WO2008015968A1 - Conductivity control agent for cationic electrodeposition coating material and method of regulating electric conductivity of cationic electrodeposition coating material using the same - Google Patents

Conductivity control agent for cationic electrodeposition coating material and method of regulating electric conductivity of cationic electrodeposition coating material using the same Download PDF

Info

Publication number
WO2008015968A1
WO2008015968A1 PCT/JP2007/064743 JP2007064743W WO2008015968A1 WO 2008015968 A1 WO2008015968 A1 WO 2008015968A1 JP 2007064743 W JP2007064743 W JP 2007064743W WO 2008015968 A1 WO2008015968 A1 WO 2008015968A1
Authority
WO
WIPO (PCT)
Prior art keywords
cationic electrodeposition
conductivity
solid content
control agent
electrodeposition coating
Prior art date
Application number
PCT/JP2007/064743
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Uchidoi
Takefumi Yamamoto
Original Assignee
Nippon Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co., Ltd. filed Critical Nippon Paint Co., Ltd.
Priority to GB0901963A priority Critical patent/GB2454123A/en
Priority to US12/309,809 priority patent/US20090321270A1/en
Priority to AU2007279812A priority patent/AU2007279812A1/en
Publication of WO2008015968A1 publication Critical patent/WO2008015968A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4488Cathodic paints
    • C09D5/4492Cathodic paints containing special additives, e.g. grinding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/025Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • C25D13/06Electrophoretic coating characterised by the process with organic material with polymers

Definitions

  • the present invention relates to a conductivity control agent for a cationic electrodeposition coating and adjustment of the electric conductivity of a cationic electrodeposition coating using the same.
  • Cationic electrodeposition coating is capable of applying even fine details even to an object having a complicated shape, and can be applied automatically and continuously. It is widely used as a method for undercoating undercoating with large and complex shapes. Cationic electrodeposition coating is performed by immersing an object to be coated in a cationic electrodeposition coating material as a cathode and applying a voltage.
  • cationic electrodeposition paints are water-based paint compositions having a solid content concentration of about 20% by weight, and when left without stirring, pigments and the like precipitate and precipitates are formed in the electrodeposition bath. Normally, cationic electrodeposition paints are circulated with a pump or stirred with a stirrer to prevent precipitation.
  • the cationic electrodeposition bath is a large-scale force that can immerse the car body, it is a powerful facility that can circulate and agitate, the energy involved, the equipment involved, and the power to maintain the equipment, and the cost involved. Will be enormous. Reducing or eliminating such circulation and agitation greatly contributes to energy saving in cationic electrodeposition coating. Therefore, it is effective that the cationic electrodeposition coating does not produce a precipitate or has a small amount of sediment. Specifically, it is effective to use a cationic electrodeposition coating having a low solid content or a low ash content. For the first time, electrodeposition paints are being studied!
  • Patent Document 1 discloses a cationic electrodeposition paint having a ash content of 3 to 10% by weight and a solid content concentration of 5 to 12% by weight. There is a disclosure of an environmentally-friendly electrodeposition coating method using paint. This cationic electrodeposition paint is excellent in that it has less sediment and power for agitation and circulation and less energy costs. S, in fact, as the solid content of the paint decreases, the electrical conductivity decreases, V. The performance of forming a coating film to every corner of the film will deteriorate.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-269627
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-269627
  • This cationic electrodeposition coating composition contains a sulfone-modified epoxy resin and requires control of film resistance.
  • Patent Document 3 The amine value of the base resin of the cationic electrodeposition coating is being studied, such as JP-A-2005-232397 (Patent Document 3) and JP-A-7-150079 (Patent Document 4).
  • the amine value of urethane resin (substrate resin) is preferably 20 to 60 mgK OH / g (35.7-107.0 mmol / 100 g in terms of conversion), and the cationic electrodeposition property of Patent Document 4
  • the resin is described as having a desirable amine value of 3 to 200 mg KOH / g (in terms of conversion, 5.3-356 mmol / 100 g). These are the conventional ammine values, which are basically low.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004_231989
  • Patent Document 2 JP 2004-269627 Koyuki
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2005-232397
  • Patent Document 4 Japanese Patent Laid-Open No. 7-150079
  • the cationic electrodeposition coating composition having a low solid content and / or low ash content tends to have a lower electrical conductivity than a normal cationic electrodeposition coating composition.
  • the present invention provides a technique for preventing a decrease in throwing power accompanying a decrease in conductivity in a cationic solid electrodeposition coating composition having a low solid content and / or a low ash content.
  • the present invention is a conductivity control agent for a cationic electrodeposition paint used for a low solid content type cationic electrodeposition paint having a paint solid content concentration of 0.5 to 9.0 wt%, Molecular weight 50 Conductivity for cationic electrodeposition paints containing an amino group-containing compound with an amine value of 200-500 mmol / 100 g and adjusting the electric conductivity to 900-2,000 S / cm. Provide a degree control agent.
  • This conductivity control agent exists in cationic electrocoating paints as a separate emulsion from the cationic epoxy resin, curing agent and pigment, which is a film-forming component, and is actually formulated as the third component. To do.
  • the amino-containing compound used as the conductivity control agent is an amine-modified epoxy resin, and is preferably obtained by modifying an epoxy group contained in the epoxy resin with an amine compound.
  • the amino group-containing compound is also preferably an amine-modified acrylic resin obtained by modifying an epoxy group of an acrylic resin having an epoxy group with an amine compound.
  • the epoxy resin may be a bisphenol type, a t-butylcatechol type, a phenol novolac type, or a cresol nopolac type, and may have a number average molecular weight of 500 to 20,000.
  • the present invention is also a low solid content type cationic electrodeposition paint having a paint solid content concentration of 0.5 to 9.0% by weight and containing an amino group having an amine value of 200 to 500mmol / 100g.
  • a low solid content type cationic electrodeposition coating comprising a conductivity control agent containing a compound and having an electrical conductivity of 900 to 2,000 S / cm.
  • the present invention further relates to a method for adjusting the electrical conductivity of a cationic electrodeposition coating material, comprising a low solid content type cationic electrodeposition coating material having a coating solid content concentration of 0.5 to 9.0% by weight. Adding a conductivity control agent;
  • the conductivity control agent comprises an amino group-containing compound having an amine value of 200 to 500 mmol / 100 g.
  • the present invention is also a method for supplying a conductivity control agent to a cationic electrodeposition paint.
  • the conductivity control agent comprises an amino group-containing compound having an amine value of 200 to 500 mmol / 100 g.
  • the disadvantage of the low ash type and / or low solid content type cationic electrodeposition paint is achieved. This is to eliminate the decrease in throwing power that accompanies the decrease in conductivity of a cationic electrodeposition paint.
  • FIG. 1 is a perspective view showing an example of a box used for evaluating throwing power.
  • FIG. 2 is a cross-sectional view schematically showing a throwing power evaluation method.
  • the conductivity control agent for cationic electrodeposition paints of the present invention is composed of an amino group-containing compound having an amine value of 200 to 500 mmol / 100 g.
  • the conductivity control agent for cationic electrodeposition coating of the present invention may be any amino group-containing compound as long as the amine value has the above range, but usually an amine-modified epoxy resin or an amine-modified acrylic resin is preferred. .
  • the conductivity control agent for cationic electrodeposition paints of the present invention may be neutralized with an acid, if necessary.
  • the amine value is preferably 250 to 450 mmol / 100 g, and most preferably 300 to 400 mmol / 100 g.
  • the amine value is 200 mmol / 100 g / J or more, the amount required to adjust the liquid conductivity of the low solid content cationic electrodeposition paint to the optimum value increases, which may impair the corrosion resistance. On the other hand, if it exceeds 500 mmol / 100 g, the precipitation property is lowered and the desired throwing power cannot be obtained. In addition, the suitability of galvanized steel sheets is also reduced.
  • the amino group-containing compound as the conductivity control agent for cationic electrodeposition coatings in the present invention can be considered to have a low molecular weight to a high molecular weight ordinary amine-modified epoxy resin diamine-modified acrylic resin, etc. And high molecular weight compounds.
  • the low molecular weight amino group-containing compound include monoethanolamine, diethanolamine, and dimethylbutylamine.
  • Epoxy resins that can be used in general include bisphenol type epoxy resin, t-butylcatechol type epoxy resin, phenol nopolac type epoxy resin, and cresol nopolac type epoxy resin, having a molecular weight of 500 to 20000. Those having the following are preferred. Of these epoxy resins, phenol nopolac type epoxy resins and cresol nopolac type epoxy resins are most desirable. In particular, these epoxy resins are commercially available. Examples thereof include phenolic nopolak type epoxy resin DEN-438 manufactured by Dow Chemical Japan, and cresol nopolac type epoxy resin YDCN-703 manufactured by Tohto Kasei Co., Ltd.
  • epoxy resins may be modified with resins such as polyester polyols, polyether polyols, and monofunctional alkylphenols. Epoxy resins can also be chain-extended using the reaction of epoxy groups with diols or dicarboxylic acids.
  • amine-modified acrylic resin for example, a homopolymer of dimethylaminoethyl methacrylate which is an amino group-containing monomer or a copolymer with another polymerizable monomer is used as it is. Alternatively, it may be used by modifying the glycidyl group of a homopolymer of glycidyl metatalylate or a copolymer with other polymerizable monomer with an amine compound.
  • Examples of the compound that introduces an amino group into an epoxy resin or an acrylic resin containing an epoxy group include primary amines, secondary amines, and tertiary amines. Specific examples thereof include butynoreamine, talented cutinoleamine, jetinoreamine, dibutinoreamine, dimethylenobutyneamine, monoethanolamine, diethanolamine, N-methylethanolamine, triethylamine hydrochloride, N, N-dimethylethanolamine.
  • primary amine-blocked secondary amines such as aminoethylethanolamine diketimine, jetylhydroamine diketimine and the like can be mentioned.
  • a plurality of amines may be used.
  • the number average molecular weight of these amine-modified epoxy resins and amine-modified acrylic resins is preferably 500 to 20000. If the number average molecular weight is less than 500, corrosion resistance may be impaired, and although the reason is not clear, a decrease in throwing power and a decrease in suitability for galvanized steel sheets are observed. If the number average molecular weight is greater than 20000 !, there is a risk of causing a decrease in the finished appearance.
  • the cationic electrodeposition paint to which the conductivity control agent for cationic electrodeposition paint of the present invention can be applied is not limited to a low solid content type cationic electrodeposition paint having a solid content concentration of 0.5 to 9.0% by weight. It is also possible to apply to a normal cationic electrodeposition paint having a solid content concentration of about 20% by weight. Even with normal cationic electrodeposition paints, the electrical conductivity may be reduced, and if the electrodeposition is applied as it is, the throwing power may be insufficient. When such a problem occurs, the conductivity can be controlled to an appropriate value by adding the above-mentioned conductivity control agent for cationic electrodeposition paints to normal cationic electrodeposition paints. Therefore, sufficient throwing power can be secured.
  • Acids used for neutralization are inorganic acids or organic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfamic acid, formic acid, acetic acid, and lactic acid.
  • the conductivity control agent for cationic electrodeposition paints according to the present invention has a compounding amount in cationic electrodeposition paints. By adjusting, the electric conductivity of the electrodeposition coating material can be suitably adjusted.
  • Cationic electrodeposition coating compositions include those containing a cationic epoxy resin, a curing agent, and optionally pigments and additives. Hereinafter, each component will be described.
  • the cationic epoxy resin used in the present invention includes an epoxy resin modified with amine.
  • Cationic epoxy resins typically have the ability to open with active hydrogen compounds that can introduce cationic groups into all of the epoxy rings of bisphenol type epoxy resins, or some epoxy rings to other It is produced by opening a ring with an active hydrogen compound and opening the remaining epoxy ring with an active hydrogen compound capable of introducing a cationic group.
  • Power of cationic electrodeposition paint Thion-based epoxy resin preferably has an amine value of 50 to 200 mmol / 100 g, which is smaller than the amine value (200 to 500 mmol / 100 g) of the conductivity control agent for cationic electrodeposition paint. It has a great value.
  • the amine value is less than 50 mmol / 100 g, the dispersibility of the cation-modified epoxy resin in water cannot be ensured, and if it exceeds 200 mmol / 100 g, the water resistance of the resulting coating film may be deteriorated.
  • a typical example of the bisphenol type epoxy resin is a bisphenol A type or bisphenol F type epoxy resin.
  • Epicoat 828 manufactured by Yuka Shell Epoxy Co., Epoxy Equivalent 180 ⁇ ; 190
  • Epico 1001 Equivalent Epoxy Equivalent 450 ⁇ 500
  • Epicote 1010 Equipment Equivalent Equivalent 3000 ⁇ 4000
  • Epicoat 807 epoxy equivalent 170
  • R represents a residue excluding the glycidyloxy group of the diglycidyl epoxy compound
  • R ′ represents an isocyanato group of the diisocyanate compound
  • n represents a positive integer.
  • a block polyisocyanate blocked with a lower alcohol such as methanol and a polyepoxide are heated and kept in the presence of a basic catalyst to produce a by-product lower product. Obtained by distilling off alcohol from the system.
  • epoxy resins may be modified with an appropriate resin such as polyester polyol, polyether polyol, and monofunctional alkylphenol. Epoxy resins also have the ability to extend the chain using the reaction of epoxy groups with diols or dicarboxylic acids.
  • epoxy resins are ring-opened with an active hydrogen compound so that an amine value of 50 to 200 mmol / 100 g is obtained after ring opening, and more preferably 5 to 50% of them are occupied by primary amino groups. Is desirable.
  • the active hydrogen compounds capable of introducing a cationic group include primary amines, secondary amines, tertiary amine acid salts, sulfides and acid mixtures.
  • primary amine, secondary amine, or tertiary amine acid salts are used as active hydrogen compounds capable of introducing cationic groups.
  • Specific examples include butylamine, octylamine, jetylamine, dibutylamine, methylbutyramine, monoethanolamine, diethanolamine, N-methylethanolamine, triethylamine hydrochloride, N, N-dimethylethanolamine acetate, jetyl disulfide.
  • a secondary amine that blocks primary amines, such as a mixture of acetic acid, ketimine of aminoethylethanolamine, diketimine of dimethyltriamine. Amines can be used in combination.
  • the curing agent used in the present invention is preferably a blocked polyisocyanate obtained by blocking a polyisocyanate with a blocking agent.
  • a polyisocyanate means two isocyanate groups in one molecule.
  • the polyisocyanate may be, for example, any of aliphatic, alicyclic, aromatic and aromatic aliphatic.
  • Specific examples of polyisocyanates include aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, and naphthalene diisocyanate.
  • aliphatic diisocyanates such as hexamethylene diisocyanate (HDI), 2, 2, 4 trimethylhexane diisocyanate, lysine diisocyanate and the like; Hexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4'-dicyclohexylenomethane diisocyanate (hydrogenated MDI), methylcyclohexane diisocyanate, isopropylidenedicyclohexane Hexolux 4,4'-diisocyanate and 1,3-diisocyanatomethylcyclohexane (hydrogenated XDI), hydrogenated TDI, 2, 5 or 2, 6 C5-C18 alicyclic diisocyanates such as bis (isocyanatomethyl) monobicyclo [2.2.1] heptane (also called norbornane diisocyanate); xylylene diisocyanate (XDI), X
  • Adducts or prepolymers obtained by reacting polyisocyanate with polyhydric alcohols such as ethylene glycol, propylene glycol, trimethylolpropan and hexanetriol at an NCO / OH ratio of 2 or more are also used as curing agents. It's okay.
  • the polyisocyanate is preferably an aliphatic polyisocyanate or an alicyclic polyisocyanate! /. This is because the formed coating film is excellent in weather resistance.
  • aliphatic polyisocyanate or alicyclic polyisocyanate include hexamethylene diisocyanate, hydrogenated TDI, hydrogenated MDI, hydrogenated XDI, IPDI, norbornane diisocyanate, and the like. Dimer (biuret), trimer (isocyanurate) and the like.
  • the blocking agent is added to a polyisocyanate group and is stable at room temperature, but can regenerate a free isocyanate group when heated to a temperature higher than the dissociation temperature.
  • a blocking agent when low-temperature curing (160 ° C or less) is desired, ratata series such as ⁇ -force prolatatam, ⁇ -noratalatata, ⁇ -butyroratam and / 3-propiolatata Blocking agents and formaldoxime, acetoaldoxime, acetoxime, methylethyl blocking agents may be used.
  • the binder containing the cationic epoxy resin and the curing agent is generally an electrodeposition coating composition in an amount of 25 to 85% by weight, preferably 40 to 70% by weight of the total solid content of the electrodeposition coating composition. Contained in
  • the electrodeposition coating composition used in the present invention may contain a commonly used pigment.
  • pigments that can be used include commonly used inorganic pigments, such as colored pigments such as titanium white, carbon black and bengara; kaolin, talc, aluminum silicate, calcium carbonate, my strength and clay.
  • Extender pigments zinc phosphate, iron phosphate, ammonium phosphate, calcium phosphate, zinc phosphite, zinc cyanide, zinc oxide, aluminum tripolyphosphate, zinc molybdate, aluminum molybdate, calcium molybdate and phosphomolybdic acid
  • anti-mold pigments such as aluminum, aluminum zinc phosphomolybdate, bismuth hydroxide, bismuth oxide, basic bismuth carbonate, bismuth nitrate, bismuth benzoate, bismuth citrate, and bismuth silicate.
  • the pigment is generally contained in the electrodeposition coating composition in an amount accounting for the total solid content of the electrodeposition coating composition;! To 35 wt%, preferably 10 to 30 wt%.
  • a pigment When a pigment is used as a component of an electrodeposition coating, it is generally dispersed in an aqueous medium at a high concentration in advance together with a resin called a pigment dispersion resin to make a paste. This is because it is difficult to disperse the pigment in a single step in a low concentration uniform state used in the electrodeposition coating composition because the pigment is in powder form. In general, such a paste is referred to as a pigment dispersion paste.
  • the pigment dispersion paste is prepared by dispersing a pigment together with a pigment dispersion resin varnish in an aqueous medium.
  • a pigment dispersion resin varnish a cationic polymer such as a cationic or nonionic low molecular weight surfactant or a modified epoxy resin having a quaternary ammonium group and / or a tertiary sulfone group is generally used. Is used.
  • As the aqueous medium ion-exchanged water or water containing a small amount of alcohol is used.
  • pigment dispersion resin varnish is 5-40 Part by weight and pigment are used at a solid content ratio of 10 to 30 parts by weight.
  • the cationic electrodeposition coating composition of the present invention needs to have a coating solid content concentration of 0.5 to 9.0% by weight.
  • a coating solid content concentration of paint is below the lower limit, a cationic electrodeposition coating film cannot be obtained.
  • the coating solid content concentration exceeds the upper limit, the pigment component contained in the cationic electrodeposition coating material settles in a stationary state without stirring, which is not preferable.
  • the electrodeposition coating composition is prepared by dispersing a cationic epoxy resin, a curing agent, and a pigment dispersion paste in an aqueous medium.
  • the aqueous medium contains a neutralizing agent in order to improve the dispersibility of the cationic epoxy resin.
  • Neutralizing agents are inorganic or organic acids such as hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, lactic acid.
  • the amount is an amount that achieves a neutralization rate of at least 20%, preferably 30-60%.
  • the amount of the curing agent reacts with active hydrogen-containing functional groups such as primary, secondary or / and tertiary amino groups and hydroxyl groups in the cationic epoxy resin at the time of curing to give a good cured coating film.
  • active hydrogen-containing functional groups such as primary, secondary or / and tertiary amino groups and hydroxyl groups in the cationic epoxy resin at the time of curing to give a good cured coating film.
  • active hydrogen-containing functional groups such as primary, secondary or / and tertiary amino groups and hydroxyl groups in the cationic epoxy resin at the time of curing to give a good cured coating film.
  • active hydrogen-containing functional groups such as primary, secondary or / and tertiary amino groups and hydroxyl groups in the cationic epoxy resin at the time of curing to give a good cured coating film.
  • active hydrogen-containing functional groups such as primary, secondary or / and tertiary amino groups and hydroxyl groups in the cationic epoxy resin at the
  • the electrodeposition paint may contain a tin compound such as dibutyltin dilaurate and dibutyltin oxide, and a usual urethane cleavage catalyst. Since a lead-free material is preferable, the amount is preferably set to 0.;! To 5% by weight of the block polyisocyanate compound.
  • a tin compound such as dibutyltin dilaurate and dibutyltin oxide
  • a usual urethane cleavage catalyst Since a lead-free material is preferable, the amount is preferably set to 0.;! To 5% by weight of the block polyisocyanate compound.
  • the electrodeposition coating composition may contain conventional coating additives such as a water-miscible organic solvent, a surfactant, an antioxidant, an ultraviolet absorber, and a pigment.
  • the cationic electrodeposition coating composition of the present invention is not particularly limited as long as it contains the components described above, but the conductivity control agent for cationic electrodeposition coating of the present invention is effective.
  • the cationic electrodeposition coating used is of the low solids type.
  • the cationic electrodeposition paint of the present invention may be a low ash type.
  • the low solid content type cationic electrodeposition coating composition has a solid content concentration of less than the conventional 20% by weight, particularly 0.5 to 9% by weight, and a more preferred lower limit is 3% by weight. If it is less than 0.5% by weight, the pigment component settles without stirring, which is not preferable. On the other hand, although it may exceed 9% by weight, it may not be necessary to adjust the electrical conductivity of the paint by adding a conductivity modifier for cationic electrodeposition paints.
  • the cationic electrodeposition coating used in the present invention can be said to be a low ash type.
  • the ash content is 15 to 40% by weight in the case of an ordinary cathodic electrodeposition paint, so the ash content of the low ash type cationic electrodeposition paint is preferably 2 to 7% by weight, more preferably 3 to 5% by weight. is there.
  • the object to be coated when electrodeposition coating is performed using the electrodeposition coating composition is preferably a conductor that has been subjected to surface treatment such as zinc phosphate treatment in advance by dipping, spraying, or the like.
  • the surface treatment may not be performed.
  • the conductor is preferably a metal substrate that is not particularly limited as long as it can serve as a cathode in electrodeposition coating.
  • Electrodeposition Conditions under which electrodeposition is performed are generally the same as those used for other types of electrodeposition coating.
  • the applied voltage may vary greatly and may range from 1 to several hundred volts.
  • the current density is typically about 10 amps / m 2 to 160 amps / m 2 and tends to decrease during electrodeposition.
  • the coating is baked at an elevated temperature in a conventional manner, for example, in a baking furnace, in a baking oven or with an infrared heat lamp.
  • the baking temperature is usually about 140 ° C to 180 ° C.
  • the coated product coated with the cationic electrodeposition paint of the present invention is dried and baked after the final water washing to form a cured electrodeposition coating film, thereby completing the coating process.
  • the above-described liquid conductivity control agent for cationic electrodeposition coating is used as a cationic electrodeposition coating.
  • the liquid conductivity of the paint is ensured.
  • low solid content type cationic electrodeposition coatings tend to have insufficient liquid conductivity compared to ordinary cationic electrodeposition coatings with a solid content concentration of about 20% by weight.
  • Adjust by adding a specific conductivity control agent for cationic electrodeposition coatings By increasing the amine value of the cation-modified epoxy resin as a coating film forming component, it is possible to maintain electric conductivity at an appropriate value and to ensure throwing power.
  • the electric conductivity necessary for obtaining the desired throwing power is 900 to 2000 S / cm.
  • the conductivity control agent for the cationic electrodeposition paint of the present invention the low solid content type electrodeposition paint
  • the liquid conductivity of can be controlled within this range.
  • the preferred lower limit of conductivity is 1000 3 /.
  • the preferred upper limit is 1800 S / cm. If the electrical conductivity is less than 900 a S / cm, the desired throwing power cannot be obtained.
  • conductivity is more than 2000 ⁇ S / cm, coating defects called gas pins are likely to occur when coating galvanized steel sheets. Have the following disadvantages. Conductivity is measured using a commercially available liquid conductivity meter at a liquid temperature of 25 ° C.
  • the blending amount of the conductivity control agent for the cationic electrodeposition coating material in the cationic electrodeposition coating material is not particularly limited as long as a predetermined electric conductivity is obtained. Specifically, it is based on the solid content of the coating material. There are, from 0.5 to 30 weight 0/0, preferably 1 to 30 weight 0/0, more preferably 1 to; Ru 15 weight% der. Although it may be less than 0.5% by weight, sufficient electrical conductivity may not be obtained. The blending amount may exceed 50% by weight, but no increase in electrical conductivity proportional to the amount added will be observed.
  • the low solid content type cationic electrodeposition coating material having the conductivity adjusted as described above is a low ash content and low solid content type cationic electrodeposition coating material, and can ensure suitable throwing power. Even for such cationic electrodeposition paints, it is necessary to replenish the film-forming components in the cationic electrodeposition paint tank in the process of repeatedly coating the object to be coated on the painting line. At this time, the electrical conductivity of the cationic electrodeposition paint in the tank may deviate from the range of 900 to 2,000 S / cm desired by the present application. When the electrical conductivity is 900 S / cm or less, the conductivity adjustment agent of the present invention is separately added to the cationic electrodeposition coating tank to reduce the solid content concentration to 0. The electric conductivity of the cationic electrodeposition paint in the tank can be adjusted to the range of 900 to 2,000 a S / cm while maintaining the content at 5 to 9.0% by weight.
  • MIBK methylisoptyl ketone
  • methinorethananolamine 37.5 parts
  • diethanolamine 52.5 parts
  • MIBK methylisoptyl ketone
  • Example A-1 To 140 parts of the amino modified resin solution obtained in Example A-1, 5.5 parts of formic acid and 54.5 parts of deionized water 12 are added and stirred for 30 minutes while maintaining at 80 ° C. The organic solvent was removed under reduced pressure to obtain a liquid conductivity control agent A having a solid content of 7.0%.
  • a flask equipped with a reflux condenser and a stirrer is charged with 255 parts of MIBK and 75 parts of methylethanolamine and kept at 100 ° C. while stirring. To this, gradually add 180 parts of phenol nopolak type epoxy resin (trade name DEN-438, manufactured by Dow Chemical Japan Co., Ltd.). The molecular weight was measured and found to be 1,000. The amine value (MEQ (B)) of the obtained amino-modified resin was measured and found to be 390 mmol / 100 g.
  • Example C 1 To 140 parts of the amino-modified resin solution obtained in Example B-1, 14 parts of sulfamic acid and 1247 parts of deionized water are added and stirred for 30 minutes while maintaining the temperature at 80 ° C. The organic solvent was removed under reduced pressure to obtain a liquid conductivity control agent B having a solid content of 7.0%. [0072]
  • Example C 1 To 140 parts of the amino-modified resin solution obtained in Example B-1, 14 parts of sulfamic acid and 1247 parts of deionized water are added and stirred for 30 minutes while maintaining the temperature at 80 ° C. The organic solvent was removed under reduced pressure to obtain a liquid conductivity control agent B having a solid content of 7.0%.
  • MIBK methyl isobutyl ketone
  • a mixed solution consisting of 100 parts of glycidino methacrylate and 2 parts of azobisisobutyronitrile (AIBN) was added dropwise at a constant rate from a dropping funnel in 2 hours. The temperature was kept at 100 ° C and stirring was continued for 30 minutes. Thereafter, a mixture of 52.5 parts of MIBK and 0.5 part of AIBN was added dropwise over 1 hour. Stirring was continued for another hour to complete the reaction.
  • MIBK methyl isobutyl ketone
  • Example C-1 A flask equipped with a reflux condenser and a stirrer is charged with 57.5 parts of MIBK and 52.8 parts of methylethanolamine and kept at 100 ° C while stirring. To this, 205 parts of the reaction product obtained in Example C-1 is gradually added, and after the entire amount has been added, the reaction is allowed to proceed for 3 hours. The molecular weight was measured and found to be 9,800. The amine value (MEQ (B)) of the obtained amino-modified resin was measured and found to be 450 mmol / 100 g.
  • Example C-2 To 140 parts of the amino modified resin solution obtained in Example C-2, 25.2 parts of lactic acid and 1234.8 parts of deionized water are added and stirred for 30 minutes while maintaining at 80 ° C. The organic solvent was removed under reduced pressure to obtain a liquid conductivity control agent C having a solid content of 7.0%.
  • Liquid conductivity regulator with an active ingredient's amine value (MEQ (B)) of 740 mmol / 100 g and an active ingredient concentration of 7%
  • a flask equipped with a stirrer, condenser, nitrogen inlet tube, thermometer and dropping funnel was charged with 95 parts and dibutyltin dilaurate 0.5 parts. While stirring the reaction mixture, 21 parts of methanol was added dropwise. The reaction starts at room temperature and is 60 ° C due to exotherm. The temperature was raised to. Thereafter, the reaction was continued for 30 minutes, and then 50 parts of ethylene glycol mono-2-ethylhexyl ether was added dropwise from the dropping funnel. Further, 53 parts of a bisphenol A-propylene oxide 5 mol adduct was added to the reaction mixture. The reaction was mainly carried out in the range of 60 to 65 ° C. and continued until the absorption based on the isocyanate group disappeared in the IR spectrum measurement.
  • a reactor was charged with 1250 parts of diphenylmethane diisocyanate and 4 parts of MIBK266. This was heated to 80 ° C, and 2.5 parts of dibutyltin dilaurate was added. Here, 226 parts of epsilon prolatatum were dissolved in 944 parts of butylcetone sorb, and dropped at 80 ° C. over 2 hours. After further heating at 100 ° C for 4 hours, in the IR spectrum measurement, it was confirmed that the absorption based on the isocyanate group disappeared, and after cooling, 1 part MIBK336.1 was added to block the glass transition temperature at 0 ° C. An isocyanate curing agent was obtained.
  • IPDI isophorone diisocyanate
  • EPON 829 (Bisphenol A type epoxy epoxies, ephemeral equivalent of 193-203, manufactured by Shell 'Chemical' Company) 71.0. And bisphenol A289.6 ⁇ are appropriate.
  • the reaction mixture was allowed to react at 150-; 160 ° C for about 1 hour, then cooled to 120 ° C, and then 498.8 parts of 2-ethylhexanol half-blocked IPDI (MIBK solution) prepared previously was I got it.
  • reaction mixture was kept at 110-120 ° C for about 1 hour, then 463.4 parts of ethylene glycol monobutyl ether was added, the mixture was cooled to 85-95 ° C, homogenized, and then first. 196. 7 parts of the prepared quaternizing agent was added. After maintaining the reaction mixture at 85 to 95 ° C until the acid value becomes 1, add 964 parts of deionized water to finish quaternization in epoxy bisphenol A resin, and a pigment having a quaternary ammonium salt part A resin for dispersion was obtained (resin solid content 50%).
  • the amine-modified epoxy resin obtained in Production Example 11 and the block isocyanate curing agent obtained in Production Example 12 were mixed so as to be uniform at a solid content ratio of 80/20. Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. Removal of MIBK under reduced pressure yielded an emulsion with a solid content of 36%.
  • MEQ (A) milligram equivalent
  • an electrodeposition coating composition F having a solid content of 20%.
  • the concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 23% by weight.
  • the solid content of the paint can be determined as a percentage of the original mass of the mass of the residue after heating at 180 ° C for 30 minutes. (Conforms to JIS K5601)
  • the electrodeposition coating composition F obtained here was used as Comparative Example 1 as it was.
  • the liquid conductivity was 1600 S / cm.
  • Example 1 By adding 6 parts of the liquid conductivity control agent A obtained in Example A-2 to 1000 parts of the previously obtained electrodeposition coating composition G, the liquid conductivity was reduced to 1200 S / cm. An adjusted electrodeposition coating composition H was obtained. This electrodeposition coating composition H was used as Example 1.
  • Example 2 By adding 8 parts of the liquid conductivity control agent B obtained in Example B-2 to 1000 parts of the previously obtained electrodeposition coating composition G, the liquid conductivity was reduced to 1300 S / cm. An adjusted electrodeposition coating composition I was obtained. This electrodeposition coating composition I was used as Example 2.
  • the liquid conductivity was adjusted to 1100 S / cm by adding 3 parts of the liquid conductivity control agent C obtained in Example C 3 to 1000 parts of the previously obtained electrodeposition coating composition G.
  • An electrodeposition coating composition J was obtained. This electrodeposition coating composition J was used as Example 3.
  • the solid content concentration was reduced from 7% to 5% by adding 400 parts of ion exchange water to 1000 parts of the electrodeposition coating composition G obtained previously. This operation decreased the liquid conductivity from 890 a S / cm to 640 S / cm.
  • the liquid conductivity control obtained in Example A-2 was used.
  • An electrodeposition coating composition K having a liquid conductivity adjusted to 1100 S / cm was obtained by adding 8 parts of control agent A. This electrodeposition coating composition K was used as Example 4.
  • the throwing power was evaluated by the so-called four-sheet box method. That is, as shown in Fig. 1, four zinc phosphate-treated steel plates (JIS G3141 SPCC—SD surfdyne SD-50 00 (manufactured by Nippon Paint)) 11 ⁇ ; Box 10 was prepared, which was placed in parallel at 20 mm, and the bottom and bottom surfaces of both sides were sealed with an insulating material such as cloth adhesive tape. In addition, the steel plates 11 to 13 other than the steel plate 14 are provided with through holes 15 of 8 mm ⁇ at the bottom.
  • JIS G3141 SPCC—SD surfdyne SD-50 00 manufactured by Nippon Paint
  • the coating material 21 was stirred with a magnetic stirrer (not shown).
  • the steel plates 11 to 14 were electrically connected, and the counter electrode 22 was arranged so that the distance between the steel plate 11 and the steel plate 11 was 150 mm.
  • Cathode electrodeposition coating was performed on steel rice with a voltage applied with each steel plate 11-; 14 as a cathode and the counter electrode 22 as an anode.
  • the pressure is increased to a voltage at which the film thickness of the coating film formed on the A side of steel plate 11 reaches 15 ⁇ in 5 seconds, and then for 175 seconds for normal electrodeposition and 115 seconds for short time electrodeposition. This was done by maintaining the voltage.
  • the alloyed hot-dip galvanized steel rice subjected to chemical conversion treatment was pressurized to 220V for 5 seconds, electrodeposited for 175 seconds, washed with water, baked at 170 ° C for 25 minutes, and the state of the coating film was observed. Applicable when no abnormalities are observed (Legend; A), slightly abnormalities are observed (Legend; B), markedly abnormal, when abnormalities are observed (Legend; C) It was judged.
  • the electrical conductivity of the cationic electrodeposition coating compositions obtained in Examples and Comparative Examples was measured using a conductivity meter (CM-305 manufactured by Toa Denpa Kogyo Co., Ltd.) at a liquid temperature of 25 ° C. .
  • Comparative Example 1 is normal This is a cationic electrodeposition paint with a solid content (20% by weight) of paint, and the liquid conductivity is in the range of the present invention.
  • Comparative Example 2 is a cationic electrodeposition paint having a low solid content concentration of 7% by weight, and the electroconductivity of the electrodeposition paint is insufficient, resulting in a decrease in rolling characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

A technology that prevents any deterioration of conductivity and throwing power in a cationic electrodeposition coating material composition of low solid and low ash contents. For example, there is provided a conductivity control agent for cationic electrodeposition coating material for use in a cationic electrodeposition coating material of solid content as low as 0.5 to 9.0 wt.%, comprising an aminated compound of 500 to 20,000 molecular weight and 200 to 500 mmol/100g amine value so as to attain a regulation of electric conductivity to 900 to 2000 μS/cm. Further, there is provided a method of regulating the electric conductivity of cationic electrodeposition coating material, comprising the steps of mixing a conductivity control agent with a cationic electrodeposition coating material of solid content as low as 0.5 to 9.0 wt.%; and regulating the electric conductivity of the cationic electrodeposition coating material of low solid content after the mixing step to 900 to 2000 μS/cm, wherein the conductivity control agent contains an aminated compound of 200 to 500 mmol/100g amine value.

Description

明 細 書  Specification
カチオン電着塗料用電導度制御剤およびそれを用いるカチオン電着塗 料の電気電導度調整方法  Conductivity control agent for cationic electrodeposition coating and method for adjusting electric conductivity of cationic electrodeposition coating using the same
技術分野  Technical field
[0001] 本発明は、カチオン電着塗料の電導度制御剤およびそれを用いるカチオン電着塗 料の電気電導度の調整に関する。  TECHNICAL FIELD [0001] The present invention relates to a conductivity control agent for a cationic electrodeposition coating and adjustment of the electric conductivity of a cationic electrodeposition coating using the same.
背景技術  Background art
[0002] カチオン電着塗装は、複雑な形状を有する被塗物であっても細部にまで塗装を施 すこと力 Sでき、 自動的かつ連続的に塗装することができるので、特に自動車車体など の大型で複雑な形状を有する被塗物の下塗り塗装方法として広く実用化されている 。カチオン電着塗装は、カチオン電着塗料中に被塗物を陰極として浸漬し、電圧を 印加することにより行なわれる。  [0002] Cationic electrodeposition coating is capable of applying even fine details even to an object having a complicated shape, and can be applied automatically and continuously. It is widely used as a method for undercoating undercoating with large and complex shapes. Cationic electrodeposition coating is performed by immersing an object to be coated in a cationic electrodeposition coating material as a cathode and applying a voltage.
[0003] カチオン電着塗料は、従来は、固形分濃度約 20重量%を有する水性塗料組成物 であり、撹拌せずに放置すると、顔料などが沈降し電着浴中に沈降物が生じる。通常 カチオン電着塗料は、ポンプで循環したり、撹拌器で撹拌を行なうことにより、沈降物 が生じないようにしている。  [0003] Conventionally, cationic electrodeposition paints are water-based paint compositions having a solid content concentration of about 20% by weight, and when left without stirring, pigments and the like precipitate and precipitates are formed in the electrodeposition bath. Normally, cationic electrodeposition paints are circulated with a pump or stirred with a stirrer to prevent precipitation.
[0004] しかしながら、カチオン電着浴は自動車車体が浸漬できるほどの大掛力、りな設備で あるので、循環や撹拌に力、かるエネルギー、それにかかわる設備、またその設備の 維持に力、かる費用は膨大なものとなる。そのような循環や撹拌を減らしたり、不要に することはカチオン電着塗装における省エネルギーに多大な貢献をする。そのため にカチオン電着塗料が沈降物を生じないか、沈降物の少ないものであること、具体的 には低固形分あるいは低灰分のカチオン電着塗料を使用することが有効であり、当 該カチオン電着塗料が検討されはじめて!/、る。  [0004] However, since the cationic electrodeposition bath is a large-scale force that can immerse the car body, it is a powerful facility that can circulate and agitate, the energy involved, the equipment involved, and the power to maintain the equipment, and the cost involved. Will be enormous. Reducing or eliminating such circulation and agitation greatly contributes to energy saving in cationic electrodeposition coating. Therefore, it is effective that the cationic electrodeposition coating does not produce a precipitate or has a small amount of sediment. Specifically, it is effective to use a cationic electrodeposition coating having a low solid content or a low ash content. For the first time, electrodeposition paints are being studied!
[0005] たとえば、特開 2004— 231989号公報(特許文献 1)には、カチオン電着塗料の顔 料灰分が 3〜; 10重量%および固形分濃度が 5〜; 12重量%であるカチオン電着塗料 を用いた環境対応型電着塗装方法の開示が存在する。このカチオン電着塗料は、 沈降物が少なぐ撹拌や循環に力、かるエネルギーコストも少なぐ優れたものというこ とができる力 S、実際には、塗料固形分が少なくなつていくと、電導度が小さくなつて、 V、わゆる「つきまわり性」と呼ばれる、電着塗装にぉレ、て被塗物の隅々まで塗膜が形 成される性能が悪くなつていく。 [0005] For example, Japanese Patent Application Laid-Open No. 2004-231989 (Patent Document 1) discloses a cationic electrodeposition paint having a ash content of 3 to 10% by weight and a solid content concentration of 5 to 12% by weight. There is a disclosure of an environmentally-friendly electrodeposition coating method using paint. This cationic electrodeposition paint is excellent in that it has less sediment and power for agitation and circulation and less energy costs. S, in fact, as the solid content of the paint decreases, the electrical conductivity decreases, V. The performance of forming a coating film to every corner of the film will deteriorate.
[0006] 塗料の電導度を適切な値に調整することで好適なつきまわり性を付与できることは 一般的に知られている。特許文献として、塗料の電導度とつきまわり性について言及 されたものは、特開 2004— 269627号公報(特許文献 2)が存在する。このカチオン 電着塗料組成物は、スルホニゥム変性エポキシ樹脂を配合しており、膜抵抗のコント ロールが必要である。  [0006] It is generally known that a suitable throwing power can be imparted by adjusting the electrical conductivity of the paint to an appropriate value. Japanese Patent Application Laid-Open No. 2004-269627 (Patent Document 2) is cited as a patent document that mentions the electrical conductivity and throwing power of the paint. This cationic electrodeposition coating composition contains a sulfone-modified epoxy resin and requires control of film resistance.
[0007] カチオン電着塗料の基体樹脂のアミン価について検討をしているものは、特開 200 5— 232397号公報(特許文献 3)および特開平 7— 150079号公報(特許文献 4)な どが存在する。特許文献 3では、ウレタン樹脂(基体樹脂)のアミン価を 20〜60mgK OH/g (換算すると、 35. 7- 107. 0mmol/100g)が望ましいとされ、また特許文 献 4のカチオン電着性樹脂はァミン価 3〜200mgKOH/g (換算すると、 5. 3-356 mmol/100g)が望ましい範囲として記載されている。これらは、従来のァミン価の値 であって、基本的には低いものである。  [0007] The amine value of the base resin of the cationic electrodeposition coating is being studied, such as JP-A-2005-232397 (Patent Document 3) and JP-A-7-150079 (Patent Document 4). Exists. According to Patent Document 3, the amine value of urethane resin (substrate resin) is preferably 20 to 60 mgK OH / g (35.7-107.0 mmol / 100 g in terms of conversion), and the cationic electrodeposition property of Patent Document 4 The resin is described as having a desirable amine value of 3 to 200 mg KOH / g (in terms of conversion, 5.3-356 mmol / 100 g). These are the conventional ammine values, which are basically low.
[0008] 特許文献 1:特開 2004 _ 231989号公報  [0008] Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004_231989
特許文献 2:特開 2004— 269627号公幸  Patent Document 2: JP 2004-269627 Koyuki
特許文献 3:特開 2005— 232397号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2005-232397
特許文献 4:特開平 7— 150079号公報  Patent Document 4: Japanese Patent Laid-Open No. 7-150079
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 低固形分および/または低灰分のカチオン電着塗料においては、通常のカチオン 電着塗料に比べて電導度が低下する傾向がある。本発明では、低固形分および/ または低灰分のカチオン電着塗料組成物において、電導度の低下に伴うつきまわり 性の低下を防止する技術を提供する。 [0009] The cationic electrodeposition coating composition having a low solid content and / or low ash content tends to have a lower electrical conductivity than a normal cationic electrodeposition coating composition. The present invention provides a technique for preventing a decrease in throwing power accompanying a decrease in conductivity in a cationic solid electrodeposition coating composition having a low solid content and / or a low ash content.
課題を解決するための手段  Means for solving the problem
[0010] すなわち、本発明は、塗料固形分濃度が 0. 5〜9. 0重量%である低固形分型カチ オン電着塗料に用いられるカチオン電着塗料用電導度制御剤であって、分子量 50 0—20, 000力、つアミン価カ 200〜500mmol/100gであるァミノ基含有ィ匕合物を 含み、電気電導度を 900〜2, 000 S/cmに調整する、カチオン電着塗料用電導 度制御剤を提供する。この電導度制御剤は、カチオン電着塗料では、塗膜形成性成 分であるカチオン性エポキシ樹脂、硬化剤および顔料とは別のエマルシヨンとして存 在しており、実際には第 3成分として配合する。 [0010] That is, the present invention is a conductivity control agent for a cationic electrodeposition paint used for a low solid content type cationic electrodeposition paint having a paint solid content concentration of 0.5 to 9.0 wt%, Molecular weight 50 Conductivity for cationic electrodeposition paints containing an amino group-containing compound with an amine value of 200-500 mmol / 100 g and adjusting the electric conductivity to 900-2,000 S / cm. Provide a degree control agent. This conductivity control agent exists in cationic electrocoating paints as a separate emulsion from the cationic epoxy resin, curing agent and pigment, which is a film-forming component, and is actually formulated as the third component. To do.
[0011] 上記電導度制御剤として使用されるァミノ基含有化合物はァミン変性エポキシ樹脂 であって、エポキシ樹脂に含まれるエポキシ基をァミン化合物で変性することにより得 られるものが好ましい。 [0011] The amino-containing compound used as the conductivity control agent is an amine-modified epoxy resin, and is preferably obtained by modifying an epoxy group contained in the epoxy resin with an amine compound.
[0012] 上記アミノ基含有化合物はまた、ァミン変性アクリル樹脂であって、エポキシ基を有 するアクリル樹脂のエポキシ基をァミン化合物で変性することにより得られるものが好 ましい。  [0012] The amino group-containing compound is also preferably an amine-modified acrylic resin obtained by modifying an epoxy group of an acrylic resin having an epoxy group with an amine compound.
[0013] 前記エポキシ樹脂は、ビスフエノール型、 tーブチルカテコール型、フエノールノボラ ック型またはクレゾールノポラック型であり、数平均分子量 500〜20, 000を有するも のであってよい。  [0013] The epoxy resin may be a bisphenol type, a t-butylcatechol type, a phenol novolac type, or a cresol nopolac type, and may have a number average molecular weight of 500 to 20,000.
[0014] 本発明は、また、塗料固形分濃度が 0. 5〜9. 0重量%である低固形分型カチオン 電着塗料であって、ァミン価が 200〜500mmol/100gであるアミノ基含有化合物 を含有する電導度制御剤を含み、電気電導度が 900〜2, 000 S/cmである、低 固形分型カチオン電着塗料を提供する。  [0014] The present invention is also a low solid content type cationic electrodeposition paint having a paint solid content concentration of 0.5 to 9.0% by weight and containing an amino group having an amine value of 200 to 500mmol / 100g. Provided is a low solid content type cationic electrodeposition coating comprising a conductivity control agent containing a compound and having an electrical conductivity of 900 to 2,000 S / cm.
[0015] 本発明は、更に、カチオン電着塗料の電気電導度を調整する方法であって、 塗料固形分濃度が 0. 5〜9. 0重量%である低固形分型カチオン電着塗料に電導 度制御剤を配合する工程と、 [0015] The present invention further relates to a method for adjusting the electrical conductivity of a cationic electrodeposition coating material, comprising a low solid content type cationic electrodeposition coating material having a coating solid content concentration of 0.5 to 9.0% by weight. Adding a conductivity control agent;
前記配合工程における低固形分型カチオン電着塗料の電気電導度を 900〜2, 0 00 11 S/cmに調整する工程とを備え、  Adjusting the electrical conductivity of the low solid content type cationic electrodeposition coating in the blending step to 900 to 2,00 11 S / cm,
前記電導度制御剤が、ァミン価が 200〜500mmol/100gであるアミノ基含有化 合物を含む、方法  The conductivity control agent comprises an amino group-containing compound having an amine value of 200 to 500 mmol / 100 g.
を提供する。  I will provide a.
[0016] 本発明は、更にまた、カチオン電着塗料に電導度制御剤を補給する方法であって 塗料固形分濃度が 0. 5〜9. 0重量%である低固形分型カチオン電着塗料に電導 度制御剤を補給する工程と、 [0016] The present invention is also a method for supplying a conductivity control agent to a cationic electrodeposition paint. Supplying a conductivity control agent to a low solid content type cationic electrodeposition paint having a solid content concentration of 0.5 to 9.0% by weight;
前記補給工程における低固形分型カチオン電着塗料の電気電導度を 900〜2, 0 00 11 S/cmに調整する工程とを備え、  Adjusting the electric conductivity of the low solid content type cationic electrodeposition coating in the replenishment step to 900 to 2,00 11 S / cm,
前記電導度制御剤が、ァミン価が 200〜500mmol/100gであるアミノ基含有化 合物を含む、方法  The conductivity control agent comprises an amino group-containing compound having an amine value of 200 to 500 mmol / 100 g.
を提供する。  I will provide a.
発明の効果  The invention's effect
[0017] 本発明によれば、特定のカチオン電着塗料の電導度制御剤をカチオン電着塗料 中に配合することにより、低灰分型および/または低固形分型のカチオン電着塗料 の欠点であるカチオン電着塗料の電導度の低下に伴うつきまわり性の低下を、解消 することである。  [0017] According to the present invention, by incorporating a conductivity control agent for a specific cationic electrodeposition paint into the cationic electrodeposition paint, the disadvantage of the low ash type and / or low solid content type cationic electrodeposition paint is achieved. This is to eliminate the decrease in throwing power that accompanies the decrease in conductivity of a cationic electrodeposition paint.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]つきまわり性を評価する際に用いるボックスの一例を示す斜視図である。  [0018] FIG. 1 is a perspective view showing an example of a box used for evaluating throwing power.
[図 2]つきまわり性の評価方法を模式的に示す断面図である。  FIG. 2 is a cross-sectional view schematically showing a throwing power evaluation method.
符号の説明  Explanation of symbols
[0019] 10. . .ボックス、 [0019] 10. .box,
11〜; 14. . .リン酸亜鉛処理鋼板、  11 ~; 14... Zinc phosphate treated steel sheet,
15. . .貫通穴、  15.Through hole,
20. . .電着塗装容器、  20 .. Electrodeposition coating container,
21. . .電着塗料、  21 ... Electrodeposition paint,
22. . .対極。  22. Counter electrode.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明のカチオン電着塗料用電導度制御剤は、ァミン価が 200〜500mmol/100 gを有するアミノ基含有化合物から構成される。本発明のカチオン電着塗料用電導度 制御剤はァミン価が上記範囲を有すれば、どのようなアミノ基含有化合物であっても よいが、通常はァミン変性エポキシ樹脂もしくはァミン変性アクリル樹脂が好ましい。 また、本発明のカチオン電着塗料用電導度制御剤は必要に応じて、酸により中和さ れていても良い。アミン価は好ましくは 250〜450mmol/100gであり、もっとも好ま しくは 300〜400mmol/100gである。アミン価カ 200mmol/100gよりも/ J、さいと、 低固形分濃度のカチオン電着塗料の液電導度を最適値に調整するための必要添加 量が多くなり、耐食性を損なう恐れがある。また、 500mmol/100gを超えると、析出 性を低下させ、所望のつきまわり性が得られないといった欠点を有する。また亜鉛鋼 板適性も低下する。 [0020] The conductivity control agent for cationic electrodeposition paints of the present invention is composed of an amino group-containing compound having an amine value of 200 to 500 mmol / 100 g. The conductivity control agent for cationic electrodeposition coating of the present invention may be any amino group-containing compound as long as the amine value has the above range, but usually an amine-modified epoxy resin or an amine-modified acrylic resin is preferred. . Moreover, the conductivity control agent for cationic electrodeposition paints of the present invention may be neutralized with an acid, if necessary. The amine value is preferably 250 to 450 mmol / 100 g, and most preferably 300 to 400 mmol / 100 g. If the amine value is 200 mmol / 100 g / J or more, the amount required to adjust the liquid conductivity of the low solid content cationic electrodeposition paint to the optimum value increases, which may impair the corrosion resistance. On the other hand, if it exceeds 500 mmol / 100 g, the precipitation property is lowered and the desired throwing power cannot be obtained. In addition, the suitability of galvanized steel sheets is also reduced.
[0021] 本発明における上記カチオン電着塗料用電導度制御剤としてのアミノ基含有化合 物は、低分子のものから高分子のものまで考えられる力 通常アミン変性エポキシ樹 脂ゃァミン変性アクリル樹脂などの高分子量のものの化合物が挙げられる。低分子 量ァミノ基含有化合物は、たとえばモノエタノールァミン、ジエタノールァミン、ジメチ ルブチルァミンなどが挙げられる。  [0021] The amino group-containing compound as the conductivity control agent for cationic electrodeposition coatings in the present invention can be considered to have a low molecular weight to a high molecular weight ordinary amine-modified epoxy resin diamine-modified acrylic resin, etc. And high molecular weight compounds. Examples of the low molecular weight amino group-containing compound include monoethanolamine, diethanolamine, and dimethylbutylamine.
[0022] 本発明では、高分子量のアミノ基含有化合物、特にアミン変性エポキシ樹脂および ァミン変性アクリル樹脂が好まし!/、。ァミン変性エポキシ樹脂はエポキシ樹脂のェポ キシ基をァミン化合物で変性することにより得られる。エポキシ樹脂は、一般的なもの が使用できるカ、ビスフエノール型エポキシ樹脂、 tーブチルカテコール型エポキシ樹 脂、フエノールノポラック型エポキシ樹脂、クレゾールノポラック型エポキシ樹脂であつ て、分子量が 500〜20000を有するものが好適である。これらのエポキシ樹脂の中 で、フエノールノポラック型エポキシ樹脂およびクレゾールノポラック型エポキシ樹脂 力 Sもっとも望ましい。特に、これらのエポキシ樹脂は市販されている。たとえば、ダウケ ミカルジャパン社製フエノールノポラック型エポキシ樹脂 DEN— 438、東都化成社製 クレゾールノポラック型エポキシ樹脂 YDCN— 703などがあげられる。  [0022] In the present invention, high molecular weight amino group-containing compounds, particularly amine-modified epoxy resins and amine-modified acrylic resins are preferred! The amine-modified epoxy resin can be obtained by modifying the epoxy group of the epoxy resin with an amine compound. Epoxy resins that can be used in general include bisphenol type epoxy resin, t-butylcatechol type epoxy resin, phenol nopolac type epoxy resin, and cresol nopolac type epoxy resin, having a molecular weight of 500 to 20000. Those having the following are preferred. Of these epoxy resins, phenol nopolac type epoxy resins and cresol nopolac type epoxy resins are most desirable. In particular, these epoxy resins are commercially available. Examples thereof include phenolic nopolak type epoxy resin DEN-438 manufactured by Dow Chemical Japan, and cresol nopolac type epoxy resin YDCN-703 manufactured by Tohto Kasei Co., Ltd.
[0023] これらのエポキシ樹脂は、ポリエステルポリオール、ポリエーテルポリオール、および 単官能性のアルキルフエノールのような樹脂で変性しても良い。また、エポキシ樹脂 はエポキシ基とジオール又はジカルボン酸との反応を利用して鎖延長することができ  [0023] These epoxy resins may be modified with resins such as polyester polyols, polyether polyols, and monofunctional alkylphenols. Epoxy resins can also be chain-extended using the reaction of epoxy groups with diols or dicarboxylic acids.
[0024] ァミン変性アクリル樹脂としては、たとえばアミノ基含有モノマーであるジメチルァミノ ェチルメタタリレートのホモポリマーまたは他の重合性モノマーとの共重合体をそのま ま用いても良いし、グリシジルメタタリレートのホモポリマーまたは他の重合性モノマー との共重合体のグリシジル基をァミン化合物で変性することにより得ることができる。 As the amine-modified acrylic resin, for example, a homopolymer of dimethylaminoethyl methacrylate which is an amino group-containing monomer or a copolymer with another polymerizable monomer is used as it is. Alternatively, it may be used by modifying the glycidyl group of a homopolymer of glycidyl metatalylate or a copolymer with other polymerizable monomer with an amine compound.
[0025] エポキシ樹脂またはエポキシ基を含有するアクリル樹脂にアミノ基を導入する化合 物としては、一級ァミン、二級ァミン、三級ァミンなどが挙げられる。それらの具体例と しては、ブチノレアミン、才クチノレアミン、ジェチノレアミン、ジブチノレアミン、ジメチノレブチ ノレアミン、モノエタノールァミン、ジエタノールァミン、 N—メチルエタノールァミン、トリ ェチルァミン塩酸塩、 N, N—ジメチルエタノールァミン酢酸塩、ジェチルジスルフィ ド '酢酸混合物などの他、アミノエチルエタノールァミンのジケチミン、ジェチルヒドロ ァミンのジケチミンなどの一級ァミンのブロックした二級ァミンが挙げられる。アミン類 は複数のものを使用してもよい。  [0025] Examples of the compound that introduces an amino group into an epoxy resin or an acrylic resin containing an epoxy group include primary amines, secondary amines, and tertiary amines. Specific examples thereof include butynoreamine, talented cutinoleamine, jetinoreamine, dibutinoreamine, dimethylenobutyneamine, monoethanolamine, diethanolamine, N-methylethanolamine, triethylamine hydrochloride, N, N-dimethylethanolamine. In addition to acetate, jetyl disulfide'acetic acid mixture, etc., primary amine-blocked secondary amines such as aminoethylethanolamine diketimine, jetylhydroamine diketimine and the like can be mentioned. A plurality of amines may be used.
[0026] 前述のとおり、これらァミン変性エポキシ樹脂およびアミン変性アクリル樹脂の数平 均分子量は 500〜20000が好適である。数平均分子量が 500よりも小さいと、耐食 性を損なう恐れがあり、また理由は定かではないが、つきまわり性の低下および亜鉛 鋼板適性の低下が見られる。数平均分子量が 20000よりも大き!/、と仕上がり外観の 低下を引き起こす恐れがある。  [0026] As described above, the number average molecular weight of these amine-modified epoxy resins and amine-modified acrylic resins is preferably 500 to 20000. If the number average molecular weight is less than 500, corrosion resistance may be impaired, and although the reason is not clear, a decrease in throwing power and a decrease in suitability for galvanized steel sheets are observed. If the number average molecular weight is greater than 20000 !, there is a risk of causing a decrease in the finished appearance.
[0027] 本発明の上記カチオン電着塗料用電導度制御剤を適用できるカチオン電着塗料 は、固形分濃度が 0. 5〜9. 0重量%の低固形分型カチオン電着塗料に限らず、固 形分濃度が 20重量%程度の通常のカチオン電着塗料に適用することも可能である 。通常のカチオン電着塗料においても電導度が低下する場合があり、そのまま電着 塗装すると、つきまわり性が不十分となる場合がある。この様な不具合が発生した場 合は、上記カチオン電着塗料用電導度制御剤を通常のカチオン電着塗料に添加す ることで、電導度を適正値に制御することが可能となり、その結果、十分なつきまわり 性を確保することが可能となる。  The cationic electrodeposition paint to which the conductivity control agent for cationic electrodeposition paint of the present invention can be applied is not limited to a low solid content type cationic electrodeposition paint having a solid content concentration of 0.5 to 9.0% by weight. It is also possible to apply to a normal cationic electrodeposition paint having a solid content concentration of about 20% by weight. Even with normal cationic electrodeposition paints, the electrical conductivity may be reduced, and if the electrodeposition is applied as it is, the throwing power may be insufficient. When such a problem occurs, the conductivity can be controlled to an appropriate value by adding the above-mentioned conductivity control agent for cationic electrodeposition paints to normal cationic electrodeposition paints. Therefore, sufficient throwing power can be secured.
[0028] これらァミン変性エポキシ樹脂およびアミン変性アクリル樹脂は、あらかじめ中和酸 により中和させて用いることもできる。中和に用いる酸は、塩酸、硝酸、リン酸、スルフ アミン酸、ギ酸、酢酸、乳酸のような無機酸または有機酸である。  [0028] These amine-modified epoxy resin and amine-modified acrylic resin can be used after neutralization with a neutralizing acid in advance. Acids used for neutralization are inorganic acids or organic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfamic acid, formic acid, acetic acid, and lactic acid.
[0029] 電着塗料組成物  [0029] Electrodeposition coating composition
本発明のカチオン電着塗料用電導度制御剤は、カチオン電着塗料への配合量を 調整することにより、電着塗料の電気電導度を好適に調整することができる。カチォ ン電着塗料組成物は、カチオン性エポキシ樹脂、硬化剤および必要に応じて顔料や 添加剤を含むものが挙げられる。以下、それぞれの成分について説明する。 The conductivity control agent for cationic electrodeposition paints according to the present invention has a compounding amount in cationic electrodeposition paints. By adjusting, the electric conductivity of the electrodeposition coating material can be suitably adjusted. Cationic electrodeposition coating compositions include those containing a cationic epoxy resin, a curing agent, and optionally pigments and additives. Hereinafter, each component will be described.
[0030] カチオン性エポキシ樹脂(塗膜形成性成分 してのカチオン変性エポキシ樹脂) [0030] Cationic epoxy resin (cation-modified epoxy resin as a film-forming component)
本発明で用いるカチオン性エポキシ樹脂には、ァミンで変性されたエポキシ樹脂が 含まれる。カチオン性エポキシ樹脂は、典型的には、ビスフエノール型エポキシ樹脂 のエポキシ環の全部にカチオン性基を導入し得る活性水素化合物で開環する力、、ま たは一部のエポキシ環を他の活性水素化合物で開環し、残りのエポキシ環をカチォ ン性基を導入し得る活性水素化合物で開環して製造される。カチオン電着塗料の力 チオン性エポキシ樹脂は、ァミン価が好ましくは 50〜200mmol/100gであって、上 記カチオン電着塗料用電導度制御剤のアミン価(200〜500mmol/100g)よりも小 さい値を持つ。ァミン価が 50mmol/100gを下回ると、カチオン変性エポキシ樹脂 の水への分散性が確保できず、 200mmol/100gを上回ると、得られる塗膜の耐水 性が悪化する恐れがあり、好ましくない。  The cationic epoxy resin used in the present invention includes an epoxy resin modified with amine. Cationic epoxy resins typically have the ability to open with active hydrogen compounds that can introduce cationic groups into all of the epoxy rings of bisphenol type epoxy resins, or some epoxy rings to other It is produced by opening a ring with an active hydrogen compound and opening the remaining epoxy ring with an active hydrogen compound capable of introducing a cationic group. Power of cationic electrodeposition paint Thion-based epoxy resin preferably has an amine value of 50 to 200 mmol / 100 g, which is smaller than the amine value (200 to 500 mmol / 100 g) of the conductivity control agent for cationic electrodeposition paint. It has a great value. If the amine value is less than 50 mmol / 100 g, the dispersibility of the cation-modified epoxy resin in water cannot be ensured, and if it exceeds 200 mmol / 100 g, the water resistance of the resulting coating film may be deteriorated.
[0031] ビスフエノール型エポキシ樹脂の典型例はビスフエノール A型またはビスフエノール F型エポキシ樹脂である。前者の市販品としてはェピコート 828 (油化シェルエポキシ 社製、エポキシ当量 180〜; 190)、ェピコ一卜 1001 (同、エポキシ当量 450〜500)、 ェピコート 1010 (同、エポキシ当量 3000〜4000)などがあり、後者の市販品として はェピコート 807、(同、エポキシ当量 170)などがある。  [0031] A typical example of the bisphenol type epoxy resin is a bisphenol A type or bisphenol F type epoxy resin. As for the former commercial products, Epicoat 828 (manufactured by Yuka Shell Epoxy Co., Epoxy Equivalent 180 ~; 190), Epico 1001 (Equivalent Epoxy Equivalent 450 ~ 500), Epicote 1010 (Equipment Equivalent Equivalent 3000 ~ 4000), etc. The latter commercial products include Epicoat 807 (epoxy equivalent 170).
[0032] 特開平 5— 306327号公報に記載される、下記式  [0032] The following formula described in JP-A-5-306327
[0033] [化 1]  [0033] [Chemical 1]
Figure imgf000008_0001
Figure imgf000008_0001
[式中、 Rはジグリシジルエポキシ化合物のグリシジルォキシ基を除いた残基、 R'は ジイソシァネート化合物のイソシァネート基を除レ、た残基、 nは正の整数を意味する。 ]で示されるォキサゾリドン環含有エポキシ樹脂をカチオン性エポキシ樹脂に用いて もよレ、。耐熱性及び耐食性に優れた塗膜が得られるからである。 [Wherein, R represents a residue excluding the glycidyloxy group of the diglycidyl epoxy compound, R ′ represents an isocyanato group of the diisocyanate compound, and n represents a positive integer. The oxazolidone ring-containing epoxy resin represented by Moyore. This is because a coating film having excellent heat resistance and corrosion resistance can be obtained.
[0035] エポキシ樹脂にォキサゾリドン環を導入する方法としては、例えば、メタノールのよう な低級アルコールでブロックされたブロックポリイソシァネートとポリエポキシドを塩基 性触媒の存在下で加熱保温し、副生する低級アルコールを系内より留去することで 得られる。 [0035] As a method for introducing an oxazolidone ring into an epoxy resin, for example, a block polyisocyanate blocked with a lower alcohol such as methanol and a polyepoxide are heated and kept in the presence of a basic catalyst to produce a by-product lower product. Obtained by distilling off alcohol from the system.
[0036] これらのエポキシ樹脂は、ポリエステルポリオール、ポリエーテルポリオール、および 単官能性のアルキルフエノールのような適当な樹脂で変性しても良い。また、ェポキ シ樹脂はエポキシ基とジオール又はジカルボン酸との反応を利用して鎖延長するこ と力 Sできる。  [0036] These epoxy resins may be modified with an appropriate resin such as polyester polyol, polyether polyol, and monofunctional alkylphenol. Epoxy resins also have the ability to extend the chain using the reaction of epoxy groups with diols or dicarboxylic acids.
[0037] これらのエポキシ樹脂は、開環後 50〜200mmol/100gのァミン価となるように、 より好ましくはそのうちの 5〜50%が 1級ァミノ基が占めるように活性水素化合物で開 環するのが望ましい。  [0037] These epoxy resins are ring-opened with an active hydrogen compound so that an amine value of 50 to 200 mmol / 100 g is obtained after ring opening, and more preferably 5 to 50% of them are occupied by primary amino groups. Is desirable.
[0038] カチオン性基を導入し得る活性水素化合物としては 1級ァミン、 2級ァミン、 3級アミ ンの酸塩、スルフイド及び酸混合物がある。 1級、 2級又は/及び 3級ァミノ基含有ェ ポキシ樹脂を調製するためには 1級ァミン、 2級ァミン、 3級ァミンの酸塩をカチオン性 基を導入し得る活性水素化合物として用いる。  [0038] The active hydrogen compounds capable of introducing a cationic group include primary amines, secondary amines, tertiary amine acid salts, sulfides and acid mixtures. In order to prepare a primary, secondary or / and tertiary amino group-containing epoxy resin, primary amine, secondary amine, or tertiary amine acid salts are used as active hydrogen compounds capable of introducing cationic groups.
[0039] 具体例としては、ブチルァミン、ォクチルァミン、ジェチルァミン、ジブチルァミン、メ チルブチルァミン、モノエタノールァミン、ジエタノールァミン、 N メチルエタノーノレ ァミン、トリェチルァミン塩酸塩、 N, N ジメチルエタノールァミン酢酸塩、ジェチル ジスルフイド '酢酸混合物などのほ力、、アミノエチルエタノールァミンのケチミン、ジェ チレントリァミンのジケチミンなどの 1級ァミンをブロックした 2級ァミンがある。アミン類 は複数のものを併用して用いてもょレ、。  [0039] Specific examples include butylamine, octylamine, jetylamine, dibutylamine, methylbutyramine, monoethanolamine, diethanolamine, N-methylethanolamine, triethylamine hydrochloride, N, N-dimethylethanolamine acetate, jetyl disulfide. 'There is a secondary amine that blocks primary amines, such as a mixture of acetic acid, ketimine of aminoethylethanolamine, diketimine of dimethyltriamine. Amines can be used in combination.
[0040] 硬化剤  [0040] Curing agent
本発明で使用する硬化剤は、ポリイソシァネ一トをブロック剤でブロックして得られた ブロックポリイソシァネートが好ましぐここでポリイソシァネートとは、 1分子中にイソシ ァネート基を 2個以上有する化合物をいう。ポリイソシァネートとしては、例えば、脂肪 族系、脂環式系、芳香族系および芳香族 脂肪族系等のうちのいずれのものであつ てもよい。 [0041] ポリイソシァネートの具体例には、トリレンジイソシァネート(TDI)、ジフエニルメタン ジイソシァネート(MDI)、 p—フエ二レンジイソシァネート、及びナフタレンジイソシァ ネート等のような芳香族ジイソシァネート;へキサメチレンジイソシァネート(HDI)、 2, 2, 4 トリメチルへキサンジイソシァネート、及びリジンジイソシァネート等のような炭 素数 3〜; 12の脂肪族ジイソシァネート; 1 , 4ーシクロへキサンジイソシァネート(CDI) 、イソホロンジイソシァネート(IPDI)、 4, 4'ージシクロへキシノレメタンジイソシァネート (水添 MDI)、メチルシクロへキサンジイソシァネート、イソプロピリデンジシクロへキシ ルー 4, 4'ージイソシァネート、及び 1 , 3—ジイソシアナトメチルシクロへキサン(水添 XDI)、水添 TDI、 2, 5 もしくは 2, 6 ビス(イソシアナ一トメチル)一ビシクロ [2· 2 . 1]ヘプタン (ノルボルナンジイソシァネートとも称される。)等のような炭素数 5〜18 の脂環式ジイソシァネート;キシリレンジイソシァネート (XDI)、及びテトラメチルキシリ レンジイソシァネート (TMXDI)等のような芳香環を有する脂肪族ジイソシァネート;こ れらのジイソシァネートの変性物(ウレタン化物、カーポジイミド、ウレトジオン、ウレトイ ミン、ビューレット及び/又はイソシァヌレート変性物);等があげられる。これらは、単 独で、または 2種以上併用することができる。 The curing agent used in the present invention is preferably a blocked polyisocyanate obtained by blocking a polyisocyanate with a blocking agent. Here, a polyisocyanate means two isocyanate groups in one molecule. A compound having the above. The polyisocyanate may be, for example, any of aliphatic, alicyclic, aromatic and aromatic aliphatic. [0041] Specific examples of polyisocyanates include aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, and naphthalene diisocyanate. 1 to 4 aliphatic diisocyanates such as hexamethylene diisocyanate (HDI), 2, 2, 4 trimethylhexane diisocyanate, lysine diisocyanate and the like; Hexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4'-dicyclohexylenomethane diisocyanate (hydrogenated MDI), methylcyclohexane diisocyanate, isopropylidenedicyclohexane Hexolux 4,4'-diisocyanate and 1,3-diisocyanatomethylcyclohexane (hydrogenated XDI), hydrogenated TDI, 2, 5 or 2, 6 C5-C18 alicyclic diisocyanates such as bis (isocyanatomethyl) monobicyclo [2.2.1] heptane (also called norbornane diisocyanate); xylylene diisocyanate (XDI ) And aliphatic diisocyanates having an aromatic ring such as tetramethylxylylene diisocyanate (TMXDI); modified products of these diisocyanates (urethanes, carpositimides, uretdiones, uretoimines, burettes and / or Isocyanurate modified product); and the like. These can be used alone or in combination of two or more.
[0042] ポリイソシァネートをエチレングリコール、プロピレングリコール、トリメチロールプロパ ン、へキサントリオールなどの多価アルコールと NCO/OH比 2以上で反応させて得 られる付加体ないしプレボリマーも硬化剤として使用してよい。  [0042] Adducts or prepolymers obtained by reacting polyisocyanate with polyhydric alcohols such as ethylene glycol, propylene glycol, trimethylolpropan and hexanetriol at an NCO / OH ratio of 2 or more are also used as curing agents. It's okay.
[0043] ポリイソシァネートは、脂肪族ポリイソシァネート又は脂環式ポリイソシァネートであ ることが好まし!/、。形成される塗膜が耐候性に優れるからである。  [0043] The polyisocyanate is preferably an aliphatic polyisocyanate or an alicyclic polyisocyanate! /. This is because the formed coating film is excellent in weather resistance.
[0044] 脂肪族ポリイソシァネート又は脂環式ポリイソシァネートの好ましい具体例には、へ キサメチレンジイソシァネート、水添 TDI、水添 MDI、水添 XDI、 IPDI、ノルボルナン ジイソシァネート、それらの二量体(ビウレット)、三量体 (イソシァヌレート)等が挙げら れる。  [0044] Preferable specific examples of the aliphatic polyisocyanate or alicyclic polyisocyanate include hexamethylene diisocyanate, hydrogenated TDI, hydrogenated MDI, hydrogenated XDI, IPDI, norbornane diisocyanate, and the like. Dimer (biuret), trimer (isocyanurate) and the like.
[0045] ブロック剤は、ポリイソシァネート基に付加し、常温では安定であるが解離温度以上 に加熱すると遊離のイソシァネート基を再生し得るものである。  [0045] The blocking agent is added to a polyisocyanate group and is stable at room temperature, but can regenerate a free isocyanate group when heated to a temperature higher than the dissociation temperature.
[0046] ブロック剤としては、低温硬化(160°C以下)を望む場合には、 ε 力プロラタタム、 δ ノ レ口ラタタム、 γ ブチロラタタムおよび /3—プロピオラタタムなどのラタタム系 ブロック剤、及びホルムアルドキシム、ァセトアルドキシム、ァセトキシム、メチルェチ ブロック剤を使用するのが良い。 [0046] As a blocking agent, when low-temperature curing (160 ° C or less) is desired, ratata series such as ε-force prolatatam, δ-noratalatata, γ-butyroratam and / 3-propiolatata Blocking agents and formaldoxime, acetoaldoxime, acetoxime, methylethyl blocking agents may be used.
[0047] カチオン性エポキシ樹脂と硬化剤とを含むバインダーは、一般に、電着塗料組成 物の全固形分の 25〜85重量%、好ましくは 40〜70重量%を占める量で電着塗料 組成物に含有される。 [0047] The binder containing the cationic epoxy resin and the curing agent is generally an electrodeposition coating composition in an amount of 25 to 85% by weight, preferably 40 to 70% by weight of the total solid content of the electrodeposition coating composition. Contained in
[0048] 纖 [0048] 纖
本発明で用いられる電着塗料組成物は、通常用いられる顔料を含んでもよい。使 用できる顔料の例としては、通常使用される無機顔料、例えば、チタンホワイト、カー ボンブラック及びベンガラのような着色顔料;カオリン、タルク、ケィ酸アルミニウム、炭 酸カルシウム、マイ力およびクレーのような体質顔料;リン酸亜鉛、リン酸鉄、リン酸ァ ノレミニゥム、リン酸カルシウム、亜リン酸亜鉛、シアン化亜鉛、酸化亜鉛、トリポリリン酸 アルミニウム、モリブデン酸亜鉛、モリブデン酸アルミニウム、モリブデン酸カルシウム 及びリンモリブデン酸アルミニウム、リンモリブデン酸アルミニウム亜鉛、水酸化ビスマ ス、酸化ビスマス、塩基性炭酸ビスマス、硝酸ビスマス、安息香酸ビスマス、クェン酸 ビスマス、ケィ酸ビスマスのような防鯖顔料等、が挙げられる。  The electrodeposition coating composition used in the present invention may contain a commonly used pigment. Examples of pigments that can be used include commonly used inorganic pigments, such as colored pigments such as titanium white, carbon black and bengara; kaolin, talc, aluminum silicate, calcium carbonate, my strength and clay. Extender pigments: zinc phosphate, iron phosphate, ammonium phosphate, calcium phosphate, zinc phosphite, zinc cyanide, zinc oxide, aluminum tripolyphosphate, zinc molybdate, aluminum molybdate, calcium molybdate and phosphomolybdic acid Examples thereof include anti-mold pigments such as aluminum, aluminum zinc phosphomolybdate, bismuth hydroxide, bismuth oxide, basic bismuth carbonate, bismuth nitrate, bismuth benzoate, bismuth citrate, and bismuth silicate.
[0049] 顔料は、一般に、電着塗料組成物の全固形分の;!〜 35重量%、好ましくは 10〜3 0重量%を占める量で電着塗料組成物に含有される。  [0049] The pigment is generally contained in the electrodeposition coating composition in an amount accounting for the total solid content of the electrodeposition coating composition;! To 35 wt%, preferably 10 to 30 wt%.
[0050] 顔料分散ペースト  [0050] Pigment dispersion paste
顔料を電着塗料の成分として用いる場合、一般に顔料を顔料分散樹脂と呼ばれる 樹脂と共に予め高濃度で水性媒体に分散させてペースト状にする。顔料は粉体状で あるため、電着塗料組成物で用いる低濃度均一状態に一工程で分散させるのは困 難だからである。一般にこのようなペーストを顔料分散ペーストとレ、う。  When a pigment is used as a component of an electrodeposition coating, it is generally dispersed in an aqueous medium at a high concentration in advance together with a resin called a pigment dispersion resin to make a paste. This is because it is difficult to disperse the pigment in a single step in a low concentration uniform state used in the electrodeposition coating composition because the pigment is in powder form. In general, such a paste is referred to as a pigment dispersion paste.
[0051] 顔料分散ペーストは、顔料を顔料分散樹脂ワニスと共に水性媒体中に分散させて 調製する。顔料分散樹脂ワニスとしては、一般に、カチオン性又はノニオン性の低分 子量界面活性剤や 4級アンモニゥム基及び/又は 3級スルホ二ゥム基を有する変性 エポキシ樹脂等のようなカチオン性重合体を用いる。水性媒体としてはイオン交換水 や少量のアルコール類を含む水等を用いる。一般に、顔料分散樹脂ワニスは 5〜40 重量部、顔料は 10〜30重量部の固形分比で用いる。 [0051] The pigment dispersion paste is prepared by dispersing a pigment together with a pigment dispersion resin varnish in an aqueous medium. As the pigment dispersion resin varnish, a cationic polymer such as a cationic or nonionic low molecular weight surfactant or a modified epoxy resin having a quaternary ammonium group and / or a tertiary sulfone group is generally used. Is used. As the aqueous medium, ion-exchanged water or water containing a small amount of alcohol is used. Generally, pigment dispersion resin varnish is 5-40 Part by weight and pigment are used at a solid content ratio of 10 to 30 parts by weight.
[0052] 上記顔料分散用樹脂ワニスおよび顔料を、樹脂固形分 100重量部に対し 10〜10 00重量部混合した後、その混合物中の顔料の粒径が所定の均一な粒径となるまで 、ボールミルやサンドグラインドミル等の通常の分散装置を用いて分散させて、顔料 分散ペーストを得る。 [0052] After the pigment-dispersing resin varnish and the pigment are mixed with 100 to 100 parts by weight with respect to 100 parts by weight of the resin solid content, until the particle size of the pigment in the mixture reaches a predetermined uniform particle size, Disperse using a normal dispersing device such as a ball mill or a sand grind mill to obtain a pigment dispersion paste.
[0053] 本発明の上記カチオン電着塗料組成物は、塗料固形分濃度が 0. 5〜9. 0重量% である必要がある。塗料固形分濃度が下限を下回るとカチオン電着塗膜が得られな い。一方、塗料固形分濃度が上限を上回ると、静置した無撹拌状態で当該カチオン 電着塗料に含まれる顔料成分が沈降して好ましくない。  [0053] The cationic electrodeposition coating composition of the present invention needs to have a coating solid content concentration of 0.5 to 9.0% by weight. When the solid content concentration of paint is below the lower limit, a cationic electrodeposition coating film cannot be obtained. On the other hand, when the coating solid content concentration exceeds the upper limit, the pigment component contained in the cationic electrodeposition coating material settles in a stationary state without stirring, which is not preferable.
[0054] ϋ '途^ 成, の言周  [0054] ϋ
電着塗料組成物は、カチオン性エポキシ樹脂、硬化剤、及び顔料分散ペーストを 水性媒体中に分散することによって調製される。また、通常、水性媒体にはカチオン 性エポキシ樹脂の分散性を向上させるために中和剤を含有させる。中和剤は塩酸、 硝酸、リン酸、ギ酸、酢酸、乳酸のような無機酸または有機酸である。その量は少なく とも 20%、好ましくは 30〜60%の中和率を達成する量である。  The electrodeposition coating composition is prepared by dispersing a cationic epoxy resin, a curing agent, and a pigment dispersion paste in an aqueous medium. Usually, the aqueous medium contains a neutralizing agent in order to improve the dispersibility of the cationic epoxy resin. Neutralizing agents are inorganic or organic acids such as hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, lactic acid. The amount is an amount that achieves a neutralization rate of at least 20%, preferably 30-60%.
[0055] 硬化剤の量は、硬化時にカチオン性エポキシ樹脂中の 1級、 2級又は/及び 3級ァ ミノ基、水酸基等の活性水素含有官能基と反応して良好な硬化塗膜を与えるのに十 分でなければならず、一般にカチオン性エポキシ樹脂の硬化剤に対する固形分重 量比で表して一般に 90/10〜50/50、好ましくは 80/20〜65/35の範囲である[0055] The amount of the curing agent reacts with active hydrogen-containing functional groups such as primary, secondary or / and tertiary amino groups and hydroxyl groups in the cationic epoxy resin at the time of curing to give a good cured coating film. In general, it is generally in the range of 90/10 to 50/50, preferably in the range of 80/20 to 65/35, expressed as a solid weight ratio of the cationic epoxy resin to the curing agent.
Yes
[0056] 電着塗料は、ジラウリン酸ジブチルスズ、ジブチルスズオキサイドのようなスズ化合 物や、通常のウレタン開裂触媒を含むことができる。鉛を実質的に含まないものが好 ましいため、その量はブロックポリイソシァネート化合物の 0. ;!〜 5重量%とすることが 好ましい。  [0056] The electrodeposition paint may contain a tin compound such as dibutyltin dilaurate and dibutyltin oxide, and a usual urethane cleavage catalyst. Since a lead-free material is preferable, the amount is preferably set to 0.;! To 5% by weight of the block polyisocyanate compound.
[0057] 電着塗料組成物は、水混和性有機溶剤、界面活性剤、酸化防止剤、紫外線吸収 剤、及び顔料などの常用の塗料用添加剤を含むことができる。  [0057] The electrodeposition coating composition may contain conventional coating additives such as a water-miscible organic solvent, a surfactant, an antioxidant, an ultraviolet absorber, and a pigment.
[0058] 本発明のカチオン電着塗料組成物は、上記記載の成分を含むものであれば、特に 限定するものではないが、本発明のカチオン電着塗料用電導度制御剤が有効に作 用するカチオン電着塗料は低固形分型のものである。また、本発明のカチオン電着 塗料は、低灰分型であってもよい。 [0058] The cationic electrodeposition coating composition of the present invention is not particularly limited as long as it contains the components described above, but the conductivity control agent for cationic electrodeposition coating of the present invention is effective. The cationic electrodeposition coating used is of the low solids type. The cationic electrodeposition paint of the present invention may be a low ash type.
[0059] 低固形分型のカチオン電着塗料は、固形分濃度が従来の 20重量%程度より少な い固形分濃度、特に 0.5〜9重量%であり、より好ましい下限は 3重量%である。 0. 5 重量%を下回ると、無撹拌状態で顔料成分が沈降するので好ましくない。一方、 9重 量%を超えて構わないがカチオン電着塗料用電導度調整剤を添加して塗料の電気 電導度を調整する必要が無くなる可能性がある。  [0059] The low solid content type cationic electrodeposition coating composition has a solid content concentration of less than the conventional 20% by weight, particularly 0.5 to 9% by weight, and a more preferred lower limit is 3% by weight. If it is less than 0.5% by weight, the pigment component settles without stirring, which is not preferable. On the other hand, although it may exceed 9% by weight, it may not be necessary to adjust the electrical conductivity of the paint by adding a conductivity modifier for cationic electrodeposition paints.
[0060] カチオン電着塗料の固形分濃度を減少する方法として、顔料成分を減少する方法 を採る場合、塗料中の灰分 (即ち、塗料を燃焼した場合に残存する固体状灰の重量 を塗料の固形分重量で割って、 100をかけたもの)が減少することになる。従って、本 発明で用いるカチオン電着塗料は、低灰分型ということもできる。灰分は通常のカチ オン電着塗料の場合、 15〜40重量%であるので、低灰分型のカチオン電着塗料の 灰分量は好ましくは 2〜7重量%、より好ましくは 3〜5重量%である。  [0060] As a method of reducing the solid content concentration of the cationic electrodeposition paint, when the method of reducing the pigment component is adopted, the ash content in the paint (that is, the weight of the solid ash remaining when the paint is burned) Divided by the weight of solids and multiplied by 100). Therefore, the cationic electrodeposition coating used in the present invention can be said to be a low ash type. The ash content is 15 to 40% by weight in the case of an ordinary cathodic electrodeposition paint, so the ash content of the low ash type cationic electrodeposition paint is preferably 2 to 7% by weight, more preferably 3 to 5% by weight. is there.
[0061] 電着塗料組成物を用いて電着塗装を行う場合の被塗物は、予め、浸漬、スプレー 方法等によりリン酸亜鉛処理等の表面処理の施された導体であることが好ましいが、 この表面処理が施されていないものであっても良い。また、導体とは、電着塗装を行う に当り、陰極になり得るものであれば特に制限はなぐ金属基材が好ましい。  [0061] The object to be coated when electrodeposition coating is performed using the electrodeposition coating composition is preferably a conductor that has been subjected to surface treatment such as zinc phosphate treatment in advance by dipping, spraying, or the like. The surface treatment may not be performed. In addition, the conductor is preferably a metal substrate that is not particularly limited as long as it can serve as a cathode in electrodeposition coating.
[0062] 電着が実施される条件は一般的に他の型の電着塗装に用いられるものと同様であ る。印加電圧は大きく変化してもよぐ 1ボルト〜数百ボルトの範囲であってよい。電流 密度は通常約 10アンペア/ m2〜 160アンペア/ m2であり、電着中に減少する傾向に ある。 [0062] Conditions under which electrodeposition is performed are generally the same as those used for other types of electrodeposition coating. The applied voltage may vary greatly and may range from 1 to several hundred volts. The current density is typically about 10 amps / m 2 to 160 amps / m 2 and tends to decrease during electrodeposition.
[0063] 本発明の電着塗装方法によって電着した後、被膜を昇温下に通常の方法、例えば 焼付炉中、焼成オーブン中あるいは赤外ヒートランプで焼付ける。焼付け温度は通 常約 140°C〜180°Cである。本発明のカチオン電着塗料によって塗装された塗装物 は、最終水洗の後、乾燥、焼付けされることによって、硬化電着塗膜が形成され、こ れにより塗装工程が完了する。  [0063] After electrodeposition by the electrodeposition coating method of the present invention, the coating is baked at an elevated temperature in a conventional manner, for example, in a baking furnace, in a baking oven or with an infrared heat lamp. The baking temperature is usually about 140 ° C to 180 ° C. The coated product coated with the cationic electrodeposition paint of the present invention is dried and baked after the final water washing to form a cured electrodeposition coating film, thereby completing the coating process.
[0064] 電気電導度(電導度)の調整  [0064] Adjustment of electrical conductivity (conductivity)
本発明では、上述のカチオン電着塗料用液電導度制御剤をカチオン電着塗料に 添加することにより、塗料の液電導度を確保する。前述のように、低固形分型のカチ オン電着塗料は、固形分濃度が 20重量%程度の通常のカチオン電着塗料に比べ て、液電導度が不足する傾向にあり、その不足分を特定のカチオン電着塗料用電導 度制御剤を配合することにより調整する。塗膜形成成分としてのカチオン変性ェポキ シ樹脂のアミン価を上昇させることで、電導度を適正値に維持し、つきまわり性を確 保すること力できる。し力、し、カチオン変性エポキシ樹脂のアミン価を 200mmol/10 Ogを超えて付与すると、得られる塗膜の耐水性が悪化する恐れがあり、好ましくない 。所望のつきまわり性を得るために必要な電気電導度は、 900〜2000 S/cmで あり、本発明のカチオン電着塗料用電導度制御剤を添加することにより、低固形分型 電着塗料の液電導度をこの範囲にコントロールすることができる。電導度の好ましい 下限は1000 3/。111でぁり、好ましい上限は 1800 S/cmである。電導度が 900 a S/cmより小さいと、所望のつきまわり性が得られないといった欠点を有し、 2000 μ S/cmより大きいと、亜鉛鋼板塗装時にガスピンと呼ばれる塗膜欠陥を生じやす いといった欠点を有する。なお、電導度は市販されている液電導度計を用い、液温 2 5°Cの条件にて測定する。 In the present invention, the above-described liquid conductivity control agent for cationic electrodeposition coating is used as a cationic electrodeposition coating. By adding, the liquid conductivity of the paint is ensured. As described above, low solid content type cationic electrodeposition coatings tend to have insufficient liquid conductivity compared to ordinary cationic electrodeposition coatings with a solid content concentration of about 20% by weight. Adjust by adding a specific conductivity control agent for cationic electrodeposition coatings. By increasing the amine value of the cation-modified epoxy resin as a coating film forming component, it is possible to maintain electric conductivity at an appropriate value and to ensure throwing power. If the amine value of the cation-modified epoxy resin exceeds 200 mmol / 10 Og, the water resistance of the resulting coating film may be deteriorated, which is not preferable. The electric conductivity necessary for obtaining the desired throwing power is 900 to 2000 S / cm. By adding the conductivity control agent for the cationic electrodeposition paint of the present invention, the low solid content type electrodeposition paint The liquid conductivity of can be controlled within this range. The preferred lower limit of conductivity is 1000 3 /. The preferred upper limit is 1800 S / cm. If the electrical conductivity is less than 900 a S / cm, the desired throwing power cannot be obtained. If the conductivity is more than 2000 μ S / cm, coating defects called gas pins are likely to occur when coating galvanized steel sheets. Have the following disadvantages. Conductivity is measured using a commercially available liquid conductivity meter at a liquid temperature of 25 ° C.
[0065] カチオン電着塗料へのカチオン電着塗料用電導度制御剤の配合量は、特に限定 的ではなぐ所定の電気電導度が得られればよぐ具体的には、塗料固形分に基づ いて、 0. 5〜30重量0 /0、好ましくは 1〜30重量0 /0、より好ましくは 1〜; 15重量%であ る。 0. 5重量%より少なくてもよいが、十分な電気電導度が得られないことがある。ま た、配合量は 50重量%を超えてもよいが、添加量に比例した電気電導度の増加が 見られなくなる。 [0065] The blending amount of the conductivity control agent for the cationic electrodeposition coating material in the cationic electrodeposition coating material is not particularly limited as long as a predetermined electric conductivity is obtained. Specifically, it is based on the solid content of the coating material. There are, from 0.5 to 30 weight 0/0, preferably 1 to 30 weight 0/0, more preferably 1 to; Ru 15 weight% der. Although it may be less than 0.5% by weight, sufficient electrical conductivity may not be obtained. The blending amount may exceed 50% by weight, but no increase in electrical conductivity proportional to the amount added will be observed.
[0066] 上記のように電導度を調整した低固形分型カチオン電着塗料は、低灰分および低 固形分型のカチオン電着塗料であり、なおかつ好適なつきまわり性を確保できる。こ のようなカチオン電着塗料にお!/、ても、塗装ラインで被塗物を繰り返し塗装する過程 で、カチオン電着塗料槽への塗膜形成性成分の補給が必要になる。この際、槽内の カチオン電着塗料の電気電導度が本願が所望している 900〜2, 000 S/cmの 範囲を逸脱する可能性がある。電気電導度が 900 S/cm以下となった場合、本発 明の電導度調整剤をカチオン電着塗料槽に別途添加することで、固形分濃度を 0. 5〜9. 0重量%に維持しつつ、槽内のカチオン電着塗料の電導度を 900〜2, 000 a S/cmの範囲に調整することができる。 [0066] The low solid content type cationic electrodeposition coating material having the conductivity adjusted as described above is a low ash content and low solid content type cationic electrodeposition coating material, and can ensure suitable throwing power. Even for such cationic electrodeposition paints, it is necessary to replenish the film-forming components in the cationic electrodeposition paint tank in the process of repeatedly coating the object to be coated on the painting line. At this time, the electrical conductivity of the cationic electrodeposition paint in the tank may deviate from the range of 900 to 2,000 S / cm desired by the present application. When the electrical conductivity is 900 S / cm or less, the conductivity adjustment agent of the present invention is separately added to the cationic electrodeposition coating tank to reduce the solid content concentration to 0. The electric conductivity of the cationic electrodeposition paint in the tank can be adjusted to the range of 900 to 2,000 a S / cm while maintaining the content at 5 to 9.0% by weight.
実施例  Example
[0067] 本発明を実施例によりさらに詳細に説明する。本発明はこれら実施例に限定される ものと解してはならない。実施例中、部おょび%は、別途指示しない限り重量に基づ [0067] The present invention will be described in more detail by way of examples. The present invention should not be construed as being limited to these examples. In the examples, parts and percentages are based on weight unless otherwise indicated.
<。 <.
[0068] 実施例 A— 1  [0068] Example A— 1
還流冷却器、撹拌機を備えたフラスコに、メチルイソプチルケトン (以下「MIBK」と 略す。)295部、メチノレエタノーノレアミン 37. 5部、ジエタノールァミン 52· 5部を仕込 み、撹拌しながら 100°Cに保持する。これにクレゾールノポラック型エポキシ樹脂(東 都化成製、商品名 YDCN— 703) 205部を徐々に加える、全量加え終えたのち 3時 間反応させる。分子量を測定したところ、 2, 100であった。得られたァミノ変性樹脂の アミン価(MEQ (B) )を測定したところ、 340mmol/100gであった。  A flask equipped with a reflux condenser and a stirrer was charged with 295 parts of methylisoptyl ketone (hereinafter abbreviated as “MIBK”), 37.5 parts of methinorethananolamine, and 52.5 parts of diethanolamine. Hold at 100 ° C. To this, 205 parts of cresol nopolac type epoxy resin (product name: YDCN-703, manufactured by Tohto Kasei) is gradually added, and after the addition is completed, the mixture is allowed to react for 3 hours. The molecular weight was measured and found to be 2,100. The amine value (MEQ (B)) of the obtained amino-modified resin was measured and found to be 340 mmol / 100 g.
[0069] 実施例 A— 2  [0069] Example A-2
実施例 A—1で得られたァミノ変性樹脂溶液 140部に、ギ酸 5. 5部と脱イオン水 12 54. 5部を加えて 80°Cに保持しながら 30分間撹拌する。減圧下において有機溶剤 を除去し固形分 7. 0%の液電導度制御剤 Aを得た。  To 140 parts of the amino modified resin solution obtained in Example A-1, 5.5 parts of formic acid and 54.5 parts of deionized water 12 are added and stirred for 30 minutes while maintaining at 80 ° C. The organic solvent was removed under reduced pressure to obtain a liquid conductivity control agent A having a solid content of 7.0%.
[0070] 実施例 B— 1  [0070] Example B-1
還流冷却器、撹拌機を備えたフラスコに、 MIBK255部、メチルエタノールァミン 75 部、を仕込み、撹拌しながら 100°Cに保持する。これにフエノールノポラック型ェポキ シ樹脂(ダウケミカルジャパン社製、商品名 DEN— 438) 180部を徐々に加える、全 量加え終えたのち 3時間反応させる。分子量を測定したところ、 1 , 000であった。得 られたァミノ変性樹脂のアミン価(MEQ (B) )を測定したところ、 390mmol/100gで あった。  A flask equipped with a reflux condenser and a stirrer is charged with 255 parts of MIBK and 75 parts of methylethanolamine and kept at 100 ° C. while stirring. To this, gradually add 180 parts of phenol nopolak type epoxy resin (trade name DEN-438, manufactured by Dow Chemical Japan Co., Ltd.). The molecular weight was measured and found to be 1,000. The amine value (MEQ (B)) of the obtained amino-modified resin was measured and found to be 390 mmol / 100 g.
[0071] 実施例 B— 2  [0071] Example B-2
実施例 B— 1で得られたァミノ変性樹脂溶液 140部に、スルファミン酸 14部と脱ィォ ン水 1247部を加えて 80°Cに保持しながら 30分間撹拌する。減圧下において有機 溶剤を除去し固形分 7. 0%の液電導度制御剤 Bを得た。 [0072] 実施例 C 1 To 140 parts of the amino-modified resin solution obtained in Example B-1, 14 parts of sulfamic acid and 1247 parts of deionized water are added and stirred for 30 minutes while maintaining the temperature at 80 ° C. The organic solvent was removed under reduced pressure to obtain a liquid conductivity control agent B having a solid content of 7.0%. [0072] Example C 1
還流冷却器、窒素導入管、滴下ロート、撹拌機を備えたフラスコにメチルイソブチル ケトン (MIBK)を 50部仕込み、撹拌しながら 100°Cに保持する。メタクリル酸グリシジ ノレ 100部、およびァゾビスイソブチロニトリル (AIBN) 2部からなる混合液を滴下ロー トより 2時間で等速滴下した。 100°Cに保ち 30分間撹拌を続けた。その後、 MIBK52 . 5部、 AIBN0. 5部の混合液を 1時間かけて滴下した。さらに 1時間撹拌を続けて反 応を終了させた。  Charge 50 parts of methyl isobutyl ketone (MIBK) to a flask equipped with a reflux condenser, nitrogen inlet tube, dropping funnel, and stirrer, and maintain at 100 ° C while stirring. A mixed solution consisting of 100 parts of glycidino methacrylate and 2 parts of azobisisobutyronitrile (AIBN) was added dropwise at a constant rate from a dropping funnel in 2 hours. The temperature was kept at 100 ° C and stirring was continued for 30 minutes. Thereafter, a mixture of 52.5 parts of MIBK and 0.5 part of AIBN was added dropwise over 1 hour. Stirring was continued for another hour to complete the reaction.
[0073] 実施例 C 2  [0073] Example C 2
還流冷却器、撹拌機を備えたフラスコに、 MIBK47. 5部、メチルエタノールァミン 5 2. 8部を仕込み、撹拌しながら 100°Cに保持する。これに実施例 C—1で得られた反 応物 205部を徐々に加える、全量加え終えたのち 3時間反応させる。分子量を測定 したところ、 9, 800であった。得られたァミノ変性樹脂のアミン価(MEQ (B) )を測定 したところ、 450mmol/100gであった。  A flask equipped with a reflux condenser and a stirrer is charged with 57.5 parts of MIBK and 52.8 parts of methylethanolamine and kept at 100 ° C while stirring. To this, 205 parts of the reaction product obtained in Example C-1 is gradually added, and after the entire amount has been added, the reaction is allowed to proceed for 3 hours. The molecular weight was measured and found to be 9,800. The amine value (MEQ (B)) of the obtained amino-modified resin was measured and found to be 450 mmol / 100 g.
[0074] 実施例 C 3  [0074] Example C 3
実施例 C— 2で得られたァミノ変性樹脂溶液 140部に、乳酸 25. 2部と脱イオン水 1 234. 8部を加えて 80°Cに保持しながら 30分間撹拌する。減圧下において有機溶剤 を除去し固形分 7. 0%の液電導度制御剤 Cを得た。  To 140 parts of the amino modified resin solution obtained in Example C-2, 25.2 parts of lactic acid and 1234.8 parts of deionized water are added and stirred for 30 minutes while maintaining at 80 ° C. The organic solvent was removed under reduced pressure to obtain a liquid conductivity control agent C having a solid content of 7.0%.
[0075] 比較例 D  [0075] Comparative Example D
ガラスビーカーに脱イオン水 463. 4部、ギ酸 13. 5部を加え撹拌する。撹拌しなが ら、分子量が 89であるジメチルエタノールァミン 23. 1部を徐々に加えた。有効成分 のァミン価 (MEQ (B) )が 740mmol/100g、有効成分濃度 7%の液電導度制御剤 Add 463.4 parts deionized water and 13.5 parts formic acid to a glass beaker and stir. While stirring, 23.1 parts of dimethylethanolamine having a molecular weight of 89 were gradually added. Liquid conductivity regulator with an active ingredient's amine value (MEQ (B)) of 740 mmol / 100 g and an active ingredient concentration of 7%
Dを得た。 D got.
[0076] 經造例 1 カチオン電着塗料組成物の調製  [0076] Fabrication Example 1 Preparation of cationic electrodeposition coating composition
製造例 1 1 ァミン変性エポキシ樹脂の調製  Production Example 1 1 Preparation of Amine-modified Epoxy Resin
攪拌機、冷却管、窒素導入管、温度計および滴下漏斗を装備したフラスコに、 2, 4 以下、 MIBKと略す) 95部およびジブチル錫ジラウレート 0. 5部を仕込んだ。反応混 合物を攪拌下、メタノール 21部を滴下した。反応は、室温から始め、発熱により 60°C まで昇温した。その後、 30分間反応を継続した後、エチレングリコールモノー 2 ェ チルへキシルエーテル 50部を滴下漏斗より滴下した。更に、反応混合物に、ビスフエ ノール A—プロピレンォキシド 5モル付加体 53部を添加した。反応は主に、 60-65 °Cの範囲で行い、 IRスペクトルの測定において、イソシァネート基に基づく吸収が消 失するまで継続した。 A flask equipped with a stirrer, condenser, nitrogen inlet tube, thermometer and dropping funnel was charged with 95 parts and dibutyltin dilaurate 0.5 parts. While stirring the reaction mixture, 21 parts of methanol was added dropwise. The reaction starts at room temperature and is 60 ° C due to exotherm. The temperature was raised to. Thereafter, the reaction was continued for 30 minutes, and then 50 parts of ethylene glycol mono-2-ethylhexyl ether was added dropwise from the dropping funnel. Further, 53 parts of a bisphenol A-propylene oxide 5 mol adduct was added to the reaction mixture. The reaction was mainly carried out in the range of 60 to 65 ° C. and continued until the absorption based on the isocyanate group disappeared in the IR spectrum measurement.
[0077] 次に、ビスフエノール Aとェピクロルヒドリンから既知の方法で合成したエポキシ当量  [0077] Next, an epoxy equivalent synthesized from bisphenol A and epichlorohydrin by a known method
188のエポキシ樹脂 365部を反応混合物に加えて、 125°Cまで昇温した。その後、 ベンジルジメチルァミン 1. 0部を添加し、エポキシ当量 410になるまで 130°Cで反応 させた。  365 parts of 188 epoxy resin was added to the reaction mixture and the temperature was raised to 125 ° C. Thereafter, 1.0 part of benzyldimethylamine was added and reacted at 130 ° C. until an epoxy equivalent of 410 was reached.
[0078] 続いて、ビスフエノーノレ A61部およびォクチル酸 33部を加えて 120°Cで反応させ たところ、エポキシ当量は 1190となった。その後、反応混合物を冷却し、ジエタノー ノレアミン 11部、 N ェチルエタノールァミン 24部およびアミノエチルエタノールァミン のケチミン化物の 79重量%^ 18!^溶液 25部を加え、 110°Cで 2時間反応させた。そ の後、 MIBKで不揮発分 80%となるまで希釈し、ァミン変性エポキシ樹脂(樹脂固形 分 80%)を得た。  [0078] Subsequently, 61 parts of bisphenolanol and 33 parts of octylic acid were added and reacted at 120 ° C. The epoxy equivalent was 1190. The reaction mixture is then cooled and 79 parts by weight of the ketimine product of 11 parts of diethylanolamine, 24 parts of Nethylethanolamine and aminoethylethanolamine! ^ 25 parts of the solution was added and reacted at 110 ° C for 2 hours. Thereafter, it was diluted with MIBK until the non-volatile content became 80% to obtain an amine-modified epoxy resin (resin solid content 80%).
[0079] 1¾告例 1 2 ブロックイソシァネート石 化吝 IIの調  [0079] 1¾ Example 1 2 Block Isocyanate Fossil II
ジフエニルメタンジイソシアナート 1250部および MIBK266. 4部を反応容器に仕 込み、これを 80°Cまで加熱した後、ジブチル錫ジラウレート 2. 5部を加えた。ここに、 ε一力プロラタタム 226部をブチルセ口ソルブ 944部に溶解させたものを 80°Cで 2時 間かけて滴下した。さらに 100°Cで 4時間加熱した後、 IRスペクトルの測定において 、イソシァネート基に基づく吸収が消失したことを確認し、放冷後、 MIBK336. 1部 を加えてガラス転移温度が 0°Cのブロックイソシァネート硬化剤を得た。  A reactor was charged with 1250 parts of diphenylmethane diisocyanate and 4 parts of MIBK266. This was heated to 80 ° C, and 2.5 parts of dibutyltin dilaurate was added. Here, 226 parts of epsilon prolatatum were dissolved in 944 parts of butylcetone sorb, and dropped at 80 ° C. over 2 hours. After further heating at 100 ° C for 4 hours, in the IR spectrum measurement, it was confirmed that the absorption based on the isocyanate group disappeared, and after cooling, 1 part MIBK336.1 was added to block the glass transition temperature at 0 ° C. An isocyanate curing agent was obtained.
[0080] 製造例 1 3 料分散 脂の調製  [0080] Production Example 1 3 Preparation of material dispersion fat
まず、攪拌装置、冷却管、窒素導入管および温度計を装備した反応容器に、イソホ ロンジイソシァネート(以下、 IPDIと略す) 222. 0部を入れ、 MIBK39. 1部で希釈し た後、ここへジブチル錫ジラウレート 0. 2部を加えた。その後、これを 50°Cに昇温し た後、 2 ェチルへキサノール 131. 5部を攪拌下、乾燥窒素雰囲気中で 2時間かけ て滴下した。適宜、冷却することにより、反応温度を 50°Cに維持した。その結果、 2— ェチルへキサノールノヽーフブロック化 IPDI (樹脂固形分 90· 0%)が得られた。 First, 220.0 parts of isophorone diisocyanate (hereinafter abbreviated as IPDI) was placed in a reaction vessel equipped with a stirrer, cooling pipe, nitrogen introduction pipe and thermometer, diluted with MIBK 39.1 parts, To this was added 0.2 part of dibutyltin dilaurate. Thereafter, the temperature was raised to 50 ° C., and 131.5 parts of 2-ethylhexanol was added dropwise over 2 hours under stirring in a dry nitrogen atmosphere. The reaction temperature was maintained at 50 ° C by cooling as appropriate. As a result, 2— Ethylhexanol NF-blocked IPDI (resin solid content 90. 0%) was obtained.
[0081] 次いで、適当な反応容器に、ジメチノレエタノーノレアミン 87. 2部、 75%乳酸水溶液 [0081] Next, in a suitable reaction vessel, 87.2 parts of dimethylolethanolanolamine, 75% aqueous lactic acid solution
1 1 7. 6部およびエチレングリコールモノブチルエーテル 39· 2部を順に加え、 65°C で約半時間攪拌して、 4級化剤を調製した。  1 1 7. 6 parts and ethylene glycol monobutyl ether 39.2 parts were added in order, and the mixture was stirred at 65 ° C. for about half an hour to prepare a quaternizing agent.
[0082] 次に、エボン(EPON) 829 (シェル 'ケミカル'カンパニー社製ビスフエノール A型ェ ポキシ樹月旨、エポキシ当量 193〜203) 710. 0咅とビスフエノーノレ A289. 6咅とを適 当な反応容器に仕込み、窒素雰囲気下、 150〜160°Cに加熱したところ、初期発熱 反応が生じた。反応混合物を 150〜; 160°Cで約 1時間反応させ、次いで、 120°Cに 冷却した後、先に調製した 2—ェチルへキサノールハーフブロック化 IPDI (MIBK溶 液) 498. 8部をカロえた。 [0082] Next, EPON 829 (Bisphenol A type epoxy epoxies, ephemeral equivalent of 193-203, manufactured by Shell 'Chemical' Company) 71.0. And bisphenol A289.6 咅 are appropriate. When charged in a reaction vessel and heated to 150-160 ° C under a nitrogen atmosphere, an initial exothermic reaction occurred. The reaction mixture was allowed to react at 150-; 160 ° C for about 1 hour, then cooled to 120 ° C, and then 498.8 parts of 2-ethylhexanol half-blocked IPDI (MIBK solution) prepared previously was I got it.
[0083] 反応混合物を 1 10〜120°Cに約 1時間保ち、次いで、エチレングリコールモノブチ ルエーテル 463. 4部を加え、混合物を 85〜95°Cに冷却し、均一化した後、先に調 製した 4級化剤 196. 7部を添加した。酸価が 1となるまで反応混合物を 85〜95°Cに 保持した後、脱イオン水 964部を加えて、エポキシ ビスフエノール A樹脂において 4級化を終了させ、 4級アンモユウム塩部分を有する顔料分散用樹脂を得た (樹脂固 形分 50 % )。 [0083] The reaction mixture was kept at 110-120 ° C for about 1 hour, then 463.4 parts of ethylene glycol monobutyl ether was added, the mixture was cooled to 85-95 ° C, homogenized, and then first. 196. 7 parts of the prepared quaternizing agent was added. After maintaining the reaction mixture at 85 to 95 ° C until the acid value becomes 1, add 964 parts of deionized water to finish quaternization in epoxy bisphenol A resin, and a pigment having a quaternary ammonium salt part A resin for dispersion was obtained (resin solid content 50%).
[0084] ni- ペーストの調製  [0084] ni-paste preparation
サンドグラインドミルに製造例 1—3で得た顔料分散用樹脂を 100部、二酸化チタン 100. 0部およびイオン交換水 100. 0部を入れ、粒度 10 m以下になるまで分散し て、顔料分散ペーストを得た(固形分 50% )。  Add 100 parts of the pigment dispersion resin obtained in Production Example 1-3 in the sand grind mill, 100.0 parts of titanium dioxide and 10.0 parts of ion-exchanged water, and disperse until the particle size is 10 m or less. A paste was obtained (solid content 50%).
[0085] 經造例 1 5 エマルシヨンの調製  [0085] Example 1 5 Preparation of emulsion
製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 100g当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36 %のエマルシヨンを得た。  The amine-modified epoxy resin obtained in Production Example 11 and the block isocyanate curing agent obtained in Production Example 12 were mixed so as to be uniform at a solid content ratio of 80/20. Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. Removal of MIBK under reduced pressure yielded an emulsion with a solid content of 36%.
[0086] 比較例 1  [0086] Comparative Example 1
上記製造例 1— 5で得られたエマルシヨン 319部および上記顔料分散ペースト 133 部と、イオン交換水 543部と 10 %酢酸セリウム水溶液 2部およびジブチル錫ォキサイ ド 3部とを混合して、固形分 20%の電着塗料組成物 Fを得た。このカチオン電着塗料 組成物の固形分に含まれる顔料の濃度は 23重量%であった。なお塗料固形分は、 180°Cで 30分間加熱した後の残渣の質量の、元の質量に対する百分率として求め ること力 Sできる。 (JIS K5601に準拠)ここで得られた電着塗料組成物 Fをそのまま比 較例 1として用いた。液電導度は 1600 S/cmであった。 319 parts of emulsion obtained in Production Example 1-5 and pigment dispersion paste 133 Part, 543 parts of ion-exchanged water, 2 parts of a 10% cerium acetate aqueous solution and 3 parts of dibutyltin oxide were obtained to obtain an electrodeposition coating composition F having a solid content of 20%. The concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 23% by weight. The solid content of the paint can be determined as a percentage of the original mass of the mass of the residue after heating at 180 ° C for 30 minutes. (Conforms to JIS K5601) The electrodeposition coating composition F obtained here was used as Comparative Example 1 as it was. The liquid conductivity was 1600 S / cm.
[0087] 比較例 2 [0087] Comparative Example 2
上記製造例 1—5で得られたエマルシヨン 158部および顔料分散ペースト 8部と、ィ オン交換水 831部と 10%酢酸セリウム水溶液 2部およびジブチル錫オキサイド 1部と を混合して、固形分 7%の電着塗料組成物 Gを得た。顔料濃度は 5重量%であった。 ここで得られた電着塗料組成物 Gをそのまま比較例 2として用いた。液電導度は 890 μ cm"C¾>っこ。  158 parts of the emulsion obtained in the above Production Example 1-5, 8 parts of pigment dispersion paste, 831 parts of ion-exchanged water, 2 parts of 10% cerium acetate aqueous solution and 1 part of dibutyltin oxide were mixed to obtain a solid content of 7 % Of electrodeposition coating composition G was obtained. The pigment concentration was 5% by weight. The electrodeposition coating composition G obtained here was used as Comparative Example 2 as it was. The liquid conductivity is 890 μcm "C¾>.
[0088] 実施例 1 [0088] Example 1
先に得られた電着塗料組成物 Gの 1000部に対して、実施例 A— 2で得られた液電 導度制御剤 Aを 6部加えることにより、液電導度を 1200 S/cmに調整した電着塗 料組成物 Hを得た。この電着塗料組成物 Hを実施例 1として用いた。  By adding 6 parts of the liquid conductivity control agent A obtained in Example A-2 to 1000 parts of the previously obtained electrodeposition coating composition G, the liquid conductivity was reduced to 1200 S / cm. An adjusted electrodeposition coating composition H was obtained. This electrodeposition coating composition H was used as Example 1.
[0089] 実施例 2 [0089] Example 2
先に得られた電着塗料組成物 Gの 1000部に対して、実施例 B— 2で得られた液電 導度制御剤 Bを 8部加えることにより、液電導度を 1300 S/cmに調整した電着塗 料組成物 Iを得た。この電着塗料組成物 Iを実施例 2として用いた。  By adding 8 parts of the liquid conductivity control agent B obtained in Example B-2 to 1000 parts of the previously obtained electrodeposition coating composition G, the liquid conductivity was reduced to 1300 S / cm. An adjusted electrodeposition coating composition I was obtained. This electrodeposition coating composition I was used as Example 2.
[0090] 実施例 3 [0090] Example 3
先に得られた電着塗料組成物 Gの 1000部に対して、実施例 C 3で得られた液電 導度制御剤 Cを 3部加えることにより、液電導度を 1100 S/cmに調整した電着塗 料組成物 Jを得た。この電着塗料組成物 Jを実施例 3として用いた。  The liquid conductivity was adjusted to 1100 S / cm by adding 3 parts of the liquid conductivity control agent C obtained in Example C 3 to 1000 parts of the previously obtained electrodeposition coating composition G. An electrodeposition coating composition J was obtained. This electrodeposition coating composition J was used as Example 3.
[0091] 実施例 4 [0091] Example 4
先に得られた電着塗料組成物 Gの 1000部に対して 400部のイオン交換水を加え ることにより、固形分濃度を 7%から 5%に低減した。この操作により液電導度が 890 a S/cmから 640 S/cmに低下した。ここに実施例 A— 2で得られた液電導度制 御剤 Aを 8部加えることにより液電導度を 1100 S/cmに調整した電着塗料組成物 Kを得た。この電着塗料組成物 Kを実施例 4として用いた。 The solid content concentration was reduced from 7% to 5% by adding 400 parts of ion exchange water to 1000 parts of the electrodeposition coating composition G obtained previously. This operation decreased the liquid conductivity from 890 a S / cm to 640 S / cm. Here, the liquid conductivity control obtained in Example A-2 was used. An electrodeposition coating composition K having a liquid conductivity adjusted to 1100 S / cm was obtained by adding 8 parts of control agent A. This electrodeposition coating composition K was used as Example 4.
[0092] 比較例 3 [0092] Comparative Example 3
先に得られた電着塗料組成物 Gの 1000部に対して、比較例 Dで得られた液電導 度調整剤 Dを 1部加えることにより液電導度を 1200 S/cmに調整した電着塗料組 成物 Lを得た。この電着塗料組成物 Lを比較例 3として用いた。  Electrodeposition with the liquid conductivity adjusted to 1200 S / cm by adding 1 part of the liquid conductivity modifier D obtained in Comparative Example D to 1000 parts of the previously obtained electrodeposition coating composition G A paint composition L was obtained. This electrodeposition coating composition L was used as Comparative Example 3.
[0093] 実施例および比較例で得られたカチオン電着塗料組成物と焼き付けて得られた力 チオン電着塗膜については以下の方法により評価をおこなった。  [0093] The cation electrodeposition coating film obtained by baking with the cationic electrodeposition coating compositions obtained in Examples and Comparative Examples was evaluated by the following method.
[0094] <つきまわり性〉  [0094] <Throwing power>
つきまわり性は、いわゆる 4枚ボックス法により評価した。すなわち、図 1にしめすよう に、 4枚のリン酸亜鉛処理鋼鈑 (JIS G3141 SPCC— SDのサーフダイン SD— 50 00 (日本ペイント社製)処理) 11〜; 14を、立てた状態で間隔 20mmで平行に配置し 、両側面下部および底面を布粘着テープ等の絶縁体で密閉したボックス 10を調製し た。なお、鋼鈑 14以外の鋼鈑 11〜; 13には下部に 8mm φの貫通穴 15が設けられて いる。  The throwing power was evaluated by the so-called four-sheet box method. That is, as shown in Fig. 1, four zinc phosphate-treated steel plates (JIS G3141 SPCC—SD surfdyne SD-50 00 (manufactured by Nippon Paint)) 11 ~; Box 10 was prepared, which was placed in parallel at 20 mm, and the bottom and bottom surfaces of both sides were sealed with an insulating material such as cloth adhesive tape. In addition, the steel plates 11 to 13 other than the steel plate 14 are provided with through holes 15 of 8 mmφ at the bottom.
[0095] カチオン電着塗料 4リットルを塩ビ製容器に移して第 1の電着浴とした。図 2に示す ように、上記ボックス 10を、被塗装物として電着塗料 21を入れた電着塗料容器 20内 に浸漬した。この場合、各貫通穴 15からのみ塗料 21がボックス 10内に侵入する。  [0095] 4 liters of cationic electrodeposition paint was transferred to a vinyl chloride container to form a first electrodeposition bath. As shown in FIG. 2, the box 10 was immersed in an electrodeposition paint container 20 containing an electrodeposition paint 21 as an object to be coated. In this case, the paint 21 enters the box 10 only from each through hole 15.
[0096] マグネチックスターラー(非表示)で塗料 21を攪拌した。そして、各鋼鈑 11〜; 14を 電気的に接続し、最も近レ、鋼鈑 11との距離が 150mmとなるように対極 22を配置し た。各鋼鈑 11〜; 14を陰極、対極 22を陽極として電圧を印加して、鋼飯にカチオン電 着塗装を行なった。塗装は、印加開始力 5秒間で鋼鈑 11の A面に形成される塗膜 の膜厚が 15 πιに達する電圧まで昇圧し、その後通常電着では 175秒間、短時間 電着では 115秒間その電圧を維持することにより行った。  [0096] The coating material 21 was stirred with a magnetic stirrer (not shown). The steel plates 11 to 14 were electrically connected, and the counter electrode 22 was arranged so that the distance between the steel plate 11 and the steel plate 11 was 150 mm. Cathode electrodeposition coating was performed on steel rice with a voltage applied with each steel plate 11-; 14 as a cathode and the counter electrode 22 as an anode. For coating, the pressure is increased to a voltage at which the film thickness of the coating film formed on the A side of steel plate 11 reaches 15 πι in 5 seconds, and then for 175 seconds for normal electrodeposition and 115 seconds for short time electrodeposition. This was done by maintaining the voltage.
[0097] 塗装後の各鋼鈑は、水洗した後、 170°Cで 25分間焼き付けし、空冷後、対極 22か ら最も近 、鋼鈑 11の A面に形成された塗膜の膜厚と、対極 22から最も遠!/、鋼鈑 14 の G面に形成された塗膜の膜厚とを測定し、膜厚 (G面) /膜厚 (八面)の比 (G/A値 )によりつきまわり性を評価した。この値が 50%を超えた場合を良好(凡例; A)、この 値が 50%以下の場合を不良(凡例; B)と判断した。 [0097] Each steel plate after coating was washed with water, baked at 170 ° C for 25 minutes, air-cooled, and closest to the counter electrode 22, and the film thickness of the coating film formed on the A surface of the steel plate 11 , The farthest from the counter electrode 22! /, And the film thickness of the coating film formed on the G surface of the steel plate 14 was measured, and the ratio (G / A value) of the film thickness (G surface) / film thickness (eight surfaces) The throwing power was evaluated. Good if this value exceeds 50% (Legend; A) A value of 50% or less was judged as bad (legend; B).
[0098] <亜鉛鋼板適性〉 [0098] <Zinc steel plate suitability>
化成処理を行った合金化溶融亜鉛めつき鋼飯に、 220Vまで 5秒で昇圧後、 175 秒で電着したのち水洗し、 170°Cで 25分間焼き付けし、塗膜状態を観察した。塗膜 異常が認められない場合を良好(凡例; A)、わずかに異常が認められる場合を、異 常あり(凡例; B)、著しレ、異常が認められる場合を不良(凡例; C)と判断した。  The alloyed hot-dip galvanized steel rice subjected to chemical conversion treatment was pressurized to 220V for 5 seconds, electrodeposited for 175 seconds, washed with water, baked at 170 ° C for 25 minutes, and the state of the coating film was observed. Applicable when no abnormalities are observed (Legend; A), slightly abnormalities are observed (Legend; B), markedly abnormal, when abnormalities are observed (Legend; C) It was judged.
[0099] <水平外観〉 [0099] <Horizontal appearance>
無攪拌状態のカチオン電着塗料中に水平状態に置いて電着塗装された電着塗装 板の焼付け後の外観を目視評価した。  The appearance after baking of the electrodeposition coated plate that was electrodeposited in a horizontal state in an unstirred cationic electrodeposition paint was visually evaluated.
A :問題なく良好、 B :顔料が少し沈降し、ややザラザラ感がある、 C :顔料が沈降し、 外観不良。  A: Good with no problem, B: Slightly settled and slightly rough, C: Sedimented, poor appearance.
[0100] <電導度〉 [0100] <Conductivity>
実施例および比較例によって得られたカチオン電着塗料組成物の電導度を、導電 率計 (東亜電波工業 (株)社製 CM— 305)を用い、液温 25°Cの条件にて測定した。  The electrical conductivity of the cationic electrodeposition coating compositions obtained in Examples and Comparative Examples was measured using a conductivity meter (CM-305 manufactured by Toa Denpa Kogyo Co., Ltd.) at a liquid temperature of 25 ° C. .
[0101] [表 1] [0101] [Table 1]
Figure imgf000021_0001
実施例;!〜 4では、液電導度制御剤を含むカチオン電着塗料であり、液電導度が 適正範囲にあって、つきまわり性や塗膜外観に欠陥は見られない。比較例 1は通常 の塗料固形分(20重量%)のカチオン電着塗料であり、液電導度は本発明の領域に ある力 塗料固形分が高く水平外観が悪くなる。比較例 2は塗料固形分濃度が 7重 量%と低いカチオン電着塗料であって、電着塗料の液電導度が不足して、つきまわ り性が低下する。比較例 3では、アミノ基含有化合物を比較例 2のカチオン電着塗料 に配合している力 S、アミノ基含有化合物のァミン価が本発明の範囲を超えているもの であって、つきまわり性も亜鉛鋼板適正も劣る。
Figure imgf000021_0001
Examples;! To 4 are cationic electrodeposition paints containing a liquid conductivity control agent, the liquid conductivity is in an appropriate range, and there are no defects in throwing power and coating appearance. Comparative Example 1 is normal This is a cationic electrodeposition paint with a solid content (20% by weight) of paint, and the liquid conductivity is in the range of the present invention. Comparative Example 2 is a cationic electrodeposition paint having a low solid content concentration of 7% by weight, and the electroconductivity of the electrodeposition paint is insufficient, resulting in a decrease in rolling characteristics. In Comparative Example 3, the strength S in which the amino group-containing compound is blended with the cationic electrodeposition paint of Comparative Example 2, the amine value of the amino group-containing compound exceeds the range of the present invention, and the throwing power is increased. Is also inferior in zinc steel.

Claims

請求の範囲 The scope of the claims
[1] 塗料固形分濃度が 0. 5〜9. 0重量%である低固形分型カチオン電着塗料に用い られるカチオン電着塗料用電導度制御剤であって、  [1] A conductivity control agent for a cationic electrodeposition paint used in a low solid content type cationic electrodeposition paint having a solid content concentration of 0.5 to 9.0% by weight,
分子量 500〜20, 000力、つアミン価カ 200〜500mmol/100gであるアミノ基含 有化合物を含み、  An amino group-containing compound having a molecular weight of 500 to 20,000, an amine value of 200 to 500 mmol / 100 g,
電気電導度を 900〜2, OOO ^ S/cmに調整する、  Adjust the electrical conductivity to 900-2, OOO ^ S / cm,
カチオン電着塗料用電導度制御剤。  Conductivity control agent for cationic electrodeposition coatings.
[2] 前記アミノ基含有化合物がァミン変性エポキシ樹脂またはァミン変性アクリル樹脂 である、請求項 1記載のカチオン電着塗料用電導度制御剤。 [2] The conductivity control agent for cationic electrodeposition paints according to [1], wherein the amino group-containing compound is an amine-modified epoxy resin or an amine-modified acrylic resin.
[3] 前記アミン変性エポキシ樹脂がエポキシ樹脂に含まれるエポキシ基をァミン化合物 で変性することにより得られる、請求項 2記載のカチオン電着塗料用電導度制御剤。 3. The conductivity control agent for cationic electrodeposition paints according to claim 2, wherein the amine-modified epoxy resin is obtained by modifying an epoxy group contained in an epoxy resin with an amine compound.
[4] 前記アミン変性アクリル樹脂がエポキシ基を有するアクリル樹脂のエポキシ基をアミ ン化合物で変性することにより得られる、請求項 2記載のカチオン電着塗料用電導度 制御剤。 4. The conductivity control agent for cationic electrodeposition paints according to claim 2, wherein the amine-modified acrylic resin is obtained by modifying an epoxy group of an acrylic resin having an epoxy group with an amine compound.
[5] 前記エポキシ樹脂が、ビスフエノール型、 tーブチルカテコール型、フエノールノボラ ック型またはクレゾールノポラック型である、請求項 3記載のカチオン電着塗料用電導 度制御剤。  5. The conductivity control agent for cationic electrodeposition paints according to claim 3, wherein the epoxy resin is a bisphenol type, t-butylcatechol type, phenol novolac type or cresol nopolac type.
[6] 塗料固形分濃度が 0. 5〜9. 0重量%である低固形分型カチオン電着塗料であつ て、 ァミン価が 200〜500mmol/100gであるアミノ基含有化合物を含有する電導 度制御剤を含み、  [6] Conductivity containing an amino group-containing compound having a solid content concentration of 0.5 to 9.0% by weight and a low solid content type cationic electrodeposition paint having an amine value of 200 to 500 mmol / 100 g Containing a control agent,
電気電導度が 900〜2, 000 S/cmである、低固形分型カチオン電着塗料。  A low solid content cationic electrodeposition paint having an electric conductivity of 900 to 2,000 S / cm.
[7] カチオン電着塗料の電気電導度を調整する方法であって、 [7] A method for adjusting the electrical conductivity of a cationic electrodeposition paint,
塗料固形分濃度が 0. 5〜9. 0重量%である低固形分型カチオン電着塗料に電導 度制御剤を配合する工程と、  A step of blending a conductivity control agent with a low solid content type cationic electrodeposition coating material having a solid content concentration of 0.5 to 9.0% by weight;
前記配合工程における低固形分型カチオン電着塗料の電気電導度を 900〜2, 0 00 11 S/cmに調整する工程とを備え、  Adjusting the electrical conductivity of the low solid content type cationic electrodeposition coating in the blending step to 900 to 2,00 11 S / cm,
前記電導度制御剤が、ァミン価が 200〜500mmol/100gであるアミノ基含有化 合物を含む、方法。 カチオン電着塗料に電導度制御剤を補給する方法であって、 The method, wherein the conductivity control agent comprises an amino group-containing compound having an amine value of 200 to 500 mmol / 100 g. A method of supplying a conductivity control agent to a cationic electrodeposition paint,
塗料固形分濃度が 0. 5〜9. 0重量%である低固形分型カチオン電着塗料に電導 度制御剤を補給する工程と、  Supplying a conductivity control agent to a low solid content type cationic electrodeposition paint having a solid content concentration of 0.5 to 9.0% by weight;
前記補給工程における低固形分型カチオン電着塗料の電気電導度を 900〜2, 0 00 11 S/cmに調整する工程とを備え、  Adjusting the electric conductivity of the low solid content type cationic electrodeposition coating in the replenishment step to 900 to 2,00 11 S / cm,
前記電導度制御剤が、ァミン価が 200〜500mmol/100gであるアミノ基含有化 合物を含む、方法。  The method, wherein the conductivity control agent comprises an amino group-containing compound having an amine value of 200 to 500 mmol / 100 g.
PCT/JP2007/064743 2006-08-01 2007-07-27 Conductivity control agent for cationic electrodeposition coating material and method of regulating electric conductivity of cationic electrodeposition coating material using the same WO2008015968A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB0901963A GB2454123A (en) 2006-08-01 2007-07-27 Conductivity control agent for cationic electrodeposition coating material and method of regulating electric conductivity of cationic electrodeposition
US12/309,809 US20090321270A1 (en) 2006-08-01 2007-07-27 Electroconductivity-controlling agent for cationic electrodeposition coating composition and method for adjusting electroconductivity of cationic electrodeposition coating composition therewith
AU2007279812A AU2007279812A1 (en) 2006-08-01 2007-07-27 Conductivity control agent for cationic electrodeposition coating material and method of regulating electric conductivity of cationic electrodeposition coating material using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006209954A JP2008037889A (en) 2006-08-01 2006-08-01 Electroconductivity-controlling agent for cation electrodeposition coating, and method for controlling electroconductivity of electrodeposition coating by using the same
JP2006-209954 2006-08-01

Publications (1)

Publication Number Publication Date
WO2008015968A1 true WO2008015968A1 (en) 2008-02-07

Family

ID=38997148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064743 WO2008015968A1 (en) 2006-08-01 2007-07-27 Conductivity control agent for cationic electrodeposition coating material and method of regulating electric conductivity of cationic electrodeposition coating material using the same

Country Status (8)

Country Link
US (1) US20090321270A1 (en)
JP (1) JP2008037889A (en)
KR (1) KR20090046905A (en)
CN (1) CN101522823A (en)
AU (1) AU2007279812A1 (en)
GB (1) GB2454123A (en)
TW (1) TW200813177A (en)
WO (1) WO2008015968A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5325658B2 (en) * 2009-06-03 2013-10-23 日本ペイント株式会社 Method for improving throwing power of cationic electrodeposition paint
CN102912400A (en) * 2012-10-25 2013-02-06 奥捷五金(江苏)有限公司 Stainless steel multicolor electrophoretic coating technology
JP6406842B2 (en) * 2014-03-25 2018-10-17 日本ペイント・オートモーティブコーティングス株式会社 Electrodeposition coating composition and electrodeposition coating method
CN108717040A (en) * 2018-05-31 2018-10-30 廊坊立邦涂料有限公司 A kind of device and analogy method in laboratory simulation scene electrophoretic paint throwing power
CN111057408A (en) * 2019-12-05 2020-04-24 广东科德环保科技股份有限公司 Cationic modification auxiliary agent of electrophoretic coating and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188298A (en) * 1989-12-14 1991-08-16 Kansai Paint Co Ltd Formation of coating film by electrodeposition
JPH06346290A (en) * 1993-06-11 1994-12-20 Kansai Paint Co Ltd Coating method
JP2003313495A (en) * 2002-02-21 2003-11-06 Kansai Paint Co Ltd Cationic electrodeposition coating composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2128843C (en) * 1993-07-30 1997-10-07 Susumu Midogohchi Electrodepositable coating composition
JP4035836B2 (en) * 1995-09-26 2008-01-23 日本ペイント株式会社 Matte cationic electrodeposition coating composition
KR100271999B1 (en) * 1996-07-12 2000-12-01 사사키 요시오 Cationic electrodeposition coating composition
JP2002126618A (en) * 2000-10-26 2002-05-08 Nippon Paint Co Ltd Method for forming multilayered coating film and multilayered coating film
JP2002129099A (en) * 2000-10-26 2002-05-09 Nippon Paint Co Ltd Cationic electrodeposition paint composition, and method of forming multilayer film using the same.
JP2002126640A (en) * 2000-10-26 2002-05-08 Nippon Paint Co Ltd Method for forming coating film, coating film, and waterbase coating material composition
JP3817674B2 (en) * 2003-01-28 2006-09-06 関西ペイント株式会社 Environment-friendly electrodeposition coating method and coated article
JP4959114B2 (en) * 2004-03-01 2012-06-20 日本ペイント株式会社 Electrodeposition coating composition, electrodeposition bath management method and electrodeposition coating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188298A (en) * 1989-12-14 1991-08-16 Kansai Paint Co Ltd Formation of coating film by electrodeposition
JPH06346290A (en) * 1993-06-11 1994-12-20 Kansai Paint Co Ltd Coating method
JP2003313495A (en) * 2002-02-21 2003-11-06 Kansai Paint Co Ltd Cationic electrodeposition coating composition

Also Published As

Publication number Publication date
AU2007279812A1 (en) 2008-02-07
GB0901963D0 (en) 2009-03-11
JP2008037889A (en) 2008-02-21
GB2454123A (en) 2009-04-29
US20090321270A1 (en) 2009-12-31
TW200813177A (en) 2008-03-16
CN101522823A (en) 2009-09-02
KR20090046905A (en) 2009-05-11

Similar Documents

Publication Publication Date Title
JP2008184620A (en) Method for forming bilayer paint film
JP4060620B2 (en) Electrodeposition coating method using lead-free cationic electrodeposition paint
WO2008015968A1 (en) Conductivity control agent for cationic electrodeposition coating material and method of regulating electric conductivity of cationic electrodeposition coating material using the same
US20050279633A1 (en) Cationic electrodeposition coating composition
JP2010095668A (en) Cationic electrodeposition coating composition
JP2010037481A (en) Cationic electrodeposition paint composition and cationic electrodeposition coating method
EP1707607A1 (en) Cationic electrodeposition coating composition
JP2002356647A (en) Lead-less cationic-electrodeposition paint composition and painting process
JP2004107654A (en) Cationic electrodeposition coating composition for galvanized steel sheet
JP2006348316A (en) Method for forming electrodeposition coating film
JP2002060680A (en) Cationic electrodeposition coating composition
JP2006137864A (en) Lead-free cationic electrodeposition coating material composition
JP2002356645A (en) Lead-less cationic electrodeposition coating composition
JP2004269627A (en) Non-leaded cation electrodeposition coating composition
JP2005194389A (en) Lead-free cationic electrodeposition coating composition
JP2006257161A (en) Cation electrodeposition coating material composition, method for controlling electrodeposition bath, and electrodeposition coating system
JP2002285391A (en) Electrodeposition coating method
JP2009161825A (en) Electrodeposition coating method and method for shortening water-washing process or reducing use amount of washing water
JP4326351B2 (en) Method for forming cationic electrodeposition coating film
JP2006265689A (en) Cation electrodeposition painting method
JP4518800B2 (en) Lead-free cationic electrodeposition coating composition
JP2002294146A (en) Non-lead cationic electrodeposition coating material composition
JP2006348076A (en) Cationic electrodeposition coating composition
JP2008214705A (en) Cation electrodeposition coating method
JP2021055166A (en) Method of improving coverage of electro-deposition coating film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037054.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007279812

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 0901963

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20070727

WWE Wipo information: entry into national phase

Ref document number: 0901963.9

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2007279812

Country of ref document: AU

Date of ref document: 20070727

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097004330

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12309809

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07791437

Country of ref document: EP

Kind code of ref document: A1