WO2008013478A1 - Composite sialon-based ceramic material and a method for the production thereof - Google Patents

Composite sialon-based ceramic material and a method for the production thereof Download PDF

Info

Publication number
WO2008013478A1
WO2008013478A1 PCT/RU2007/000385 RU2007000385W WO2008013478A1 WO 2008013478 A1 WO2008013478 A1 WO 2008013478A1 RU 2007000385 W RU2007000385 W RU 2007000385W WO 2008013478 A1 WO2008013478 A1 WO 2008013478A1
Authority
WO
WIPO (PCT)
Prior art keywords
sialon
silicon dioxide
nitrogen
ceramic material
magnesium
Prior art date
Application number
PCT/RU2007/000385
Other languages
French (fr)
Russian (ru)
Inventor
Nikolay Victorovich Stepanov
Svetlana Evgenyevna Stelmak
Petr Anatolievich Aleksandrov
Evegeniy Viktorovich Burlakov
Mikhail Andreevich Pavlov
Evgeniy Stepanovich Lukin
Original Assignee
Nikolay Victorovich Stepanov
Svetlana Evgenyevna Stelmak
Petr Anatolievich Aleksandrov
Evegeniy Viktorovich Burlakov
Mikhail Andreevich Pavlov
Evgeniy Stepanovich Lukin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikolay Victorovich Stepanov, Svetlana Evgenyevna Stelmak, Petr Anatolievich Aleksandrov, Evegeniy Viktorovich Burlakov, Mikhail Andreevich Pavlov, Evgeniy Stepanovich Lukin filed Critical Nikolay Victorovich Stepanov
Publication of WO2008013478A1 publication Critical patent/WO2008013478A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the proposed group of inventions relates to refractory materials, in particular, to a composite ceramic material based on sialon, and a method for producing products from it.
  • the present invention can be used for the manufacture of building materials, mechanical engineering parts, metal cutting tools, metal forming tools and for plain bearings, etc.
  • the known material has high thermal resistance, as well as erosion and corrosion resistance to metal melts.
  • composition of the material includes oxides of titanium, iron, potassium, while using almost pure aluminum 99.7%.
  • the problems solved by the proposed group of inventions are the creation of composite ceramic material based on sialon and a method for producing products from it, which can reduce the time to obtain products with improved physical and mechanical characteristics , i.e. reduce the porosity of the product and thereby increase its thermal insulation properties.
  • the technical result in the present invention is achieved by creating a composite ceramic material based on sialon containing silicon dioxide, aluminum, nitrogen, in which according to the invention, calcium, sodium and magnesium and a plasticizer are additionally introduced, and aluminum is used in the form of aluminum powder, with the following components, in mass%: silicon dioxide (SiCh) 91.7-81.4 aluminum powder (Al) 3-5 magnesium (Mg) 0.1-0.5 calcium (Ca) 0.01-0.1 sodium (Na) 0.001-0.01 nitrogen (Ng) 5-10 plasticizer 0.1-3
  • the invention is also characterized in that Polycarbosilane is used as a plasticizer.
  • the proposed composite ceramic material is cheap compared to the prototype, because cheap raw materials used:
  • the technical result in the present invention is achieved by creating a method of manufacturing a product from Sialon, including preparing a mixture of components, grinding, forming a semi-finished product and obtaining the finished product in a nitrogen atmosphere, in which, according to the invention, silicon dioxide is pre-crushed, the mixture is prepared by mixing aluminum powder, magnesium calcium, sodium, nitrogen, plasticizer and crushed silicon dioxide, then hydrostatic formation of the semi-finished product is carried out Ia with subsequent multi-stage heat treatment.
  • the invention is also characterized in that multistage heat treatment is carried out at the first stage by a slow temperature increase for 90-100 min to a temperature of 180-200 0 C, then heated to 600 -750 0 C with a shutter speed of 10-15 minutes, and further heating to 1400-1450 0 C with exposure for 15-30 minutes.
  • the proposed method allows to reduce the time of manufacturing products, due to the additional saturation of the mixture components of ionizable azone released from polycarbosilane and the introduction of azone.
  • the proposed composite ceramic material and method of manufacturing a product from Sialon are environmentally friendly, because There are no emissions of harmful substances into the atmosphere and an increase in oxygen in the air due to the use of nitrogen.
  • a method of manufacturing a product from sialon is as follows:
  • Pre-crushed silicon dioxide for example in a jet mill.
  • the content of the components included in the composition of the material is selected in the following limits, wt%: silicon dioxide (SiCh) 91, 7-81, 4 aluminum powder (Al) 3-5 magnesium (Mg) OD-0.5 calcium (Ca) 0.01 - 0.1 sodium (Na) 0.001-0.01 nitrogen (N 2 ) 5 -10
  • SiCh silicon dioxide
  • Al aluminum powder
  • Mg magnesium
  • Table l shows the results of their various contents in s and their influence on the properties of the material.
  • the mixture is prepared by mixing aluminum powder, magnesium (Mg), calcium (Ca), sodium (Na), nitrogen (Ng), a plasticizer and crushed silicon dioxide.
  • Dispersing the aluminum powder in a solution of a ceramic-forming polymer (polycarbosilane) in benzene or another solvent is designed for uniform distribution of aluminum in the volume of sand.
  • the semi-finished product is hydrostatically formed by hydrostatic pressing, the modes of which are known and the applicant does not claim to be new.
  • Multistage heat treatment is carried out at the first stage by slowly increasing the temperature for 90-100 minutes to a temperature of 180-200 0 C at a rate of 2 ° C / min, then heating to 600 -750 0 C with a shutter speed of 10-15 minutes, and then heating to 1400-1450 0 C with holding for 15-30 minutes.
  • silicon is restored from its dioxide due to aluminothermy with the release of heat of reaction and subsequent nitriding of silicon, also with the release of heat.
  • ionized azone even at atmospheric pressure, provides a high nitriding rate, and, as a result of non-porous sintering in a short time of 30-45 minutes.
  • the properties of sialon depend on the amount of aluminum and carbosilane, but both components increase the cost of the product.
  • the product from sialon should not contain more than 5% of aluminum and carbosilane.
  • whiskers of sialon grow on the internal surfaces of the product, significantly reducing its thermal conductivity.
  • E is the modulus of elasticity, To TR - coefficient of thermal expansion, Q - thermal conductivity, ⁇ T - thermal cycling
  • the proposed composite ceramic material based on sialon is a nanocrystalline material with a noticeable proportion of sialon glass.
  • the high binding energy in the molecular components of the material (Si 3 N 4 , AlN, Al 2 O 3 , Si 2 N 2 O, SiC) determines its high strength and heat resistance.
  • the proposed material does not melt even at 3200 0 C, but begins to sublimate with the absorption of a large amount of heat.
  • the practical absence of water absorption ( ⁇ 0, l%) and chemical resistance make it possible to use the proposed material as a building material with high resistance to atmospheric and seismic effects.
  • Blocks are interconnected using sealant and structural elements of the blocks obtained in their manufacture. Sealants need very little due to the high accuracy of the manufacture of blocks.
  • the proposed composite ceramic material is approximately 10 times more durable than brick and concrete, has 3-5 times lower coefficient of thermal expansion, has

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

The group of inventions relates to refractory materials, in particular to a composite sialon-based ceramic material and to the method for the production thereof. The invention can be used for producing construction materials, machine parts, metal-cutting tools, metal-shaping tools, plain bearings etc. The inventive composite sialon-based ceramic material also comprises calcium, sodium, magnesium and a plasticiser, wherein aluminium is embodied in the form of a powder, at the following component ratio expressed in mass %: 91.7-81.4 silicon dioxide (SiO2), 3.0-5.0 aluminium powder (Al), 0.1-0.5 magnesium (Mg), 0.01-0.1 calcium (Ca), 0.001-0.01 sodium (Na), 5.0-10.0 nitrogen (N2) and 0.1-3.0 plasticiser (polycarbosilane). The inventive method for producing articles made of sialon consists in pre-grinding silicon dioxide, in preparing a mixture by mixing aluminium powder, magnesium, sodium, nitrogen, plasticiser and ground silicon dioxide, in hydrostatically forming a semi-finished product and subsequently in exposing said semi-finished product to multi-stage heat treatment.

Description

Композиционный керамический материал на основе сиалона и способ получения изделий из него. Composite ceramic material based on sialon and a method for producing products from it.
Область техники.The field of technology.
Предлагаемая группа изобретений относится к огнеупорным материалам, в частности, к композиционному керамическому материалу на основе сиалона, и способу получения из него изделий .The proposed group of inventions relates to refractory materials, in particular, to a composite ceramic material based on sialon, and a method for producing products from it.
Предлагаемое изобретение может быть использовано для изготовления стройматериалов, деталей машиностроения, металлорежущего инструмента, инструмента для обработки металлов давлением и для подшипников скольжения , и т.д.The present invention can be used for the manufacture of building materials, mechanical engineering parts, metal cutting tools, metal forming tools and for plain bearings, etc.
Предшествующий уровень техники.The prior art.
Известен композиционный керамический материал, содержащий нитрид кремния, нитрид алюминия, оксид кремния, оксид алюминия, нитрид бора, углерод, борид, силицид, карбид, нитрид, оксид переходного металла Ш-Уl группы периодической системы, карбид и/или борид кремния, карбид бора и по крайней мере один оксид металла с размером частиц 0,1 - 10,0 мкм из группы, включающей литий, бериллий, магний, кальций, стронций, барий. (см. заявку РФ N293045157 по кл. C04B35/58, 1993 г.) Известный материал обладает повышенной термической стойкостью, а также эрозионно-коррозийной стойкостью по отношению к расплавам металлов.Known composite ceramic material containing silicon nitride, aluminum nitride, silicon oxide, aluminum oxide, boron nitride, carbon, boride, silicide, carbide, nitride, transition metal oxide Sh-Ul group of the periodic system, silicon carbide and / or silicon boride, boron carbide and at least one metal oxide with a particle size of 0.1 to 10.0 μm from the group comprising lithium, beryllium, magnesium, calcium, strontium, barium. (see RF application N293045157 according to class C04B35 / 58, 1993). The known material has high thermal resistance, as well as erosion and corrosion resistance to metal melts.
Однако, он имеет ряд существенных недостатков, а именно, большое содержание компонентов, большая часть которых дорогостоящие.However, it has a number of significant drawbacks, namely, the high content of components, most of which are expensive.
Наиболее близким по технической сущности к предлагаемому решению является композиционный керамический материал на основе сиалона, содержащий диоксид кремния, алюминий, азот и пластификатор (сорник докладов конференции по «Пpимeнeнию высокопрочной керамики в изделиях машиностроения))The closest in technical essence to the proposed solution is a composite ceramic material based on sialon, containing silicon dioxide, aluminum, nitrogen and a plasticizer (weed of conference reports on “Application high-strength ceramics in engineering products))
1967г., статья S. Тfmеbауаshi, Nаtiопаl Iпdustriаl Rеsеаrсh Iпstitutе оf Куushu, Shuku-machi,Tosu City,Saga Рrеf.Дарап.Соmроsitiопs iп thе Si6-ZAIZOZN8-Z system», 1967, ). Кроме того, в состав материала входят оксиды титана, железа, калия, при этом используют практически чистый алюминий 99,7% .. 1967, article S. Tfmebauashi, Natiopal Ipdustrial Researsh Ipstitute ° F Kuushu, Shuku-machi, Tosu City, Saga Ip Rref.Darap.Somrositiops the Si 6 - Z AI Z O Z N 8-Z system », 1967). In addition, the composition of the material includes oxides of titanium, iron, potassium, while using almost pure aluminum 99.7%.
Наиболее близким по технической сущности к предлагаемому изобретению является способ получения изделий из композиционного материала на основе сиалона, включающий приготовление смеси компонентов, ее измельчение, формирование полуфабриката и получение готового изделия в атмосфере азота (сборник докладов конференции по «Пpимeнeнию высокопрочной керамики в изделиях машиностроения)), статья S. Тfmеbауаshi, Nаtiопаl Iпdustriаl Rеsеаrсh Iпstitutе оf Куushu, Shuku-mасhi, Тоsu Сitу, Sаgа Рrеf, Jарап, Соmроsitiопs iп thе Si6-zAlz02N8-z system», 1967)Closest to the technical nature of the present invention is a method for producing products from a composite material based on sialon, including preparing a mixture of components, grinding it, forming a semi-finished product and obtaining a finished product in a nitrogen atmosphere (conference proceedings on the use of high-strength ceramics in mechanical engineering products)) article S. Tfmebauashi, Natiopal Ipdustrial Researsh Ipstitute ° F Kuushu, Shuku-mashi, Situ Tosu, Saga Rref, Jarap, Ip Somrositiops the Si 6- zAl z 0 2 N8 -z system », 1967)
Недостатками группы известных технических решений, а именно, композиционного материала и способа получения изделия из него являются:The disadvantages of the group of known technical solutions, namely, composite material and the method of obtaining products from it are:
Большое количество алюминия в материале усложняет управление процессом алюмотермии, что приводит к увеличению пористости материала;A large amount of aluminum in the material complicates the control of the aluminothermy process, which leads to an increase in the porosity of the material;
- включение в состав материала компонентов с разным сродством к кислороду и разными температурами раскисления усложняет проведение процесса изготовления изделия, структура сиалона в котором является гетарофазной, а это приводит к резкому снижению механических свойств сиалона.- the inclusion in the material composition of components with different affinities for oxygen and different deoxidation temperatures complicates the manufacturing process of the product, the structure of the sialon in which is heterophasic, and this leads to a sharp decrease in the mechanical properties of the sialon.
-использования только чистого диоксида кремния SiОг (песка) без примесей глинистых пород, т.к. изделие получают путем горячего прессования при высоких температурах 1750-22000C5 а это приводит к большим затратам электроэнергии.-use only pure silica SiOg (sand) without clay impurities, because the product is obtained by hot pressing at high temperatures 1750-2200 0 C 5 and this leads to high energy costs.
- долгое время протекания процесса получения изделия в атмосфере азота при очень больших давлениях до 500A Задачами, решаемыми предлагаемой группой изобретений, являются создание композиционного керамического материала на основе сиалона и способа получения из него изделия, которые позволяют уменьшить время получения изделия с повышенными физико-механическими характеристиками ,т.e. уменьшить пористость изделия и тем самым повысить его теплоизоляционные свойства.- a long time of the process of obtaining the product in a nitrogen atmosphere at very high pressures up to 500A. The problems solved by the proposed group of inventions are the creation of composite ceramic material based on sialon and a method for producing products from it, which can reduce the time to obtain products with improved physical and mechanical characteristics , i.e. reduce the porosity of the product and thereby increase its thermal insulation properties.
Технический результат в предлагаемом изобретение достигают созданием композиционного керамического материала на основе сиалона, содержащего диоксид кремния, алюминий, азот, в который согласно изобретению, дополнительно введены кальций, натрий и магний и пластификатор, причем алюминий используют в виде алюминиевой пудры, при следующим содержание компонентов, в масс %: диоксид кремния (SiCh) 91,7-81,4 алюминиевая пудра (Al) 3- 5 магний (Mg) 0,1- 0,5 кaльций(Ca) 0,01 - 0,1 натрий (Na ) 0,001- 0,01 азот (Nг) 5 -10 пластификатор 0,1- 3 Изобретение также характеризуется тем, что в качестве пластификатора используют поликарбосилан.The technical result in the present invention is achieved by creating a composite ceramic material based on sialon containing silicon dioxide, aluminum, nitrogen, in which according to the invention, calcium, sodium and magnesium and a plasticizer are additionally introduced, and aluminum is used in the form of aluminum powder, with the following components, in mass%: silicon dioxide (SiCh) 91.7-81.4 aluminum powder (Al) 3-5 magnesium (Mg) 0.1-0.5 calcium (Ca) 0.01-0.1 sodium (Na) 0.001-0.01 nitrogen (Ng) 5-10 plasticizer 0.1-3 The invention is also characterized in that Polycarbosilane is used as a plasticizer.
Это позволяет ввести в состав композиционного керамического материала дополнительный необходимый для повышения физико- механических свойств материала ионизированный азот. Предлагаемый композиционный керамический материал является дешевым по сравнению с прототипом, т.к. использовано дешевое сырье:This allows introducing into the composition of the composite ceramic material additional ionized nitrogen necessary to increase the physicomechanical properties of the material. The proposed composite ceramic material is cheap compared to the prototype, because cheap raw materials used:
- используют любой песок с содержанием глины и любой фракции; - используют отходы алюминиевого производства в виде пудры с любым содержанием примесей;- use any sand with clay and any fraction; - use aluminum production waste in the form of powder with any content of impurities;
- использование поликардосилана даже с малых дозах обеспечивает ввод в материал ионизированного азота за счет чего возможно проведение способа получения изделия при малых давления (1- l,5aтм)- the use of polycardosilane even with small doses ensures the introduction of ionized nitrogen into the material due to which it is possible to carry out a method for producing the product at low pressure (1- l, 5 atm)
Технический результат в предлагаемом изобретение достигают созданием способа изготовления изделия из сиалона, включающего приготовление смеси компонентов, измельчение, формирование полуфабриката и получение готового изделия в атмосфере азота, в котором, согласно изобретению, предварительно измельчают диоксид кремния, приготовление смеси осуществляют путем смешивания алюминиевой пудры, магния кальция ,нaтpия, азота, пластификатора и размельченного диоксида кремния, затем производят гидростатическое формирование полуфабриката изделия с последующей его многоступенчатой термообработкой.The technical result in the present invention is achieved by creating a method of manufacturing a product from Sialon, including preparing a mixture of components, grinding, forming a semi-finished product and obtaining the finished product in a nitrogen atmosphere, in which, according to the invention, silicon dioxide is pre-crushed, the mixture is prepared by mixing aluminum powder, magnesium calcium, sodium, nitrogen, plasticizer and crushed silicon dioxide, then hydrostatic formation of the semi-finished product is carried out Ia with subsequent multi-stage heat treatment.
Изобретение также характеризуется тем, что многоступенчатую термообработку ведут на первом этапе путем медленного температурного нарастания в течение 90-100мин до температуры 180- 2000C, затем производят нагрев до 600 -7500C с выдержкой 10-15 мин., и дальнейший нагрев до 1400-1450 0C с выдержкой в течение 15-30 мин.The invention is also characterized in that multistage heat treatment is carried out at the first stage by a slow temperature increase for 90-100 min to a temperature of 180-200 0 C, then heated to 600 -750 0 C with a shutter speed of 10-15 minutes, and further heating to 1400-1450 0 C with exposure for 15-30 minutes.
Предлагаемый способ позволяет уменьшить время проведения изготовления изделий, за счет дополнительного насыщения смеси компонентов ионизируемым азоном, выделяемым из поликарбосилана и введением в состав азона.The proposed method allows to reduce the time of manufacturing products, due to the additional saturation of the mixture components of ionizable azone released from polycarbosilane and the introduction of azone.
Предлагаемые композиционный керамический материал и способ изготовления изделия из сиалона экологичны, т.к. отсутствуют выбросы в атмосферу вредных веществ и увеличения кислорода в воздухе за счет использования азота.The proposed composite ceramic material and method of manufacturing a product from Sialon are environmentally friendly, because There are no emissions of harmful substances into the atmosphere and an increase in oxygen in the air due to the use of nitrogen.
Способ изготовления изделия из сиалона осуществляют следующим образом:A method of manufacturing a product from sialon is as follows:
Предварительно измельчают диоксид кремния, например в струйной мельнице .Pre-crushed silicon dioxide, for example in a jet mill.
В зависимости от задаваемых технологических свойств предлагаемого материала содержание компонентов входящих в состав материала выбирают в следующих пределах мacc%: диоксид кремния (SiCh) 91 ,7-81 ,4 алюминиевая пудра (Al) 3- 5 магний (Mg) ОД- 0,5 кaльций(Ca) 0,01 - 0,1 натрий (Na ) 0,001- 0,01 азот (N2) 5 -10 Однако, следует заметить, что на физико-механические свойства предлагаемого композиционного материала наибольшее влияние оказывают содержание песка, алюминиевой пудры и плacтификaтopa,( поликарбосилана), поэтому в табл.l показаны результаты различного их содержания в составе и их влияние на свойства материала. Приготовление смеси осуществляют путем смешивания алюминиевой пудры, магний (Mg), кaльций(Ca), натрий (Na), азот (Nг) , пластификатора и размельченного диоксида кремния.Depending on the specified technological properties of the proposed material, the content of the components included in the composition of the material is selected in the following limits, wt%: silicon dioxide (SiCh) 91, 7-81, 4 aluminum powder (Al) 3-5 magnesium (Mg) OD-0.5 calcium (Ca) 0.01 - 0.1 sodium (Na) 0.001-0.01 nitrogen (N 2 ) 5 -10 However, it should be noted that the physical and mechanical properties of the proposed composite material are most affected by the content of sand, aluminum powder and plasticizer, (polycarbosilane), therefore, Table l shows the results of their various contents in s and their influence on the properties of the material. The mixture is prepared by mixing aluminum powder, magnesium (Mg), calcium (Ca), sodium (Na), nitrogen (Ng), a plasticizer and crushed silicon dioxide.
Диспергирование алюминиевой пудры в растворе керамообразующего полимера (поликарбосилана) в бензоле или другом растворителе предназначено для равномерного распределения алюминия в объеме песка.Dispersing the aluminum powder in a solution of a ceramic-forming polymer (polycarbosilane) in benzene or another solvent is designed for uniform distribution of aluminum in the volume of sand.
Затем производят гидростатическое формирование полуфабриката изделия, путем гидростатического прессования, режимы которого известны и заявитель на их новизну не претендуют.Then, the semi-finished product is hydrostatically formed by hydrostatic pressing, the modes of which are known and the applicant does not claim to be new.
Последующую многоступенчатую термообработку ведут для получения готового изделия.Subsequent multi-stage heat treatment is carried out to obtain the finished product.
Многоступенчатую термообработку ведут на первом этапе путем медленного температурного нарастания в течение 90-100 минут до температуры 180-2000C со скоростью 2°C/мин, затем производят нагрев до 600 -7500C с выдержкой 10-15 мин., и дальнейший нагрев до 1400-1450 0C с выдержкой в течение 15-30 мин.Multistage heat treatment is carried out at the first stage by slowly increasing the temperature for 90-100 minutes to a temperature of 180-200 0 C at a rate of 2 ° C / min, then heating to 600 -750 0 C with a shutter speed of 10-15 minutes, and then heating to 1400-1450 0 C with holding for 15-30 minutes.
Проведенные испытания показали, что только при таких режимах ведения термообработки можно получить заданный технический результат. Отклонения от предлагаемых режимов и сторону увеличения или уменьшения интервалов приводит к увеличению времени обработки, ухудшению физико- механических свойств и т.д. Нагрев до 180-2000C со скоростью 2°C/мин вызван тем, что диссоциация карбосалана на карбит кремния, углеводороды и атомарный азот протекает медленно, при этом карбид кремния и атомарный азот усваиваются пористым полуфабрикатом.The tests showed that only with such heat treatment modes can you get the desired technical result. Deviations from the proposed modes and the side of increasing or decreasing the intervals leads to an increase in processing time, deterioration of physical and mechanical properties, etc. Heating to 180-200 0 C at a rate of 2 ° C / min is caused by the fact that the dissociation of carbosalan into silicon carbite, hydrocarbons and atomic nitrogen proceeds slowly, while silicon carbide and atomic nitrogen are absorbed by the porous semi-finished product.
В процессе получения сиалона из песка, алюминия и карбосилана происходит восстановление кремния из его диоксида за счет алюмотермии с выделением теплоты реакции и последующее азотирование кремния, также с выделением тепла.In the process of obtaining sialon from sand, aluminum and carbosilane, silicon is restored from its dioxide due to aluminothermy with the release of heat of reaction and subsequent nitriding of silicon, also with the release of heat.
Чтобы экзотермия при раскислении песка и азотировании кремния не привели к плавлению алюминия и кремния, что неизбежно приводит к пористости в изделии, алюминий и песок обволакивают раствором поликарболана, который пассивирует экзотермию, т.к. обладает большой теплоемкостью, и нагревают смесь до температуры 650-7000C, необходимо проводить снижая подачу мощности нагревателя, чтобы не было перегрева за счет эзотермических реакций алюмотерапии и азотирования кремния.So that exotherm during deoxidation of sand and nitriding of silicon does not lead to melting of aluminum and silicon, which is inevitable leads to porosity in the product, aluminum and sand are coated with a solution of polycarbolan, which passivates exothermy, because it has a high heat capacity, and the mixture is heated to a temperature of 650-700 0 C, it is necessary to reduce the power supply of the heater so that there is no overheating due to esothermic reactions of alumotherapy and silicon nitriding.
Использование ионизированного азона, даже при атмосферном давлении, обеспечивает высокую скорость азотирования, и ,кaк следствие беспористого спекания за короткое время 30 -45 мин. Таким образом, свойства сиалона зависят от количества алюминия и карбосилана, но и тот и другой компонент повышают стоимость изделия.The use of ionized azone, even at atmospheric pressure, provides a high nitriding rate, and, as a result of non-porous sintering in a short time of 30-45 minutes. Thus, the properties of sialon depend on the amount of aluminum and carbosilane, but both components increase the cost of the product.
Если взять за эталон стоимость обожженного кирпича, то изделие из сиалона не должно содержать более 5oб% алюминия и карбосилана.If we take the cost of burnt brick as a standard, then the product from sialon should not contain more than 5% of aluminum and carbosilane.
Физико-механические испытания полученных образцов сиалона показывают оптимальность выбранной концентрацииPhysico-mechanical tests of the obtained samples of sialon show the optimality of the selected concentration
Кроме того, начиная с концентрации алюминия 3 % на внутренних поверхностях изделия растут нитевидные кристаллы сиалона, значительно снижающие его теплопроводность .In addition, starting from an aluminum concentration of 3%, whiskers of sialon grow on the internal surfaces of the product, significantly reducing its thermal conductivity.
Использование алюминевой пудры и карбосиалона с атомарным азотом приводит к образованию на внутренних и внешних поверхностях полуфабриката в процессе нагрева тонковолокнистых кристаллов сиалона, который на внутренней поверхности резко снижает теплопроводность изделия, т.к. исключает конвекцию ,a с внешней поверхности может быть собран ,кaк побочный продукт, для применения в электротехнике, при производстве фильтров и т.дThe use of aluminum powder and carbosialon with atomic nitrogen leads to the formation of sialon on the inner and outer surfaces of the semi-finished product during heating of thin-fiber crystals, which on the inner surface sharply reduces the thermal conductivity of the product, because excludes convection, and from the external surface it can be collected as a by-product for use in electrical engineering, in the manufacture of filters, etc.
Применение атмосферного давления азота за счет его ионизации и резко удешевляет стоимость термического оборудования, увеличивает производительность, т.к не требует закачки азота, его охлаждения перед сбросом давления, ускоряет загрузку печи обжига изделий.The use of atmospheric pressure of nitrogen due to its ionization and dramatically reduces the cost of thermal equipment, increases productivity, because it does not require the injection of nitrogen, its cooling before depressurization, accelerates the loading of the kiln.
Табл.lTable.l
Figure imgf000010_0001
Figure imgf000010_0001
Промышленная применимость. Предлагаемые композиционный керамический материал на основе сиалона и способ получения изделий из него были получены и опробованы .Industrial applicability. The proposed composite ceramic material based on sialon and a method for producing products from it were obtained and tested.
Были использованы азот из воздуха, отмытый речной песок SiO2, алюминиевая пудра, пластификатор.We used nitrogen from the air, washed river sand SiO 2 , aluminum powder, plasticizer.
При этом получены образцы с плотностью 99,6÷99,8% от теоретической при усадке около 1%.In this case, samples were obtained with a density of 99.6 ÷ 99.8% of theoretical with a shrinkage of about 1%.
Полученные физико-химические свойства при температуре 200C приведены в таблице 2The obtained physicochemical properties at a temperature of 20 0 C are shown in table 2
Figure imgf000010_0002
Figure imgf000010_0002
Здесь σ изг и σ cжaт - прочность на изгиб и сжатие при температуреHere σ and σ mfd czhat - flexural strength and compression at a temperature
200C,20 0 C,
E- модуль упругости, К т.р. - коэффициент термического расширения, Q - теплопроводность, Δ T- термоциклированиеE is the modulus of elasticity, To TR - coefficient of thermal expansion, Q - thermal conductivity, Δ T - thermal cycling
Термоциклиров'ание было проведено 1000 раз с изменением температуры от -1000C до +1000C путем опускания изделия в жидкость . Было обнаружено, что видимых изменений материала нет.Termotsiklirov 'Contents were conducted 1000 times with the change of temperature from -100 0 C to 100 0 C by lowering articles into the liquid. It was found that there are no visible changes in the material.
При проведении процесса спекания под давлением в 1 кбар, прочность на изгиб увеличивается в 3 раза до 900 МПа. По структуре предлагаемый композиционный керамический материал на основе сиалона это нанокристаллический материал с заметной долей сиалонового стекла. Высокая энергия связи в молекулярных составляющих материала (Si3N4, AlN, Al2O3, Si2N2O, SiC) определяет его высокую прочность и термостойкость. Предлагаемый материал не плавится и при 32000C, а начинает сублимировать с поглощением большого количества тепла. Практическое отсутствие водопоглащения (<0,l%) и химическая стойкость делают возможным использование предлагаемого материала в качестве строительного материала с высокой устойчивостью к атмосферным и сейсмическим воздействиям.When carrying out the sintering process under a pressure of 1 kbar, the bending strength increases 3 times to 900 MPa. In terms of structure, the proposed composite ceramic material based on sialon is a nanocrystalline material with a noticeable proportion of sialon glass. The high binding energy in the molecular components of the material (Si 3 N 4 , AlN, Al 2 O 3 , Si 2 N 2 O, SiC) determines its high strength and heat resistance. The proposed material does not melt even at 3200 0 C, but begins to sublimate with the absorption of a large amount of heat. The practical absence of water absorption (<0, l%) and chemical resistance make it possible to use the proposed material as a building material with high resistance to atmospheric and seismic effects.
Для строительных целей были изготовлены опытные строительные блоки размером 300 х 300 х 250 мм со средним удельным весом 0,5-0,8 г/см3, вес блока 10-16 кг.For construction purposes, experimental building blocks of 300 x 300 x 250 mm in size with an average specific gravity of 0.5-0.8 g / cm 3 and a block weight of 10-16 kg were made.
Благодаря воздушным прослойкам в блоке, заполненным нитевидными кристаллами общая теплопроводность на блок снижена в 4,5 раза. Блоки соединяются между собой с помощью герметика и элементов конструкции блоков, получаемых при их изготовлении. Герметика необходимо очень мало в связи с большой точностью изготовления блоков.Due to the air gaps in the block filled with whiskers, the total thermal conductivity per block is reduced by 4.5 times. Blocks are interconnected using sealant and structural elements of the blocks obtained in their manufacture. Sealants need very little due to the high accuracy of the manufacture of blocks.
Предлагаемый композиционный керамический материал примерно, в 10 раз более прочен, чем кирпич и бетон, обладает в 3-5 раза меньшим коэффициентом термического расширения, обладает вThe proposed composite ceramic material is approximately 10 times more durable than brick and concrete, has 3-5 times lower coefficient of thermal expansion, has
10 раз большей морозостойкостью и в 10-15 раз меньшим влагопоглащением, чем обычные строительные материалы. Свойства предлагаемого материала позволяют из него делать не только стены дома, но и фундамент, покрытие на крышу и другие элементы. Благодаря высокой прочности на сжатие и малому удельному весу перспективно использование сиалона для подводных сооружений, спасательных камер и т.д.10 times more frost resistance and 10-15 times less moisture absorption than conventional building materials. The properties of the proposed material make it possible to make of it not only the walls of the house, but also the foundation, roof covering and other elements. Due to its high compressive strength and low specific gravity, the use of sialon for underwater structures, rescue chambers, etc. is promising.
Очень перспективно использование сиалона в металлургии и химической промышленности для футеровки высокотемпературных агрегатов, где требуется высокая химическая стойкость. The use of sialon in metallurgy and the chemical industry is very promising for the lining of high-temperature units where high chemical resistance is required.

Claims

Формула изобретения. Claim.
1. Композиционный керамический материал на основе сиалона, содержащий диоксид кремния, алюминий, азот, отличающийся тем, что в него дополнительно введены пластификатор, кальций, натрий и магний, в качестве пластификатора используют поликарбосилан, а алюминий используют в виде алюминиевой пудры, при следующим содержание компонентов, в масс %: диоксид кремния (SiCh) 91,7-81,4 алюминиевая пудра (Al) 3- 5 магний (Mg) 0,1- 0,5 кaльций(Ca) 0,01 - 0,1 натрий (Na ) 0,001- 0,01 азот (Na) 5 -10 пластификатор 0,1- 31. Composite ceramic material based on sialon, containing silicon dioxide, aluminum, nitrogen, characterized in that it additionally contains a plasticizer, calcium, sodium and magnesium, polycarbosilane is used as a plasticizer, and aluminum is used in the form of aluminum powder, with the following content components, in mass%: silicon dioxide (SiCh) 91.7-81.4 aluminum powder (Al) 3-5 magnesium (Mg) 0.1-0.5 calcium (Ca) 0.01-1.1 sodium ( Na) 0.001-0.01 nitrogen (Na) 5-10 plasticizer 0.1-3
2. Композиционный керамический материал по п.1 , отличающийся тем, что в качестве пластификатора используют поликарбосилан2. The composite ceramic material according to claim 1, characterized in that polycarbosilane is used as a plasticizer
3. Способ изготовления изделий из сиалона, включающий приготовление смеси компонентов, измельчение, формирование полуфабриката и получение готового изделия в атмосфере азота, отличающийся тем, что предварительно измельчают диоксид кремния, приготовление смеси осуществляют путем смешивания алюминиевой пудры, пластификатора и размельченного диоксида кремния, затем производят гидростатическое формирование полуфабриката изделия с последующей его многоступенчатой термообработкой.3. A method of manufacturing products from Sialon, including preparing a mixture of components, grinding, forming a semi-finished product and obtaining the finished product in a nitrogen atmosphere, characterized in that the silicon dioxide is pre-crushed, the mixture is prepared by mixing aluminum powder, plasticizer and crushed silicon dioxide, then produce hydrostatic formation of a semi-finished product with its subsequent multi-stage heat treatment.
4. Способ по п.З, отличающийся тем, что многоступенчатую термообработку ведут на первом этапе путем медленного температурного нарастания в течение 90-100 минут до температуры 180-2000C, затем производят нагрев до 600 -7500C с выдержкой 10-15 мин., и дальнейший нагрев до 1400-1450 0C. с выдержкой в течение 15-30 мин. 4. The method according to p. 3, characterized in that the multi-stage heat treatment is carried out at the first stage by slowly increasing temperature for 90-100 minutes to a temperature of 180-200 0 C, then heating to 600 -750 0 C with a shutter speed of 10-15 min., and further heating to 1400-1450 0 C. with exposure for 15-30 minutes.
PCT/RU2007/000385 2006-07-28 2007-07-13 Composite sialon-based ceramic material and a method for the production thereof WO2008013478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006127397/03A RU2329997C2 (en) 2006-07-28 2006-07-28 Ceramic composite based on sialon and method for manufacturing articles
RU2006127397 2006-07-28

Publications (1)

Publication Number Publication Date
WO2008013478A1 true WO2008013478A1 (en) 2008-01-31

Family

ID=38981719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000385 WO2008013478A1 (en) 2006-07-28 2007-07-13 Composite sialon-based ceramic material and a method for the production thereof

Country Status (2)

Country Link
RU (1) RU2329997C2 (en)
WO (1) WO2008013478A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011031184A1 (en) * 2009-09-10 2011-03-17 Stepanov Nikolay Victorovich Process for producing a composite material
RU188873U1 (en) * 2018-12-19 2019-04-25 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) Device for electric pulse pressing of powder materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1504141A (en) * 1974-01-31 1978-03-15 Advanced Materials Eng Synthetic ceramic materials and methods of making them
US4243621A (en) * 1977-09-28 1981-01-06 Toshiba Ceramics Co., Ltd. β'-Sialon sintered body and a method for manufacturing the same
US5030600A (en) * 1988-10-06 1991-07-09 Benchmark Structural Ceramics Corp. Novel sialon composition
WO1993000310A1 (en) * 1991-06-27 1993-01-07 Benchmark Structural Ceramics Corporation Improved sialon composition
RU1774612C (en) * 1990-03-30 1995-01-09 Институт структурной макрокинетики РАН Method of preparing of sialone powder
RU2161145C2 (en) * 1998-12-11 2000-12-27 Институт химии твердого тела Уральского Отделения РАН METHOD OF PREPARING β-SIALONE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1504141A (en) * 1974-01-31 1978-03-15 Advanced Materials Eng Synthetic ceramic materials and methods of making them
US4243621A (en) * 1977-09-28 1981-01-06 Toshiba Ceramics Co., Ltd. β'-Sialon sintered body and a method for manufacturing the same
US5030600A (en) * 1988-10-06 1991-07-09 Benchmark Structural Ceramics Corp. Novel sialon composition
RU1774612C (en) * 1990-03-30 1995-01-09 Институт структурной макрокинетики РАН Method of preparing of sialone powder
WO1993000310A1 (en) * 1991-06-27 1993-01-07 Benchmark Structural Ceramics Corporation Improved sialon composition
RU2161145C2 (en) * 1998-12-11 2000-12-27 Институт химии твердого тела Уральского Отделения РАН METHOD OF PREPARING β-SIALONE

Also Published As

Publication number Publication date
RU2006127397A (en) 2008-02-27
RU2329997C2 (en) 2008-07-27

Similar Documents

Publication Publication Date Title
CN101955371B (en) Method for preparing closed pore foam ceramic
HUE027172T2 (en) Use of a sintered refractory material based on silicon carbide with a silicon nitride binder
EP1351891B1 (en) Method for utilising a waste slurry from silicon wafer production
Zhang et al. Reactive synthesis of alumina-boron nitride composites
Lao et al. Effects of various sintering additives on the properties of β-SiAlON–SiC ceramics obtained by liquid phase sintering
US5164138A (en) Material comprising silicon and process for its manufacture
RU1809827C (en) Process of manufacture of articles from ceramic composite material
WO2008013478A1 (en) Composite sialon-based ceramic material and a method for the production thereof
CA1152536A (en) Dense sintered silicon carbide ceramic
KR20110125913A (en) Bricks for interior containing stone sludge and methods for preparing thereof
JPH06191957A (en) Ceramic sintered compact with metal as skeleton
Leela-Adisorn et al. AlZrC2 synthesis
US4985382A (en) Improved ceramic composite structure comprising dross
US3287478A (en) Method of sintering aluminum nitride refractories
田畑周平 et al. Liquid phase sintering and mechanical properties of SiC with rare-earth oxide
KR100419778B1 (en) Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering
US5134102A (en) Method for producing composite ceramic structures using dross
JPH08208336A (en) Si-sic sintered compact having oxidation and creep resistance
Ma et al. A novel method to fabricate porous single phase O’-sialon ceramic and improve its mechanical property
CN111153681A (en) Argil prepared from waste materials and preparation method thereof
KR100857510B1 (en) Artificial aggregate composition for enhancing fire-resistance of high-strength concretes, method for producing the same and concrete compositions using the same
Kirsever et al. Thermo physical and mechanical characterization of lightweight porous ceramics produced from porcelain polishing residues
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
RU2817341C1 (en) Method of making ceramics
CN1052653A (en) The pickling process of preparation ceramic-metal composite and the product of producing by this method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07794088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07794088

Country of ref document: EP

Kind code of ref document: A1