WO2008015955A1 - Method for forming multilayer coating film - Google Patents

Method for forming multilayer coating film Download PDF

Info

Publication number
WO2008015955A1
WO2008015955A1 PCT/JP2007/064655 JP2007064655W WO2008015955A1 WO 2008015955 A1 WO2008015955 A1 WO 2008015955A1 JP 2007064655 W JP2007064655 W JP 2007064655W WO 2008015955 A1 WO2008015955 A1 WO 2008015955A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
coating film
film
coating composition
uncured
Prior art date
Application number
PCT/JP2007/064655
Other languages
French (fr)
Japanese (ja)
Inventor
Naotaka Kitamura
Original Assignee
Nippon Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co., Ltd. filed Critical Nippon Paint Co., Ltd.
Priority to JP2008527719A priority Critical patent/JPWO2008015955A1/en
Publication of WO2008015955A1 publication Critical patent/WO2008015955A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/007Processes for applying liquids or other fluent materials using an electrostatic field

Definitions

  • the present invention relates to a method for forming a multilayer coating film that can reduce the burden on coating equipment and energy costs, and has a good finishing power and good appearance.
  • Electrodeposition coating is a coating method performed by immersing an object to be coated in an electrodeposition coating composition and applying a voltage. In this method, even an object to be coated having a complicated shape can be applied to a thin part, and can be applied automatically and continuously. Widely used as an undercoating method for objects with shapes. Furthermore, electrodeposition coating can give the base material high anticorrosion properties and is excellent in protecting the base material.
  • a large amount of pigment is added to an electrodeposition coating composition for the purpose of improving the hiding property or improving the physical properties of a coating film.
  • These pigments are in a state of being dispersed in an aqueous medium in the coating composition. Since these pigments are generally inorganic pigments and have a high specific gravity, sedimentation tends to occur in the electrodeposition coating composition. For example, in a conventional electrodeposition coating composition, the pigment settles and aggregates when allowed to stand without stirring. In order to prevent such agglomeration, the electrodeposition tank and replenishment tank containing the electrodeposition coating composition must be constantly stirred, which is a burden on the equipment and energy costs of the painter.
  • a method may be taken to prevent sedimentation of the pigment and reduce the burden of equipment and energy costs. Reducing the pigment can also prevent the pigment from settling on the horizontal surface of the substrate, which is the object to be coated, and has the advantage that the appearance of the resulting electrodeposition coating is improved.
  • the role of coating is to provide a beautiful appearance in addition to protecting the substrate.
  • a plurality of coating films having various roles are usually formed.
  • Such a coating film is generally formed by baking and curing each coating film one by one.
  • a method of applying the next coating by so-called wet-on-wet without baking and curing after coating and then baking and curing multiple layers at once is being adopted. is there.
  • this method after the electrodeposition coating is cured, the intermediate coating, top coating base and top coating coating are applied wet-on-wet, and then three uncured coatings are baked at once. Curing, three coat 'one beta coating is considered.
  • an intermediate coating composition is applied on a cured electrodeposition coating film that has been heat-cured and then cured by heating.
  • Three-coat “two-beta” coating is also considered, in which the coating composition is applied in sequence and the uncured topcoat base coat and topcoat coater coat are heated and cured simultaneously.
  • a method of top coating without applying intermediate coating after electrodeposition is also considered.
  • the thickness of the intermediate coating film to be formed tends to be thinner than in the conventional process.
  • the thickness of the intermediate coating film is thin or when the intermediate coating film itself is not present, it has been found that the appearance and hue of the multilayer coating film that provides the concealability of the electrodeposition coating film are greatly affected. It was.
  • the concealability of this electrodeposition coating film depends on the amount of pigment contained in the electrodeposition coating composition.
  • An electrodeposition coating composition with a reduced amount of pigment is inferior in concealability, although it is excellent in preventing pigment settling. For this reason, it has been difficult to use an electrodeposition coating composition with a reduced amount of pigment for the above-mentioned three-coat 'one-bake coating, three-coat' two-beta coating and the like.
  • Patent Document 1 JP 2004-231989 discloses that the pigment ash content in the cationic electrodeposition coating is 3 to 10% by weight, and the cation, based on the solid content of the cationic electrodeposition coating.
  • Electrodeposition An environmentally-friendly electrodeposition coating method using a cationic electrodeposition paint having a solid content concentration of 5 to 12% by weight is described.
  • the reduction of pigment ash content decreases the concealability of the electrodeposition coating film, so that the appearance of the resulting coating film is strongly influenced by the hue of the steel sheet. For this reason, when coating is performed using a steel plate with low brightness, the brightness of the resulting electrodeposition coating film also decreases, which ultimately affects the hue of the multilayer coating film.
  • Patent Document 2 JP-A-2002-126627 discloses an aqueous intermediate coating on an electrodeposition coating film. Apply an aqueous base paint and a talya paint in sequence to form an uncured aqueous intermediate coat, an aqueous base coat and a talya coat, and simultaneously heat cure these films to obtain a multilayer coat.
  • a method for forming a multilayer coating film, wherein the water-based intermediate coating and / or the water-based base coating is substantially free of pigments and volatile basic substances! /, And is obtained by predispersing a pigment dispersant.
  • a method for forming a multi-layer coating film characterized in that it contains a pigment dispersion paste obtained (Claim 1).
  • the coating process can be shortened, the cost can be reduced and the environmental load can be reduced, and a multi-layer coating without yellowing can be formed.
  • the film thickness of the intermediate coating film formed by this method may be thinner than the conventional one, and therefore the coating concealability may be inferior.
  • JP-A-2004-275971 discloses a multilayer coating film in which an intermediate coating film, a base coating film, and a talya coating film are sequentially formed on a substrate on which an undercoating film has been formed.
  • the intermediate coating film includes a white paint supply means for supplying a white paint with a variable supply amount and a black paint supply means for supplying a black paint with a variable supply amount.
  • the white paint supply means and the black paint supply means are formed using an intermediate coating device connected to the rotary atomizing coating gun independently of each other.
  • the paint describes a method for forming a multilayer coating film in which the pigment concentration (PWC) is 2 to 60% by mass, the non-volatile content is 35 to 60% by mass, and the viscosity of the paint is 0.03 to 0.3 Pa's.
  • PWC pigment concentration
  • This Patent Document 3 describes a method for forming a multilayer coating film by two-coat 'one-beta coating. That the force S, while also tooth force, the relationship Nitsu V between brightness and multi-layer coating film of the cured electrodeposition coating film, Te is no description! /, A les.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-231989
  • Patent Document 2 JP 2002-126627 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-275971
  • An object of the present invention is to solve the above-described problems of the prior art. More specifically, the present invention relates to a method for forming a multi-layer coating film that can reduce the burden on painting equipment and energy costs, and has a good finish and appearance. Means for solving the problem
  • the present invention provides:
  • An electrodeposition coating process in which a cationic electrodeposition coating composition is electrodeposited to form an electrodeposition coating, and the resulting electrodeposition coating is cured by heating to obtain a cured electrodeposition coating;
  • a method for forming a multilayer coating film comprising:
  • This cationic electrodeposition coating composition is a cationic electrodeposition coating composition in which the concentration of the pigment contained in the solid content of the electrodeposition coating composition is 2 to 7% by weight,
  • This pigment contains 95 to 100% titanium dioxide
  • This cured electrodeposition coating film has a lightness index L value of 55 or more at a film thickness of 15 ⁇ or more, and this cured electrodeposition coating film has a dry coating specific gravity of 1.20 to; 1.25.
  • a method for forming a multilayer coating film is provided, whereby the above object is achieved.
  • the multilayer coating film forming step comprises
  • the multilayer coating film forming step comprises
  • the thickness of the cured intermediate coating film formed in the multilayer coating film forming step is 10 to 40 ⁇ m! /.
  • the multilayer coating film forming step comprises
  • the multilayer coating film forming step comprises
  • the intermediate coating composition is an aqueous intermediate coating composition.
  • the overcoating base coating composition is an aqueous topcoating base coating composition, or
  • the intermediate coating composition is a solvent intermediate coating composition
  • the topcoat base coating composition is a solvent topcoat base coating composition
  • the present invention further provides a multilayer coating film obtained by the above-described method for forming a multilayer coating film.
  • the pigment concentration is 2 to 7% by weight, and the strength is low. Even though the thione electrodeposition coating composition is used, the type and configuration of the pigment are specified. Thus, it is possible to form a multilayer coating film having an excellent hue. Furthermore, even when a multilayer coating film is formed by a coating method such as the so-called three-coat 'one-beta coating method, which has few baking and curing processes, it has good concealment and also has excellent horizontal appearance. A membrane can be obtained.
  • the coating film formed according to the present invention also has an advantage that the specific gravity is light, and can be used effectively for reducing the weight of the coated product. By using this method, it is possible to form a multi-layer coating film with excellent concealment, etc., by a coating method with less baking and curing in response to demands for energy saving and cost reduction.
  • FIG. 1 is a perspective view showing an example of a box used for evaluating throwing power.
  • FIG. 2 is a cross-sectional view schematically showing a throwing power evaluation method.
  • various base materials that can be energized such as steel materials
  • the surface of the base material may be subjected to a plating treatment or a chemical conversion treatment, or may be an untreated base material that has not been applied.
  • usable steel materials include cold-rolled steel sheets, hot-rolled steel sheets, stainless steel, electrogalvanized steel sheets, hot-dip galvanized steel sheets, zinc-aluminum alloy-based steel sheets, zinc-ferrous alloy-based steel sheets, zinc-magnesium composites.
  • Gold plated steel sheet zinc aluminum Magnesium alloy plated steel sheet, aluminum Steel, aluminum silicon alloy steel, tin steel, lead tin alloy steel, chromium steel, etc., and steels that have been subjected to chemical conversion treatment. Can be mentioned.
  • the cationic electrodeposition coating composition used in the present invention comprises an aqueous solvent, a binder resin containing a cationic epoxy resin and a block isocyanate curing agent dispersed or dissolved in the aqueous solvent, a neutralizing acid, an organic solvent, Contains pigments.
  • the cationic electrodeposition coating composition used in the method of the present invention contains a pigment.
  • the amount of the pigment is 2 to 7% by weight based on the solid content of the cationic electrodeposition coating composition.
  • the amount of pigment contained in the cationic electrodeposition coating composition is 2 to 7% by weight based on the solid content of the cationic electrodeposition coating composition, thereby preventing precipitation of the pigment in the electrodeposition coating composition. can do.
  • the stirring time of the electrodeposition tank can be reduced, and the burden on the painting equipment and energy costs can be reduced.
  • the amount of the pigment is preferably 3 to 5% by weight based on the solid content of the cationic electrodeposition coating composition.
  • the pigment contained in the electrodeposition coating composition of the present invention is titanium dioxide.
  • a pigment containing 95 to 100% by weight of titanium dioxide even if the amount of the pigment is 2 to 7% by weight relative to the solid content of the cationic electrodeposition coating composition, the resulting curing can be obtained.
  • the lightness index L value of the electrodeposition coating can be maintained at 55 or higher.
  • the amount of titanium dioxide contained in the pigment is more preferably 98 to 100% by weight. Particularly preferred is the case where only titanium dioxide is used as the pigment.
  • pigments that can be used in addition to titanium dioxide include commonly used inorganic pigments such as colored pigments such as carbon black and bengara; kaolin, talc, aluminum silicate, calcium carbonate, Extenders such as strength and clay; zinc phosphate, iron phosphate, aluminum phosphate, calcium phosphate, zinc phosphite, zinc cyanide, zinc oxide, tri And anti-mold pigments such as aluminum polyphosphate, zinc molybdate, aluminum molybdate, calcium molybdate, aluminum phosphomolybdate, and aluminum zinc phosphomolybdate.
  • inorganic pigments such as colored pigments such as carbon black and bengara; kaolin, talc, aluminum silicate, calcium carbonate, Extenders such as strength and clay; zinc phosphate, iron phosphate, aluminum phosphate, calcium phosphate, zinc phosphite, zinc cyanide, zinc oxide, tri
  • anti-mold pigments such as aluminum polyphosphate, zinc molybdate, aluminum
  • pigment dispersion paste When a pigment is used as a component of an electrodeposition paint, generally, the pigment is previously dispersed in an aqueous solvent at a high concentration to form a paste (pigment dispersion paste). This is because the pigment is in a powder form and it is difficult to disperse it in a single step in a low concentration uniform state used in the electrodeposition coating composition. In general, such a paste is called a pigment dispersion paste!
  • the pigment dispersion paste is prepared by dispersing a pigment together with a pigment dispersion resin in an aqueous solvent.
  • a pigment dispersion resin a cationic polymer such as a cationic or nonionic low molecular weight surfactant or a modified epoxy resin having a quaternary ammonium group and / or a tertiary sulfone group is generally used.
  • aqueous solvent ion-exchanged water or water containing a small amount of alcohol is used.
  • the pigment dispersion resin is used in an amount of 20 to 100 parts by mass with respect to 100 parts by mass of the pigment.
  • the pigment dispersion After mixing the pigment dispersion resin and the pigment, the pigment dispersion is dispersed by using a normal dispersing device such as a ball mill or a sand grind mill until the pigment in the mixture has a predetermined uniform particle size. A paste can be obtained.
  • a normal dispersing device such as a ball mill or a sand grind mill
  • the cationic epoxy resin includes an epoxy resin modified with ammine.
  • Cationic epoxy resins typically have the ability to open all of the epoxy rings of bisphenol-type epoxy resins with active hydrogen compounds capable of introducing cationic groups, or some epoxy rings to other types. And the remaining epoxy ring is opened with an active hydrogen compound capable of introducing a cationic group.
  • a typical example of the bisphenol type epoxy resin is a bisphenol A type or bisphenol F type epoxy resin.
  • Epicoat 828 manufactured by Yuka Shell Epoxy Co., Epoxy Equivalent 180 ⁇ ; 190
  • Epico 1001 Equivalent Epoxy Equivalent 450 ⁇ 500
  • Epicote 1010 Equipment Equivalent Equivalent 3000 ⁇ 4000
  • Epicoat 807 is a commercial product of the latter.
  • epoxy resins include polyester polyols, polyether polyols, and It may be modified with a suitable resin such as a monofunctional alkylphenol. Epoxy resins also have the ability to extend the chain using the reaction of epoxy groups with diols or dicarboxylic acids.
  • epoxy resins are active hydrogen compounds such that after ring opening, an amine equivalent of 0.3-4 Omeq / g is obtained, and more preferably 5-50% of them are occupied by primary amino groups. It is desirable to open the ring at.
  • Examples of the active hydrogen compound into which a cationic group can be introduced include primary amines, secondary amines, tertiary amine acid salts, sulfides and acid mixtures.
  • an amine is used as the active hydrogen compound, an amine-modified epoxy resin having a tertiary amino group can be obtained by reacting an epoxy resin with a secondary amine.
  • an epoxy resin is reacted with a primary amine, an amine-modified epoxy resin having a secondary amino group is obtained.
  • a compound having a primary amino group and a secondary amino group it is possible to prepare an amine-modified epoxy resin having a primary amino group.
  • the primary amino group of the compound is required before reacting with the epoxy resin.
  • primary amine, secondary amine and ketimine include, for example, butyramine, otachinoreamine, jetinoreamine, dibutenoreamine, methinolevinoreamine, monoethanolanolamine, diethanolamine, N-methylethanolamine Mines, triethylamine hydrochloride, N, N-dimethylethanolamine acetate, jetyl disulfide 'acetic acid mixture.
  • secondary amines with blocked primary amines such as aminoethylethanolamine ketimine and diethylenetriamine diketimine. Two or more of these amines may be used in combination.
  • an oxazolidone ring-containing epoxy resin described in JP-A-5-306327 and known may be used as the cationic epoxy resin.
  • Japanese Patent Laid-Open No. 5-306327 is a basic application of US Patent No. 5276072, which is a priority application, and US Patent No. 5276072 is incorporated herein by reference.
  • Epoxies on epoxy resin As a method for introducing a sazolidone ring, for example, a block isocyanate curing agent blocked with a lower alcohol such as methanol and a polyepoxide are heated and kept in the presence of a basic catalyst, and the by-product lower alcohol is introduced from the system. It can be obtained by distilling off.
  • Polyisocyanates are used in the preparation of the block isocyanate curing agent.
  • This polyisocyanate refers to a compound having two or more isocyanate groups in one molecule.
  • Examples of the polyisocyanate include, for example, aliphatic / alicyclic, aromatic and aromatic-aliphatic, etc., and may be shifted! /.
  • polyisocyanates include aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, and naphthalene diisocyanate.
  • aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, and naphthalene diisocyanate.
  • aliphatic diisocyanates such as hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, lysine diisocyanate and the like; -Cyclohexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4'-dicyclohexylenomethane diisocyanate (hydrogenated MDI), methylcyclohexane diisocyanate, isopropylidene Cyclohexyl, 4,4'-diisocyanate, and 1,3-diisocyanatomethylcyclohexane (hydrogenated XDI), hydrogenated TDI, 2,5- Aliphatic diisocyanates having 5 to 18 carbon atoms such as 2,6-bis (isocyanatomethyl) bibicyclo [2.2.1] heptane (also called norbornane diisocyanate); Aliphatic diisocyanates such
  • An adduct or prepolymer obtained by reacting a polyisocyanate with a polyhydric alcohol such as ethylene glycol, propylene glycol, trimethylolpropan or hexanetriol at an NCO / OH ratio of 2 or more is also cured with a block isocyanate. May be used in preparations.
  • the blocking agent is added to a polyisocyanate group and is stable at room temperature but can regenerate a free isocyanate group when heated to a temperature higher than the dissociation temperature.
  • the cationic electrodeposition coating composition contains a dissociation catalyst for dissociating the blocking agent of the block isocyanate curing agent in addition to the above components, dibutyltin laurate, dibutyltin oxide, dioctyltin oxide, etc.
  • Organic tin compounds, amines such as N-methylmorpholine, and metal salts such as strontium, cobalt, and copper can be used.
  • the concentration of the dissociation catalyst is 0 .;! To 6 parts by mass with respect to 100 parts by mass of the total of the force thione epoxy resin and the block isocyanate curing agent in the force thione electrodeposition coating composition.
  • the cationic electrodeposition coating composition used in the present invention is prepared by dispersing the above-described cationic epoxy resin, block isocyanate curing agent, and pigment dispersion paste in an aqueous solvent.
  • the aqueous solvent is neutralized with a cationic epoxy resin to contain a neutralizing acid in order to improve the dispersibility of the binder resin emulsion.
  • Neutralizing acids are inorganic or organic acids such as hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, lactic acid.
  • the amount of the neutralizing acid used is preferably in the range of 10 to 25 mg equivalent to 100 g of the binder resin solid content containing the cationic epoxy resin and the block isocyanate hardener.
  • the lower limit is more preferably 15 mg equivalent, and the upper limit is more preferably 20 mg equivalent. If the amount of the neutralizing acid is less than 10 mg equivalent, the affinity for water is not sufficient and the dispersion in water cannot be performed or the stability is extremely poor. If the amount exceeds 25 mg equivalent, the amount of electricity required for precipitation increases. However, the precipitation of the solid content of the paint is lowered and the throwing power is inferior.
  • the amount of the block isocyanate curing agent reacts with active hydrogen-containing functional groups such as primary and secondary amino groups and hydroxyl groups in the cationic epoxy resin during curing to give a good cured coating film.
  • a sufficient amount is required.
  • the preferred amount of block isocyanate curing agent is 90/10 to 50/50 expressed as the weight ratio of cationic epoxy resin to block isocyanate curing agent (cationic epoxy resin / curing agent). More preferably, it is in the range of 80/20 to 65/35.
  • Examples of the organic solvent that is usually contained in the cationic electrodeposition coating composition include ethylene glycol monophenolatenore, ethyleneglycolenohexenoleatenore, ethyleneglycolenoethylenohexenoreethenole, propylene glycol Noremonobutinoreethenore, dipropylene glycolenoremonobutenoreatenore, propyleneglycolenomonomonoreinoatere and the like.
  • the cationic electrodeposition coating composition may contain conventional coating additives such as a plasticizer, a surfactant, an antioxidant, and an ultraviolet absorber. Including amino group-containing acrylic resin, amino group-containing polyester resin, etc.
  • the solid content concentration of the cationic electrodeposition coating composition in the present invention is preferably 0.5 to 25% by weight.
  • the cationic electrodeposition coating composition should be used when coating an object that has a solid content concentration of 0.5 to 7% by weight and requires high throwing power.
  • the conductivity control agent that can be used for example, an acid neutralized product of an amine-modified epoxy resin can be used.
  • the acid neutralized product of an amine-modified epoxy resin can be prepared by first preparing an amine-modified epoxy resin and neutralizing it with an acid.
  • the amine-modified epoxy resin can be prepared by opening the epoxy ring of the epoxy resin with an active hydrogen compound.
  • the epoxy resin that can be used include nopolac type epoxy resins and bisphenol type epoxy resins.
  • active hydrogen compounds include butynoleamine, octylamine, jetylamine, dibutylamine, methylbutyramine, monoethanolamine, diethanolamine, N-methylethanolamine, triethylamine hydrochloride, N, N-dimethylethanolamine acetate, jetyldis Rufuid 'acetic acid mixture and more aminoethyl ethano Lumamine ketimine, diethylenetriamine diketimine, and the like can be used.
  • the ring of the epoxy resin is opened using the active hydrogen compound, the ring is opened so that the amine equivalent after the opening is 2.0 to 5.
  • the neutralizing acid for neutralizing the amine-modified epoxy resin inorganic acids and organic acids such as hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, and lactic acid can be used.
  • the conductivity of the electrodeposition coating composition can be adjusted to 1000 to 2000 S / cm. Thus, even when the solid content concentration of the electrodeposition coating composition is low, it is possible to ensure high throwing power.
  • Electrodeposition is usually performed by applying a voltage of 50 to 450 V between the object to be coated as the cathode and the anode. If the applied voltage is less than 50V, electrodeposition may be insufficient, and if it exceeds 450V, the coating film may be destroyed and the appearance may be abnormal. During electrodeposition coating, the bath temperature of the coating composition is usually adjusted to 10 to 45 ° C.
  • the electrodeposition coating process includes a process of immersing an object to be coated in a cationic electrodeposition coating composition, and a process of applying a voltage between the object to be coated as a cathode and an anode to deposit a film. Composed.
  • the time for applying the voltage varies depending on the electrodeposition conditions. In general, the force is 2 to 4 minutes.
  • the film thickness of the electrodeposition coating film is preferably 5 to 25 111, more preferably 20 m.
  • the film thickness is 5
  • the anti-mold property is insufficient, and if it exceeds 25 111, it will lead to waste of paint.
  • the electrodeposition coating film obtained as described above is 120 to 260 after the electrodeposition process, as it is or after being washed with water.
  • C preferably 140-220.
  • a cured electrodeposition coating is formed by baking for 10 to 30 minutes.
  • the cured electrodeposition coating film obtained by the present invention has a lightness index L value of 55 or more at a film thickness of 15 m or more.
  • the electrodeposition coating composition used in the present invention can ensure a lightness index L value of 55 or more at a film thickness of 15 m or more of the cured electrodeposition coating film, although the pigment content is small.
  • a good color that is not affected by the color of the substrate that is the object to be coated is obtained. It becomes possible to form a multilayer coating film having a phase.
  • This lightness index L value is obtained in accordance with JIS Z 8722 and JIS Z 8730.
  • the amount of the pigment is based on the solid content of the cationic electrodeposition coating composition.
  • the film thickness of the cured electrodeposition coating film is 15 m or more even though the weight is as low as 2 to 7% by weight! /.
  • the curing electrodeposition coating film with a lightness index L value of 55 or more Can get.
  • the cured electrodeposition coating film obtained according to the present invention has a lightness index of the cured electrodeposition coating film even when a substrate having a low brightness index such as a hot-dip galvanized steel sheet is used as an object to be coated.
  • the number L has an advantage of 55 or more.
  • Electrodeposition coating in the present invention is particularly suitable as an undercoat for multilayer coating forming coatings with reduced coating thickness, such as three-coat 'one-beta coating, three-coat-two-beta coating, and intermediate coating-less coating. Yes.
  • the cured electrodeposition coating film obtained according to the present invention is also characterized in that the dry coating film has a specific gravity of 1.20 to 1.25.
  • the amount of the pigment contained in the cationic electrodeposition coating composition is as low as 2 to 7% by weight based on the solid content of the cationic electrodeposition coating composition, and 95 to 100% by weight in the pigment.
  • titanium dioxide it is possible to achieve a dry coating specific gravity in the above range.
  • the advantage of producing a cured electrodeposition coating film having a low specific gravity of the dried coating film is that the weight of the object to be coated can be reduced. For example, this weight reduction effect is more advantageous when painting an object having a large paint area, such as an automobile body.
  • the specific gravity of the dried coating film can be determined according to JIS K 7112.
  • an intermediate coating composition, a top coating base coating composition, and a top coating coating composition are sequentially applied onto a heat-cured cured electrodeposition coating film. Then, an uncured intermediate coating film, top coating base film, and top coating film are simultaneously heat-cured. This method is generally referred to as three-coat 'one beta coating (3C 1B).
  • an intermediate coating composition is applied on a heat-cured cured electrodeposition coating film and cured by heating, and then an overcoating base coating composition and a top coating film are applied.
  • Examples thereof include a method in which coating compositions are sequentially applied, and an uncured top coat base coat and a top coat film are simultaneously heated and cured. This method is generally called three-coat 'two-beta coating (3C2B).
  • a method of top coating without applying an intermediate coating after electrodeposition coating for example, a top coating base coating composition and a top coating tally coating composition on a heat-cured cured electrodeposition coating film In order to heat and cure the uncured base coat and topcoat coating at the same time (Two Coat One Beta Coat (2C1B)), and overcoating the cured solid electrodeposition paint
  • Examples thereof include a method of applying the composition and heat-curing (one-coat 'one-beta coating (1C1B)).
  • the one-beta coating (3C1B) coating method specifically includes the following steps: : A step of applying an intermediate coating composition on a cured electrodeposition coating to form an uncured intermediate coating; applying an overcoating base coating composition on an uncured intermediate coating A step of forming an uncured topcoat film; a step of applying a topcoat coating composition on the uncured topcoat film to form an uncured topcoat film; and A heating process in which the cured intermediate coat, top coat base coat, and top coat film are heated and cured simultaneously.
  • the intermediate coating composition may be an aqueous coating composition or a solvent-based coating composition.
  • the components of the intermediate coating composition include an intermediate coating resin component, a pigment, and an aqueous solvent and / or an organic solvent.
  • the intermediate coating resin component is composed of an intermediate coating resin and an intermediate coating curing agent.
  • the intermediate coating composition is water-based, it is preferable to blend a pigment dispersion paste obtained by dispersing the pigment and the pigment dispersant in advance! It is possible to use commercially available pigment dispersants.
  • Disperby k 190, Disperbyk 182 and Disperbyk 184 are manufactured by Big Chemi
  • EFKAPO LYMER4550 manufactured by EFKA
  • the number average molecular weight of the pigment dispersant is preferably 1000 to 100,000. If it is less than 1000, sufficient dispersion stability may not be obtained, and if it exceeds 100,000, the viscosity may be too high and handling may be difficult. More preferably, it is 2000-50,000, More preferably, it is 4000-50,000.
  • the pigment dispersant is mixed and dispersed together with the pigment according to a known method to obtain a pigment dispersion paste.
  • the blending ratio of the pigment dispersant in the pigment dispersion paste is preferably 1 to 20% by weight with respect to the solid content of the pigment dispersion paste. If it is less than 1% by weight, the pigment cannot be dispersed stably, and if it exceeds 20% by weight, the physical properties of the coating film may be inferior. Preferably, 5 to 15% by weight.
  • the pigment used in the intermediate coating composition is not particularly limited as long as it is a pigment used in a normal intermediate coating composition, but from the viewpoint of improving weather resistance and ensuring concealment.
  • a color pigment is preferred.
  • titanium dioxide is more preferable because it is excellent in white color concealment and has low strength and low cost.
  • pigments other than titanium dioxide include, for example, azochelate pigments, insoluble azo pigments, condensed azo pigments, phthalocyanine pigments, indigo pigments, perinone pigments, perylene pigments, dioxane pigments, and quinacridone.
  • Organic pigments such as pigments, isoindolinone pigments, and metal complex pigments; inorganic pigments such as chrome yellow, yellow iron oxide, bengara, and carbon black.
  • extender pigments such as calcium carbonate, barium sulfate, clay and talc may be used.
  • a standard gray-based intermediate coating with carbon black and titanium dioxide as the main pigments can be used as pigments, and a set gray or various colored pigments that combine brightness or hue with the top coating composition can be used. Use a so-called color intermediate coating in combination You can also.
  • the pigment preferably has a weight ratio (PWC) of the pigment to the total weight of the pigment and the resin solid content of 10 to 60% by weight. If it is less than 10% by weight, the hiding property may be lowered due to insufficient pigment. When it exceeds 60 wt%, leading to viscosity increase during curing by Pigments excessive, the appearance of the coating film is child and the force s reduced flow resistance is reduced.
  • PWC weight ratio
  • the aqueous intermediate coating composition can be prepared by mixing the pigment dispersion paste, the intermediate coating resin, and the intermediate curing agent.
  • the content of the pigment dispersant in the aqueous intermediate coating is preferably from 0.5 to 10% by weight based on the solid content. If it is less than 5% by weight, the pigment dispersion stability may be inferior due to the small amount of the pigment dispersant. If it exceeds 10% by weight, the physical properties of the coating film may be inferior. Preferably, !! to 5% by weight.
  • the intermediate coating resin is not particularly limited, and examples thereof include acrylic resin, polyester resin, alkyd resin, epoxy resin, and urethane resin.
  • examples of the intermediate coating curing agent include melamine resin, amino resin, and block isocyanate curing agent. From the viewpoint of pigment dispersibility and workability, a combination of acrylic resin and / or polyester resin with melamine resin and / or block isocyanate resin is preferred.
  • Each of the intermediate coating resin and the intermediate curing agent can be used alone, or two or more types can be used in order to balance the coating film performance.
  • the intermediate coating composition is an aqueous intermediate coating composition
  • the intermediate coating resin is water-soluble, or a dispersing agent such as a dispersion resin or a surfactant is applied. By emulsifying and dispersing, it can be stably present in the aqueous intermediate coating.
  • the water-based intermediate coating composition can further contain additive components such as an ultraviolet absorber, an antioxidant, an antifoaming agent, a surface conditioner, and an anti-fogging agent.
  • the intermediate coating composition is a solvent intermediate coating composition
  • it can be prepared by stirring the intermediate coating resin, the intermediate curing agent and the pigment in an organic solvent.
  • organic solvents that can be used in the preparation of the solvent intermediate coating composition include aromatic solvents such as toluene and xylene.
  • Ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclohexanone, etc .; jetyl ether, isopropyl ether, tetrahydrofuran, dioxane, ethylene glyconoresin methino eleinoate, ethylene glycono retino enoenoate, jeti Ether solvents such as lenglycolinoresimethinoreethenore, diethyleneglycolenoretinoreetherenore, propylene glycol monomethyl ether, anisole, phenetol; ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate, ethylene glycol diacetate Amide solvents such as dimethylformamide, jetylformamide, dimethyl sulfoxide and N-methylpyrrolidone; Cellosolv solvents such as lucose sorb; alcoholic solvent
  • the topcoat base coating composition includes a topcoat base resin component, a pigment, and a solvent.
  • This overcoating base coating composition is of an aqueous type or a mixed lj type including an aqueous dispersion or an organic solvent dispersion.
  • the topcoat base paint composition is an aqueous topcoat base paint composition
  • it can be prepared using a pigment dispersion paste in which a pigment is dispersed in advance using a pigment dispersant.
  • a pigment dispersant those exemplified above for the aqueous intermediate coating composition can be used.
  • the above-mentioned colored pigments and extender pigments can be used, and a glittering pigment can be blended and used as a metallic base paint. Further, coloring pigments such as red, blue, and black and / or extender pigments are blended without blending bright pigments and used as solid-type topcoat base coating compositions.
  • the luster pigment is not particularly limited, and may be, for example, an uncolored or non-colored metal or alloy
  • a colored metallic luster material and a mixture thereof, interference my strength powder, colored my strength powder, white mica powder, graphite or colorless and flattened pigment can be used. Since it is excellent in dispersibility and can form a highly transparent coating film, an uncolored or colored metallic glitter material such as metal or alloy and a mixture thereof are preferred.
  • the metal include aluminum, aluminum oxide, copper, zinc, iron, nickel, tin and the like.
  • the shape of the glitter pigment is not particularly limited and may be further colored.
  • the average particle diameter (D) is 2 to 50 111, and the thickness is 0.1 to 5 m.
  • the scaly thing is
  • One or two or more of the above pigments can be used, and one or more of pigments, extender pigments, and flat pigments and glitter pigments can be used as necessary. Can be used in combination.
  • a paint film is formed using a color base paint composition containing a color pigment as a main component, and a paint film using a bright base paint composition containing a bright pigment as a main component thereon. It is also possible to form It is also possible to form a top coat film by such a method, and in the present invention, such an embodiment of top coat base film formation is also included.
  • the mixing ratio of the pigment dispersant in the pigment dispersion paste in the aqueous topcoat base coating composition is preferably 3 to 50% by weight based on the solid content of the pigment dispersion paste.
  • the pigment cannot be dispersed stably, and if it exceeds 50% by weight, the physical properties of the resulting coating film may be lowered.
  • the aqueous topcoat base coating composition can be prepared by mixing the pigment dispersion paste, the topcoat base resin and the topcoat base curing agent, which are the topcoat base resin components.
  • the pigment concentration (PWC) in the top coating composition including the glitter pigment and all other pigments is generally 0.;! To 50% by weight, preferably 0.5 to 40%. % By weight, more preferably 1 to 30% by weight. If it exceeds 50% by weight, the coating film appearance may be deteriorated.
  • the content of the pigment dispersant in the aqueous topcoat base coating composition is preferably 1 to 20% by weight based on the solid content. If it is less than 1% by weight, the amount of the pigment dispersant is Due to the small amount, the dispersion stability of the pigment may be inferior. If it exceeds 20% by weight, the properties of the resulting coating film may be deteriorated.
  • the topcoat base resin and the topcoat base curing agent which are the topcoat base resin components, and other additives are not particularly limited. For example, they can be used in intermediate coating compositions. . From the standpoint of pigment dispersibility and workability, the combination of the topcoat base resin and the topcoat base curing agent is preferably a combination of an acrylic resin and / or a polyester resin and a melamine resin.
  • the aqueous topcoat base coating composition can be prepared in the same manner as the aqueous intermediate coating composition.
  • the solvent overcoating base coating composition can also be prepared in the same manner as the above-mentioned solvent intermediate coating composition.
  • the topcoat coating composition contains a topcoat resin component, various additives and a solvent.
  • the top coat resin component contained in the top coat paint composition is composed of a top clear paint resin and optionally a top coat paint curing agent.
  • As the top coat resin component (top coat paint resin, top coat paint curing agent), various additives, and organic solvents contained in the top coat composition those described with respect to the above-mentioned middle coat composition! / Also, the deviation can be used.
  • a preferred combination and combination of the topcoat paint resin and the topcoat paint hardener that are the topcoat resin components is a combination of an acrylic resin and a melamine resin.
  • the acrylic resin preferably has an acid value of 10 to 200, a hydroxyl value of 30 to 200, and a number average molecular weight of 2000 to 50000!
  • the top coat coating composition preferably contains a viscosity control agent as an additive since the top coat base coating composition is applied in an uncured state.
  • a viscosity control agent By adding a viscosity control agent, it is possible to prevent the familiarity, inversion, or sagging of the coating layers.
  • the addition amount of the viscosity control agent is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the resin solid content of the top coat coating composition, and more preferably 0.02 to 8 parts by weight. It is particularly preferably 0.03 to 6 parts by weight. If it exceeds 10 parts by weight, the appearance of the coating film may be deteriorated. If it is less than 0.01 part by weight, the viscosity control effect will be reduced. It may not be obtained and may cause problems such as sagging.
  • the top coat coating composition may be any of a solvent type, an aqueous type (water-soluble, water-dispersible, emulsion), a non-aqueous dispersion type, and a powder type.
  • the top coat coating composition may contain a curing catalyst, a surface conditioner and the like, if necessary, in addition to the above components.
  • the top-coated talya coating composition can be formulated with the above-mentioned color pigments and glittering materials to such an extent that transparency is not impaired, and further includes curing accelerators, leveling agents, ultraviolet absorbers, light stabilizers and the like. Additives can be used.
  • the top coat coating composition can be prepared in the same manner as the water-based intermediate coating composition or the solvent intermediate coating composition. Further, the top coat coating composition can also be prepared by a known method described in, for example, JP-A No. 2002-224613. Further, as a powder top coat coating composition, for example, an acrylic resin or polyester resin having a hydroxyl group and a compound capable of reacting with this polymer compound, such as an amino resin, polyisocyanate, block isocyanate, etc. are combined. A combination of an acrylic resin having an epoxy group and a polyvalent carboxylic acid, a polyvalent carboxylic acid anhydride, etc., which does not substantially contain water or an organic solvent. .
  • an uncured intermediate coating is formed on the cured electrodeposition coating obtained by the above method.
  • a method for forming an uncured intermediate coating film include a method of applying an intermediate coating composition using a spray method, a roll coater method, or the like.
  • Specific coating methods include air electrostatic sprays called “react guns” and rotary atomization type electrostatics called “micro” micro bells, “micro mouth” bells, and “meta bells”. It is preferable to paint using a coating machine. Of these, 1S is particularly preferable for coating using a rotary atomizing electrostatic coating machine.
  • a preferable dry film thickness of the intermediate coating film is generally 10 to 80 111, more preferably 10 to 50 111.
  • the dry film thickness of the intermediate coating film is preferably 10-40 ⁇ m, more preferably 15-30 ⁇ m! / ⁇ .
  • the dry film thickness of the intermediate coating film exceeds 40 m In such a case, there is a risk of sagging or wrinkling, and the appearance of the resulting multi-layer coating film may be inferior.
  • the dry film thickness is less than 10 m, the resulting multilayer coating film may be inferior in performance such as coating film appearance, hue, and chipping property.
  • the process proceeds to the formation process of the topcoat base coating film in the next step without being heated and cured.
  • the overcoating base film it may be lower than the temperature used in the heat curing (baking) treatment! /, Or preheated at the temperature! /.
  • the topcoat base coating film is obtained by coating the topcoat base coating composition on the intermediate coating film.
  • this topcoat base coating composition is applied onto an uncured intermediate coating by a wet-on-wet method.
  • the method of applying the top coat base coating composition is not particularly limited! /, But examples thereof include the methods exemplified as the method of applying the intermediate coating composition.
  • the design can be improved by performing multi-stage coating by air electrostatic spraying, preferably two-stage coating. Or you may paint by the coating method which combined air electrostatic spray and said rotary atomization type electrostatic coating machine.
  • this topcoat base coating film By forming this topcoat base coating film, design properties are imparted, and adhesion with the intermediate coating film formed in the previous process is ensured, and the coating with the topcoat film coated in the next process is repeated. Adhesion is ensured.
  • the dry film thickness of the top coat film is preferably 5 to 50 inches per coat, more preferably 10 to 30 111.
  • the process proceeds to the next top coat film forming process without heating and curing. Before forming the top coat film, preheating may be performed at a temperature lower than the temperature used in the heat curing (baking) process.
  • the top coat film is obtained by coating the top coat composition on the top base film. This top coat coating composition is applied on the uncured top coat base film in a wet-on-wet manner.
  • a method for forming the above-mentioned top coat film is not particularly limited, but a spray method, a roll coater method, and the like are preferable.
  • the dry film thickness of the above top coat film is 2 per coat. 0-50 111 are preferred, 25-40 111 are preferred.
  • an uncured intermediate coat film, a top coat base coat, and a top coat film are coated with three layers. 120-; 160. C, more preferably 140-; With C, it can be cured by heating for 25 to 35 minutes to obtain a multilayer coating.
  • the intermediate coating composition, the top coating base coating composition, and the top coating composition are each coated in wet order on the wet. That is, an uncured coating film is sequentially formed.
  • uncured means a state in which the film is not completely cured, and includes a state of a coating film that has been preheated.
  • “Preheating” can be performed at room temperature to 100 ° C., which is lower than the temperature used in heat curing (baking) treatment, for 1 to 10 minutes, or by standing or heating for 10 minutes. By performing preheating after forming the intermediate coating film and after forming the topcoat base coating film, a coating film having a better finished appearance can be obtained.
  • the force used in combination with the aqueous intermediate coating composition and the aqueous top coating base coating composition Alternatively, it is preferable to use a combination of a solvent intermediate coating composition and a solvent overcoating base coating composition. By using in such a combination, a multilayer coating film having a good finished appearance can be obtained.
  • an aqueous intermediate coating composition, an aqueous top coating base coating composition, and a solvent top coating tally coating composition are used from the viewpoints of environmental protection and coating hygiene. Is the most preferred.
  • the three-coat two-beta coating (3C2B) coating film formation method is specifically described below.
  • the intermediate coating film is formed by applying the intermediate coating composition on the cured electrodeposition coating film, and the resulting intermediate coating film is cured by heating to obtain a cured intermediate coating film.
  • the preferable dry film thickness of the intermediate coating film is generally 10 to 80 111, more preferably 10 to 50 m.
  • the dry coating thickness of the intermediate coating film is preferably 10 to 40 mm 111, more preferably 15 to 30 mm 111. If the dry film thickness of the intermediate coating film exceeds 4 ( ⁇ 111 in the three-coat 'two-beta coating, there is a risk of sagging, wrinkling, etc., resulting in poor appearance of the multilayer coating film.
  • the dry film thickness is less than 10 ⁇ , the resulting multilayer coating film may be inferior in performance such as coating film appearance, hue, and chipping property.
  • the multilayer coating film forming process in the three coat 'two-beta coating (3C2B) is a multilayer coating film in the three-coat' one beta coating (3C1B) except that it is heat-cured after the intermediate coating film is formed. It can be performed in the same manner as the forming step.
  • the condition for heat curing the intermediate coating film is 100 to 250.
  • the temperature of C more preferably from 130 to 180;
  • the conditions include heating at a temperature of C for 5 to 60 minutes, more preferably 30 to 40 minutes.
  • the coating method by two-coat 'one beta coating (2C1B), which is another method of coating to obtain a multilayer coating film specifically includes the following steps: on the cured electrodeposition coating film Applying a topcoat base coating composition to form an uncured topcoat base coating; applying a tarrier coating composition on the resulting uncured topcoat base coating to form an uncured topcoat Forming a talya coating; and A heating process in which the coating film and the uncured top coat film are heated and cured simultaneously.
  • the above-mentioned aqueous topcoat base paint composition or solvent topcoat base paint composition can be used as the topcoat base paint composition.
  • the above-mentioned top coat coating composition can be used as the top coat coating composition.
  • the multilayer coating film forming step is performed except that the top coating base coating composition and the top coating film coating composition are applied without forming the intermediate coating film. It can be applied in the same way as the multi-layer coating formation process in Three-Coat One Beta Coating (3C1B).
  • the coating method by one-coat 'one-beta coating (1 C 1 B), which is another method for obtaining a multilayer coating film specifically includes the following steps: Curing electrodeposition coating Applying an overcoating solid coating composition on the film to form an uncured topcoating solid coating; and heating to heat cure the uncured topcoating solid coating.
  • the top coating solid coating composition is not particularly limited.
  • a polymer compound that is soluble in water or dispersible in water for example, an acrylic resin containing a hydroxyl group and a carboxyl group is neutralized with ammine or the like.
  • examples thereof include a combination of an acrylic resin aqueous solution and a resin that can react with the polymer compound, such as an amino resin or a block isocyanate resin that is soluble in water or dispersible in water.
  • Solvent-coated solid coating compositions include, for example, a polymer compound soluble in various organic solvents, such as an acrylic resin having a hydroxyl group, and a compound capable of reacting with the polymer compound, for example, And combinations of amino resins, polyisocyanates, block isocyanates, and the like.
  • the topcoat solid coating composition contains a pigment.
  • a pigment that can be used in the above intermediate coating composition and / or the above top coating base coating composition can be used.
  • known inorganic or organic coloring pigments such as carbon black, phthalocyanine blue, and titanium dioxide. Is mentioned.
  • the top coat solid paint composition is further an extender pigment. Further, additives such as a curing accelerator, a leveling agent, an ultraviolet absorber, and a light stabilizer may be included.
  • a multi-layer coating film is obtained by applying a top coating solid coating composition on a cured electrodeposition coating film and curing it by heating. That power S.
  • a top coating solid coating composition for the formation of the top coat, it is preferable to perform spray coating so that the dry film thickness is 30 to 100 m. In addition, it can be applied multiple times, such as painting in two stages.
  • the spray coating can be performed using an air spray coating machine, an airless spray coating machine, an air atomizing type or a rotary atomizing type electrostatic coating machine. Conditions for heating and curing the top-coated solid coating are 100 to 250 ° C, more preferably 130 to 180 ° C, and 5 to 60 minutes, more preferably 30 to 40 minutes. Can be mentioned.
  • a flask equipped with a stirrer, condenser, nitrogen inlet tube, thermometer and dropping funnel was charged with 95 parts and dibutyltin dilaurate 0.5 parts. While stirring the reaction mixture, 21 parts of methanol was added dropwise. The reaction started from room temperature and was heated to 60 ° C by exotherm. Thereafter, the reaction was continued for 30 minutes, and then 50 parts of ethylene glycol mono-2-ethylhexyl ether was added dropwise from the dropping funnel. Further, 53 parts of a bisphenol A-propylene oxide 5 mol adduct was added to the reaction mixture. The reaction was mainly carried out in the range of 60-65 ° C, and continued until the absorption based on the isocyanate group disappeared in the IR spectrum measurement.
  • a reactor was charged with 1250 parts of diphenylmethane diisocyanate and 4 parts of MIBK266. This was heated to 80 ° C, and 2.5 parts of dibutyltin dilaurate was added. Here, 226 parts of epsilon prolatatum were dissolved in 944 parts of butylcetone sorb, and dropped at 80 ° C. over 2 hours. After further heating at 100 ° C for 4 hours, in the IR spectrum measurement, it was confirmed that the absorption based on the isocyanate group disappeared, and after cooling, 1 part MIBK336.1 was added to block the glass transition temperature at 0 ° C. An isocyanate curing agent was obtained.
  • IPDI isophorone diisocyanate
  • EPON 829 (Bisfenore A-type epoxy epoxies, epoxy equivalents 193-203, manufactured by Shell 'Chemical' Company) 710.0 ⁇ and bisphenolore A289.
  • the reaction mixture was allowed to react at 150-; 160 ° C for about 1 hour, then cooled to 120 ° C, and then 498.8 parts of 2-ethylhexanol half-blocked IPDI (MIBK solution) prepared previously was I got it.
  • reaction mixture is kept at 110-120 ° C for about 1 hour, then 463.4 parts of ethylene glycol monobutyl ether is added, the mixture is cooled to 85-95 ° C, homogenized and then prepared first. 196. 7 parts of the prepared quaternizing agent was added. After maintaining the reaction mixture at 85 to 95 ° C until the acid value becomes 1, add 964 parts of deionized water to finish quaternization in epoxy bisphenol A resin, and a pigment having a quaternary ammonium salt part A resin for dispersion was obtained (resin solid content 50%).
  • Example 1 15 Preparation of pigment dispersion paste and cationic electrodeposition coating composition (2)
  • Example 1 17 Preparation of pigment dispersion paste and cationic electrodeposition coating composition (4)
  • Example of preparation 1 8 Preparation of pigment dispersion paste and cationic electrodeposition coating composition (5)
  • Preparation Example 1 10 Preparation of pigment dispersion paste and cationic electrodeposition coating composition (6) Add 100 parts of the pigment dispersion resin obtained in Production Example 1-3 in the sand grind mill, 100.0 parts of titanium dioxide and 10.0 parts of ion-exchanged water, and disperse until the particle size is 10 m or less. A paste was obtained (solid content 50%).
  • a cationic electrodeposition coating composition having a solid content of 5% by weight was obtained by mixing 54 parts of a degree control agent.
  • the concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 3% by weight.
  • the conductivity of this cationic electrodeposition coating composition is 1000 S / cm.
  • Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained.
  • MEQ (A) milligram equivalent
  • Reaction vessel ⁇ This is an isophthalenolic acid 200.0U, phthalenoic anhydride 179.0U, adipic acid 176.00U, trimethylolpropane 150 ⁇ 0 parts, neopentylglycol 295 ⁇ 0 parts, dibutyltin oxide 2 parts, in a nitrogen stream After heating and melting the raw material, the temperature was gradually raised to 3 ⁇ 4170 ° C without mixing and stirring. Thereafter, the temperature was raised to 220 ° C. over 3 hours, and dehydration was carried out. When the acid value reached 10, it was cooled to 150 ° C. Further, 114.0 parts of hexahydrophthalic acid was added and reacted for 1 hour to complete the reaction.
  • polyester resin After cooling to 0 ° C., 112.0 parts of butylceosolve was added to obtain a polyester resin.
  • the obtained polyester resin had a solid content acid value of 50, a hydroxyl value of 65, and a weight average molecular weight of 10,000 obtained by GPC (gel permeation chromatography).
  • This polyester resin was cooled to 60 ° C., and 80.0 parts of dimethylethanolamine and ion-exchanged water were added to obtain a polyester resin having a nonvolatile content of 50%.
  • New Coal 1120 (manufactured by Nippon Emulsifier Co., Ltd.) (33.4 parts) and ethylene glycol mono-n-hexylcetone sorb (6 parts) were dispersed in 94 parts of ion exchange water.
  • the polyester resin was dropped into the previous dispersion while stirring 11.1.1 parts of the above polyester resin to obtain a polyester resin emulsion coated with a nonionic dispersant having a nonvolatile content of 47.5%.
  • pigment dispersant Disperbyk 190 (Bic Chemi Co., Ltd .; solid content 40% by weight) 9.4 parts, ion exchange water 36.8 parts, rutile titanium dioxide 74.8 parts, carbon black 0.03 parts and oxidation After premixing 0.07 parts of iron yellow, glass beads medium was added in a paint conditioner and mixed and dispersed at room temperature until the particle size became 5 in or less to obtain a colored pigment paste. In the production of the pigment paste, the time required to reach a particle size of 5 m or less was 15 minutes.
  • reaction vessel equipped with a thermometer, stirrer, temperature controller, reflux condenser, nitrogen inlet tube and fractionator, 258 parts of hexahydrophthalic anhydride, 184 parts of isophthalic acid, 213 parts of trimethylolprone, neo 180 parts of pentyl glycol, 72 parts of neopentyl glycol hydroxybivalate and cardiura (—10 (Versatic acid group manufactured by Shell Chemical Co., Ltd.) 94 parts of lysidyl ester were charged and heated to 180 ° C.
  • a reaction vessel equipped with a thermometer, stirrer, temperature controller, reflux condenser and nitrogen inlet tube was charged with 90 parts of butyl acetate, 38.9 parts of methyl methacrylate, 38.8 parts of stearyl methacrylate, 3/8 clinoleic acid 2 —Hydroxyethinole 22 ⁇ and 20 parts of the monomer mixture consisting of 5.0 parts of Zeo'hi, Suisov, 'tyronitrinole with a calculated solubility parameter of 9.5 and stirring. While heating, the temperature was raised to 80 ° C.
  • a reaction vessel equipped with a thermometer, a stirrer, a temperature controller, a reflux condenser and a nitrogen introduction tube was charged with 35 parts of butyl acetate and 60 parts of the resulting dispersion-stabilizing resin, and the temperature was raised to 100 ° C.
  • styrene 7.0, methacrylolic acid 1 ⁇ 8, methacrylolic acid methylolate 12 ⁇ 0, ethyl acrylate 8.5 parts, attalinoleic acid 2-hydroxyethylenole 40.7 parts and azobisisobutyronitrile 1.4 parts A monomer mixture having a solubility parameter of 11.8 determined by the following calculation was added dropwise over 3 hours, and then a solution consisting of 0.1 part of azobisisobutyronitrile and 1 part of butyl acetate was added. Added dropwise over 30 minutes.
  • Production Example 3-1 The polyester resin solution obtained in 3-1 was used with respect to 328 parts of rutile titanium dioxide 981.7 parts, carbon black 0.39 parts, iron oxide yellow 0.92 parts, butyl acetate 159 parts and xylene 82. 1552 parts of glass beads were added and dispersed in a sand grind mill for 3 hours. When the particle size became 5 m or less with a grind gauge, the dispersion was terminated. After adding 81.8 parts of xylene, the mixture was stirred for about 10 minutes, and the glass beads were removed by filtration to obtain a pigment paste.
  • the cationic electrodeposition coating composition (1) obtained in Production Example 1-4 was applied to a zinc phosphate-treated hot-dip galvanized steel sheet (JIS G3302 standard product, 150 X 70 X 0.8 mm).
  • a zinc phosphate-treated hot-dip galvanized steel sheet JIS G3302 standard product, 150 X 70 X 0.8 mm.
  • the aqueous intermediate coating composition prepared in Production Example 2 was applied for 20 m by air spray coating, and pre-heated at 80 ° C for 5 minutes, AQUALEX 2000 Pearl My Strength Base (water-based Pearl My Strength base coating composition manufactured by Nippon Paint Co., Ltd.) was applied with 13 ⁇ by air spray coating and preheated at 80 ° C for 3 minutes.
  • Mac Flow O-1800W-2 Talia (Nippon Paint's acid-epoxy-cured tarrier paint composition) was applied to the coated plate by air spray painting for 35 am and then baked at 140 ° C for 30 minutes. A test piece having a multilayer coating film was obtained.
  • aqueous top-coating base coating composition (AQUAREX AR-2000 base), and top-coating tarrier coating composition (Macflow O-1800W-2 Talia) were diluted and applied under the following conditions. . Thinner: ion-exchanged water, 40 seconds / No. 4 Ford cup / 20 ° C (water-based intermediate coating composition)
  • a cationic electrodeposition coating composition was electrodeposited on a tin plate (JIS G3303 standard product, 150 X 70 X 0.3 mm) so that the dry coating film was 15 ⁇ , and baked at 160 ° C for 30 minutes. The obtained substrate was immersed in mercury to release the coating film. The released coating was cut into 10 mm squares and used as test samples. With respect to this test sample, the dry film specific gravity was measured by a floatation / sink method specified in JIS K 7112, using a potassium iodide solution. Table 1 shows the results obtained.
  • the Ra value of the horizontal portion of the obtained cured electrodeposition coating film was measured using an evaluation type surface roughness measuring machine (SURFTEST SJ-201P, manufactured by Mitsutoyo) in accordance with JIS-B0601-2001. 2. The measurement was performed 7 times as a 5 mm width cut-off (number of sections: 5), and the Ra value was obtained by averaging the top and bottom. These Ra values indicate that the smaller the value, the better the appearance of the coating film with less irregularities on the surface.
  • the lightness index L value was measured using a color difference meter (Minolta CR300, manufactured by Micareta).
  • Comparative Example 1 is the standard coating color (reference plate) I found ⁇ .
  • Table 1 The results obtained are shown in Table 1. These values indicate that the smaller the difference between the values, the better the color difference from the reference plate.
  • is obtained by the following equation. This ⁇ If the value of exceeds 1, it is in a state where a clear hue change can be confirmed.
  • the L value, the a value, and the b value are values obtained in accordance with JIS Z 8722 and JIS Z 8730.
  • the L value is the brightness index in the Hunter's color difference formula, and the a and b values are called the chroma takeness index in the Hunter's color difference formula.
  • the lightness index L value has an upper limit of 100, and as the value increases, the hue of the substance to be measured increases in whiteness 1S, and as the value decreases, the blackness increases.
  • the a-value, which is the chroma takeness index means that when the value is negative, the greenness is increased in the hue of the substance to be measured, and when the value is positive, the redness is increased.
  • the b value which is the chromaticness index, means that when the value is negative, the hue of the substance to be measured increases blueness, and when it is positive, the yellowness increases.
  • the cationic electrodeposition coating composition (1) obtained in Production Example 1-4 was applied to a zinc phosphate-treated hot-dip galvanized steel sheet (JIS G3302 standard product, 150 X 70 X 0.8 mm).
  • a zinc phosphate-treated hot-dip galvanized steel sheet JIS G3302 standard product, 150 X 70 X 0.8 mm.
  • the solvent intermediate coating composition prepared in Production Example 3 was applied by air spray coating for 20 inches and allowed to stand at room temperature for 10 minutes.
  • Superlac M-1300 Pearl My Strength Base (a melamine curable acrylic resin-based organic solvent-based top coating composition made by Nippon Paint Co., Ltd.) was applied to the object on which an uncured intermediate coating film was formed. After applying to m to obtain an uncured top coat film, it was left at room temperature for 20 minutes.
  • Mac Flow O-1800W-2 Talia (Nippon Paint's acid epoxy curing type Talia paint composition) was applied to the coated plate by air spray coating for 35 am, and then baked at 140 ° C for 30 minutes. A test piece having a layer coating was obtained.
  • the solvent intermediate coating composition, the solvent top coating base coating composition (Superlac M-1300 base), and the top coating composition (Macflow O-1800W-2 Talia) were diluted and applied under the following conditions. .
  • the cationic electrodeposition coating composition (1) obtained in Production Example 1-4 was applied to a zinc phosphate-treated hot-dip galvanized steel sheet (JIS G3302 standard product, 150 X 70 X 0.8 mm).
  • a zinc phosphate-treated hot-dip galvanized steel sheet JIS G3302 standard product, 150 X 70 X 0.8 mm.
  • a white intermediate coating composition Organa P-5 071 (a melamine curable polyester resin-based white intermediate coating composition manufactured by Nippon Paint Co., Ltd.) was dried. The film was coated with air spray so that the film thickness was 20 m, baked at 140 ° C for 30 minutes, and then cooled to obtain a substrate having a cured intermediate coating film.
  • Aqualex AR-2000 Pearl My Strength Base water-based Pearl My Strength base coating composition manufactured by Nippon Paint Co., Ltd. was applied by air spray coating 13 ⁇ , and preheated at 80 ° C for 3 minutes. It was.
  • a cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1, except that the cationic electrodeposition coating composition (2) obtained from Production Example 15 was used. Obtained. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • a cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1 except that the cationic electrodeposition coating composition (3) obtained in Production Example 16 was used. Obtained. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • a cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1 except that the cationic electrodeposition coating composition (4) obtained from Production Example 17 was used as the cationic electrodeposition coating composition. Obtained. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • a cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1, except that the cationic electrodeposition coating composition (5) obtained from Production Example 18 was used. Obtained. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • a cured electrodeposition coating film and a multilayer coating film were obtained in the same manner as in Example 1 except that the cationic electrodeposition coating composition obtained from Production Example 19) was used. It was. These obtained coating films were evaluated in the same manner as in Example 1. The result It is shown in Table 2.
  • the throwing power was evaluated using the cationic electrodeposition coating composition (6) obtained in Production Example 19, and it was confirmed that the throwing power was also good.
  • the evaluation of the messiness was performed as follows.
  • the throwing power was evaluated by the so-called four-sheet box method. That is, as shown in FIG. 1, four zinc phosphate-treated steel plates (treated with JIS G3141 SPCC-SD, Surfdyne SD-5500 (made by Nippon Paint Co., Ltd.)) 11 to 14 were set up. In this state, a box 10 was prepared, which was arranged in parallel with an interval of 20 mm, and the bottom and bottom of both sides were sealed with an insulator such as cloth adhesive tape. The steel plates 11 to 13 other than the steel plate 14 are provided with through holes 15 of 8 mm ⁇ at the bottom.
  • Paint 21 was stirred with a magnetic stirrer (not shown).
  • the steel plates 11 to 14 were electrically connected, and the counter electrode 22 was arranged so that the distance between the steel plate 11 and the steel plate 11 was 150 mm.
  • Cathode electrodeposition coating was performed on steel rice with a voltage applied with each steel plate 11-; 14 as a cathode and the counter electrode 22 as an anode. The coating was performed by increasing the voltage until the film thickness of the coating film formed on the A side of the steel plate 11 reached 15 m within 5 seconds of application starting force, and then maintaining that voltage for 175 seconds in normal electrodeposition. .
  • a cured electrodeposition coating film and a multilayer coating were prepared in the same manner as in Example 1, except that the cationic electrodeposition coating composition (7) obtained in Comparative Production Example 11 was used. A membrane was obtained. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 3. For the hue evaluation of the multilayer coating film, the evaluation results of Comparative Example 1 are used as a reference.
  • a cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1 except that the cationic electrodeposition coating composition (8) obtained from Comparative Production Example 12 was used. Got. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • a cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1 except that the cationic electrodeposition coating composition (9) obtained from Comparative Production Example 13 was used. Got. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • a cured electrodeposition coating film and a multilayer coating film were obtained in the same manner as in Example 1 except that the cationic electrodeposition coating composition (10) obtained from Comparative Production Example 14 was used. Got. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • the cured electrodeposition coating film and the multilayer coating film were the same as in Example 1 except that the cationic electrodeposition coating composition (11) obtained from Comparative Production Example 15 was used as the cationic electrodeposition coating composition. Got. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Titanium dioxide 100 100 100 100 100 100 100 100
  • the throwing power (G / A value) of the cationic electrodeposition coating composition in Example 8 was 66%, which was good.
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Titanium Dioxide 50 100 90 100 Kaolin 40
  • the multi-layer coating film obtained in the example has a low concentration of the pigment contained in the cationic electrodeposition coating composition, which is about 12% of Comparative Example 1. Nevertheless, it can be seen that it has a hue comparable to that of Comparative Example 1. Furthermore, the cured electrodeposition coating films obtained by the examples also have a good horizontal appearance with a low Ra value. In addition, the cured electrodeposition coating film has an advantage that the specific gravity of the dried coating film is low. In addition, as in Example 8, the cationic electrodeposition coating composition containing the conductivity control agent shows good throwing power even though the coating solid content (wt%) is as low as 5 wt%. .
  • the multilayer coating film obtained in Comparative Example 2 had a ⁇ exceeding 1, and the hue of the multilayer coating film obtained in Comparative Example 1 was clearly different. This is because the effect of the color of the substrate itself is multi-layered because of the poor concealability of the coating film. This is because it also appeared on the coating film. Further, the cured electrodeposition coating films obtained in Comparative Examples 3 and 5 had a high Ra value, a poor horizontal appearance, and a high specific gravity of the dried coating film, as in Comparative Example 1. On the other hand, the multilayer coating film obtained in Comparative Example 4 was clearly different in hue from the multilayer coating film obtained in Comparative Example 1 where ⁇ was as high as 0.80.
  • a multilayer coating film having a lightness index L value of 55 or more and an excellent hue is formed despite the use of a cationic electrodeposition coating composition having a low pigment content. Can do.
  • the method of the present invention it is possible to form a multi-layer coating film excellent in concealing property and the like by a coating method with less baking and curing in response to demands for energy saving and cost reduction. Furthermore, the weight of the coated object can be reduced by the method of the present invention.

Abstract

This invention provides a method for forming a multilayer coating film having a good finishing appearance which can reduce a burden on a coating equipment cost and an energy cost. The method for forming a multilayer coating film comprises an electrodeposition coating step of electrodepositing a cation electrodeposited coating composition to form an electrodepositon coated film and heat curing the electrodeposited coating film to form a cured electrodeposited coating film and a multilayer coating film forming step of coating a coating composition onto the cured electrodeposited coating film to form a multilayer coating film. In the cation electrodeposition coating composition, the density of a pigment contained in the solid content in the electrodeposition coating composition is 2 to 7% by weight. The pigment contains 95 to 100% by weight of titanium dioxide. The cured electrodeposition coating film has a lightness index L value of 55 or more in a film thickness of not less than 15 μm, and the cured electrodeposition coating film has a dried coating film specific gravity of 1.20 to 1.25.

Description

明 細 書  Specification
複層塗膜形成方法  Multi-layer coating formation method
技術分野  Technical field
[0001] 本発明は、塗装の設備およびエネルギー費用における負担を軽減することができ、 かつ仕上力 Sり外観が良好な複層塗膜の形成方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for forming a multilayer coating film that can reduce the burden on coating equipment and energy costs, and has a good finishing power and good appearance.
背景技術  Background art
[0002] 電着塗装は、電着塗料組成物中に被塗物を浸漬させ、電圧を印加することにより 行なわれる塗装方法である。この方法は、複雑な形状を有する被塗物であっても細 部にまで塗装を施すことができ、自動的かつ連続的に塗装することができるので、特 に自動車車体等の大型で複雑な形状を有する被塗物の下塗り塗装方法として広く 実用化されている。さらに電着塗装は、基材に高い防食性を与えることができ、基材 の保護効果にも優れてレ、る。  [0002] Electrodeposition coating is a coating method performed by immersing an object to be coated in an electrodeposition coating composition and applying a voltage. In this method, even an object to be coated having a complicated shape can be applied to a thin part, and can be applied automatically and continuously. Widely used as an undercoating method for objects with shapes. Furthermore, electrodeposition coating can give the base material high anticorrosion properties and is excellent in protecting the base material.
[0003] 一般に電着塗料組成物には、多量の顔料が、隠蔽性の向上または塗膜物性の向 上を目的として加えられている。これらの顔料は、塗料組成物中において水性媒体 中に分散した状態にある。これらの顔料は一般に無機顔料であって比重が高ぐそ のため電着塗料組成物中において沈降が生じやすい。例えば従来の電着塗料組成 物は、撹拌せずに静置することによって顔料が沈降し、凝集してしまう。このような凝 集を防ぐため、電着塗料組成物を含む電着槽および補給タンクは常時攪拌が必要と なり、これが塗装業者の設備およびエネルギー費用における負担となっている。この ため、電着塗料組成物中に含まれる顔料の量を減らすことによって、顔料の沈降を 防止し、設備およびエネルギー費用の負担を低減する手法が取られることがある。顔 料を減らすことは、さらに被塗物である基材の水平面への、顔料の沈降も防ぐことが でき、これにより得られる電着塗膜の外観が向上するという利点もある。  [0003] In general, a large amount of pigment is added to an electrodeposition coating composition for the purpose of improving the hiding property or improving the physical properties of a coating film. These pigments are in a state of being dispersed in an aqueous medium in the coating composition. Since these pigments are generally inorganic pigments and have a high specific gravity, sedimentation tends to occur in the electrodeposition coating composition. For example, in a conventional electrodeposition coating composition, the pigment settles and aggregates when allowed to stand without stirring. In order to prevent such agglomeration, the electrodeposition tank and replenishment tank containing the electrodeposition coating composition must be constantly stirred, which is a burden on the equipment and energy costs of the painter. For this reason, by reducing the amount of pigment contained in the electrodeposition coating composition, a method may be taken to prevent sedimentation of the pigment and reduce the burden of equipment and energy costs. Reducing the pigment can also prevent the pigment from settling on the horizontal surface of the substrate, which is the object to be coated, and has the advantage that the appearance of the resulting electrodeposition coating is improved.
[0004] 一方、塗装の役割は、基材の保護の他に、美しい外観を付与することにもある。美 しい外観を得るための塗装においては、通常、種々の役割を持つ複数の塗膜の形 成が行われる。そしてこのような塗膜は一般に、各塗膜を一層ずつ焼付け硬化するこ とにより形成される。 [0005] しかし近年、省エネルギーおよびコストダウンの要請から、塗装後に焼付け硬化を せずに次の塗装を所謂ウエットオンウエットで塗装し、その後、複数層を一度に焼付 け硬化させる方法も採用されつつある。このような方法の 1例として、電着塗膜を硬化 させた後に、中塗り塗料、上塗りベース塗料および上塗りタリヤー塗料をウエットオン ウエットで塗装し、その後 3層の未硬化塗膜を一度に焼付け硬化する、スリーコート' ワンベータ塗装が考えられている。加えて、省エネルギーおよびコストダウンの要請を 達成する他の手段として、加熱硬化された硬化電着塗膜上に、中塗り塗料組成物を 塗布して加熱硬化させ、次いで上塗りベース塗料組成物、上塗りタリヤー塗料組成 物を順次塗布し、未硬化の上塗りベース塗膜および上塗りタリヤー塗膜を同時に加 熱硬化させる、スリーコート'ツーベータ塗装も考えられている。さらには、電着塗装後 に中塗り塗料を塗布することなく上塗り塗装を行う方法も考えられている。 [0004] On the other hand, the role of coating is to provide a beautiful appearance in addition to protecting the substrate. In painting to obtain a beautiful appearance, a plurality of coating films having various roles are usually formed. Such a coating film is generally formed by baking and curing each coating film one by one. However, in recent years, due to demands for energy saving and cost reduction, a method of applying the next coating by so-called wet-on-wet without baking and curing after coating and then baking and curing multiple layers at once is being adopted. is there. As an example of this method, after the electrodeposition coating is cured, the intermediate coating, top coating base and top coating coating are applied wet-on-wet, and then three uncured coatings are baked at once. Curing, three coat 'one beta coating is considered. In addition, as another means to achieve the demand for energy saving and cost reduction, an intermediate coating composition is applied on a cured electrodeposition coating film that has been heat-cured and then cured by heating. Three-coat “two-beta” coating is also considered, in which the coating composition is applied in sequence and the uncured topcoat base coat and topcoat coater coat are heated and cured simultaneously. Furthermore, a method of top coating without applying intermediate coating after electrodeposition is also considered.
[0006] このような従来の工程と比べて焼付け工程が少ない塗装においては、形成される中 塗り塗膜の膜厚が従来と比べて薄くなる傾向にある。そして、中塗り塗膜の膜厚が薄 い場合または中塗り塗膜自体がない場合は、電着塗膜の隠蔽性が得られる複層塗 膜の外観および色相に大きく影響することが判明してきた。この電着塗膜の隠蔽性 は、電着塗料組成物中に含まれる顔料の量に依存する。顔料の量が低減された電 着塗料組成物は、顔料の沈降防止の点には優れるものの、隠蔽性が劣ることとなる。 そのため、顔料の量が低減された電着塗料組成物を、上記のスリーコート'ワンべ一 ク塗装、スリーコート'ツーベータ塗装などに用いるのは困難であった。  [0006] In such a coating with fewer baking processes than in the conventional process, the thickness of the intermediate coating film to be formed tends to be thinner than in the conventional process. When the thickness of the intermediate coating film is thin or when the intermediate coating film itself is not present, it has been found that the appearance and hue of the multilayer coating film that provides the concealability of the electrodeposition coating film are greatly affected. It was. The concealability of this electrodeposition coating film depends on the amount of pigment contained in the electrodeposition coating composition. An electrodeposition coating composition with a reduced amount of pigment is inferior in concealability, although it is excellent in preventing pigment settling. For this reason, it has been difficult to use an electrodeposition coating composition with a reduced amount of pigment for the above-mentioned three-coat 'one-bake coating, three-coat' two-beta coating and the like.
[0007] 特開 2004— 231989号公報(特許文献 1)には、カチオン電着塗料の固形分に対 して、カチオン電着塗料中に含まれる顔料灰分が 3〜; 10重量%、及びカチオン電着 塗料中の固形分濃度が 5〜; 12重量%であるカチオン電着塗料を用いた環境対応型 電着塗装方法が記載されている。しかしながら、顔料灰分の低減は、電着塗膜の隠 蔽性を低下させるため、得られる塗膜の外観は鋼板の色相の影響を強く受けることと なる。そのため、明度の低い鋼板を用いて塗装を行う場合は、得られる電着塗膜の明 度も下がってしまい、最終的に複層塗膜の色相に影響が及んでしまうという問題があ  [0007] JP 2004-231989 (Patent Document 1) discloses that the pigment ash content in the cationic electrodeposition coating is 3 to 10% by weight, and the cation, based on the solid content of the cationic electrodeposition coating. Electrodeposition An environmentally-friendly electrodeposition coating method using a cationic electrodeposition paint having a solid content concentration of 5 to 12% by weight is described. However, the reduction of pigment ash content decreases the concealability of the electrodeposition coating film, so that the appearance of the resulting coating film is strongly influenced by the hue of the steel sheet. For this reason, when coating is performed using a steel plate with low brightness, the brightness of the resulting electrodeposition coating film also decreases, which ultimately affects the hue of the multilayer coating film.
[0008] 特開 2002— 126627号公報(特許文献 2)には、電着塗膜上に、水性中塗り塗料 、水性ベース塗料、タリヤー塗料を順次塗布して未硬化の水性中塗り塗膜、水性べ ース塗膜およびタリヤー塗膜を形成し、これらの塗膜を同時に加熱硬化させて多層 塗膜を得る多層塗膜形成方法であって、この水性中塗り塗料及び/又は上記水性 ベース塗料は、顔料及び揮発性の塩基性物質を実質的に含まな!/、顔料分散剤を予 め分散して得られる顔料分散ペーストを配合しているものであることを特徴とする、多 層塗膜形成方法、が記載されている (請求項 1)。この方法によって、塗装工程短縮、 コスト削減及び環境負荷低減を図ることができ、そして黄変することのない多層塗膜 を形成すること力できる。し力、しながらこの方法により形成される中塗り塗膜の膜厚は 、従来と比べて薄くなることがあり、そのため塗膜の隠蔽性が劣る場合がある。 JP-A-2002-126627 (Patent Document 2) discloses an aqueous intermediate coating on an electrodeposition coating film. Apply an aqueous base paint and a talya paint in sequence to form an uncured aqueous intermediate coat, an aqueous base coat and a talya coat, and simultaneously heat cure these films to obtain a multilayer coat. A method for forming a multilayer coating film, wherein the water-based intermediate coating and / or the water-based base coating is substantially free of pigments and volatile basic substances! /, And is obtained by predispersing a pigment dispersant. A method for forming a multi-layer coating film, characterized in that it contains a pigment dispersion paste obtained (Claim 1). By this method, the coating process can be shortened, the cost can be reduced and the environmental load can be reduced, and a multi-layer coating without yellowing can be formed. However, the film thickness of the intermediate coating film formed by this method may be thinner than the conventional one, and therefore the coating concealability may be inferior.
[0009] 特開 2004— 275971号公報(特許文献 3)には、下塗り塗膜を形成した基材上に、 中塗り塗膜、ベース塗膜及びタリヤー塗膜を、順次形成する複層塗膜形成方法であ つて、この中塗り塗膜は、供給量を可変とした白色系塗料を供給する白色系塗料供 給手段及び供給量を可変とした黒色系塗料を供給する黒色系塗料供給手段を備え 、白色系塗料供給手段及び黒色系塗料供給手段が互いに独立して回転霧化式塗 装ガンに接続された中塗り塗装装置を用いて形成されるものであり、白色系塗料及 び黒色系塗料は、顔料濃度(PWC)が 2〜60質量%、不揮発分が 35〜60質量%、 塗料粘度が 0. 03〜0. 3Pa ' sとした複層塗膜形成方法、が記載されている(請求項 D oこの特許文献 3には、ツーコート'ワンベータ塗装による複層塗膜形成方法につ いて記載されている力 S、し力もながら、硬化電着塗膜の明度と複層塗膜との関係につ V、ては何ら記載されて!/、なレ、。  JP-A-2004-275971 (Patent Document 3) discloses a multilayer coating film in which an intermediate coating film, a base coating film, and a talya coating film are sequentially formed on a substrate on which an undercoating film has been formed. The intermediate coating film includes a white paint supply means for supplying a white paint with a variable supply amount and a black paint supply means for supplying a black paint with a variable supply amount. The white paint supply means and the black paint supply means are formed using an intermediate coating device connected to the rotary atomizing coating gun independently of each other. The paint describes a method for forming a multilayer coating film in which the pigment concentration (PWC) is 2 to 60% by mass, the non-volatile content is 35 to 60% by mass, and the viscosity of the paint is 0.03 to 0.3 Pa's. (Claim Do This Patent Document 3 describes a method for forming a multilayer coating film by two-coat 'one-beta coating. That the force S, while also tooth force, the relationship Nitsu V between brightness and multi-layer coating film of the cured electrodeposition coating film, Te is no description! /, A les.
[0010] 特許文献 1 :特開 2004— 231989号公報  [0010] Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-231989
特許文献 2:特開 2002— 126627号公報  Patent Document 2: JP 2002-126627 A
特許文献 3 :特開 2004— 275971号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-275971
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明は上記従来技術の問題点を解決することを課題とする。より特定すれば、本 発明は、塗装の設備およびエネルギー費用における負担を軽減することができ、 つ仕上力 Sり外観が良好な複層塗膜の形成方法に関する。 課題を解決するための手段 [0011] An object of the present invention is to solve the above-described problems of the prior art. More specifically, the present invention relates to a method for forming a multi-layer coating film that can reduce the burden on painting equipment and energy costs, and has a good finish and appearance. Means for solving the problem
[0012] 本発明は、 [0012] The present invention provides:
カチオン電着塗料組成物を電着塗装して電着塗膜を形成し、得られた電着塗膜を 加熱硬化させて硬化電着塗膜を得る、電着塗装工程、  An electrodeposition coating process in which a cationic electrodeposition coating composition is electrodeposited to form an electrodeposition coating, and the resulting electrodeposition coating is cured by heating to obtain a cured electrodeposition coating;
得られた硬化電着塗膜の上に塗料組成物を塗布して複層塗膜を得る、複層塗膜 形成工程、  Applying the coating composition on the obtained cured electrodeposition coating film to obtain a multilayer coating film, a multilayer coating film forming step,
を包含する、複層塗膜形成方法であって、  A method for forming a multilayer coating film, comprising:
このカチオン電着塗料組成物が、電着塗料組成物の固形分中に含まれる顔料の 濃度が 2〜7重量%であるカチオン電着塗料組成物であり、  This cationic electrodeposition coating composition is a cationic electrodeposition coating composition in which the concentration of the pigment contained in the solid content of the electrodeposition coating composition is 2 to 7% by weight,
この顔料は二酸化チタンを 95〜; 100重量%含み、  This pigment contains 95 to 100% titanium dioxide,
この硬化電着塗膜は、膜厚 15 πι以上において明度指数 L値 55以上を有し、 この硬化電着塗膜は、乾燥塗膜比重 1. 20〜; 1. 25を有する、  This cured electrodeposition coating film has a lightness index L value of 55 or more at a film thickness of 15 πι or more, and this cured electrodeposition coating film has a dry coating specific gravity of 1.20 to; 1.25.
複層塗膜形成方法、を提供するものであり、これにより上記目的が達成される。  A method for forming a multilayer coating film is provided, whereby the above object is achieved.
[0013] 本発明の 1態様として、上記複層塗膜形成工程が、 [0013] As one aspect of the present invention, the multilayer coating film forming step comprises
硬化電着塗膜の上に中塗り塗料組成物を塗布して、未硬化の中塗り塗膜を形成す る工程、  Applying an intermediate coating composition on the cured electrodeposition coating to form an uncured intermediate coating;
得られた未硬化の中塗り塗膜の上に、上塗りベース塗料組成物を塗布して、未硬 化の上塗りベース塗膜を形成する工程、  A step of applying an overcoating base coating composition on the obtained uncured intermediate coating film to form an uncured top coating base film;
得られた未硬化の上塗りベース塗膜の上に、上塗りタリヤー塗料組成物を塗布して 、未硬化の上塗りタリヤー塗膜を形成する工程、および  A step of applying a top coat coating composition on the resulting uncured top coat base film to form an uncured top coat film; and
これらの未硬化の中塗り塗膜、未硬化の上塗りベース塗膜および未硬化の上塗りク リヤー塗膜を同時に加熱硬化させる加熱工程、  A heating step in which these uncured intermediate coating film, uncured topcoat base coating film, and uncured topcoat clear coating film are heated and cured simultaneously;
を包含する、複層塗膜形成方法が挙げられる。  Including a multi-layer coating film forming method.
[0014] 本発明の他の 1態様として、上記複層塗膜形成工程が、 [0014] As another aspect of the present invention, the multilayer coating film forming step comprises
硬化電着塗膜の上に中塗り塗料組成物を塗布して中塗り塗膜を形成し、得られた 中塗り塗膜を加熱硬化させて硬化中塗り塗膜を得る工程、  Applying the intermediate coating composition on the cured electrodeposition coating film to form an intermediate coating film, and heat-curing the obtained intermediate coating film to obtain a cured intermediate coating film;
得られた硬化中塗り塗膜の上に、上塗りベース塗料組成物を塗布して、未硬化の 上塗りベース塗膜を形成する工程、 得られた未硬化の上塗りベース塗膜の上に、上塗りタリヤー塗料組成物を塗布して 、未硬化の上塗りタリヤー塗膜を形成する工程、および A step of applying an overcoating base coating composition on the obtained intermediate cured coating film to form an uncured top coating base film, A step of applying a top coat coating composition on the resulting uncured top coat base film to form an uncured top coat film; and
これらの未硬化の上塗りベース塗膜および未硬化の上塗りタリヤー塗膜を同時に 加熱硬化させる加熱工程、  A heating process for simultaneously heating and curing these uncured topcoat base coat and uncured topcoat film
を包含する、複層塗膜形成方法が挙げられる。  Including a multi-layer coating film forming method.
[0015] 上記方法において、複層塗膜形成工程において形成される硬化中塗り塗膜の膜 厚が 10〜40 μ mであるのがより好まし!/、。 [0015] In the above method, it is more preferable that the thickness of the cured intermediate coating film formed in the multilayer coating film forming step is 10 to 40 µm! /.
[0016] 本発明の他の 1態様として、上記複層塗膜形成工程が、 [0016] As another embodiment of the present invention, the multilayer coating film forming step comprises
硬化電着塗膜の上に、上塗りベース塗料組成物を塗布して、未硬化の上塗りべ一 ス塗膜を形成する工程、  Applying an overcoating base coating composition on the cured electrodeposition coating to form an uncured top-coating base coating;
得られた未硬化の上塗りベース塗膜の上にタリヤー塗料組成物を塗布して、未硬 化の上塗りタリヤー塗膜を形成する工程、および  A step of applying a talya coating composition on the obtained uncured topcoat base coating to form an uncured topcoat talya coating; and
これらの未硬化の上塗りベース塗膜および未硬化の上塗りタリヤー塗膜を同時に 加熱硬化させる加熱工程、  A heating process for simultaneously heating and curing these uncured topcoat base coat and uncured topcoat film
を包含する、複層塗膜形成方法が挙げられる。  Including a multi-layer coating film forming method.
[0017] 本発明の他の 1態様として、上記複層塗膜形成工程が、 [0017] As another embodiment of the present invention, the multilayer coating film forming step comprises
硬化電着塗膜の上に、上塗りソリッド塗料組成物を塗布して、未硬化の上塗りソリッ ド塗膜を形成する工程、および  Applying a topcoat solid coating composition on the cured electrodeposition coating to form an uncured topcoat solid coating; and
この未硬化の上塗りソリッド塗膜を加熱硬化させる加熱工程、  A heating process for heating and curing this uncured topcoat solid coating film,
を包含する、複層塗膜形成方法が挙げられる。  Including a multi-layer coating film forming method.
[0018] 上記の、未硬化の中塗り塗膜、未硬化の上塗りベース塗膜および未硬化の上塗り タリヤー塗膜を同時に加熱硬化させる方法において、中塗り塗料組成物が水性中塗 り塗料組成物であって、上塗りベース塗料組成物が水性上塗りベース塗料組成物で あるか、または [0018] In the above-described method for simultaneously heating and curing the uncured intermediate coating film, the uncured top coating base film, and the uncured top coating film, the intermediate coating composition is an aqueous intermediate coating composition. The overcoating base coating composition is an aqueous topcoating base coating composition, or
中塗り塗料組成物が溶剤中塗り塗料組成物であって、上塗りベース塗料組成物が溶 剤上塗りベース塗料組成物であるのが好ましい。  It is preferable that the intermediate coating composition is a solvent intermediate coating composition, and the topcoat base coating composition is a solvent topcoat base coating composition.
[0019] 本発明はさらに、上記の複層塗膜形成方法により得られる複層塗膜も提供する。 [0019] The present invention further provides a multilayer coating film obtained by the above-described method for forming a multilayer coating film.
発明の効果 [0020] 本発明の方法においては、顔料の濃度が 2〜7重量%と、顔料含有量が少ない力 チオン電着塗料組成物を用いるにもかかわらず、顔料の種類および構成などを特定 することによって、優れた色相を有する複層塗膜を形成することが可能となっている。 さらに、いわゆるスリーコート'ワンベータ塗装などの焼付け硬化工程が少ない塗装方 法により、複層塗膜を形成した場合であっても、良好な隠蔽性を有し、さらに水平外 観にも優れた塗膜を得ることができる。本発明により形成される塗膜はさらに、比重が 軽いという利点も有し、塗装物の軽量化に対しても有効に用いることができる。本方 法を用いることによって、省エネルギーおよびコストダウンの要請に対応した焼付け 硬化が少ない塗装方法により、隠蔽性などに優れた複層塗膜を形成することができ 図面の簡単な説明 The invention's effect [0020] In the method of the present invention, the pigment concentration is 2 to 7% by weight, and the strength is low. Even though the thione electrodeposition coating composition is used, the type and configuration of the pigment are specified. Thus, it is possible to form a multilayer coating film having an excellent hue. Furthermore, even when a multilayer coating film is formed by a coating method such as the so-called three-coat 'one-beta coating method, which has few baking and curing processes, it has good concealment and also has excellent horizontal appearance. A membrane can be obtained. The coating film formed according to the present invention also has an advantage that the specific gravity is light, and can be used effectively for reducing the weight of the coated product. By using this method, it is possible to form a multi-layer coating film with excellent concealment, etc., by a coating method with less baking and curing in response to demands for energy saving and cost reduction.
[0021] [図 1]つきまわり性を評価する際に用いるボックスの一例を示す斜視図である。  FIG. 1 is a perspective view showing an example of a box used for evaluating throwing power.
[図 2]つきまわり性の評価方法を模式的に示す断面図である。  FIG. 2 is a cross-sectional view schematically showing a throwing power evaluation method.
符号の説明  Explanation of symbols
[0022] 10 :ボックス、 [0022] 10: box,
11〜; 14:リン酸亜鉛処理鋼板、  11 ~; 14: Zinc phosphate-treated steel sheet,
15 :貫通穴、  15: Through hole,
20 :電着塗装容器、  20: Electrodeposition coating container,
21 :電着塗料、  21: Electrodeposition paint,
22 :対極。  22: Counter electrode.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] ¾ϋ [0023] ¾ϋ
本発明においては、通電可能な種々の基材、例えば鋼材など、を用いることができ る。この場合、基材の表面上にめっき処理または化成処理などが施されていてもよく 、施されていない無処理の基材であってもよい。使用できる鋼材として例えば、冷延 鋼板、熱延鋼板、ステンレス、電気亜鉛めつき鋼板、溶融亜鉛めつき鋼板、亜鉛ーァ ノレミニゥム合金系めつき鋼板、亜鉛一鉄合金系めつき鋼板、亜鉛 マグネシウム合 金系めつき鋼板、亜鉛 アルミニウム マグネシウム合金系めつき鋼板、アルミニウム 系めつき鋼板、アルミニウム シリコン合金系めつき鋼板、錫系めつき鋼板、鉛 錫 合金系めつき鋼板、クロム系めつき鋼板などの鋼材、さらにこれらの鋼板に化成処理 を施した鋼材、などが挙げられる。 In the present invention, various base materials that can be energized, such as steel materials, can be used. In this case, the surface of the base material may be subjected to a plating treatment or a chemical conversion treatment, or may be an untreated base material that has not been applied. Examples of usable steel materials include cold-rolled steel sheets, hot-rolled steel sheets, stainless steel, electrogalvanized steel sheets, hot-dip galvanized steel sheets, zinc-aluminum alloy-based steel sheets, zinc-ferrous alloy-based steel sheets, zinc-magnesium composites. Gold plated steel sheet, zinc aluminum Magnesium alloy plated steel sheet, aluminum Steel, aluminum silicon alloy steel, tin steel, lead tin alloy steel, chromium steel, etc., and steels that have been subjected to chemical conversion treatment. Can be mentioned.
[0024] カチオン電着塗料組成物 [0024] Cationic electrodeposition coating composition
本発明において用いられるカチオン電着塗料組成物は、水性溶媒、水性溶媒中に 分散するか又は溶解した、カチオン性エポキシ樹脂及びブロックイソシァネート硬化 剤を含むバインダー樹脂、中和酸、有機溶媒、顔料を含む。  The cationic electrodeposition coating composition used in the present invention comprises an aqueous solvent, a binder resin containing a cationic epoxy resin and a block isocyanate curing agent dispersed or dissolved in the aqueous solvent, a neutralizing acid, an organic solvent, Contains pigments.
[0025] 纖 [0025] 纖
本発明の方法に用いられるカチオン電着塗料組成物は、顔料を含む。この顔料の 量は、カチオン電着塗料組成物の固形分に対して 2〜7重量%である。カチオン電 着塗料組成物中に含まれる顔料の量が、カチオン電着塗料組成物の固形分に対し て 2〜7重量%であることによって、電着塗料組成物中での顔料の沈降を防止するこ とができる。これにより、電着槽の撹拌時間を減らすことができ、塗装の設備およびェ ネルギー費用における負担を軽減することができる。さらに、電着塗装中における、 被塗物である基材の水平面への顔料の沈降も防ぐことができ、得られる硬化電着塗 膜の水平面の外観を向上させることができる。顔料の量は好ましくは、カチオン電着 塗料組成物の固形分に対して 3〜5重量%である。  The cationic electrodeposition coating composition used in the method of the present invention contains a pigment. The amount of the pigment is 2 to 7% by weight based on the solid content of the cationic electrodeposition coating composition. The amount of pigment contained in the cationic electrodeposition coating composition is 2 to 7% by weight based on the solid content of the cationic electrodeposition coating composition, thereby preventing precipitation of the pigment in the electrodeposition coating composition. can do. As a result, the stirring time of the electrodeposition tank can be reduced, and the burden on the painting equipment and energy costs can be reduced. Furthermore, it is possible to prevent sedimentation of the pigment onto the horizontal surface of the substrate that is the object to be coated during electrodeposition coating, and to improve the appearance of the resulting cured electrodeposition coating film on the horizontal surface. The amount of the pigment is preferably 3 to 5% by weight based on the solid content of the cationic electrodeposition coating composition.
[0026] さらに本発明の電着塗料組成物は、電着塗料組成物中に含まれる顔料のうち 95 〜; 100重量%が二酸化チタンである。二酸化チタンを 95〜; 100重量%含む顔料を 用いることによって、顔料の量がカチオン電着塗料組成物の固形分に対して 2〜7重 量%と比較的少量であっても、得られる硬化電着塗膜の明度指数 L値を 55以上に保 つことが可能となる。顔料中に含まれる二酸化チタンの量は、 98〜; 100重量%である のがより好ましい。とりわけ好ましくは、顔料として二酸化チタンのみを使用する場合 である。 Furthermore, in the electrodeposition coating composition of the present invention, 95 to 100% by weight of the pigment contained in the electrodeposition coating composition is titanium dioxide. By using a pigment containing 95 to 100% by weight of titanium dioxide, even if the amount of the pigment is 2 to 7% by weight relative to the solid content of the cationic electrodeposition coating composition, the resulting curing can be obtained. The lightness index L value of the electrodeposition coating can be maintained at 55 or higher. The amount of titanium dioxide contained in the pigment is more preferably 98 to 100% by weight. Particularly preferred is the case where only titanium dioxide is used as the pigment.
[0027] 二酸化チタン以外で使用できる顔料の例としては、通常使用される無機顔料、例え ば、カーボンブラック及びベンガラのような着色顔料;カオリン、タルク、ケィ酸アルミ 二ゥム、炭酸カルシウム、マイ力およびクレーのような体質顔料;リン酸亜鉛、リン酸鉄 、リン酸アルミニウム、リン酸カルシウム、亜リン酸亜鉛、シアン化亜鉛、酸化亜鉛、トリ ポリリン酸アルミニウム、モリブデン酸亜鉛、モリブデン酸アルミニウム、モリブデン酸 カルシウム及びリンモリブデン酸アルミニウム、リンモリブデン酸アルミニウム亜鉛のよ うな防鯖顔料等、が挙げられる。 [0027] Examples of pigments that can be used in addition to titanium dioxide include commonly used inorganic pigments such as colored pigments such as carbon black and bengara; kaolin, talc, aluminum silicate, calcium carbonate, Extenders such as strength and clay; zinc phosphate, iron phosphate, aluminum phosphate, calcium phosphate, zinc phosphite, zinc cyanide, zinc oxide, tri And anti-mold pigments such as aluminum polyphosphate, zinc molybdate, aluminum molybdate, calcium molybdate, aluminum phosphomolybdate, and aluminum zinc phosphomolybdate.
[0028] 顔料を電着塗料の成分として用いる場合、一般に顔料を予め高濃度で水性溶媒に 分散させてペースト状 (顔料分散ペースト)にする。顔料は粉体状であるため、電着 塗料組成物で用いる低濃度均一状態に一工程で分散させるのは困難だからである 。一般にこのようなペーストを顔料分散ペーストと!/、う。  [0028] When a pigment is used as a component of an electrodeposition paint, generally, the pigment is previously dispersed in an aqueous solvent at a high concentration to form a paste (pigment dispersion paste). This is because the pigment is in a powder form and it is difficult to disperse it in a single step in a low concentration uniform state used in the electrodeposition coating composition. In general, such a paste is called a pigment dispersion paste!
[0029] 顔料分散ペーストは、顔料を顔料分散樹脂と共に水性溶媒中に分散させて調製す る。顔料分散樹脂としては、一般に、カチオン性又はノニオン性の低分子量界面活 性剤や 4級アンモニゥム基及び/又は 3級スルホ二ゥム基を有する変性エポキシ樹 脂等のようなカチオン性重合体を用いる。水性溶媒としてはイオン交換水や少量のァ ルコール類を含む水等を用いる。一般に、顔料分散樹脂は、顔料 100質量部に対し て固形分比 20〜100質量部の量で用いる。顔料分散樹脂と顔料とを混合した後、そ の混合物中の顔料の粒径が所定の均一な粒径となるまで、ボールミルやサンドグライ ンドミル等の通常の分散装置を用いて分散させて、顔料分散ペーストを得ることがで きる。  [0029] The pigment dispersion paste is prepared by dispersing a pigment together with a pigment dispersion resin in an aqueous solvent. As the pigment dispersion resin, a cationic polymer such as a cationic or nonionic low molecular weight surfactant or a modified epoxy resin having a quaternary ammonium group and / or a tertiary sulfone group is generally used. Use. As the aqueous solvent, ion-exchanged water or water containing a small amount of alcohol is used. In general, the pigment dispersion resin is used in an amount of 20 to 100 parts by mass with respect to 100 parts by mass of the pigment. After mixing the pigment dispersion resin and the pigment, the pigment dispersion is dispersed by using a normal dispersing device such as a ball mill or a sand grind mill until the pigment in the mixture has a predetermined uniform particle size. A paste can be obtained.
[0030] カチオン件エポキシ榭脂  [0030] Cationic epoxy resin
カチオン性エポキシ樹脂には、ァミンで変性されたエポキシ樹脂が含まれる。カチ オン性エポキシ樹脂は、典型的には、ビスフエノール型エポキシ樹脂のエポキシ環の 全部をカチオン性基を導入し得る活性水素化合物で開環する力、、または一部のェポ キシ環を他の活性水素化合物で開環し、残りのエポキシ環をカチオン性基を導入し 得る活性水素化合物で開環して製造される。  The cationic epoxy resin includes an epoxy resin modified with ammine. Cationic epoxy resins typically have the ability to open all of the epoxy rings of bisphenol-type epoxy resins with active hydrogen compounds capable of introducing cationic groups, or some epoxy rings to other types. And the remaining epoxy ring is opened with an active hydrogen compound capable of introducing a cationic group.
[0031] ビスフエノール型エポキシ樹脂の典型例はビスフエノール A型またはビスフエノール F型エポキシ樹脂である。前者の市販品としてはェピコート 828 (油化シェルエポキシ 社製、エポキシ当量 180〜; 190)、ェピコ一卜 1001 (同、エポキシ当量 450〜500)、 ェピコート 1010 (同、エポキシ当量 3000〜4000)などがあり、後者の市販品として はェピコート 807 (同、エポキシ当量 170)などがある。  [0031] A typical example of the bisphenol type epoxy resin is a bisphenol A type or bisphenol F type epoxy resin. As for the former commercial products, Epicoat 828 (manufactured by Yuka Shell Epoxy Co., Epoxy Equivalent 180 ~; 190), Epico 1001 (Equivalent Epoxy Equivalent 450 ~ 500), Epicote 1010 (Equipment Equivalent Equivalent 3000 ~ 4000), etc. Epicoat 807 (same as above, epoxy equivalent 170) is a commercial product of the latter.
[0032] これらのエポキシ樹脂は、ポリエステルポリオール、ポリエーテルポリオール、および 単官能性のアルキルフエノールのような適当な樹脂で変性しても良い。また、ェポキ シ樹脂はエポキシ基とジオール又はジカルボン酸との反応を利用して鎖延長するこ と力 Sできる。 [0032] These epoxy resins include polyester polyols, polyether polyols, and It may be modified with a suitable resin such as a monofunctional alkylphenol. Epoxy resins also have the ability to extend the chain using the reaction of epoxy groups with diols or dicarboxylic acids.
[0033] これらのエポキシ樹脂は、開環後 0· 3〜4· Omeq/gのァミン当量となるように、より 好ましくはそのうちの 5〜50%が 1級ァミノ基が占めるように活性水素化合物で開環 するのが望ましい。  [0033] These epoxy resins are active hydrogen compounds such that after ring opening, an amine equivalent of 0.3-4 Omeq / g is obtained, and more preferably 5-50% of them are occupied by primary amino groups. It is desirable to open the ring at.
[0034] カチオン性基を導入し得る活性水素化合物としては 1級ァミン、 2級ァミン、 3級アミ ンの酸塩、スルフイド及び酸混合物がある。活性水素化合物としてアミンを用いる場 合、エポキシ樹脂と 2級ァミンとを反応させると、 3級アミノ基を有するァミン変性ェポ キシ樹脂が得られる。また、エポキシ樹脂と 1級ァミンとを反応させると、 2級アミノ基を 有するァミン変性エポキシ樹脂が得られる。さらに、 1級ァミノ基および 2級アミノ基を 有する化合物を用いることにより、 1級アミノ基を有するァミン変性エポキシ樹脂を調 製すること力 Sできる。ここで、 1級ァミノ基および 2級アミノ基を有する化合物を用いて、 1級アミノ基を有するァミン変性エポキシ樹脂を調製する場合は、エポキシ樹脂と反 応させる前に、化合物の 1級ァミノ基をケトンでブロック化してケチミンにしておいて、 これをエポキシ樹脂に導入した後に脱ブロック化することによって調製することができ  [0034] Examples of the active hydrogen compound into which a cationic group can be introduced include primary amines, secondary amines, tertiary amine acid salts, sulfides and acid mixtures. When an amine is used as the active hydrogen compound, an amine-modified epoxy resin having a tertiary amino group can be obtained by reacting an epoxy resin with a secondary amine. In addition, when an epoxy resin is reacted with a primary amine, an amine-modified epoxy resin having a secondary amino group is obtained. Furthermore, by using a compound having a primary amino group and a secondary amino group, it is possible to prepare an amine-modified epoxy resin having a primary amino group. Here, when preparing an amine-modified epoxy resin having a primary amino group using a compound having a primary amino group and a secondary amino group, the primary amino group of the compound is required before reacting with the epoxy resin. Can be prepared by blocking with a ketone to form a ketimine, which is introduced into the epoxy resin and then deblocked.
[0035] 1級ァミン、 2級ァミンおよびケチミンの具体例としては、例えば、ブチルァミン、オタ チノレアミン、ジェチノレアミン、ジブチノレアミン、メチノレブチノレアミン、モノエタノーノレアミ ン、ジエタノールァミン、 N—メチルエタノールァミン、トリェチルァミン塩酸塩、 N, N ージメチルエタノールァミン酢酸塩、ジェチルジスルフイド '酢酸混合物などがある。さ らに、アミノエチルエタノールァミンのケチミン、ジエチレントリァミンのジケチミンなど の、ブロックされた 1級ァミンを有する 2級ァミン、がある。これらのアミン類等は 2種以 上を併用して用いてもよい。 [0035] Specific examples of primary amine, secondary amine and ketimine include, for example, butyramine, otachinoreamine, jetinoreamine, dibutenoreamine, methinolevinoreamine, monoethanolanolamine, diethanolamine, N-methylethanolamine Mines, triethylamine hydrochloride, N, N-dimethylethanolamine acetate, jetyl disulfide 'acetic acid mixture. In addition, there are secondary amines with blocked primary amines, such as aminoethylethanolamine ketimine and diethylenetriamine diketimine. Two or more of these amines may be used in combination.
[0036] カチオン性エポキシ樹脂として、特開平 5— 306327号公報に記載され公知である 、ォキサゾリドン環含有エポキシ樹脂を用いてもよい。この特開平 5— 306327号は、 優先権主張出願である米国特許第 5276072号の基礎出願であり、そしてこの米国 特許第 5276072号を出典明示により本明細書の一部とする。エポキシ樹脂にォキ サゾリドン環を導入する方法としては、例えば、メタノールのような低級アルコールで ブロックされたブロックイソシァネート硬化剤とポリエポキシドを塩基性触媒の存在下 で加熱保温し、副生する低級アルコールを系内より留去することで得ることができる。 このォキサゾリドン環含有エポキシ樹脂の具体例及び製造方法は、例えば、特開 20 00— 128959号公報第 0012〜0047段落に記載されており、公知である。この特開 2000— 128959号は、優先権主張出願である米国特許第 6664345号の基礎出願 であり、そしてこの米国特許第 6664345号を出典明示により本明細書の一部とする[0036] As the cationic epoxy resin, an oxazolidone ring-containing epoxy resin described in JP-A-5-306327 and known may be used. Japanese Patent Laid-Open No. 5-306327 is a basic application of US Patent No. 5276072, which is a priority application, and US Patent No. 5276072 is incorporated herein by reference. Epoxies on epoxy resin As a method for introducing a sazolidone ring, for example, a block isocyanate curing agent blocked with a lower alcohol such as methanol and a polyepoxide are heated and kept in the presence of a basic catalyst, and the by-product lower alcohol is introduced from the system. It can be obtained by distilling off. Specific examples and production methods of this oxazolidone ring-containing epoxy resin are described in, for example, paragraphs 0012 to 0047 of JP-A No. 2000-128959 and are publicly known. This Japanese Patent Laid-Open No. 2000-128959 is a basic application of US Pat. No. 6,664,345, which is a priority claim application, and this US Pat. No. 6,664,345 is incorporated herein by reference.
Yes
[0037] ブロックイソシァネート硬化剤  [0037] Block isocyanate curing agent
ブロックイソシァネート硬化剤の調製にはポリイソシァネートが使用される。このポリ イソシァネートとは、 1分子中にイソシァネート基を 2個以上有する化合物をいう。ポリ イソシァネートとしては、例えば、脂肪族系、脂環式系、芳香族系および芳香族-脂 肪族系等のうちの!/、ずれであってもよ!/、。  Polyisocyanates are used in the preparation of the block isocyanate curing agent. This polyisocyanate refers to a compound having two or more isocyanate groups in one molecule. Examples of the polyisocyanate include, for example, aliphatic / alicyclic, aromatic and aromatic-aliphatic, etc., and may be shifted! /.
[0038] ポリイソシァネートの具体例には、トリレンジイソシァネート(TDI)、ジフエニルメタン ジイソシァネート(MDI)、 p—フエ二レンジイソシァネート、及びナフタレンジイソシァ ネート等のような芳香族ジイソシァネート;へキサメチレンジイソシァネート(HDI)、 2, 2, 4—トリメチルへキサンジイソシァネート、及びリジンジイソシァネート等のような炭 素数 3〜; 12の脂肪族ジイソシァネート; 1 , 4ーシクロへキサンジイソシァネート(CDI) 、イソホロンジイソシァネート(IPDI)、 4, 4'ージシクロへキシノレメタンジイソシァネート (水添 MDI)、メチルシクロへキサンジイソシァネート、イソプロピリデンジシクロへキシ ルー 4, 4'ージイソシァネート、及び 1 , 3—ジイソシアナトメチルシクロへキサン(水添 XDI)、水添 TDI、 2, 5—もしくは 2, 6—ビス(イソシアナ一トメチル)一ビシクロ [2· 2 . 1]ヘプタン (ノルボルナンジイソシァネートとも称される。)等のような炭素数 5〜18 の脂環式ジイソシァネート;キシリレンジイソシァネート (XDI)、及びテトラメチルキシリ レンジイソシァネート (TMXDI)等のような芳香環を有する脂肪族ジイソシァネート;こ れらのジイソシァネートの変性物(ウレタン化物、カーポジイミド、ウレトジオン、ウレトン ィミン、ビューレット及び/又はイソシァヌレート変性物);等があげられる。これらは、 単独で、または 2種以上併用することができる。 [0039] ポリイソシァネートをエチレングリコール、プロピレングリコール、トリメチロールプロパ ン、へキサントリオールなどの多価アルコールと NCO/OH比 2以上で反応させて得 られる付加体ないしプレボリマーもブロックイソシァネート硬化剤に使用してよい。 [0038] Specific examples of polyisocyanates include aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, and naphthalene diisocyanate. 1 to 4 aliphatic diisocyanates such as hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, lysine diisocyanate and the like; -Cyclohexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4'-dicyclohexylenomethane diisocyanate (hydrogenated MDI), methylcyclohexane diisocyanate, isopropylidene Cyclohexyl, 4,4'-diisocyanate, and 1,3-diisocyanatomethylcyclohexane (hydrogenated XDI), hydrogenated TDI, 2,5- Aliphatic diisocyanates having 5 to 18 carbon atoms such as 2,6-bis (isocyanatomethyl) bibicyclo [2.2.1] heptane (also called norbornane diisocyanate); Aliphatic diisocyanates with aromatic rings such as cyanate (XDI) and tetramethylxylylene diisocyanate (TMXDI); modified products of these diisocyanates (urethanes, carpositimides, uretdiones, uretonimines, views) Lett and / or isocyanurate-modified product); These can be used alone or in combination of two or more. [0039] An adduct or prepolymer obtained by reacting a polyisocyanate with a polyhydric alcohol such as ethylene glycol, propylene glycol, trimethylolpropan or hexanetriol at an NCO / OH ratio of 2 or more is also cured with a block isocyanate. May be used in preparations.
[0040] ブロック剤は、ポリイソシァネート基に付加し、常温では安定であるが解離温度以上 に加熱すると遊離のイソシァネート基を再生し得るものである。  [0040] The blocking agent is added to a polyisocyanate group and is stable at room temperature but can regenerate a free isocyanate group when heated to a temperature higher than the dissociation temperature.
[0041] 他の成分  [0041] Other ingredients
上記カチオン電着塗料組成物は、上記成分の他に、上記ブロックイソシァネート硬 化剤のブロック剤解離のために解離触媒を含む場合は、ジブチル錫ラウレート、ジブ チル錫ォキシド、ジォクチル錫ォキシドなどの有機錫化合物や、 N—メチルモルホリ ンなどのアミン類、ストロンチウム、コバルト、銅などの金属塩が使用できる。解離触媒 の濃度は、力チオン電着塗料組成物中の力チオン性エポキシ樹脂とブロックイソシァ ネート硬化剤合計の 100固形分質量部に対し 0. ;!〜 6質量部である。  When the cationic electrodeposition coating composition contains a dissociation catalyst for dissociating the blocking agent of the block isocyanate curing agent in addition to the above components, dibutyltin laurate, dibutyltin oxide, dioctyltin oxide, etc. Organic tin compounds, amines such as N-methylmorpholine, and metal salts such as strontium, cobalt, and copper can be used. The concentration of the dissociation catalyst is 0 .;! To 6 parts by mass with respect to 100 parts by mass of the total of the force thione epoxy resin and the block isocyanate curing agent in the force thione electrodeposition coating composition.
[0042] カチオン雷着塗料組成物の調製  [0042] Preparation of cationic lightning coating composition
本発明で用いられるカチオン電着塗料組成物は、上に述べたカチオン性エポキシ 樹脂、ブロックイソシァネート硬化剤、及び顔料分散ペーストを水性溶媒中に分散す ることによって調製される。また、通常、水性溶媒にはカチオン性エポキシ樹脂を中 和して、バインダー樹脂エマルシヨンの分散性を向上させるために中和酸を含有させ る。中和酸は塩酸、硝酸、リン酸、ギ酸、酢酸、乳酸のような無機酸または有機酸であ  The cationic electrodeposition coating composition used in the present invention is prepared by dispersing the above-described cationic epoxy resin, block isocyanate curing agent, and pigment dispersion paste in an aqueous solvent. Usually, the aqueous solvent is neutralized with a cationic epoxy resin to contain a neutralizing acid in order to improve the dispersibility of the binder resin emulsion. Neutralizing acids are inorganic or organic acids such as hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, lactic acid.
[0043] 使用される中和酸の量は、カチオン性エポキシ樹脂及びブロックイソシァネート硬 化剤を含むバインダー樹脂固形分 100gに対して、 10〜25mg当量の範囲であるの が好ましい。上記下限は 15mg当量であるのがより好ましぐ上記上限は 20mg当量 であるのがより好ましい。中和酸の量が 10mg当量未満であると水への親和性が十分 でなく水への分散ができないか、著しく安定性に欠ける状態となり、 25mg当量を越 えると析出に要する電気量が増加し、塗料固形分の析出性が低下し、つきまわり性 が劣る状態となる。 [0043] The amount of the neutralizing acid used is preferably in the range of 10 to 25 mg equivalent to 100 g of the binder resin solid content containing the cationic epoxy resin and the block isocyanate hardener. The lower limit is more preferably 15 mg equivalent, and the upper limit is more preferably 20 mg equivalent. If the amount of the neutralizing acid is less than 10 mg equivalent, the affinity for water is not sufficient and the dispersion in water cannot be performed or the stability is extremely poor. If the amount exceeds 25 mg equivalent, the amount of electricity required for precipitation increases. However, the precipitation of the solid content of the paint is lowered and the throwing power is inferior.
[0044] ブロックイソシァネート硬化剤の量は、硬化時にカチオン性エポキシ樹脂中の 1級、 2級ァミノ基、水酸基、等の活性水素含有官能基と反応して良好な硬化塗膜を与える のに十分な量が必要とされる。好ましいブロックイソシァネート硬化剤の量は、カチォ ン性エポキシ樹脂とブロックイソシァネート硬化剤との固形分重量比(カチオン性ェポ キシ樹脂/硬化剤)で表して 90/10〜50/50、より好ましくは 80/20〜65/35 の範囲である。カチオン性エポキシ樹脂とブロックイソシァネート硬化剤との固形分量 比の調整により、造膜時の塗膜 (析出膜)の流動性および硬化速度が改良され、塗 膜の平滑性が向上する。 [0044] The amount of the block isocyanate curing agent reacts with active hydrogen-containing functional groups such as primary and secondary amino groups and hydroxyl groups in the cationic epoxy resin during curing to give a good cured coating film. A sufficient amount is required. The preferred amount of block isocyanate curing agent is 90/10 to 50/50 expressed as the weight ratio of cationic epoxy resin to block isocyanate curing agent (cationic epoxy resin / curing agent). More preferably, it is in the range of 80/20 to 65/35. By adjusting the solid content ratio between the cationic epoxy resin and the block isocyanate curing agent, the fluidity and curing speed of the coating film (deposition film) during film formation are improved, and the smoothness of the coating film is improved.
[0045] カチオン電着塗料組成物に通常含まれる有機溶媒としては、エチレングリコールモ ノブチノレエーテノレ、エチレングリコーノレモノへキシノレエーテノレ、エチレングリコーノレモ ノエチノレへキシノレエーテノレ、プロピレングリコーノレモノブチノレエーテノレ、ジプロピレン グリコーノレモノブチノレエーテノレ、プロピレングリコーノレモノフエニノレエーテノレ等が挙げ られる。 [0045] Examples of the organic solvent that is usually contained in the cationic electrodeposition coating composition include ethylene glycol monophenolatenore, ethyleneglycolenohexenoleatenore, ethyleneglycolenoethylenohexenoreethenole, propylene glycol Noremonobutinoreethenore, dipropylene glycolenoremonobutenoreatenore, propyleneglycolenomonomonoreinoatere and the like.
[0046] カチオン電着塗料組成物は、上記のほかに、可塑剤、界面活性剤、酸化防止剤、 及び紫外線吸収剤などの常用の塗料用添加剤を含むことができる。アミノ基含有ァク リル樹脂、アミノ基含有ポリエステル樹脂等を含んでもょレ、。  [0046] In addition to the above, the cationic electrodeposition coating composition may contain conventional coating additives such as a plasticizer, a surfactant, an antioxidant, and an ultraviolet absorber. Including amino group-containing acrylic resin, amino group-containing polyester resin, etc.
[0047] 本発明におけるカチオン電着塗料組成物の固形分濃度は 0. 5〜25重量%である のが好ましい。但し、カチオン電着塗料組成物の固形分濃度が 0. 5〜7重量%の範 囲であって、かつ高い付きまわり性が要求される被塗物を塗装する場合は、カチオン 電着塗料組成物に電導度制御剤を含めてもよ!/、。電導度制御剤を含めることによつ て、付きまわり性を向上させることができる。用いることができる電導度制御剤として、 例えば、ァミン変性エポキシ樹脂の酸中和物を用いることができる。ァミン変性ェポキ シ樹脂の酸中和物は、まずアミン変性エポキシ樹脂を調製し、これを酸で中和するこ とにより調製すること力 Sできる。ァミン変性エポキシ樹脂は、エポキシ樹脂のエポキシ 環を、活性水素化合物で開環することにより調製することができる。用いることができ るエポキシ樹脂として、例えばノポラック型エポキシ樹脂、ビスフエノール型エポキシ 樹脂などが挙げられる。活性水素化合物として、ブチノレアミン、ォクチルァミン、ジェ チルァミン、ジブチルァミン、メチルブチルァミン、モノエタノールァミン、ジエタノーノレ ァミン、 N—メチルエタノールァミン、トリェチルァミン塩酸塩、 N, N—ジメチルェタノ ールァミン酢酸塩、ジェチルジスルフイド '酢酸混合物など、さらにアミノエチルェタノ ールァミンのケチミン、ジエチレントリァミンのジケチミンなどを用いることができる。そ して活性水素化合物を用いてエポキシ樹脂のエポキシ環を開環する際に、開環後の ァミン当量が 2. 0〜5. Omeq/gとなるように開環する。ァミン変性エポキシ樹脂を中 和する中和酸としては、塩酸、硝酸、リン酸、ギ酸、酢酸、乳酸などの無機酸および 有機酸を用いることができる。これらを用いて調製される、ァミン変性エポキシ樹脂の 酸中和物を、電着塗料組成物に加えることにより、電着塗料組成物の電導度を 1000 〜2000 S/cmに調製することができ、そしてこれにより電着塗料組成物の固形分 濃度が低い場合であっても、高い付きまわり性を確保することが可能となる。 [0047] The solid content concentration of the cationic electrodeposition coating composition in the present invention is preferably 0.5 to 25% by weight. However, the cationic electrodeposition coating composition should be used when coating an object that has a solid content concentration of 0.5 to 7% by weight and requires high throwing power. You can include a conductivity control agent in the object! /. By including a conductivity control agent, throwing power can be improved. As the conductivity control agent that can be used, for example, an acid neutralized product of an amine-modified epoxy resin can be used. The acid neutralized product of an amine-modified epoxy resin can be prepared by first preparing an amine-modified epoxy resin and neutralizing it with an acid. The amine-modified epoxy resin can be prepared by opening the epoxy ring of the epoxy resin with an active hydrogen compound. Examples of the epoxy resin that can be used include nopolac type epoxy resins and bisphenol type epoxy resins. Examples of active hydrogen compounds include butynoleamine, octylamine, jetylamine, dibutylamine, methylbutyramine, monoethanolamine, diethanolamine, N-methylethanolamine, triethylamine hydrochloride, N, N-dimethylethanolamine acetate, jetyldis Rufuid 'acetic acid mixture and more aminoethyl ethano Lumamine ketimine, diethylenetriamine diketimine, and the like can be used. Then, when the epoxy ring of the epoxy resin is opened using the active hydrogen compound, the ring is opened so that the amine equivalent after the opening is 2.0 to 5. Omeq / g. As the neutralizing acid for neutralizing the amine-modified epoxy resin, inorganic acids and organic acids such as hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, and lactic acid can be used. By adding an acid neutralized product of an amine-modified epoxy resin prepared using these materials to the electrodeposition coating composition, the conductivity of the electrodeposition coating composition can be adjusted to 1000 to 2000 S / cm. Thus, even when the solid content concentration of the electrodeposition coating composition is low, it is possible to ensure high throwing power.
[0048] 電着塗装工程  [0048] Electrodeposition painting process
電着塗装は、被塗物を陰極として陽極との間に、通常、 50〜450Vの電圧を印加し て行う。印加電圧が 50V未満であると電着が不充分となるおそれがあり、 450Vを超 えると、塗膜が破壊され異常外観となるおそれがある。電着塗装時、塗料組成物の浴 液温度は、通常 10〜45°Cに調節される。  Electrodeposition is usually performed by applying a voltage of 50 to 450 V between the object to be coated as the cathode and the anode. If the applied voltage is less than 50V, electrodeposition may be insufficient, and if it exceeds 450V, the coating film may be destroyed and the appearance may be abnormal. During electrodeposition coating, the bath temperature of the coating composition is usually adjusted to 10 to 45 ° C.
[0049] 電着塗装工程は、カチオン電着塗料組成物に被塗物を浸漬する過程、及び、上記 被塗物を陰極として陽極との間に電圧を印加し、被膜を析出させる過程、から構成さ れる。また、電圧を印加する時間は、電着条件によって異なる力 一般には、 2〜4分 とすること力 Sでさる。  [0049] The electrodeposition coating process includes a process of immersing an object to be coated in a cationic electrodeposition coating composition, and a process of applying a voltage between the object to be coated as a cathode and an anode to deposit a film. Composed. The time for applying the voltage varies depending on the electrodeposition conditions. In general, the force is 2 to 4 minutes.
[0050] 電着塗膜の膜厚は、好ましくは5〜25 111、より好ましくは 20 mとする。膜厚が 5 [0050] The film thickness of the electrodeposition coating film is preferably 5 to 25 111, more preferably 20 m. The film thickness is 5
in未満であると、防鯖性が不充分であり、 25 111を超えると、塗料の浪費につなが  If it is less than in, the anti-mold property is insufficient, and if it exceeds 25 111, it will lead to waste of paint.
[0051] 上述のようにして得られる電着塗膜を、電着過程の終了後、そのまま又は水洗した 後、 120〜260。C、好ましくは 140〜220。Cで、 10〜30分間焼付けることによって硬 化電着塗膜が形成される。 [0051] The electrodeposition coating film obtained as described above is 120 to 260 after the electrodeposition process, as it is or after being washed with water. C, preferably 140-220. With C, a cured electrodeposition coating is formed by baking for 10 to 30 minutes.
[0052] 本発明により得られる硬化電着塗膜は、膜厚 15 m以上において明度指数 L値が 55以上であることを特徴とする。本発明で用いられる電着塗料組成物は、顔料含有 量が少ないにもかかわらず、硬化電着塗膜の膜厚 15 m以上において明度指数 L 値 55以上を確保することができる。そして、このような硬化電着塗膜を用いて複層塗 膜を形成することによって、被塗物である基材の色の影響を受けることなぐ良好な色 相を有する複層塗膜を形成することが可能となる。この明度指数 L値は、 JIS Z 87 22および JIS Z 8730に準拠して求められる。分光測定器による標準光 Cを用いて 、 380〜780nmの波長範囲で透過法により測定された XYZ系における三刺激値 X 、 Y、 Ζ値に基づき、 JIS規格 Ζ8730の規定により算出される。この L値は、ハンターの 色差式における明度指数と呼ばれるものであり、 L値が大きい程白色度が高いと評価 される。 [0052] The cured electrodeposition coating film obtained by the present invention has a lightness index L value of 55 or more at a film thickness of 15 m or more. The electrodeposition coating composition used in the present invention can ensure a lightness index L value of 55 or more at a film thickness of 15 m or more of the cured electrodeposition coating film, although the pigment content is small. By forming a multilayer coating film using such a cured electrodeposition coating film, a good color that is not affected by the color of the substrate that is the object to be coated is obtained. It becomes possible to form a multilayer coating film having a phase. This lightness index L value is obtained in accordance with JIS Z 8722 and JIS Z 8730. Based on the tristimulus values X, Y, and Ζ values in the XYZ system measured by the transmission method in the wavelength range of 380 to 780 nm using the standard light C by the spectrophotometer, it is calculated according to the provisions of JIS standard Ζ 8730. This L value is called the brightness index in Hunter's color difference formula, and the greater the L value, the higher the whiteness.
[0053] 本発明においては、顔料中 95〜; 100重量%が二酸化チタンである顔料を含む電 着塗料組成物を用いることによって、カチオン電着塗料組成物の固形分に対して顔 料の量が 2〜7重量%と低重量であるにもかかわらず、硬化電着塗膜の膜厚が 15 m以上の場合にお!/、て、明度指数 L値が 55以上の硬化電着塗膜を得ることができる 。さらに、本発明により得られる硬化電着塗膜は、溶融亜鉛めつき鋼板などのように 明度指数が低い基材を被塗物として用いた場合であっても、硬化電着塗膜の明度指 数 L値 55以上であるという利点を有する。本発明においては、基材の色および材質 にかかわらず、膜厚が 15 in以上の場合において、硬化電着塗膜の明度指数 L値 5 5以上を確保できる。本発明における電着塗装は、スリーコート'ワンベータ塗装、スリ 一コート ·ツーベータ塗装、中塗りレス塗装などの、塗膜の厚さが低減された複層塗 膜形成塗装の下塗りとして、特に適している。  [0053] In the present invention, by using an electrodeposition coating composition containing a pigment in which 95 to 100% by weight of the pigment is titanium dioxide in the pigment, the amount of the pigment is based on the solid content of the cationic electrodeposition coating composition. When the film thickness of the cured electrodeposition coating film is 15 m or more even though the weight is as low as 2 to 7% by weight! /, The curing electrodeposition coating film with a lightness index L value of 55 or more Can get. Furthermore, the cured electrodeposition coating film obtained according to the present invention has a lightness index of the cured electrodeposition coating film even when a substrate having a low brightness index such as a hot-dip galvanized steel sheet is used as an object to be coated. The number L has an advantage of 55 or more. In the present invention, the lightness index L value of 55 or more of the cured electrodeposition coating film can be secured when the film thickness is 15 in or more regardless of the color and material of the substrate. Electrodeposition coating in the present invention is particularly suitable as an undercoat for multilayer coating forming coatings with reduced coating thickness, such as three-coat 'one-beta coating, three-coat-two-beta coating, and intermediate coating-less coating. Yes.
[0054] また本発明により得られる硬化電着塗膜は、乾燥塗膜比重が 1. 20〜; 1. 25である ことも特徴とする。カチオン電着塗料組成物中に含まれる顔料の量が、カチオン電着 塗料組成物の固形分に対して 2〜7重量%と低重量であること、そしてこの顔料中 95 〜; 100重量%が二酸化チタンであることによって、上記範囲の乾燥塗膜比重を実現 すること力 Sできる。このように乾燥塗膜比重が低い硬化電着塗膜を作成する利点とし て、被塗物の重量を低減することができることが挙げられる。例えば自動車の車体な ど、塗装面積が大きい被塗物の塗装においては、この重量低減効果はより有利であ る。この乾燥塗膜比重は、 JIS K 7112に準拠して求めることができる。 [0054] The cured electrodeposition coating film obtained according to the present invention is also characterized in that the dry coating film has a specific gravity of 1.20 to 1.25. The amount of the pigment contained in the cationic electrodeposition coating composition is as low as 2 to 7% by weight based on the solid content of the cationic electrodeposition coating composition, and 95 to 100% by weight in the pigment. By using titanium dioxide, it is possible to achieve a dry coating specific gravity in the above range. Thus, the advantage of producing a cured electrodeposition coating film having a low specific gravity of the dried coating film is that the weight of the object to be coated can be reduced. For example, this weight reduction effect is more advantageous when painting an object having a large paint area, such as an automobile body. The specific gravity of the dried coating film can be determined according to JIS K 7112.
[0055] m ^  [0055] m ^
本発明の複層塗膜形成方法の一例として、加熱硬化された硬化電着塗膜上に、中 塗り塗料組成物、上塗りベース塗料組成物、上塗りタリヤー塗料組成物を順次塗布 し、次いで未硬化の中塗り塗膜、上塗りベース塗膜、上塗りタリヤー塗膜を同時に加 熱硬化させる方法が挙げられる。この方法は一般にスリーコート'ワンベータ塗装(3C 1B)といわれる。本発明の複層塗膜形成方法の他の一例として、加熱硬化された硬 化電着塗膜上に、中塗り塗料組成物を塗布して加熱硬化させ、次いで上塗りベース 塗料組成物、上塗りタリヤー塗料組成物を順次塗布し、未硬化の上塗りベース塗膜 および上塗りタリヤー塗膜を同時に加熱硬化させる方法が挙げられる。この方法は一 般にスリーコート'ツーベータ塗装(3C2B)といわれる。本発明の他の例として、電着 塗装後に中塗り塗料を塗布することなく上塗り塗装を行う方法、例えば加熱硬化され た硬化電着塗膜上に、上塗りベース塗料組成物および上塗りタリヤー塗料組成物を 順次塗布し、未硬化の上塗りベース塗膜および上塗りタリヤー塗膜を同時に加熱硬 化させる方法 (ツーコート'ワンベータ塗装(2C1B) )、および加熱硬化された硬化電 着塗膜上に、上塗りソリッド塗料組成物を塗布して加熱硬化させる方法(ワンコート' ワンベータ塗装(1C1B) )が挙げられる。 As an example of the method for forming a multilayer coating film of the present invention, an intermediate coating composition, a top coating base coating composition, and a top coating coating composition are sequentially applied onto a heat-cured cured electrodeposition coating film. Then, an uncured intermediate coating film, top coating base film, and top coating film are simultaneously heat-cured. This method is generally referred to as three-coat 'one beta coating (3C 1B). As another example of the method for forming a multilayer coating film of the present invention, an intermediate coating composition is applied on a heat-cured cured electrodeposition coating film and cured by heating, and then an overcoating base coating composition and a top coating film are applied. Examples thereof include a method in which coating compositions are sequentially applied, and an uncured top coat base coat and a top coat film are simultaneously heated and cured. This method is generally called three-coat 'two-beta coating (3C2B). As another example of the present invention, a method of top coating without applying an intermediate coating after electrodeposition coating, for example, a top coating base coating composition and a top coating tally coating composition on a heat-cured cured electrodeposition coating film In order to heat and cure the uncured base coat and topcoat coating at the same time (Two Coat One Beta Coat (2C1B)), and overcoating the cured solid electrodeposition paint Examples thereof include a method of applying the composition and heat-curing (one-coat 'one-beta coating (1C1B)).
[0056] スリーコート'ワンべーク'塗装によろ 途隐の形成 法  [0056] Three-coat 'one-bake' painting
複層塗膜を得る塗装方法の 1つである、省エネルギーなどの点において有用なスリ 一コート ·ワンベータ塗装(3C1B)による塗膜形成方法は、具体的には下記工程を包 含する方法である:硬化電着塗膜の上に中塗り塗料組成物を塗布して、未硬化の中 塗り塗膜を形成する工程;未硬化の中塗り塗膜の上に、上塗りベース塗料組成物を 塗布して、未硬化の上塗りベース塗膜を形成する工程;未硬化の上塗りベース塗膜 の上に、上塗りタリヤー塗料組成物を塗布して、未硬化の上塗りタリヤー塗膜を形成 する工程、及び;未硬化の中塗り塗膜、上塗りベース塗膜および上塗りタリヤー塗膜 を同時に加熱硬化させる加熱工程。  One of the coating methods for obtaining multi-layer coatings, the one-coat coating method that is useful in terms of energy saving, etc. The one-beta coating (3C1B) coating method specifically includes the following steps: : A step of applying an intermediate coating composition on a cured electrodeposition coating to form an uncured intermediate coating; applying an overcoating base coating composition on an uncured intermediate coating A step of forming an uncured topcoat film; a step of applying a topcoat coating composition on the uncured topcoat film to form an uncured topcoat film; and A heating process in which the cured intermediate coat, top coat base coat, and top coat film are heated and cured simultaneously.
[0057] 中塗り塗料組成物  [0057] Intermediate coating composition
このようなスリーコート'ワンベータ塗装(3C1B)による複層塗膜形成方法において 、中塗り塗料組成物としては、水性塗料組成物であってもよぐまた溶剤型塗料組成 物であってもよい。中塗り塗料組成物の成分としては、中塗り樹脂成分、顔料、そして 水性溶媒および/または有機溶媒が挙げられる。中塗り樹脂成分は、中塗り塗料樹 脂および中塗り硬化剤から構成される。 [0058] 中塗り塗料組成物が水性である場合は、顔料および顔料分散剤を予め分散して得 られる顔料分散ペーストを配合してレ、るものであることが好まし!/、。顔料分散剤として は、巿販されているものを使用すること力 Sできる。市販品としては、例えば、 Disperby k 190、 Disperbyk 182、 Disperbyk 184 (いずれもビックケミ一社製)、 EFKAPO LYMER4550 (EFKA社製)、ソノレスノ ース 27000、ソノレスノ ース 41000、ソノレスノ ース 53095 (V、ずれもアビシァ社製)等を挙げること力 Sできる。この顔料分散剤の数 平均分子量は、 1000〜; 10万であることが好ましい。 1000未満であると十分な分散 安定性が得られないおそれがあり、 10万を超えると粘度が高すぎて取り扱いが困難 となるおそれカある。より好ましくは、 2000〜5万であり、更に好ましくは、 4000-5 万である。 In such a method for forming a multi-layer coating film by three-coat “one beta coating (3C1B)”, the intermediate coating composition may be an aqueous coating composition or a solvent-based coating composition. The components of the intermediate coating composition include an intermediate coating resin component, a pigment, and an aqueous solvent and / or an organic solvent. The intermediate coating resin component is composed of an intermediate coating resin and an intermediate coating curing agent. [0058] When the intermediate coating composition is water-based, it is preferable to blend a pigment dispersion paste obtained by dispersing the pigment and the pigment dispersant in advance! It is possible to use commercially available pigment dispersants. Commercially available products include, for example, Disperby k 190, Disperbyk 182 and Disperbyk 184 (all manufactured by Big Chemi), EFKAPO LYMER4550 (manufactured by EFKA), Sonoreth Nose 27000, Sonoreth Noose 41000, Sonoreth Nose 53095 (V, The difference is also made by Abyssia). The number average molecular weight of the pigment dispersant is preferably 1000 to 100,000. If it is less than 1000, sufficient dispersion stability may not be obtained, and if it exceeds 100,000, the viscosity may be too high and handling may be difficult. More preferably, it is 2000-50,000, More preferably, it is 4000-50,000.
[0059] 上記顔料分散剤は、顔料とともに公知の方法に従って混合分散して、顔料分散ぺ 一ストを得る。上記顔料分散ペースト中の上記顔料分散剤の配合割合は、顔料分散 ペーストの固形分に対して、 1〜20重量%であることが好ましい。 1重量%未満であ ると、顔料を安定に分散することができず、 20重量%を超えると、塗膜の物性に劣る 場合がある。好ましくは、 5〜; 15重量%である。  [0059] The pigment dispersant is mixed and dispersed together with the pigment according to a known method to obtain a pigment dispersion paste. The blending ratio of the pigment dispersant in the pigment dispersion paste is preferably 1 to 20% by weight with respect to the solid content of the pigment dispersion paste. If it is less than 1% by weight, the pigment cannot be dispersed stably, and if it exceeds 20% by weight, the physical properties of the coating film may be inferior. Preferably, 5 to 15% by weight.
[0060] 中塗り塗料組成物に用いられる顔料としては、通常の中塗り塗料組成物に使用さ れる顔料であれば特に限定されないが、耐候性を向上させ、かつ隠蔽性を確保する 点から、着色顔料であることが好ましい。特に二酸化チタンは白色の着色隠蔽性に 優れ、し力、も安価であることから、より好ましい。  [0060] The pigment used in the intermediate coating composition is not particularly limited as long as it is a pigment used in a normal intermediate coating composition, but from the viewpoint of improving weather resistance and ensuring concealment. A color pigment is preferred. In particular, titanium dioxide is more preferable because it is excellent in white color concealment and has low strength and low cost.
[0061] 二酸化チタン以外の顔料としては、例えば、ァゾキレート系顔料、不溶性ァゾ系顔 料、縮合ァゾ系顔料、フタロシアニン系顔料、インジゴ顔料、ペリノン系顔料、ペリレン 系顔料、ジォキサン系顔料、キナクリドン系顔料、イソインドリノン系顔料、金属錯体 顔料等の有機系着色顔料;黄鉛、黄色酸化鉄、ベンガラ、カーボンブラック等の無機 着色顔料等が挙げられる。上記顔料として、更に、炭酸カルシウム、硫酸バリウム、ク レー、タルク等の体質顔料を使用してもよい。  [0061] Examples of pigments other than titanium dioxide include, for example, azochelate pigments, insoluble azo pigments, condensed azo pigments, phthalocyanine pigments, indigo pigments, perinone pigments, perylene pigments, dioxane pigments, and quinacridone. Organic pigments such as pigments, isoindolinone pigments, and metal complex pigments; inorganic pigments such as chrome yellow, yellow iron oxide, bengara, and carbon black. As the pigment, extender pigments such as calcium carbonate, barium sulfate, clay and talc may be used.
[0062] 顔料としてカーボンブラックと二酸化チタンを主要顔料とした標準的なグレー系中 塗り塗料を用いることもできるし、上塗り塗料組成物と明度又は色相等を合わせたセ ットグレーや各種の着色顔料を組み合わせたいわゆるカラー中塗り塗料を用いること もできる。 [0062] A standard gray-based intermediate coating with carbon black and titanium dioxide as the main pigments can be used as pigments, and a set gray or various colored pigments that combine brightness or hue with the top coating composition can be used. Use a so-called color intermediate coating in combination You can also.
[0063] 顔料は、中塗り塗料組成物中において、顔料及び樹脂固形分の合計重量に対す る顔料の重量の比(PWC)が、 10〜60重量%であることが好ましい。 10重量%未満 では、顔料不足のために隠蔽性が低下するおそれがある。 60重量%を超えると、顔 料過多により硬化時の粘性増大を招き、フロー性が低下して塗膜外観が低下するこ と力 sある。 [0063] In the intermediate coating composition, the pigment preferably has a weight ratio (PWC) of the pigment to the total weight of the pigment and the resin solid content of 10 to 60% by weight. If it is less than 10% by weight, the hiding property may be lowered due to insufficient pigment. When it exceeds 60 wt%, leading to viscosity increase during curing by Pigments excessive, the appearance of the coating film is child and the force s reduced flow resistance is reduced.
[0064] 水性中塗り塗料組成物は、上記顔料分散ペーストと、中塗り塗料樹脂および中塗り 硬化剤とを混合して調製することができる。上記水性中塗り塗料中の顔料分散剤の 含有量は、固形分基準で 0. 5〜; 10重量%であることが好ましい。 0. 5重量%未満で あると、顔料分散剤の配合量が少ないために顔料の分散安定性に劣る場合がある。 10重量%を超えると、塗膜物性に劣る場合がある。好ましくは、;!〜 5重量%である。  [0064] The aqueous intermediate coating composition can be prepared by mixing the pigment dispersion paste, the intermediate coating resin, and the intermediate curing agent. The content of the pigment dispersant in the aqueous intermediate coating is preferably from 0.5 to 10% by weight based on the solid content. If it is less than 5% by weight, the pigment dispersion stability may be inferior due to the small amount of the pigment dispersant. If it exceeds 10% by weight, the physical properties of the coating film may be inferior. Preferably, !! to 5% by weight.
[0065] 中塗り塗料樹脂としては特に限定されず、例えば、アクリル樹脂、ポリエステル樹脂 、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられる。また中塗り硬化剤と しては、例えばメラミン樹脂、ァミノ樹脂、ブロックイソシァネート硬化剤などが挙げら れる。顔料分散性や作業性の点から、アクリル樹脂及び/又はポリエステル樹脂と、 メラミン樹脂および/またはブロックイソシァネート樹脂を組み合わせたものが好まし い。中塗り塗料樹脂および中塗り硬化剤はそれぞれ、 1種のみ使用することもでき、ま た塗膜性能のバランス化を計るために、 2種又はそれ以上の種類を使用することもで きる。  [0065] The intermediate coating resin is not particularly limited, and examples thereof include acrylic resin, polyester resin, alkyd resin, epoxy resin, and urethane resin. Examples of the intermediate coating curing agent include melamine resin, amino resin, and block isocyanate curing agent. From the viewpoint of pigment dispersibility and workability, a combination of acrylic resin and / or polyester resin with melamine resin and / or block isocyanate resin is preferred. Each of the intermediate coating resin and the intermediate curing agent can be used alone, or two or more types can be used in order to balance the coating film performance.
[0066] 中塗り塗料組成物が水性中塗り塗料組成物である場合は、中塗り塗料樹脂は水溶 性のものを使用するか、又は、分散樹脂、界面活性剤等の分散剤を適用して乳化分 散することによって、水性中塗り塗料中に安定に存在せしめることができる。上記水 性中塗り塗料は、更に、紫外線吸収剤、酸化防止剤、消泡剤、表面調整剤、ヮキ防 止剤等の添加剤成分を添加することができる。  [0066] When the intermediate coating composition is an aqueous intermediate coating composition, the intermediate coating resin is water-soluble, or a dispersing agent such as a dispersion resin or a surfactant is applied. By emulsifying and dispersing, it can be stably present in the aqueous intermediate coating. The water-based intermediate coating composition can further contain additive components such as an ultraviolet absorber, an antioxidant, an antifoaming agent, a surface conditioner, and an anti-fogging agent.
[0067] 中塗り塗料組成物が溶剤中塗り塗料組成物である場合、上記の中塗り塗料樹脂、 中塗り硬化剤および顔料を、有機溶媒中で撹拌することによって、調製することがで きる。上記成分の好ましい量は上記と同様である。溶剤中塗り塗料組成物の調製に 用いることができる有機溶媒として、例えば、トルエン、キシレンなどの芳香族系溶媒 ;メチルェチルケトン、アセトン、メチルイソブチルケトン、シクロへキサノンなどのケトン 系溶媒;ジェチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジォキサン、 エチレングリコーノレジメチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ、ジェチ レングリコーノレジメチノレエーテノレ、ジエチレングリコーノレジェチノレエーテノレ、プロピレ ングリコールモノメチルエーテル、ァニソール、フエネトールなどのエーテル系溶媒; 酢酸ェチル、酢酸ブチル、酢酸イソプロピル、エチレングリコールジアセテートなどの エステル系溶媒;ジメチルホルムアミド、ジェチルホルムアミド、ジメチルスルホキシド 、 N—メチルピロリドンなどのアミド系溶媒;メチルセ口ソルブ、ェチルセ口ソルブ、プチ ルセ口ソルブなどのセロソルブ系溶媒;メタノール、エタノール、プロパノールなどのァ ノレコール系溶媒;ジクロロメタン、ジクロロェタン、クロ口ホルムなどのハロゲン系溶媒; などが挙げられる。これらの溶媒は単独で用いてもよぐまた混合して用いてもよい。 また、さらに上記成分の他に必要に応じて、顔料分散剤、表面調整剤、粘性制御剤 、紫外線吸収剤、酸化防止剤等、当業者によってよく知られている各種添加剤を含 むこと力 Sでさる。 [0067] When the intermediate coating composition is a solvent intermediate coating composition, it can be prepared by stirring the intermediate coating resin, the intermediate curing agent and the pigment in an organic solvent. Preferred amounts of the above components are the same as above. Examples of organic solvents that can be used in the preparation of the solvent intermediate coating composition include aromatic solvents such as toluene and xylene. Ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclohexanone, etc .; jetyl ether, isopropyl ether, tetrahydrofuran, dioxane, ethylene glyconoresin methino eleinoate, ethylene glycono retino enoenoate, jeti Ether solvents such as lenglycolinoresimethinoreethenore, diethyleneglycolenoretinoreetherenore, propylene glycol monomethyl ether, anisole, phenetol; ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate, ethylene glycol diacetate Amide solvents such as dimethylformamide, jetylformamide, dimethyl sulfoxide and N-methylpyrrolidone; Cellosolv solvents such as lucose sorb; alcoholic solvents such as methanol, ethanol and propanol; halogen solvents such as dichloromethane, dichloroethane and chloroform; These solvents may be used alone or in combination. Further, in addition to the above components, if necessary, it is possible to include various additives well known by those skilled in the art, such as pigment dispersants, surface conditioners, viscosity control agents, ultraviolet absorbers, and antioxidants. Touch with S.
[0068] 上塗りベース塗料組成物 [0068] Topcoat base coating composition
上塗りベース塗料組成物は、上塗りベース樹脂成分、顔料および溶媒を含む。この 上塗りベース塗料組成物は、水分散系または有機溶媒分散系を含む、水性型また は溶斉 lj型のものである。  The topcoat base coating composition includes a topcoat base resin component, a pigment, and a solvent. This overcoating base coating composition is of an aqueous type or a mixed lj type including an aqueous dispersion or an organic solvent dispersion.
[0069] 上塗りベース塗料組成物が水性上塗りベース塗料組成物である場合、顔料分散剤 を用いて予め顔料を分散させた顔料分散ペーストを用いて調製することができる。こ の顔料分散剤として、上記水性中塗り塗料組成物にぉレ、て例示したものを用いること ができる。  [0069] When the topcoat base paint composition is an aqueous topcoat base paint composition, it can be prepared using a pigment dispersion paste in which a pigment is dispersed in advance using a pigment dispersant. As the pigment dispersant, those exemplified above for the aqueous intermediate coating composition can be used.
[0070] 上塗りベース塗料組成物に含まれる顔料としては、上記の着色顔料、体質顔料を 用いることができるほか、光輝性顔料を配合してメタリックベース塗料として用いること もできる。さらに、光輝性顔料を配合せずにレッド、ブルーあるいはブラック等の着色 顔料及び/又は体質顔料を配合してソリッド型の上塗りベース塗料組成物として用 いることあでさる。  [0070] As the pigment contained in the topcoat base coating composition, the above-mentioned colored pigments and extender pigments can be used, and a glittering pigment can be blended and used as a metallic base paint. Further, coloring pigments such as red, blue, and black and / or extender pigments are blended without blending bright pigments and used as solid-type topcoat base coating compositions.
[0071] 上記光輝性顔料としては特に限定されず、例えば、金属又は合金等の無着色若し くは着色された金属性光輝材及びその混合物、干渉マイ力粉、着色マイ力粉、ホワイ トマイカ粉、グラフアイト又は無色有色偏平顔料等を挙げることができる。分散性に優 れ、透明感の高い塗膜を形成することができるため、金属又は合金等の無着色若し くは着色された金属性光輝材及びその混合物が好ましい。その金属の具体例として は、アルミニウム、酸化アルミニウム、銅、亜鉛、鉄、ニッケル、スズ等を挙げることがで きる。 [0071] The luster pigment is not particularly limited, and may be, for example, an uncolored or non-colored metal or alloy In addition, a colored metallic luster material and a mixture thereof, interference my strength powder, colored my strength powder, white mica powder, graphite or colorless and flattened pigment can be used. Since it is excellent in dispersibility and can form a highly transparent coating film, an uncolored or colored metallic glitter material such as metal or alloy and a mixture thereof are preferred. Specific examples of the metal include aluminum, aluminum oxide, copper, zinc, iron, nickel, tin and the like.
[0072] 上記光輝性顔料の形状は特に限定されず、更に、着色されていてもよいが、例え ば平均粒径(D )が 2〜50 111であり、厚さが 0· 1〜5 mである鱗片状のものが好  [0072] The shape of the glitter pigment is not particularly limited and may be further colored. For example, the average particle diameter (D) is 2 to 50 111, and the thickness is 0.1 to 5 m. The scaly thing is
50  50
ましい。平均粒径 10〜35 mの範囲のものが光輝感に優れ、より好ましい。  Good. Those having an average particle size in the range of 10 to 35 m are more preferable because of excellent glitter.
[0073] 上記顔料は、 1種又は 2種以上を使用することができ、着色顔料及び体質顔料、並 びに、必要に応じ、偏平顔料及び光輝性顔料のなかから、 1種又は 2種以上を組み 合わせて用いることができる。光輝性顔料を用いる場合は、着色顔料を主要成分とし たカラーベース塗料組成物を用いて塗膜を形成し、その上に光輝性顔料を主要成 分とした光輝ベース塗料組成物を用いて塗膜を形成することも可能である。このよう な方法によって上塗りベース塗膜を形成することも可能であり、そして本発明におい ては、このような上塗りベース塗膜形成の態様も含んでいる。 [0073] One or two or more of the above pigments can be used, and one or more of pigments, extender pigments, and flat pigments and glitter pigments can be used as necessary. Can be used in combination. When using a bright pigment, a paint film is formed using a color base paint composition containing a color pigment as a main component, and a paint film using a bright base paint composition containing a bright pigment as a main component thereon. It is also possible to form It is also possible to form a top coat film by such a method, and in the present invention, such an embodiment of top coat base film formation is also included.
[0074] 水性上塗りベース塗料組成物における、顔料分散ペースト中の顔料分散剤の配合 割合は、顔料分散ペーストの固形分に対して、 3〜50重量%であることが好ましい。 [0074] The mixing ratio of the pigment dispersant in the pigment dispersion paste in the aqueous topcoat base coating composition is preferably 3 to 50% by weight based on the solid content of the pigment dispersion paste.
3重量%未満であると、顔料を安定に分散することができず、 50重量%を超えると、 得られる塗膜の物性が低下するおそれがある。  If it is less than 3% by weight, the pigment cannot be dispersed stably, and if it exceeds 50% by weight, the physical properties of the resulting coating film may be lowered.
[0075] 水性上塗りベース塗料組成物は、上記顔料分散ペーストと、上塗りベース樹脂成 分である上塗りベース樹脂及び上塗りベース硬化剤とを混合して調製することができ る。上記光輝性顔料及びその他の全ての顔料を含めた上塗りベース塗料組成物中 の顔料濃度(PWC)は、一般的には 0. ;!〜 50重量%であり、好ましくは 0. 5〜40重 量%であり、より好ましくは 1〜30重量%である。 50重量%を超えると塗膜外観が低 下するおそれがある。 [0075] The aqueous topcoat base coating composition can be prepared by mixing the pigment dispersion paste, the topcoat base resin and the topcoat base curing agent, which are the topcoat base resin components. The pigment concentration (PWC) in the top coating composition including the glitter pigment and all other pigments is generally 0.;! To 50% by weight, preferably 0.5 to 40%. % By weight, more preferably 1 to 30% by weight. If it exceeds 50% by weight, the coating film appearance may be deteriorated.
[0076] 上記水性上塗りベース塗料組成物中の顔料分散剤の含有量は、固形分基準で 1 〜20重量%であることが好ましい。 1重量%未満であると、顔料分散剤の配合量が 少ないために顔料の分散安定性に劣る場合がある。 20重量%を超えると、得られる 塗膜の物性が低下するおそれがある。 [0076] The content of the pigment dispersant in the aqueous topcoat base coating composition is preferably 1 to 20% by weight based on the solid content. If it is less than 1% by weight, the amount of the pigment dispersant is Due to the small amount, the dispersion stability of the pigment may be inferior. If it exceeds 20% by weight, the properties of the resulting coating film may be deteriorated.
[0077] 上塗りベース樹脂成分である上塗りベース樹脂および上塗りベース硬化剤、そして その他の添加剤は特に限定されるものではなぐ例えば中塗り塗料組成物で用いる こと力 Sできるものを挙げること力 Sできる。顔料分散性や作業性の点において、上塗りべ ース樹脂および上塗りベース硬化剤の組み合わせとして、アクリル樹脂及び/又は ポリエステル樹脂とメラミン樹脂との組み合わせが好ましい。 [0077] The topcoat base resin and the topcoat base curing agent, which are the topcoat base resin components, and other additives are not particularly limited. For example, they can be used in intermediate coating compositions. . From the standpoint of pigment dispersibility and workability, the combination of the topcoat base resin and the topcoat base curing agent is preferably a combination of an acrylic resin and / or a polyester resin and a melamine resin.
[0078] 水性上塗りベース塗料組成物は、水性中塗り塗料組成物と同様に調製することが できる。また、溶剤上塗りベース塗料組成物についてもまた、上記溶剤中塗り塗料組 成物と同様に調製することができる。  [0078] The aqueous topcoat base coating composition can be prepared in the same manner as the aqueous intermediate coating composition. The solvent overcoating base coating composition can also be prepared in the same manner as the above-mentioned solvent intermediate coating composition.
[0079] 上塗りクリヤー塗料組成物  [0079] Topcoat clear coating composition
上塗りタリヤー塗料組成物は、上塗りタリヤー樹脂成分、各種添加剤および溶媒を 含有する。上塗りタリヤー塗料組成物に含まれる上塗りタリヤー樹脂成分は、上塗りク リヤー塗料樹脂と必要に応じて上塗りタリヤー塗料硬化剤とから構成される。上記上 塗りタリヤー塗料組成物に含まれる上塗りタリヤー樹脂成分(上塗りタリヤー塗料樹脂 、上塗りタリヤー塗料硬化剤)、各種添加剤および有機溶媒としては、上記中塗り塗 料組成物に関して記載したものが!/、ずれも使用できる。  The topcoat coating composition contains a topcoat resin component, various additives and a solvent. The top coat resin component contained in the top coat paint composition is composed of a top clear paint resin and optionally a top coat paint curing agent. As the top coat resin component (top coat paint resin, top coat paint curing agent), various additives, and organic solvents contained in the top coat composition, those described with respect to the above-mentioned middle coat composition! / Also, the deviation can be used.
[0080] 上塗りタリヤー樹脂成分である上塗りタリヤー塗料樹脂および上塗りタリヤー塗料硬 化剤の好ましレ、組み合わせとして、アクリル樹脂とメラミン樹脂との組み合わせが挙げ られる。この場合アクリル樹脂としては、酸価 10〜200、水酸基価 30〜200、および 数平均分子量 2000〜50000のものカ好まし!/ヽ。  [0080] A preferred combination and combination of the topcoat paint resin and the topcoat paint hardener that are the topcoat resin components is a combination of an acrylic resin and a melamine resin. In this case, the acrylic resin preferably has an acid value of 10 to 200, a hydroxyl value of 30 to 200, and a number average molecular weight of 2000 to 50000!
[0081] 上塗りタリヤー塗料組成物は、上記の上塗りベース塗料組成物を塗装後、未硬化 の状態で塗装するため、粘性制御剤を添加剤として含有することが好ましい。粘度制 御剤を加えることによって、塗膜の層間のなじみや反転、またはタレなどを防止するこ と力できる。粘性制御剤の添加量は、上塗りタリヤー塗料組成物の樹脂固形分 100 重量部に対して 0. 01〜; 10重量部であるのが好ましぐ 0. 02〜8重量部であるのが より好ましく、 0. 03〜6重量部であるのがとりわけ好ましい。 10重量部を超えると、塗 膜外観が低下するおそれがあり、また 0. 01重量部未満であると、粘性制御効果が 得られず、タレ等の不具合を起こす原因となるおそれがある。 [0081] The top coat coating composition preferably contains a viscosity control agent as an additive since the top coat base coating composition is applied in an uncured state. By adding a viscosity control agent, it is possible to prevent the familiarity, inversion, or sagging of the coating layers. The addition amount of the viscosity control agent is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the resin solid content of the top coat coating composition, and more preferably 0.02 to 8 parts by weight. It is particularly preferably 0.03 to 6 parts by weight. If it exceeds 10 parts by weight, the appearance of the coating film may be deteriorated. If it is less than 0.01 part by weight, the viscosity control effect will be reduced. It may not be obtained and may cause problems such as sagging.
[0082] 上塗りタリヤー塗料組成物は、溶剤型、水性型 (水溶性、水分散性、ェマルジヨン) 、非水分散型、粉体型のいずれであってもよい。上塗りタリヤー塗料組成物は、上記 成分に加えて、必要に応じて硬化触媒、表面調整剤などを含んでもよい。上塗りタリ ヤー塗料組成物は、透明性を損なわない程度に上述した着色顔料や光輝材を配合 すること力 Sでき、更に、硬化促進剤、レべリング剤、紫外線吸収剤、光安定剤等の添 加剤を使用することができる。 [0082] The top coat coating composition may be any of a solvent type, an aqueous type (water-soluble, water-dispersible, emulsion), a non-aqueous dispersion type, and a powder type. The top coat coating composition may contain a curing catalyst, a surface conditioner and the like, if necessary, in addition to the above components. The top-coated talya coating composition can be formulated with the above-mentioned color pigments and glittering materials to such an extent that transparency is not impaired, and further includes curing accelerators, leveling agents, ultraviolet absorbers, light stabilizers and the like. Additives can be used.
[0083] 上塗りタリヤー塗料組成物は、水性中塗り塗料組成物または溶剤中塗り塗料組成 物と同様に調製すること力 Sできる。また上塗りタリヤー塗料組成物は、例えば特開 20 02— 224613号公報記載の公知の方法によって調製することもできる。また粉体上 塗りタリヤー塗料組成物として、例えば、水酸基を有するアクリル樹脂やポリエステル 樹脂と、この高分子化合物と反応可能な化合物、例えば、ァミノ樹脂、ポリイソシァネ ート、ブロックイソシァネート等とを組み合わせたもの、エポキシ基を有するアクリル樹 脂と多価カルボン酸、多価カルボン酸無水物等とを組み合わせたもの等であって、 実質的に水や有機溶媒を含有しないものを調製することができる。 [0083] The top coat coating composition can be prepared in the same manner as the water-based intermediate coating composition or the solvent intermediate coating composition. Further, the top coat coating composition can also be prepared by a known method described in, for example, JP-A No. 2002-224613. Further, as a powder top coat coating composition, for example, an acrylic resin or polyester resin having a hydroxyl group and a compound capable of reacting with this polymer compound, such as an amino resin, polyisocyanate, block isocyanate, etc. are combined. A combination of an acrylic resin having an epoxy group and a polyvalent carboxylic acid, a polyvalent carboxylic acid anhydride, etc., which does not substantially contain water or an organic solvent. .
[0084] 棚麵 ェ禾呈 [0084] Shelving
スリーコート ·ワンベータ塗装(3C1B)による複層塗膜形成方法においては、上記 方法により得られた硬化電着塗膜の上に未硬化の中塗り塗膜を形成する。未硬化の 中塗り塗膜を形成する方法として、スプレー法、ロールコーター法などを用いて中塗 り塗料組成物を塗装する方法が挙げられる。塗装方法として具体的には、「リアクトガ ン」といわれるエアー静電スプレーを用いたり、「マイクロ 'マイクロ ベル」、「マ イク口 )ベル」、「メタベル」などといわれる回転霧化式の静電塗装機を用いたりし て塗装するのが好ましい。この中で、回転霧化式の静電塗装機を用いて塗装するの 1S 特に好ましい。  In the three-coat one-beta coating (3C1B) method for forming a multilayer coating, an uncured intermediate coating is formed on the cured electrodeposition coating obtained by the above method. Examples of a method for forming an uncured intermediate coating film include a method of applying an intermediate coating composition using a spray method, a roll coater method, or the like. Specific coating methods include air electrostatic sprays called “react guns” and rotary atomization type electrostatics called “micro” micro bells, “micro mouth” bells, and “meta bells”. It is preferable to paint using a coating machine. Of these, 1S is particularly preferable for coating using a rotary atomizing electrostatic coating machine.
[0085] 中塗り塗膜の好ましい乾燥膜厚は、一般に 10〜80 111であり、より好ましくは 10〜 50 111である。但し、スリーコート'ワンベータ塗装(3C 1B)においては、中塗り塗膜 の乾燥膜厚は 10〜40 μ mであるのが好ましぐ 15—30 μ mであるのがより好まし!/ヽ 。スリーコート ·ワンベータ塗装において、中塗り塗膜の乾燥膜厚が 40 mを超える 場合は、タレ、ヮキなどが発生するおそれがあり、これにより得られる複層塗膜の外観 が劣ることとなるおそれがある。また乾燥膜厚が 10 mより薄い場合は、得られる複 層塗膜の塗膜外観、色相、チッビング性などの性能が劣ることとなるおそれがある。 [0085] A preferable dry film thickness of the intermediate coating film is generally 10 to 80 111, more preferably 10 to 50 111. However, in the three-coat 'One Beta coating (3C 1B), the dry film thickness of the intermediate coating film is preferably 10-40 μm, more preferably 15-30 μm! / ヽ. Three-coat · In one-beta coating, the dry film thickness of the intermediate coating film exceeds 40 m In such a case, there is a risk of sagging or wrinkling, and the appearance of the resulting multi-layer coating film may be inferior. On the other hand, when the dry film thickness is less than 10 m, the resulting multilayer coating film may be inferior in performance such as coating film appearance, hue, and chipping property.
[0086] このスリーコート'ワンベータ塗装においては、中塗り塗膜の形成後、加熱硬化させ ることなく次工程の上塗りベース塗膜の形成工程に移る。この場合においては、上塗 りベース塗膜を形成する前に、加熱硬化(焼付け)処理で用いられる温度より低!/、温 度でプレヒートを行なってもよ!/、。  [0086] In this three-coat 'one beta coating, after the intermediate coating film is formed, the process proceeds to the formation process of the topcoat base coating film in the next step without being heated and cured. In this case, before the overcoating base film is formed, it may be lower than the temperature used in the heat curing (baking) treatment! /, Or preheated at the temperature! /.
[0087] 上塗りベース塗膜は、中塗り塗膜上に、上塗りベース塗料組成物を塗装することに よって得られる。スリーコート'ワンベータ塗装においては、この上塗りベース塗料組 成物は、ウエットオンウエット方式で未硬化の中塗り塗膜上に塗装される。上塗りべ一 ス塗料組成物の塗装方法は特に限定されな!/、が、上記中塗り塗料組成物の塗装方 法として例示した方法を挙げることができる。上塗りベース塗料組成物を自動車車体 等に対して塗装する場合の具体的な塗装方法として、エアー静電スプレーによる多 ステージ塗装、好ましくは 2ステージ塗装を行なうことによって、意匠性を高めることが できる。または、エアー静電スプレーと上記の回転式霧化式の静電塗装機とを組合 せた塗装方法により、塗装してもよい。  [0087] The topcoat base coating film is obtained by coating the topcoat base coating composition on the intermediate coating film. In the Three Coat One Beta coating, this topcoat base coating composition is applied onto an uncured intermediate coating by a wet-on-wet method. The method of applying the top coat base coating composition is not particularly limited! /, But examples thereof include the methods exemplified as the method of applying the intermediate coating composition. As a specific coating method when the top coating base coating composition is applied to an automobile body or the like, the design can be improved by performing multi-stage coating by air electrostatic spraying, preferably two-stage coating. Or you may paint by the coating method which combined air electrostatic spray and said rotary atomization type electrostatic coating machine.
[0088] この上塗りベース塗膜を形成することにより、意匠性が付与され、そして前工程で形 成された中塗り塗膜との密着性確保および次工程で塗り重ねられる上塗りタリヤー塗 膜との密着性が確保される。上塗りベース塗膜の乾燥膜厚は、 1コートにつき 5〜50 inが好ましぐ 10〜30 111がより好ましい。上塗りベース塗膜の形成後は、加熱硬 化させることなく次工程の上塗りタリヤー塗膜の形成工程に移る。上塗りタリヤー塗膜 を形成する前に、加熱硬化(焼付け)処理で用いられる温度より低レ、温度でプレヒート を fiなってもよい。  [0088] By forming this topcoat base coating film, design properties are imparted, and adhesion with the intermediate coating film formed in the previous process is ensured, and the coating with the topcoat film coated in the next process is repeated. Adhesion is ensured. The dry film thickness of the top coat film is preferably 5 to 50 inches per coat, more preferably 10 to 30 111. After the top coat base film is formed, the process proceeds to the next top coat film forming process without heating and curing. Before forming the top coat film, preheating may be performed at a temperature lower than the temperature used in the heat curing (baking) process.
[0089] 上塗りタリヤー塗膜は、上塗りベース塗膜上に、上塗りタリヤー塗料組成物を塗装 することによって得られる。この上塗りタリヤー塗料組成物は、ウエットオンウエット方式 で、未硬化の上塗りベース塗膜上に塗装される。  [0089] The top coat film is obtained by coating the top coat composition on the top base film. This top coat coating composition is applied on the uncured top coat base film in a wet-on-wet manner.
[0090] 上記上塗りタリヤー塗膜を形成する方法は特に限定されないが、スプレー法、ロー ルコーター法等が好ましい。上記上塗りタリヤー塗膜の乾燥膜厚は、 1コートにつき 2 0〜50 111カ好ましく、 25〜40 111カょり好ましぃ。上塗りタリヤー塗膜を形成するこ とにより、上塗りベース塗膜が保護され、および得られる複層塗膜に深み感を付与す ること力 Sでさる。 [0090] A method for forming the above-mentioned top coat film is not particularly limited, but a spray method, a roll coater method, and the like are preferable. The dry film thickness of the above top coat film is 2 per coat. 0-50 111 are preferred, 25-40 111 are preferred. By forming the top coat film, the top coat base film is protected, and the depth S can be applied to the resulting multilayer film.
[0091] 本発明の 1態様であるスリーコート'ワンベータ塗装においては、上塗りタリヤー塗膜 を形成した後に、未硬化の中塗り塗膜、上塗りベース塗膜および上塗りタリヤー塗膜 の 3層の塗膜を、 120〜; 160。C、より好ましくは 140〜; 150。Cで、 25〜35分間カロ熱し て硬化させて、複層塗膜を得ること力 Sできる。この方法では、中塗り塗料組成物、上 塗りベース塗料組成物および上塗りタリヤー塗料組成物は、この順番に、それぞれゥ エツトオンウエットで塗装される。つまり未硬化の塗膜が順次形成される。本発明にお いて「未硬化」とは、完全に硬化していない状態をいい、プレヒートが行なわれた塗膜 の状態も含むものである。「プレヒート」は、加熱硬化(焼付け)処理で用いられる温度 より低い温度である室温〜 100°Cで、 1〜; 10分間放置または加熱することにより、行 なうこと力 Sできる。中塗り塗膜を形成した後および上塗りベース塗膜を形成した後にそ れぞれプレヒートを行なうことによって、より良好な仕上り外観を有する塗膜を得ること ができる。  [0091] In the three-coat 'one-beta coating, which is one embodiment of the present invention, after forming the top coat film, an uncured intermediate coat film, a top coat base coat, and a top coat film are coated with three layers. 120-; 160. C, more preferably 140-; With C, it can be cured by heating for 25 to 35 minutes to obtain a multilayer coating. In this method, the intermediate coating composition, the top coating base coating composition, and the top coating composition are each coated in wet order on the wet. That is, an uncured coating film is sequentially formed. In the present invention, “uncured” means a state in which the film is not completely cured, and includes a state of a coating film that has been preheated. “Preheating” can be performed at room temperature to 100 ° C., which is lower than the temperature used in heat curing (baking) treatment, for 1 to 10 minutes, or by standing or heating for 10 minutes. By performing preheating after forming the intermediate coating film and after forming the topcoat base coating film, a coating film having a better finished appearance can be obtained.
[0092] スリーコート'ワンベータ塗装(3C1B)において、用いる中塗り塗料組成物と上塗り ベース塗料組成物の組み合わせとして、水性中塗り塗料組成物と水性上塗りベース 塗料組成物との組み合わせで用いる力、、あるいは溶剤中塗り塗料組成物と溶剤上塗 りベース塗料組成物との組み合わせで用いるのが好ましい。このような組み合わせで 用いることによって、仕上がり外観の良好な複層塗膜を得ることができる。本発明に おけるスリーコート'ワンベータ塗装(3C1B)においては、環境保全および塗装衛生 面などの観点から、水性中塗り塗料組成物、水性上塗りベース塗料組成物および溶 剤上塗りタリヤー塗料組成物を用いるのが最も好ましレ、。  [0092] In the three-coat 'one-beta coating (3C1B), as a combination of the intermediate coating composition and the top coating base coating composition to be used, the force used in combination with the aqueous intermediate coating composition and the aqueous top coating base coating composition; Alternatively, it is preferable to use a combination of a solvent intermediate coating composition and a solvent overcoating base coating composition. By using in such a combination, a multilayer coating film having a good finished appearance can be obtained. In the three-coat 'one-beta coating (3C1B) in the present invention, an aqueous intermediate coating composition, an aqueous top coating base coating composition, and a solvent top coating tally coating composition are used from the viewpoints of environmental protection and coating hygiene. Is the most preferred.
[0093] スリーコート'ツーべーク塗装による複層塗膜の形成方法  [0093] Method of forming a multilayer coating film by three-coat 'two-bake coating
複層塗膜を得る塗装方法の他の方法である、省エネルギーなどの点にお!/、て有用 なスリーコート ·ツーベータ塗装(3C2B)による塗膜形成方法は、具体的には下記ェ 程を包含する方法である:硬化電着塗膜の上に中塗り塗料組成物を塗布して中塗り 塗膜を形成し、得られた中塗り塗膜を加熱硬化させて硬化中塗り塗膜を得る工程;得 られた硬化中塗り塗膜の上に、上塗りベース塗料組成物を塗布して、未硬化の上塗 りベース塗膜を形成する工程;得られた未硬化の上塗りベース塗膜の上に、上塗りク リヤー塗料組成物を塗布して、未硬化の上塗りタリヤー塗膜を形成する工程、および ;これらの未硬化の上塗りベース塗膜および未硬化の上塗りタリヤー塗膜を同時に加 熱硬化させる加熱工程。 In terms of energy saving, which is another method for obtaining a multi-layer coating film! /, The three-coat two-beta coating (3C2B) coating film formation method is specifically described below. The intermediate coating film is formed by applying the intermediate coating composition on the cured electrodeposition coating film, and the resulting intermediate coating film is cured by heating to obtain a cured intermediate coating film. Process; profit A step of applying an overcoating base coating composition on the cured intermediate coating film to form an uncured overcoating base coating film; Applying a rear coating composition to form an uncured top coat film; and heating step for simultaneously heating and curing these uncured top coat film and uncured top coat film.
[0094] このようなスリーコート'ツーベータ塗装(3C2B)による複層塗膜形成方法において 、中塗り塗料組成物として上記の水性中塗り塗料組成物または溶剤中塗り塗料組成 物を用いること力 Sできる。また、上塗りベース塗料組成物として、上記水性上塗りべ一 ス塗料組成物または溶剤上塗りベース塗料組成物を用いることができ、上塗りクリャ 一塗料組成物として上記の上塗りタリヤー塗料組成物を用いることができる。  [0094] In such a method of forming a multi-layer coating film by three coat two-to-beta coating (3C2B), it is possible to use the above-mentioned aqueous intermediate coating composition or solvent intermediate coating composition as the intermediate coating composition. . In addition, the above-mentioned water-based overcoating base coating composition or the solvent overcoating base coating composition can be used as the topcoating base coating composition, and the above-mentioned topcoat coating composition can be used as the overcoating clear coating composition. .
[0095] 中塗り塗膜の好ましい乾燥膜厚は、ー般に10〜80 111、より好ましくは 10〜50 mである。但し、スリーコート'ツーベータ塗装(3C2B)においては、中塗り塗膜の乾 燥膜厚は 10〜40〃111であるのが好ましぐ 15〜30〃111であるのがより好ましい。スリ 一コート'ツーベータ塗装において、中塗り塗膜の乾燥膜厚が 4(^ 111を超える場合 は、タレ、ヮキなどが発生するおそれがあり、これにより得られる複層塗膜の外観が劣 ることとなるおそれがある。また乾燥膜厚が 10 πιより薄い場合は、得られる複層塗 膜の塗膜外観、色相、チッビング性などの性能が劣ることとなるおそれがある。  [0095] The preferable dry film thickness of the intermediate coating film is generally 10 to 80 111, more preferably 10 to 50 m. However, in the three-coat 'two-beta coating (3C2B), the dry coating thickness of the intermediate coating film is preferably 10 to 40 mm 111, more preferably 15 to 30 mm 111. If the dry film thickness of the intermediate coating film exceeds 4 (^ 111 in the three-coat 'two-beta coating, there is a risk of sagging, wrinkling, etc., resulting in poor appearance of the multilayer coating film. In addition, when the dry film thickness is less than 10πι, the resulting multilayer coating film may be inferior in performance such as coating film appearance, hue, and chipping property.
[0096] スリーコート'ツーベータ塗装(3C2B)における複層塗膜形成工程は、中塗り塗膜 形成後に加熱硬化させることを除いては、スリーコート'ワンベータ塗装(3C1B)にお ける複層塗膜形成工程と同様に行うことができる。中塗り塗膜を加熱硬化させる条件 としては、 100〜250。Cの温度、より好ましくは 130〜; 180。Cの温度で、 5〜60分、よ り好ましくは 30〜40分加熱する条件が挙げられる。  [0096] The multilayer coating film forming process in the three coat 'two-beta coating (3C2B) is a multilayer coating film in the three-coat' one beta coating (3C1B) except that it is heat-cured after the intermediate coating film is formed. It can be performed in the same manner as the forming step. The condition for heat curing the intermediate coating film is 100 to 250. The temperature of C, more preferably from 130 to 180; The conditions include heating at a temperature of C for 5 to 60 minutes, more preferably 30 to 40 minutes.
[0097] ツーコート'ワンべーク塗装による複層塗膜の形成方法  [0097] Method of forming a multilayer coating film by two-coat 'one-bake coating
複層塗膜を得る塗装方法の他の方法である、ツーコート'ワンベータ塗装(2C1B) による塗膜形成方法は、具体的には下記工程を包含する方法である:硬化電着塗膜 の上に、上塗りベース塗料組成物を塗布して、未硬化の上塗りベース塗膜を形成す る工程;得られた未硬化の上塗りベース塗膜の上にタリヤー塗料組成物を塗布して、 未硬化の上塗りタリヤー塗膜を形成する工程、および;これらの未硬化の上塗りべ一 ス塗膜および未硬化の上塗りタリヤー塗膜を同時に加熱硬化させる加熱工程。 The coating method by two-coat 'one beta coating (2C1B), which is another method of coating to obtain a multilayer coating film, specifically includes the following steps: on the cured electrodeposition coating film Applying a topcoat base coating composition to form an uncured topcoat base coating; applying a tarrier coating composition on the resulting uncured topcoat base coating to form an uncured topcoat Forming a talya coating; and A heating process in which the coating film and the uncured top coat film are heated and cured simultaneously.
[0098] このようなツーコート'ワンベータ塗装(2C1B)による複層塗膜形成方法において、 上塗りベース塗料組成物として、上記水性上塗りベース塗料組成物または溶剤上塗 りベース塗料組成物を用いることができ、上塗りタリヤー塗料組成物として上記の上 塗りタリヤー塗料組成物を用いることができる。  [0098] In such a method for forming a multilayer coating film by two-coat 'one-beta coating (2C1B), the above-mentioned aqueous topcoat base paint composition or solvent topcoat base paint composition can be used as the topcoat base paint composition. The above-mentioned top coat coating composition can be used as the top coat coating composition.
[0099] ツーコート ·ワンベータ塗装(2C1B)における複層塗膜形成工程は、中塗り塗膜形 成を行うことなく上塗りベース塗料組成物および上塗りタリヤー塗料組成物を塗布す ることを除いては、スリーコート'ワンベータ塗装(3C1B)における複層塗膜形成工程 と同様に fiうことカできる。  [0099] In the two-coat one-beta coating (2C1B), the multilayer coating film forming step is performed except that the top coating base coating composition and the top coating film coating composition are applied without forming the intermediate coating film. It can be applied in the same way as the multi-layer coating formation process in Three-Coat One Beta Coating (3C1B).
[0100] ワンコート ·ワンべーク'塗装によろ 途 fllの开成  [0100] One coat · One bake
複層塗膜を得る塗装方法の他の方法である、ワンコート'ワンベータ塗装( 1 C 1 B) による塗膜形成方法は、具体的には下記工程を包含する方法である:硬化電着塗膜 の上に、上塗りソリッド塗料組成物を塗布して、未硬化の上塗りソリッド塗膜を形成す る工程、および;この未硬化の上塗りソリッド塗膜を加熱硬化させる加熱工程。  The coating method by one-coat 'one-beta coating (1 C 1 B), which is another method for obtaining a multilayer coating film, specifically includes the following steps: Curing electrodeposition coating Applying an overcoating solid coating composition on the film to form an uncured topcoating solid coating; and heating to heat cure the uncured topcoating solid coating.
[0101] 上塗りソリッド塗料組成物としては特に限定されない。例えば水性上塗りソリッド塗 料組成物である場合は、水に可溶であるか水に分散可能である高分子化合物、例え ば、水酸基とカルボキシル基とを含有するアクリル樹脂をァミン等で中和したアクリル 樹脂水溶液と、この高分子化合物と反応可能な樹脂、例えば、水に可溶であるか水 に分散可能であるアミノ樹脂やブロックイソシァネート樹脂等とを組み合わせたものな どが挙げられる。  [0101] The top coating solid coating composition is not particularly limited. For example, in the case of an aqueous topcoat solid coating composition, a polymer compound that is soluble in water or dispersible in water, for example, an acrylic resin containing a hydroxyl group and a carboxyl group is neutralized with ammine or the like. Examples thereof include a combination of an acrylic resin aqueous solution and a resin that can react with the polymer compound, such as an amino resin or a block isocyanate resin that is soluble in water or dispersible in water.
[0102] 溶剤上塗りソリッド塗料組成物としては、例えば、種々の有機溶媒に、これに可溶な 高分子化合物、例えば、水酸基を有するアクリル樹脂と、この高分子化合物と反応可 能な化合物、例えば、ァミノ樹脂、ポリイソシァネート、ブロックイソシァネート等とを組 み合わせたものなどが挙げられる。  [0102] Solvent-coated solid coating compositions include, for example, a polymer compound soluble in various organic solvents, such as an acrylic resin having a hydroxyl group, and a compound capable of reacting with the polymer compound, for example, And combinations of amino resins, polyisocyanates, block isocyanates, and the like.
[0103] 上塗りソリッド塗料組成物には顔料が含まれる。顔料として、上記中塗り塗料組成物 および/または上記上塗りベース塗料組成物で用いることができる顔料を用いること ができ、例えばカーボンブラック、フタロシアニンブルー、二酸化チタン等の周知の無 機又は有機の着色顔料が挙げられる。上塗りソリッド塗料組成物はさらに、体質顔料 、硬化促進剤、レべリング剤、紫外線吸収剤、光安定剤等の添加剤を含んでもよい。 [0103] The topcoat solid coating composition contains a pigment. As the pigment, a pigment that can be used in the above intermediate coating composition and / or the above top coating base coating composition can be used. For example, known inorganic or organic coloring pigments such as carbon black, phthalocyanine blue, and titanium dioxide. Is mentioned. The top coat solid paint composition is further an extender pigment. Further, additives such as a curing accelerator, a leveling agent, an ultraviolet absorber, and a light stabilizer may be included.
[0104] ワンコート'ワンベータ塗装(1C1B)における複層塗膜形成工程は、硬化電着塗膜 の上に、上塗りソリッド塗料組成物を塗布し、加熱硬化させることにより、複層塗膜を 得ること力 Sできる。上塗りソリッド塗膜の形成は、乾燥膜厚が 30〜; 100 mとなるよう にスプレー塗装を行うことが好ましい。また、 2ステージで塗装する等、複数回の塗り 重ねも可能である。スプレー塗装は、エアスプレー塗装機、エアレススプレー塗装機 、エア霧化式又は回転霧化式静電塗装機などを使用して行うことができる。上塗りソリ ッド塗膜を加熱硬化させる条件としては、 100〜250°Cの温度、より好ましくは 130〜 180°Cの温度で、 5〜60分、より好ましくは 30〜40分加熱する条件が挙げられる。 実施例 [0104] In the multi-layer coating film formation process in one-coat 'one-beta coating (1C1B), a multi-layer coating film is obtained by applying a top coating solid coating composition on a cured electrodeposition coating film and curing it by heating. That power S. For the formation of the top coat, it is preferable to perform spray coating so that the dry film thickness is 30 to 100 m. In addition, it can be applied multiple times, such as painting in two stages. The spray coating can be performed using an air spray coating machine, an airless spray coating machine, an air atomizing type or a rotary atomizing type electrostatic coating machine. Conditions for heating and curing the top-coated solid coating are 100 to 250 ° C, more preferably 130 to 180 ° C, and 5 to 60 minutes, more preferably 30 to 40 minutes. Can be mentioned. Example
[0105] 以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定さ れない。実施例中、「部」および「%」は、ことわりのない限り、重量基準による。  [0105] The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto. In the examples, “parts” and “%” are based on weight unless otherwise specified.
[0106] 經造例 1 カチオン電着塗料組成物の調鍵  [0106] Production Example 1 Keying of Cationic Electrodeposition Coating Composition
製造例 1 1 ァミン変性エポキシ樹脂の調製  Production Example 1 1 Preparation of Amine-modified Epoxy Resin
攪拌機、冷却管、窒素導入管、温度計および滴下漏斗を装備したフラスコに、 2, 4 以下、 MIBKと略す) 95部およびジブチル錫ジラウレート 0. 5部を仕込んだ。反応混 合物を攪拌下、メタノール 21部を滴下した。反応は、室温から始め、発熱により 60°C まで昇温した。その後、 30分間反応を継続した後、エチレングリコールモノー 2 ェ チルへキシルエーテル 50部を滴下漏斗より滴下した。更に、反応混合物に、ビスフエ ノール A—プロピレンォキシド 5モル付加体 53部を添加した。反応は主に、 60-65 °Cの範囲で行い、 IRスペクトルの測定において、イソシァネート基に基づく吸収が消 失するまで継続した。  A flask equipped with a stirrer, condenser, nitrogen inlet tube, thermometer and dropping funnel was charged with 95 parts and dibutyltin dilaurate 0.5 parts. While stirring the reaction mixture, 21 parts of methanol was added dropwise. The reaction started from room temperature and was heated to 60 ° C by exotherm. Thereafter, the reaction was continued for 30 minutes, and then 50 parts of ethylene glycol mono-2-ethylhexyl ether was added dropwise from the dropping funnel. Further, 53 parts of a bisphenol A-propylene oxide 5 mol adduct was added to the reaction mixture. The reaction was mainly carried out in the range of 60-65 ° C, and continued until the absorption based on the isocyanate group disappeared in the IR spectrum measurement.
[0107] 次に、ビスフエノール Aとェピクロルヒドリンから既知の方法で合成したエポキシ当量  [0107] Next, an epoxy equivalent synthesized from bisphenol A and epichlorohydrin by a known method.
188のエポキシ樹脂 365部を反応混合物に加えて、 125°Cまで昇温した。その後、 ベンジルジメチルァミン 1. 0部を添加し、エポキシ当量 410になるまで 130°Cで反応 させた。  365 parts of 188 epoxy resin was added to the reaction mixture and the temperature was raised to 125 ° C. Thereafter, 1.0 part of benzyldimethylamine was added and reacted at 130 ° C. until an epoxy equivalent of 410 was reached.
[0108] 続いて、ビスフエノーノレ A61部およびォクチル酸 33部を加えて 120°Cで反応させ たところ、エポキシ当量は 1190となった。その後、反応混合物を冷却し、ジエタノー ノレアミン 11部、 N ェチルエタノールァミン 24部およびアミノエチルエタノールァミン のケチミン化物の 79重量%^ 18!^溶液 25部を加え、 110°Cで 2時間反応させた。そ の後、 MIBKで不揮発分 80%となるまで希釈し、ァミン変性エポキシ樹脂(樹脂固形 分 80%)を得た。 [0108] Subsequently, 61 parts of bisphenolanol and 33 parts of octylic acid were added and reacted at 120 ° C. As a result, the epoxy equivalent was 1190. The reaction mixture is then cooled and 79 parts by weight of the ketimine product of 11 parts of diethylanolamine, 24 parts of Nethylethanolamine and aminoethylethanolamine! ^ 25 parts of the solution was added and reacted at 110 ° C for 2 hours. Thereafter, it was diluted with MIBK until the non-volatile content became 80% to obtain an amine-modified epoxy resin (resin solid content 80%).
[0109] 經造例 1 2 ブロックイソシァネート硬化剤の調製  [0109] Preparation Example 1 Preparation of 2 Block Isocyanate Curing Agent
ジフエニルメタンジイソシアナート 1250部および MIBK266. 4部を反応容器に仕 込み、これを 80°Cまで加熱した後、ジブチル錫ジラウレート 2. 5部を加えた。ここに、 ε一力プロラタタム 226部をブチルセ口ソルブ 944部に溶解させたものを 80°Cで 2時 間かけて滴下した。さらに 100°Cで 4時間加熱した後、 IRスペクトルの測定において 、イソシァネート基に基づく吸収が消失したことを確認し、放冷後、 MIBK336. 1部 を加えてガラス転移温度が 0°Cのブロックイソシァネート硬化剤を得た。  A reactor was charged with 1250 parts of diphenylmethane diisocyanate and 4 parts of MIBK266. This was heated to 80 ° C, and 2.5 parts of dibutyltin dilaurate was added. Here, 226 parts of epsilon prolatatum were dissolved in 944 parts of butylcetone sorb, and dropped at 80 ° C. over 2 hours. After further heating at 100 ° C for 4 hours, in the IR spectrum measurement, it was confirmed that the absorption based on the isocyanate group disappeared, and after cooling, 1 part MIBK336.1 was added to block the glass transition temperature at 0 ° C. An isocyanate curing agent was obtained.
[0110] g酉^ 旨の言周 ϋ  [0110] g 酉 ^
まず、攪拌装置、冷却管、窒素導入管および温度計を装備した反応容器に、イソホ ロンジイソシァネート(以下、 IPDIと略す) 222. 0部を入れ、 ΜΙΒΚ39. 1部で希釈し た後、ここへジブチル錫ジラウレート 0. 2部を加えた。その後、これを 50°Cに昇温し た後、 2 ェチルへキサノール 131. 5部を攪拌下、乾燥窒素雰囲気中で 2時間かけ て滴下した。適宜、冷却することにより、反応温度を 50°Cに維持した。その結果、 2— ェチルへキサノールノヽーフブロック化 IPDI (樹脂固形分 90· 0%)が得られた。  First, 220.0 parts of isophorone diisocyanate (hereinafter abbreviated as IPDI) was placed in a reaction vessel equipped with a stirrer, cooling pipe, nitrogen introduction pipe, and thermometer, and diluted with 39.1 parts. To this was added 0.2 part of dibutyltin dilaurate. Thereafter, the temperature was raised to 50 ° C., and 131.5 parts of 2-ethylhexanol was added dropwise over 2 hours under stirring in a dry nitrogen atmosphere. The reaction temperature was maintained at 50 ° C by cooling as appropriate. As a result, 2-ethyl hexanol nof-blocked IPDI (resin solid content: 90%) was obtained.
[0111] 次いで、適当な反応容器に、ジメチノレエタノーノレアミン 87. 2部、 75%乳酸水溶液  [0111] Next, in a suitable reaction vessel, 87.2 parts of dimethylolethanolanolamine, 75% aqueous lactic acid solution
117. 6部およびエチレングリコールモノブチルエーテル 39· 2部を順に加え、 65°C で約半時間攪拌して、 4級化剤を調製した。  117. 6 parts and 39.2 parts of ethylene glycol monobutyl ether were added in order, and the mixture was stirred at 65 ° C. for about half an hour to prepare a quaternizing agent.
[0112] 次に、エボン(EPON) 829 (シェル 'ケミカル'カンパニー社製ビスフエノーノレ A型ェ ポキシ樹月旨、エポキシ当量 193〜203) 710. 0咅とビスフエノーノレ A289. 6咅とを適 当な反応容器に仕込み、窒素雰囲気下、 150〜160°Cに加熱したところ、初期発熱 反応が生じた。反応混合物を 150〜; 160°Cで約 1時間反応させ、次いで、 120°Cに 冷却した後、先に調製した 2—ェチルへキサノールハーフブロック化 IPDI (MIBK溶 液) 498. 8部をカロえた。 [0113] 反応混合物を 110〜120°Cに約 1時間保ち、次いで、エチレングリコールモノブチ ルエーテル 463. 4部を加え、混合物を 85〜95°Cに冷却し、均一化した後、先に調 製した 4級化剤 196. 7部を添加した。酸価が 1となるまで反応混合物を 85〜95°Cに 保持した後、脱イオン水 964部を加えて、エポキシ ビスフエノール A樹脂において 4級化を終了させ、 4級アンモユウム塩部分を有する顔料分散用樹脂を得た (樹脂固 形分 50%)。 [0112] Next, EPON 829 (Bisfenore A-type epoxy epoxies, epoxy equivalents 193-203, manufactured by Shell 'Chemical' Company) 710.0 咅 and bisphenolore A289. When charged in a container and heated to 150-160 ° C under a nitrogen atmosphere, an initial exothermic reaction occurred. The reaction mixture was allowed to react at 150-; 160 ° C for about 1 hour, then cooled to 120 ° C, and then 498.8 parts of 2-ethylhexanol half-blocked IPDI (MIBK solution) prepared previously was I got it. [0113] The reaction mixture is kept at 110-120 ° C for about 1 hour, then 463.4 parts of ethylene glycol monobutyl ether is added, the mixture is cooled to 85-95 ° C, homogenized and then prepared first. 196. 7 parts of the prepared quaternizing agent was added. After maintaining the reaction mixture at 85 to 95 ° C until the acid value becomes 1, add 964 parts of deionized water to finish quaternization in epoxy bisphenol A resin, and a pigment having a quaternary ammonium salt part A resin for dispersion was obtained (resin solid content 50%).
[0114] 經造例 1 4 顔料分散ペーストおよびカチオン電着塗料組成物(1)の調製  [0114] Preparation Example 1 4 Preparation of Pigment Dispersion Paste and Cationic Electrodeposition Coating Composition (1)
サンドグラインドミルに製造例 1—3で得た顔料分散用樹脂を 100部、二酸化チタン 100. 0部およびイオン交換水 100. 0部を入れ、粒度 10 m以下になるまで分散し て、顔料分散ペーストを得た(固形分 50%)。  Add 100 parts of the pigment dispersion resin obtained in Production Example 1-3 in the sand grind mill, 100.0 parts of titanium dioxide and 10.0 parts of ion-exchanged water, and disperse until the particle size is 10 m or less. A paste was obtained (solid content 50%).
[0115] 製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 100g当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36%のエマルシヨンを得た。  [0115] The amine-modified epoxy resin obtained in Production Example 1 1 and the block isocyanate curing agent obtained in Production Example 1 2 were mixed uniformly at a solid content ratio of 80/20. Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained.
[0116] このエマルシヨン 291部および上記顔料分散ペースト 10部と、イオン交換水 1890 部と 10%酢酸セリウム水溶液 2. 6部およびジブチル錫オキサイド 1. 6部とを混合し て、固形分 5重量%のカチオン電着塗料組成物を得た。このカチオン電着塗料組成 物の固形分中に含まれる顔料の濃度は 3重量%であった。なお塗料固形分は、 180 °Cで 30分間加熱した後の残渣の質量の、元の質量に対する百分率として求めること ができる (JIS K5601に準拠)。  [0116] 291 parts of this emulsion, 10 parts of the above pigment dispersion paste, 1890 parts of ion-exchanged water, 2.6 parts of 10% cerium acetate aqueous solution and 1.6 parts of dibutyltin oxide were mixed to obtain a solid content of 5% by weight. A cationic electrodeposition coating composition was obtained. The concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 3% by weight. The solid content of the paint can be calculated as a percentage of the original mass of the residue after heating at 180 ° C for 30 minutes (conforming to JIS K5601).
[0117] 經造例 1 5 顔料分散ペーストおよびカチオン電着塗料組成物(2)の調製  [0117] Example 1 15 Preparation of pigment dispersion paste and cationic electrodeposition coating composition (2)
サンドグラインドミルに製造例 1—3で得た顔料分散用樹脂を 100部、二酸化チタン 98. 0部、カーボンブラック 2部およびイオン交換水 100. 0部を入れ、粒度 10 m以 下になるまで分散して、顔料分散ペーストを得た(固形分 50%)。  Put 100 parts of the pigment dispersion resin obtained in Production Example 1-3 in the sand grind mill, 98.0 parts of titanium dioxide, 2 parts of carbon black, and 10.0 parts of ion-exchanged water until the particle size is 10 m or less. Dispersion gave a pigment dispersion paste (solid content 50%).
[0118] 製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 100g当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36%のエマルシヨンを得た。 [0118] The amine-modified epoxy resin obtained in Production Example 1 1 and the block isocyanate curing agent obtained in Production Example 1 2 were mixed uniformly at a solid content ratio of 80/20. Add glacial acetic acid to this so that the milligram equivalent (MEQ (A)) of acid per 100g of resin solids is 30, Further, ion exchange water was added slowly to dilute. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained.
[0119] このエマルシヨン 291部および上記顔料分散ペースト 10部と、イオン交換水 1920 部と 10%酢酸セリウム水溶液 2. 6部およびジブチル錫オキサイド 1. 6部とを混合し て、固形分 5重量%のカチオン電着塗料組成物を得た。このカチオン電着塗料組成 物の固形分中に含まれる顔料の濃度は 3重量%であった。 [0119] 291 parts of this emulsion, 10 parts of the above pigment dispersion paste, 1920 parts of ion-exchanged water, 2.6 parts of 10% cerium acetate aqueous solution and 1.6 parts of dibutyltin oxide were mixed to obtain a solid content of 5% by weight. A cationic electrodeposition coating composition was obtained. The concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 3% by weight.
[0120] 經造例 1 6 顔料分散ペーストおよびカチオン電着塗料組成物(3)の調製 [0120] Preparation Example 1 6 Preparation of Pigment Dispersion Paste and Cationic Electrodeposition Coating Composition (3)
サンドグラインドミルに製造例 1—3で得た顔料分散用樹脂を 100部、二酸化チタン In a sand grind mill, 100 parts of the pigment dispersion resin obtained in Production Example 1-3, titanium dioxide
100. 0部およびイオン交換水 100. 0部を入れ、粒度 10 m以下になるまで分散し て、顔料分散ペーストを得た(固形分 50%)。 10.0 parts and 100.0 parts of ion-exchanged water were added and dispersed until the particle size became 10 m or less to obtain a pigment dispersion paste (solid content 50%).
[0121] 製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 100g当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36%のエマルシヨンを得た。 [0121] The amine-modified epoxy resin obtained in Production Example 1 1 and the block isocyanate curing agent obtained in Production Example 1 2 were mixed so as to be uniform at a solid content ratio of 80/20. Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained.
[0122] このエマルシヨン 282部および上記顔料分散ペースト 16部と、イオン交換水 1892 部と 10%酢酸セリウム水溶液 2. 6部およびジブチル錫オキサイド 1. 6部とを混合し て、固形分 5重量%のカチオン電着塗料組成物を得た。このカチオン電着塗料組成 物の固形分中に含まれる顔料の濃度は 5重量%であった。 [0122] 282 parts of this emulsion, 16 parts of the above pigment dispersion paste, 1892 parts of ion-exchanged water, 2.6 parts of 10% cerium acetate aqueous solution and 1.6 parts of dibutyltin oxide were mixed to obtain a solid content of 5% by weight. A cationic electrodeposition coating composition was obtained. The concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 5% by weight.
[0123] 經造例 1 7 顔料分散ペーストおよびカチオン電着塗料組成物(4)の調製 [0123] Example 1 17 Preparation of pigment dispersion paste and cationic electrodeposition coating composition (4)
サンドグラインドミルに製造例 1—3で得た顔料分散用樹脂を 100部、二酸化チタン In a sand grind mill, 100 parts of the pigment dispersion resin obtained in Production Example 1-3, titanium dioxide
100. 0部およびイオン交換水 100. 0部を入れ、粒度 10 m以下になるまで分散し て、顔料分散ペーストを得た(固形分 50%)。 10.0 parts and 100.0 parts of ion-exchanged water were added and dispersed until the particle size became 10 m or less to obtain a pigment dispersion paste (solid content 50%).
[0124] 製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 100g当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36%のエマルシヨンを得た。 [0125] このエマルシヨン 272部および上記顔料分散ペースト 23部と、イオン交換水 1892 部と 10%酢酸セリウム水溶液 2. 6部およびジブチル錫オキサイド 1. 5部とを混合し て、固形分 5重量%のカチオン電着塗料組成物を得た。このカチオン電着塗料組成 物の固形分中に含まれる顔料の濃度は 7重量%であった。 [0124] The amine-modified epoxy resin obtained in Production Example 1 1 and the block isocyanate curing agent obtained in Production Example 1 2 were mixed uniformly at a solid content ratio of 80/20. Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained. [0125] 272 parts of this emulsion, 23 parts of the above pigment dispersion paste, 1892 parts of ion-exchanged water, 2.6 parts of 10% cerium acetate aqueous solution and 1.5 parts of dibutyltin oxide were mixed to obtain a solid content of 5% by weight. A cationic electrodeposition coating composition was obtained. The concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 7% by weight.
[0126] 經造例 1 8 顔料分散ペーストおよびカチオン電着塗料組成物(5)の調製  [0126] Example of preparation 1 8 Preparation of pigment dispersion paste and cationic electrodeposition coating composition (5)
サンドグラインドミルに製造例 1—3で得た顔料分散用樹脂を 100部、二酸化チタン 100. 0部およびイオン交換水 100. 0部を入れ、粒度 10 m以下になるまで分散し て、顔料分散ペーストを得た(固形分 50%)。  Add 100 parts of the pigment dispersion resin obtained in Production Example 1-3 in the sand grind mill, 100.0 parts of titanium dioxide and 10.0 parts of ion-exchanged water, and disperse until the particle size is 10 m or less. A paste was obtained (solid content 50%).
[0127] 製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 100g当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36%のエマルシヨンを得た。  [0127] The amine-modified epoxy resin obtained in Production Example 1 1 and the block isocyanate curing agent obtained in Production Example 1 2 were mixed uniformly at a solid content ratio of 80/20. Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained.
[0128] このエマルシヨン 1122部および上記顔料分散ペースト 40部と、イオン交換水 811 部と 10%酢酸セリウム水溶液 2. 6部およびジブチル錫オキサイド 6. 4部とを混合し て、固形分 20重量%のカチオン電着塗料組成物を得た。このカチオン電着塗料組 成物の固形分中に含まれる顔料の濃度は 3重量%であった。  [0128] 1122 parts of this emulsion, 40 parts of the pigment dispersion paste, 811 parts of ion-exchanged water, 2.6 parts of 10% cerium acetate aqueous solution and 6.4 parts of dibutyltin oxide were mixed to obtain a solid content of 20% by weight. A cationic electrodeposition coating composition was obtained. The concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 3% by weight.
[0129] i t lW卸吝 IIの言周  [0129] i t lW Wholesale II
還流冷却器、撹拌機を備えたフラスコに、メチルイソプチルケトン 295部、メチルェ タノールァミン 37. 5部、ジエタノールァミン 52. 5部を仕込み、撹拌しながら 100°Cに 保持した。これにクレゾールノポラックエポキシ樹脂(東都化成製、商品名 YDCN— 7 03) 205部を徐々に加え、全量加え終えたのち 3時間反応させた。得られたアミノ変 性樹脂のアミン価(MEQ (B) )を測定したところ、 340mmol/100gであった。分子 量を測定したところ 2100であった。  A flask equipped with a reflux condenser and a stirrer was charged with 295 parts of methylisoptyl ketone, 37.5 parts of methylethanolamine and 52.5 parts of diethanolamine, and kept at 100 ° C. with stirring. To this, 205 parts of cresol nopolac epoxy resin (product name: YDCN-7003, manufactured by Toto Kasei) was gradually added, and after the addition was completed, the mixture was reacted for 3 hours. The amine value (MEQ (B)) of the resulting amino-modified resin was measured and found to be 340 mmol / 100 g. The molecular weight was measured to be 2100.
[0130] こうして得られたァミノ変性樹脂溶液 140部に、ギ酸 5. 5部と脱イオン水 1254. 5部 を加えて 80°Cに保持しながら 30分間撹拌し、減圧下において有機溶剤を除去し、 固形分 7. 0%の電導度制御剤を得た。  [0130] To 140 parts of the amino-modified resin solution thus obtained, 5.5 parts of formic acid and 125.55 parts of deionized water were added and stirred for 30 minutes while maintaining at 80 ° C to remove the organic solvent under reduced pressure. As a result, a conductivity control agent having a solid content of 7.0% was obtained.
[0131] 經造例 1 10 顔料分散ペーストおよびカチオン電着塗料組成物(6)の調製 サンドグラインドミルに製造例 1—3で得た顔料分散用樹脂を 100部、二酸化チタン 100. 0部およびイオン交換水 100. 0部を入れ、粒度 10 m以下になるまで分散し て、顔料分散ペーストを得た(固形分 50%)。 [0131] Preparation Example 1 10 Preparation of pigment dispersion paste and cationic electrodeposition coating composition (6) Add 100 parts of the pigment dispersion resin obtained in Production Example 1-3 in the sand grind mill, 100.0 parts of titanium dioxide and 10.0 parts of ion-exchanged water, and disperse until the particle size is 10 m or less. A paste was obtained (solid content 50%).
[0132] 製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 100g当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36%のエマルシヨンを得た。  [0132] The amine-modified epoxy resin obtained in Production Example 1 1 and the block isocyanate curing agent obtained in Production Example 1 2 were mixed uniformly at a solid content ratio of 80/20. Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained.
[0133] このエマルシヨン 280部および上記顔料分散ペースト 10部と、イオン交換水 1845 部と 10%酢酸セリウム水溶液 2. 6部と、ジブチル錫オキサイド 1. 5部および製造例 1 9で得られた電導度制御剤 54部とを混合して、固形分 5重量%のカチオン電着塗 料組成物を得た。このカチオン電着塗料組成物の固形分中に含まれる顔料の濃度 は 3重量%であった。また、このカチオン電着塗料組成物の電導度は 1000 S/c mであつに。  [0133] 280 parts of this emulsion, 10 parts of the above pigment dispersion paste, 1845 parts of ion-exchanged water, 2.6 parts of 10% aqueous cerium acetate, 1.5 parts of dibutyltin oxide, and the electrical conductivity obtained in Production Example 19 A cationic electrodeposition coating composition having a solid content of 5% by weight was obtained by mixing 54 parts of a degree control agent. The concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 3% by weight. Also, the conductivity of this cationic electrodeposition coating composition is 1000 S / cm.
[on i m^ - 1 g酉^ ペーストおよびカチオン '途^ 成 (7)の言周  [on i m ^-1 g 酉 ^ paste and cations
サンドグラインドミルに製造例 1—3で得た顔料分散用樹脂を 100部、カーボンブラ ック 1. 0 ,カ才リン 40. 0 ,二酸ィ匕チタン 50. 0 ,リンモリプ、デン酸ァノレミニゥム 9 . 0部およびイオン交換水 100. 0部を入れ、粒度 10 m以下になるまで分散して、 顔料分散ペーストを得た(固形分 50%)。  In a sand grind mill, 100 parts of the pigment dispersing resin obtained in Production Example 1-3, carbon black 1.0, moss phosphorus 40.0, titanium diacid titanium 50.0, linmolyp, anolynodenate 9 0 part and 100.0 part of ion-exchanged water were added and dispersed until the particle size became 10 m or less to obtain a pigment dispersion paste (solid content 50%).
[0135] 製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 100g当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36%のエマルシヨンを得た。  [0135] The amine-modified epoxy resin obtained in Production Example 1 1 and the block isocyanate curing agent obtained in Production Example 1 2 were mixed uniformly at a solid content ratio of 80/20. Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained.
[0136] このエマルシヨン 199部および上記顔料分散ペースト 76部と、イオン交換水 1912 部と 10%酢酸セリウム水溶液 2. 6部およびジブチル錫オキサイド 1. 3部とを混合し て、固形分 5重量%のカチオン電着塗料組成物を得た。このカチオン電着塗料組成 物の固形分中に含まれる顔料の濃度は 23重量%であった。 [0137] 比較製造例 1 2 顔料分散ペーストおよびカチオン電着塗料組成物(8)の調製 製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 100g当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36%のエマルシヨンを得た。 [0136] 199 parts of this emulsion, 76 parts of the above pigment dispersion paste, 1912 parts of ion-exchanged water, 2.6 parts of 10% cerium acetate aqueous solution and 1.3 parts of dibutyltin oxide were mixed to obtain a solid content of 5% by weight. A cationic electrodeposition coating composition was obtained. The concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 23% by weight. Comparative Production Example 1 2 Preparation of Pigment Dispersion Paste and Cationic Electrodeposition Coating Composition (8) Production Example 1 The amine-modified epoxy resin obtained in 1 and the block isocyanate curing agent obtained in Production Example 1 2 The mixture was mixed uniformly at a solid content ratio of 80/20. Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained.
[0138] このエマルシヨン 304部と、イオン交換水 1883部と 10%酢酸セリウム水溶液 2. 6部 およびジブチル錫オキサイド 1. 6部とを混合して、固形分 5重量%のカチオン電着塗 料組成物を得た。  [0138] 304 parts of this emulsion, 1883 parts of ion-exchanged water, 2.6 parts of 10% cerium acetate aqueous solution and 1.6 parts of dibutyltin oxide were mixed to form a cationic electrodeposition coating composition having a solid content of 5% by weight. I got a thing.
[0139] i m^ - 3 g酉 ¾ペーストおよびカチオン '途^ 成 (9)の言周  [0139] i m ^-3 g 酉 ¾ Paste and cation
サンドグラインドミルに製造例 1—3で得た顔料分散用樹脂を 100部、二酸化チタン 100. 0部およびイオン交換水 100. 0部を入れ、粒度 10 m以下になるまで分散し て、顔料分散ペーストを得た(固形分 50%)。  Add 100 parts of the pigment dispersion resin obtained in Production Example 1-3 in the sand grind mill, 100.0 parts of titanium dioxide and 10.0 parts of ion-exchanged water, and disperse until the particle size is 10 m or less. A paste was obtained (solid content 50%).
[0140] 製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 100g当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36%のエマルシヨンを得た。  [0140] The amine-modified epoxy resin obtained in Production Example 1 1 and the block isocyanate curing agent obtained in Production Example 1 2 were mixed uniformly at a solid content ratio of 80/20. Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained.
[0141] このエマルシヨン 259部および上記顔料分散ペースト 33部と、イオン交換水 1895 部と 10%酢酸セリウム水溶液 2. 6部およびジブチル錫オキサイド 1. 5部とを混合し て、固形分 5重量%のカチオン電着塗料組成物を得た。このカチオン電着塗料組成 物の固形分中に含まれる顔料の濃度は 10重量%であった。  [0141] 259 parts of this emulsion and 33 parts of the above pigment dispersion paste, 1895 parts of ion-exchanged water, 2.6 parts of 10% cerium acetate aqueous solution and 1.5 parts of dibutyltin oxide were mixed to obtain a solid content of 5% by weight. A cationic electrodeposition coating composition was obtained. The concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 10% by weight.
[0142] 比較製造例 1 4 顔料分散ペーストおよびカチオン電着塗料組成物(10)の調製  [0142] Comparative Production Example 1 4 Preparation of pigment dispersion paste and cationic electrodeposition coating composition (10)
サンドグラインドミルに製造例 1—3で得た顔料分散用樹脂を 100部、二酸化チタン 90. 0部、カーボンブラック 10. 0部およびイオン交換水 100. 0部を入れ、粒度 10〃 m以下になるまで分散して、顔料分散ペーストを得た(固形分 50%)。  In a sand grind mill, add 100 parts of the pigment dispersion resin obtained in Production Example 1-3, 90.0 parts of titanium dioxide, 10.0 parts of carbon black and 10.0 parts of ion-exchanged water to a particle size of 10 mm or less. A pigment dispersion paste was obtained (solid content 50%).
[0143] 製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 lOOg当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36%のエマルシヨンを得た。 [0143] The amine-modified epoxy resin obtained in Production Example 1 1 and the block isocyanate curing agent obtained in Production Example 1 2 were mixed so as to be uniform at a solid content ratio of 80/20. This is resin Glacial acetic acid was added to the mixture so that the milligram equivalent (MEQ (A)) of the acid per 30 g of solid content was 30 and further diluted with ion-exchanged water. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained.
[0144] このエマルシヨン 291部および上記顔料分散ペースト 10部と、イオン交換水 1889 部と 10%酢酸セリウム水溶液 2. 6部およびジブチル錫オキサイド 1. 6部とを混合し て、固形分 5重量%のカチオン電着塗料組成物を得た。このカチオン電着塗料組成 物の固形分中に含まれる顔料の濃度は 3重量%であった。  [0144] 291 parts of this emulsion, 10 parts of the above pigment dispersion paste, 1889 parts of ion-exchanged water, 2.6 parts of 10% cerium acetate aqueous solution and 1.6 parts of dibutyltin oxide were mixed to obtain a solid content of 5% by weight. A cationic electrodeposition coating composition was obtained. The concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 3% by weight.
[0145] 比較製造例 1 5 顔料分散ペーストおよびカチオン電着塗料組成物(11)の調製  Comparative Production Example 1 5 Preparation of pigment dispersion paste and cationic electrodeposition coating composition (11)
サンドグラインドミルに製造例 1—3で得た顔料分散用樹脂を 100部、二酸化チタン 100. 0部およびイオン交換水 100. 0部を入れ、粒度 10 m以下になるまで分散し て、顔料分散ペーストを得た(固形分 50%)。  Add 100 parts of the pigment dispersion resin obtained in Production Example 1-3 in the sand grind mill, 100.0 parts of titanium dioxide and 10.0 parts of ion-exchanged water, and disperse until the particle size is 10 m or less. A paste was obtained (solid content 50%).
[0146] 製造例 1 1で得られたァミン変性エポキシ樹脂と製造例 1 2で得られたブロック イソシァネート硬化剤とを固形分比で 80/20で均一になるよう混合した。これに樹脂 固形分 100g当たり酸のミリグラム当量 (MEQ (A) )が 30になるよう氷酢酸を添カロし、 さらにイオン交換水をゆつくりと加えて希釈した。減圧下で MIBKを除去することによ り、固形分が 36%のエマルシヨンを得た。  [0146] The amine-modified epoxy resin obtained in Production Example 1 1 and the block isocyanate curing agent obtained in Production Example 1 2 were mixed so as to be uniform at a solid content ratio of 80/20. Glacial acetic acid was added to this so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solid content was 30, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion with a solid content of 36% was obtained.
[0147] このエマルシヨン 268部および上記顔料分散ペースト 26部と、イオン交換水 1893 部と 10%酢酸セリウム水溶液 2. 6部およびジブチル錫オキサイド 1. 5部とを混合し て、固形分 5重量%のカチオン電着塗料組成物を得た。このカチオン電着塗料組成 物の固形分中に含まれる顔料の濃度は 8重量%であった。  [0147] 268 parts of this emulsion, 26 parts of the above pigment dispersion paste, 1893 parts of ion-exchanged water, 2.6 parts of 10% cerium acetate aqueous solution and 1.5 parts of dibutyltin oxide were mixed to obtain a solid content of 5% by weight. A cationic electrodeposition coating composition was obtained. The concentration of the pigment contained in the solid content of the cationic electrodeposition coating composition was 8% by weight.
[0148] 經造例 2 水性中塗り塗料組成物の調鍵  [0148] Forging example 2 Key to water-based intermediate coating composition
製造例 2 1 水溶 ポリエステル棚旨の調製  Production Example 2 1 Preparation of water-soluble polyester shelf
反応容器 ίこイソフタノレ酸 200. 0U,無水フタノレ酸 179. 0U,アジピン酸 176. 0U 、トリメチロールプロパン 150· 0部、ネオペンチルグリコール 295· 0部、ジブチルスズ オキサイド 2部を仕込み、窒素気流中で加熱し原料を融解させた後も混合撹拌しな 力 ¾170°Cまで徐々に昇温した。その後更に、 3時間かけて 220°Cまで昇温しながら 、脱水エステル交換させた。酸価が 10となったところで 150°Cまで冷却した。更に、 へキサヒドロフタル酸 114. 0部を加えて 1時間反応させて反応を終了した。更に、 10 0°Cまで冷却した後、ブチルセ口ソルブ 112. 0部を加えてポリエステル樹脂を得た。 得られたポリエステル樹脂は、固形分酸価 50、水酸基価 65、 GPC (ゲルパーミエ一 シヨンクロマトグラフィ)によって得られた重量平均分子量が 10000であった。このポリ エステル樹脂を 60°Cに冷却し、ジメチルエタノールァミン 80. 0部及びイオン交換水 を加えて、不揮発分が 50%のポリエステル樹脂を得た。 Reaction vessel ί This is an isophthalenolic acid 200.0U, phthalenoic anhydride 179.0U, adipic acid 176.00U, trimethylolpropane 150 · 0 parts, neopentylglycol 295 · 0 parts, dibutyltin oxide 2 parts, in a nitrogen stream After heating and melting the raw material, the temperature was gradually raised to ¾170 ° C without mixing and stirring. Thereafter, the temperature was raised to 220 ° C. over 3 hours, and dehydration was carried out. When the acid value reached 10, it was cooled to 150 ° C. Further, 114.0 parts of hexahydrophthalic acid was added and reacted for 1 hour to complete the reaction. In addition, 10 After cooling to 0 ° C., 112.0 parts of butylceosolve was added to obtain a polyester resin. The obtained polyester resin had a solid content acid value of 50, a hydroxyl value of 65, and a weight average molecular weight of 10,000 obtained by GPC (gel permeation chromatography). This polyester resin was cooled to 60 ° C., and 80.0 parts of dimethylethanolamine and ion-exchanged water were added to obtain a polyester resin having a nonvolatile content of 50%.
[0149] 經造例 2— 2 ポリエステル樹脂エマルシヨンの製造  [0149] Example 2—2 Production of polyester resin emulsion
イオン交換水 94部にニューコール 1120 (日本乳化剤社製) 33. 4部及びエチレン グリコールモノ n—へキシルセ口ソルブ 6部を分散させた。上記ポリエステル樹脂を 11 1. 1部撹拌しながら、先ほどの分散液中にドロップすることで、不揮発分 47. 5%のノ 二オン性分散剤で被覆されたポリエステル樹脂エマルシヨンを得た。  New Coal 1120 (manufactured by Nippon Emulsifier Co., Ltd.) (33.4 parts) and ethylene glycol mono-n-hexylcetone sorb (6 parts) were dispersed in 94 parts of ion exchange water. The polyester resin was dropped into the previous dispersion while stirring 11.1.1 parts of the above polyester resin to obtain a polyester resin emulsion coated with a nonionic dispersant having a nonvolatile content of 47.5%.
[0150] 着色 ¾料ペーストの製造  [0150] Coloring ¾Manufacturing paste
市販の顔料分散剤 Disperbyk 190 (ビックケミ一社製;固形分 40重量%) 9. 4部、 イオン交換水 36. 8部、ルチル型二酸化チタン 74. 8部、カーボンブラック 0. 03部及 び酸化鉄イェロー 0. 07部を予備混合を行った後、ペイントコンディショナー中でガラ スビーズ媒体を加え、室温で粒度 5 in以下となるまで混合分散し、着色顔料ペース トを得た。顔料ペーストの製造において、粒度 5 m以下となるまでの所要時間は、 1 5分間であった。  Commercially available pigment dispersant Disperbyk 190 (Bic Chemi Co., Ltd .; solid content 40% by weight) 9.4 parts, ion exchange water 36.8 parts, rutile titanium dioxide 74.8 parts, carbon black 0.03 parts and oxidation After premixing 0.07 parts of iron yellow, glass beads medium was added in a paint conditioner and mixed and dispersed at room temperature until the particle size became 5 in or less to obtain a colored pigment paste. In the production of the pigment paste, the time required to reach a particle size of 5 m or less was 15 minutes.
[0151] 7 半 塗り'途^ 成, の言周  [0151] 7 half-painting
製造例 2— 3で得た着色ペーストを 121. 2部、製造例 2— 1で得た水溶性ポリエス テル樹脂 28. 8部、製造例 2— 2で得たポリエステル樹脂エマルシヨン 190. 2部、サ ィメル 235 (三井サイテック社製) 33. 8部、イオン交換水 21. 1部加え、混合撹拌して 、水性中塗り塗料組成物を得た。  121.2 parts of the colored paste obtained in Production Example 2-3, 28.8 parts of water-soluble polyester resin obtained in Production Example 2-1, 190.2 parts of polyester resin emulsion obtained in Production Example 2-2, Simel 235 (manufactured by Mitsui Cytec Co., Ltd.) 33.8 parts and 21.1 parts of ion-exchanged water were added and mixed and stirred to obtain an aqueous intermediate coating composition.
[0152] 經造例 3 溶剤中塗り塗料組成物の調鍵  [0152] Forging Example 3 Keying of Solvent Intermediate Coating Composition
製造例 3— 1 ポリエステル棚旨 液の調製  Production Example 3-1 Preparation of Polyester Shelf Solution
温度計、撹拌機、温度制御装置、還流冷却器、窒素導入管および分留器を備えた 反応容器に、へキサヒドロ無水フタル酸 258部、イソフタル酸 184部、トリメチロールプ ロノ ン 213部、ネオペンチルグリコール 180部、ヒドロキシビバリン酸ネオペンチルグ リコールエステル 72部およびカージユラ Ε— 10 (シェル化学社製バーサティック酸グ リシジルエステル) 94部を仕込み、 180°Cに加熱した。上記原料が融解し撹拌が可 能となった後、ジブチルスズオキサイド 0. 2部投入して撹拌を開始し、反応容器を 18 0°Cから 220°Cまで 3時間かけて、一定の昇温速度を保ちながら昇温し、生成する縮 合水は系外へ留去した。 220°Cに達したところで撹拌したまま 1時間保温し、還流溶 剤としてキシレン 17部を徐々に添加し、さらに反応を進行させた。樹脂酸価が 10に なったところで、 150°Cに冷却し、プラクセル M (ダイセル化学工業社製 ε 一力プ ラ タトン)を 182部滴下し、撹拌したまま 1時間保持した後、 100°Cまで冷却した。さらに 、キシレン 264部を加え、 GPC測定による数平均分子量 1400、固形分 79重量%、 水酸基価 210、酸価 8のポリエステル樹脂溶液を得た。 In a reaction vessel equipped with a thermometer, stirrer, temperature controller, reflux condenser, nitrogen inlet tube and fractionator, 258 parts of hexahydrophthalic anhydride, 184 parts of isophthalic acid, 213 parts of trimethylolprone, neo 180 parts of pentyl glycol, 72 parts of neopentyl glycol hydroxybivalate and cardiura (—10 (Versatic acid group manufactured by Shell Chemical Co., Ltd.) 94 parts of lysidyl ester were charged and heated to 180 ° C. After the above raw materials have melted and stirring is possible, 0.2 part of dibutyltin oxide is charged and stirring is started, and the reaction vessel is heated from 180 ° C to 220 ° C over a period of 3 hours at a constant rate of temperature rise. While maintaining the temperature, the condensed water produced was distilled out of the system. When the temperature reached 220 ° C, the mixture was kept warm for 1 hour with stirring, and 17 parts of xylene was gradually added as a refluxing solvent to further proceed the reaction. When the resin acid value reached 10, it was cooled to 150 ° C, and 182 parts of Plaxel M (Daicel Chemical Industries, Ltd. Until cooled. Further, 264 parts of xylene was added to obtain a polyester resin solution having a number average molecular weight of 1400, a solid content of 79% by weight, a hydroxyl value of 210, and an acid value of 8 by GPC measurement.
[0153] 7k 旨 の ϋ浩  [0153] 7k
(a)分散安定樹脂の製造  (a) Production of dispersion stable resin
温度計、撹拌機、温度制御装置、還流冷却器および窒素導入管を備えた反応容 器に、酢酸ブチル 90部を仕込み、メタクリル酸メチル 38. 9部、メタクリル酸ステアリル 38. 8 , クリノレ酸 2—ヒドロキシェチノレ 22· および ゾ'ヒ、、スイソフ、'チロニトリノレ 5 . 0部からなる、計算で求められた溶解性パラメータが 9. 5であるモノマー混合液のう ち 20部を加え、撹拌しながら加熱し、 80°Cまで温度を上昇させた。還流させながら上 記モノマー混合液の残り 85· 0部を 3時間かけて滴下し、次いで、ァゾビスイソブチロ 二トリル 0. 5部および酢酸ブチル 10部からなる溶液を 30分間かけて滴下した。反応 溶液をさらに 80°Cに保持したまま 2時間撹拌還流させた後、反応を終了させ、 GPC 測定による数平均分子量 5600、固形分 50重量%の分散安定樹脂溶液を得た。  A reaction vessel equipped with a thermometer, stirrer, temperature controller, reflux condenser and nitrogen inlet tube was charged with 90 parts of butyl acetate, 38.9 parts of methyl methacrylate, 38.8 parts of stearyl methacrylate, 3/8 clinoleic acid 2 —Hydroxyethinole 22 · and 20 parts of the monomer mixture consisting of 5.0 parts of Zeo'hi, Suisov, 'tyronitrinole with a calculated solubility parameter of 9.5 and stirring. While heating, the temperature was raised to 80 ° C. While refluxing, the remaining 85.0 parts of the above monomer mixture was added dropwise over 3 hours, and then a solution consisting of 0.5 parts of azobisisobutyronitrile and 10 parts of butyl acetate was added dropwise over 30 minutes. did. The reaction solution was further stirred and refluxed for 2 hours while maintaining the temperature at 80 ° C., and then the reaction was terminated to obtain a dispersion-stable resin solution having a number average molecular weight of 5600 and a solid content of 50% by weight as measured by GPC.
[0154] (b)非水分散樹脂液の製造  [0154] (b) Production of non-aqueous dispersion resin liquid
温度計、撹拌機、温度制御装置、還流冷却器および窒素導入管を備えた反応容 器に、酢酸ブチル 35部および得られた分散安定樹脂 60部を仕込み、 100°Cに昇温 した。さらに、これにスチレン 7. 0 ,メタクリノレ酸 1 · 8 ,メタクリノレ酸メチノレ 12· 0 、アクリル酸ェチル 8. 5部、アタリノレ酸 2—ヒドロキシェチノレ 40. 7部およびァゾビスィ ソブチロニトリル 1. 4部からなる計算で求められた溶解性パラメータが 11. 8であるモ ノマー混合液を 3時間かけて滴下し、次いで、ァゾビスイソブチロニトリル 0. 1部と酢 酸ブチル 1部からなる溶液を 30分間かけて滴下した。反応溶液を撹拌したままさらに 1時間保持した後、酢酸ブチルで希釈し、平均粒子径 0. 18 111、固形分 40重量% 、 25°Cにおける粘度 300cps、ガラス転移温度 23°C、水酸基価 162の非水分散樹脂 液を得た。 A reaction vessel equipped with a thermometer, a stirrer, a temperature controller, a reflux condenser and a nitrogen introduction tube was charged with 35 parts of butyl acetate and 60 parts of the resulting dispersion-stabilizing resin, and the temperature was raised to 100 ° C. Furthermore, from this, styrene 7.0, methacrylolic acid 1 · 8, methacrylolic acid methylolate 12 · 0, ethyl acrylate 8.5 parts, attalinoleic acid 2-hydroxyethylenole 40.7 parts and azobisisobutyronitrile 1.4 parts A monomer mixture having a solubility parameter of 11.8 determined by the following calculation was added dropwise over 3 hours, and then a solution consisting of 0.1 part of azobisisobutyronitrile and 1 part of butyl acetate was added. Added dropwise over 30 minutes. While stirring the reaction solution, After holding for 1 hour, dilute with butyl acetate to give a non-aqueous dispersion of liquid with an average particle size of 0.118 111, solid content of 40 wt%, viscosity at 25 ° C of 300 cps, glass transition temperature of 23 ° C, hydroxyl value of 162 Obtained.
[0155] 經造側 3— 3 着色顔料ペーストの調鍵  [0155] Forging side 3-3 Keying of colored pigment paste
製造例 3— 1で得られたポリエステル樹脂溶液 328部に対して、ルチル型二酸化チ タン 981. 7部、カーボンブラック 0. 39部、酸化鉄イェロー 0. 92部、酢酸ブチル 159 部およびキシレン 82部を順に加え、プレミックスを行った後、 1552部のガラスビーズ を投入し、サンドグラインドミルで 3時間分散し、グラインドゲージにて粒度が 5 m以 下となった時点で分散を終了し、キシレン 81. 8部を添加した後、約 10分間撹拌し、 濾過によってガラスビーズを除去して顔料ペーストを得た。  Production Example 3-1 The polyester resin solution obtained in 3-1 was used with respect to 328 parts of rutile titanium dioxide 981.7 parts, carbon black 0.39 parts, iron oxide yellow 0.92 parts, butyl acetate 159 parts and xylene 82. 1552 parts of glass beads were added and dispersed in a sand grind mill for 3 hours. When the particle size became 5 m or less with a grind gauge, the dispersion was terminated. After adding 81.8 parts of xylene, the mixture was stirred for about 10 minutes, and the glass beads were removed by filtration to obtain a pigment paste.
[0156] m- 吝 ιι巾'塗り '塗 の言周  [0156] m- 吝 ιι width 'painting' painted words
製造例 3— 3で得た着色ペーストを 83. 1部、製造例 3— 1で得たポリエステル樹脂 溶液 21. 0部、製造例 3— 2で得た非水分散樹脂液 87. 5部、サイメル 254 (三井サイ テック社製) 37. 5部、 PTMG1000 (三菱化学社製) 5. 2部加え、混合撹拌して、中 塗り塗料組成物を得た。 83.1 parts of the colored paste obtained in Production Example 3-3, 21.0 parts of the polyester resin solution obtained in Production Example 3-1, 87.5 parts of the non-aqueous dispersion resin solution obtained in Production Example 3-2, Cymel 254 (Mitsui Cytec Co., Ltd.) 37.5 parts, PTMG1000 (Mitsubishi Chemical Co., Ltd.) 5. 2 parts were added and mixed and stirred to obtain an intermediate coating composition.
Figure imgf000038_0001
Figure imgf000038_0001
リン酸亜鉛処理した溶融亜鉛めつき鋼板 (JIS G3302規格品、 150 X 70 X 0. 8m m)に、製造例 1—4より得られたカチオン電着塗料組成物(1)を、乾燥塗膜が 15 mとなるように電着塗装し、 160°Cで 30分間焼き付け、硬化電着塗膜を得た。  The cationic electrodeposition coating composition (1) obtained in Production Example 1-4 was applied to a zinc phosphate-treated hot-dip galvanized steel sheet (JIS G3302 standard product, 150 X 70 X 0.8 mm). Was electrodeposition coated so that the thickness was 15 m and baked at 160 ° C for 30 minutes to obtain a cured electrodeposition coating film.
[0158] 得られた硬化電着塗膜上に、製造例 2により調製された水性中塗り塗料組成物を エアスプレー塗装にて 20 m塗装し、 80°Cで 5分プレヒートを行った後、アクアレック ス 2000パールマイ力ベース(日本ペイント社製水性パールマイ力ベース塗料組成物 )をエアスプレー塗装にて 13 πι塗装し、 80°Cで 3分プレヒートを行った。更に、その 塗板にマックフロー O— 1800W— 2タリヤー(日本ペイント社製酸エポキシ硬化型タリ ヤー塗料組成物)をエアスプレー塗装にて 35 a m塗装した後、 140°Cで 30分焼付 けを行い、複層塗膜を有する試験片を得た。なお、水性中塗り塗料組成物、水性上 塗りベース塗料組成物(アクアレックス AR— 2000ベース)、上塗りタリヤー塗料組成 物(マックフロー O— 1800W— 2タリヤー)は、下記条件で希釈し、塗装した。 シンナー:イオン交換水、 40秒/ No. 4フォードカップ/ 20°C (水性中塗り塗料組成 物) [0158] On the obtained cured electrodeposition coating film, the aqueous intermediate coating composition prepared in Production Example 2 was applied for 20 m by air spray coating, and pre-heated at 80 ° C for 5 minutes, AQUALEX 2000 Pearl My Strength Base (water-based Pearl My Strength base coating composition manufactured by Nippon Paint Co., Ltd.) was applied with 13 πι by air spray coating and preheated at 80 ° C for 3 minutes. In addition, Mac Flow O-1800W-2 Talia (Nippon Paint's acid-epoxy-cured tarrier paint composition) was applied to the coated plate by air spray painting for 35 am and then baked at 140 ° C for 30 minutes. A test piece having a multilayer coating film was obtained. Water-based intermediate coating composition, aqueous top-coating base coating composition (AQUAREX AR-2000 base), and top-coating tarrier coating composition (Macflow O-1800W-2 Talia) were diluted and applied under the following conditions. . Thinner: ion-exchanged water, 40 seconds / No. 4 Ford cup / 20 ° C (water-based intermediate coating composition)
シンナー:イオン交換水、 45秒/ No. 4フォードカップ/ 20°C (水性上塗りベース塗 料組成物)  Thinner: Ion-exchanged water, 45 seconds / No. 4 Ford Cup / 20 ° C (Water-based topcoat composition)
シンナー: EEP (エトキシェチルプロピオネート) /S - 150 (ェクソン社製芳香族系炭 化水素溶剤) = 1/1、 30秒/ No. 4フォードカップ /20°C (上塗りタリヤー塗料組成 物)  Thinner: EEP (ethoxyethyl propionate) / S-150 (Aromatic hydrocarbon solvent made by Exxon) = 1/1, 30 seconds / No. 4 Ford cup / 20 ° C (Top coat coating composition) )
[0159] 硬化電着塗膜の乾燥塗膜比重の測定  [0159] Measurement of specific gravity of dried electrodeposition coating film
ブリキ板 (JIS G3303規格品、 150 X 70 X 0. 3mm)に、カチオン電着塗料組成物 を、乾燥塗膜が 15 ΐηとなるように電着塗装し、 160°Cで 30分間焼き付けた。得られ た基板を水銀中へ浸潰し塗膜を遊離させた。遊離させた塗膜を 10mm角に切断し、 これを試験試料とした。この試験試料について、塗膜比重測定試験ヨウ化カリウム溶 液を用いて、 JIS K 7112に規定する浮沈法により乾燥塗膜比重を測定した。得られ た結果を表 1に示す。  A cationic electrodeposition coating composition was electrodeposited on a tin plate (JIS G3303 standard product, 150 X 70 X 0.3 mm) so that the dry coating film was 15 ΐη, and baked at 160 ° C for 30 minutes. The obtained substrate was immersed in mercury to release the coating film. The released coating was cut into 10 mm squares and used as test samples. With respect to this test sample, the dry film specific gravity was measured by a floatation / sink method specified in JIS K 7112, using a potassium iodide solution. Table 1 shows the results obtained.
[0160] 硬 窟 途 の ffiさ ft の ^ ffiMRa.)の測定  [0160] Measurement of ffi ft ^ ffiMRa.)
得られた硬化電着塗膜の水平面部分の Ra値を、 JIS— B0601— 2001に準拠し、 評価型表面粗さ測定機(Mitsutoyo社製、 SURFTEST SJ— 201P)を用いて測 定した。 2. 5mm幅カットオフ(区画数 5)として 7回測定し、上下消去平均により Ra値 を得た。なお、これらの Ra値は、値が小さいほど表面上の凹凸が少なぐ塗膜外観が 良好であることを示す。  The Ra value of the horizontal portion of the obtained cured electrodeposition coating film was measured using an evaluation type surface roughness measuring machine (SURFTEST SJ-201P, manufactured by Mitsutoyo) in accordance with JIS-B0601-2001. 2. The measurement was performed 7 times as a 5 mm width cut-off (number of sections: 5), and the Ra value was obtained by averaging the top and bottom. These Ra values indicate that the smaller the value, the better the appearance of the coating film with less irregularities on the surface.
[0161] 硬化雷着 '塗膜の明度指数 L値の測定  [0161] Hardened lightning 'Lightness index of coating film Measurement of L value
得られた硬化電着塗膜の色相について、色彩色差計 (ミノルタ CR300、ミカレタ社 製)を用いて、明度指数 L値を測定した。  About the hue of the obtained cured electrodeposition coating film, the lightness index L value was measured using a color difference meter (Minolta CR300, manufactured by Micareta).
[0162] 梅 '塗膜の色相評価  [0162] Plum 'Hue evaluation of paint film
得られた複層塗膜の色相について、色彩色差計 (ミノルタ CR300、ミカレタ社製)を 用いて、 L値、 a値、 b値を側色し、比較例 1を標準塗色(基準板)として ΔΕをもとめた 。得られた結果を表 1に示す。これらの数値は、数値間の差が小さい程、基準板との 色差が小さく良好である事を示す。なお ΔΕは、下記式によって求められる。この ΔΕ の値が 1を超える場合は、明らかな色相の変化が確認できる状態である。 Using the color difference meter (Minolta CR300, manufactured by Mikareta Co., Ltd.), the L value, a value, and b value are side-colored for the hue of the resulting multilayer coating film, and Comparative Example 1 is the standard coating color (reference plate) I found ΔΕ. The results obtained are shown in Table 1. These values indicate that the smaller the difference between the values, the better the color difference from the reference plate. ΔΕ is obtained by the following equation. This ΔΕ If the value of exceeds 1, it is in a state where a clear hue change can be confirmed.
[0163] [数 1] [0163] [Equation 1]
AE = ^AL2 + Aa2 + Ab 2 AE = ^ AL 2 + Aa 2 + Ab 2
[0164] 上記 L値、 a値及び b値は、 JIS Z 8722および JIS Z 8730に準拠して求められ る値である。 L値は、ハンターの色差式における明度指数、 a値及び b値は、ハンター の色差式におけるクロマテイクネス指数と呼ばれるものである。一般に、明度指数 L値 は、 100が上限であり、その数値が増加するにしたがい被測定物質の色相が白色度 1S その数値が低下するにしたがい黒色度が増すことを意味する。クロマテイクネス 指数である a値は、 0を基準に、数値がマイナスになる場合は被測定物質の色相にお いて緑色度が、数値がプラスになる場合は赤色度が増すことを意味する。クロマティ クネス指数である b値は、 0を基準に、数値がマイナスになる場合は被測定物質の色 相が青色度を、プラスになる場合は黄色度を増すことを意味する。  [0164] The L value, the a value, and the b value are values obtained in accordance with JIS Z 8722 and JIS Z 8730. The L value is the brightness index in the Hunter's color difference formula, and the a and b values are called the chroma takeness index in the Hunter's color difference formula. In general, the lightness index L value has an upper limit of 100, and as the value increases, the hue of the substance to be measured increases in whiteness 1S, and as the value decreases, the blackness increases. The a-value, which is the chroma takeness index, means that when the value is negative, the greenness is increased in the hue of the substance to be measured, and when the value is positive, the redness is increased. The b value, which is the chromaticness index, means that when the value is negative, the hue of the substance to be measured increases blueness, and when it is positive, the yellowness increases.
[0165] 実施例 2  [0165] Example 2
リン酸亜鉛処理した溶融亜鉛めつき鋼板 (JIS G3302規格品、 150 X 70 X 0. 8m m)に、製造例 1—4より得られたカチオン電着塗料組成物(1)を、乾燥塗膜が 15 mとなるように電着塗装し、 160°Cで 30分間焼き付け、硬化電着塗膜を得た。  The cationic electrodeposition coating composition (1) obtained in Production Example 1-4 was applied to a zinc phosphate-treated hot-dip galvanized steel sheet (JIS G3302 standard product, 150 X 70 X 0.8 mm). Was electrodeposition coated so that the thickness was 15 m and baked at 160 ° C for 30 minutes to obtain a cured electrodeposition coating film.
[0166] 得られた硬化電着塗膜上に、製造例 3により調製された溶剤中塗り塗料組成物を エアスプレー塗装にて 20 in塗装し、室温で 10分間放置した。次に、未硬化の中塗 り塗膜を形成した被塗装物に対してスーパーラック M— 1300パールマイ力ベース( 日本ペイント社製メラミン硬化型アクリル樹脂系有機溶剤型上塗りベース塗料組成物 )を 13 mとなるように塗布して未硬化の上塗りベース塗膜を得た後、室温で 20分間 放置した。更に、その塗板にマックフロー O— 1800W— 2タリヤー(日本ペイント社製 酸エポキシ硬化型タリヤー塗料組成物)をエアスプレー塗装にて 35 a m塗装した後 、 140°Cで 30分焼付けを行い、複層塗膜を有する試験片を得た。なお、溶剤中塗り 塗料組成物、溶剤上塗りベース塗料組成物(スーパーラック M— 1300ベース)、上 塗りタリヤー塗料組成物(マックフロー O— 1800W— 2タリヤー)は、下記条件で希釈 し、塗装した。 [0166] On the obtained cured electrodeposition coating film, the solvent intermediate coating composition prepared in Production Example 3 was applied by air spray coating for 20 inches and allowed to stand at room temperature for 10 minutes. Next, Superlac M-1300 Pearl My Strength Base (a melamine curable acrylic resin-based organic solvent-based top coating composition made by Nippon Paint Co., Ltd.) was applied to the object on which an uncured intermediate coating film was formed. After applying to m to obtain an uncured top coat film, it was left at room temperature for 20 minutes. In addition, Mac Flow O-1800W-2 Talia (Nippon Paint's acid epoxy curing type Talia paint composition) was applied to the coated plate by air spray coating for 35 am, and then baked at 140 ° C for 30 minutes. A test piece having a layer coating was obtained. In addition, the solvent intermediate coating composition, the solvent top coating base coating composition (Superlac M-1300 base), and the top coating composition (Macflow O-1800W-2 Talia) were diluted and applied under the following conditions. .
シンナー:ェチルエトキシプロピオネート/キシレン = 9/11、 19秒/ No. 4フォード カップ, 20。C (溶剤中塗り塗料組成物) Thinner: Ethyl ethoxypropionate / xylene = 9/11, 19 seconds / No. 4 Ford Cup, twenty. C (Solvent intermediate coating composition)
シンナー:トルエン/酢酸ブチル /メチルェチルケトン = 40/50/10、 15秒/ No . 4フォードカップ /20°C (溶剤上塗りベース塗料組成物)  Thinner: Toluene / Butyl acetate / Methylethylketone = 40/50/10, 15 seconds / No. 4 Ford Cup / 20 ° C (solvent top coating composition)
シンナー: EEP (エトキシェチルプロピオネート) /S - 150 (ェクソン社製芳香族系炭 化水素溶剤) = 1/1、 30秒/ No. 4フォードカップ /20°C (上塗りタリヤー塗料組成 物)  Thinner: EEP (ethoxyethyl propionate) / S-150 (Aromatic hydrocarbon solvent made by Exxon) = 1/1, 30 seconds / No. 4 Ford cup / 20 ° C (Top coat coating composition) )
[0167] 得られた硬化電着塗膜および複層塗膜につ!/、て、実施例 1と同様に評価試験を行 つた。結果を表 1に示す。  [0167] The obtained cured electrodeposition coating film and multilayer coating film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0168] 実施例 3 [0168] Example 3
リン酸亜鉛処理した溶融亜鉛めつき鋼板 (JIS G3302規格品、 150 X 70 X 0. 8m m)に、製造例 1—4より得られたカチオン電着塗料組成物(1)を、乾燥塗膜が 15 mとなるように電着塗装し、 160°Cで 30分間焼き付け、硬化電着塗膜を得た。  The cationic electrodeposition coating composition (1) obtained in Production Example 1-4 was applied to a zinc phosphate-treated hot-dip galvanized steel sheet (JIS G3302 standard product, 150 X 70 X 0.8 mm). Was electrodeposition coated so that the thickness was 15 m and baked at 160 ° C for 30 minutes to obtain a cured electrodeposition coating film.
[0169] 得られた硬化電着塗膜上に、ホワイト色の中塗り塗料組成物オルガ P— 5 071 (日 本ペイント社製メラミン硬化型ポリエステル樹脂系ホワイト中塗り塗料組成物)を、乾 燥膜厚が 20 mとなるようにエアスプレーで塗装し、 140°Cで 30分間焼き付けた後 冷却して、硬化中塗り塗膜を有する基板を得た。得られた基板上に、アクアレックス A R— 2000パールマイ力ベース(日本ペイント社製水性パールマイ力ベース塗料組成 物)をエアスプレー塗装にて 13 πι塗装し、 80°Cで 3分プレヒートを行った。更に、そ の塗板にマックフロー O— 1800W— 2タリヤー(日本ペイント社製酸エポキシ硬化型 タリヤー塗料組成物)をエアスプレー塗装にて 35 a m塗装した後、 140°Cで 30分焼 付けを行い試験片を得た。なお、溶剤中塗り塗料組成物 (オルガ P— 5 071)、水性 上塗りベース塗料組成物(アクアレックス 2000ベース)、上塗りタリヤー塗料組成物( マックフロー O— 1800W— 2タリヤー)は、下記条件で希釈し、塗装した。 [0169] On the obtained cured electrodeposition coating film, a white intermediate coating composition Organa P-5 071 (a melamine curable polyester resin-based white intermediate coating composition manufactured by Nippon Paint Co., Ltd.) was dried. The film was coated with air spray so that the film thickness was 20 m, baked at 140 ° C for 30 minutes, and then cooled to obtain a substrate having a cured intermediate coating film. On the obtained substrate, Aqualex AR-2000 Pearl My Strength Base (water-based Pearl My Strength base coating composition manufactured by Nippon Paint Co., Ltd.) was applied by air spray coating 13 πι, and preheated at 80 ° C for 3 minutes. It was. Furthermore, after coating Mac Flow O-1800W-2 Talia (Nippon Paint's acid epoxy curing type Talia paint composition) on the coated plate by air spray coating for 35 am, baking was performed at 140 ° C for 30 minutes. A specimen was obtained. In addition, solvent intermediate coating composition (Olga P-5 071), water-based top coating composition (Aqualex 2000 base), and top coating composition (Macflow O-1800W-2 Talia) are diluted under the following conditions. And painted.
シンナー: EEP (エトキシェチルプロピオネート)/キシレン = 9/11、 19秒/ No. 4 フォード力ップ /20°C (溶剤中塗り塗料組成物)  Thinner: EEP (Ethoxyethyl propionate) / xylene = 9/11, 19 seconds / No. 4 Ford power p / 20 ° C (solvent-coated coating composition)
シンナー:イオン交換水、 45秒/ No. 4フォードカップ/ 20°C (水性上塗りベース塗 料組成物)  Thinner: Ion-exchanged water, 45 seconds / No. 4 Ford Cup / 20 ° C (Water-based topcoat composition)
シンナー: EEP (エトキシェチルプロピオネート) /S - 150 (ェクソン社製芳香族系炭 化水素溶剤) = 1/1、 30秒/ No. 4フォードカップ /20°C (上塗りタリヤー塗料組成 物) Thinner: EEP (Ethoxyethyl propionate) / S-150 (Exon Aromatic Coal Hydrochloric acid solvent) = 1/1, 30 seconds / No. 4 Ford Cup / 20 ° C (Topcoat paint composition)
[0170] 得られた硬化電着塗膜および複層塗膜につ!/、て、実施例 1と同様に評価試験を行 つた。結果を表 1に示す。  [0170] The obtained cured electrodeposition coating film and multilayer coating film were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0171] 実施例 4 [0171] Example 4
カチオン電着塗料組成物として、製造例 1 5より得られたカチオン電着塗料組成 物(2)を用いること以外は、実施例 1と同様にして、硬化電着塗膜および複層塗膜を 得た。得られたこれらの塗膜について、実施例 1と同様に評価試験を行った。結果を 表 1に示す。  As the cationic electrodeposition coating composition, a cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1, except that the cationic electrodeposition coating composition (2) obtained from Production Example 15 was used. Obtained. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0172] ^  [0172] ^
カチオン電着塗料組成物として、製造例 1 6より得られたカチオン電着塗料組成 物(3)を用いること以外は、実施例 1と同様にして、硬化電着塗膜および複層塗膜を 得た。得られたこれらの塗膜について、実施例 1と同様に評価試験を行った。結果を 表 1に示す。  As the cationic electrodeposition coating composition, a cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1 except that the cationic electrodeposition coating composition (3) obtained in Production Example 16 was used. Obtained. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0173] rnmrne  [0173] rnmrne
カチオン電着塗料組成物として、製造例 1 7より得られたカチオン電着塗料組成 物(4)を用いること以外は、実施例 1と同様にして、硬化電着塗膜および複層塗膜を 得た。得られたこれらの塗膜について、実施例 1と同様に評価試験を行った。結果を 表 2に示す。  A cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1 except that the cationic electrodeposition coating composition (4) obtained from Production Example 17 was used as the cationic electrodeposition coating composition. Obtained. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0174] 実施例 7 [0174] Example 7
カチオン電着塗料組成物として、製造例 1 8より得られたカチオン電着塗料組成 物(5)を用いること以外は、実施例 1と同様にして、硬化電着塗膜および複層塗膜を 得た。得られたこれらの塗膜について、実施例 1と同様に評価試験を行った。結果を 表 2に示す。  As the cationic electrodeposition coating composition, a cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1, except that the cationic electrodeposition coating composition (5) obtained from Production Example 18 was used. Obtained. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0175] 実施例 8 [0175] Example 8
カチオン電着塗料組成物として、製造例 1 9より得られたカチオン電着塗料組成 物 ½)を用いること以外は、実施例 1と同様にして、硬化電着塗膜および複層塗膜を 得た。得られたこれらの塗膜について、実施例 1と同様に評価試験を行った。結果を 表 2に示す。 As the cationic electrodeposition coating composition, a cured electrodeposition coating film and a multilayer coating film were obtained in the same manner as in Example 1 except that the cationic electrodeposition coating composition obtained from Production Example 19) was used. It was. These obtained coating films were evaluated in the same manner as in Example 1. The result It is shown in Table 2.
[0176] さらに、製造例 1 9より得られたカチオン電着塗料組成物(6)を用いてつきまわり 性評価を行ったところ、つきまわり性も良好であることが確認された。なお、この付きま わり性の評価は以下の通り行った。  [0176] Further, the throwing power was evaluated using the cationic electrodeposition coating composition (6) obtained in Production Example 19, and it was confirmed that the throwing power was also good. The evaluation of the messiness was performed as follows.
[0177] つきまわり性の評価  [0177] Evaluation of throwing power
つきまわり性は、いわゆる 4枚ボックス法により評価した。すなわち、図 1にしめすよう に、 4枚のリン酸亜鉛処理鋼鈑 (JIS G3141 SPCC— SD、サーフダイン SD— 500 0 (日本ペイント社製)を用いて処理) 11〜; 14を、立てた状態で間隔 20mmで平行に 配置し、両側面下部および底面を布粘着テープ等の絶縁体で密閉したボックス 10を 調製した。なお、鋼鈑 14以外の鋼鈑 11〜; 13には下部に 8mm φの貫通穴 15が設け られている。  The throwing power was evaluated by the so-called four-sheet box method. That is, as shown in FIG. 1, four zinc phosphate-treated steel plates (treated with JIS G3141 SPCC-SD, Surfdyne SD-5500 (made by Nippon Paint Co., Ltd.)) 11 to 14 were set up. In this state, a box 10 was prepared, which was arranged in parallel with an interval of 20 mm, and the bottom and bottom of both sides were sealed with an insulator such as cloth adhesive tape. The steel plates 11 to 13 other than the steel plate 14 are provided with through holes 15 of 8 mmφ at the bottom.
[0178] カチオン電着塗料 4リットルを塩ビ製容器に移して第 1の電着浴とした。図 2に示す ように、上記ボックス 10を、被塗装物として電着塗料 21を入れた電着塗料容器 20内 に浸漬した。この場合、各貫通穴 15からのみ塗料 21がボックス 10内に侵入する。  [0178] 4 liters of cationic electrodeposition paint was transferred to a vinyl chloride container to form a first electrodeposition bath. As shown in FIG. 2, the box 10 was immersed in an electrodeposition paint container 20 containing an electrodeposition paint 21 as an object to be coated. In this case, the paint 21 enters the box 10 only from each through hole 15.
[0179] マグネチックスターラー(非表示)で塗料 21を攪拌した。そして、各鋼鈑 11〜; 14を 電気的に接続し、最も近レ、鋼鈑 11との距離が 150mmとなるように対極 22を配置し た。各鋼鈑 11〜; 14を陰極、対極 22を陽極として電圧を印加して、鋼飯にカチオン電 着塗装を行なった。塗装は、印加開始力 5秒間で鋼鈑 11の A面に形成される塗膜 の膜厚が 15 mに達する電圧まで昇圧し、その後通常電着では 175秒間その電圧 を維持することにより行った。  [0179] Paint 21 was stirred with a magnetic stirrer (not shown). The steel plates 11 to 14 were electrically connected, and the counter electrode 22 was arranged so that the distance between the steel plate 11 and the steel plate 11 was 150 mm. Cathode electrodeposition coating was performed on steel rice with a voltage applied with each steel plate 11-; 14 as a cathode and the counter electrode 22 as an anode. The coating was performed by increasing the voltage until the film thickness of the coating film formed on the A side of the steel plate 11 reached 15 m within 5 seconds of application starting force, and then maintaining that voltage for 175 seconds in normal electrodeposition. .
[0180] 塗装後の各鋼鈑は、水洗した後、 170°Cで 25分間焼き付けし、空冷後、対極 22か ら最も近 、鋼鈑 11の A面に形成された塗膜の膜厚と、対極 22から最も遠!/、鋼鈑 14 の G面に形成された塗膜の膜厚とを測定し、膜厚 (G面) /膜厚 (八面)の比 (G/A値 )によりつきまわり性を評価した。一般に、この値が 50%を超えた場合は良好であり、 この値が 50%以下の場合を不良と判断できる。  [0180] Each steel plate after coating was washed with water, baked at 170 ° C for 25 minutes, air-cooled, and the film thickness of the coating film formed on the A surface of steel plate 11 closest to counter electrode 22 , The farthest from the counter electrode 22! /, And the film thickness of the coating film formed on the G surface of the steel plate 14 was measured, and the ratio (G / A value) of the film thickness (G surface) / film thickness (eight surfaces) The throwing power was evaluated. Generally, when this value exceeds 50%, it is good, and when this value is 50% or less, it can be judged as defective.
[0181] 比較例 1  [0181] Comparative Example 1
カチオン電着塗料組成物として、比較製造例 1 1より得られたカチオン電着塗料 組成物(7)を用いること以外は、実施例 1と同様にして、硬化電着塗膜および複層塗 膜を得た。得られたこれらの塗膜について、実施例 1と同様に評価試験を行った。結 果を表 3に示す。なお、複層塗膜の色相評価については、この比較例 1の評価結果 を基準として評価を行って!/、る。 As the cationic electrodeposition coating composition, a cured electrodeposition coating film and a multilayer coating were prepared in the same manner as in Example 1, except that the cationic electrodeposition coating composition (7) obtained in Comparative Production Example 11 was used. A membrane was obtained. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 3. For the hue evaluation of the multilayer coating film, the evaluation results of Comparative Example 1 are used as a reference.
[0182] 比較例 2 [0182] Comparative Example 2
カチオン電着塗料組成物として、比較製造例 1 2より得られたカチオン電着塗料 組成物(8)を用いること以外は、実施例 1と同様にして、硬化電着塗膜および複層塗 膜を得た。得られたこれらの塗膜について、実施例 1と同様に評価試験を行った。結 果を表 3に示す。  As the cationic electrodeposition coating composition, a cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1 except that the cationic electrodeposition coating composition (8) obtained from Comparative Production Example 12 was used. Got. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 3.
[0183] 比較例 3 [0183] Comparative Example 3
カチオン電着塗料組成物として、比較製造例 1 3より得られたカチオン電着塗料 組成物(9)を用いること以外は、実施例 1と同様にして、硬化電着塗膜および複層塗 膜を得た。得られたこれらの塗膜について、実施例 1と同様に評価試験を行った。結 果を表 3に示す。  As the cationic electrodeposition coating composition, a cured electrodeposition coating film and a multilayer coating film were prepared in the same manner as in Example 1 except that the cationic electrodeposition coating composition (9) obtained from Comparative Production Example 13 was used. Got. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 3.
[0184] 比較例 4 [0184] Comparative Example 4
カチオン電着塗料組成物として、比較製造例 1 4より得られたカチオン電着塗料 組成物(10)を用いること以外は、実施例 1と同様にして、硬化電着塗膜および複層 塗膜を得た。得られたこれらの塗膜について、実施例 1と同様に評価試験を行った。 結果を表 3に示す。  As the cationic electrodeposition coating composition, a cured electrodeposition coating film and a multilayer coating film were obtained in the same manner as in Example 1 except that the cationic electrodeposition coating composition (10) obtained from Comparative Production Example 14 was used. Got. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 3.
[0185] 比較例 5 [0185] Comparative Example 5
カチオン電着塗料組成物として、比較製造例 1 5より得られたカチオン電着塗料 組成物(11)を用いること以外は、実施例 1と同様にして、硬化電着塗膜および複層 塗膜を得た。得られたこれらの塗膜について、実施例 1と同様に評価試験を行った。 結果を表 3に示す。  The cured electrodeposition coating film and the multilayer coating film were the same as in Example 1 except that the cationic electrodeposition coating composition (11) obtained from Comparative Production Example 15 was used as the cationic electrodeposition coating composition. Got. These obtained coating films were evaluated in the same manner as in Example 1. The results are shown in Table 3.
[0186] [表 1] 実施例 魏例 実施例 実施例 魏例 1 2 3 4 5 二酸化チタン 100 100 100 98 100 力才!)ン [0186] [Table 1] Example Example Example Example Example 1 2 3 4 5 Titanium dioxide 100 100 100 98 100
Fee
リンモリフ"テ"ン酸  Lingoliph "te" acid
Pair
アルミニウム  Aluminum
Completion
カ-ホ"ンフ'ラック 2  Car-ho "Nuf" rack 2
固形分中の顔料の Of pigments in solids
3.0 3.0 3.0 3.0 5.0 濃度 (重量0ん) 3.0 3.0 3.0 3.0 5.0 concentration (weight 0 I)
硬化電着塗膜の Of cured electrodeposition coating
1.21 1.21 1.21 1.21 1.22 塗 Hi 重  1.21 1.21 1.21 1.21 1.22 Paint Hi Heavy
硬化電着塗膜の Of cured electrodeposition coating
57.6 57.6 57.6 56.2 58.0 明度指数 L値  57.6 57.6 57.6 56.2 58.0 Lightness index L value
塗料固形分 (重量0 /0) 5.0 5.0 5.0 5.0 5.0 硬化電着塗膜の R a Paint solids (wt 0/0) 5.0 5.0 5.0 5.0 5.0 cured electrodeposition coating film of R a
0.18 0.18 0.18 0.18 0.19 (水平面)  0.18 0.18 0.18 0.18 0.19 (horizontal plane)
3C1B 3C1B 3C2B 3C1B 3C1B 鶴塗廳成工程 (水 tt/水 (溶剤/溶 画/水 (水性/水 水 翻) 剤/湖) 性/溶剤) 性/溶斉 D ft/湖) 中塗り塗膜の膜厚  3C1B 3C1B 3C2B 3C1B 3C1B Crane coating process (water tt / water (solvent / solution / water (aqueous / water / water) agent / lake) property / solvent) property / mixed D ft / lake) intermediate coating film Film thickness
20 20 20 20 20 (μ mノ  20 20 20 20 20 (μm
上塗りへ-、 -ス塗膜の To top coat-,-
13 13 13 13 13 艇 m)  13 13 13 13 13 Boat m)
△ L 0.09 0.08 0.07 -0.22 0.02 複層塗膜の △ a 0.06 0.07 0.06 0.04 0.10 色相評価 △ b -0.08 -0.05 -0.01 0.09 -0.05  △ L 0.09 0.08 0.07 -0.22 0.02 Multilayer coating △ a 0.06 0.07 0.06 0.04 0.10 Hue evaluation △ b -0.08 -0.05 -0.01 0.09 -0.05
ΔΕ 0.13 0.12 0.09 0.24 0.11  ΔΕ 0.13 0.12 0.09 0.24 0.11
2] 2]
実施例 魏例 実施例 Examples Examples Examples Examples
6 7 8*  6 7 8 *
二酸化チタン 100 100 100  Titanium dioxide 100 100 100
力才!)ン  Powerful!)
 Fee
リンモリフ"テ"ン酸  Lingoliph "te" acid
 Pair
アルミニウム  Aluminum
 Completion
カ-ホ"ンフ'ラック  Kaho "Nuf" rack
固形分中の顔料の  Of pigments in solids
7.0 3.0 3.0  7.0 3.0 3.0
濃度 (重量0ん) Concentration (weight 0 I)
硬化電着塗膜の  Of cured electrodeposition coating
1.25 1.21 1.21  1.25 1.21 1.21
塗 Hi 重  Paint Hi Heavy
硬化電着塗膜の  Of cured electrodeposition coating
60.2 57.6 57.6  60.2 57.6 57.6
明度指数 L値  Lightness index L value
塗料固形分 (重量0 /0) 5.0 20 5.0 Paint solids (weight 0/0) 5.0 20 5.0
硬化電着塗膜の R a  R a of cured electrodeposition coating
0.20 0.18 0.17  0.20 0.18 0.17
(水平面)  (Horizontal plane)
3C1B 3C1B 3C1B  3C1B 3C1B 3C1B
鶴塗廳成工程 (水 tt/水 (水 tt/水 性/水  Crane coating process (water tt / water (water tt / water property / water
翻) 14/湖) 性/溶剤)  14) / Lake) Sex / Solvent)
中塗り塗膜の膜厚  Film thickness of intermediate coating
20 20 20  20 20 20
(μ mノ  (μm
上塗りへ-、 -ス塗膜の  To top coat-,-
13 13 13  13 13 13
艇 m)  Boat m)
△ L 0.10 0.08 0.10  △ L 0.10 0.08 0.10
複層塗膜の △ a 0.11 0.12 0.08  △ a 0.11 0.12 0.08
色相評価 △ b -0.09 0.08 -0.06  Hue evaluation △ b -0.09 0.08 -0.06
ΔΕ 0.17 0.16 0.14  ΔΕ 0.17 0.16 0.14
:実施例 8におけるカチオン電着塗料組成物の付きまわり性 (G/A値)は 66 %と良 好であった。 : The throwing power (G / A value) of the cationic electrodeposition coating composition in Example 8 was 66%, which was good.
[表 3] [Table 3]
比較例 1 比較例 2 比較例 3 比較例 4 比較例 5 二酸化チタン 50 100 90 100 カオリン 40 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Titanium Dioxide 50 100 90 100 Kaolin 40
 Fee
リンモリフ'テ 'ン酸アルミ  Linmorif 'te' aluminum acid
組 9  Pair 9
ニゥム  Nyum
 Completion
カーホ ン; 7クク 1 10  Carphone; 7 1 10
固形分中の顔料の濃度  Concentration of pigment in solids
23. 0 0 10. 0 3. 0 8. 0 23. 0 0 10. 0 3. 0 8. 0
(重量0 /0) (Weight 0/0)
硬化電着塗膜の乾燥塗  Dry coating of cured electrodeposition coating
1. 40 1. 20 1. 30 1. 21 1. 27 膜比重  1. 40 1. 20 1. 30 1. 21 1. 27 Membrane specific gravity
硬化電着塗膜の明度指  Lightness finger of cured electrodeposition coating
56. 8 49. 6 73. 2 54. 0 64. 8 数 L値  56. 8 49. 6 73. 2 54. 0 64. 8 Number L value
塗料固形分 (重量%) 5. 0 5. 0 5. 0 5. 0 5. 0 硬化電着塗膜の R a  Paint solids (wt%) 5. 0 5. 0 5. 0 5. 0 5. 0 R a of cured electrodeposition coating
0. 29 0. 17 0. 28 0. 18 0. 27 (水平面)  0. 29 0. 17 0. 28 0. 18 0. 27 (horizontal plane)
3C1B 3C1B 3C1B 3C 1B 3C1B 複層塗膜形成工程 (水 ft/水 (水性/水 (水性/水 (水性/水 (水性/水 溶剤) 性/溶剤) 性/溶剤) 性/溶剤) 性/溶剤) 中塗り^ の,  3C1B 3C1B 3C1B 3C 1B 3C1B Multi-layer coating film formation process (water ft / water (aqueous / water (aqueous / water (aqueous / water (aqueous / water solvent)) property / solvent) property / solvent) property / solvent) property / solvent ) Middle coat ^,
20 20 20 20 20 ( β m;  20 20 20 20 20 (β m;
上塗り ' ス塗膜の膜厚  Topcoat 'film thickness
13 13 13 13 13 ( m)  13 13 13 13 13 (m)
△ L L=86. 79* -1. 01 0. 28 -0. 77 0. 18 複層塗膜の △ a a=0. 56* 0. 18 0. 06 0. 15 0. 14 色相評価 A b b=0. 79* 0. 11 0. 00 0. 18 0. 08  △ LL = 86. 79 * -1. 01 0. 28 -0. 77 0. 18 △ aa = 0. 56 * 0. 18 0. 06 0. 15 0. 14 Hue evaluation A bb = 0. 79 * 0. 11 0. 00 0. 18 0. 08
Δ Ε 1. 03 0. 29 0. 80 0. 24 :複層塗膜の色相評価においては、比較例 1の L値、 a値および b値を基準値とし、 各実施例および比較例の値と基準値との差を求めている。  Δ Ε 1. 03 0. 29 0. 80 0. 24: In the hue evaluation of the multilayer coating film, the L value, a value, and b value of Comparative Example 1 were used as reference values, and values of each Example and Comparative Example were used. And the difference between the reference value.
表 1および 2に示されるとおり、実施例により得られた複層塗膜は、カチオン電着塗 料組成物中に含まれる顔料の濃度が比較例 1の 1 2割ほどと低量であるにも関わら ず、比較例 1のものと比較して遜色ない色相を有していることがわかる。さらに、実施 例により得られた硬化電着塗膜は、 Ra値が低ぐ水平外観も良好である。また、硬化 電着塗膜の乾燥塗膜比重も低いという利点も有する。また、実施例 8のように、電導 度制御剤を含むカチオン電着塗料組成物は、塗料固形分 (重量%)が 5重量%と低 いにもかかわらず、良好なつきまわり性を示している。一方、比較例 2により得られた 複層塗膜は、 ΔΕが 1を超えており、比較例 1により得られた複層塗膜とは明らかに色 相が異なっていた。これは、塗膜の隠蔽性が劣るため、基材自体の色の影響が複層 塗膜上にも現れたためである。また、比較例 3および 5により得られた硬化電着塗膜 は、比較例 1のものと同様に Ra値が高く水平外観に劣り、さらに乾燥塗膜比重も高い ものであった。一方、比較例 4により得られた複層塗膜は、 ΔΕが 0. 80と高ぐ比較 例 1により得られた複層塗膜とは明らかに色相が異なるものであった。 As shown in Tables 1 and 2, the multi-layer coating film obtained in the example has a low concentration of the pigment contained in the cationic electrodeposition coating composition, which is about 12% of Comparative Example 1. Nevertheless, it can be seen that it has a hue comparable to that of Comparative Example 1. Furthermore, the cured electrodeposition coating films obtained by the examples also have a good horizontal appearance with a low Ra value. In addition, the cured electrodeposition coating film has an advantage that the specific gravity of the dried coating film is low. In addition, as in Example 8, the cationic electrodeposition coating composition containing the conductivity control agent shows good throwing power even though the coating solid content (wt%) is as low as 5 wt%. . On the other hand, the multilayer coating film obtained in Comparative Example 2 had a ΔΕ exceeding 1, and the hue of the multilayer coating film obtained in Comparative Example 1 was clearly different. This is because the effect of the color of the substrate itself is multi-layered because of the poor concealability of the coating film. This is because it also appeared on the coating film. Further, the cured electrodeposition coating films obtained in Comparative Examples 3 and 5 had a high Ra value, a poor horizontal appearance, and a high specific gravity of the dried coating film, as in Comparative Example 1. On the other hand, the multilayer coating film obtained in Comparative Example 4 was clearly different in hue from the multilayer coating film obtained in Comparative Example 1 where ΔΕ was as high as 0.80.
産業上の利用可能性 Industrial applicability
本発明の方法においては、顔料の含有量が少ないカチオン電着塗料組成物を用 いるにもかかわらず明度指数 L値 55以上を有し、そして優れた色相を有する複層塗 膜を形成することができる。本発明の方法を用いることによって、省エネルギーおよび コストダウンの要請に対応した焼付け硬化が少ない塗装方法により、隠蔽性などに優 れた複層塗膜を形成することができる。さらに本発明の方法によって、塗装物の軽量 化も図ることができる。  In the method of the present invention, a multilayer coating film having a lightness index L value of 55 or more and an excellent hue is formed despite the use of a cationic electrodeposition coating composition having a low pigment content. Can do. By using the method of the present invention, it is possible to form a multi-layer coating film excellent in concealing property and the like by a coating method with less baking and curing in response to demands for energy saving and cost reduction. Furthermore, the weight of the coated object can be reduced by the method of the present invention.

Claims

請求の範囲 The scope of the claims
[1] カチオン電着塗料組成物を電着塗装して電着塗膜を形成し、得られた電着塗膜を 加熱硬化させて硬化電着塗膜を得る、電着塗装工程、  [1] An electrodeposition coating process in which a cationic electrodeposition coating composition is electrodeposited to form an electrodeposition coating, and the resulting electrodeposition coating is cured by heating to obtain a cured electrodeposition coating,
得られた硬化電着塗膜の上に塗料組成物を塗布して複層塗膜を得る、複層塗膜 形成工程、  Applying the coating composition on the obtained cured electrodeposition coating film to obtain a multilayer coating film, a multilayer coating film forming step,
を包含する、複層塗膜形成方法であって、  A method for forming a multilayer coating film, comprising:
該カチオン電着塗料組成物が、電着塗料組成物の固形分中に含まれる顔料の濃 度が 2〜7重量%であるカチオン電着塗料組成物であり、  The cationic electrodeposition coating composition is a cationic electrodeposition coating composition in which the concentration of the pigment contained in the solid content of the electrodeposition coating composition is 2 to 7% by weight,
該顔料はニ酸化チタンを95〜100重量%含み、  The pigment contains 95-100% by weight of titanium dioxide,
該硬化電着塗膜は、膜厚 15 m以上において明度指数 L値 55以上を有し、 該硬化電着塗膜は、乾燥塗膜比重 1. 20〜; 1. 25を有する、  The cured electrodeposition coating film has a lightness index L value of 55 or more at a film thickness of 15 m or more, and the cured electrodeposition coating film has a dry coating film specific gravity of 1.20 to; 1.25.
複層塗膜形成方法。  A method for forming a multilayer coating film.
[2] 前記複層塗膜形成工程が、 [2] The multilayer coating film forming step includes:
硬化電着塗膜の上に中塗り塗料組成物を塗布して、未硬化の中塗り塗膜を形成す る工程、  Applying an intermediate coating composition on the cured electrodeposition coating to form an uncured intermediate coating;
得られた未硬化の中塗り塗膜の上に、上塗りベース塗料組成物を塗布して、未硬 化の上塗りベース塗膜を形成する工程、  A step of applying an overcoating base coating composition on the obtained uncured intermediate coating film to form an uncured top coating base film;
得られた未硬化の上塗りベース塗膜の上に、上塗りタリヤー塗料組成物を塗布して 、未硬化の上塗りタリヤー塗膜を形成する工程、および  A step of applying a top coat coating composition on the resulting uncured top coat base film to form an uncured top coat film; and
該未硬化の中塗り塗膜、未硬化の上塗りベース塗膜および未硬化の上塗りクリャ 一塗膜を同時に加熱硬化させる加熱工程、  A heating step of simultaneously heating and curing the uncured intermediate coating film, the uncured top coating base coating film, and the uncured top coating clear coating film,
を包含する、請求項 1記載の複層塗膜形成方法。  The method for forming a multilayer coating film according to claim 1, comprising:
[3] 前記複層塗膜形成工程が、 [3] The multilayer coating film forming step comprises:
硬化電着塗膜の上に中塗り塗料組成物を塗布して中塗り塗膜を形成し、得られた 中塗り塗膜を加熱硬化させて硬化中塗り塗膜を得る工程、  Applying the intermediate coating composition on the cured electrodeposition coating film to form an intermediate coating film, and heat-curing the obtained intermediate coating film to obtain a cured intermediate coating film;
得られた硬化中塗り塗膜の上に、上塗りベース塗料組成物を塗布して、未硬化の 上塗りベース塗膜を形成する工程、  A step of applying an overcoating base coating composition on the obtained intermediate cured coating film to form an uncured top coating base film,
得られた未硬化の上塗りベース塗膜の上に、上塗りタリヤー塗料組成物を塗布して 、未硬化の上塗りタリヤー塗膜を形成する工程、および On top of the resulting uncured topcoat base coating film, apply a topcoat coating composition. Forming an uncured top coat film, and
該未硬化の上塗りベース塗膜および未硬化の上塗りタリヤー塗膜を同時に加熱硬 化させる加熱工程、  A heating step of simultaneously heating and curing the uncured topcoat base coating and the uncured topcoat film.
を包含する、請求項 1記載の複層塗膜形成方法。  The method for forming a multilayer coating film according to claim 1, comprising:
[4] 前記複層塗膜形成工程において形成される硬化中塗り塗膜の膜厚が 10〜40 ^ m である、請求項 2または 3記載の複層塗膜形成方法。 [4] The method for forming a multilayer coating film according to claim 2 or 3, wherein the thickness of the cured intermediate coating film formed in the multilayer coating film forming step is 10 to 40 ^ m.
[5] 前記複層塗膜形成工程が、 [5] The multilayer coating film forming step includes:
硬化電着塗膜の上に、上塗りベース塗料組成物を塗布して、未硬化の上塗りべ一 ス塗膜を形成する工程、  Applying an overcoating base coating composition on the cured electrodeposition coating to form an uncured top-coating base coating;
得られた未硬化の上塗りベース塗膜の上にタリヤー塗料組成物を塗布して、未硬 化の上塗りタリヤー塗膜を形成する工程、および  A step of applying a talya coating composition on the obtained uncured topcoat base coating to form an uncured topcoat talya coating; and
該未硬化の上塗りベース塗膜および未硬化の上塗りタリヤー塗膜を同時に加熱硬 化させる加熱工程、  A heating step of simultaneously heating and curing the uncured topcoat base coating and the uncured topcoat film.
を包含する、請求項 1記載の複層塗膜形成方法。  The method for forming a multilayer coating film according to claim 1, comprising:
[6] 前記複層塗膜形成工程が、 [6] The multilayer coating film forming step includes:
硬化電着塗膜の上に、上塗りソリッド塗料組成物を塗布して、未硬化の上塗りソリッ ド塗膜を形成する工程、および  Applying a topcoat solid coating composition on the cured electrodeposition coating to form an uncured topcoat solid coating; and
該未硬化の上塗りソリッド塗膜を加熱硬化させる加熱工程、  A heating step of heating and curing the uncured topcoat solid coating film;
を包含する、請求項 1記載の複層塗膜形成方法。  The method for forming a multilayer coating film according to claim 1, comprising:
[7] 前記中塗り塗料組成物が水性中塗り塗料組成物であって、前記上塗りベース塗料 組成物が水性上塗りベース塗料組成物であるか、または [7] The intermediate coating composition is an aqueous intermediate coating composition, and the topcoat base coating composition is an aqueous topcoat base composition, or
前記中塗り塗料組成物が溶剤中塗り塗料組成物であって、前記上塗りベース塗料組 成物が溶剤上塗りベース塗料組成物である、  The intermediate coating composition is a solvent intermediate coating composition, and the topcoat base coating composition is a solvent topcoat base composition,
請求項 2記載の複層塗膜形成方法。  The method for forming a multilayer coating film according to claim 2.
[8] 請求項 1〜7いずれかに記載の複層塗膜形成方法により得られる複層塗膜。 [8] A multilayer coating film obtained by the multilayer coating film forming method according to any one of [1] to [7].
PCT/JP2007/064655 2006-08-02 2007-07-26 Method for forming multilayer coating film WO2008015955A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008527719A JPWO2008015955A1 (en) 2006-08-02 2007-07-26 Multi-layer coating formation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-211022 2006-08-02
JP2006211022 2006-08-02

Publications (1)

Publication Number Publication Date
WO2008015955A1 true WO2008015955A1 (en) 2008-02-07

Family

ID=38997134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064655 WO2008015955A1 (en) 2006-08-02 2007-07-26 Method for forming multilayer coating film

Country Status (3)

Country Link
JP (1) JPWO2008015955A1 (en)
TW (1) TW200812710A (en)
WO (1) WO2008015955A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118790A1 (en) * 2010-03-26 2011-09-29 日本ペイント株式会社 Water-based coating composition, and process for formation of coating film and process for formation of multilayer coating film, which comprise using the water-based coating composition
JP2015218355A (en) * 2014-05-16 2015-12-07 神東アクサルタコーティングシステムズ株式会社 Coating method of cation electrodeposition paint

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532919A (en) * 1991-07-25 1993-02-09 Kansai Paint Co Ltd Resin composition for electrodeposition coating material
JPH1043673A (en) * 1996-08-01 1998-02-17 Shinto Paint Co Ltd Method for forming composite coating film for automobile
JPH1043674A (en) * 1996-08-06 1998-02-17 Shinto Paint Co Ltd Method for forming composite coating film for automobile
JP2002126627A (en) * 2000-10-26 2002-05-08 Nippon Paint Co Ltd Method for forming multilayered coating film, multilayered coating film and water-based intermediate coating material composition
JP2004231989A (en) * 2003-01-28 2004-08-19 Kansai Paint Co Ltd The eco-friendly electrodeposition painting method and painted article
JP2004275971A (en) * 2003-03-18 2004-10-07 Nippon Paint Co Ltd Method for forming double layer coating film, double layer coating film and article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532919A (en) * 1991-07-25 1993-02-09 Kansai Paint Co Ltd Resin composition for electrodeposition coating material
JPH1043673A (en) * 1996-08-01 1998-02-17 Shinto Paint Co Ltd Method for forming composite coating film for automobile
JPH1043674A (en) * 1996-08-06 1998-02-17 Shinto Paint Co Ltd Method for forming composite coating film for automobile
JP2002126627A (en) * 2000-10-26 2002-05-08 Nippon Paint Co Ltd Method for forming multilayered coating film, multilayered coating film and water-based intermediate coating material composition
JP2004231989A (en) * 2003-01-28 2004-08-19 Kansai Paint Co Ltd The eco-friendly electrodeposition painting method and painted article
JP2004275971A (en) * 2003-03-18 2004-10-07 Nippon Paint Co Ltd Method for forming double layer coating film, double layer coating film and article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118790A1 (en) * 2010-03-26 2011-09-29 日本ペイント株式会社 Water-based coating composition, and process for formation of coating film and process for formation of multilayer coating film, which comprise using the water-based coating composition
CN102822289A (en) * 2010-03-26 2012-12-12 日本油漆株式会社 Water-based coating composition, and process for formation of coating film and process for formation of multilayer coating film, which comprise using the water-based coating composition
JP5465778B2 (en) * 2010-03-26 2014-04-09 日本ペイント株式会社 Aqueous coating composition, coating film forming method and multilayer coating film forming method using the aqueous coating composition
CN102822289B (en) * 2010-03-26 2017-06-27 日本涂料有限公司 Water-based paint compositions and the coating film-forming methods and method of forming layered coating film using the water-based paint compositions
JP2015218355A (en) * 2014-05-16 2015-12-07 神東アクサルタコーティングシステムズ株式会社 Coating method of cation electrodeposition paint

Also Published As

Publication number Publication date
TW200812710A (en) 2008-03-16
JPWO2008015955A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US20100270162A1 (en) Cationic electrodeposition coating composition
JP4060620B2 (en) Electrodeposition coating method using lead-free cationic electrodeposition paint
JP2013203966A (en) Cathodic electrodeposition coating composition
GB2129807A (en) Cationic electrocoating paint compositions
JP2009114468A (en) Method of forming electrodeposition film and method of forming multilayer coating film
CA3104442A1 (en) Method of improving the corrosion resistance of a metal substrate
JP5555569B2 (en) Cured electrodeposition coating film and method for forming multilayer coating film
JP2002285393A (en) Method for forming laminated coating film and laminated coating film
JP2008229433A (en) Method for forming multilayer coating film
JP5154318B2 (en) Multi-layer coating formation method
JP5476830B2 (en) Electrodeposition coating film forming method and multilayer coating film forming method
JP4201923B2 (en) Multi-layer electrodeposition coating film and method for forming multilayer coating film including the coating film
US6582575B2 (en) Coating film-forming method
WO2008015955A1 (en) Method for forming multilayer coating film
KR20090046905A (en) Conductivity control agent for cationic electrodeposition coating material and method of regulating electric conductivity of cationic electrodeposition coating material using the same
JP2002282773A (en) Method of forming multilayered film and multilayered film
JP2009050793A (en) Method of forming multilayered coating film
JP5476831B2 (en) Electrodeposition coating film forming method and multilayer coating film forming method
JP2012031440A (en) Electrodeposition film forming method, and double-layer coating film forming method using the same
JP2005238222A (en) Method of forming multi-layer coating film
CN114867796A (en) Electrodeposition coating composition containing lampblack pigment
KR20040041073A (en) Process for forming cured gradient coating film and multi-layered coating film containing the same
JP2008231452A (en) Method for depositing multilayer coating film
JP2020100732A (en) Cationic electrodeposition coating composition and method for producing cationic electrodeposition coating film
JP4817506B2 (en) Multi-layer coating film forming method and multi-layer coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008527719

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791355

Country of ref document: EP

Kind code of ref document: A1