WO2008013262A1 - L-leucine hydroxylase and dna encoding the enzyme - Google Patents

L-leucine hydroxylase and dna encoding the enzyme Download PDF

Info

Publication number
WO2008013262A1
WO2008013262A1 PCT/JP2007/064761 JP2007064761W WO2008013262A1 WO 2008013262 A1 WO2008013262 A1 WO 2008013262A1 JP 2007064761 W JP2007064761 W JP 2007064761W WO 2008013262 A1 WO2008013262 A1 WO 2008013262A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
protein
seq
culture
leucine
Prior art date
Application number
PCT/JP2007/064761
Other languages
French (fr)
Japanese (ja)
Inventor
Yasukatsu Ota
Shuichi Gomi
Koji Yanai
Original Assignee
Meiji Seika Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha, Ltd. filed Critical Meiji Seika Kaisha, Ltd.
Priority to JP2008526830A priority Critical patent/JPWO2008013262A1/en
Publication of WO2008013262A1 publication Critical patent/WO2008013262A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine

Definitions

  • L bite isine hydroxylase and DNA encoding the enzyme
  • the present invention relates to a protein having an activity to convert L-tipped isine hydroxylase, that is, L-tipped isine into (2S, 4S) -5-hydroxyleucine, DNA encoding the protein, recombinant DNA containing the DNA,
  • the present invention relates to a transformant having recombinant DNA, a method for producing a protein having L-mouth isine hydroxylase activity using the transformant, and a method for producing (2S, 4S) -5-hydroxyleucine using the transformant. .
  • (2S, 4S) -5-hydroxyleucine is an unnatural amino acid and an optically active isomer, it is expected to be used as a starting material in the production of various useful substances such as pharmaceuticals.
  • As a method for producing this substance only a chemical synthesis method has been reported, and hem.soc.PerKin ⁇ rans.1, Organic and Bio-Organic uhemistry, 8, 2075 (1988); J. Org. Chem., 68, 83 (2003)), and as far as the present inventors know, methods for producing using organisms or enzymes have been reported so far!
  • (2S, 4S) — 5-Hydroxyleucine is produced in the biosynthetic pathway of polypeptides (nostop mark tolide A1 and nostop mark tolide A 2 ) produced by Nostoc sp. GSV224, a kind of cyanobacteria. It is expected to exist as a synthetic intermediate (J. Org. Chem., 68, 83 (2 003); Gene, 311, 171 (2003)). However, no L-mouth isine hydroxylase gene has been identified or suggested in Nostoc SD. GSV224. In other organisms, as far as the present inventors have known, an enzyme having L-mouth icine hydroxylase activity and a gene encoding the enzyme have been reported so far. Not in.
  • the present invention provides a novel protein having L-mouth icine hydroxylase activity and DNA encoding the protein in order to obtain (2S, 4S) -5-hydroxyleucine, which can be used as a starting material in the production of various useful substances such as pharmaceuticals. And a recombinant DNA containing the DNA, a transformant carrying the recombinant DNA, the protein using the transformant, and a method for producing (2 S, 4S) -5-hydroxyleucine That is the purpose.
  • the protein according to the present invention is selected from the group consisting of:
  • a protein comprising an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 1 and having L-leucine hydroxylase activity.
  • the DNA according to the present invention encodes the protein according to the present invention.
  • this DNA has the base sequence represented by SEQ ID NO: 2.
  • the DNA according to the present invention is selected from the group consisting of:
  • DNA that has the nucleotide sequence represented by SEQ ID NO: 2 and high under stringent conditions DNA that encodes a protein that is brididized and has L-leucine hydroxylase activity
  • a DNA comprising a nucleotide sequence having 60% or more homology with the nucleotide sequence represented by SEQ ID NO: 2 and encoding a protein having L-mouth icine hydroxylase activity.
  • the DNA according to the present invention is derived from a microorganism belonging to the cyanobacteria (Cvanobacteria).
  • the DNA derived from a microorganism belonging to the cyanobacteria is DNA derived from a microorganism belonging to the genus Nostock (N ⁇ l ⁇ ).
  • the microorganism belonging to the genus Nostock (N ⁇ l ⁇ ) is
  • the DNA according to the present invention encodes the protein according to the present invention, and has the base sequence represented by SEQ ID NO: 3.
  • the DNA according to the present invention is selected from the group consisting of:
  • a DNA comprising a nucleotide sequence having 60% or more homology with the nucleotide sequence represented by SEQ ID NO: 3 and encoding a protein having L-mouth icine hydroxylase activity.
  • the recombinant DNA according to the present invention is obtained by incorporating the DNA according to the present invention into a vector.
  • the transformant according to the present invention is obtained by introducing the recombinant DNA according to the present invention into a host cell. It is.
  • the host cell is preferably Escherichia coli, and more preferably, Streptomyces lividans.
  • the transformant according to the present invention preferably expresses L-mouth icine hydroxylase.
  • the method for producing a protein having L-mouth icine hydroxylase activity according to the present invention comprises culturing the transformant according to the present invention using a medium, and adding a protein having L-portion isine hydroxylase activity in the culture. Producing, accumulating, and collecting the protein from the culture.
  • the method for producing (2S, 4S) -5-hydroxyleucine according to the present invention uses a culture of the transformant according to the present invention or a treated product of the culture as an enzyme source.
  • a culture of the transformant according to the present invention or a treated product of the culture is an enzyme source.
  • the treated product of the culture is preferably a culture concentrate, a dried product of the culture, a cell obtained by centrifuging the culture, a dried product of the cell, and a freeze-dried product of the cell.
  • Product surfactant-treated product of the microbial cell, ultrasonic treated product of the microbial cell, mechanically-ground product of the microbial cell, solvent-treated product of the microbial cell, enzyme-treated product of the microbial cell, the bacterium A protein fraction of the body, an immobilized product of the cell, or an enzyme preparation obtained by extraction from the cell.
  • the present invention can also be as follows:
  • a protein comprising an amino acid sequence in which one or more amino acids have been deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1 and having L-mouth icine hydroxylase activity;
  • (2S, 4S) -5-Hydroxyleucine is an unnatural amino acid and an optically active isomer, and is expected to be used as a starting material in the production of various useful substances such as pharmaceuticals.
  • 2S, 4S) An efficient production method for 5-hydroxyleucine is strongly desired. According to the present invention, it is possible to obtain a large amount of L-sip Icin hydroxylase. By using the enzyme obtained by the present invention, (2S, 4S) -5-hydroxyleucine can be efficiently produced.
  • FIG. 1 shows a process for constructing an L-mouth icine hydroxylase expression plasmid pnos5A.
  • Amp is an ampicillin resistance gene
  • Km is a kanamycin resistance gene
  • Apr is an apramycin resistance gene
  • nos5 is a leucine hydroxylase gene
  • nos5-GC Represents the leucine hydroxylase gene (chemical synthesis) and “tipAp” represents the tipA promoter.
  • FIG. 2 shows the construction process of L-nose isine hydroxylase expression plasmid pnos5D constructed by constructing a chemically synthesized gene fragment.
  • FIG. 3 shows the construction process of L-mouth icine hydroxylase expression plasmid pnos5E. DETAILED DESCRIPTION OF THE INVENTION
  • the L-mouthed isine hydroxylase according to the present invention includes a protein consisting of the amino acid sequence represented by SEQ ID NO: 1, or an amino acid sequence substantially equivalent to the amino acid sequence represented by SEQ ID NO: 1, and It is possible to list proteins with hydroxylase activity.
  • substantially equivalent amino acid arrangement IJ means the ability to modify one or more amino acid deletions, substitutions, additions and / or modifications due to insertions.
  • An amino acid sequence that does not give The number of amino acid residues to be modified is preferably !!-40, more preferably 1-20, still more preferably 1-8, and most preferably 1-4.
  • activity of the polypeptide means having L-mouth icine hydroxylase activity.
  • “Having L-leucine hydroxylase activity” means having an activity capable of converting L-leucine into (2S, 4S) -5-hydroxyleucine. To this activity About it, it can measure according to a conventional method, for example, it can measure according to the method as described in the Example mentioned later.
  • Examples of! /, "Does not affect activity! /, Modification" in the present invention include conservative substitutions.
  • “Conservative substitution” means the replacement of one or more amino acid residues with another chemically similar amino acid residue so as not to substantially alter the activity of the polypeptide. For example, when one hydrophobic amino acid residue is substituted with another hydrophobic amino acid residue, one polar amino acid residue is substituted with another polar amino acid residue having the same charge, and the like. Functionally similar amino acids capable of making such substitutions are known in the art for each amino acid.
  • non-polar (hydrophobic) amino acids such as alanine, norine, isoleucine, leucine, proline, tryptophan, phenylalanine, and methionine.
  • polar (neutral) amino acids include glycine, serine, threonine, tyrosine, glutamine, asparagine, and cysteine.
  • positively charged (basic) amino acids include arginine, histidine, and lysine.
  • negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
  • Other methods include treating the gene with a mutagen, and selectively cleaving the gene, then removing, appending, inserting and / or replacing selected nucleotides, and ligating at the next level. and so on.
  • substantially equivalent amino acid arrangement IJ includes those in which the N-terminus (amino terminus) and C-terminus (carboxyl terminus) are further altered or modified! /.
  • Motole For example, C-terminal carboxyl is carboxylate (—COO—), amide (—CONH
  • R examples include a linear, branched or cyclic C1-6 alkyl group, a C6-12 aryl group, and the like.
  • amino acid sequence substantially equivalent to the amino acid sequence represented by SEQ ID NO: 1 can include an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 1.
  • the homology ratio is preferably 70% or more, more preferably 80% or more, even more preferably 90% or more, even more preferably 95% or more, particularly preferably 98% or more, and most preferably 99%. % Or more.
  • “homology” may be used to mean “identity”.
  • any value of "homology” may be any value calculated using a homology search program known to those skilled in the art.
  • the homology algorithm BLAST Basic local alignment search tool
  • NCBI National Center for Biotechnology Information
  • the DNA according to the present invention includes DNA encoding the protein according to the present invention, DNA consisting of the base sequence represented by SEQ ID NO: 2 or 3, or DNA consisting of the base sequence represented by SEQ ID NO: 2 or 3. And a DNA that hybridizes under stringent conditions and encodes a protein having L-mouth isine hydroxylase activity.
  • DNA deoxyribonucleic acid
  • DNA may be used as a polynucleotide, if necessary.
  • DNA that hybridizes under stringent conditions refers to, for example, a DNA according to the present invention such as a DNA having the base sequence represented by SEQ ID NO: 2 or a partial DNA fragment thereof As used herein, it means DNA obtained by using a colony “nobly hybridization method, a plaque” nobly hybridization method, or the like. Specifically, as this DNA, using a filter on which DNA derived from colonies or plaques is immobilized, 0.7 to; 1. Hybridizer at 65 ° C. in the presence of Omol / L sodium chloride. After conducting the chilling, use 0.;!
  • SSC solution composition of 1 times SSC solution consists of 150mmol / L sodium chloride and 15mmol / L sodium quenate
  • Examples include DNA that can be identified by washing the filter under conditions.
  • Hybridization includes molecular 'cloning 2nd edition, current'protocols' in 'molecular' neuron 1, DNA Cloning 1: Core echniques, A Practical Approach, second Editi. on, Oxford University (1995) and the like.
  • the hybridizable DNA is specifically a DNA having at least 60% homology to the base sequence represented by SEQ ID NO: 2, for example, when calculated based on the above algorithm BLAST, preferably Is a DNA having a homology of 70% or more, more preferably 80% or more, more preferably 90% or more, even more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more. be able to.
  • the DNA according to the present invention includes, for example, a protein having a nucleotide sequence having 60% or more homology with the nucleotide sequence IJ represented by SEQ ID NO: 2 or 3, and having L-mouth isine hydroxylase activity. DNA encoding can be included.
  • the DNA according to the present invention also includes a protein having a base sequence in which one or a plurality of bases are deleted, substituted, inserted or added in SEQ ID NO: 2 or 3, and having L-mouth icin hydroxylase activity.
  • DNA encoding can also be included.
  • the number of bases that may be deleted, substituted, inserted or added is preferably 1 to 30, more preferably;! To 20, more preferably 1 to 15; even more preferably 1 to 10; most preferably 1 to 5.
  • the substitution mentioned here includes substitutions involving amino acid translation mutations and substitutions involving amino acid translation mutations! /, Substitutions! /, And deviations.
  • DNA encoding the L-mouth icine hydroxylase of the present invention can be isolated from a microorganism belonging to the genus Nostoc, preferably Nostoc sp. ATCC29133, by the following method, for example. It can also be artificially synthesized chemically based on the disclosed sequence of Nostoc sp. ATCC29133.
  • a microorganism belonging to the genus Nostoc can be cultured by a known method [for example, Microbiology, 140, 3333 (1994)]. Furthermore, the chromosomal DNA of the microorganism can be isolated and purified from the cultured cells by a known method (for example, Current 'Protocols' Molecular' biology). It is also commercially available from Nostoc sp. ATCC 2913 Luchier Collection.
  • a genomic DNA library of microorganisms belonging to the genus Nostock is prepared by digesting genomic DNA with an appropriate restriction enzyme and ligating it with an appropriate vector.
  • the vector for example, various vectors such as a plasmid vector, a phage vector, a cosmid vector, and a BAC vector can be used.
  • an appropriate probe is prepared based on the base sequence of the DNA encoding L-mouth isine hydroxylase disclosed in the present specification, and a desired kanamycin biosynthetic gene is generated by a hybrid DNA hybridization.
  • a primer for amplifying a desired gene was prepared based on the base sequence of the DNA encoding L-mouth isine hydroxylase disclosed in the present specification, and a microorganism belonging to the genus Nostock (H ⁇ £) was prepared.
  • the ability to isolate the desired gene can be achieved by performing PCR using genomic DNA as a saddle and ligating the amplified DNA fragment with an appropriate vector.
  • DNA encoding the L-tout isin hydroxylase according to the present invention is contained in plasmid pnos5 / pET24 and plasmid pnos5—GCl / pTA2 and pn os5—GC2 / pTA2. It can be used as In addition, a desired DNA fragment can be prepared from these plasmids using an appropriate restriction enzyme.
  • Escherichia coli transformed with plasmid pnos5A (Escherichia coli BL 21 (DE3) / pnos5A) is the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center (T305-8566, Tsukuba, Ibaraki, Japan) on June 16, 2006 (original deposit date). Deposited at East 1-chome, 1st Central 6). The accession number is FERM BP-10845.
  • Escherichia coli transformed with the plasmid pnos5D (Escherichia coli BL 21 (DE3) / pnos5D) is an independent administrative institute for industrial technology research on June 16, 2006 (original deposit date).
  • the L-tout isin hydroxylase according to the present invention is produced by the L-tout isin hydroxylase of the present invention according to the method described in Molecular 'Cloning 2nd Edition, Force Rent' Protocols 'In'Molecular' Biology etc. Can be produced by expressing the DNA encoding in a host cell.
  • a DNA fragment of an appropriate length containing a portion encoding the protein is prepared.
  • the production rate of the protein can be improved by substituting the base sequence of the portion encoding the protein so that the codon is optimal for host expression.
  • Recombinant DNA is prepared by inserting the DNA fragment downstream of the promoter of an appropriate expression vector.
  • a transformant producing the protein of the present invention can be obtained by introducing the recombinant DNA into a host cell suitable for the expression vector.
  • any bacteria, actinomycetes, yeast, animal cells, insect cells, plant cells, etc. can be used as long as they can express the target gene.
  • Preferred are Streptomyces Strei3tomvces and Escherichia coli, and more preferred are Streptomyces eQtomv_ces.
  • As the recombinant DNA one that can autonomously replicate in the above host cell or can be integrated into a chromosome and contains a promoter at a position where the DNA of the present invention can be transcribed is used.
  • the recombinant DNA containing the DNA encoding the protein of the present invention is capable of autonomous replication in the prokaryotic organism, and at the same time has a promoter and ribosome binding. It is preferably a recombinant DNA composed of the DNA of the present invention, a transcription termination sequence. In addition, the recombinant DNA contains a gene that controls the promoter.
  • Expression vectors include pTA2 (manufactured by Toyobo Co., Ltd.), Helixl (manufactured by Roche Diagnotex), PKK233-2 (manufactured by Amersham. Pharmacia Biotech), pSE280 (manufactured by Invitrogen), pGEMEX-1 (Promega), pQE-8 (Qiagen), pET24 (Novagen), pBluescript II SK), pBluescript II SK (-) (Stratagene), pUC19 [Gene, 33, 103 (1985) )], PSTV28 (manufactured by Takara Shuzo Co., Ltd.), pUC118 (manufactured by Takara Shuzo Co., Ltd.), pIJ6902 [Mol.
  • Any promoter can be used as long as it can function in a host cell.
  • trp promoter Ptrp
  • lac promoter Plac
  • T7 promoter PL promoter
  • PR promoter PR promoter
  • promoter derived from E. coli such as PSE promoter, phage, etc.
  • SP01 promoter SP02 promoter
  • penP promoter tipA promoter
  • tipA promoter J. Bacteriol., 171, 1459 (1989)]
  • erm E * promoter [Gene, 38, 215 (1985)] and the like.
  • Promors such as a promoter in which two Ptrps are connected in series (Ptrp X 2), tac promoter, lacT7 promoter, let I promoter, and the like can also be used.
  • Preferred examples include lac promoter (Plac), ermE * promoter, T7 promoter, tipA promoter and the like, and more preferred examples include lac promoter (Plac) and ermE * promoter.
  • a plasmid in which the distance between the Shine-Dalgamo sequence, which is a ribosome binding sequence, and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 bases) is used as a vector. I like it! /
  • a transcription termination sequence is not necessarily required for the expression of the DNA of the present invention, but it is preferable to place the transcription termination sequence immediately below the structural gene.
  • Prokaryotes include microorganisms belonging to the genus Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, Streptomyces, etc., for example, ⁇ _ ⁇ , Escherichia coli XLl_Blue, Escherichia coli XL2_Blue, Escheric hia coli DH1, Escherichia coli MC1000, Escherichia coli KY3726, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli BL21 (DE 3), Escherichia coli ⁇ ⁇ ichi, 3 coli NY49, Serratia ficaria.
  • Serratia fonticola Serratia liauefaciens. Serratia marcescens. Bacillus subtili s Serratia amvloliquefaciens. This is That.
  • Preferred examples include Escherichia coli BL21 (D E3), Escherichia coli JM109, Streptomvces lividans and the like, and more preferred are Escherichia coli JM109 and Streptomvces lividans.
  • any method can be used as long as it is a method for introducing DNA into the host cell.
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69 , 2110 (1972)]
  • protoplast method Japanese Patent Laid-Open No. 63-248394
  • electo-poration method [Nucleic Acids Res., 15, 6127 (1988)]
  • Conjugation method [J. Bacteriol., 171, 3585 (1989)].
  • YEpl 3 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, pHS15, etc. can be used as an expression vector.
  • Any promoter can be used as long as it functions in a yeast strain.
  • PH05 promoter, PKG promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, heat shock The ability to list promoters such as polypeptide promoters, MF a 1 promoters, CUP 1 promoters, etc.
  • yeast strains belonging to the genus Saccharomyces, Schizosaccharomyces, Kluybe mouth mouth, Genus Trichosporon, Sisniomyces, Pichia, Candida, etc. are used. ⁇ , saccharomyces cervisiae, Shizosaccharomyces j) ombe, luvveromvces lactis. TricnosDoron pullulans ⁇ chwanniomvces alluvius., Pich ia pastoris, Candida utilis.
  • any method can be used as long as it introduces DNA into yeast.
  • the Elect Mouth Position Method [Methods Enzymol., 194, 182 (199 0)]
  • ferroplast method [? ⁇ Ji ⁇ & yoji & (1.5 (115, 81, 4889 (1984)]
  • lithium acetate method [J. Bacteriol., 153, 163 (1983)].
  • the method of culturing the transformant of the present invention can be carried out according to a usual method used for culturing a host.
  • a medium for cultivating transformants obtained by using prokaryotes such as E. coli 'actinomycetes or eukaryotes such as yeast as a host
  • carbon sources, nitrogen sources, inorganic salts, etc. that can be assimilated by the organism
  • Any of a natural medium and a synthetic medium may be used as long as the medium can contain the yeast and can efficiently culture the transformant.
  • the carbon source as long as the organism can be assimilated, glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, acetic acid, propionic acid, etc. Organic acids, alcohols such as ethanol, propanol and the like can be used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and other ammonium-containing organic salts, other nitrogen-containing compounds, peptone, meat extract, yeast Extract, corn steep liquor, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermentation cells, and their digestion A thing etc. can be used.
  • inorganic salt monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like can be used.
  • the culture is preferably performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is preferably 15 to 40 ° C, and the culture time is usually 5 hours to 7 days.
  • the pH is maintained at 3.0 ⁇ 9.0.
  • the pH is adjusted using inorganic or organic acids, alkaline solutions, urea, calcium carbonate, etc.
  • antibiotics such as ampicillin, kanamycin, apramycin, thiostreptone, tetracycline, chloramphenicol, streptomycin and the like may be added to the medium as needed during the culture.
  • an inducer may be added to the medium as necessary.
  • an inducer may be added to the medium as necessary.
  • an inducer may be added to the medium.
  • an inducer may be added to the medium.
  • tistrepton may be added to the medium.
  • a transformant derived from a microorganism having a recombinant DNA incorporating a DNA encoding the protein of the present invention is cultured according to a normal culture method, and the protein is produced and accumulated, and the culture By collecting the protein, it is possible to produce the protein.
  • a method for producing the protein of the present invention there are a method of producing in the host cell, a method of secreting it outside the host cell, and a method of producing it on the host cell outer membrane.
  • the cells are collected by centrifugation after culturing, suspended in an aqueous buffer solution, ultrasonically disrupted, French Cells are disrupted with a loess, mantongaurine homogenizer, dynomill, etc. to obtain a cell-free extract.
  • an ordinary enzyme purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, a jetylamino Anion exchange chromatography using resin such as ethyl (DEAE) -cephalose, DIAION HPA_75 (manufactured by Mitsubishi Kasei Co., Ltd.), cation exchange chromatography using resin such as SS sign arose FF (manufactured by Pharmacia) Methods such as hydrophobic chromatography using resin such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, isoelectric focusing, etc. Use a technique such as electrophoresis, alone or in combination, to obtain a purified product.
  • the protein is produced as an insoluble substance in the cell, the protein is recovered by a usual method from the precipitate fraction obtained by centrifugation after disrupting the cell in the same manner as described above.
  • the protein insoluble matter is solubilized with a protein denaturant.
  • the solubilized solution is diluted or dialyzed into a solution that does not contain a protein denaturing agent or is so thin that the concentration of the protein denaturing agent does not denature the protein, and the protein is formed into a normal three-dimensional structure.
  • a purified sample can be obtained by the same isolation and purification method.
  • the derivative of the protein of the present invention or a modified sugar chain thereof can be recovered in the culture supernatant. That is, a culture supernatant is obtained by treating the culture by a method such as centrifugation as described above, and a purified standard is obtained from the culture supernatant by using the same isolation and purification method as described above. Power to get goods S.
  • the protein of the present invention when the protein of the present invention is produced in a dissolved state in cells and the enzyme activity cannot be obtained with the cell-free extract, the cells are collected by centrifugation after the completion of the culture, After suspending cells in an aqueous buffer solution to produce quiescent cells, the solution of quiescent cells can be directly subjected to enzyme reaction.
  • the enzyme source and L-sip Icin are present in an aqueous medium, and the (2S, 4S) Production of 5-hydroxyleucine and accumulation to produce (2S, 4S) — 5-hydroxyleucine.
  • the treated product of the culture includes, for example, a concentrate of the culture, a dried product of the culture, a cell obtained by centrifuging the culture, a dried product of the cell, Lyophilized product of body, surfactant-treated product of the cell, ultrasonically treated product of the cell, mechanically ground product of the cell, solvent-treated product of the cell, enzyme treatment of the cell Products, protein fractions of the cells, immobilized products of the cells, enzyme preparations obtained by extraction from the cells, and the like.
  • Aqueous media that can be used to produce 5-hydroxyleucine include buffers such as water, phosphates, carbonates, acetates, borates, kenates, tris, Examples thereof include alcohols such as methanol and ethanol, esters such as ethyl acetate, ketones such as acetone, and amides such as acetate amide.
  • a culture solution of a microorganism used as an enzyme source can be used as an aqueous medium.
  • surfactants include nonionic surfactants such as polyoxyethylene 'octadecylamine (for example, Naimine S-215, manufactured by Nippon Oil & Fats Co., Ltd.), cetyl trimethyl ammonium' bromide and alkyldimethyl 'benzyl ammonium chloride (for example, Cationic surfactants such as cation F2-40E (manufactured by NOF Corporation), anionic surfactants such as lauroyl sarcosinate, and tertiary amines such as alkyldimethylamine (eg, tertiary amine FB, NOF Corporation)
  • nonionic surfactants such as polyoxyethylene 'octadecylamine (for example, Naimine S-215, manufactured by Nippon Oil & Fats Co., Ltd.), cetyl trimethyl ammonium' bromide and alkyldimethyl 'benzyl ammonium chloride (for example, Cationic surfactants
  • Surfactants are usually used at a concentration of 0.;!-50 g / l.
  • the organic solvent include xylene, toluene, fatty acid alcohol, acetone, ethyl acetate and the like, and they are usually used at a concentration of 0.;! To 50 ml / l.
  • (2S, 4S) -5-Hydroxyleucine is formed in an aqueous medium at pH 5 to 10, preferably pH 6 to 8 and 20 to 50 ° C for 1 to 96 hours.
  • a carbon source such as glycerol or an inorganic salt such as MnCl can be added as necessary.
  • Quantification of (2S, 4S) -5-hydroxyleucine produced in an aqueous medium can be performed using high performance liquid chromatography (HPLC) or the like.
  • Isolation and purification of (2S, 4S) -5-hydroxyleucine produced in the reaction solution can be carried out by a usual method using activated carbon, ion exchange resin, preparative HPLC or the like.
  • ATCC29133 Genomic DNA of Nostoc SD.
  • ATCC29133D was obtained from ATCC (American 'Type' Culture 'Collection) as a commercial product (ATCC29133D).
  • Primers consisting of the nucleotide sequences represented by SEQ ID NOs: 4 and 5 were synthesized, and PCR was performed using the genomic DNA as a saddle. PCR is chromosomal DNAO.
  • the DNA was cleaved with restriction enzymes Ndel and BamHI, and 1.7 kb DNA was separated by agarose electrophoresis. Then, the DNA was recovered from the agarose gel according to a conventional method.
  • Example 2 Chemical synthesis of L-tout Icin hydroxylase gene
  • AA-1 SEQ ID NO: 6
  • AA-2 SEQ ID NO: 7
  • AA—3 SEQ ID NO: 8
  • AA—4 SEQ ID NO: 9
  • BB—1 SEQ ID NO: 10
  • BB—2 sequence No. 11
  • BB-3 SEQ ID NO: 12
  • BB-4 SEQ ID NO: 13
  • primer-type (AA-1 and AA-2) 0 ⁇ ⁇ ⁇ ⁇ / ⁇ ⁇ —Plus-Polymerase (Toyobo Co., Ltd.) 1. Ounits, KOD—plus—X for polymerase 10 Slow impact 5 1, reaction containing deoxyNTP ⁇ 200 ⁇ mol, MgSO ImM
  • reaction solution 2.5 1 was performed again using the obtained reaction solution 2.5 1 as a shared primer set and cage.
  • the reaction conditions are the above reaction solution 2.51 for the primer-and-cum-type (AA-1 and AA-2), the above reaction solution 2 ⁇ 51 and the one for the primer-and-cum-type (AA-3 and AA-4), KOD — Plus—Polymerase (manufactured by Toyobo Co., Ltd.) 1.0 units, KOD—plus—Polymerase X 10 Slow night 5 a 1, deoxyNTP 200 ⁇ mol each, MgSO ImM reaction ⁇ ⁇ 50 ⁇ 1
  • the process was repeated 15 times at 94 ° C for 30 seconds, 60 ° C for 30 seconds and 68 ° C for 1 minute.
  • change the primer / combination type to the above reaction solution of (BB-1, BB-2) and the above reaction solution of (BB-3, BB-4) and perform the PCR reaction for a total of two types of reactions.
  • a liquid was obtained.
  • the reaction solution obtained by PCR was incorporated into E. coli plasmid pTA2 using a TArget Clone TM -Plus- kit (manufactured by Toyobo Co., Ltd.). That is, 91 PCR reaction solution and 1 ⁇ l of 10 X A-attachment Mix (manufactured by Toyobo Co., Ltd.) were added and stirred and reacted at 60 ° C for 10 minutes.
  • Plasmid pB-5 was obtained from a PCR fragment derived from BB-4 (SEQ ID NOs: 10, 11, 12, and 13). These plasmids were digested with the restriction enzyme Mrol and subsequently ligated with ligation to obtain a plasmid (pnos5B) containing a DNA fragment (nos 5—GC) consisting of the base sequence shown in SEQ ID NO: 3.
  • PCR is about 0.1 g of rod-shaped DNA (plasma pnos5B), each primer 0 ⁇ S ⁇ mol / l, KOD —Plus—Polymerase (Toyobo Co., Ltd.) 1 ⁇ 0 units, KOD—plus—polymerase Use reaction solution 50 1 containing X 10 buffer 5 ⁇ 1, deo xyNTP ⁇ 200 i mol, MgSO ImM for 15 seconds at 94 ° C.
  • the process was repeated 25 times at 55 ° C for 30 seconds and 68 ° C for 1 minute.
  • the reaction solution obtained by PCR was incorporated into Escherichia coli plasmid pTA2 using a TArget Clone TM -Plus- kit (manufactured by Toyobo Co., Ltd.). That is, 91 PCR reaction solution and 1 ⁇ l of 10 X A-attachment Mix (manufactured by Toyobo Co., Ltd.) were added and stirred and reacted at 60 ° C for 10 minutes.
  • the obtained recombinant plasmid pnos5C was digested with restriction enzymes Ndel and Bglll, and 0.8 kb of DNA was separated by agarose gel electrophoresis. Then, the DNA was recovered from the agarose gel according to a conventional method. [0091] About 0 ⁇ of pET24 DNA (manufactured by Novagen) was cut with restriction enzymes Ndel and BamHI, and the DNA fragments were separated by agarose gel electrophoresis to recover the 5.3 kb DNA fragment.
  • a recombinant plasmid that functions in mvces ikite was implemented by the following method.
  • the recombinant plasmid pnos5C obtained in Example 2 was cleaved with restriction enzymes Ndel and Bglll, and the DNA was recovered from an agarose gel according to a conventional method.
  • about 0.2 g of plj 6902 DNA was cleaved with restriction enzymes Ndel and BamHI, and DNA fragments were separated by agarose gel electrophoresis.
  • an about 7.3 kb DNA fragment was recovered from an agarose gel.
  • the recombinant plasmid pnos5A containing the leucine hydroxylase gene nos5 obtained in Example 1 was transformed into Escherichia coli BL21 (DE3) (manufactured by Novagen) and assembled. A modified Escherichia coli (E. coli / pn OS 5A strain) was obtained. The resulting recombinant Escherichia coli was inoculated into an Erlenmeyer flask containing lOOmL of LB medium containing 30 g / ml of kanamycin and cultured at 37 ° C for 18 hours.
  • the culture broth was inoculated at 1% into a conical flask containing lOOmL of LB medium containing 30 g / ml of kanamycin, and cultured at 37 ° C for 6 hours. Then, the culture broth lOOmL was centrifuged to obtain wet cells. .
  • the obtained Escherichia coli recombinant (E.coli / pnos5A strain) wet microbial cell is composed of lOOmmol / 1 sodium phosphate buffer ⁇ ⁇ ( ⁇ 7.0), 10% glyceronole, 10mmol / l L-leucine 20
  • the suspension was suspended in mL of the reaction solution, and the reaction solution was transferred to an Erlenmeyer flask and reacted at 28 ° C for 72 hours.
  • reaction product was analyzed using high performance liquid chromatography (HPLC) (manufactured by Shimadzu Corporation) under the following analytical conditions, and about 3 mmol / l (2S , 4S)-5-Hydroxyleucine was confirmed to be generated and accumulated!
  • HPLC high performance liquid chromatography
  • OPA reaction solution 0.3 mmol borate buffer (pH 10.5), orthophthalaldehyde (OPA) O. 4 g / l, ethanol 16 ml / l, 2-mercapto Ethanol (2 ml / l) was allowed to act at 40 ° C to make the primary amino acid OPA derivatized, and the absorbance at 340 nm was measured.
  • the obtained white powder was confirmed to be (2S, 4S) -5-hydroxyleucine by 1 H-NMR, 13 C-NMR, LC / MS, and specific rotation measurement. Each instrumental analysis is a separate organic synthesis. (2S, 4S) -5-hydroxyleucine standard product [J. Org. Chem., 54, 1859 (198 9)] obtained in the , 4S) -5-Hydroxyleucine and the standard (2S, 4S) -5-hydroxyleucine were confirmed to be in perfect agreement.
  • Example 5 (2S. 4S) —5-hydroxyleucine produced in cattle by E. coli transformed plant (E. coli nos5D strain)
  • the recombinant plasmid pnos5D containing the leucine hydroxylase gene nos5 obtained in Example 2 was transformed into Escherichia coli BL21 (DE3) (manufactured by Novagen) and recombinant E. coli / pn OS 5D. Obtained).
  • the obtained recombinant Escherichia coli was inoculated into an Erlenmeyer flask containing LB medium lOOmL containing 30 kg / ml of kanamycin and cultured at 37 ° C for 18 hours.
  • the culture broth was inoculated 1% into an Erlenmeyer flask containing LB medium lOOmL containing 30 g / ml kanamycin and cultured at 37 ° C. for 6 hours, and then the culture broth lOOmL was centrifuged to obtain wet cells.
  • reaction product was analyzed using high performance liquid chromatography (HPLC) (manufactured by Shimadzu Corporation) under the following analytical conditions, and about 1 mmol / 1 (2S , 4S)-5-Hydroxyleucine was confirmed to be generated and accumulated!
  • HPLC high performance liquid chromatography
  • the fraction obtained by preparative purification was freeze-dried to obtain about 47 mg of white powder.
  • the obtained white powder was confirmed to be (2S, 4S) -5 hydroxyleucine by 1H-NMR and LC / MS.
  • Each instrumental analysis was carried out by comparison with (2S, 4S) 5 hydroxyleucine standard (J. Org. Chem., 54, 1859 (1989)) obtained separately by organic synthesis, and obtained by enzymatic reaction. It was confirmed that the instrumental analysis characteristic values of (2S, 4S) -5-hydroxyleucine and the standard (2S, 4S) -5-hydroxyleucine were in perfect agreement.
  • Example 6 Actinomycete-shaped transformed body (S. lividans nos5E strain) (2S. 4S) — 5 Hydroxyleucine from cattle
  • Recombinant plasmid Onos 5E containing the leucine hydroxylase gene nos5 obtained in Example 3 was introduced into the actinomycetes StreiDtomvces lividans by the conjugative transfer method, and MS agar medium containing apramycin 10 g / ml [mannitol (Kanto Chemical) 20g / l, defatted soybean (Ajinomoto Oil Co., Ltd.) 10g / l, agarose 20g / l], and then incubated at 28 ° C, so that the zygote (S. lividans / nos5E) I guarded.
  • the obtained conjugation transmitter was treated with a modified YEME medium containing 5 g / ml of apramycin [Batato Peptone (Difco) 5 g / l, Yeast Extract (Difco) 3 g / l, Malto Extratote (Oxoid) 3g / l, Gnore course 10g / l. Sucrose 30 g / l] was inoculated into an Erlenmeyer flask containing 50 mL and cultured at 30 ° C for 18 hours.
  • the S.lividans / pnos5E strain wet cells obtained above were used in a 20 mL reaction consisting of lOOmmol / 1 sodium phosphate buffer ( ⁇ 7.0), 10% glyceronole, 10 mmol / l L leucine.
  • the reaction solution was suspended in a liquid, transferred to an Erlenmeyer flask, and reacted at 30 ° C for 24 hours.

Abstract

Disclosed are: a novel protein having an L-leucine hydroxylase activity, i.e., an activity of converting L-leucine into (2S,4S)-5-hydroxyleucine; DNA encoding the protein; recombinant DNA containing the DNA; a transformant carrying the recombinant DNA; the protein using the transformant; and a method for producing (2S,4S)-5-hydroxyleucine. It becomes possible to provide a method for producing (2S,4S)-5-hydroxyleucine, which is a substance expected to be used as a starting material for the production of a useful substance such as a pharmaceutical agent, by utilizing an organism, an enzyme or the like. The method enables to produce (2S,4S)-5-hydroxyleucine at high efficiency.

Description

明 細 書  Specification
L一口イシンヒドロキシラーゼおよび該酵素をコードする DNA  L bite isine hydroxylase and DNA encoding the enzyme
関連出願の参照  Reference to related applications
[0001] 本願は、先行する日本国特許出願である特願 2006— 205755号(出願日: 2006 年 7月 28日 )に基づくものであって、その優先権の利益を主張するものであり、その 開示内容全体は参照することによりここに組み込まれる。  [0001] This application is based on Japanese Patent Application No. 2006-205755 (filing date: July 28, 2006), which is a prior Japanese patent application, and claims the benefit of its priority. The entire disclosure is hereby incorporated by reference.
発明の背景  Background of the Invention
[0002] 発明の分野 [0002] Field of the Invention
本発明は、 L一口イシンヒドロキシラーゼ、即ち L一口イシンを(2S, 4S)— 5—ヒドロ キシロイシンに変換する活性を有する蛋白質、該蛋白質をコードする DNA、該 DNA を含有する組換え DNA、該組換え DNAを保有する形質転換体、該形質転換体を 用いる L一口イシンヒドロキシラーゼ活性を有する蛋白質の製造法、および該形質転 換体を用いる(2S , 4S)— 5—ヒドロキシロイシンの製造法に関する。  The present invention relates to a protein having an activity to convert L-tipped isine hydroxylase, that is, L-tipped isine into (2S, 4S) -5-hydroxyleucine, DNA encoding the protein, recombinant DNA containing the DNA, The present invention relates to a transformant having recombinant DNA, a method for producing a protein having L-mouth isine hydroxylase activity using the transformant, and a method for producing (2S, 4S) -5-hydroxyleucine using the transformant. .
[0003] 皆景枝術 [0003] Minakei
(2S, 4S)— 5—ヒドロキシロイシンは、非天然型アミノ酸で、かつ光学活性異性体 であることから、医薬品など各種有用物質製造における出発原料としての利用が期 待される。この物質の製造方法としては、化学合成による方法が報告されているのみ で、あり 0·し hem.soc.PerKin Ί rans.1, Organic and Bio-Organic uhemistry, 8, 2075(1988 ) ; J.Org.Chem.,68,83(2003))、生物または酵素等を利用して製造する方法について は、本発明者らの知る限りこれまで報告されて!/、なレ、。  Since (2S, 4S) -5-hydroxyleucine is an unnatural amino acid and an optically active isomer, it is expected to be used as a starting material in the production of various useful substances such as pharmaceuticals. As a method for producing this substance, only a chemical synthesis method has been reported, and hem.soc.PerKinΊrans.1, Organic and Bio-Organic uhemistry, 8, 2075 (1988); J. Org. Chem., 68, 83 (2003)), and as far as the present inventors know, methods for producing using organisms or enzymes have been reported so far!
[0004] (2S, 4S)— 5—ヒドロキシロイシンは、藍藻の一種である Nostoc sp. GSV224が生 産するポリペプチド(nostop印 tolide A1および nostop印 tolide A2)の生合成経路中 において、生合成中間体として存在することが予想されている(J.Org.Chem.,68,83(2 003) ; Gene, 311, 171(2003))。しかしながら、 Nostoc SD. GSV224において L—口イシ ンヒドロキシラーゼ遺伝子の特定は行われておらず、そのような示唆もされていない。 また、その他の生物においても、 L一口イシンヒドロキシラーゼ活性を有する酵素およ び該酵素をコードする遺伝子について、本発明者らの知る限り、これまで報告されて いない。 [0004] (2S, 4S) — 5-Hydroxyleucine is produced in the biosynthetic pathway of polypeptides (nostop mark tolide A1 and nostop mark tolide A 2 ) produced by Nostoc sp. GSV224, a kind of cyanobacteria. It is expected to exist as a synthetic intermediate (J. Org. Chem., 68, 83 (2 003); Gene, 311, 171 (2003)). However, no L-mouth isine hydroxylase gene has been identified or suggested in Nostoc SD. GSV224. In other organisms, as far as the present inventors have known, an enzyme having L-mouth icine hydroxylase activity and a gene encoding the enzyme have been reported so far. Not in.
[0005] 藍藻の一種である Nostoc sp. ATCC29133株は、その DNAの塩基配列が解析され ている。しかしながら、ここでは L—ロイシンヒドロキシラーゼ遺伝子の特定は行われて おらず、またその存在の示唆もこれまで行われて!/、な!/、。  [0005] The DNA sequence of Nostoc sp. ATCC29133, a kind of cyanobacteria, has been analyzed. However, the L-leucine hydroxylase gene has not been identified here, and its existence has been suggested so far!
発明の概要  Summary of the Invention
[0006] 本発明者らは今般、藍藻に属する微生物、詳しくはノストツク (Nostoc)属に属する 微牛物(Nostoc SP. ATCC29133株)由来の DNAを用いて機能解析した結果、これま で特定されていなかった新規 L一口イシンヒドロキシラーゼをコードする DNAを予想 外にも見出し、該 DNAを取得することに成功した。本発明は力、かる知見に基づくもの である。  [0006] As a result of functional analysis using the DNA derived from microorganisms belonging to the cyanobacterium, specifically, the fine cattle (Nostoc SP. ATCC29133) belonging to the genus Nostoc, the present inventors have now been identified. Unexpectedly found a DNA encoding a novel L-tout isin hydroxylase that was not present and succeeded in obtaining the DNA. The present invention is based on strength and knowledge.
[0007] よって本発明は、医薬品など各種有用物質製造における出発原料となりうる(2S, 4S)—5—ヒドロキシロイシンを得るため、 L一口イシンヒドロキシラーゼ活性を有する 新規蛋白質、該蛋白質をコードする DNA、該 DNAを含有する組換え DNA、該組 換え体 DNAを保有する形質転換体、該形質転換体を用いた上記蛋白質、および(2 S , 4S)— 5—ヒドロキシロイシンの製造法を提供することをその目的とする。  [0007] Therefore, the present invention provides a novel protein having L-mouth icine hydroxylase activity and DNA encoding the protein in order to obtain (2S, 4S) -5-hydroxyleucine, which can be used as a starting material in the production of various useful substances such as pharmaceuticals. And a recombinant DNA containing the DNA, a transformant carrying the recombinant DNA, the protein using the transformant, and a method for producing (2 S, 4S) -5-hydroxyleucine That is the purpose.
[0008] 本発明による蛋白質は、下記からなる群より選択されるものである:  [0008] The protein according to the present invention is selected from the group consisting of:
(a) 配列番号 1で表されるアミノ酸配列を有する、蛋白質、  (a) a protein having the amino acid sequence represented by SEQ ID NO: 1,
(b) 配列番号 1のアミノ酸配列において、 1もしくは複数個のアミノ酸残基が欠失、 置換、揷入もしくは付加されたアミノ酸配列からなり、かつ L一口イシンヒドロキシラー ゼ活性を有する、蛋白質、および  (b) a protein comprising an amino acid sequence in which one or more amino acid residues are deleted, substituted, inserted or added in the amino acid sequence of SEQ ID NO: 1 and having L-mouth isine hydroxylase activity; and
(c) 配列番号 1のアミノ酸配列と 60%以上の相同性を有するアミノ酸配列からなり 、かつ L—ロイシンヒドロキシラーゼ活性を有する、蛋白質。  (c) A protein comprising an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 1 and having L-leucine hydroxylase activity.
[0009] 本発明による DNAは、本発明による蛋白質をコードするものである。好ましくは、こ の DNAは、配列番号 2で表される塩基配列を有する。  [0009] The DNA according to the present invention encodes the protein according to the present invention. Preferably, this DNA has the base sequence represented by SEQ ID NO: 2.
[0010] また別の態様によれば、本発明による DNAは、下記からなる群より選択されるもの である: [0010] According to another embodiment, the DNA according to the present invention is selected from the group consisting of:
(0 配列番号 2で表される塩基配列を有する、 DNA、  (0 having a base sequence represented by SEQ ID NO: 2, DNA,
(ii) 配列番号 2で表される塩基配列を有する DNAとストリンジェントな条件下でハイ ブリダィズし、かつ L—ロイシンヒドロキシラーゼ活性を有する蛋白質をコードする、 D NA、 (ii) DNA that has the nucleotide sequence represented by SEQ ID NO: 2 and high under stringent conditions DNA that encodes a protein that is brididized and has L-leucine hydroxylase activity,
(iii) 配列番号 2において、 1もしくは複数個の塩基が欠失、置換、揷入もしくは付加 された塩基配列からなり、かつ L一口イシンヒドロキシラーゼ活性を有する蛋白質をコ ードする、 DNA、および  (iii) a DNA comprising a nucleotide sequence in which one or more bases are deleted, substituted, inserted or added in SEQ ID NO: 2, and which encodes a protein having L-mouth isine hydroxylase activity; and
(iv)配列番号 2で表される塩基配列と 60%以上の相同性を有する塩基配列からな り、かつ L一口イシンヒドロキシラーゼ活性を有する蛋白質をコードする、 DNA。  (iv) A DNA comprising a nucleotide sequence having 60% or more homology with the nucleotide sequence represented by SEQ ID NO: 2 and encoding a protein having L-mouth icine hydroxylase activity.
[0011] 本発明の好ましい態様によれば、本発明による DNAは、藍藻(Cvanobacteria)に 属する微生物由来のものである。より好ましい態様によれば、藍藻に属する微生物由 来の DNAは、ノストック (N^l^)属に属する微生物由来の DNAである。本発明のさ らに好ましい態様によれば、前記したノストック (N^l^)属に属する微生物は、ノスト
Figure imgf000005_0001
[0011] According to a preferred embodiment of the present invention, the DNA according to the present invention is derived from a microorganism belonging to the cyanobacteria (Cvanobacteria). According to a more preferred embodiment, the DNA derived from a microorganism belonging to the cyanobacteria is DNA derived from a microorganism belonging to the genus Nostock (N ^ l ^). According to a further preferred embodiment of the present invention, the microorganism belonging to the genus Nostock (N ^ l ^) is
Figure imgf000005_0001
[0012] 本発明の別の態様によれば、本発明による DNAは、本発明による蛋白質をコード するものであって、配列番号 3で表される塩基配列を有するものである。  [0012] According to another aspect of the present invention, the DNA according to the present invention encodes the protein according to the present invention, and has the base sequence represented by SEQ ID NO: 3.
[0013] 本発明のさらに別の態様によれば、本発明による DNAは、下記からなる群より選択 されるものである: [0013] According to yet another aspect of the present invention, the DNA according to the present invention is selected from the group consisting of:
(I) 配列番号 3で表される塩基配列を有する、 DNA、  (I) DNA having the base sequence represented by SEQ ID NO: 3,
(II) 配列番号 3で表される塩基配列を有する DNAとストリンジェントな条件下でハ イブリダィズし、かつ L一口イシンヒドロキシラーゼ活性を有する蛋白質をコードする、 DNA、  (II) a DNA that hybridizes with a DNA having the base sequence represented by SEQ ID NO: 3 under a stringent condition and encodes a protein having an L-mouth isine hydroxylase activity;
(III) 配列番号 3において、 1もしくは複数個の塩基が欠失、置換、揷入もしくは付 加された塩基配列からなり、かつ L一口イシンヒドロキシラーゼ活性を有する蛋白質を コードする、 DNA、および  (III) DNA encoding a protein consisting of a base sequence in which one or more bases have been deleted, substituted, inserted or added in SEQ ID NO: 3 and having L-mouth isine hydroxylase activity, and
(IV)配列番号 3で表される塩基配列と 60%以上の相同性を有する塩基配列からな り、かつ L一口イシンヒドロキシラーゼ活性を有する蛋白質をコードする、 DNA。  (IV) A DNA comprising a nucleotide sequence having 60% or more homology with the nucleotide sequence represented by SEQ ID NO: 3 and encoding a protein having L-mouth icine hydroxylase activity.
[0014] 本発明による組換え DNAは、本発明による DNAをベクターに組み込んで得られる [0015] 本発明による形質転換体は、本発明による組換え DNAを宿主細胞に導入して得ら れる。ここで、宿主細胞は好ましくは、ェシエリヒア ·コリ(Escherichia coli)であり、より 好ましくは、ストレプトミセス ·リビダンス(StreiDtomvces lividans)である。また本発明に よる形質転換体は好ましくは、 L一口イシンヒドロキシラーゼを発現するものである。 [0014] The recombinant DNA according to the present invention is obtained by incorporating the DNA according to the present invention into a vector. [0015] The transformant according to the present invention is obtained by introducing the recombinant DNA according to the present invention into a host cell. It is. Here, the host cell is preferably Escherichia coli, and more preferably, Streptomyces lividans. Moreover, the transformant according to the present invention preferably expresses L-mouth icine hydroxylase.
[0016] 本発明による L一口イシンヒドロキシラーゼ活性を有する蛋白質の製造方法は、本 発明による形質転換体を、培地を用いて培養して、培養物中に L一口イシンヒドロキ シラーゼ活性を有する蛋白質を生成し蓄積させ、該培養物から該蛋白質を採取する ことを含んでなる。 [0016] The method for producing a protein having L-mouth icine hydroxylase activity according to the present invention comprises culturing the transformant according to the present invention using a medium, and adding a protein having L-portion isine hydroxylase activity in the culture. Producing, accumulating, and collecting the protein from the culture.
[0017] 本発明による(2S, 4S)— 5—ヒドロキシロイシンの製造法は、本発明による形質転 換体の培養物または該培養物の処理物を酵素源として用い、該酵素源と L一口イシ ンとを水性媒体中に存在せしめて、該水性媒体中で(2S, 4S)— 5—ヒドロキシロイシ ンを生成し蓄積させ、該水性媒体中から(2S, 4S)— 5—ヒドロキシロイシンを採取す ることを含んでなる。ここで、培養物の処理物は、好ましくは、培養物の濃縮物、培養 物の乾燥物、培養物を遠心分離して得られる菌体、該菌体の乾燥物、該菌体の凍結 乾燥物、該菌体の界面活性剤処理物、該菌体の超音波処理物、該菌体の機械的磨 砕処理物、該菌体の溶媒処理物、該菌体の酵素処理物、該菌体の蛋白質分画物、 該菌体の固定化物、または該菌体より抽出して得られる酵素標品である。  [0017] The method for producing (2S, 4S) -5-hydroxyleucine according to the present invention uses a culture of the transformant according to the present invention or a treated product of the culture as an enzyme source. In the aqueous medium to form and accumulate (2S, 4S) -5-hydroxyleucine in the aqueous medium, and (2S, 4S) -5-hydroxyleucine is removed from the aqueous medium. Collecting. Here, the treated product of the culture is preferably a culture concentrate, a dried product of the culture, a cell obtained by centrifuging the culture, a dried product of the cell, and a freeze-dried product of the cell. Product, surfactant-treated product of the microbial cell, ultrasonic treated product of the microbial cell, mechanically-ground product of the microbial cell, solvent-treated product of the microbial cell, enzyme-treated product of the microbial cell, the bacterium A protein fraction of the body, an immobilized product of the cell, or an enzyme preparation obtained by extraction from the cell.
[0018] 本発明はまた、下記の通りのものであることができる:  [0018] The present invention can also be as follows:
(1) 配列番号 1で表されるアミノ酸配列を有する蛋白質;  (1) a protein having the amino acid sequence represented by SEQ ID NO: 1;
(2) L一口イシンヒドロキシラーゼ活性を有する(1)記載の蛋白質;  (2) The protein according to (1), which has L-sip Icin hydroxylase activity;
(3) 配列番号 1で表されるアミノ酸配列において 1個以上のアミノ酸が欠失、置換 若しくは付加されたアミノ酸配列からなり、かつ L一口イシンヒドロキシラーゼ活性を有 する蛋白質;  (3) a protein comprising an amino acid sequence in which one or more amino acids have been deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1 and having L-mouth icine hydroxylase activity;
(4) 前記(1)〜(3)の!/、ずれか一項に記載の蛋白質をコードする DNA; (4) DNA encoding the protein according to any one of (1) to (3)!
(5) 配列番号 2で表される塩基配列を有する(4)に記載の DNA; (5) The DNA according to (4) having the base sequence represented by SEQ ID NO: 2;
(6) 配列番号 3で表される塩基配列を有する(4)に記載の DNA;および (6) the DNA according to (4) having the base sequence represented by SEQ ID NO: 3; and
(7) 配列番号 2または 3で表される塩基配列を有する DNAとストリンジェントな条 件下でハイブリダィズし、かつ L一口イシンヒドロキシラーゼ活性を有する蛋白質をコ ードする DNA。 [0019] (2S, 4S)— 5—ヒドロキシロイシンは非天然型アミノ酸であり、かつ光学活性異性 体であることから、医薬品など各種有用物質製造における出発原料としての利用が 期待されており、 (2S, 4S)— 5—ヒドロキシロイシンの効率的なその製造法が強く望 まれている。本発明によれば、 L一口イシンヒドロキシラーゼを大量に取得することが 可能となる。本発明により得られる該酵素を用いることによって、(2S, 4S)— 5—ヒド ロキシロイシンを効率的に製造することができる。 (7) A DNA that hybridizes with a DNA having the nucleotide sequence represented by SEQ ID NO: 2 or 3 under a stringent condition and encodes a protein having L-tissue isine hydroxylase activity. [0019] (2S, 4S) -5-Hydroxyleucine is an unnatural amino acid and an optically active isomer, and is expected to be used as a starting material in the production of various useful substances such as pharmaceuticals. 2S, 4S) — An efficient production method for 5-hydroxyleucine is strongly desired. According to the present invention, it is possible to obtain a large amount of L-sip Icin hydroxylase. By using the enzyme obtained by the present invention, (2S, 4S) -5-hydroxyleucine can be efficiently produced.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図は、 L一口イシンヒドロキシラーゼ発現プラスミド pnos5Aの造成工程を示す。  [0020] FIG. 1 shows a process for constructing an L-mouth icine hydroxylase expression plasmid pnos5A.
なお、本願の図中において、「Amp」は、アンピシリン耐性遺伝子、「Km」は、カナ マイシン耐性遺伝子、「Apr」は、ァプラマイシン耐性遺伝子、「nos5」は、ロイシンヒド ロキシラーゼ遺伝子、「nos5— GC」は、ロイシンヒドロキシラーゼ遺伝子(化学合成) 、および「tipAp」は tipAプロモーターをそれぞれ表す。  In the figure of the present application, “Amp” is an ampicillin resistance gene, “Km” is a kanamycin resistance gene, “Apr” is an apramycin resistance gene, “nos5” is a leucine hydroxylase gene, “nos5-GC”. Represents the leucine hydroxylase gene (chemical synthesis) and “tipAp” represents the tipA promoter.
[図 2]図は、化学合成した遺伝子断片を作成して構築した、 L一口イシンヒドロキシラ ーゼ発現プラスミド pnos5Dの造成工程を示す。  [FIG. 2] FIG. 2 shows the construction process of L-nose isine hydroxylase expression plasmid pnos5D constructed by constructing a chemically synthesized gene fragment.
[図 3]図は、 L一口イシンヒドロキシラーゼ発現プラスミド pnos5Eの造成工程を示す。 発明の具体的説明  FIG. 3 shows the construction process of L-mouth icine hydroxylase expression plasmid pnos5E. DETAILED DESCRIPTION OF THE INVENTION
[0021] L一口イシンヒドロキシラーゼ [0021] L mouthful isine hydroxylase
本発明による L一口イシンヒドロキシラーゼとしては、配列番号 1で表されるアミノ酸 配列からなる蛋白質、または配列番号 1で表されるアミノ酸配列と実質的に同等なァ ミノ酸配列からなり、かつ L一口イシンヒドロキシラーゼ活性を有する蛋白質を挙げるこ と力 Sできる。  The L-mouthed isine hydroxylase according to the present invention includes a protein consisting of the amino acid sequence represented by SEQ ID NO: 1, or an amino acid sequence substantially equivalent to the amino acid sequence represented by SEQ ID NO: 1, and It is possible to list proteins with hydroxylase activity.
[0022] ここで、「実質的に同等なアミノ酸配歹 IJ」とは、 1つ若しくは複数個のアミノ酸の欠失、 置換、付加および/または揷入による改変を有する力 ポリペプチドの活性に影響を 与えないアミノ酸配列を意味する。改変されるアミノ酸残基の数は、好ましくは;!〜 40 個、より好ましくは 1〜20個、さらに好ましくは 1〜8個、最も好ましくは 1〜4個である。  [0022] Here, "substantially equivalent amino acid arrangement IJ" means the ability to modify one or more amino acid deletions, substitutions, additions and / or modifications due to insertions. An amino acid sequence that does not give The number of amino acid residues to be modified is preferably !!-40, more preferably 1-20, still more preferably 1-8, and most preferably 1-4.
[0023] ここで「ポリペプチドの活性」とは、 L一口イシンヒドロキシラーゼ活性を有することを いう。「L—ロイシンヒドロキシラーゼ活性を有する」とは、 L—ロイシンを(2S, 4S)— 5 ーヒドロキシロイシンに変換することができる活性を有していることを言う。この活性に ついては、慣用の方法にしたがって測定することができ、例えば、後述する実施例に 記載の方法にしたがって測定することができる。 [0023] Here, "activity of the polypeptide" means having L-mouth icine hydroxylase activity. “Having L-leucine hydroxylase activity” means having an activity capable of converting L-leucine into (2S, 4S) -5-hydroxyleucine. To this activity About it, it can measure according to a conventional method, for example, it can measure according to the method as described in the Example mentioned later.
[0024] 本発明で!/、う「活性に影響を与えな!/、改変」の例としては、保存的置換が挙げられ る。「保存的置換」とは、ポリペプチドの活性を実質的に変化しないように 1若しくは複 数個のアミノ酸残基を、別の化学的に類似したアミノ酸残基で置き換えることを意味 する。例えば、ある疎水性アミノ酸残基を別の疎水性アミノ酸残基によって置換する 場合、ある極性アミノ酸残基を同じ電荷を有する別の極性アミノ酸残基によって置換 する場合などが挙げられる。このような置換を行うことができる機能的に類似したァミノ 酸は、アミノ酸毎に当該技術分野において公知である。具体例を挙げると、非極性( 疎水性)アミノ酸としては、ァラニン、ノ リン、イソロイシン、ロイシン、プロリン、トリプトフ アン、フエ二ルァラニン、メチォニン等が挙げられる。極性(中性)アミノ酸としては、グ リシン、セリン、スレオニン、チロシン、グルタミン、ァスパラギン、システィン等が挙げら れる。陽電荷をもつ(塩基性)アミノ酸としては、アルギニン、ヒスチジン、リジン等が挙 げられる。また、負電荷をもつ(酸性)アミノ酸としては、ァスパラギン酸、グルタミン酸 等が挙げられる。 [0024] Examples of! /, "Does not affect activity! /, Modification" in the present invention include conservative substitutions. “Conservative substitution” means the replacement of one or more amino acid residues with another chemically similar amino acid residue so as not to substantially alter the activity of the polypeptide. For example, when one hydrophobic amino acid residue is substituted with another hydrophobic amino acid residue, one polar amino acid residue is substituted with another polar amino acid residue having the same charge, and the like. Functionally similar amino acids capable of making such substitutions are known in the art for each amino acid. Specific examples include non-polar (hydrophobic) amino acids such as alanine, norine, isoleucine, leucine, proline, tryptophan, phenylalanine, and methionine. Examples of polar (neutral) amino acids include glycine, serine, threonine, tyrosine, glutamine, asparagine, and cysteine. Examples of positively charged (basic) amino acids include arginine, histidine, and lysine. Examples of negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
[0025] なお、アミノ酸の失、置換、付加および/または揷入による改変は、例えばそれをコ ードする DNAに、例えば、周知技術である部位特異的変異誘発(例えば、 Nucleic A cid Research, Vol.10, No.20, p.6487-6500, 1982参照)を施すことにより行うことが出 来る。他の方法としては、遺伝子を変異源で処理する方法、および遺伝子を選択的 に開裂し、次に選択されたヌクレオチドを除去、付カロ、揷入および/または置換し、 次レヽで連結する方法などがある。  [0025] It should be noted that amino acid deletion, substitution, addition and / or modification by, for example, DNA coding for it, for example, site-directed mutagenesis (for example, Nucleic Acid Research, Vol.10, No.20, p.6487-6500, 1982). Other methods include treating the gene with a mutagen, and selectively cleaving the gene, then removing, appending, inserting and / or replacing selected nucleotides, and ligating at the next level. and so on.
[0026] 前記した「実質的に同等なアミノ酸配歹 IJ」には、さらにその N末端(ァミノ末端)およ び C末端(カルボキシル末端)が改変または修飾されて!/、るものが包含されてもょレ、。 例えば、 C末端のカルボキシルが、カルボキシレート(— COO—)、アミド(— CONH  [0026] The above "substantially equivalent amino acid arrangement IJ" includes those in which the N-terminus (amino terminus) and C-terminus (carboxyl terminus) are further altered or modified! /. Motole. For example, C-terminal carboxyl is carboxylate (—COO—), amide (—CONH
2 2
)またはエステル(一COOR)とされていてもよい。なおここで前記 Rは、例えば直鎖、 分岐鎖もしくは環状の C1— 6アルキル基、 C6— 12ァリール基等が挙げられる。 ) Or an ester (one COOR). Here, examples of R include a linear, branched or cyclic C1-6 alkyl group, a C6-12 aryl group, and the like.
[0027] また「配列番号 1で表されるアミノ酸配列と実質的に同等なアミノ酸配列」には、配 列番号 1のアミノ酸配列と 60%以上の相同性を有するアミノ酸配列が包含され得る。 ここで、相同性の割合は、好ましくは 70%以上、より好ましくは 80%以上、さらに好ま しくは 90%以上、さらにより好ましくは 95%以上、特に好ましくは 98%以上、最も好ま しくは 99%以上である。なお本明細書においては「相同性」は「同一性」の意味で使 用され得る。 The “amino acid sequence substantially equivalent to the amino acid sequence represented by SEQ ID NO: 1” can include an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 1. Here, the homology ratio is preferably 70% or more, more preferably 80% or more, even more preferably 90% or more, even more preferably 95% or more, particularly preferably 98% or more, and most preferably 99%. % Or more. In the present specification, “homology” may be used to mean “identity”.
[0028] 本明細書において、「相同性」の数値はいずれも、当業者に公知の相同性検索プ ログラムを用いて算出される数値であればよぐ例えば、相同性アルゴリズム BLAST (Basic local alignment search tool) (全米バイオテクノロジー情報センター(NCBI) ( http://www.ncbi.nlm.nih.gov/BLAST/ )より入手可)において、デフォルト(初期設定 )のパラメーターを用いることにより、算出すること力 Sできる。  [0028] In the present specification, any value of "homology" may be any value calculated using a homology search program known to those skilled in the art. For example, the homology algorithm BLAST (Basic local alignment search tool) (available from the National Center for Biotechnology Information (NCBI) (available from http://www.ncbi.nlm.nih.gov/BLAST/)), using the default (initial setting) parameters That power S.
[0029] L一口イシンヒドロキシラーゼをコードする DNA  [0029] DNA encoding L-tissue isine hydroxylase
本発明による DNAとしては、本発明による蛋白質をコードする DNA、配列番号 2ま たは 3で表される塩基配列からなる DNA、または配列番号 2または 3で表される塩基 酉己列からなる DNAとストリンジェントな条件でハイブリダィズする DNAであって、かつ L一口イシンヒドロキシラーゼ活性を有する蛋白質をコードする DNAを挙げることがで きる。  The DNA according to the present invention includes DNA encoding the protein according to the present invention, DNA consisting of the base sequence represented by SEQ ID NO: 2 or 3, or DNA consisting of the base sequence represented by SEQ ID NO: 2 or 3. And a DNA that hybridizes under stringent conditions and encodes a protein having L-mouth isine hydroxylase activity.
なお、本明細書においては、「DNA」(デォキシリボ核酸)は、必要によりポリヌクレ ォチドと言レ、換えて使用してもょレ、。  In the present specification, “DNA” (deoxyribonucleic acid) may be used as a polynucleotide, if necessary.
[0030] ここで、「ストリンジェントな条件下でハイブリダィズする DNA」とは、例えば、配列番 号 2で表される塩基配列を有する DNAなどの本発明による DNAまたはその一部の DNA断片をプローブとして、コロニー 'ノヽィブリダィゼーシヨン法、プラーク'ノヽイブリ ダイゼーシヨン法等を用いることにより得られる DNAを意味する。具体的には、該 DN Aとしては、コロニーあるいはプラーク由来の DNAを固定化したフィルターを用いて、 0. 7〜; 1. Omol/Lの塩化ナトリウム存在下、 65°Cでハイブリダィゼーシヨンを行った 後、 0. ;!〜 2倍濃度の SSC溶液(1倍濃度の SSC溶液の組成は、 150mmol/L塩 化ナトリウム、 15mmol/Lクェン酸ナトリウムよりなる)を用い、 65°C条件下でフィル ターを洗浄することにより同定できる DNAを挙げることができる。ハイブリダィゼーショ ンは、モレキュラー 'クローニング第 2版、カレント'プロトコールズ'イン'モレキュラー' ノ ィォロン一、 DNA Cloning 1: Core echniques,A Practical Approach, second Editi on, Oxford University(1995)等に記載されている方法に準じて行うことができる。 [0030] Here, "DNA that hybridizes under stringent conditions" refers to, for example, a DNA according to the present invention such as a DNA having the base sequence represented by SEQ ID NO: 2 or a partial DNA fragment thereof As used herein, it means DNA obtained by using a colony “nobly hybridization method, a plaque” nobly hybridization method, or the like. Specifically, as this DNA, using a filter on which DNA derived from colonies or plaques is immobilized, 0.7 to; 1. Hybridizer at 65 ° C. in the presence of Omol / L sodium chloride. After conducting the chilling, use 0.;! To 2 times SSC solution (composition of 1 times SSC solution consists of 150mmol / L sodium chloride and 15mmol / L sodium quenate) at 65 ° C Examples include DNA that can be identified by washing the filter under conditions. Hybridization includes molecular 'cloning 2nd edition, current'protocols' in 'molecular' neuron 1, DNA Cloning 1: Core echniques, A Practical Approach, second Editi. on, Oxford University (1995) and the like.
[0031] ハイブリダィズ可能な DNAとしては、具体的には、上記アルゴリズム BLASTに基 づレヽて計算した場合に例えば配列番号 2で表される塩基配列に少なくとも 60 %以上 の相同性を有する DNA、好ましくは 70%以上、より好ましくは 80%以上、さらに好ま しくは 90%以上、さらにより好ましくは 95%以上、特に好ましくは 98%以上、最も好ま しくは 99%以上の相同性を有する DNAを挙げることができる。  [0031] The hybridizable DNA is specifically a DNA having at least 60% homology to the base sequence represented by SEQ ID NO: 2, for example, when calculated based on the above algorithm BLAST, preferably Is a DNA having a homology of 70% or more, more preferably 80% or more, more preferably 90% or more, even more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more. be able to.
このため、本発明による DNAには、例えば、配列番号 2または 3で表される塩基配 歹 IJと 60%以上の相同性を有する塩基配列からなり、かつ L一口イシンヒドロキシラー ゼ活性を有する蛋白質をコードする DNAが包含され得る。  For this reason, the DNA according to the present invention includes, for example, a protein having a nucleotide sequence having 60% or more homology with the nucleotide sequence IJ represented by SEQ ID NO: 2 or 3, and having L-mouth isine hydroxylase activity. DNA encoding can be included.
[0032] 本発明による DNAとしてはまた、配列番号 2または 3において、 1もしくは複数個の 塩基が欠失、置換、揷入もしくは付加された塩基配列からなり、かつ L一口イシンヒド ロキシラーゼ活性を有する蛋白質をコードする、 DNAも包含されうる。ここで、欠失、 置換、揷入もしくは付加されてもよい塩基の数は、好ましくは 1〜30個、より好ましくは ;!〜 20個、さらに好ましくは 1〜; 15個、さらにより好ましくは 1〜; 10個、最も好ましくは 1 〜5個である。なおここでいう置換には、アミノ酸翻訳変異を伴なう置換およびアミノ酸 翻訳変異を伴わな!/、置換の!/、ずれもが包含される。  [0032] The DNA according to the present invention also includes a protein having a base sequence in which one or a plurality of bases are deleted, substituted, inserted or added in SEQ ID NO: 2 or 3, and having L-mouth icin hydroxylase activity. DNA encoding can also be included. Here, the number of bases that may be deleted, substituted, inserted or added is preferably 1 to 30, more preferably;! To 20, more preferably 1 to 15; even more preferably 1 to 10; most preferably 1 to 5. The substitution mentioned here includes substitutions involving amino acid translation mutations and substitutions involving amino acid translation mutations! /, Substitutions! /, And deviations.
[0033] L一口イシンヒドロキシラーゼの特定  [0033] Identification of L-tout Icin hydroxylase
Gene, 311,171(2003)において、藍藻の一稀である Nostoc SD. GSV224が牛産するポ リペプチド(nostop印 tolide A1および nostop印 tolide A2)の生合成経路中に、(2S, 4S)— 5—ヒドロキシロイシンが生合成中間体として存在することが予想されている。 しかしながら、 Nostoc sp. GSV224において L—ロイシンヒドロキシラーゼ遺伝子の特 定に関する報告および示唆は報告されて!/、なレ、。  In Gene, 311,171 (2003), during the biosynthetic pathway of the polypeptides (nostop mark tolide A1 and nostop mark tolide A2) produced by Nostoc SD. GSV224, a rare cyanobacteria, (2S, 4S) — 5— Hydroxyleucine is expected to exist as a biosynthetic intermediate. However, reports and suggestions regarding the identification of the L-leucine hydroxylase gene have been reported in Nostoc sp. GSV224! /
[0034] 前記生合成経路において(2S, 4S)— 5—ヒドロキシロイシンを経由している可能性 、および、 Nostoc sp. GSV224の配列情報をもとに、ノストック(Nostoc)属に属する微 生物を解析し L一口イシンヒドロキシラーゼを特定した。すなわち、機能が未知である ORFがロイシンの水酸化に寄与してる 予測し、 Nostoc sp. ATCC29133株において 相同性の高い DNA配列を単離、取得することにより本発明を完成するに至った。  [0034] On the basis of the possibility of via (2S, 4S) -5-hydroxyleucine in the biosynthetic pathway and the sequence information of Nostoc sp. GSV224, microorganisms belonging to the genus Nostoc Was analyzed to identify L-sip Icin hydroxylase. That is, the present invention was completed by predicting that an ORF whose function is unknown contributes to hydroxylation of leucine and isolating and obtaining a highly homologous DNA sequence in Nostoc sp. ATCC29133 strain.
[0035] L—ロイシンヒドロキシラーゼをコードする DNAの ¾^ 本発明の L一口イシンヒドロキシラーゼをコードする DNAは、例えば、以下の方法に よりノストック(Nostoc)属に属する微生物、好ましくは Nostoc sp. ATCC29133株から 単離すること力 Sできる。また、開示されている Nostoc sp. ATCC29133の配列をもとに 人工的に化学合成することも可能である。 [0035] ¾ ^ of DNA encoding L-leucine hydroxylase The DNA encoding the L-mouth icine hydroxylase of the present invention can be isolated from a microorganism belonging to the genus Nostoc, preferably Nostoc sp. ATCC29133, by the following method, for example. It can also be artificially synthesized chemically based on the disclosed sequence of Nostoc sp. ATCC29133.
[0036] ノストック(Nostoc)属に属する微生物は、公知の方法 [例えば、 Microbiology, 140,32 33(1994)]により培養することができる。さらに、培養後の菌体から公知の方法 (例え ば、カレント'プロトコールズ 'モレキュラー 'バイオロジー)により、該微生物の染色体 DNAを単離精製することができる。また、ノストツク.エスピー(Nostoc sp.)ATCC2913 ルチヤー ·コレクション)より市販されており、入手することができる。 [0036] A microorganism belonging to the genus Nostoc can be cultured by a known method [for example, Microbiology, 140, 3333 (1994)]. Furthermore, the chromosomal DNA of the microorganism can be isolated and purified from the cultured cells by a known method (for example, Current 'Protocols' Molecular' biology). It is also commercially available from Nostoc sp. ATCC 2913 Luchier Collection.
[0037] ゲノム DNAを適当な制限酵素にて消化後、適当なベクターと連結することにより、 ノストック (M^Sl^)属に属する微生物のゲノム DNAライブラリーを作製する。ベクター としては、例えば、プラスミドベクター、ファージベクター、コスミドベクター、 BACベタ ター等、多様なものが使用できる。 [0037] A genomic DNA library of microorganisms belonging to the genus Nostock (M ^ Sl ^) is prepared by digesting genomic DNA with an appropriate restriction enzyme and ligating it with an appropriate vector. As the vector, for example, various vectors such as a plasmid vector, a phage vector, a cosmid vector, and a BAC vector can be used.
[0038] 次に、本明細書において開示した L一口イシンヒドロキシラーゼをコードする DNA の塩基配列に基づいて適当なプローブを作成し、ゲノム DNAライブラリ一力、らハイブ リダィゼーシヨンによって所望のカナマイシン生合成遺伝子を含む DNA断片を単離 すること力 Sできる。また、本明細書において開示した L一口イシンヒドロキシラーゼをコ ードする DNAの塩基配列に基づいて所望の遺伝子を増幅させるためのプライマー を作成し、ノストック(H^£)属に属する微生物のゲノム DNAを铸型として PCRを実 施し、増幅した DNA断片を適当なベクターと連結することにより所望の遺伝子を単 離すること力 Sできる。更に、本発明による L一口イシンヒドロキシラーゼをコードする D NAは、プラスミド pnos5/pET24およびプラスミド pnos5— GCl/pTA2および pn os5— GC2/pTA2に含まれていることから、これらを PCRの铸型 DNAとして利用 することが可能である。また、これらプラスミドから適当な制限酵素にて所望の DNA 断片を調製することができる。 [0038] Next, an appropriate probe is prepared based on the base sequence of the DNA encoding L-mouth isine hydroxylase disclosed in the present specification, and a desired kanamycin biosynthetic gene is generated by a hybrid DNA hybridization. The ability to isolate DNA fragments containing In addition, a primer for amplifying a desired gene was prepared based on the base sequence of the DNA encoding L-mouth isine hydroxylase disclosed in the present specification, and a microorganism belonging to the genus Nostock (H ^ £) was prepared. The ability to isolate the desired gene can be achieved by performing PCR using genomic DNA as a saddle and ligating the amplified DNA fragment with an appropriate vector. Furthermore, DNA encoding the L-tout isin hydroxylase according to the present invention is contained in plasmid pnos5 / pET24 and plasmid pnos5—GCl / pTA2 and pn os5—GC2 / pTA2. It can be used as In addition, a desired DNA fragment can be prepared from these plasmids using an appropriate restriction enzyme.
[0039] 微生物の寄託 [0039] Deposit of microorganisms
プラスミド pnos5Aで形質転換された大腸菌(Escherichia coli) (Escherichia coli BL 21(DE3)/pnos5A)は、平成 18 (2006)年 6月 16日(原寄託日)付で独立行政法人産 業技術総合研究所特許生物寄託センター(T 305— 8566日本国茨城県つくば巿 東 1丁目 1番地中央第 6)に寄託された。受託番号は、 FERM BP— 10845である。 プラスミド pnos5Dで形質転換された大腸菌(Escherichia coli) (Escherichia coli BL 21(DE3)/pnos5D)は、平成 18 (2006)年 6月 16日(原寄託日)付で独立行政法人産 業技術総合研究所特許生物寄託センター(T 305— 8566日本国茨城県つくば巿 東 1丁目 1番地中央第 6)に寄託された。受託番号は、 FERM BP— 10846である。 プラスミド pnos5Eで开$質転換された放,锒菌(Streptomyces lividans) (Streptomyces lividans /pnos5E)は、平成 18 (2006)年 6月 16日(原寄託日)付で独立行政法人産 業技術総合研究所特許生物寄託センター(T 305— 8566日本国茨城県つくば巿 東 1丁目 1番地中央第 6)に寄託された。受託番号は、 FERM BP— 10847である。 Escherichia coli transformed with plasmid pnos5A (Escherichia coli BL 21 (DE3) / pnos5A) is the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center (T305-8566, Tsukuba, Ibaraki, Japan) on June 16, 2006 (original deposit date). Deposited at East 1-chome, 1st Central 6). The accession number is FERM BP-10845. Escherichia coli transformed with the plasmid pnos5D (Escherichia coli BL 21 (DE3) / pnos5D) is an independent administrative institute for industrial technology research on June 16, 2006 (original deposit date). Deposited at the Institute for Patent Biological Deposits (T305-8566, Tsukuba Pass East 1-chome, 1st, 6th, Ibaraki, Japan). The accession number is FERM BP-10846. Streptomyces lividans (Streptomyces lividans / pnos5E), which has been transformed with the plasmid pnos5E, is an independent research institute for industrial technology as of June 16, 2006 (original deposit date). Deposited at the Institute for Patent Biological Deposits (T305-8566, Tsukuba Pass East 1-chome, 1st, 6th, Ibaraki, Japan). The accession number is FERM BP-10847.
[0040] L一口イシンヒドロキシラーゼの製造方法  [0040] Method for producing L-tissue isine hydroxylase
本発明による L一口イシンヒドロキシラーゼは、モレキュラー 'クローニング第 2版、力 レント'プロトコールズ'イン'モレキュラー 'バイオロジー等に記載された方法等にした がって、本発明の L一口イシンヒドロキシラーゼをコードする DNAを、宿主細胞にお V、て発現させることによって製造すること力 Sできる。  The L-tout isin hydroxylase according to the present invention is produced by the L-tout isin hydroxylase of the present invention according to the method described in Molecular 'Cloning 2nd Edition, Force Rent' Protocols 'In'Molecular' Biology etc. Can be produced by expressing the DNA encoding in a host cell.
[0041] 本発明による DNAをもとにして、必要に応じて、該蛋白質をコードする部分を含む 適当な長さの DNA断片を調製する。また、該蛋白質をコードする部分の塩基配列を 、宿主の発現に最適なコドンとなるように塩基を置換することにより、該蛋白質の生産 率を向上させることができる。  [0041] Based on the DNA of the present invention, if necessary, a DNA fragment of an appropriate length containing a portion encoding the protein is prepared. In addition, the production rate of the protein can be improved by substituting the base sequence of the portion encoding the protein so that the codon is optimal for host expression.
[0042] 該 DNA断片を適当な発現ベクターのプロモーターの下流に揷入することにより、 組換え DNAを作製する。  [0042] Recombinant DNA is prepared by inserting the DNA fragment downstream of the promoter of an appropriate expression vector.
[0043] 該組換え DNAを、該発現べクタ一に適合した宿主細胞に導入することにより、本発 明の蛋白質を生産する形質転換体を得ることができる。  [0043] A transformant producing the protein of the present invention can be obtained by introducing the recombinant DNA into a host cell suitable for the expression vector.
[0044] 宿主細胞としては、細菌、放線菌、酵母、動物細胞、昆虫細胞、植物細胞等、 目的 とする遺伝子を発現できるものであればいずれも用いることができる。好ましくは、放 線菌 Strei3tomvces、大腸菌 Escherichia coli等があげられ、さらに好ましくは放線菌^ eQtomv_ces等が挙げられる。 [0045] 組換え DNAとしては、上記宿主細胞において自立複製ないしは染色体中への組 み込みが可能で、本発明の DNAを転写できる位置にプロモーターを含有しているも のが用いられる。 [0044] As host cells, any bacteria, actinomycetes, yeast, animal cells, insect cells, plant cells, etc. can be used as long as they can express the target gene. Preferred are Streptomyces Strei3tomvces and Escherichia coli, and more preferred are Streptomyces eQtomv_ces. [0045] As the recombinant DNA, one that can autonomously replicate in the above host cell or can be integrated into a chromosome and contains a promoter at a position where the DNA of the present invention can be transcribed is used.
[0046] 細菌等の原核生物を宿主細胞として用いる場合は、本発明の蛋白質をコードする DNAを含有してなる組換え DNAは、原核生物中で自立複製可能であると同時に、 プロモーター、リボゾーム結合配歹 l]、本発明の DNA、転写終結配列より構成された 組換え DNAであることが好ましい。また、該組換え DNAには、プロモーターを制御 する遺伝子が含まれてレ、ても良レ、。  [0046] When a prokaryotic organism such as a bacterium is used as a host cell, the recombinant DNA containing the DNA encoding the protein of the present invention is capable of autonomous replication in the prokaryotic organism, and at the same time has a promoter and ribosome binding. It is preferably a recombinant DNA composed of the DNA of the present invention, a transcription termination sequence. In addition, the recombinant DNA contains a gene that controls the promoter.
[0047] 発現ベクターとしては、 pTA2 (東洋紡績株式会社製)、 Helixl (ロシュ'ダイァグノ テイクス社製)、 PKK233— 2 (アマシャム.フアルマシア'バイオテク社製)、 pSE280 (インビトロジェン社製)、 pGEMEX- 1 (プロメガ社製)、 pQE— 8 (キアゲン社製)、 p ET24 (ノバジェン社製)、 pBluescript II SK )、 pBluescript II SK (-) (ストラタジーン社 製)、 pUC19 [Gene,33,103(1985)]、 pSTV28 (宝酒造株式会社製)、 pUC118 (宝 酒造株式会社製)、 pIJ6902 [Mol.Microbiol., 58, 1276(2005)]、 pSETl 52 [J.Mol.Mic robiol.Biotechnol.,4, 417(2002)]等を例示することができる。好ましくは、 pTA2、 pET 24、 pIJ6902、 pUC118や pSET152等カ挙げ、られ、さらに好ましく (ま pTA2、 pET 24や pIJ6902等が挙げられる。  [0047] Expression vectors include pTA2 (manufactured by Toyobo Co., Ltd.), Helixl (manufactured by Roche Diagnotex), PKK233-2 (manufactured by Amersham. Pharmacia Biotech), pSE280 (manufactured by Invitrogen), pGEMEX-1 (Promega), pQE-8 (Qiagen), pET24 (Novagen), pBluescript II SK), pBluescript II SK (-) (Stratagene), pUC19 [Gene, 33, 103 (1985) )], PSTV28 (manufactured by Takara Shuzo Co., Ltd.), pUC118 (manufactured by Takara Shuzo Co., Ltd.), pIJ6902 [Mol. Microbiol., 58, 1276 (2005)], pSETl 52 [J. Mol. Mic robiol. Biotechnol., 4, 417 (2002)]. PTA2, pET 24, pIJ6902, pUC118, pSET152 and the like are preferable, and (pTA2, pET 24, pIJ6902 and the like are more preferable.
[0048] プロモーターとしては、宿主細胞中で機能し得るものであれば特に制限はなぐい ずれのものでも使用可能である。例えば、 trpプロモーター(Ptrp)、 lacプロモーター (Plac)、 T7プロモーター、 PLプロモーター、 PRプロモーター、 PSEプロモーター等 の大腸菌やファージ等に由来するプロモーター、 SP01プロモーター、 SP02プロモ 一ター、 penPプロモーター、 tipAプロモーター [J.Bacteriol., 171,1459(1989)]、 erm E *プロモーター [Gene, 38,215(1985)]等を挙げること力 Sできる。また Ptrpを 2つ直列 させたプロモーター(Ptrp X 2)、 tacプロモーター、 lacT7プロモーター、 let Iプロモ 一ターのように人為的に設計改変されたプロモーター等も用いることができる。好まし くは、 lacプロモーター(Plac)、 ermE *プロモーター、 T7プロモーター、 tipAプロモ 一ター等が挙げられ、さらに好ましくは lacプロモーター(Plac)や ermE *プロモータ 一等が挙げられる。 [0049] 本発明においては、ベクターとして、リボゾーム結合配列であるシャイン—ダルガノ( Shine-Dalgamo)配列と開始コドンとの間を適当な距離 (例えば 6〜; 18塩基)に調節し たプラスミドを用いることが好まし!/、。 [0048] Any promoter can be used as long as it can function in a host cell. For example, trp promoter (Ptrp), lac promoter (Plac), T7 promoter, PL promoter, PR promoter, promoter derived from E. coli such as PSE promoter, phage, etc., SP01 promoter, SP02 promoter, penP promoter, tipA promoter [ J. Bacteriol., 171, 1459 (1989)], erm E * promoter [Gene, 38, 215 (1985)] and the like. Artificially designed and modified promoters such as a promoter in which two Ptrps are connected in series (Ptrp X 2), tac promoter, lacT7 promoter, let I promoter, and the like can also be used. Preferred examples include lac promoter (Plac), ermE * promoter, T7 promoter, tipA promoter and the like, and more preferred examples include lac promoter (Plac) and ermE * promoter. [0049] In the present invention, a plasmid in which the distance between the Shine-Dalgamo sequence, which is a ribosome binding sequence, and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 bases) is used as a vector. I like it! /
[0050] 本発明の組換え DNAにおいて、本発明の DNAの発現には転写終結配列は必ず しも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい [0050] In the recombinant DNA of the present invention, a transcription termination sequence is not necessarily required for the expression of the DNA of the present invention, but it is preferable to place the transcription termination sequence immediately below the structural gene.
Yes
[0051] 原核生物としては、ェシエリヒア属、セラチア属、バチルス属、ブレビバクテリウム属、 コリネバクテリウム属、ミクロバクテリウム属、ストレプトミセス属等に属する微生物、が 举げられ、例 Χ_ί 、 Escherichia coli XLl_Blue、 Escherichia coli XL2_Blue、 Escheric hia coli DH1、 Escherichia coli MC1000、 Escherichia coli KY3726、 Escherichia coli W1485、 Escherichia coli JM109、 Escherichia coli HB101、 Escherichia coli BL21(DE 3)、 Escherichia coli Νο·49、 Escherichia coli W3110、 Escherichia coli NY49、 Serratia ficaria. Serratia fonticola. Serratia liauefaciens. Serratia marcescens. Bacillus subtili s Serratia amvloliquefaciens. Brevibacterium immariophilum, Brevibacterium saccha rolvticum, Corvnebacterium ammoniagenes. Corvnebacterium glutamicum, Corvneb acterium acetoacidophilum■、 Microbacterium ammoniaphilum, Streptomvces lividans. Streptomvces coelicolor等を挙げるこ ができる。好ましくは、 Escherichia coli BL21(D E3)、 Escherichia coli JM109、 Streptomvces lividans等が挙げられ、さらに好ましくは E scherichia coli JM109、 Streptomvces lividans等力、 げられる。  [0051] Prokaryotes include microorganisms belonging to the genus Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, Streptomyces, etc., for example, Χ_ί, Escherichia coli XLl_Blue, Escherichia coli XL2_Blue, Escheric hia coli DH1, Escherichia coli MC1000, Escherichia coli KY3726, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli BL21 (DE 3), Escherichia coli Νο · ichi, 3 coli NY49, Serratia ficaria. Serratia fonticola. Serratia liauefaciens. Serratia marcescens. Bacillus subtili s Serratia amvloliquefaciens. This is That. Preferred examples include Escherichia coli BL21 (D E3), Escherichia coli JM109, Streptomvces lividans and the like, and more preferred are Escherichia coli JM109 and Streptomvces lividans.
[0052] 組換え DNAの導入方法としては、上記宿主細胞へ DNAを導入する方法であれば いずれも用いることができ、例えば、カルシウムイオンを用いる方法 [Proc.Natl.Acad. Sci.USA, 69,2110(1972)]、プロトプラスト法(特開昭 63— 248394)、エレクト口ポレー シヨン法 [Nucleic Acids Res.,15,6127(1988)]、コンジユゲーシヨン法 [J.Bacteriol.,171, 3585(1989)]等を挙げること力 Sできる。  [0052] As a method for introducing recombinant DNA, any method can be used as long as it is a method for introducing DNA into the host cell. For example, a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69 , 2110 (1972)], protoplast method (Japanese Patent Laid-Open No. 63-248394), electo-poration method [Nucleic Acids Res., 15, 6127 (1988)], Conjugation method [J. Bacteriol., 171, 3585 (1989)].
[0053] ここで、宿主細胞として酵母菌株を用いる場合を例に説明する。  [0053] Here, a case where a yeast strain is used as a host cell will be described as an example.
酵母菌株を宿主細胞として用いる場合には、発現ベクターとして、例えば、 YEpl 3 (ATCC37115)、 YEp24 (ATCC37051)、 YCp50 (ATCC37419)、 pHS 19、 p HS 15等を用いることができる。 [0054] プロモーターとしては、酵母菌株中で機能するものであればいずれのものを用いて もよぐ例えば、 PH05プロモーター、 PKGプロモーター、 GAPプロモーター、 ADH プロモーター、 gal 1プロモーター、 gal 10プロモーター、ヒートショックポリペプチド プロモーター、 MF a 1プロモーター、 CUP 1プロモーター等のプロモーターを挙げ ること力 Sでさる。 When yeast strains are used as host cells, YEpl 3 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, pHS15, etc. can be used as an expression vector. [0054] Any promoter can be used as long as it functions in a yeast strain. For example, PH05 promoter, PKG promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, heat shock The ability to list promoters such as polypeptide promoters, MF a 1 promoters, CUP 1 promoters, etc.
[0055] 宿主細胞としては、サッカロマイセス属、シゾサッカロマイセス属、クルイべ口ミセス 属、トリコスポロン属、シヮニォミセス属、ピチア属、キャンディダ属等に属する酵母菌 株を举 と力、でさ、具体白勺に (ュ、 saccharomyces cervisiae , Shizosaccharomyces j) ombe、 luvveromvces lactis. TricnosDoron pullulans^ ^chwanniomvces alluvius.、 Pich ia pastoris, Candida utilis等を挙げるこ 力 ^で る。  [0055] As the host cell, yeast strains belonging to the genus Saccharomyces, Schizosaccharomyces, Kluybe mouth mouth, Genus Trichosporon, Sisniomyces, Pichia, Candida, etc. are used.ュ, saccharomyces cervisiae, Shizosaccharomyces j) ombe, luvveromvces lactis. TricnosDoron pullulans ^^ chwanniomvces alluvius., Pich ia pastoris, Candida utilis.
[0056] 組換え DNAの導入方法としては、酵母に DNAを導入する方法であればいずれも 用いることができ、例えば、エレクト口ポレーシヨン法 [Methods Enzymol. , 194, 182( 199 0)]、スフェロプラスト法[?^じ^& 八じ&(1.5( 115八,81,4889(1984)]、酢酸リチウム法 [J. Bacteriol. , 153, 163(1983)]等を挙げること力 Sできる。  [0056] As a method for introducing recombinant DNA, any method can be used as long as it introduces DNA into yeast. For example, the Elect Mouth Position Method [Methods Enzymol., 194, 182 (199 0)], It is possible to cite the ferroplast method [? ^ Ji ^ & yoji & (1.5 (115, 81, 4889 (1984)]), lithium acetate method [J. Bacteriol., 153, 163 (1983)].
[0057] 本発明の形質転換体を培養する方法は、宿主の培養に用いられる通常の方法に 従って行うことができる。  [0057] The method of culturing the transformant of the present invention can be carried out according to a usual method used for culturing a host.
[0058] 大腸菌'放線菌等の原核生物あるいは酵母等の真核生物を宿主として得られた形 質転換体を培養する培地としては、該生物が資化し得る炭素源、窒素源、無機塩類 等を含有し、形質転換体の培養を効率的に行える培地であれば、天然培地、合成培 地のいずれを用いても良い。  [0058] As a medium for cultivating transformants obtained by using prokaryotes such as E. coli 'actinomycetes or eukaryotes such as yeast as a host, carbon sources, nitrogen sources, inorganic salts, etc. that can be assimilated by the organism Any of a natural medium and a synthetic medium may be used as long as the medium can contain the yeast and can efficiently culture the transformant.
[0059] 炭素源としては、該生物が資化し得るものであれば良ぐグルコース、フルクトース、 スクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の炭水 化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコール類 等を用いることができる。  [0059] As the carbon source, as long as the organism can be assimilated, glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, acetic acid, propionic acid, etc. Organic acids, alcohols such as ethanol, propanol and the like can be used.
[0060] 窒素源としては、アンモニア、塩化アンモニゥム、硫酸アンモニゥム、酢酸アンモニ ゥム、リン酸アンモニゥム等の無機塩もしくは有機酸のアンモニゥム塩、その他の含窒 素化合物、並びに、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼィ ン加水分解物、大豆粕および大豆粕加水分解物、各種発酵菌体、およびその消化 物等を用いることができる。 [0060] Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and other ammonium-containing organic salts, other nitrogen-containing compounds, peptone, meat extract, yeast Extract, corn steep liquor, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermentation cells, and their digestion A thing etc. can be used.
[0061] 無機塩としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸 マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム 等を用いることができる。  [0061] As the inorganic salt, monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like can be used.
[0062] 培養は、通常振盪培養または深部通気攪拌培養等の好気的条件下で行うのが好 ましい。培養温度は 15〜40°Cが好ましぐ培養時間は、通常 5時間〜 7日間である。 培養中 pHは 3· 0〜9. 0に保持する。 pHの調整は、無機または有機の酸、アルカリ 溶液、尿素、炭酸カルシウム等を用いて行う。  [0062] The culture is preferably performed under aerobic conditions such as shaking culture or deep aeration stirring culture. The culture temperature is preferably 15 to 40 ° C, and the culture time is usually 5 hours to 7 days. During the cultivation, the pH is maintained at 3.0 · 9.0. The pH is adjusted using inorganic or organic acids, alkaline solutions, urea, calcium carbonate, etc.
[0063] また、培養中必要に応じて、アンピシリン、カナマイシン、ァプラマイシン、チォストレ プトン、テトラサイクリン、クロラムフエ二コール、ストレプトマイシン等の抗生物質 を培地に添加しても良い。  [0063] In addition, antibiotics such as ampicillin, kanamycin, apramycin, thiostreptone, tetracycline, chloramphenicol, streptomycin and the like may be added to the medium as needed during the culture.
[0064] プロモーターとして誘導性のプロモーターを用いた発現ベクターによって形質転換 した微生物を培養するときは、必要に応じてインデューサーを培地に添加しても良い 。例えば、 lacプロモーターを用いた発現ベクターで形質転換した微生物を培養する ときはイソプロピル 13 D チォガラタトピラノシド等を、 trpプロモーターを用いた 発現ベクターで形質転換した微生物を培養するときはインドールアクリル酸等を、 tip Aプロモーターを用いた発現ベクターで形質転換した微生物を培養するときはチォ ストレプトン等を培地に添加しても良い。  [0064] When cultivating a microorganism transformed with an expression vector using an inducible promoter as a promoter, an inducer may be added to the medium as necessary. For example, when cultivating a microorganism transformed with an expression vector using the lac promoter, use isopropyl 13D thiogalatatopyranoside or the like when culturing a microorganism transformed with an expression vector using the trp promoter. When cultivating a microorganism transformed with an expression vector using the tip A promoter, for example, tistrepton may be added to the medium.
[0065] 上記のとおり、本発明の蛋白質をコードする DNAを組み込んだ組換え DNAを保 有する微生物由来の形質転換体を、通常の培養方法に従って培養し、該蛋白質を 生成蓄積させ、該培養物より該蛋白質を採取することにより、該蛋白質を製造するこ と力 Sできる。  [0065] As described above, a transformant derived from a microorganism having a recombinant DNA incorporating a DNA encoding the protein of the present invention is cultured according to a normal culture method, and the protein is produced and accumulated, and the culture By collecting the protein, it is possible to produce the protein.
[0066] 本発明の蛋白質の生産方法としては、宿主細胞内に生産させる方法、宿主細胞外 に分泌させる方法、あるいは宿主細胞外膜上に生産させる方法がある。  [0066] As a method for producing the protein of the present invention, there are a method of producing in the host cell, a method of secreting it outside the host cell, and a method of producing it on the host cell outer membrane.
[0067] 本発明の形質転換体により製造された蛋白質を単離 ·精製する方法としては、通常 の酵素の単離、精製法を用いることができる。  [0067] As a method for isolating and purifying the protein produced by the transformant of the present invention, usual enzyme isolation and purification methods can be used.
[0068] 例えば、本発明の蛋白質が細胞内に溶解状態で生産された場合には、培養終了 後、細胞を遠心分離により回収し、水系緩衝液にけん濁後、超音波破砕、フレンチプ レス、マントンガウリンホモゲナイザー、ダイノミル等により細胞を破砕し、無細胞抽出 液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、通常の酵素 の精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿 法、ジェチルアミノエチル(DEAE)—セフフアロース、 DIAION HPA_75 (三菱化成株 式会社製)等レジンを用いた陰イオン交換クロマトグラフィー法、 S-S印 arose FF (Phar macia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロー ス、フエ二ルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を 用いたゲルろ過法、ァフィ二ティークロマトグラフィー法、クロマトフォーカシング法、等 電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標 品を得ること力 Sでさる。 [0068] For example, when the protein of the present invention is produced in a dissolved state in cells, the cells are collected by centrifugation after culturing, suspended in an aqueous buffer solution, ultrasonically disrupted, French Cells are disrupted with a loess, mantongaurine homogenizer, dynomill, etc. to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, an ordinary enzyme purification method, that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, a jetylamino Anion exchange chromatography using resin such as ethyl (DEAE) -cephalose, DIAION HPA_75 (manufactured by Mitsubishi Kasei Co., Ltd.), cation exchange chromatography using resin such as SS sign arose FF (manufactured by Pharmacia) Methods such as hydrophobic chromatography using resin such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, isoelectric focusing, etc. Use a technique such as electrophoresis, alone or in combination, to obtain a purified product.
[0069] また、該蛋白質が細胞内に不溶体として生産された場合には、上記と同様に細胞 を破砕後、遠心分離により得られた沈殿画分より、通常の方法で該蛋白質を回収し、 該蛋白質の不溶体を蛋白質変性剤で可溶化する。該可溶化液を、蛋白質変性剤を 含まないあるいは蛋白質変性剤の濃度が蛋白質を変性させない程度に希薄な溶液 に希釈、あるいは透析し、該蛋白質を正常な立体構造に構成させた後、上記と同様 の単離精製法により精製標品を得ることができる。  [0069] When the protein is produced as an insoluble substance in the cell, the protein is recovered by a usual method from the precipitate fraction obtained by centrifugation after disrupting the cell in the same manner as described above. The protein insoluble matter is solubilized with a protein denaturant. The solubilized solution is diluted or dialyzed into a solution that does not contain a protein denaturing agent or is so thin that the concentration of the protein denaturing agent does not denature the protein, and the protein is formed into a normal three-dimensional structure. A purified sample can be obtained by the same isolation and purification method.
[0070] 本発明の蛋白質またはその糖鎖修飾体等の誘導体が細胞外に分泌生産された場 合には、培養上清に該蛋白質あるいはその糖鎖付加体の誘導体を回収することがで きる。即ち、該培養物を上記と同様の遠心分離等の手法により処理することにより培 養上清を取得し、該培養上清から、上記と同様の単離精製法を用いることにより、精 製標品を得ること力 Sできる。  [0070] When a derivative of the protein of the present invention or a modified sugar chain thereof is secreted and produced extracellularly, the derivative of the protein or a sugar chain adduct can be recovered in the culture supernatant. . That is, a culture supernatant is obtained by treating the culture by a method such as centrifugation as described above, and a purified standard is obtained from the culture supernatant by using the same isolation and purification method as described above. Power to get goods S.
[0071] また、本発明の蛋白質が細胞内に溶解状態で生産された場合で、かつ無細胞抽 出液で酵素活性が得られない場合は、培養終了後、細胞を遠心分離により回収し、 水系緩衝液にけん濁して静止菌体を作成後、その静止菌体溶液をそのまま酵素反 応に付することができる。  [0071] In addition, when the protein of the present invention is produced in a dissolved state in cells and the enzyme activity cannot be obtained with the cell-free extract, the cells are collected by centrifugation after the completion of the culture, After suspending cells in an aqueous buffer solution to produce quiescent cells, the solution of quiescent cells can be directly subjected to enzyme reaction.
[0072] (2S . 4S)— 5 ヒドロキシロイシンの製造方法  [0072] (2S. 4S) — Method for Producing 5 Hydroxyleucine
本発明による形質転換体の培養物および該培養物の処理物を酵素源として用い、 該酵素源と L一口イシンとを水系媒体中に存在せしめ、該水系媒体中で(2S, 4S) 5—ヒドロキシロイシン生成し蓄積させ、(2S, 4S)— 5—ヒドロキシロイシンを製造する こと力 Sでさる。 Using the culture of the transformant according to the present invention and the treated product of the culture as an enzyme source, the enzyme source and L-sip Icin are present in an aqueous medium, and the (2S, 4S) Production of 5-hydroxyleucine and accumulation to produce (2S, 4S) — 5-hydroxyleucine.
[0073] ここで、培養物の処理物としては、例えば、培養物の濃縮物、培養物の乾燥物、培 養物を遠心分離して得られる菌体、該菌体の乾燥物、該菌体の凍結乾燥物、該菌 体の界面活性剤処理物、該菌体の超音波処理物、該菌体の機械的摩砕処理物、該 菌体の溶媒処理物、該菌体の酵素処理物、該菌体の蛋白質分画物、該菌体の固定 化物、または該菌体より抽出して得られる酵素標品などを挙げることができる。  [0073] Here, the treated product of the culture includes, for example, a concentrate of the culture, a dried product of the culture, a cell obtained by centrifuging the culture, a dried product of the cell, Lyophilized product of body, surfactant-treated product of the cell, ultrasonically treated product of the cell, mechanically ground product of the cell, solvent-treated product of the cell, enzyme treatment of the cell Products, protein fractions of the cells, immobilized products of the cells, enzyme preparations obtained by extraction from the cells, and the like.
[0074] (2S, 4S)— 5—ヒドロキシロイシンの製造に使用可能な水性媒体としては、水、リン 酸塩、炭酸塩、酢酸塩、ホウ酸塩、クェン酸塩、トリスなどの緩衝液、メタノール、エタ ノールなどのアルコール類、酢酸ェチルなどのエステル類、アセトンなどのケトン類、 ァセトアミドなどのアミド類などを挙げることができる。また、酵素源として用いた微生 物の培養液を水性媒体として用いることができる。  [0074] (2S, 4S) — Aqueous media that can be used to produce 5-hydroxyleucine include buffers such as water, phosphates, carbonates, acetates, borates, kenates, tris, Examples thereof include alcohols such as methanol and ethanol, esters such as ethyl acetate, ketones such as acetone, and amides such as acetate amide. In addition, a culture solution of a microorganism used as an enzyme source can be used as an aqueous medium.
[0075] (2S, 4S)— 5—ヒドロキシロイシンの製造において、必要に応じて界面活性剤また は有機溶媒を添加しても良い。界面活性剤としては、ポリオキシエチレン'ォクタデシ ルァミン (例えばナイミーン S— 215、 日本油脂株式会社製)などの非イオン界面活性 剤、瀬チルトリメチルアンモニゥム 'ブロマイドやアルキルジメチル 'ベンジルアンモニ ゥムクロライド(例えばカチオン F2— 40E、 日本油脂株式会社製)などのカチオン系 界面活性剤、ラウロイル 'ザルコシネートなどのァニオン系界面活性剤、アルキルジメ チルァミン (例えば三級アミン FB, 日本油脂株式会社製)などの三級アミン類など、 ( 2S, 4S)— 5—ヒドロキシロイシンの生産を促進しうるものであればいずれでも良ぐ 1 種または数種を混合して使用することもできる。界面活性剤は、通常 0. ;!〜 50g/l の濃度で用いられる。有機溶剤としては、キシレン、トルエン、脂肪酸酸アルコール、 アセトン、酢酸ェチルなどが挙げられ、通常 0.;!〜 50ml/lの濃度で用いられる。  [0075] In the production of (2S, 4S) -5-hydroxyleucine, a surfactant or an organic solvent may be added as necessary. Surfactants include nonionic surfactants such as polyoxyethylene 'octadecylamine (for example, Naimine S-215, manufactured by Nippon Oil & Fats Co., Ltd.), cetyl trimethyl ammonium' bromide and alkyldimethyl 'benzyl ammonium chloride (for example, Cationic surfactants such as cation F2-40E (manufactured by NOF Corporation), anionic surfactants such as lauroyl sarcosinate, and tertiary amines such as alkyldimethylamine (eg, tertiary amine FB, NOF Corporation) As long as it can promote the production of (2S, 4S) -5-hydroxyleucine, one kind or a mixture of several kinds may be used. Surfactants are usually used at a concentration of 0.;!-50 g / l. Examples of the organic solvent include xylene, toluene, fatty acid alcohol, acetone, ethyl acetate and the like, and they are usually used at a concentration of 0.;! To 50 ml / l.
[0076] (2S, 4S)— 5—ヒドロキシロイシンの生成反応は、水系媒体中、 pH5〜; 10、好まし くは pH6〜8、 20〜50°Cの条件で 1〜96時間行う。該生成反応において、必要に応 じてグリセロールなどの炭素源や MnCl等の無機塩や添加することができる。  [0076] (2S, 4S) -5-Hydroxyleucine is formed in an aqueous medium at pH 5 to 10, preferably pH 6 to 8 and 20 to 50 ° C for 1 to 96 hours. In the production reaction, a carbon source such as glycerol or an inorganic salt such as MnCl can be added as necessary.
2  2
[0077] 水性媒体中に生成した(2S, 4S)— 5—ヒドロキシロイシンの定量は高速液体クロマ トグラフィー(HPLC)などを用いて行うことができる。 [0078] 反応液中に生成した(2S, 4S)— 5—ヒドロキシロイシンの単離.精製は、活性炭、 イオン交換樹脂、分取 HPLCなどを用いる通常の方法によって行うことができる。 実施例 [0077] Quantification of (2S, 4S) -5-hydroxyleucine produced in an aqueous medium can be performed using high performance liquid chromatography (HPLC) or the like. [0078] Isolation and purification of (2S, 4S) -5-hydroxyleucine produced in the reaction solution can be carried out by a usual method using activated carbon, ion exchange resin, preparative HPLC or the like. Example
[0079] 以下本発明を以下の実施例によって詳細に説明する力 本発明はこれらに限定さ れるものではない。  [0079] Hereinafter, the present invention will be described in detail with reference to the following examples. The present invention is not limited to these examples.
[0080] ¾i: ノストツク厘に属すろ微牛物由 のし一口イシンヒドロキシラーゼ遣ィ云早の 靈  [0080] ¾i: Nosutsk ろ ろ 牛 物 物 一 イ シ ン シ ン シ ン シ ン シ ン
Nostoc SD. ATCC29133のゲノム DNAを、市販品として ATCC (アメリカン 'タイプ' カルチャー 'コレクション)より入手した (ATCC29133D)。配列番号 4および 5で表さ れる塩基配列から成るプライマーを合成し、上記ゲノム DNAを铸型として PCRを行 つた。 PCRは染色体 DNAO. 1〃 g、プライマー各 0· δ , πιοΐ/ΐ, LA Taq DNA ポリメラーゼ(宝酒造株式会社製) 2. 5units、 LA Taq DNAポリメラーゼ用 X 10 緩衝液 5 a 1、 deoxyNTP各 250 μ mol、 MgC122. 5mMを含む反応液 50 μ 1を用 い、 95°Cで 30秒間、 55°Cで 30秒間、 72°Cで 1分間の工程を 30回繰り返すことによ つて行った。反応液の 1/10量をァガロース電気泳動し、 DNA断片が増幅されてい ることを確認後、残りの反応液を High Pure PCR Product Purification Kit (ロシュ社製 )のキットを用いて DNAを精製した。  Genomic DNA of Nostoc SD. ATCC29133 was obtained from ATCC (American 'Type' Culture 'Collection) as a commercial product (ATCC29133D). Primers consisting of the nucleotide sequences represented by SEQ ID NOs: 4 and 5 were synthesized, and PCR was performed using the genomic DNA as a saddle. PCR is chromosomal DNAO. 1〃 g, each primer 0 · δ, πιοΐ / ΐ, LA Taq DNA polymerase (Takara Shuzo Co., Ltd.) 2.5 units, X 10 buffer for LA Taq DNA polymerase 5 a 1, deoxyNTP 250 μm each The reaction was carried out 30 times using 95 µC for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 1 minute using 50 µl of the reaction solution containing mol and MgC122.5 mM. 1/10 volume of the reaction mixture was subjected to agarose electrophoresis, and after confirming that the DNA fragments were amplified, the remaining reaction mixture was purified using the High Pure PCR Product Purification Kit (Roche) kit. .
[0081] 得られた精製 DNA溶液 10 1を用い、 DNAを制限酵素 Ndelおよび BamHIにて 切断し、ァガロース電気泳動により 1. 7kbの DNAを分離した後、定法に従いァガロ ースゲルから DNAを回収した。  [0081] Using the obtained purified DNA solution 101, the DNA was cleaved with restriction enzymes Ndel and BamHI, and 1.7 kb DNA was separated by agarose electrophoresis. Then, the DNA was recovered from the agarose gel according to a conventional method.
[0082] pET24 DNA (ノバジェン社製)約 0· 2 gを制限酵素 Ndelおよび BamHIにて切 断し、ァガロース電気泳動により DNA断片を分離し、 5. 3kbDNA断片を回収した。  [0082] About 0.2 g of pET24 DNA (manufactured by Novagen) was cut with restriction enzymes Ndel and BamHI, and the DNA fragment was separated by agarose electrophoresis to recover the 5.3 kb DNA fragment.
[0083] 1. 7kbおよび 5. 3kbの断片を、ライゲーシヨンキット(宝酒造株式会社製)を用いて 、 16°C、 16時間、連結反応を行った。該連結反応液を用いて大腸菌 JM109株(宝 酒造株式会社製)を前述の公知の方法に従って形質転換し、該形質転換体をカナ マイシン 30 g/mlを含む LB寒天培地 [バタトトリプトン(ディフコ社製) 10g/l、酵 母エキス(ディフコ社製) 10g/l、塩化ナトリウム 5g/l、ァガロース 15g/l]に塗布後 、 37°Cでー晚培養した。生育してきたコロニーを前述の公知の方法に従ってプラスミ ドを抽出し、ロイシンヒドロキシラーゼ遺伝子 nos5を含む組み換えプラスミドである pn osAを取得した。該プラスミドの造成手順および構造を第 1図に示した。 [0083] Using a ligation kit (Takara Shuzo Co., Ltd.), the fragments of 1.7 kb and 5.3 kb were subjected to ligation reaction at 16 ° C for 16 hours. Escherichia coli JM109 strain (manufactured by Takara Shuzo Co., Ltd.) was transformed using the ligation reaction solution according to the above-mentioned known method, and the transformant was transformed into LB agar medium containing 30 g / ml kanamycin [Batatryptone (Difco). And 10 g / l fermented mother extract (Difco), 10 g / l sodium chloride, 5 g / l sodium chloride, 15 g / l agarose, and then cultured at 37 ° C. The grown colonies are purified according to the aforementioned known method. And pn osA, a recombinant plasmid containing the leucine hydroxylase gene nos5, was obtained. The construction procedure and structure of the plasmid are shown in FIG.
[0084] 実施例 2: L一口イシンヒドロキシラーゼ遺伝子の化学合成  [0084] Example 2: Chemical synthesis of L-tout Icin hydroxylase gene
AA- 1 (配列番号 6)、 AA- 2 (配列番号 7)、 AA— 3 (配列番号 8)、 AA— 4 (配列 番号 9)、 BB— 1 (配列番号 10)、 BB— 2 (配列番号 11 )、 BB— 3 (配列番号 12)、 B B— 4 (配列番号 13)の 8本のプライマーを合成した。このうち、 2本ずつを選択し、プ ライマーセットを铸型 DNAとして共用する PCRを行った。  AA-1 (SEQ ID NO: 6), AA-2 (SEQ ID NO: 7), AA—3 (SEQ ID NO: 8), AA—4 (SEQ ID NO: 9), BB—1 (SEQ ID NO: 10), BB—2 (sequence) No. 11), BB-3 (SEQ ID NO: 12), and BB-4 (SEQ ID NO: 13) were synthesized as eight primers. Of these, two were selected and PCR was performed using the primer set as a vertical DNA.
[0085] まず、プライマー兼铸型(AA—1、 AA—2)各 0· δ ^ ΐηοΙ/Ι ΚΟϋ —Plus—ポ リメラーゼ (東洋紡績株式会社製) 1. Ounits, KOD— plus—ポリメラーゼ用 X 10緩 衝 ί夜 5 1、 deoxyNTP^200 μ mol, MgSO ImMを含む反応 ί夜 50 1を用レヽ、 94  [0085] First, primer-type (AA-1 and AA-2) 0 · δ ^ ΐηοΙ / Ι ΚΟϋ —Plus-Polymerase (Toyobo Co., Ltd.) 1. Ounits, KOD—plus—X for polymerase 10 Slow impact 5 1, reaction containing deoxyNTP ^ 200 μmol, MgSO ImM
4  Four
°Cで 30秒間、 60°Cで 30秒間、 68°Cで 1分間の工程を 15回繰り返すことによって行 つた。その他のプライマーセット { (AA— 3、 AA— 4)、(BB— l、 BB— 2)、(BB— 3、 BB— 4) }についても同様に PCRを行い、計 4種類の PCR反応液を得た。  The process was repeated 15 times at 30 ° C for 30 seconds, 60 ° C for 30 seconds and 68 ° C for 1 minute. For other primer sets {(AA-3, AA-4), (BB-1, l, BB-2), (BB-3, BB-4)}, PCR was performed in the same manner, and a total of four PCR reaction solutions were used. Got.
[0086] 次に、得られた反応液 2. 5 1をプライマーセットと铸型を共有として用い、再度 PC R反応を実施した。反応条件は、プライマー兼铸型 (AA— 1、 AA— 2)の上記反応 液 2· 5 1、プライマー兼铸型(AA— 3、 AA— 4)の上記反応液 2· 5 1、 KOD — Plus—ポリメラーゼ(東洋紡績株式会社製) 1. 0units、 KOD— plus—ポリメラーゼ 用 X 10緩律夜5 a 1、 deoxyNTP各 200 μ mol、 MgSO ImMを含む反応 ί夜 50 μ 1 [0086] Next, the PCR reaction was performed again using the obtained reaction solution 2.5 1 as a shared primer set and cage. The reaction conditions are the above reaction solution 2.51 for the primer-and-cum-type (AA-1 and AA-2), the above reaction solution 2 · 51 and the one for the primer-and-cum-type (AA-3 and AA-4), KOD — Plus—Polymerase (manufactured by Toyobo Co., Ltd.) 1.0 units, KOD—plus—Polymerase X 10 Slow night 5 a 1, deoxyNTP 200 μmol each, MgSO ImM reaction ί 夜 50 μ 1
4  Four
を用い、 94°Cで 30秒間、 60°Cで 30秒間、 68°Cで 1分間の工程を 15回繰り返すこと によって行った。同様にしてプライマー兼铸型の組み合わせを (BB— 1、 BB— 2)の 上記反応液と(BB— 3、 BB— 4)の上記反応液に変えて PCR反応を行い、計 2種類 の反応液を得た。  The process was repeated 15 times at 94 ° C for 30 seconds, 60 ° C for 30 seconds and 68 ° C for 1 minute. In the same way, change the primer / combination type to the above reaction solution of (BB-1, BB-2) and the above reaction solution of (BB-3, BB-4) and perform the PCR reaction for a total of two types of reactions. A liquid was obtained.
[0087] PCRにて得られた該反応液を、 TArget Clone™ -Plus-のキット(東洋紡績株式会 社製)を用いて、大腸菌プラスミド pTA2に組み込んだ。すなわち、 9 1の PCR反応 液と 1 μ 1の 10 X A-attachment Mix (東洋紡績株式会社製)を添加し撹拌後 60°Cで 1 0分反応させた。その反応液 2. 5 1と51¾/ 1の 丁八2べクター(東洋紡績株式会 社製)を 1 1加え、ライゲーシヨンキット(宝酒造株式会社製)を用いて、最終反応液 量 ΙΟ Ιにて、 16°C、 16時間、連結反応を行った。該連結反応液を用いて大腸菌 J M109 (宝酒造株式会社製)を形質転換し、該形質転換体をアンピシリン 50 [I g/ml を含む LB寒天培地に塗布後、 37°Cでー晚培養した。生育してきたコロニーから定 法に従いプラスミドを抽出した。 AA—1、 AA—2、 AA— 3、 AA—4 (配列番号 6, 7, 8, 9)由来の PCR断片からはプラスミド pA— 8を、 BB— 1、 BB— 2、 BB— 3、 BB— 4 (配列番号 10, 11 , 12,および 13)由来の PCR断片からプラスミド pB— 5を得た。こ れらプラスミドを制限酵素 Mrolによる消化と、続くライゲーシヨンによる連結により、配 列番号 3に示される塩基配列から成る DNA断片(nos 5— GC)を含むプラスミド (pno s5B)を取得した。 [0087] The reaction solution obtained by PCR was incorporated into E. coli plasmid pTA2 using a TArget Clone ™ -Plus- kit (manufactured by Toyobo Co., Ltd.). That is, 91 PCR reaction solution and 1 μl of 10 X A-attachment Mix (manufactured by Toyobo Co., Ltd.) were added and stirred and reacted at 60 ° C for 10 minutes. Add the reaction mixture 2.5 1 and 51¾ / 1 1-8 vector (Toyobo Co., Ltd.) 1 1 and use the Ligation Kit (Takara Shuzo Co., Ltd.) to make the final reaction volume ΙΟ Ι The ligation reaction was carried out at 16 ° C for 16 hours. Using the ligation reaction solution, E. coli J M109 (Takara Shuzo Co., Ltd.) was transformed, and the transformant was applied to an LB agar medium containing ampicillin 50 [Ig / ml] and cultured at 37 ° C. A plasmid was extracted from the grown colonies according to a conventional method. From the PCR fragments derived from AA-1, AA-2, AA-3, AA-4 (SEQ ID NOs: 6, 7, 8, 9), plasmid pA-8 was transformed into BB-1, BB-2, BB-3, Plasmid pB-5 was obtained from a PCR fragment derived from BB-4 (SEQ ID NOs: 10, 11, 12, and 13). These plasmids were digested with the restriction enzyme Mrol and subsequently ligated with ligation to obtain a plasmid (pnos5B) containing a DNA fragment (nos 5—GC) consisting of the base sequence shown in SEQ ID NO: 3.
[0088] 次に、上記で得られたプラスミド pnos5Bを铸型とし、合成 DNA (配列番号 14およ び 15)をプライマーセットとして用いた PCRを実施することで、 Ndelと Bglllの制限酵 素サイトを末端に付与した DNA断片を増幅した。すなわち、 PCRは铸型体 DNA (プ ラスミド pnos5B)約 0. 1 g、プライマー各 0· S ^ mol/l, KOD —Plus—ポリメラ ーゼ(東洋紡社製) 1 · 0units、 KOD— plus—ポリメラーゼ用 X 10緩衝液 5 μ 1、 deo xyNTP^200 i mol, MgSO ImMを含む反応液 50 1を用い、 94°Cで 15秒間、 [0088] Next, by carrying out PCR using the plasmid pnos5B obtained above as a cage and using the synthetic DNA (SEQ ID NOs: 14 and 15) as a primer set, Ndel and Bglll restriction enzyme sites were used. A DNA fragment having a terminal was amplified. That is, PCR is about 0.1 g of rod-shaped DNA (plasma pnos5B), each primer 0 · S ^ mol / l, KOD —Plus—Polymerase (Toyobo Co., Ltd.) 1 · 0 units, KOD—plus—polymerase Use reaction solution 50 1 containing X 10 buffer 5 μ1, deo xyNTP ^ 200 i mol, MgSO ImM for 15 seconds at 94 ° C.
4  Four
55°Cで 30秒間、 68°Cで 1分間の工程を 25回繰り返すことによって行った。  The process was repeated 25 times at 55 ° C for 30 seconds and 68 ° C for 1 minute.
[0089] PCRにて得られた該反応液を、 TArget Clone™ -Plus-のキット(東洋紡績株式会 社製)を用いて、大腸菌プラスミド pTA2に組み込んだ。すなわち、 9 1の PCR反応 液と 1 μ 1の 10 X A-attachment Mix (東洋紡績株式会社製)を添加し撹拌後 60°Cで 1 0分反応させた。その反応液 2. 5 1と51¾/ 1の 丁八2べクター(東洋紡績株式会 社製)を 1 11 1加え、ライゲーシヨンキット(宝酒造社製)を用いて、最終反応液量 10 1 にて、 16°C、 16時間、連結反応を行った。次いで大腸菌 JM109 (宝酒造株式会社 製)を形質転換し、該形質転換体をアンピシリン 50 g/mlを含む LB寒天培地に塗 布後、 37°Cで一晩培養した。生育してきたコロニーから定法に従ってプラスミドを抽 出し、組み換えプラスミドである pnos5Cを取得した。該プラスミドの構築方法および 構造を第 2図に示した。 [0089] The reaction solution obtained by PCR was incorporated into Escherichia coli plasmid pTA2 using a TArget Clone ™ -Plus- kit (manufactured by Toyobo Co., Ltd.). That is, 91 PCR reaction solution and 1 μl of 10 X A-attachment Mix (manufactured by Toyobo Co., Ltd.) were added and stirred and reacted at 60 ° C for 10 minutes. Add the reaction liquid 2.5 1 and 51¾ / 1 Ding Hachi 2 Vector (Toyobo Co., Ltd.) 1 11 1 and use Ligation Kit (Takara Shuzo) to make the final reaction volume 10 1 The ligation reaction was carried out at 16 ° C for 16 hours. Subsequently, Escherichia coli JM109 (manufactured by Takara Shuzo Co., Ltd.) was transformed, and the transformant was applied to an LB agar medium containing 50 g / ml of ampicillin and cultured at 37 ° C. overnight. A plasmid was extracted from the grown colonies according to a conventional method, and a recombinant plasmid pnos5C was obtained. The construction method and structure of the plasmid are shown in FIG.
[0090] 得られた組み換えプラスミド pnos5Cを、制限酵素 Ndelおよび Bglllにて切断し、ァ ガロースゲル電気泳動により 0. 8kbの DNAを分離した後、定法に従いァガロースゲ ルから DNAを回収した。 [0091] pET24 DNA (ノバジェン社製)約 0· を制限酵素 Ndelおよび BamHIにて切 断し、ァガロースゲル電気泳動により DNA断片を分離し、 5. 3kbDNA断片を回収 した。 [0090] The obtained recombinant plasmid pnos5C was digested with restriction enzymes Ndel and Bglll, and 0.8 kb of DNA was separated by agarose gel electrophoresis. Then, the DNA was recovered from the agarose gel according to a conventional method. [0091] About 0 · of pET24 DNA (manufactured by Novagen) was cut with restriction enzymes Ndel and BamHI, and the DNA fragments were separated by agarose gel electrophoresis to recover the 5.3 kb DNA fragment.
[0092] 上記 0· 8kbおよび 5· 3kbの断片を、ライゲーシヨンキット(宝酒造株式会社製)を用 いて、 16°C、 16時間、連結反応を行った。該連結反応液を用いて大腸菌 BL21 (D E3)株を形質転換し、該形質転換体をカナマイシン 30 g/mlを含む LB寒天培地 に塗布後、 37°Cで一晩培養した。生育してきたコロニーを前述の公知の方法に従つ てプラスミドを抽出し、ロイシンヒドロキシラーゼ遺伝子 nos5を含む組み換えプラスミド である pnos5Dを取得した。該プラスミドの造成手順および構造を第 2図に示した。  [0092] Using the ligation kit (Takara Shuzo Co., Ltd.), the above 0/8 kb and 5.3 kb fragments were subjected to ligation reaction at 16 ° C for 16 hours. Escherichia coli BL21 (D E3) strain was transformed with the ligation reaction solution, and the transformant was applied to an LB agar medium containing 30 g / ml of kanamycin and cultured at 37 ° C. overnight. Plasmids were extracted from the grown colonies according to the above-mentioned known method to obtain pnos5D, a recombinant plasmid containing the leucine hydroxylase gene nos5. The construction procedure and structure of the plasmid are shown in FIG.
[0093] 実施例 3 : 組椽ぇプラスミド m os5Eの構築 [0093] Example 3: Construction of a plasmid mos5E
Figure imgf000022_0001
Figure imgf000022_0001
mvces ikiteにて機能する組み換えプラスミドを、下記方法で実施した。  A recombinant plasmid that functions in mvces ikite was implemented by the following method.
[0094] 実施例 2にて取得した組み換えプラスミド pnos5Cに対し、 DNAを制限酵素 Ndel および Bglllにて切断し、定法に従いァガロースゲルから DNAを回収した。また、 plj 6902 DNA約 0. 2 gを制限酵素 Ndelおよび BamHIにて切断し、ァガロースゲ ル電気泳動により DNA断片を分離し、同様に約 7. 3kbDNA断片をァガロースゲル から回収した。 [0094] The recombinant plasmid pnos5C obtained in Example 2 was cleaved with restriction enzymes Ndel and Bglll, and the DNA was recovered from an agarose gel according to a conventional method. In addition, about 0.2 g of plj 6902 DNA was cleaved with restriction enzymes Ndel and BamHI, and DNA fragments were separated by agarose gel electrophoresis. Similarly, an about 7.3 kb DNA fragment was recovered from an agarose gel.
[0095] 上述の 0. 8kbおよび約 7. 3kbの断片を、ライゲーシヨンキット(宝酒造株式会社製 )を用いて、 16°C、 16時間、連結反応を行った。該連結反応液を用いて大腸菌 Esch erichia coli JM109 (宝酒造株式会社製)を形質転換し、該形質転換体をアブラマイシ ン lO ^ g/mlを含む LB寒天培地に塗布後、 37°Cでー晚培養した。生育してきたコ ロニーより定法に従ってプラスミドを抽出し、ロイシンヒドロキシラーゼ遺伝子 nos5を 含む組み換えプラスミドである pnos5Eを取得した。該プラスミドの造成手順および構 造を第 3図に示した。  [0095] Using the ligation kit (Takara Shuzo Co., Ltd.), the fragments of 0.8 kb and about 7.3 kb were subjected to ligation reaction at 16 ° C for 16 hours. Escherichia coli JM109 (Takara Shuzo Co., Ltd.) was transformed with the ligation reaction solution, and the transformant was applied to an LB agar medium containing abramycin lO ^ g / ml, and then incubated at 37 ° C. Cultured. A plasmid was extracted from the grown colony according to a conventional method to obtain pnos5E, a recombinant plasmid containing the leucine hydroxylase gene nos5. The construction procedure and structure of the plasmid are shown in FIG.
[0096] 実施例 4 : 大腸菌形晳転換体(E.coli/ipnos5A株)による(2S, 4S)— 5—ヒドロキシロ イシンの生産  Example 4: Production of (2S, 4S) -5-hydroxyleucine by Escherichia coli transformant (E. coli / ipnos5A strain)
実施例 1で得られた、ロイシンヒドロキシラーゼ遺伝子 nos5を含む組み換えプラスミ ド pnos5Aを、大腸菌 Escherichia coli BL21(DE3) (ノバジェン社製)に形質転換し、組 み換え大腸菌(E.coli/pnOS5A株)を得た。得られた組み換え大腸菌を、をカナマイシ ン 30 g/mlを含む LB培地 lOOmLの入った三角フラスコに接種し、 37°Cで 18時 間培養した。該培養液をカナマイシン 30 g/mlを含む LB培地 lOOmLの入った三 角フラスコに 1 %接種し 37°Cで 6時間培養した後、該培養液 lOOmLを遠心分離して 湿菌体を取得した。 The recombinant plasmid pnos5A containing the leucine hydroxylase gene nos5 obtained in Example 1 was transformed into Escherichia coli BL21 (DE3) (manufactured by Novagen) and assembled. A modified Escherichia coli (E. coli / pn OS 5A strain) was obtained. The resulting recombinant Escherichia coli was inoculated into an Erlenmeyer flask containing lOOmL of LB medium containing 30 g / ml of kanamycin and cultured at 37 ° C for 18 hours. The culture broth was inoculated at 1% into a conical flask containing lOOmL of LB medium containing 30 g / ml of kanamycin, and cultured at 37 ° C for 6 hours. Then, the culture broth lOOmL was centrifuged to obtain wet cells. .
[0097] 取得した大腸菌組み換え体(E.coli/pnos5A株)湿菌体を、 lOOmmol/1 リン酸ナ トリウム緩衝 ί夜(ρΗ7· 0)、 10%グリセローノレ、 10mmol/l L—ロイシンからなる 20 mLの反応液中に懸濁し、反応液を三角フラスコに移して、 28°C、 72時間で反応を 行った。  [0097] The obtained Escherichia coli recombinant (E.coli / pnos5A strain) wet microbial cell is composed of lOOmmol / 1 sodium phosphate buffer ί 夜 (ρΗ7.0), 10% glyceronole, 10mmol / l L-leucine 20 The suspension was suspended in mL of the reaction solution, and the reaction solution was transferred to an Erlenmeyer flask and reacted at 28 ° C for 72 hours.
[0098] 反応終了後、反応生成物を高速液体クロマトグラフィー(HPLC) (株式会社島津製 作所社製)を用いて以下の分析条件で分析し、反応液中に約 3mmol/lの(2S, 4S ) - 5—ヒドロキシロイシンが生成蓄積して!/、ることを確認した。  [0098] After completion of the reaction, the reaction product was analyzed using high performance liquid chromatography (HPLC) (manufactured by Shimadzu Corporation) under the following analytical conditions, and about 3 mmol / l (2S , 4S)-5-Hydroxyleucine was confirmed to be generated and accumulated!
分析条件:  Analysis conditions:
カフム: L— column  Kahum: L— column
移動相: 0. 1 %ギ酸水溶液  Mobile phase: 0.1% formic acid aqueous solution
カラム温度: 40°C  Column temperature: 40 ° C
検出方法: カラムからの溶出液に対し、 OPA反応液(0. 3mmolホウ酸緩衝液 (p H10. 5)、オルトフタルアルデヒド(OPA) O. 4g/l、エタノール 16ml/l、 2—メルカ プトエタノール 2ml/l)を 40°Cで作用させて第一級アミノ酸を OPA誘導体化し、 340 nmの吸収を測定した。  Detection method: For the eluate from the column, the OPA reaction solution (0.3 mmol borate buffer (pH 10.5), orthophthalaldehyde (OPA) O. 4 g / l, ethanol 16 ml / l, 2-mercapto Ethanol (2 ml / l) was allowed to act at 40 ° C to make the primary amino acid OPA derivatized, and the absorbance at 340 nm was measured.
[0099] 上記にて得られた反応液 300mlを、陽イオン交換樹脂 Dowex— 50W(H + ) 400 mlにアプライした。次いで、脱イオン水 1200mlにてレジンを洗浄し、 0. 1規定アン モユア水 1600mlにて(2S, 4S)— 5—ヒドロキシロイシンを含む画分を溶離した。 (2 S, 4S)— 5—ヒドロキシロイシンを含む画分を濃縮し、高速液体クロマトグラフィー(株 式会社島津製作所社製)を用いて(2S, 4S)— 5—ヒドロキシロイシンを以下の条件 により分取精製した。分取精製して得られた画分を凍結乾燥し、白色粉末 53mgを得 た。得られた白色粉末を1 H— NMR、 13C— NMR、 LC/MS、比旋光度測定により( 2S, 4S)— 5—ヒドロキシロイシンであることを確認した。各機器分析は、別途有機合 成にて得られた(2S, 4S)—5—ヒドロキシロイシン標準品 [J.Org.Chem.,54,1859(198 9)]との比較により実施し、酵素反応にて得られた(2S, 4S)— 5—ヒドロキシロイシン と、標準品の(2S, 4S)— 5—ヒドロキシロイシンの機器分析特性値が完全に一致す ることを確言忍した。 [0099] 300 ml of the reaction solution obtained above was applied to 400 ml of cation exchange resin Dowex-50W (H +). Subsequently, the resin was washed with 1200 ml of deionized water, and the fraction containing (2S, 4S) -5-hydroxyleucine was eluted with 1600 ml of 0.1 N aqueous water. Concentrate the fraction containing (2 S, 4S) -5-hydroxyleucine and use (2S, 4S) -5-hydroxyleucine under the following conditions using high performance liquid chromatography (manufactured by Shimadzu Corporation). Preparative purification. The fraction obtained by preparative purification was freeze-dried to obtain 53 mg of white powder. The obtained white powder was confirmed to be (2S, 4S) -5-hydroxyleucine by 1 H-NMR, 13 C-NMR, LC / MS, and specific rotation measurement. Each instrumental analysis is a separate organic synthesis. (2S, 4S) -5-hydroxyleucine standard product [J. Org. Chem., 54, 1859 (198 9)] obtained in the , 4S) -5-Hydroxyleucine and the standard (2S, 4S) -5-hydroxyleucine were confirmed to be in perfect agreement.
分取 HPLC条件:  Preparative HPLC conditions:
カラム: Inertsil ODS— 3  Column: Inertsil ODS—3
溶離液: 0. 1 %ギ酸水溶液  Eluent: 0.1% formic acid aqueous solution
カラム温度: 40°C  Column temperature: 40 ° C
検出方法: 分取にて得られた画分を、それぞれ実施例 3にて記載の OPAポストラ ベル誘導体化法 HPLCにて分析し、(2S, 4S)— 5—ヒドロキシロイシンの精製画分 を同定した。  Detection method: Each fraction obtained by preparative analysis was analyzed by the OPA post-label derivatization HPLC described in Example 3, and the purified fraction of (2S, 4S) -5-hydroxyleucine was identified. did.
[0100] 実施例 5 : 大腸菌形晳転椽体(E.coliん nos5D株)による(2S. 4S)— 5—ヒドロキシ ロイシンの牛産  Example 5: (2S. 4S) —5-hydroxyleucine produced in cattle by E. coli transformed plant (E. coli nos5D strain)
実施例 2で得られた、ロイシンヒドロキシラーゼ遺伝子 nos5を含む組み換えプラスミ ド pnos5Dを、大腸菌 Escherichia coli BL21(DE3) (ノバジェン社製)に形質転換し、組 み換え大腸菌(E.coli/pnOS5D株)を得た。得られた組み換え大腸菌を、カナマイシン 30〃 g/mlを含む LB培地 lOOmLの入った三角フラスコに接種し、 37°Cで 18時間 培養した。該培養液をカナマイシン 30 g/mlを含む LB培地 lOOmLの入った三角 フラスコに 1 %接種し 37°Cで 6時間培養した後、該培養液 lOOmLを遠心分離して湿 菌体を取得した。 The recombinant plasmid pnos5D containing the leucine hydroxylase gene nos5 obtained in Example 2 was transformed into Escherichia coli BL21 (DE3) (manufactured by Novagen) and recombinant E. coli / pn OS 5D. Obtained). The obtained recombinant Escherichia coli was inoculated into an Erlenmeyer flask containing LB medium lOOmL containing 30 kg / ml of kanamycin and cultured at 37 ° C for 18 hours. The culture broth was inoculated 1% into an Erlenmeyer flask containing LB medium lOOmL containing 30 g / ml kanamycin and cultured at 37 ° C. for 6 hours, and then the culture broth lOOmL was centrifuged to obtain wet cells.
[0101] 上記で取得した組み換え大腸菌(E.coli/pnos5D株)湿菌体を、 lOOmmol/1 リン 酸ナトリウム緩衝液(ρΗ7· 0)、 10%グリセロール、 10mmol/l L—ロイシンからな る 20mLの反応液中に懸濁し、反応液を三角フラスコに移して、 28°C、 72時間で反 応を行った。  [0101] Recombinant Escherichia coli (E.coli / pnos5D strain) wet cells obtained above were transferred to 20 mL of lOOmmol / 1 sodium phosphate buffer (ρΗ7.0), 10% glycerol, 10 mmol / l L-leucine. The reaction solution was suspended in the reaction solution, transferred to an Erlenmeyer flask, and reacted at 28 ° C for 72 hours.
[0102] 反応終了後、反応生成物を高速液体クロマトグラフィー (HPLC) (株式会社島津製 作所社製)を用いて以下の分析条件で分析し、反応液中に約 lmmol/1の(2S, 4S ) - 5—ヒドロキシロイシンが生成蓄積して!/、ることを確認した。  [0102] After completion of the reaction, the reaction product was analyzed using high performance liquid chromatography (HPLC) (manufactured by Shimadzu Corporation) under the following analytical conditions, and about 1 mmol / 1 (2S , 4S)-5-Hydroxyleucine was confirmed to be generated and accumulated!
分析条件は実施例 4に記載と同様の手法で行った。 [0103] 上記で得られた反応液約 800mlを、陽ィォン交換樹脂1^0 6 50\¥ (^1 + ) 400 mlにアプライした。次いで、脱イオン水 2000mlにてレジンを洗浄し、 0. 1規定アン モユア水 1600mlにて(2S, 4S)— 5 ヒドロキシロイシンを含む画分を溶離した。 (2 S, 4S)— 5—ヒドロキシロイシンを含む画分を濃縮し、高速液体クロマトグラフィー(株 式会社島津製作所社製)を用いて(2S, 4S)— 5 ヒドロキシロイシンを以下の条件 により分取精製した。分取精製して得られた画分を凍結乾燥し、白色粉末約 47mgを 得た。得られた白色粉末を 1H— NMR、 LC/MSにより(2S, 4S)— 5 ヒドロキシロ イシンであることを確認した。各機器分析は、別途有機合成にて得られた(2S, 4S) 5 ヒドロキシロイシン標準品 [J.Org.Chem., 54,1859(1989)]との比較により実施し、 酵素反応にて得られた(2S, 4S)— 5 ヒドロキシロイシンと、標準品の(2S, 4S)— 5 ーヒドロキシロイシンの機器分析特性値が完全に一致することを確認した。 The analysis conditions were the same as those described in Example 4. [0103] About 800 ml of the reaction solution obtained above was applied to 400 ml of cation exchange resin 1 ^ 0 6 50 \ (^ 1 +). Subsequently, the resin was washed with 2000 ml of deionized water, and the fraction containing (2S, 4S) -5-hydroxyleucine was eluted with 1600 ml of 0.1 N aqueous water. Concentrate the fraction containing (2S, 4S) -5-hydroxyleucine and use (2S, 4S) -5-hydroxyleucine to separate it using high performance liquid chromatography (manufactured by Shimadzu Corporation) under the following conditions. It was collected and purified. The fraction obtained by preparative purification was freeze-dried to obtain about 47 mg of white powder. The obtained white powder was confirmed to be (2S, 4S) -5 hydroxyleucine by 1H-NMR and LC / MS. Each instrumental analysis was carried out by comparison with (2S, 4S) 5 hydroxyleucine standard (J. Org. Chem., 54, 1859 (1989)) obtained separately by organic synthesis, and obtained by enzymatic reaction. It was confirmed that the instrumental analysis characteristic values of (2S, 4S) -5-hydroxyleucine and the standard (2S, 4S) -5-hydroxyleucine were in perfect agreement.
分取 HPLC条件は実施例 4に記載と同様の手法で行った。  Preparative HPLC conditions were the same as described in Example 4.
[0104] 実施例 6 : 放線菌形晳転椽体(S.lividansん nos5E株)による(2S. 4S)— 5 ヒドロキ シロイシンの牛産  [0104] Example 6: Actinomycete-shaped transformed body (S. lividans nos5E strain) (2S. 4S) — 5 Hydroxyleucine from cattle
実施例 3で得られた、ロイシンヒドロキシラーゼ遺伝子 nos5を含む組み換えプラス ミド Onos 5Eを放線菌 StreiDtomvces lividansに接合伝逹法で導入し、ァプラマイシン 1 0 g/mlを含む MS寒天培地 [マンニトール(関東化学社製) 20g/l、脱脂大豆(味 の素製油社製) 10g/l、ァガロース 20g/l]に塗布後、 28°Cで培養することで、接合 達体 (S. lividans/ nos5E)をネ守た。  Recombinant plasmid Onos 5E containing the leucine hydroxylase gene nos5 obtained in Example 3 was introduced into the actinomycetes StreiDtomvces lividans by the conjugative transfer method, and MS agar medium containing apramycin 10 g / ml [mannitol (Kanto Chemical) 20g / l, defatted soybean (Ajinomoto Oil Co., Ltd.) 10g / l, agarose 20g / l], and then incubated at 28 ° C, so that the zygote (S. lividans / nos5E) I guarded.
[0105] 得られた接合伝達体を、ァプラマイシン 5 g/mlを含む改変 YEME培地 [バタト ペプトン (ディフコ社製) 5g/l、酵母エキス(ディフコ社製) 3g/l、マルトエキストラタト (ォキソイド社製) 3g/l、グノレコース 10g/l。シユークロース 30g/l] 50mLの入った 三角フラスコに接種し、 30°Cで 18時間培養した。該培養液をァプラマイシン 5 ;^/ ml、チォストレプトン 5 μ g/mlを含む改変 YEME培地 50mLの入った三角フラスコ に 2%接種し 30°C24時間培養した後、該培養液 50mLを遠心分離して湿菌体を取 得した。 [0105] The obtained conjugation transmitter was treated with a modified YEME medium containing 5 g / ml of apramycin [Batato Peptone (Difco) 5 g / l, Yeast Extract (Difco) 3 g / l, Malto Extratote (Oxoid) 3g / l, Gnore course 10g / l. Sucrose 30 g / l] was inoculated into an Erlenmeyer flask containing 50 mL and cultured at 30 ° C for 18 hours. Inoculate 2% of Erlenmeyer flask containing 50 mL of modified YEME medium containing apramycin 5; ^ / ml and thiostrepton 5 μg / ml, and incubate for 24 hours at 30 ° C. Centrifuge 50 mL of the culture As a result, wet cells were obtained.
[0106] 上記で取得した S.lividans/pnos5E株湿菌体を、 lOOmmol/1 リン酸ナトリウム緩衝 液(ρΗ7· 0)、 10%グリセローノレ、 10mmol/l L ロイシンからなる 20mLの反応 液に懸濁し、反応液を三角フラスコに移し、 30°C、 24時間で反応を行った。 [0106] The S.lividans / pnos5E strain wet cells obtained above were used in a 20 mL reaction consisting of lOOmmol / 1 sodium phosphate buffer (ρΗ7.0), 10% glyceronole, 10 mmol / l L leucine. The reaction solution was suspended in a liquid, transferred to an Erlenmeyer flask, and reacted at 30 ° C for 24 hours.
反応終了後、反応性生物を高速液体クロマトグラフィー (HPLC) (株式会社島津製 作所社製)を用いて以下の分析条件で分析し、反応液中に 0. 2mmol/lの(2S, 4 S) - 5—ヒドロキシロイシンが生成蓄積して!/、ることを確認した。  After completion of the reaction, the reactive organism was analyzed using high performance liquid chromatography (HPLC) (manufactured by Shimadzu Corporation) under the following analytical conditions, and 0.2 mmol / l (2S, 4 It was confirmed that S) -5-hydroxyleucine was generated and accumulated!
分析条件は実施例 4に記載の手法で行った。 The analysis conditions were the same as those described in Example 4.
紙面 ( る^し ¾:子データが尿本 ります) にの搿 は、国 ¾出^の一部を構成せず、国際出 の用紙の枚数 1: ^入しない〕 搿 on paper (Ru ¾: child data is urine book does not form part of country ¾ output ^, number of papers from international 1: 1 does not enter)

Claims

請求の範囲 The scope of the claims
[1] 下記からなる群より選択される、蛋白質:  [1] A protein selected from the group consisting of:
(a) 配列番号 1で表されるアミノ酸配列を有する、蛋白質、  (a) a protein having the amino acid sequence represented by SEQ ID NO: 1,
(b) 配列番号 1のアミノ酸配列において、 1もしくは複数個のアミノ酸残基が欠失、 置換、挿入もしくは付加されたアミノ酸配列力 なり、かつ L—ロイシンヒドロキシラー ゼ活性を有する、蛋白質、および  (b) in the amino acid sequence of SEQ ID NO: 1, a protein having one or more amino acid residues deleted, substituted, inserted or added, and having L-leucine hydroxylase activity, and
(c) 配列番号 1のアミノ酸配列と 60%以上の相同性を有するアミノ酸配列力 なり、 かつ L一口イシンヒドロキシラーゼ活性を有する、蛋白質。  (c) A protein having an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 1 and having L-mouth icin hydroxylase activity.
[2] 請求項 1に記載の蛋白質をコードする、 DNA。  [2] DNA encoding the protein according to claim 1.
[3] 配列番号 2で表される塩基配列を有する、請求項 2に記載の DNA。  [3] The DNA according to claim 2, which has the base sequence represented by SEQ ID NO: 2.
[4] 下記からなる群より選択される、 DNA:  [4] DNA selected from the group consisting of:
(i) 配列番号 2で表される塩基配列を有する、 DNA、  (i) DNA having the base sequence represented by SEQ ID NO: 2,
(ii) 配列番号 2で表される塩基配列を有する DNAとストリンジェントな条件下でハイ ブリダィズし、かつ L一口イシンヒドロキシラーゼ活性を有する蛋白質をコードする、 D NA、  (ii) DNA that hybridizes under stringent conditions with the DNA having the base sequence represented by SEQ ID NO: 2 and encodes a protein having L-sip Icin hydroxylase activity,
(iii) 配列番号 2において、 1もしくは複数個の塩基が欠失、置換、挿入もしくは付加 された塩基配列力らなり、かっし一ロイシンヒドロキシラーゼ活性を有する蛋白質をコ ードする、 DNA、および  (iii) In SEQ ID NO: 2, a DNA having a nucleotide sequence that has one or more bases deleted, substituted, inserted or added, and which codes for a protein having a single leucine hydroxylase activity, and DNA,
(iv)配列番号 2で表される塩基配列と 60%以上の相同性を有する塩基配列力 なり 、かつ L—ロイシンヒドロキシラーゼ活性を有する蛋白質をコードする、 DNA。  (iv) A DNA encoding a protein having L-leucine hydroxylase activity, having a nucleotide sequence ability of 60% or more with the nucleotide sequence represented by SEQ ID NO: 2.
[5] DNAが藍藻 (Cvanobacteria)に属する微生物由来の DNAである、請求項 3または [5] The DNA according to claim 3, wherein the DNA is derived from a microorganism belonging to the cyanobacteria (Cvanobacteria).
4に記載の DNA。 4. DNA according to 4.
[6] 藍藻に属する微生物由来の DNA力 S、ノストック (Hoto)属に属する微生物由来の [6] DNA strength S derived from microorganisms belonging to cyanobacteria S, derived from microorganisms belonging to the genus Hototo
DNAである、請求項 5に記載の DNA。 6. DNA according to claim 5, which is DNA.
[7] ノストック (Nostoc)属に属する微生物が、ノストック ·パンクチフオルム ( ostoc醒 cti forme)である、請求項 6に記載の DNA。 [7] The DNA according to claim 6, wherein the microorganism belonging to the genus Nostoc is an ostoc awakening cti forme.
[8] 配列番号 3で表される塩基配列を有する、請求項 2に記載の DNA。 [8] The DNA according to claim 2, which has the base sequence represented by SEQ ID NO: 3.
[9] 下記力もなる群より選択される、 DNA: [9] DNA selected from the group also with:
差替え用紙 (規則 26) (I) 配列番号 3で表される塩基配列を有する、 DNA、 Replacement paper (Rule 26) (I) DNA having the base sequence represented by SEQ ID NO: 3,
(II) 配列番号 3で表される塩基配列を有する DNAとストリンジヱントな条件下でノヽィ ブリダィズし、かつ L—ロイシンヒドロキシラーゼ活性を有する蛋白質をコードする、 D NA、  (II) DNA that encodes a protein having a no-bridging condition under stringent conditions with DNA having the base sequence represented by SEQ ID NO: 3 and having L-leucine hydroxylase activity,
(III) 配列番号 3において、 1もしくは複数個の塩基が欠失、置換、挿入もしくは付加 された塩基配列力 なり、力つ L一口イシンヒドロキシラーゼ活性を有する蛋白質をコ ードする、 DNA、および  (III) In SEQ ID NO: 3, one or a plurality of bases are deleted, substituted, inserted or added, resulting in a base sequence ability, and a DNA that codes for a protein having L-mouth icine hydroxylase activity, DNA, and
(IV)配列番号 3で表される塩基配列と 60%以上の相同性を有する塩基配列カゝらなり 、かつ L—ロイシンヒドロキシラーゼ活性を有する蛋白質をコードする、 DNA。  (IV) A DNA comprising a nucleotide sequence having at least 60% homology with the nucleotide sequence represented by SEQ ID NO: 3 and encoding a protein having L-leucine hydroxylase activity.
[10] 請求項 2〜9のいずれか一項に記載の DNAをべクタ一に組み込んで得られる、組 換え DNA0 [10] Recombinant DNA obtained by incorporating the DNA according to any one of claims 2 to 9 into a vector 0
[11] 請求項 10に記載の耝換え DNAを宿主細胞に導入して得られる、形質転換体。  [11] A transformant obtained by introducing the recombinant DNA according to claim 10 into a host cell.
[12] 宿主細胞がェシエリヒア ·コリ (Escherichia coli)である、請求項 11に記載の形質転 換体。 [12] The transformant according to claim 11, wherein the host cell is Escherichia coli.
[13] 宿主細胞がストレプトミセス ·リビダンス (Streptomvces lividans)である、請求項 11に 記載の形質転換体。  [13] The transformant according to claim 11, wherein the host cell is Streptomvces lividans.
[14] L—ロイシンヒドロキシラーゼを発現する、請求項 11 ~13のいずれか一項に記載の 形質転換体。  [14] The transformant according to any one of claims 11 to 13, which expresses L-leucine hydroxylase.
[15] 請求項 11〜14のレヽずれか一項に記載の形質転換体を、培地を用いて培養して、 培養物中に L—ロイシンヒドロキシラ一ゼ活性を有する蛋白質を生成し蓄積させ、該 培養物力ゝら該蛋白質を採取することを含んでなる、 L—ロイシンヒドロキシラーゼ活性 を有する蛋白質の製造方法。  [15] The transformant according to any one of claims 11 to 14, wherein the transformant is cultured using a medium, and a protein having L-leucine hydroxylase activity is produced and accumulated in the culture. A method for producing a protein having L-leucine hydroxylase activity, which comprises collecting the protein from the culture force.
[16] 請求項 11〜14のレ、ずれか一項に記載の形質転換体の培養物または該培養物の 処理物を酵素源として用い、該酵素源と L—ロイシンとを水性媒体中に存在せしめて 、該水性媒体中で (2S, 4S)— 5—ヒドロキシロイシンを生成し蓄積させ、該水性媒体 中から(2S, 4S)— 5—ヒドロキシロイシンを採取することを含んでなる、(2S, 4S) - 5一ヒドロキシロイシンの製造法。  [16] The transformant culture according to any one of claims 11 to 14, or the processed product of the culture, as an enzyme source, and the enzyme source and L-leucine in an aqueous medium Producing and accumulating (2S, 4S) -5-hydroxyleucine in the aqueous medium, and collecting (2S, 4S) -5-hydroxyleucine from the aqueous medium, 2S, 4S)-5 A process for producing monohydroxyleucine.
[17] 培養物の処理物が、培養物の濃縮物、培養物の乾燥物、培養物を遠心分離して  [17] Processed cultures are prepared by centrifuging the culture concentrate, the culture dry product, and the culture.
差替え甩紙(規則 26) 08/013262 B本国 pCT/jP200裏編 3. 2007 Replacement paper (Rule 26) 08/013262 Country B p CT / jP20 0 Back 3. 2007
28  28
得られる菌体、該菌体の乾燥物、該菌体の凍結乾燥物、該菌体の界面活性剤処理 物、該菌体の超音波処理物、該菌体の機械的磨碎処理物、該菌体の溶媒処理物、 該菌体の酵素処理物、該菌体の蛋白質分画物、該菌体の固定化物、または該菌体 より抽出して得られる酵素標品である、請求項 16に記載の製造法。 Cells obtained, dried products of the cells, freeze-dried products of the cells, surfactant-treated products of the cells, ultrasonically treated products of the cells, mechanical polishing products of the cells, A solvent-treated product of the bacterial cell, an enzyme-treated product of the bacterial cell, a protein fraction of the bacterial cell, an immobilized product of the bacterial cell, or an enzyme preparation obtained by extraction from the bacterial cell. 16. The production method according to 16.
'差替え用紙 (規則 26) 'Replacement form (Rule 26)
PCT/JP2007/064761 2006-07-28 2007-07-27 L-leucine hydroxylase and dna encoding the enzyme WO2008013262A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008526830A JPWO2008013262A1 (en) 2006-07-28 2007-07-27 L-leucine hydroxylase and DNA encoding the enzyme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006205755 2006-07-28
JP2006-205755 2006-07-28

Publications (1)

Publication Number Publication Date
WO2008013262A1 true WO2008013262A1 (en) 2008-01-31

Family

ID=38981572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064761 WO2008013262A1 (en) 2006-07-28 2007-07-27 L-leucine hydroxylase and dna encoding the enzyme

Country Status (2)

Country Link
JP (1) JPWO2008013262A1 (en)
WO (1) WO2008013262A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021717A3 (en) * 2009-08-21 2011-05-26 Ajinomoto Co.,Inc. Method for producing hydroxylated amino acids
CN109576234A (en) * 2018-12-26 2019-04-05 天津科技大学 A kind of leucine -5- hydroxylation enzyme mutant and its application

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] XP003020713, Database accession no. (NZ_AAAY02000011) *
HOFFMANN D. ET AL.: "Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224", GENE, vol. 311, 2003, pages 171 - 180, XP004437336 *
LARSSON M. ET AL.: "High-throughput protein expression of cDNA products as a tool in functional genomics", J. BIOTECHNOL., vol. 80, no. 2, 2000, pages 143 - 157, XP004213504 *
LUESCH H. ET AL.: "Biosynthesis of 4-Methylproline in Cyanobacteria: Cloning of nosE and nosF Genes and Biochemical Characterization of the Encoded Dehydrogenase and Reductase Activities", J. ORG. CHEM., vol. 68, no. 1, 2003, pages 83 - 91, XP003020714 *
MISAWA K. ET AL.: "A method to identify cDNAs based on localization of green fluorescent protein function products", PROC. NATL. ACAD. SCI. U.S.A., vol. 97, no. 7, 2000, pages 3062 - 3066, XP002290453 *
SAWASAKI T. ET AL.: "A cell-free protein synthesis system for high-throughput proteomics", PROC. NATL. ACAD. SCI. U.S.A., vol. 99, no. 23, 2002, pages 14652 - 14657, XP002294118 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021717A3 (en) * 2009-08-21 2011-05-26 Ajinomoto Co.,Inc. Method for producing hydroxylated amino acids
CN109576234A (en) * 2018-12-26 2019-04-05 天津科技大学 A kind of leucine -5- hydroxylation enzyme mutant and its application
CN109576234B (en) * 2018-12-26 2021-05-07 天津科技大学 Leucine-5-hydroxylase mutant and application thereof

Also Published As

Publication number Publication date
JPWO2008013262A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP5246639B2 (en) Process for producing 4-hydroxy-L-isoleucine
US8114651B2 (en) Method for producing 4-hydroxy-L-isoleucine
KR100591500B1 (en) Process for the preparation of trans-4-hydroxy-l-proline
WO2006093322A2 (en) Method for manufacturing 4-hydroxy-l-isoleucine or a salt thereof
US20110262977A1 (en) Process for production of optically active amine derivative
CN107532185B (en) Process for producing hydroxy-L-pipecolic acid
WO2003074690A1 (en) Amino acid racemase having low substrate specificity and process for producing racemic amino acid
JP5951953B2 (en) Novel dipeptide synthase and method for producing dipeptide using the same
JP2013081404A (en) New dipeptide synthetase and method for producing dipeptide using the same
CN111560410A (en) Imidazole dipeptide preparation method
WO2008013262A1 (en) L-leucine hydroxylase and dna encoding the enzyme
JP2018085969A (en) PRODUCTION METHOD FOR N-α-ACYL-L-AMINO ACID
WO2016076159A1 (en) Method for manufacturing cis-5-hydroxy-l-pipecolic acid
WO2003072770A1 (en) Novel dehydrogenase and gene encoding the same
KR20050108387A (en) Nucleotide sequences of coryneform bacteria coding for proteins involved in l-serine metabolism and method for producing l-serine
US6887697B2 (en) D-aminoacylase and gene encoding the same
JP4782831B2 (en) Microorganisms of the family Enterobacteriaceae having a gene involved in L-carnitine biosynthesis and a method for producing L-carnitine using the microorganism
KR100460580B1 (en) Process for producing cis-3-hydroxy-l-proline
WO2010067871A1 (en) Nε-ACYL-L-LYSINE-SPECIFIC AMINOACYLASE
JP2013081406A (en) New dipeptide synthetase and method for producing dipeptide using the same
JP2013081407A (en) New dipeptide synthetase and method for producing dipeptide using the same
WO2022138969A1 (en) Mutant l-pipecolic acid hydroxylase and cis-5-hydroxy-l-pipecolic acid production method utilizing same
WO2002036803A1 (en) Process for producing d-serine
JP5697327B2 (en) Method for producing cis-hydroxy-L-proline
US7112432B2 (en) Process for producing cis-3-hydroxy-L-proline

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526830

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791455

Country of ref document: EP

Kind code of ref document: A1