 5mnの光に対する透 過率を試料;!〜 5ごとに測定した。その測定結果を下記表 2に示す。  Using a spectrophotometer UV-3150 manufactured by Shimadzu Corporation, the transmittance for light with a wavelength of 587.5 mn was measured for each sample;! The measurement results are shown in Table 2 below.
(2. 3)吸湿率の測定 (2.3) Measurement of moisture absorption rate
高温高湿機(エスペック株式会社製 PR— 2PK)を使用し、各試料;!〜 5を予め 100 °C、 10%RH (相対湿度)で 100時間乾燥させ、その後 80°C、 90%RHで 500時間 保存した。各試料 1〜5について、 100時間乾燥させた後の質量と 500時間保存した 後との質量を測定し、その質量増加分から吸湿率(%)を算出した。その算出結果を 下記表 2に示す。  Use a high-temperature and high-humidity machine (Espec Co., Ltd. PR-2PK) to dry each sample; Stored for 500 hours. About each sample 1-5, the mass after drying for 100 hours and the mass after preserve | saving for 500 hours were measured, and the moisture absorption (%) was computed from the increase in the mass. The calculation results are shown in Table 2 below.
(2. 4)屈折率の測定 (2.4) Refractive index measurement
自動屈折計(カルニユー光学工業製 KPR— 200)を用いて、波長 405nmの光に対 する 23°Cでの屈折率を試料 1〜5ごとに測定した。その測定結果を下記表 2に示す。  Using an automatic refractometer (KPR-200, manufactured by Carneu Optical Co., Ltd.), the refractive index at 23 ° C for light having a wavelength of 405 nm was measured for each of samples 1 to 5. The measurement results are shown in Table 2 below.
[表 2] [Table 2]
Figure imgf000021_0001
(3)まとめ
Figure imgf000021_0001
(3) Summary
表 2に示す通り、試料 1 , 3と試料 2, 4, 5とを見比べると、試料 1 , 3は試料 2とは線 膨張率は同等である力 試料 4, 5に比べて線膨張の抑制効果を奏し、更に光線透 過率,吸湿率,屈折率の観点でも優れている。以上から、ァダマンチル基を有する化 合物を樹脂中に含有させることが有用であることがわかる。  As shown in Table 2, comparing Samples 1 and 3 with Samples 2, 4 and 5, Samples 1 and 3 have the same linear expansion coefficient as Sample 2. Suppressed linear expansion compared to Samples 4 and 5 It has an effect and is excellent in terms of light transmittance, moisture absorption, and refractive index. From the above, it can be seen that it is useful to include a compound having an adamantyl group in the resin.

Claims

請求の範囲 The scope of the claims
[1] 樹脂中にァダマンチル基を有する化合物を含有することを特徴とする複合材料。  [1] A composite material containing a compound having an adamantyl group in a resin.
[2] 前記ァダマンチル基を有する化合物が、ァダマンタン骨格のみからなる化合物であ ることを特徴とする請求の範囲第 1項に記載の複合材料。 [2] The composite material according to [1], wherein the compound having an adamantyl group is a compound comprising only an adamantane skeleton.
[3] 前記ァダマンチル基を有する化合物が、ァダマンタン骨格を主鎖中に有する化合 物であることを特徴とする請求の範囲第 1項に記載の複合材料。 [3] The composite material according to claim 1, wherein the compound having an adamantyl group is a compound having an adamantane skeleton in the main chain.
[4] 前記ァダマンチル基を有する化合物が、ァダマンタン骨格を側鎖中に有する化合 物であることを特徴とする請求の範囲第 1項に記載の複合材料。 [4] The composite material according to [1], wherein the compound having an adamantyl group is a compound having an adamantane skeleton in a side chain.
[5] 複合材料において、 [5] In composite materials,
前記樹脂がシクロォレフイン樹脂であることを特徴とする請求の範囲第 1項〜第 4項 の!/、ずれか一項に記載の複合材料。  The composite material according to any one of claims 1 to 4, wherein the resin is a cycloolefin resin.
[6] 請求の範囲第 1項〜第 5項のいずれか一項に記載の複合材料を用いて成型された ことを特徴とする光学素子。 [6] An optical element formed by using the composite material according to any one of claims 1 to 5.
PCT/JP2007/064870 2006-08-04 2007-07-30 Composite material and optical element WO2008016000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-212966 2006-08-04
JP2006212966 2006-08-04

Publications (1)

Publication Number Publication Date
WO2008016000A1 true WO2008016000A1 (en) 2008-02-07

Family

ID=38997176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064870 WO2008016000A1 (en) 2006-08-04 2007-07-30 Composite material and optical element

Country Status (1)

Country Link
WO (1) WO2008016000A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235102A (en) * 1999-02-15 2000-08-29 Konica Corp Optical device and optical lens consisting of resin composition containing thermoplastic silicone resin
JP2001348492A (en) * 2000-06-08 2001-12-18 Daicel Chem Ind Ltd Flame-retardant resin composition
WO2003102069A1 (en) * 2002-05-30 2003-12-11 Ciba Specialty Chemicals Holding Inc. ß CRYSTALINE POLYPROPYLENES
JP2005290061A (en) * 2004-03-31 2005-10-20 Sumitomo Bakelite Co Ltd Polymer composition and crosslinked polymer
JP2006321987A (en) * 2005-04-21 2006-11-30 Mitsubishi Chemicals Corp Resin composition and molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235102A (en) * 1999-02-15 2000-08-29 Konica Corp Optical device and optical lens consisting of resin composition containing thermoplastic silicone resin
JP2001348492A (en) * 2000-06-08 2001-12-18 Daicel Chem Ind Ltd Flame-retardant resin composition
WO2003102069A1 (en) * 2002-05-30 2003-12-11 Ciba Specialty Chemicals Holding Inc. ß CRYSTALINE POLYPROPYLENES
JP2005290061A (en) * 2004-03-31 2005-10-20 Sumitomo Bakelite Co Ltd Polymer composition and crosslinked polymer
JP2006321987A (en) * 2005-04-21 2006-11-30 Mitsubishi Chemicals Corp Resin composition and molded article

Similar Documents

Publication Publication Date Title
JP6245240B2 (en) Polycarbonate resin composition, optical film, and polycarbonate resin molded product
WO2010061927A1 (en) Polycarbonate resin, polycarbonate resin composition, optical film, and polycarbonate resin molded article
JP4384636B2 (en) Polyester resin composition and optical material
JP6189413B2 (en) Resin composition for optical film containing ladder-like silsesquioxane polymer
KR101074996B1 (en) Thermoplastic resin composition, molded article, and film
JP2008001895A (en) Optical plastic material and optical element
JP2019035015A (en) Methacrylic resin composition for optical member, molded body, and optical member
JP5418165B2 (en) Polycarbonate resin composition and molded product thereof
WO2008015999A1 (en) Composite material and optical element
JP5163640B2 (en) Optical organic / inorganic composite material and optical element
JP4343424B2 (en) Resin composition and molded article containing vinyl cyclic hydrocarbon polymer
WO2019216008A1 (en) Optical resin composition and optical lens
JP2007231237A (en) Organic-inorganic composite material, optical element, and method for producing organic-inorganic composite material
JP7032885B2 (en) Methacrylic resin compositions, molded bodies, and optical members
JP2011001526A (en) Resin composition obtained by heat-stabilizing low-birefringence acrylic copolymer
JP2008280443A (en) Method for producing composite resin material, composite resin material, and optical element
JP5440178B2 (en) Alicyclic hydrocarbon random copolymer, process for producing the same, resin composition, and molded article
WO2008016000A1 (en) Composite material and optical element
JP4432551B2 (en) Thermoplastic resin composition, molded article and film
JP2020152792A (en) Thermoplastic resin composition
JP4860644B2 (en) Plastic lens
JP2009191089A (en) Thermoplastic resin composition, method for manufacturing the same and molded product
JP2019035017A (en) Method for producing methacrylic resin
JP2007137984A (en) Composite material and optical element
JP5257046B2 (en) Alicyclic hydrocarbon random copolymer, process for producing the same, resin composition, and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07791555

Country of ref document: EP

Kind code of ref document: A1