WO2008013183A1 - Inner liner for pneumatic tire, method for producing the same and pneumatic tire - Google Patents

Inner liner for pneumatic tire, method for producing the same and pneumatic tire Download PDF

Info

Publication number
WO2008013183A1
WO2008013183A1 PCT/JP2007/064527 JP2007064527W WO2008013183A1 WO 2008013183 A1 WO2008013183 A1 WO 2008013183A1 JP 2007064527 W JP2007064527 W JP 2007064527W WO 2008013183 A1 WO2008013183 A1 WO 2008013183A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner liner
layer
pneumatic tire
resin film
film layer
Prior art date
Application number
PCT/JP2007/064527
Other languages
French (fr)
Japanese (ja)
Inventor
Daisuke Nakagawa
Daisuke Nohara
Daisuke Katou
Yuwa Takahashi
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006200904A external-priority patent/JP4939863B2/en
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2008013183A1 publication Critical patent/WO2008013183A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0681Parts of pneumatic tyres; accessories, auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0008Compositions of the inner liner
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0853Vinylacetate
    • C09J123/0861Saponified vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0681Parts of pneumatic tyres; accessories, auxiliary operations
    • B29D2030/0682Inner liners

Definitions

  • Inner liner for pneumatic tire for pneumatic tire, method for producing the same, and pneumatic tire
  • the present invention relates to an inner liner for a pneumatic tire, a method for producing the same, and a pneumatic tire including the inner liner.
  • the present invention improves rupture resistance during bending and suppresses the occurrence of cracks. It relates to a possible inner liner for a pneumatic tire.
  • a rubber composition mainly composed of butyl rubber, halogenated butyl rubber or the like has been used for an inner liner disposed as an air barrier layer on the inner surface of the tire in order to maintain the internal pressure of the tire.
  • the rubber composition mainly composed of these butyl rubbers has a low air-nore property, when the rubber composition is used for the inner liner, the thickness of the inner liner is reduced. It was necessary to be around lmm. Therefore, the weight of the inner liner in the tire is about 5%, which is an obstacle to reducing the tire weight and improving the fuel efficiency of the car!
  • an ethylene butyl alcohol copolymer (hereinafter sometimes abbreviated as EVOH) is known to have excellent gas barrier properties.
  • the EVOH has an air permeation amount that is 1/100 or less of the above-mentioned rubber composition for inner liners, so that it can greatly improve the tire internal pressure retention even at a thickness of 100 ⁇ m or less. In addition, the weight of the tire can be reduced.
  • Japanese Unexamined Patent Application Publication No. 2004-176048 discloses a pneumatic tire provided with an inner liner made of specific EVOH.
  • the inner liner disclosed in Japanese Patent Application Laid-Open No. 2004-176048 is used by being attached to an auxiliary layer made of an elastomer through an adhesive layer in order to improve the internal pressure retention of the tire. It is preferred to do, and it is said that.
  • the present inventors have examined an inner liner for a pneumatic tire using a resin film layer and a rubber-like elastic body layer.
  • the resin film layer and the rubber-like elastic body layer are different from each other. It was found that the resin film layer having low adhesion is easily peeled off from the rubber-like elastic layer.
  • JP-A-2004- 176048 even with the technique disclosed in JP-A-2004- 176048, and a still adhesion between the resin film layer and rubbery elastomer layer is susceptible force s for improvement in low immediately peeling strength .
  • the inner liner disclosed in Japanese Patent Application Laid-Open No. 2004-176048 is a power that can improve the air permeability of a pneumatic tire, and the inner liner has a low adhesiveness. There is room for improvement in peel resistance.
  • thermoplastic urethane elastomer may be disposed on the outer layer portion of the inner liner made of EVOH.
  • an object of the present invention is to improve the peel resistance between the resin film layer and the rubber-like elastic body layer, increase the fracture resistance at the time of bending, and prevent the occurrence of cracks. And providing a method for manufacturing the inner liner.
  • Another object of the present invention is to improve the adhesive strength of the adhesive layer so that it has durability that can withstand expansion during molding of the tire and to improve the peel resistance after vulcanization. , Increase rupture resistance during bending, It is an object of the present invention to provide an inner liner for a pneumatic tire capable of suppressing the generation of squeeze and a method for manufacturing the inner liner. Furthermore, another object of the present invention is to provide a pneumatic tire provided with such an inner liner.
  • an inner liner for a pneumatic tire in which a resin film layer and a rubber-like elastic body layer are joined via an adhesive layer.
  • the surface of the resin film layer at least on the side of the adhesive layer is modified to provide a pneumatic tire having excellent peeling resistance, excellent rupture resistance when bent, and suppressing occurrence of cracks. And found that an inner liner can be obtained.
  • the present inventors have determined that at least one surface of the resin film layer in the inner liner for a pneumatic tire comprising a laminate having a resin film layer and an adhesive layer.
  • the surface free energy above a certain value, it is possible to obtain an inner liner for tires that is durable enough to withstand expansion when molding tires, has excellent rupture resistance when bent, and suppresses the occurrence of cracks.
  • the present invention has been completed.
  • the resin film layer (A) and the rubber-like elastic body layer (B) are bonded via the adhesive layer (C).
  • the resin film layer (A) is characterized in that at least the surface on the adhesive layer (C) side is surface-modified.
  • the first inner liner for a pneumatic tire of the present invention it is preferable that at least a surface of the resin film layer (A) on the side of the adhesive layer (C) is subjected to surface oxidation treatment. Further, as the surface oxidation treatment, a corona discharge treatment is more preferable.
  • the second inner liner for a pneumatic tire of the present invention includes a resin film layer (A) and an adhesive layer (C) disposed on the resin film layer (A).
  • the surface free energy of at least one surface of the resin film layer (A) is 50 mN / m or more.
  • a modified ethylene butyl alcohol copolymer obtained by reacting the resin film layer (A) with an ethylene butyl alcohol copolymer ( At least a layer comprising D).
  • the resin film layer (A) includes at least a layer containing the modified butyl alcohol copolymer (D). It may have another layer which is preferable, or it may be composed only of a layer containing the above-mentioned modified butyl alcohol copolymer (D).
  • the resin film layer (A) includes at least a layer containing the modified ethylene butyl alcohol copolymer (D)
  • the ethylene butyl alcohol copolymer The ethylene content of the coalescence is preferably 25-50 mono%. Further, the saponification degree of the ethylene butyl alcohol copolymer is preferably 90% or more. Furthermore, it is preferable that the modified ethylene-butyl alcohol copolymer (D) is obtained by reacting 1 to 50 parts by mass of an epoxy compound with respect to 100 parts by mass of the ethylene-butyl alcohol copolymer.
  • the layer containing the modified ethylene butyl alcohol copolymer (D) has a functional group that reacts with a hydroxyl group in the matrix made of the modified ethylene butyl alcohol copolymer (D), and has a Young's modulus of 500 MPa.
  • the resin composition (F) in which the following flexible resin (E) is dispersed is preferable.
  • the matrix here means a continuous phase.
  • the resin film Lum layer (A), 20 ° C, the oxygen permeability at 65% RH is 3.0 X 10- 12 cm 3 ' cm / cm 2 • seccmHg3 ⁇ 4T
  • the resin film layer (A) has a thickness of 100 Hm or less.
  • the resin film layer (A) is crosslinked! /.
  • the resin film layer (A) includes at least a layer containing the modified ethylene butyl alcohol copolymer (D)
  • the modified ethylene butyl alcohol copolymer is used.
  • the polymer (D) is preferably crosslinked.
  • the inner liner 1 for a pneumatic tire according to the present invention includes the modified ethylene-bule alcohol when the resin film layer (A) includes at least the layer containing the modified ethylene butyalcohol copolymer (D). It is preferable to provide one or more auxiliary layers (G) that also have an elastomeric force adjacent to the layer containing the copolymer (D).
  • the auxiliary layer (G) More preferably, it includes a plastic urethane elastomer.
  • the total thickness of the auxiliary layer (G) is more preferably in the range of 10 to 100 ⁇ m.
  • the second inner liner for a pneumatic tire of the present invention at least one surface of the coating liquid containing the adhesive composition (H) and the organic solvent is surface-modified.
  • the surface of the resin film layer (A) is applied and dried to form the adhesive layer (C), and the rubber-like elastic layer (B) is further bonded to the surface of the adhesive layer (C). It is obtained by performing a sulfur treatment.
  • the coating liquid containing the adhesive composition (H) and the organic solvent is used as the rubber-like elastic layer (B).
  • the adhesive layer (C) is formed by coating and drying on the surface of the adhesive layer, and the resin film layer (A) having at least one surface modified is bonded to the surface of the adhesive layer (C) and added. It can be obtained by sulfur treatment.
  • the rubbery elastic layer (B) contains butyl rubber and / or halogenated butyl rubber.
  • a first method for producing an inner liner for a pneumatic tire according to the present invention includes the step of modifying the surface of the resin film layer (A) with a coating solution containing an adhesive composition (H) and an organic solvent. The coated layer is coated and dried to form an adhesive layer (C). Next, the rubber-like elastic layer (B) is bonded to the surface of the adhesive layer (C) with! /, And vulcanized. It is characterized by performing processing.
  • a coating liquid containing an adhesive composition (H) and an organic solvent is applied to the rubber-like elastic layer (B).
  • a coating liquid containing an adhesive composition (H) and an organic solvent is applied to the rubber-like elastic layer (B).
  • Applied and dried to form an adhesive layer (C)
  • the surface of the resin film layer (A) is bonded to the surface of the adhesive layer (C).
  • the vulcanization treatment is performed.
  • a pneumatic tire according to the present invention is characterized by using the inner liner for a pneumatic tire.
  • the resin film layer and the rubber-like layer are bonded to the rubber-like elastic body layer via the adhesive layer, with the resin film layer having at least the adhesive layer side surface modified. It is possible to provide an inner liner for a pneumatic tire which has excellent resistance to peeling from an elastic layer and which has high fracture resistance when bent, and suppresses the occurrence of cracks, and a method for producing the inner liner. it can.
  • a laminate including a resin fine layer (A) having a surface free energy of at least a certain value or more on one side and an adhesive layer (B) disposed on the resin film (A) is used.
  • an inner liner for pneumatic tires that is durable enough to withstand expansion during molding of the tire, has excellent fracture resistance when bent, and suppresses the occurrence of cracks, and a method for manufacturing the inner liner can do. Further, it is possible to provide a pneumatic tire provided with an inner liner that is strong and capable.
  • FIG. 1 is a partial cross-sectional view of an example of a pneumatic tire according to the present invention.
  • FIG. 2 is a partial cross-sectional view of an example of an inner liner for a pneumatic tire according to the present invention.
  • FIG. 3 is a partial cross-sectional view of another example of an inner liner for a pneumatic tire according to the present invention.
  • the present invention is described in detail below.
  • the first inner liner for a pneumatic tire according to the present invention is for a pneumatic tire in which a resin film layer (A) and a rubber-like elastic body layer (B) are bonded via an adhesive layer (C). It is an inner liner, and at least the surface of the resin film layer (A) on the adhesive layer (C) side is surface-modified.
  • the first inner liner for a pneumatic tire of the present invention since the joint surface of the resin film layer (A) is surface-modified, the peel resistance is greatly improved.
  • the inner liner of the present invention also suppresses the generation of cracks having high rupture resistance during bending!
  • the resin film layer (A) is adhered to the adhesive layer (C) disposed on the surface of the resin film layer (A).
  • surface modification is required.
  • surface oxidation treatment is preferable.
  • corona discharge treatment plasma discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone, ultraviolet irradiation treatment, etc. are preferable, among which the equipment is inexpensive.
  • the corona discharge treatment is particularly preferable because it can be carried out in the atmosphere and at atmospheric pressure.
  • the second inner liner for a pneumatic tire of the present invention includes a resin film layer (A) and an adhesive layer (C) disposed on the resin film layer (A).
  • the surface free energy of at least one surface of the resin film layer (A) is 50 mN / m or more.
  • the surface free energy of at least one surface of the resin film layer (A) is 50 mN / m or more, so that the wettability is improved and the adhesive layer (C) The adhesive strength of can be improved.
  • the surface free energy on the surface on which the adhesive layer (C) is formed is set to 50 mN / m or more. Therefore, the peel resistance between the tire inner surface and the inner liner can be improved, and the surface free energy on the surface opposite to the surface on which the adhesive layer (C) is formed should be 50 mN / m or more. Therefore, it is possible to improve the shear adhesive strength of the joint where the inner liner is bonded in a ring shape. From the above, both effects can be obtained if the surface free energy on both surfaces of the resin film layer (A) is 50 mN / m or more.
  • the second inner liner for a pneumatic tire of the present invention requires that the surface free energy of at least one surface of the resin film layer (A) is 50 mN / m or more, and is 50 to 80 mN / m. Preferably there is.
  • the treatment is performed.
  • Preferred examples of the surface oxidation treatment include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone, ultraviolet irradiation treatment, etc. Among these, corona discharge treatment is particularly preferred.
  • the resin that can be used for the resin film layer (A) is not particularly limited, and may be a specific resin alone, or other materials are dispersed in the specific resin. It may be a compound. As the power and mulch compound, those that form sea-island structures are preferred.
  • a thermoplastic resin is suitably used as the sea part of the sea-island structure.
  • the thermoplastic resin preferably has a Young's modulus of more than 500 MPa at 23 ° C.
  • ethylene-butyl alcohol copolymer-based resins have a low gas permeation and a very high gas barrier property.
  • the resin film layer (A) has a surface free energy, and therefore it is preferable that an oxygen-containing group is present on the surface of the resin film layer (A). More preferably, a functional group is present. Such a functional group can improve the wettability of the resin film layer (A). Accordingly, it is preferable that the resin film layer (A) is a thermoplastic resin having an ethylene butyl alcohol copolymer-based resin. For example, a modified ethylene obtained by reacting an ethylene butyl alcohol copolymer with an epoxy compound. -More preferred is a butyl alcohol copolymer (D). Since such a modified ethylene butyl alcohol copolymer (D) has a lower elastic modulus than a normal ethylene butyl alcohol copolymer, the rupture resistance during bending is high and cracks are difficult to occur. .
  • the resin film layer (A) includes at least a layer containing a modified ethylene butyl alcohol copolymer (D) obtained by reacting an ethylene butyl alcohol copolymer.
  • the ethylene Bulle alcohol copolymer forces S preferably ethylene content of 25 to 50 mol%, 30 to 48 mole 0/0, it is further preferred tool 35-45 mole 0/0 More preferably, it is. If the ethylene content is less than 25 mol%, the bending resistance, fatigue resistance, and melt moldability may deteriorate. On the other hand, if it exceeds 50 mol%, the gas barrier properties may not be sufficiently secured. Further, the ethylene-butyl alcohol copolymer preferably has a saponification degree of 90% or more, more preferably 95% or more, and still more preferably 99% or more. If the degree of saponification is less than 90%, gas barrier properties and Thermal stability at the time of molding may be insufficient.
  • the ethylene-butyl alcohol copolymer has a melt flow rate (MFR) of 190.degree. C. under a load of 2160 g, 0.;! To 30 g / 10 min. S, preferably 0.3 to 25 g / 10 min. More preferably it is.
  • MFR melt flow rate
  • the method for producing the modified ethylene butyl alcohol copolymer (D) is not particularly limited, the production is a reaction in which an ethylene butyl alcohol copolymer and an epoxy compound are reacted in a solution.
  • a method is preferably mentioned. More specifically, a modified ethylene-butyl alcohol copolymer (D) is added to an ethylene-vinyl alcohol copolymer solution in the presence of an acid catalyst or an alkali catalyst, preferably in the presence of an acid catalyst, and reacted. ) Can be manufactured.
  • the reaction solvent include non-proton polar solvents such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone.
  • the acid catalyst examples include P-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, sulfuric acid, and boron trifluoride.
  • the alkali catalyst examples include sodium hydroxide, potassium hydroxide, and hydroxide. Examples include lithium and sodium methoxide.
  • the catalyst amount is preferably in the range of 0.0001 to 10 parts by mass with respect to 100 parts by mass of the ethylene-butyl alcohol copolymer.
  • the modified ethylene-butyl alcohol copolymer (D) is formed into a film, a sheet or the like at a melting temperature of preferably 150 to 270 ° C. by melt molding, preferably extrusion molding such as T-die method or inflation method. And used as the resin film layer (A).
  • a monovalent epoxy compound is preferable.
  • the monovalent epoxy compounds glycidol and epoxypropane are particularly preferred from the viewpoints of ease of production of the modified ethylene butyl alcohol copolymer, gas barrier properties, flex resistance and fatigue resistance.
  • the epoxy compound is preferably 1 to 50 parts by mass, more preferably 2 to 40 parts by mass, and more preferably 5 to 35 parts by mass with respect to 100 parts by mass of the ethylene butyl alcohol copolymer. It is more preferable to react.
  • the modified ethylene butyl alcohol copolymer (D) is preferably crosslinked. If the modified ethylene-butyl alcohol copolymer (D) is not cross-linked, the resin film layer (A) will deform significantly and become non-uniform in the vulcanization process for producing pneumatic tires. Therefore, the gas barrier properties, flex resistance, and fatigue resistance of the inner liner may be deteriorated.
  • the method for producing the modified ethylene-butyalcohol copolymer (D) it is possible to crosslink the modified ethylene-butyalcohol copolymer (D) by using a divalent or higher valent epoxy compound.
  • the modified ethylene-butalcohol copolymer (D) preferably has a saponification degree of 90% or more, more preferably 95% or more, and even more preferably 99% or more. Is more preferable. If the saponification degree is less than 90%, the gas barrier property and the thermal stability during molding will be insufficient.
  • the modified ethylene monobutyl alcohol copolymer (D) has a melt flow rate (MFR) of 190 ° C and a load of 2160g from the viewpoint of obtaining gas-noreness, bending resistance and fatigue resistance. Preferably 30-30 g / 10 min, more preferably 0.3-25 g / 10 min, and even more preferably 0.5-20 g / 10 min.
  • the layer containing the modified ethylene butyl alcohol copolymer (D) has a functional group that reacts with a hydroxyl group in a matrix composed of the modified ethylene butyl alcohol copolymer (D) and has a Young's modulus. It is preferable to use a resin composition (F) in which a flexible resin (E) of 500 MPa or less is dispersed. Dispersing the flexible resin (E) in a matrix that also has the modified ethylene-butyl alcohol copolymer (D) force significantly reduces the elastic modulus and suppresses the occurrence of breakage and cracks during bending. be able to.
  • the flexible resin (E) since the flexible resin (E) has a functional group that reacts with a hydroxyl group, the flexible resin (E) is uniformly dispersed in the matrix.
  • the functional group that reacts with a hydroxyl group include a maleic anhydride residue, a hydroxyl group, a carboxyl group, and an amino group.
  • Specific examples of the flexible resin (E) having a functional group that reacts with a hydroxyl group include maleic anhydride-modified hydrogenated styrene ethylene-butadiene-styrene block copolymer, maleic anhydride-modified ultra-low density polyethylene, and the like. It is done. Further, when the Young's modulus of the flexible resin (E) is 500 MPa or less, the elastic modulus of the resin film layer (A) can be lowered, and as a result, the bending resistance can be improved.
  • the ratio of the flexible resin (E) to the total of the modified ethylene butyl alcohol copolymer (D) and the flexible resin (E) is 10 to 10% from the viewpoint of improving the bending resistance and the gas barrier property. A range of 30% by weight is preferred.
  • the flexible resin (E) has an average particle size of 2 The following is preferable. If the average particle size exceeds 2, the bending resistance may not be sufficiently improved, and the gas barrier property may be lowered.
  • the average particle diameter of the flexible resin (E) in the resin composition (F) is observed, for example, by freezing the sample, cutting the sample with a microtome, and observing with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the resin film layer (A) preferably has a Young's modulus at 23 ° C of more than 500 MPa.
  • the resin film layer (A), the oxygen permeability at 20 ° C, 65% RH is 3.0 X 10- 12 cm 'cm / cm' sec ' that mosquitoes preferably cmUg than, 1.0 X 10 cm'
  • the force is more preferably cm / cm * sec'cmHg or less, and more preferably 5.0 ⁇ 10 cm'cm / cm'sec-cmHg or less.
  • the thickness of the resin film layer (A) is preferably 100 m or less, more preferably the lower limit is 0.1 m; and the range is from! To 40 m. More preferred is the range of 5-30 am! If the thickness of the resin film layer (A) exceeds 100 ⁇ m, the effect of reducing the weight will be less than that of a conventional butyl rubber-based inner liner when used for an inner liner, and the bending resistance and Fatigue resistance is reduced, and it is easy for fractures / cracks to occur due to bending deformation during rolling of the tire, and because the cracks are likely to extend, the internal pressure retention of the tire may be reduced compared to before use. On the other hand, if it is less than O.l ⁇ m, the gas barrier property is insufficient, and the tire internal pressure retention may not be sufficiently secured.
  • the resin film layer (A) is preferably crosslinked! /, Preferably! /. If the resin film layer (A) is cross-linked! /, N! /, The inner liner is significantly deformed and becomes non-uniform during the vulcanization process of the tire, and the gas barrier properties, flex resistance, and fatigue resistance of the inner liner are reduced. Sexuality may worsen.
  • the crosslinking method the method of irradiating energy rays is preferred. Examples of the energy rays include ionizing radiation such as ultraviolet rays, electron beams, X-rays, ⁇ -rays, ⁇ -rays. Lines are particularly preferred.
  • the electron beam irradiation is preferably performed after the resin film layer ( ⁇ ) is processed into a molded body such as a film sheet.
  • the electron beam dose Is preferably in the range of 10-60 Mrad, more preferably in the range of 20-50 Mrad.
  • the electron beam dose is less than lOMrad, crosslinking is difficult to proceed, whereas when it exceeds 60 Mrad, the deterioration of the compact tends to proceed.
  • the inner liner for a pneumatic tire according to the present invention has a resin film layer (A) that preferably uses the above-mentioned modified ethylene-butyl alcohol copolymer (D) for the resin film layer (A).
  • a multilayered film including a layer containing the modified ethylene butyl alcohol copolymer (D) may be used.
  • a method of multilayering for example, a method of co-extrusion of the resin composition (F) containing the modified ethylene butyl alcohol copolymer (D) and another resin, etc. can be mentioned.
  • the resin film layer (A) is further adjacent to the layer containing the modified ethylene butyl alcohol copolymer (D).
  • One provided with one or more auxiliary layers (G) made of an elastomer is preferably mentioned.
  • the auxiliary layer (G) uses an elastomer, it has high adhesion to the hydroxyl group of the modified ethylene-vinyl alcohol copolymer (D) and is difficult to peel off.
  • the elastomer used for the auxiliary layer (G) is preferably a thermoplastic urethane elastomer from the viewpoint of water resistance and adhesion to rubber.
  • the thermoplastic urethane elastomer is used for the auxiliary layer (G)
  • the generation and extension of cracks can be suppressed while making the auxiliary layer (G) thinner.
  • the thermoplastic urethane-based elastomer is obtained by a reaction of a polyol, an isocyanate compound, and a short chain diol. Polyol and short chain diol form a linear polyurethane by addition reaction with an isocyanate compound.
  • the polyol becomes a flexible part in the thermoplastic urethane elastomer, and the isocyanate compound and the short chain diol become a hard part.
  • the properties of the thermoplastic elastomeric elastomer can be changed over a wide range by changing the type of raw material, blending amount, polymerization conditions, and the like.
  • Preferred examples include polyether urethane.
  • the total thickness of the auxiliary layer (G) is preferably in the range of 10 to 100 m. If the thickness of the auxiliary layer is less than lO ⁇ m, the effect of disposing the auxiliary layer (G) is small. If it exceeds lOO ⁇ m, the weight of the tire cannot be reduced sufficiently.
  • a rubber-like elastic layer (B) is further provided on the surface of the adhesive layer (C) opposite to the resin film layer (A). It is preferable that the laminated body is provided.
  • the rubber-like elastic layer (B) by disposing the rubber-like elastic layer (B), the workability when the inner liner of the present invention is attached to the inner surface of the tire is greatly improved.
  • the rubber-like elastic body layer (B) includes butyl rubber and / or halogenated butyl rubber as a rubber component. It is preferable to contain.
  • the halogenated butyl rubber include chlorinated butyl rubber, brominated butyl rubber, and modified rubbers thereof.
  • the halogenated butyl rubber may be a commercially available product, such as “Enjay Butyl HT10-66” (registered trademark) [Chlorinated butyl rubber manufactured by ENGAI Chemical Co., Ltd.], “Bromob utyl 2255” (registered) Trademarks) [manufactured by JSR, brominated butylene rubber], “Bromobutyl 2244” (registered trademark) [manufactured by JSR, brominated butyl rubber] and the like.
  • Examples of the chlorinated or brominated modified rubber include “Expro50” (registered trademark) [manufactured by Exxon].
  • the content of butyl rubber and / or halogenated butyl rubber in the rubber component in the rubber-like elastic layer (B) is preferably 50% by mass or more from the viewpoint of improving air permeation resistance. 70 to 100% is more preferable.
  • the rubber component in addition to butyl rubber and halogenated butyl rubber, it is possible to use gen-based rubber, epic chlorohydrin rubber, or the like. These rubber components may be used singly or in combination of two or more.
  • the rubber-like elastic layer (B) contains a compounding agent usually used in the rubber industry, such as a reinforcing filler, a softening agent, an anti-aging agent, a vulcanizing agent, A rubber vulcanization accelerator, a scorch inhibitor, zinc white, stearic acid and the like can be appropriately blended depending on the purpose.
  • a compounding agent usually used in the rubber industry such as a reinforcing filler, a softening agent, an anti-aging agent, a vulcanizing agent, A rubber vulcanization accelerator, a scorch inhibitor, zinc white, stearic acid and the like can be appropriately blended depending on the purpose.
  • these compounding agents commercially available products can be suitably used.
  • an adhesive composition (H) containing at least 0.1 part by mass of at least one kind of P-dinitrosobenzene it is preferable to use an adhesive composition (H) containing at least 0.1 part by mass of at least one kind of P-dinitrosobenzene.
  • the adhesive layer (C) With respect to the resin film layer (A) and the rubber-like elastic body layer (B) The adhesiveness is improved, and the peel resistance between the resin film layer (A) and the rubber-like elastic layer (B) can be improved.
  • Examples of the rubber component (I) used in the adhesive composition (H) include chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, and Gen rubber. Among these, chlorosulfonated polyethylene, and Butyl rubber and / or halogenated butyl rubber is preferred.
  • the above chlorosulfonated polyethylene is a synthetic rubber having a saturated main chain structure obtained by chlorination and chlorosulfonization of polyethylene using chlorine and sulfurous acid gas, and is weather resistant, ozone resistant, heat resistant. Excellent gas barrier properties.
  • the chlorosulfonated polyethylene a commercially available product can be used, and examples thereof include trade name “HIVALON” [manufactured by DuPont].
  • the content of the chlorosulfonated polyethylene in the rubber component (I) is preferably 10% by mass or more from the viewpoint of improving the peeling resistance.
  • butyl rubber and halogenated butyl rubber are as described in the rubber-like elastic layer (B), and the content of butyl rubber and / or halogenated butyl rubber in the rubber component (I) is 50% by mass. % Or more is preferable.
  • the rubber component (I) may be used alone or in combination of two or more.
  • the adhesive composition (H) is a maleimide derivative having two or more reactive sites in the molecule and / or as a crosslinking agent and a crosslinking aid in order to improve the peel resistance after heat treatment.
  • Includes poly-P-dinitrosobenzene and examples of the maleimide derivative include 1,4-phenylene dimaleimide, among which 1,4-phenylene dimaleimide is preferable.
  • One of these crosslinking agents and crosslinking assistants may be used alone, or two or more thereof may be used in combination.
  • the blending amount of the maleimide derivative and / or poly-P-dinitrosobenzene in the adhesive composition (H) is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the rubber component (1). Yes. If the blending amount of the maleimide derivative and / or poly-p-dinitrosobenzene is less than 0.1 parts by mass, the peeling resistance after vulcanization cannot be sufficiently improved! /.
  • the adhesive composition (H) preferably further contains a rubber vulcanization accelerator, a filler, a tackifier such as a resin and a low molecular weight polymer, and the like.
  • a softening agent, an anti-aging agent, a vulcanizing agent, an anti-scorch agent, zinc white, stearic acid and the like may be appropriately blended according to the purpose! /.
  • an inner liner for a pneumatic tire of the present invention for example, at least one surface of a coating liquid in which the adhesive composition (H) is dispersed or dissolved in an organic solvent is surface-modified.
  • the adhesive layer (C) is formed by coating and drying on the surface of the resin film layer (A), preferably the resin film layer (A) having at least one surface subjected to surface oxidation treatment, and then the adhesive layer Examples thereof include a method in which the rubber-like elastic layer (B) is bonded to the surface of (C) and vulcanized.
  • the coating liquid is applied to the surface of the rubber-like elastic layer (B) and dried to form an adhesive layer (C).
  • the surface of the agent layer (C) is laminated with the surface of the resin film layer (A) whose surface has been modified on at least one side, and preferably the surface of the resin film layer (A) which has been subjected to surface oxidation treatment on at least one side. Processing may be performed.
  • the vulcanization temperature is preferably 120 to 120 ° C or more, more preferably 125 to 200 ° C, more preferably 130 to 180 ° C.
  • the method of mixing the adhesive composition (H) and the organic solvent is carried out by a conventional method !, and the concentration of the adhesive composition (H) in the coating solution prepared by such a method is 5 The range of ⁇ 50 mass% is preferred, and the range of 10-30 mass% is more preferred.
  • examples of the organic solvent include toluene, xylene, n-hexane, cyclohexane, black mouth form, methyl ethyl ketone, and the like. These organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the Hildebrand solubility parameter ( ⁇ value) is preferably in the range of 14 to 20 MPa 1/2 .
  • the affinity between the organic solvent and the rubber component (I). Becomes higher.
  • FIG. 1 is a partial cross-sectional view of an example of the pneumatic tire of the present invention.
  • the tire shown in FIG. 1 has a pair of bead portions 1 and a pair of sidewall portions 2, and a tread portion 3 connected to both sidewall portions 2, and extends in a toroidal shape between the pair of bead portions 1.
  • the carcass 4 is composed of one or more carcass plies that reinforce these parts 1, 2, and 3, and an inner liner 5 is disposed on the inner surface of the tire inside the carcass 4.
  • the carcass 4 includes a main body portion extending in a toroidal shape between a pair of bead cores 6 embedded in the bead portion 1 and the inner side in the tire width direction around each bead core 6.
  • the force composed of the folded portion wound outward in the radial direction toward the outside In the pneumatic tire of the present invention, the number of plies and the structure of the carcass 4 are not limited thereto.
  • a belt 7 composed of two belt layers is disposed on the outer side in the tire radial direction of the crown portion of the carcass 4, and the belt 7 in the illustrated example includes two sheets.
  • the number of belt layers constituting the belt 7 is not limited to this.
  • the belt layer is usually composed of a rubberized layer of a cord extending obliquely with respect to the tire equatorial plane, and the two belt layers have the cords constituting the belt layer intersecting each other across the equator plane. The belt 7 is thus laminated.
  • the illustrated tire has a force S including a belt reinforcing layer 8 disposed so as to cover the entire belt 7 outside the belt 7 in the tire radial direction, and the pneumatic tire of the present invention has a belt reinforcing layer 8.
  • the belt reinforcing layer having another structure may be provided.
  • the belt reinforcing layer 8 is usually composed of a rubberized layer of cords arranged substantially parallel to the tire circumferential direction.
  • FIG. 2 is a partial cross-sectional view of an example of an inner liner for a pneumatic tire according to the present invention.
  • the inner liner shown in Fig. 2 The rum layer (A) 9 and the rubber-like elastic layer (B) 10 are joined via the adhesive layer (C) 11.
  • the rubber-like elastic layer (B) 10 is joined to the tire inner surface inside the carcass 4 in the pneumatic tire.
  • the illustrated inner liner 1 has a force S including the rubber-like elastic layer (B) 10, and the second inner liner 1 for a pneumatic tire according to the present invention does not have the rubber-like elastic layer. May be.
  • the adhesive layer (C) 11 is directly bonded to the inner surface of the tire inside the carcass 4.
  • the resin film layer (A) 9 has only one layer containing, for example, a modified ethylene butyl alcohol copolymer (D).
  • a modified ethylene butyl alcohol copolymer (D) One may have other layers as shown in FIG.
  • FIG. 3 is a partial cross-sectional view of another example of the inner liner 1 of the present invention.
  • the inner liner of the illustrated example includes, as a resin film layer (A) 12, a layer 13 containing the modified ethylene-butyl alcohol copolymer (D) and two layers of heat disposed adjacent to the layer 13. And a layer 14 made of a plastic urethane elastomer.
  • the same reference numerals as those in Fig. 2 indicate the same members.
  • the pneumatic tire of the present invention can be manufactured by a conventional method using the inner liner 1 described above.
  • the gas filled in the tire it is possible to use normal air or air having a changed oxygen partial pressure, or an inert gas such as nitrogen.
  • ethylene-butyl alcohol copolymer with an ethylene content of 44 mol% and a saponification degree of 99.9% 190 ° C, MFR under 216 Og load: 5.5 g / 10 min
  • 2 parts by mass and N- 8 parts by mass of methyl-2-pyrrolidone was charged, and heated and stirred at 120 ° C for 2 hours to completely dissolve the ethylene-vinyl alcohol copolymer.
  • modified ethylene-butyl alcohol copolymer (D) After heating, precipitate in 100 parts by weight of distilled water, and use a large amount of distilled water to sufficiently dissolve N-methyl-2-pyrrolidone and unreacted ether. Poxypropane was washed to obtain a modified ethylene-butyl alcohol copolymer (D). Furthermore, after the obtained modified ethylene butyl alcohol copolymer (D) was vigorously reduced to a particle size of about 2 mm with a pulverizer, it was thoroughly washed again with a large amount of distilled water. The washed particles were vacuum-dried at room temperature for 8 hours and then melted at 200 ° C. using a twin-screw extruder to be pelletized. The resulting modified ethylene butyl alcohol copolymer (D) had a Young's modulus of 1300 MPa at 23 ° C.
  • the Young's modulus at 23 ° C of the modified ethylene-butyl alcohol copolymer (D) was measured by the following method.
  • a single-layer film having a thickness of 20 m was produced using a twin-screw extruder manufactured by Toyo Seiki Co., Ltd. under the following extrusion conditions.
  • a strip-shaped test piece having a width of 15 mm was prepared and left in a temperature-controlled room at 23 ° C. and 50% RH for one week, and then autograph [AG- A500] was used to measure the S-S curve (stress-strain curve) at 23 ° C and 50% RH under conditions of chuck spacing of 50 mm and tensile speed of 50 mm / min. Young's modulus was determined.
  • Screw 20mm ⁇ , full flight
  • Cylinder, die temperature setting: C1 / C2 / C3 / die 200/200/200/200 (.C)
  • the ethylene content and the saponification degree of the above ethylene butyl alcohol copolymer were determined by 1 H-NMR measurement using deuterated dimethyl sulfoxide as a solvent [JN M-GX-500 type manufactured by JEOL Ltd.] Is a value calculated from the spectrum obtained in [Use].
  • melt flow rate (MFR) of the above ethylene monobutyl alcohol copolymer was measured at 190 ° C by filling a sample into a cylinder with an inner diameter of 9.55 mm and a length of 162 mm of a melt indexer L244 [manufactured by Takara Kogyo Co., Ltd.] After melting, an even load is applied using a plunger with a weight of 2160g and a diameter of 9.48mm, and the amount of resin extruded per unit time from a 2.1mm diameter orifice provided in the center of the cylinder (g / 10 Min).
  • melt flow rate MF R
  • Maleic anhydride-modified hydrogenated styrene ethylene butadiene styrene block copolymer was synthesized by a known method and pelletized.
  • the resulting maleic anhydride-modified hydrogenated styrene ethylene butadiene styrene block copolymer had a Young's modulus power of 3 MPa, a styrene content of 20%, and a maleic anhydride content of 0.3 meq / g.
  • the Young's modulus of the maleic anhydride-modified hydrogenated styrene ethylene butadiene styrene block copolymer was measured by the above method.
  • Screw single-flight full flight type, surface nitrided steel
  • Cylinder, die temperature setting: C1 / C2 / C3 / Adapter / Die 180/200/210 / 210/210 (° C)
  • the resin composition (F) was prepared by kneading the modified ethylene butyl alcohol copolymer (D) obtained in the synthesis example and the flexible resin (E) with a twin-screw extruder, in the same manner as the production of the film A1.
  • a monolayer film having a thickness of 20 m was obtained.
  • the content of the flexible resin (E) in the resin composition (F) is 20% by mass.
  • the average particle diameter of the flexible resin (E) in the resin composition (F) is determined by freezing a sample of the obtained resin composition (F) and then cutting the sample with a microtome. It was 1.0 when measured with a transmission electron microscope.
  • thermoplastic polyurethane Using the modified ethylene butyl alcohol copolymer (D) pellets obtained in the synthesis example and thermoplastic polyurethane [Kuraray 3190, Kuraray Co., Ltd.], the following co-extrusion equipment was used. A three-layer film (thermoplastic polyurethane layer / modified EVOH (D) layer / thermoplastic polyurethane layer, thickness: 20 ⁇ m / 20 ⁇ m / 20 ⁇ m) was prepared under extrusion molding conditions.
  • Thermoplastic polyurethane 25mm ⁇ Extruder —25—18 AC [Osaka Seiki Co., Ltd.
  • T-die specification 500mm width, 2 types, 3 layers [Plastic Engineering Laboratory Co., Ltd.] Cooling roll temperature: 50 ° C
  • thermoplastic polyurethane layer was produced in the same manner as the production of the film A2.
  • the film was conditioned at 20 ° C. and 65% RH for 5 days. Using the two humidity-adjusted films obtained, using MOCON OX—TRAN2 / 20, manufactured by Modern Control, in compliance with JIS K7126 (isobaric method) at 20 ° C and 65% RH Then, the oxygen transmission coefficient was measured and the average value was obtained. [0086]
  • Butyl rubber SR Co., Ltd., Butyl 268 100 parts by mass, GPF carbon black [Asahi Carbon Co., Ltd., # 55] 60 parts by mass, SUNPAR2280 [Nihon Sun Sekiyu Co., Ltd.] 7 parts by mass, Stearic acid [Asahi Denka Kogyo Co., Ltd.] 1 part by mass, Noxeller DM [Ouchi Shinsei Chemical Co., Ltd.] 1.3 parts by mass, Zinc oxide [Shiramizu Chemical Co., Ltd.] 3 parts by mass and sulfur [ Tsurumi Chemical Co., Ltd.] A rubber composition was prepared by blending 0.5 part by mass, and an unvulcanized rubber-like elastic layer (B) having a thickness of 500 am was produced using the rubber composition. .
  • Brominated butyl rubber [JSR Co., Ltd., Bromobutyl 2244] 100 parts by mass of carbon black [Tokai Carbon Co., Ltd., Seast NB] 10 parts by mass, phenolic resin [Sumitomo Beichikrite Co., Ltd., PR-SC-400] 20 parts by mass, stearic acid manufactured by Nippon Rika Co., Ltd., 50S] 1 part by mass, zinc oxide [by Hakutech Co., Ltd.] 3 parts by mass, poly-P-dinitrosobenzene [Ouchi Shinsei Chemical Industry Co., Ltd., Barnock DNB] 3 parts by mass, 1,4-phenylene dimaleimide [Ouchi Shinsei Chemical Co., Ltd., Barnock PM] 3 parts by mass, vulcanization accelerator ZTC [Ouchi Eshin Chemical Industry Co., Ltd., Noxeller ZTC, Zinc dibenzyldithiocarbamate] 1 part by mass, Vulcanization accelerator DM
  • film A1 was irradiated with an electron beam under the conditions of a quick calorie voltage of 200 kV and an irradiation energy of 30 Mrad to perform crosslinking treatment. After that, on the surface of the obtained cross-linked film, a corona discharge treatment device “Corona Master PS-1M” manufactured by Shinko Electric Instruments Co., Ltd. was used under the conditions of electrode spacing lm m, discharge voltage 7 kV, frequency 15 kHz. Corona discharge treatment (surface oxidation treatment) was performed.
  • a pneumatic tire was produced in the same manner as in the above Example; 1-1 except that the resin film layer (A) and rubber-like elastic layer (B) shown in Table 2 were used.
  • the resin film layer (A) and rubber-like elastic layer (B) shown in Table 2 were used, and instead of the corona discharge treatment as a surface oxidation treatment, a plasma irradiation surface modification device manufactured by Kasuga Electric Co., Ltd.
  • a pneumatic tire was produced in the same manner as in the above Example; 1-1 except that the plasma discharge treatment was performed under the condition of an output of 10 kV using “PS-601C type”.
  • a pneumatic tire was produced in the same manner as in the above Example; 1-1 except that the surface oxidation treatment was not performed.
  • a pneumatic tire was produced in the same manner as in Comparative Example 1-1, except that the resin film layer (A) and rubber-like elastic layer (B) shown in Table 2 were used. [0095] Next, a durability test of the obtained tire was performed by the following method to evaluate the presence or absence of a failure. The results are shown in Table 2.
  • Each prototype tire is assembled with a rim, the internal pressure is 175 kPa, the load is 4.5 kN, the speed is 80 km / h, the temperature is 20 ° C, and the drum running test is performed. After running 10,000 km, the inner liner appearance of the tire is visually observed. Observed. By visual observation, the case where no failure was detected was determined to be good, and the case where cracks or cracks occurred, or peeling or lifting was determined to be defective.
  • film A2 was irradiated with an electron beam under the conditions of a quick calorie voltage of 200 kV and an irradiation energy of 30 Mrad, and then subjected to crosslinking treatment. After that, on the surface of the obtained crosslinked film, Shinko Electric Meter Using a corona discharge treatment device “Corona Master PS-1M” (electrode spacing lmm, frequency 15kHz) manufactured by Sou Co., Ltd., surface oxidation treatment was performed on at least one side of the crosslinked film under the conditions shown in Tables 3-4. did.
  • is the surface free energy (mN / m)
  • y d is the surface free energy dispersive component (mN / m)
  • ⁇ ⁇ is the surface free energy dipole attractive component (mN / m)
  • ⁇ 11 is the hydrogen bond component of surface free energy (mN / m)
  • ⁇ H is the contact angle of water (°)
  • ⁇ 1 is the contact angle of jode methane (°)
  • e D is the contact angle (°) of n-hexadecane.
  • Each prototype tire was assembled on a rim, the internal pressure was 175 kPa, the load was 4.5 kN, the speed was 80 km / h, the temperature was 20 ° C, and the drum running test was performed. After running 10,000 km, the inner surface of the tire was visually inspected. . When no failure was found by visual observation, “ ⁇ ” was assigned, and when cracks or cracks were observed, or when peeling or lifting was observed, “X” was assigned.
  • the tire inner liners of Examples 2-3 to 2-7 have a surface free energy of 50 mN / m or more on the A-1 surface of the resin film layer (A). It can be seen that it has the durability to withstand the expansion of. Also, Example 2-;! To 2-2 and 2-8 The inner liner of this tire has a force that the surface free energy on the A-1 surface of the resin film layer (A) is less than 50 mN / m, and the surface free energy on the A-2 surface is 50 mN / m or more.
  • the adhesive strength of the agent layer (C) has been improved, and it has the durability that can be produced without any problem as a tire!

Abstract

Disclosed is an inner liner for pneumatic tires which is obtained by joining a resin film layer (A)(9) with a rubber-like elastic layer (B)(10) through an adhesive layer (C)(11). At least the adhesive layer (C)(11) side surface of the resin film layer (A)(9) is surface-modified, and separation resistance between the resin film layer and the rubber-like elastic layer is improved. The inner liner for pneumatic tires has high breaking resistance at bending, and hardly suffers from cracks. It is preferable that at least the adhesive layer (C)(11) side surface of the resin film layer (A)(9) is subjected to surface oxidation.

Description

明 細 書  Specification
空気入りタイヤ用インナーライナ一及びその製造方法、並びに空気入りタ ィャ  Inner liner for pneumatic tire, method for producing the same, and pneumatic tire
技術分野  Technical field
[0001] 本発明は、空気入りタイヤ用インナーライナ一及びその製造方法、並びに該インナ 一ライナーを備えた空気入りタイヤに関し、特に屈曲時の耐破断性を高め、クラック の発生を抑制することが可能な空気入りタイヤ用インナーライナ一に関するものであ 背景技術  TECHNICAL FIELD [0001] The present invention relates to an inner liner for a pneumatic tire, a method for producing the same, and a pneumatic tire including the inner liner. In particular, the present invention improves rupture resistance during bending and suppresses the occurrence of cracks. It relates to a possible inner liner for a pneumatic tire.
[0002] 従来、タイヤの内圧を保持するためにタイヤ内面に空気バリア層として配設されるィ ンナーライナ一には、ブチルゴムやハロゲン化ブチルゴム等を主原料とするゴム組成 物が使用されている。し力、しながら、これらブチル系ゴムを主原料とするゴム組成物は 、空気ノ リア性が低いため、力、かるゴム組成物をインナーライナ一に使用した場合、 インナーライナ一の厚さを lmm前後とする必要があった。そのため、タイヤに占める インナーライナ一の重量が約 5%となり、タイヤの重量を低減して自動車の燃費を向 上させる上で障害となって!/、る。  Conventionally, a rubber composition mainly composed of butyl rubber, halogenated butyl rubber or the like has been used for an inner liner disposed as an air barrier layer on the inner surface of the tire in order to maintain the internal pressure of the tire. However, since the rubber composition mainly composed of these butyl rubbers has a low air-nore property, when the rubber composition is used for the inner liner, the thickness of the inner liner is reduced. It was necessary to be around lmm. Therefore, the weight of the inner liner in the tire is about 5%, which is an obstacle to reducing the tire weight and improving the fuel efficiency of the car!
[0003] 一方、エチレン ビュルアルコール共重合体(以下、 EVOHと略記することがある) は、ガスバリア性に優れることが知られている。該 EVOHは、空気透過量が上記ブチ ル系のインナーライナ一用ゴム組成物の 100分の 1以下であるため、 100 μ m以下 の厚さでも、タイヤの内圧保持性を大幅に向上させることができる上、タイヤの重量を 低減することが可能である。  [0003] On the other hand, an ethylene butyl alcohol copolymer (hereinafter sometimes abbreviated as EVOH) is known to have excellent gas barrier properties. The EVOH has an air permeation amount that is 1/100 or less of the above-mentioned rubber composition for inner liners, so that it can greatly improve the tire internal pressure retention even at a thickness of 100 μm or less. In addition, the weight of the tire can be reduced.
[0004] 上記ブチル系ゴムより空気透過性の低い樹脂は数多く存在する力 空気透過性が ブチル系のインナーライナ一の 10分の 1程度の場合、 100 mを超える厚さでないと 、内圧保持性の改良効果が小さぐまた、 100 mを超える厚さの場合、タイヤの重 量を低減する効果が小さぐまた、タイヤ屈曲時の変形力 インナーライナ一が破断 したり、インナーライナ一にクラックが発生してしまい、バリア性を保持することが困難 となる。 [0005] これに対し、上記 EVOHを使用した場合、 100 μ m以下の厚さでも使用可能である ため、タイヤ転動時の屈曲変形で破断し難ぐまた、クラックも生じ難くなる。そのため 、空気入りタイヤの内圧保持性を改良するために、 EVOHをタイヤのインナーライナ 一に用いることは有効であるといえる。例えば、特開 2004— 176048号公報には、 特定の EVOHからなるインナーライナ一を備えた空気入りタイヤが開示されている。 [0004] There are many resins with lower air permeability than the above butyl rubber. If the air permeability is about one-tenth of that of a butyl inner liner, the internal pressure retention is not required unless the thickness exceeds 100 m. When the thickness exceeds 100 m, the effect of reducing the weight of the tire is small, and the deformation force when the tire is bent. The inner liner breaks or the inner liner cracks. It will occur and it will be difficult to maintain barrier properties. [0005] On the other hand, when the above EVOH is used, it can be used even with a thickness of 100 μm or less, so that it is difficult to break due to bending deformation at the time of tire rolling, and cracks are also difficult to occur. Therefore, it can be said that it is effective to use EVOH as the tire inner liner in order to improve the internal pressure retention of the pneumatic tire. For example, Japanese Unexamined Patent Application Publication No. 2004-176048 discloses a pneumatic tire provided with an inner liner made of specific EVOH.
[0006] また、特開 2004— 176048号公報に開示のインナーライナ一は、タイヤの内圧保 持性を向上させるために、エラストマ一からなる補助層に接着剤層を介して貼りあわ せて使用することが好ましレ、とされてレ、る。  [0006] Further, the inner liner disclosed in Japanese Patent Application Laid-Open No. 2004-176048 is used by being attached to an auxiliary layer made of an elastomer through an adhesive layer in order to improve the internal pressure retention of the tire. It is preferred to do, and it is said that.
発明の開示  Disclosure of the invention
[0007] しかしながら、本発明者らが、樹脂フィルム層とゴム状弾性体層を用いた空気入りタ ィャ用インナーライナ一について検討したところ、一般に樹脂フィルム層とゴム状弾 性体層とは、密着性が低ぐ樹脂フィルム層がゴム状弾性体層から剥離し易いことが 分かった。ここで、特開 2004— 176048号公報に開示の技術をもってしても、依然と して、樹脂フィルム層とゴム状弾性体層との密着性は低ぐ剥離抗力には改善の余地 力 sある。 [0007] However, the present inventors have examined an inner liner for a pneumatic tire using a resin film layer and a rubber-like elastic body layer. In general, the resin film layer and the rubber-like elastic body layer are different from each other. It was found that the resin film layer having low adhesion is easily peeled off from the rubber-like elastic layer. Here, even with the technique disclosed in JP-A-2004- 176048, and a still adhesion between the resin film layer and rubbery elastomer layer is susceptible force s for improvement in low immediately peeling strength .
[0008] また、特開 2004— 176048号公報に開示のインナーライナ一は、空気入りタイヤ の空気透過性を改良することができる力 力、かるインナーライナ一の粘着性は低ぐィ ンナーライナ一の剥離抗力には改善の余地がある。  [0008] Further, the inner liner disclosed in Japanese Patent Application Laid-Open No. 2004-176048 is a power that can improve the air permeability of a pneumatic tire, and the inner liner has a low adhesiveness. There is room for improvement in peel resistance.
[0009] 更に、主に耐水性とゴムに対する接着性を向上させる観点から、 EVOHからなるィ ンナーライナ一の外層部分に、熱可塑性ウレタン系エラストマ一を配置する場合があ るが、本発明者らが検討したところ、さらに特定の接着剤組成物を使用することで、良 好な貼付け作業性と加熱接着後の剥離抗カを供することが可能となることが分かつ た。  [0009] Further, from the viewpoint of mainly improving water resistance and adhesion to rubber, a thermoplastic urethane elastomer may be disposed on the outer layer portion of the inner liner made of EVOH. As a result, it has been found that by using a specific adhesive composition, it is possible to provide good adhesion workability and peeling resistance after heat bonding.
[0010] そこで、本発明の目的は、樹脂フィルム層とゴム状弾性体層との剥離抗力が改良さ れ、屈曲時の耐破断性が高ぐクラックが発生し難い空気入りタイヤ用インナーライナ 一と、該インナーライナ一の製造方法を提供することにある。また、本発明の他の目 的は、接着剤層の粘着力を改良することで、タイヤ成型時の拡張に耐え得る耐久性 を有し、加硫処理後の剥離抗カを改良することで、屈曲時の耐破断性を高め、クラッ クの発生を抑制することが可能な空気入りタイヤ用インナーライナ一と、該インナーラ イナ一の製造方法を提供することにある。更に、本発明の他の目的は、かかるインナ 一ライナーを備えた空気入りタイヤを提供することにある。 [0010] Therefore, an object of the present invention is to improve the peel resistance between the resin film layer and the rubber-like elastic body layer, increase the fracture resistance at the time of bending, and prevent the occurrence of cracks. And providing a method for manufacturing the inner liner. Another object of the present invention is to improve the adhesive strength of the adhesive layer so that it has durability that can withstand expansion during molding of the tire and to improve the peel resistance after vulcanization. , Increase rupture resistance during bending, It is an object of the present invention to provide an inner liner for a pneumatic tire capable of suppressing the generation of squeeze and a method for manufacturing the inner liner. Furthermore, another object of the present invention is to provide a pneumatic tire provided with such an inner liner.
[0011] 本発明者らは、上記目的を達成するために鋭意検討した結果、樹脂フィルム層とゴ ム状弾性体層とが、接着剤層を介して接合されてなる空気入りタイヤ用インナーラィ ナ一において、該樹脂フィルム層の少なくとも接着剤層側の面を表面改質することで 、優れた剥離抗カを有し、屈曲時の耐破断性に優れ、クラックの発生を抑えた空気 入りタイヤ用インナーライナ一が得られることを見出した。 [0011] As a result of intensive studies to achieve the above object, the present inventors have found that an inner liner for a pneumatic tire in which a resin film layer and a rubber-like elastic body layer are joined via an adhesive layer. In one aspect, the surface of the resin film layer at least on the side of the adhesive layer is modified to provide a pneumatic tire having excellent peeling resistance, excellent rupture resistance when bent, and suppressing occurrence of cracks. And found that an inner liner can be obtained.
[0012] また、本発明者らは、更に検討を進めた結果、樹脂フィルム層と接着剤層を有する 積層体からなる空気入りタイヤ用インナーライナ一において、該樹脂フィルム層の少 なくとも片面の表面自由エネルギーを一定値以上にすることで、タイヤ成型時の拡張 に耐え得る耐久性を有し、屈曲時の耐破断性に優れ、クラックの発生を抑えたタイヤ 用インナーライナ一が得られることを見出し、本発明を完成させるに至った。  [0012] Further, as a result of further investigations, the present inventors have determined that at least one surface of the resin film layer in the inner liner for a pneumatic tire comprising a laminate having a resin film layer and an adhesive layer. By making the surface free energy above a certain value, it is possible to obtain an inner liner for tires that is durable enough to withstand expansion when molding tires, has excellent rupture resistance when bent, and suppresses the occurrence of cracks. As a result, the present invention has been completed.
[0013] 即ち、本発明の第 1の空気入りタイヤ用インナーライナ一は、樹脂フィルム層(A)と ゴム状弾性体層(B)とが、接着剤層(C)を介して接合されてなり、 That is, in the first inner liner for a pneumatic tire of the present invention, the resin film layer (A) and the rubber-like elastic body layer (B) are bonded via the adhesive layer (C). Become
前記樹脂フィルム層(A)の少なくとも接着剤層(C)側の面が表面改質されているこ とを特徴とする。  The resin film layer (A) is characterized in that at least the surface on the adhesive layer (C) side is surface-modified.
[0014] 本発明の第 1の空気入りタイヤ用インナーライナ一は、前記樹脂フィルム層(A)の 少なくとも接着剤層(C)側の面に表面酸化処理が施されていることが好ましい。また 、前記表面酸化処理としては、コロナ放電処理が更に好ましい。  [0014] In the first inner liner for a pneumatic tire of the present invention, it is preferable that at least a surface of the resin film layer (A) on the side of the adhesive layer (C) is subjected to surface oxidation treatment. Further, as the surface oxidation treatment, a corona discharge treatment is more preferable.
[0015] また、本発明の第 2の空気入りタイヤ用インナーライナ一は、樹脂フィルム層(A)と 、該樹脂フィルム層 (A)上に配設された接着剤層(C)とを備える積層体力 なり、 前記樹脂フィルム層(A)の少なくとも片面の表面自由エネルギーが、 50mN/m以 上であることを特徴とする。  [0015] The second inner liner for a pneumatic tire of the present invention includes a resin film layer (A) and an adhesive layer (C) disposed on the resin film layer (A). The surface free energy of at least one surface of the resin film layer (A) is 50 mN / m or more.
[0016] 本発明の空気入りタイヤ用インナーライナ一の好適例においては、前記樹脂フィル ム層(A)力 エチレン ビュルアルコール共重合体を反応させて得られる変性ェチ レン ビュルアルコール共重合体 (D)を含む層を少なくとも含む。ここで、樹脂フィル ム層(A)は、上記変性ビュルアルコール共重合体 (D)を含む層を少なくとも含むこと が好ましぐ更に他の層を有してもよいし、上記変性ビュルアルコール共重合体(D) を含む層のみから構成されてもょレ、。 [0016] In a preferred example of the inner liner for a pneumatic tire of the present invention, a modified ethylene butyl alcohol copolymer obtained by reacting the resin film layer (A) with an ethylene butyl alcohol copolymer ( At least a layer comprising D). Here, the resin film layer (A) includes at least a layer containing the modified butyl alcohol copolymer (D). It may have another layer which is preferable, or it may be composed only of a layer containing the above-mentioned modified butyl alcohol copolymer (D).
[0017] 本発明の空気入りタイヤ用インナーライナ一において、前記樹脂フィルム層(A)が 、前記変性エチレン ビュルアルコール共重合体 (D)を含む層を少なくとも含む場 合、前記エチレン ビュルアルコール共重合体のエチレン含有量は、 25〜50モノレ %であることが好ましい。また、前記エチレン ビュルアルコール共重合体のケン化 度は、 90%以上であることが好ましい。更に、前記変性エチレン—ビュルアルコール 共重合体(D)は、エチレン—ビュルアルコール共重合体 100質量部に対し、ェポキ シ化合物 1〜50質量部を反応させたものであることが好ましい。また更に、前記変性 エチレン ビュルアルコール共重合体(D)を含む層は、前記変性エチレン ビュル アルコール共重合体 (D)からなるマトリックス中に、水酸基と反応する官能基を有し、 ヤング率が 500MPa以下である柔軟樹脂(E)が分散した樹脂組成物(F)からなるこ とが好ましい。なお、ここでいうマトリックスとは連続相を意味する。  [0017] In the inner liner for a pneumatic tire of the present invention, when the resin film layer (A) includes at least a layer containing the modified ethylene butyl alcohol copolymer (D), the ethylene butyl alcohol copolymer The ethylene content of the coalescence is preferably 25-50 mono%. Further, the saponification degree of the ethylene butyl alcohol copolymer is preferably 90% or more. Furthermore, it is preferable that the modified ethylene-butyl alcohol copolymer (D) is obtained by reacting 1 to 50 parts by mass of an epoxy compound with respect to 100 parts by mass of the ethylene-butyl alcohol copolymer. Furthermore, the layer containing the modified ethylene butyl alcohol copolymer (D) has a functional group that reacts with a hydroxyl group in the matrix made of the modified ethylene butyl alcohol copolymer (D), and has a Young's modulus of 500 MPa. The resin composition (F) in which the following flexible resin (E) is dispersed is preferable. In addition, the matrix here means a continuous phase.
[0018] 本発明の空気入りタイヤ用インナーライナ一の他の好適例において、前記樹脂フィ ルム層(A)は、 20°C、 65%RHにおける酸素透過係数が 3.0 X 10— 12cm3'cm/cm2 •seccmHg¾T 、、ある。 [0018] In another preferable embodiment of the pneumatic tire for an inner liner aspect of the present invention, the resin film Lum layer (A), 20 ° C, the oxygen permeability at 65% RH is 3.0 X 10- 12 cm 3 ' cm / cm 2 • seccmHg¾T
[0019] 本発明の空気入りタイヤ用インナーライナ一の他の好適例において、前記樹脂フィ ルム層(A)の厚さは 100 H m以下である。  In another preferred embodiment of the inner liner for a pneumatic tire of the present invention, the resin film layer (A) has a thickness of 100 Hm or less.
[0020] 本発明の空気入りタイヤ用インナーライナ一の他の好適例において、前記樹脂フィ ルム層(A)は架橋されて!/、る。  [0020] In another preferred embodiment of the inner liner for a pneumatic tire of the present invention, the resin film layer (A) is crosslinked! /.
[0021] 本発明の空気入りタイヤ用インナーライナ一において、前記樹脂フィルム層(A)が 、前記変性エチレン ビュルアルコール共重合体 (D)を含む層を少なくとも含む場 合、前記変性エチレン ビュルアルコール共重合体 (D)が架橋されていることが好 ましい。  [0021] In the inner liner for a pneumatic tire according to the present invention, when the resin film layer (A) includes at least a layer containing the modified ethylene butyl alcohol copolymer (D), the modified ethylene butyl alcohol copolymer is used. The polymer (D) is preferably crosslinked.
[0022] 本発明の空気入りタイヤ用インナーライナ一は、前記樹脂フィルム層(A)が前記変 性エチレン ビュルアルコール共重合体 (D)を含む層を少なくとも含む場合、該変 性エチレン—ビュルアルコール共重合体(D)を含む層に隣接して、更にエラストマ一 力もなる補助層(G)を一層以上備えることが好ましい。ここで、前記補助層(G)は熱 可塑性ウレタン系エラストマ一を含むことが更に好ましい。また、前記補助層(G)の厚 さの合計は、 10〜; 100〃 mの範囲であることが更に好ましい。 [0022] The inner liner 1 for a pneumatic tire according to the present invention includes the modified ethylene-bule alcohol when the resin film layer (A) includes at least the layer containing the modified ethylene butyalcohol copolymer (D). It is preferable to provide one or more auxiliary layers (G) that also have an elastomeric force adjacent to the layer containing the copolymer (D). Here, the auxiliary layer (G) More preferably, it includes a plastic urethane elastomer. The total thickness of the auxiliary layer (G) is more preferably in the range of 10 to 100 μm.
[0023] 本発明の第 2の空気入りタイヤ用インナーライナ一の他の好適例においては、接着 剤組成物 (H)と有機溶媒とを含む塗工液を、少なくとも片面が表面改質された前記 樹脂フィルム層(A)の表面に塗布及び乾燥して前記接着剤層(C)を形成し、更に該 接着剤層(C)の表面にゴム状弾性体層(B)を貼り合わせ、加硫処理を行うことにより 得られる。 [0023] In another preferable example of the second inner liner for a pneumatic tire of the present invention, at least one surface of the coating liquid containing the adhesive composition (H) and the organic solvent is surface-modified. The surface of the resin film layer (A) is applied and dried to form the adhesive layer (C), and the rubber-like elastic layer (B) is further bonded to the surface of the adhesive layer (C). It is obtained by performing a sulfur treatment.
[0024] 本発明の第 2の空気入りタイヤ用インナーライナ一の他の好適例においては、接着 剤組成物 (H)と有機溶媒とを含む塗工液を、ゴム状弾性体層(B)の表面に塗布及 び乾燥して前記接着剤層(C)を形成し、該接着剤層(C)の表面に少なくとも片面が 表面改質された前記樹脂フィルム層(A)を貼り合わせ、加硫処理を行うことにより得 られる。  [0024] In another preferred embodiment of the second inner liner for a pneumatic tire of the present invention, the coating liquid containing the adhesive composition (H) and the organic solvent is used as the rubber-like elastic layer (B). The adhesive layer (C) is formed by coating and drying on the surface of the adhesive layer, and the resin film layer (A) having at least one surface modified is bonded to the surface of the adhesive layer (C) and added. It can be obtained by sulfur treatment.
[0025] 本発明の空気入りタイヤ用インナーライナ一の他の好適例において、前記ゴム状弹 性体層(B)は、ブチルゴム及び/又はハロゲン化ブチルゴムを含む。  [0025] In another preferred embodiment of the inner liner for a pneumatic tire of the present invention, the rubbery elastic layer (B) contains butyl rubber and / or halogenated butyl rubber.
[0026] 本発明の空気入りタイヤ用インナーライナ一の第 1の製造方法は、接着剤組成物( H)と有機溶媒とを含む塗工液を、前記樹脂フィルム層 (A)の表面改質された面に塗 布及び乾燥して接着剤層(C)を形成し、次!/、で該接着剤層(C)の表面に前記ゴム 状弾性体層(B)を貼り合わせ、加硫処理を行うことを特徴とする。  [0026] A first method for producing an inner liner for a pneumatic tire according to the present invention includes the step of modifying the surface of the resin film layer (A) with a coating solution containing an adhesive composition (H) and an organic solvent. The coated layer is coated and dried to form an adhesive layer (C). Next, the rubber-like elastic layer (B) is bonded to the surface of the adhesive layer (C) with! /, And vulcanized. It is characterized by performing processing.
[0027] また、本発明の空気入りタイヤ用インナーライナ一の第 2の製造方法は、接着剤組 成物 (H)と有機溶媒とを含む塗工液を、前記ゴム状弾性体層(B)の表面に塗布及 び乾燥して接着剤層(C)を形成し、次いで該接着剤層(C)の表面に、前記樹脂フィ ルム層(A)の表面改質された面を貼り合わせ、加硫処理を行うことを特徴とする。  [0027] Further, in the second method for producing an inner liner for a pneumatic tire of the present invention, a coating liquid containing an adhesive composition (H) and an organic solvent is applied to the rubber-like elastic layer (B). ) Applied and dried to form an adhesive layer (C), and then the surface of the resin film layer (A) is bonded to the surface of the adhesive layer (C). The vulcanization treatment is performed.
[0028] 本発明の空気入りタイヤは、上記空気入りタイヤ用インナーライナ一を用いたことを 特徴とする。  [0028] A pneumatic tire according to the present invention is characterized by using the inner liner for a pneumatic tire.
[0029] 本発明によれば、少なくとも接着剤層側の面を表面改質した樹脂フィルム層を、接 着剤層を介してゴム状弾性体層と貼り合わせることで、樹脂フィルム層とゴム状弾性 体層との剥離抗力に優れる上、屈曲時の耐破断性が高ぐクラックの発生を抑えた空 気入りタイヤ用インナーライナ一と、該インナーライナ一の製造方法を提供することが できる。また、少なくとも片面の表面自由エネルギーが一定値以上である樹脂フィノレ ム層 (A)と、該樹脂フィルム (A)上に配設された接着剤層(B)とを備える積層体を用 いることで、タイヤ成型時の拡張に耐え得る耐久性を有し、屈曲時の耐破断性に優 れ、クラックの発生を抑えた空気入りタイヤ用インナーライナ一と、該インナーライナ 一の製造方法を提供することができる。更に、力、かるインナーライナ一を備えた空気 入りタイヤを提供することができる。 [0029] According to the present invention, the resin film layer and the rubber-like layer are bonded to the rubber-like elastic body layer via the adhesive layer, with the resin film layer having at least the adhesive layer side surface modified. It is possible to provide an inner liner for a pneumatic tire which has excellent resistance to peeling from an elastic layer and which has high fracture resistance when bent, and suppresses the occurrence of cracks, and a method for producing the inner liner. it can. In addition, a laminate including a resin fine layer (A) having a surface free energy of at least a certain value or more on one side and an adhesive layer (B) disposed on the resin film (A) is used. Provides an inner liner for pneumatic tires that is durable enough to withstand expansion during molding of the tire, has excellent fracture resistance when bent, and suppresses the occurrence of cracks, and a method for manufacturing the inner liner can do. Further, it is possible to provide a pneumatic tire provided with an inner liner that is strong and capable.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本発明の空気入りタイヤの一例の部分断面図である。  FIG. 1 is a partial cross-sectional view of an example of a pneumatic tire according to the present invention.
[図 2]本発明の空気入りタイヤ用インナーライナ一の一例の部分断面図である。  FIG. 2 is a partial cross-sectional view of an example of an inner liner for a pneumatic tire according to the present invention.
[図 3]本発明の空気入りタイヤ用インナーライナ一の他の例の部分断面図である。 発明を実施するための最良の形態  FIG. 3 is a partial cross-sectional view of another example of an inner liner for a pneumatic tire according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下に、本発明を詳細に説明する。本発明の第 1の空気入りタイヤ用インナーラィ ナ一は、樹脂フィルム層 (A)とゴム状弾性体層(B)とが、接着剤層(C)を介して接合 されてなる空気入りタイヤ用インナーライナ一であって、前記樹脂フィルム層(A)の少 なくとも接着剤層(C)側の面が表面改質されていることを特徴とする。本発明の第 1 の空気入りタイヤ用インナーライナ一は、樹脂フィルム層(A)の接合面が表面改質さ れているため、剥離抗力が大幅に向上している。また、樹脂フィルム層(A)の剥離が 抑制されているため、本発明のインナーライナ一は、屈曲時の耐破断性が高ぐクラ ックの発生も抑制されて!/、る。  [0031] The present invention is described in detail below. The first inner liner for a pneumatic tire according to the present invention is for a pneumatic tire in which a resin film layer (A) and a rubber-like elastic body layer (B) are bonded via an adhesive layer (C). It is an inner liner, and at least the surface of the resin film layer (A) on the adhesive layer (C) side is surface-modified. In the first inner liner for a pneumatic tire of the present invention, since the joint surface of the resin film layer (A) is surface-modified, the peel resistance is greatly improved. In addition, since the peeling of the resin film layer (A) is suppressed, the inner liner of the present invention also suppresses the generation of cracks having high rupture resistance during bending!
[0032] 本発明の第 1の空気入りタイヤ用インナーライナ一において、上記樹脂フィルム層( A)は、該樹脂フィルム層(A)の表面に配設される接着剤層(C)との粘着性を高め、 延いてはゴム状弾性体層(B)との剥離抗カを向上させるために、表面改質されること を要する。ここで、表面改質の方法としては、表面酸化処理が好ましい。そして、表面 酸化処理としては、コロナ放電処理、プラズマ放電処理、クロム酸処理 (湿式)、火炎 処理、熱風処理、オゾン、紫外線照射処理等が好適に挙げられ、これらの中でも、設 備が安価であり、大気中、大気圧で実施可能であることから、コロナ放電処理が特に 好ましい。なお、上記樹脂フィルム層 (A)を表面改質した場合、表面改質された面は 、表面自由エネルギーが高くなる。 [0033] また、本発明の第 2の空気入りタイヤ用インナーライナ一は、樹脂フィルム層(A)と 、該樹脂フィルム層 (A)上に配設された接着剤層(C)とを備える積層体力 なり、該 樹脂フィルム層(A)の少なくとも片面の表面自由エネルギーが 50mN/m以上であ ることを特徴とする。ここで、本発明の空気入りタイヤ用インナーライナ一は、樹脂フィ ルム層(A)の少なくとも片面の表面自由エネルギーが 50mN/m以上であるため、 濡れ性が向上し、接着剤層(C)の粘着力を改良することができる。これにより、タイヤ 内面のゴムとインナーライナ一の剥離抗カを向上させたり、タイヤの製造工程におい てインナーライナ一を環状に貼り合わせた接合部 (ジョイント部)のせん断粘着力を向 上させることができるので、本発明の第 2の空気入りタイヤ用インナーライナ一は、屈 曲時の耐破断性が高ぐクラックの発生も抑制されている。 [0032] In the first inner liner for a pneumatic tire of the present invention, the resin film layer (A) is adhered to the adhesive layer (C) disposed on the surface of the resin film layer (A). In order to improve the property and, in turn, improve the peel resistance to the rubber-like elastic layer (B), surface modification is required. Here, as the method of surface modification, surface oxidation treatment is preferable. As the surface oxidation treatment, corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone, ultraviolet irradiation treatment, etc. are preferable, among which the equipment is inexpensive. The corona discharge treatment is particularly preferable because it can be carried out in the atmosphere and at atmospheric pressure. When the resin film layer (A) is surface-modified, the surface-modified surface has high surface free energy. [0033] The second inner liner for a pneumatic tire of the present invention includes a resin film layer (A) and an adhesive layer (C) disposed on the resin film layer (A). The surface free energy of at least one surface of the resin film layer (A) is 50 mN / m or more. Here, in the inner liner for a pneumatic tire of the present invention, the surface free energy of at least one surface of the resin film layer (A) is 50 mN / m or more, so that the wettability is improved and the adhesive layer (C) The adhesive strength of can be improved. This improves the peel resistance between the rubber on the inner surface of the tire and the inner liner, and improves the shear adhesive strength of the joint (joint) where the inner liner is bonded in an annular shape in the tire manufacturing process. Therefore, in the second inner liner for a pneumatic tire of the present invention, the occurrence of cracks with high fracture resistance during bending is also suppressed.
[0034] 本発明の第 2の空気入りタイヤ用インナーライナ一の樹脂フィルム層(A)において は、接着剤層(C)を形成させる側の面の表面自由エネルギーを 50mN/m以上とす ることで、タイヤ内面とインナーライナ一の剥離抗カを向上させることができ、また、接 着剤層(C)を形成させる面と反対側の面の表面自由エネルギーを 50mN/m以上と することで、インナーライナ一を環状に貼り合わせた接合部のせん断粘着力を向上さ せること力 Sできる。以上のことから、樹脂フィルム層(A)の両面の表面自由エネルギ 一を 50mN/m以上とすれば、両方の効果を得ることができる。  [0034] In the resin film layer (A) of the second inner liner for a pneumatic tire of the present invention, the surface free energy on the surface on which the adhesive layer (C) is formed is set to 50 mN / m or more. Therefore, the peel resistance between the tire inner surface and the inner liner can be improved, and the surface free energy on the surface opposite to the surface on which the adhesive layer (C) is formed should be 50 mN / m or more. Therefore, it is possible to improve the shear adhesive strength of the joint where the inner liner is bonded in a ring shape. From the above, both effects can be obtained if the surface free energy on both surfaces of the resin film layer (A) is 50 mN / m or more.
[0035] 本発明の第 2の空気入りタイヤ用インナーライナ一は、樹脂フィルム層(A)の少なく とも片面の表面自由エネルギーが 50mN/m以上であることを要し、 50〜80mN/ mであることが好ましい。ここで、樹脂フィルム層(A)の表面自由エネルギーを 50mN /m以上にするには、該樹脂フィルム層(A)を表面改質することが好ましぐ該樹脂 フィルム層(A)に表面酸化処理を施すことが更に好ましい。表面酸化処理としては、 コロナ放電処理、プラズマ放電処理、クロム酸処理(湿式)、火炎処理、熱風処理、ォ ゾン、紫外線照射処理等が好適に挙げられ、これらの中でもコロナ放電処理が特に 好ましい。  [0035] The second inner liner for a pneumatic tire of the present invention requires that the surface free energy of at least one surface of the resin film layer (A) is 50 mN / m or more, and is 50 to 80 mN / m. Preferably there is. Here, in order to increase the surface free energy of the resin film layer (A) to 50 mN / m or more, it is preferable to modify the surface of the resin film layer (A). More preferably, the treatment is performed. Preferred examples of the surface oxidation treatment include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone, ultraviolet irradiation treatment, etc. Among these, corona discharge treatment is particularly preferred.
[0036] 上記樹脂フィルム層(A)に用いることができる樹脂としては、特に制限されるもので はなぐ特定の樹脂の単体であってもよいし、特定の樹脂に他の材料を分散させた複 合物であってもよい。力、かる複合物としては、海島構造を形成するものが好ましぐ該 海島構造の海部分として、熱可塑性樹脂が好適に用いられる。また、熱可塑性樹脂 は、 23°Cにおけるヤング率が 500MPaを超えることが好ましぐ具体的には、ポリアミ ド系樹脂、ポリ塩化ビユリデン系樹脂、ポリエステル系樹脂、熱可塑性ウレタン系エラ ストマー、エチレン ビュルアルコール共重合体系樹脂等が挙げられ、これらの中で もエチレン—ビュルアルコール共重合体系樹脂が好ましい。エチレン—ビュルアルコ ール共重合体系樹脂は、一般に空気透過量が低ぐガスバリア性が非常に高い。な お、これら熱可塑性樹脂は、一種単独で用いてもよいし、二種以上を組み合わせて 用いてもよい。 [0036] The resin that can be used for the resin film layer (A) is not particularly limited, and may be a specific resin alone, or other materials are dispersed in the specific resin. It may be a compound. As the power and mulch compound, those that form sea-island structures are preferred. A thermoplastic resin is suitably used as the sea part of the sea-island structure. The thermoplastic resin preferably has a Young's modulus of more than 500 MPa at 23 ° C. Specifically, polyamide resins, polyvinylidene chloride resins, polyester resins, thermoplastic urethane elastomers, ethylene Examples thereof include a butyl alcohol copolymer resin, and among these, an ethylene-butyl alcohol copolymer resin is preferable. In general, ethylene-butyl alcohol copolymer-based resins have a low gas permeation and a very high gas barrier property. These thermoplastic resins may be used singly or in combination of two or more.
[0037] また、上記樹脂フィルム層(A)は、表面自由エネルギーを大きくするため、該樹脂 フィルム層(A)の表面に含酸素基が存在することが好ましぐ水酸基やカルボキシノレ 基等の官能基が存在することが更に好ましい。かかる官能基は、樹脂フィルム層(A) の濡れ性を向上させることができる。従って、上記樹脂フィルム層(A)においては、熱 可塑性樹脂力 エチレン ビュルアルコール共重合体系樹脂であることが好ましぐ 例えば、エチレン ビュルアルコール共重合体に、エポキシ化合物を反応させて得 られる変性エチレン—ビュルアルコール共重合体(D)であることが更に好ましい。か かる変性エチレン ビュルアルコール共重合体(D)は、通常のエチレン ビュルァ ルコール共重合体に比べて弾性率が低いため、屈曲時の耐破断性が高ぐまたクラ ックも発生し難レ、。  [0037] In addition, the resin film layer (A) has a surface free energy, and therefore it is preferable that an oxygen-containing group is present on the surface of the resin film layer (A). More preferably, a functional group is present. Such a functional group can improve the wettability of the resin film layer (A). Accordingly, it is preferable that the resin film layer (A) is a thermoplastic resin having an ethylene butyl alcohol copolymer-based resin. For example, a modified ethylene obtained by reacting an ethylene butyl alcohol copolymer with an epoxy compound. -More preferred is a butyl alcohol copolymer (D). Since such a modified ethylene butyl alcohol copolymer (D) has a lower elastic modulus than a normal ethylene butyl alcohol copolymer, the rupture resistance during bending is high and cracks are difficult to occur. .
[0038] 従って、上記樹脂フィルム層(A)は、エチレン ビュルアルコール共重合体を反応 させて得られる変性エチレン ビュルアルコール共重合体 (D)を含む層を少なくとも 含むことが好ましい。  Therefore, it is preferable that the resin film layer (A) includes at least a layer containing a modified ethylene butyl alcohol copolymer (D) obtained by reacting an ethylene butyl alcohol copolymer.
[0039] 上記エチレン ビュルアルコール共重合体は、エチレン含有量が 25〜50モル% であること力 S好ましく、 30〜48モル0 /0であることが更に好ましぐ 35〜45モル0 /0であ ることが一層好ましい。エチレン含有量が 25モル%未満では、耐屈曲性、耐疲労性 及び溶融成形性が悪化することがあり、一方、 50モル%を超えると、ガスバリア性を 十分に確保できないことがある。また、該エチレン—ビュルアルコール共重合体は、 ケン化度が 90%以上であることことが好ましぐ 95%以上であることが更に好ましぐ 99%以上であることが一層好ましい。ケン化度が 90%未満では、ガスバリア性及び 成形時の熱安定性が不十分となることがある。更に、該エチレン—ビュルアルコール 共重合体は、メルトフローレート(MFR)が 190°C、 2160g荷重下で 0.;!〜 30g/10 分であること力 S好ましく、 0.3〜25g/10分であることが更に好ましい。 [0039] The ethylene Bulle alcohol copolymer, it forces S preferably ethylene content of 25 to 50 mol%, 30 to 48 mole 0/0, it is further preferred tool 35-45 mole 0/0 More preferably, it is. If the ethylene content is less than 25 mol%, the bending resistance, fatigue resistance, and melt moldability may deteriorate. On the other hand, if it exceeds 50 mol%, the gas barrier properties may not be sufficiently secured. Further, the ethylene-butyl alcohol copolymer preferably has a saponification degree of 90% or more, more preferably 95% or more, and still more preferably 99% or more. If the degree of saponification is less than 90%, gas barrier properties and Thermal stability at the time of molding may be insufficient. Further, the ethylene-butyl alcohol copolymer has a melt flow rate (MFR) of 190.degree. C. under a load of 2160 g, 0.;! To 30 g / 10 min. S, preferably 0.3 to 25 g / 10 min. More preferably it is.
[0040] 本発明にお!/、て、上記変性エチレン ビュルアルコール共重合体(D)の製造方法 は、特に限定されないが、エチレン ビュルアルコール共重合体とエポキシ化合物と を溶液中で反応させる製造方法が好適に挙げられる。より詳しくは、エチレンービニ ルアルコール共重合体の溶液に、酸触媒又はアルカリ触媒存在下、好ましくは酸触 媒存在下、エポキシ化合物を添加し、反応させることによって変性エチレン—ビュル アルコール共重合体 (D)を製造することができる。反応溶媒としては、ジメチルスルホ キシド、ジメチルホルムアミド、ジメチルァセトアミド及び N-メチルピロリドン等の非プロ トン性極性溶媒が挙げられる。また、酸触媒としては、 P-トルエンスルホン酸、メタンス ルホン酸、トリフルォロメタンスルホン酸、硫酸及び三フッ化ホウ素等が挙げられ、ァ ルカリ触媒としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、ナトリウムメト キシド等が挙げられる。なお、触媒量は、エチレン—ビュルアルコール共重合体 100 質量部に対し、 0.0001〜; 10質量部の範囲が好ましい。また、上記変性エチレン— ビュルアルコール共重合体(D)は、溶融成形、好ましくは Tダイ法、インフレーション 法等の押出成形により、好ましくは 150〜270°Cの溶融温度でフィルムやシート等に 成形され、樹脂フィルム層(A)として使用される。 [0040] In the present invention, although the method for producing the modified ethylene butyl alcohol copolymer (D) is not particularly limited, the production is a reaction in which an ethylene butyl alcohol copolymer and an epoxy compound are reacted in a solution. A method is preferably mentioned. More specifically, a modified ethylene-butyl alcohol copolymer (D) is added to an ethylene-vinyl alcohol copolymer solution in the presence of an acid catalyst or an alkali catalyst, preferably in the presence of an acid catalyst, and reacted. ) Can be manufactured. Examples of the reaction solvent include non-proton polar solvents such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. Examples of the acid catalyst include P-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, sulfuric acid, and boron trifluoride. Examples of the alkali catalyst include sodium hydroxide, potassium hydroxide, and hydroxide. Examples include lithium and sodium methoxide. In addition, the catalyst amount is preferably in the range of 0.0001 to 10 parts by mass with respect to 100 parts by mass of the ethylene-butyl alcohol copolymer. Further, the modified ethylene-butyl alcohol copolymer (D) is formed into a film, a sheet or the like at a melting temperature of preferably 150 to 270 ° C. by melt molding, preferably extrusion molding such as T-die method or inflation method. And used as the resin film layer (A).
[0041] 上記エチレン ビュルアルコール共重合体に反応させるエポキシ化合物としては、 一価のエポキシ化合物が好ましい。なお、変性エチレン ビュルアルコール共重合 体の製造容易性、ガスバリア性、耐屈曲性及び耐疲労性の観点から、一価のェポキ シ化合物の中でも、グリシドール及びエポキシプロパンが特に好ましい。また、上記 エポキシ化合物は、エチレン ビュルアルコール共重合体 100質量部に対して 1〜 50質量部を反応させることが好ましぐ 2〜40質量部を反応させることが更に好ましく 、 5〜35質量部を反応させることが一層好ましい。  [0041] As the epoxy compound to be reacted with the ethylene butyl alcohol copolymer, a monovalent epoxy compound is preferable. Of the monovalent epoxy compounds, glycidol and epoxypropane are particularly preferred from the viewpoints of ease of production of the modified ethylene butyl alcohol copolymer, gas barrier properties, flex resistance and fatigue resistance. The epoxy compound is preferably 1 to 50 parts by mass, more preferably 2 to 40 parts by mass, and more preferably 5 to 35 parts by mass with respect to 100 parts by mass of the ethylene butyl alcohol copolymer. It is more preferable to react.
[0042] 上記変性エチレン ビュルアルコール共重合体(D)は、架橋されていることが好ま しい。変性エチレン—ビュルアルコール共重合体(D)が架橋されていないと、空気入 りタイヤを製造する加硫工程において樹脂フィルム層(A)が著しく変形して不均一と なり、インナーライナ一のガスバリア性、耐屈曲性、耐疲労性が悪化することがある。 なお、上記変性エチレン—ビュルアルコール共重合体 (D)の製造方法において、二 価以上のエポキシ化合物を用いることで、変性エチレン ビュルアルコール共重合 体 (D)を架橋させること力 Sできる。 [0042] The modified ethylene butyl alcohol copolymer (D) is preferably crosslinked. If the modified ethylene-butyl alcohol copolymer (D) is not cross-linked, the resin film layer (A) will deform significantly and become non-uniform in the vulcanization process for producing pneumatic tires. Therefore, the gas barrier properties, flex resistance, and fatigue resistance of the inner liner may be deteriorated. In the method for producing the modified ethylene-butyalcohol copolymer (D), it is possible to crosslink the modified ethylene-butyalcohol copolymer (D) by using a divalent or higher valent epoxy compound.
[0043] 上記変性エチレン—ビュルアルコール共重合体(D)は、ケン化度が 90%以上であ ることことが好ましぐ 95%以上であることが更に好ましぐ 99%以上であることが一層 好ましい。ケン化度が 90%未満では、ガスバリア性及び成形時の熱安定性が不十分 となること力 Sある。また、上記変性エチレン一ビュルアルコール共重合体(D)は、ガス ノ リア性、耐屈曲性及び耐疲労性を得る観点から、メルトフローレート(MFR)が 190 °C、 2160g荷重下で 0.;!〜 30g/10分であることが好ましぐ 0.3〜25g/10分であ ることが更に好ましく、 0.5〜20g/10分であることが一層好ましい。  [0043] The modified ethylene-butalcohol copolymer (D) preferably has a saponification degree of 90% or more, more preferably 95% or more, and even more preferably 99% or more. Is more preferable. If the saponification degree is less than 90%, the gas barrier property and the thermal stability during molding will be insufficient. The modified ethylene monobutyl alcohol copolymer (D) has a melt flow rate (MFR) of 190 ° C and a load of 2160g from the viewpoint of obtaining gas-noreness, bending resistance and fatigue resistance. Preferably 30-30 g / 10 min, more preferably 0.3-25 g / 10 min, and even more preferably 0.5-20 g / 10 min.
[0044] 上記変性エチレン ビュルアルコール共重合体(D)を含む層には、変性エチレン —ビュルアルコール共重合体 (D)からなるマトリックス中に、水酸基と反応する官能 基を有し、ヤング率が 500MPa以下である柔軟樹脂(E)が分散した樹脂組成物(F) を用いることが好ましレ、。上記変性エチレン—ビュルアルコール共重合体(D)力もな るマトリックス中に、上記柔軟樹脂(E)を分散させると、弾性率を大幅に低下させ、屈 曲時の破断やクラックの発生を抑制することができる。ここで、上記柔軟樹脂 (E)は、 水酸基と反応する官能基を有するため、上記マトリックス中に均一に分散するように なる。水酸基と反応する官能基としては、無水マレイン酸残基、水酸基、カルボキシ ル基、アミノ基等が挙げられる。かかる水酸基と反応する官能基を有する柔軟樹脂( E)として、具体的には、無水マレイン酸変性水素添加スチレン エチレンーブタジェ ンースチレンブロック共重合体、無水マレイン酸変性超低密度ポリエチレン等が挙げ られる。また、上記柔軟樹脂(E)のヤング率が 500MPa以下であると、樹脂フィルム 層(A)の弾性率を低下させることができ、その結果耐屈曲性を向上させることができ  [0044] The layer containing the modified ethylene butyl alcohol copolymer (D) has a functional group that reacts with a hydroxyl group in a matrix composed of the modified ethylene butyl alcohol copolymer (D) and has a Young's modulus. It is preferable to use a resin composition (F) in which a flexible resin (E) of 500 MPa or less is dispersed. Dispersing the flexible resin (E) in a matrix that also has the modified ethylene-butyl alcohol copolymer (D) force significantly reduces the elastic modulus and suppresses the occurrence of breakage and cracks during bending. be able to. Here, since the flexible resin (E) has a functional group that reacts with a hydroxyl group, the flexible resin (E) is uniformly dispersed in the matrix. Examples of the functional group that reacts with a hydroxyl group include a maleic anhydride residue, a hydroxyl group, a carboxyl group, and an amino group. Specific examples of the flexible resin (E) having a functional group that reacts with a hydroxyl group include maleic anhydride-modified hydrogenated styrene ethylene-butadiene-styrene block copolymer, maleic anhydride-modified ultra-low density polyethylene, and the like. It is done. Further, when the Young's modulus of the flexible resin (E) is 500 MPa or less, the elastic modulus of the resin film layer (A) can be lowered, and as a result, the bending resistance can be improved.
[0045] また、上記変性エチレン ビュルアルコール共重合体(D)及び柔軟樹脂(E)の合 計に占める柔軟樹脂 (E)の割合は、耐屈曲性及びガスバリア性を高めるという観点 から、 10〜30質量%の範囲が好ましい。更に、上記柔軟樹脂(E)は、平均粒径が 2 以下であることが好ましい。平均粒径が 2 を超えると、耐屈曲性を十分に改 善できないおそれがあり、ガスバリア性の低下をもたらすことがある。なお、樹脂組成 物(F)中の柔軟樹脂(E)の平均粒径は、例えば、サンプルを凍結し、該サンプルをミ クロトームにより切片にして、透過電子顕微鏡 (TEM)で観察する。 [0045] Further, the ratio of the flexible resin (E) to the total of the modified ethylene butyl alcohol copolymer (D) and the flexible resin (E) is 10 to 10% from the viewpoint of improving the bending resistance and the gas barrier property. A range of 30% by weight is preferred. Furthermore, the flexible resin (E) has an average particle size of 2 The following is preferable. If the average particle size exceeds 2, the bending resistance may not be sufficiently improved, and the gas barrier property may be lowered. The average particle diameter of the flexible resin (E) in the resin composition (F) is observed, for example, by freezing the sample, cutting the sample with a microtome, and observing with a transmission electron microscope (TEM).
[0046] 上記樹脂フィルム層(A)は、 23°Cにおけるヤング率が 500MPaを超えていることが 好ましい。 [0046] The resin film layer (A) preferably has a Young's modulus at 23 ° C of more than 500 MPa.
[0047] 上記樹脂フィルム層(A)は、 20°C、 65%RHにおける酸素透過係数が 3.0 X 10— 12 cm ' cm/cm ' sec ' cmUg以 であることカ好ましく、 1.0 X 10 cm ' cm/cm * s ec ' cmHg以^であること力、更に好ましく、 5.0 X 10 cm ' cm/cm ' sec - cmHg以 下であることが一層好ましい。 20°C、 65%RHにおける酸素透過係数が 3.0 X 10— 12c m cm/cm sec ' cmHgを超えると、インナーライナ一に用いる際に、タイヤの内圧 保持性を高めるために、樹脂フィルム層(A)を厚くせざるを得ず、タイヤの重量を十 分に低減できなくなる。 [0047] The resin film layer (A), the oxygen permeability at 20 ° C, 65% RH is 3.0 X 10- 12 cm 'cm / cm' sec ' that mosquitoes preferably cmUg than, 1.0 X 10 cm' The force is more preferably cm / cm * sec'cmHg or less, and more preferably 5.0 × 10 cm'cm / cm'sec-cmHg or less. When the oxygen permeability at 20 ° C, 65% RH is more than 3.0 X 10- 12 cm cm / cm sec 'cmHg, when used for the inner liner of all, in order to increase the internal pressure retainability of the tire, the resin film layer ( A) must be made thick, and the weight of the tire cannot be reduced sufficiently.
[0048] また、上記樹脂フィルム層(A)の厚さは、 100 m以下であることが好ましぐより好 ましくは下限が 0.1 mであり、;!〜 40 mの範囲であることが更に好ましぐ 5〜30 a mの範囲であることが一層好まし!/、。樹脂フィルム層(A)の厚さが 100 μ mを超え ると、インナーライナ一に用いる際に、従来のブチルゴム系のインナーライナ一に対し て重量の低減効果が小さくなる上、耐屈曲性及び耐疲労性が低下し、タイヤ転動時 の屈曲変形により破断 ·亀裂が生じ易ぐまた、亀裂が伸展し易くなるため、タイヤの 内圧保持性が使用前に比べて低下することがある。一方、 O. l ^ m未満では、ガスバ リア性が不十分で、タイヤの内圧保持性を十分に確保できないことがある。  [0048] The thickness of the resin film layer (A) is preferably 100 m or less, more preferably the lower limit is 0.1 m; and the range is from! To 40 m. More preferred is the range of 5-30 am! If the thickness of the resin film layer (A) exceeds 100 μm, the effect of reducing the weight will be less than that of a conventional butyl rubber-based inner liner when used for an inner liner, and the bending resistance and Fatigue resistance is reduced, and it is easy for fractures / cracks to occur due to bending deformation during rolling of the tire, and because the cracks are likely to extend, the internal pressure retention of the tire may be reduced compared to before use. On the other hand, if it is less than O.l ^ m, the gas barrier property is insufficient, and the tire internal pressure retention may not be sufficiently secured.
[0049] 更に、上記樹脂フィルム層(A)は、架橋されて!/、ることが好まし!/、。樹脂フィルム層( A)が架橋されて!/、な!/、場合、タイヤの加硫工程でインナーライナ一が著しく変形して 不均一となり、インナーライナ一のガスバリア性、耐屈曲性、耐疲労性が悪化すること がある。ここで、架橋方法としては、エネルギー線を照射する方法が好ましぐ該エネ ルギ一線としては、紫外線、電子線、 X線、 α線、 γ線等の電離放射線が挙げられ、 これらの中でも電子線が特に好ましい。電子線の照射は、樹脂フィルム層(Α)をフィ ルムゃシート等の成形体に加工した後に行うことが好ましい。ここで、電子線の線量 は、 10〜60Mradの範囲が好ましぐ 20〜50Mradの範囲が更に好ましい。電子線 の線量が lOMrad未満では、架橋が進み難ぐ一方、 60Mradを超えると、成形体の 劣化が進み易くなる。 [0049] Further, the resin film layer (A) is preferably crosslinked! /, Preferably! /. If the resin film layer (A) is cross-linked! /, N! /, The inner liner is significantly deformed and becomes non-uniform during the vulcanization process of the tire, and the gas barrier properties, flex resistance, and fatigue resistance of the inner liner are reduced. Sexuality may worsen. Here, as the crosslinking method, the method of irradiating energy rays is preferred. Examples of the energy rays include ionizing radiation such as ultraviolet rays, electron beams, X-rays, α-rays, γ-rays. Lines are particularly preferred. The electron beam irradiation is preferably performed after the resin film layer (層) is processed into a molded body such as a film sheet. Where the electron beam dose Is preferably in the range of 10-60 Mrad, more preferably in the range of 20-50 Mrad. When the electron beam dose is less than lOMrad, crosslinking is difficult to proceed, whereas when it exceeds 60 Mrad, the deterioration of the compact tends to proceed.
[0050] 本発明の空気入りタイヤ用インナーライナ一は、樹脂フィルム層(A)に、上記変性 エチレン—ビュルアルコール共重合体(D)を用いるのが好ましぐ樹脂フィルム層(A )として、該変性エチレン ビュルアルコール共重合体 (D)を含む層を含み多層化さ れたものを用いてもよい。ここで、多層化する方法としては、例えば、変性エチレン ビュルアルコール共重合体 (D)を含む樹脂組成物 (F)と他の樹脂とを共押出する方 法等が挙げられ、他の樹脂としては、熱可塑性ウレタン系エラストマ一等が挙げられ  [0050] The inner liner for a pneumatic tire according to the present invention has a resin film layer (A) that preferably uses the above-mentioned modified ethylene-butyl alcohol copolymer (D) for the resin film layer (A). A multilayered film including a layer containing the modified ethylene butyl alcohol copolymer (D) may be used. Here, as a method of multilayering, for example, a method of co-extrusion of the resin composition (F) containing the modified ethylene butyl alcohol copolymer (D) and another resin, etc. can be mentioned. Is a thermoplastic urethane elastomer
[0051] 本発明の空気入りタイヤ用インナーライナ一において、樹脂フィルム層(A)が多層 化された例としては、上記変性エチレン ビュルアルコール共重合体(D)を含む層 に隣接して、更にエラストマ一からなる補助層(G)を一層以上備えたものが好適に挙 げられる。ここで、上記補助層(G)は、エラストマ一を用いるため、変性エチレンービ ニルアルコール共重合体 (D)の水酸基と密着性が高ぐ剥離し難い。そのため、変 性エチレン ビュルアルコール共重合体 (D)を含む層に破断 ·亀裂が生じても、亀 裂が伸展し難いので、大きな破断及びクラックのような弊害を抑制し、タイヤの内圧保 持性を十分に維持することができる。 [0051] In the inner liner 1 for a pneumatic tire of the present invention, as an example in which the resin film layer (A) is multilayered, the resin film layer (A) is further adjacent to the layer containing the modified ethylene butyl alcohol copolymer (D). One provided with one or more auxiliary layers (G) made of an elastomer is preferably mentioned. Here, since the auxiliary layer (G) uses an elastomer, it has high adhesion to the hydroxyl group of the modified ethylene-vinyl alcohol copolymer (D) and is difficult to peel off. Therefore, even if a layer containing the modified ethylene butyl alcohol copolymer ( D ) breaks or cracks, it is difficult for the cracks to extend, so that adverse effects such as large breaks and cracks are suppressed and the internal pressure of the tire is maintained. Sex can be sufficiently maintained.
[0052] 上記補助層(G)に用いるエラストマ一としては、耐水性及びゴムに対する密着性の 観点から、熱可塑性ウレタン系エラストマ一が好ましい。また、上記熱可塑性ウレタン 系エラストマ一を補助層(G)に用いると、補助層(G)を薄層化しつつ、亀裂の発生や 伸展を抑制することができる。ここで、上記熱可塑性ウレタン系エラストマ一は、ポリオ ールと、イソシァネート化合物と、短鎖ジオールとの反応によって得られる。ポリオ一 ル及び短鎖ジオールは、イソシァネート化合物との付加反応により、直鎖状ポリウレタ ンを形成する。上記ポリオールは、熱可塑性ウレタン系エラストマ一において柔軟な 部分となり、イソシァネート化合物及び短鎖ジオールは硬い部分となる。なお、熱可 塑性ウレタン系エラストマ一は、原料の種類、配合量、重合条件等を変えることで、広 範囲に性質を変えることができる。力、かる熱可塑性ウレタン系エラストマ一としては、 ポリエーテル系ウレタン等が好適に挙げられる。 [0052] The elastomer used for the auxiliary layer (G) is preferably a thermoplastic urethane elastomer from the viewpoint of water resistance and adhesion to rubber. In addition, when the thermoplastic urethane elastomer is used for the auxiliary layer (G), the generation and extension of cracks can be suppressed while making the auxiliary layer (G) thinner. Here, the thermoplastic urethane-based elastomer is obtained by a reaction of a polyol, an isocyanate compound, and a short chain diol. Polyol and short chain diol form a linear polyurethane by addition reaction with an isocyanate compound. The polyol becomes a flexible part in the thermoplastic urethane elastomer, and the isocyanate compound and the short chain diol become a hard part. Note that the properties of the thermoplastic elastomeric elastomer can be changed over a wide range by changing the type of raw material, blending amount, polymerization conditions, and the like. As a powerful thermoplastic urethane elastomer, Preferred examples include polyether urethane.
[0053] 上記補助層(G)の厚さの合計は、 10〜; 100 mの範囲であることが好ましい。補助 層の厚さが lO ^ m未満では、補助層(G)を配設する効果が小さぐ lOO ^ mを超え ると、タイヤの重量を十分に低減できなくなる。  [0053] The total thickness of the auxiliary layer (G) is preferably in the range of 10 to 100 m. If the thickness of the auxiliary layer is less than lO ^ m, the effect of disposing the auxiliary layer (G) is small. If it exceeds lOO ^ m, the weight of the tire cannot be reduced sufficiently.
[0054] 本発明の第 2の空気入りタイヤ用インナーライナ一は、接着剤層(C)の樹脂フィル ム層(A)側と反対側の面に、更にゴム状弾性体層(B)が配設された積層体からなる ことが好ましい。ここで、ゴム状弾性体層(B)を配設することで、タイヤ内面に本発明 のインナーライナ一を貼り付ける際の作業性が大幅に改良される。  [0054] In the second inner liner for a pneumatic tire of the present invention, a rubber-like elastic layer (B) is further provided on the surface of the adhesive layer (C) opposite to the resin film layer (A). It is preferable that the laminated body is provided. Here, by disposing the rubber-like elastic layer (B), the workability when the inner liner of the present invention is attached to the inner surface of the tire is greatly improved.
[0055] 本発明の空気入りタイヤ用インナーライナ一がゴム状弾性体層(B)を備える場合に おいて、上記ゴム状弾性体層(B)は、ゴム成分としてブチルゴム及び/又はハロゲン 化ブチルゴムを含むことが好ましい。ここで、上記ハロゲン化ブチルゴムとしては、塩 素化ブチルゴム、臭素化ブチルゴム及びそれらの変性ゴム等が挙げられる。また、上 記ハロゲン化ブチルゴムは、市販品を利用することができ、例えば、「Enjay Butyl HT10— 66」(登録商標) [ェンジエイケミカル社製,塩素化ブチルゴム]、「Bromob utyl 2255」(登録商標) [JSR (株)製,臭素化ブチノレゴム]、「Bromobutyl 2244」 (登録商標) [JSR (株)製,臭素化ブチルゴム]等を挙げることができる。また、塩素化 又は臭素化した変性ゴムの例としては、「Expro50」(登録商標) [ェクソン社製]等が 挙げられる。  [0055] In the case where the inner liner for a pneumatic tire of the present invention includes the rubber-like elastic body layer (B), the rubber-like elastic body layer (B) includes butyl rubber and / or halogenated butyl rubber as a rubber component. It is preferable to contain. Here, examples of the halogenated butyl rubber include chlorinated butyl rubber, brominated butyl rubber, and modified rubbers thereof. The halogenated butyl rubber may be a commercially available product, such as “Enjay Butyl HT10-66” (registered trademark) [Chlorinated butyl rubber manufactured by ENGAI Chemical Co., Ltd.], “Bromob utyl 2255” (registered) Trademarks) [manufactured by JSR, brominated butylene rubber], “Bromobutyl 2244” (registered trademark) [manufactured by JSR, brominated butyl rubber] and the like. Examples of the chlorinated or brominated modified rubber include “Expro50” (registered trademark) [manufactured by Exxon].
[0056] 上記ゴム状弾性体層(B)におけるゴム成分中のブチルゴム及び/又はハロゲン化 ブチルゴムの含有率は、耐空気透過性を向上させる観点から、 50質量%以上である のが好ましぐ 70〜; 100質量%であるのが更に好ましい。ここで、上記ゴム成分として は、ブチルゴム、ハロゲン化ブチルゴムの他、ジェン系ゴムゃェピクロロヒドリンゴム等 を用いること力 Sできる。これらゴム成分は、一種単独で用いてもよいし、二種以上を組 み合わせて用いてもよい。  [0056] The content of butyl rubber and / or halogenated butyl rubber in the rubber component in the rubber-like elastic layer (B) is preferably 50% by mass or more from the viewpoint of improving air permeation resistance. 70 to 100% is more preferable. Here, as the rubber component, in addition to butyl rubber and halogenated butyl rubber, it is possible to use gen-based rubber, epic chlorohydrin rubber, or the like. These rubber components may be used singly or in combination of two or more.
[0057] 上記ゴム状弾性体層(B)には、上記ゴム成分の他に、ゴム業界で通常使用される 配合剤、例えば、補強性充填剤、軟化剤、老化防止剤、加硫剤、ゴム用加硫促進剤 、スコーチ防止剤、亜鉛華、ステアリン酸等を目的に応じて適宜配合することができる 。これら配合剤としては、市販品を好適に使用することができる。 [0058] 本発明の空気入りタイヤ用インナーライナ一の接着剤層(C)には、ゴム成分 (I) 10 0質量部に対し、分子中に反応部位を二つ以上有するマレイミド誘導体及びポリ- P- ジニトロソベンゼンの少なくとも一種を 0.1質量部以上配合した接着剤組成物(H)を 用いること力 S好ましい。上記接着剤組成物(H)に該マレイミド誘導体及び/又はポリ -P-ジニトロソベンゼンを用いることで、樹脂フィルム層(A)及びゴム状弾性体層(B) に対する接着剤層(C)の粘着性が向上し、樹脂フィルム層 (A)とゴム状弾性体層(B )との剥離抗カを改善することができる。 [0057] In addition to the rubber component, the rubber-like elastic layer (B) contains a compounding agent usually used in the rubber industry, such as a reinforcing filler, a softening agent, an anti-aging agent, a vulcanizing agent, A rubber vulcanization accelerator, a scorch inhibitor, zinc white, stearic acid and the like can be appropriately blended depending on the purpose. As these compounding agents, commercially available products can be suitably used. [0058] In the adhesive layer (C) of the inner liner for a pneumatic tire of the present invention, the maleimide derivative and poly- having two or more reactive sites in the molecule with respect to 100 parts by mass of the rubber component (I). It is preferable to use an adhesive composition (H) containing at least 0.1 part by mass of at least one kind of P-dinitrosobenzene. By using the maleimide derivative and / or poly-P-dinitrosobenzene in the adhesive composition (H), the adhesive layer (C) with respect to the resin film layer (A) and the rubber-like elastic body layer (B) The adhesiveness is improved, and the peel resistance between the resin film layer (A) and the rubber-like elastic layer (B) can be improved.
[0059] 上記接着剤組成物(H)に用いるゴム成分(I)としては、クロロスルホン化ポリエチレ ン、ブチルゴム、ハロゲン化ブチルゴム、ジェン系ゴム等が挙げられ、これらの中でも クロロスルホン化ポリエチレン、並びにブチルゴム及び/又はハロゲン化ブチルゴム が好ましい。上記クロロスルホン化ポリエチレンは、塩素と亜硫酸ガスを用いてポリエ チレンを塩素化及びクロロスルホン化することによって得られる飽和主鎖構造を有す る合成ゴムであり、耐候性、耐オゾン性、耐熱性等に優れ、ガスバリア性も高い。また 、上記クロロスルホン化ポリエチレンとしては、市販品を利用することができ、例えば、 商品名「ハイバロン」 [デュポン社製]等が挙げられる。更に、上記ゴム成分 (I)におけ るクロロスルホン化ポリエチレンの含有率は、剥離抗カを向上させる観点から、 10質 量%以上が好ましい。一方、ブチルゴム及びノヽロゲン化ブチルゴムは、上記ゴム状 弾性体層(B)において説明したとおりであり、また、上記ゴム成分 (I)におけるブチル ゴム及び/又はハロゲン化ブチルゴムの含有率は、 50質量%以上が好ましい。なお 、上記ゴム成分 (I)は、一種単独で用いてもよぐ二種以上を組み合わせて用いても よい。  [0059] Examples of the rubber component (I) used in the adhesive composition (H) include chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, and Gen rubber. Among these, chlorosulfonated polyethylene, and Butyl rubber and / or halogenated butyl rubber is preferred. The above chlorosulfonated polyethylene is a synthetic rubber having a saturated main chain structure obtained by chlorination and chlorosulfonization of polyethylene using chlorine and sulfurous acid gas, and is weather resistant, ozone resistant, heat resistant. Excellent gas barrier properties. In addition, as the chlorosulfonated polyethylene, a commercially available product can be used, and examples thereof include trade name “HIVALON” [manufactured by DuPont]. Furthermore, the content of the chlorosulfonated polyethylene in the rubber component (I) is preferably 10% by mass or more from the viewpoint of improving the peeling resistance. On the other hand, butyl rubber and halogenated butyl rubber are as described in the rubber-like elastic layer (B), and the content of butyl rubber and / or halogenated butyl rubber in the rubber component (I) is 50% by mass. % Or more is preferable. The rubber component (I) may be used alone or in combination of two or more.
[0060] 上記接着剤組成物(H)は、加熱処理後の剥離抗カを改良するために、架橋剤及 び架橋助剤として、分子中に反応部位を二つ以上有するマレイミド誘導体及び/又 はポリ- P-ジニトロソベンゼンを含み、該マレイミド誘導体としては、 1 ,4-フエ二レンジ マレイミド等が挙げられ、これらの中でも 1 ,4-フエ二レンジマレイミドが好ましい。これ ら架橋剤及び架橋助剤は、一種を単独で用いてもよいし、二種以上を併用してもよ い。上記接着剤組成物(H)におけるマレイミド誘導体及び/又はポリ- P-ジニトロソ ベンゼンの配合量は、上記ゴム成分 (1) 100質量部に対し、 0.1質量部以上が好まし い。上記マレイミド誘導体及び/又はポリ- p-ジニトロソベンゼンの配合量が 0.1質量 部未満では、加硫処理後の剥離抗カを十分に改良することができな!/、。 [0060] The adhesive composition (H) is a maleimide derivative having two or more reactive sites in the molecule and / or as a crosslinking agent and a crosslinking aid in order to improve the peel resistance after heat treatment. Includes poly-P-dinitrosobenzene, and examples of the maleimide derivative include 1,4-phenylene dimaleimide, among which 1,4-phenylene dimaleimide is preferable. One of these crosslinking agents and crosslinking assistants may be used alone, or two or more thereof may be used in combination. The blending amount of the maleimide derivative and / or poly-P-dinitrosobenzene in the adhesive composition (H) is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the rubber component (1). Yes. If the blending amount of the maleimide derivative and / or poly-p-dinitrosobenzene is less than 0.1 parts by mass, the peeling resistance after vulcanization cannot be sufficiently improved! /.
[0061] 上記接着剤組成物(H)は、更にゴム用加硫促進剤、充填剤、並びに樹脂及び低 分子量重合体のようなタツキフアイヤー等を含有することが好ましぐまた、上記成分 の他に、例えば、軟化剤、老化防止剤、加硫剤、スコーチ防止剤、亜鉛華、ステアリ ン酸等を目的に応じて適宜配合してもよ!/、。  [0061] The adhesive composition (H) preferably further contains a rubber vulcanization accelerator, a filler, a tackifier such as a resin and a low molecular weight polymer, and the like. In addition, for example, a softening agent, an anti-aging agent, a vulcanizing agent, an anti-scorch agent, zinc white, stearic acid and the like may be appropriately blended according to the purpose! /.
[0062] 本発明の空気入りタイヤ用インナーライナ一の製造方法としては、例えば、接着剤 組成物 (H)を有機溶媒に分散又は溶解した塗工液を、少なくとも片面が表面改質さ れた樹脂フィルム層 (A)、好ましくは少なくとも片面に表面酸化処理が施された樹脂 フィルム層(A)の表面に塗布及び乾燥して接着剤層(C)を形成し、次に、該接着剤 層(C)の表面にゴム状弾性体層(B)を貼り合わせ、加硫処理を行うことにより製造す る方法が挙げられる。また、本発明の空気入りタイヤ用インナーライナ一の製造方法 は、上記塗工液をゴム状弾性体層(B)の表面に塗布及び乾燥して接着剤層(C)を 形成し、該接着剤層(C)の表面に、少なくとも片面が表面改質された樹脂フィルム層 (A)、好ましくは少なくとも片面に表面酸化処理が施された樹脂フィルム層(A)の表 面を張り合わせ、加硫処理を行ってもよい。ここで、本発明の第 1の空気入りタイヤ用 インナーライナ一を製造するには、樹脂フィルム層 (A)の少なくとも接着剤層(C)側 の面が表面改質されていることを要する。なお、上記加硫処理温度は、 120°C以上 が好ましぐ 125〜200°Cの範囲が更に好ましぐ 130〜; 180°Cの範囲が一層好まし い。  [0062] As a method for producing an inner liner for a pneumatic tire of the present invention, for example, at least one surface of a coating liquid in which the adhesive composition (H) is dispersed or dissolved in an organic solvent is surface-modified. The adhesive layer (C) is formed by coating and drying on the surface of the resin film layer (A), preferably the resin film layer (A) having at least one surface subjected to surface oxidation treatment, and then the adhesive layer Examples thereof include a method in which the rubber-like elastic layer (B) is bonded to the surface of (C) and vulcanized. In the method for producing an inner liner for a pneumatic tire according to the present invention, the coating liquid is applied to the surface of the rubber-like elastic layer (B) and dried to form an adhesive layer (C). The surface of the agent layer (C) is laminated with the surface of the resin film layer (A) whose surface has been modified on at least one side, and preferably the surface of the resin film layer (A) which has been subjected to surface oxidation treatment on at least one side. Processing may be performed. Here, in order to manufacture the first inner liner for a pneumatic tire of the present invention, it is necessary that at least the surface of the resin film layer (A) on the adhesive layer (C) side is surface-modified. The vulcanization temperature is preferably 120 to 120 ° C or more, more preferably 125 to 200 ° C, more preferably 130 to 180 ° C.
[0063] 上記接着剤組成物(H)と有機溶媒との混合方法は、常法により行!/、、かかる方法 で調製した塗工液中の接着剤組成物 (H)の濃度は、 5〜50質量%の範囲が好まし く、 10〜30質量%の範囲が更に好ましい。ここで、有機溶媒としては、トルエン、キシ レン、 n-へキサン、シクロへキサン、クロ口ホルム、メチルェチルケトン等が挙げられる 。これら有機溶媒は、一種単独で用いてもよいし、二種以上を混合して用いてもよい 。また、上記有機溶媒において、ヒルデブランド(Hildebrand)溶解度パラメーター( δ 値)は、 14〜20MPa1/2の範囲であることが好ましい。ここで、ヒルデブランド溶解度パ ラメーター( δ値)が、上記特定範囲内にあると、有機溶媒とゴム成分 (I)との親和性 が高くなる。 [0063] The method of mixing the adhesive composition (H) and the organic solvent is carried out by a conventional method !, and the concentration of the adhesive composition (H) in the coating solution prepared by such a method is 5 The range of ˜50 mass% is preferred, and the range of 10-30 mass% is more preferred. Here, examples of the organic solvent include toluene, xylene, n-hexane, cyclohexane, black mouth form, methyl ethyl ketone, and the like. These organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them. In the organic solvent, the Hildebrand solubility parameter (δ value) is preferably in the range of 14 to 20 MPa 1/2 . Here, when the Hildebrand solubility parameter (δ value) is within the specific range, the affinity between the organic solvent and the rubber component (I). Becomes higher.
[0064] 本発明の空気入りタイヤは、上述した空気入りタイヤ用インナーライナ一を用いたこ とを特徴とする。以下に、図を参照しながら本発明の空気入りタイヤを詳細に説明す る。図 1は、本発明の空気入りタイヤの一例の部分断面図である。図 1に示すタイヤ は、一対のビード部 1及び一対のサイドウォール部 2と、両サイドウォール部 2に連な るトレッド部 3とを有し、上記一対のビード部 1間にトロイド状に延在して、これら各部 1 , 2, 3を補強する一枚以上のカーカスプライからなるカーカス 4を備え、更に、該カー カス 4の内側のタイヤ内面にはインナーライナ一 5が配置されている。  [0064] The pneumatic tire of the present invention is characterized by using the above-described inner liner for a pneumatic tire. Hereinafter, the pneumatic tire of the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial cross-sectional view of an example of the pneumatic tire of the present invention. The tire shown in FIG. 1 has a pair of bead portions 1 and a pair of sidewall portions 2, and a tread portion 3 connected to both sidewall portions 2, and extends in a toroidal shape between the pair of bead portions 1. The carcass 4 is composed of one or more carcass plies that reinforce these parts 1, 2, and 3, and an inner liner 5 is disposed on the inner surface of the tire inside the carcass 4.
[0065] 図示例のタイヤにおいて、カーカス 4は、上記ビード部 1内に夫々埋設した一対の ビードコア 6間にトロイド状に延在する本体部と、各ビードコア 6の周りでタイヤ幅方向 の内側から外側に向けて半径方向外方に巻上げた折り返し部とからなる力 本発明 の空気入りタイヤにおいて、カーカス 4のプライ数及び構造は、これに限られるもので はない。  [0065] In the illustrated example of the tire, the carcass 4 includes a main body portion extending in a toroidal shape between a pair of bead cores 6 embedded in the bead portion 1 and the inner side in the tire width direction around each bead core 6. The force composed of the folded portion wound outward in the radial direction toward the outside In the pneumatic tire of the present invention, the number of plies and the structure of the carcass 4 are not limited thereto.
[0066] また、図示例のタイヤにおいては、上記カーカス 4のクラウン部のタイヤ半径方向外 側には二枚のベルト層からなるベルト 7が配置されており、図示例のベルト 7は、二枚 のベルト層からなる力 本発明の空気入りタイヤにおいては、ベルト 7を構成するベル ト層の枚数はこれに限られるものではない。ここで、ベルト層は、通常、タイヤ赤道面 に対して傾斜して延びるコードのゴム引き層からなり、 2枚のベルト層は、該ベルト層 を構成するコードが互いに赤道面を挟んで交差するように積層されてベルト 7を構成 する。更に、図示例のタイヤは、上記ベルト 7のタイヤ半径方向外側でベルト 7の全体 を覆うように配置されたベルト補強層 8を備える力 S、本発明の空気入りタイヤは、ベル ト補強層 8を有していなくてもよいし、他の構造のベルト補強層を備えることもできる。 ここで、ベルト補強層 8は、通常、タイヤ周方向に対し実質的に平行に配列したコード のゴム引き層からなる。  [0066] Further, in the illustrated tire, a belt 7 composed of two belt layers is disposed on the outer side in the tire radial direction of the crown portion of the carcass 4, and the belt 7 in the illustrated example includes two sheets. In the pneumatic tire of the present invention, the number of belt layers constituting the belt 7 is not limited to this. Here, the belt layer is usually composed of a rubberized layer of a cord extending obliquely with respect to the tire equatorial plane, and the two belt layers have the cords constituting the belt layer intersecting each other across the equator plane. The belt 7 is thus laminated. Furthermore, the illustrated tire has a force S including a belt reinforcing layer 8 disposed so as to cover the entire belt 7 outside the belt 7 in the tire radial direction, and the pneumatic tire of the present invention has a belt reinforcing layer 8. The belt reinforcing layer having another structure may be provided. Here, the belt reinforcing layer 8 is usually composed of a rubberized layer of cords arranged substantially parallel to the tire circumferential direction.
[0067] なお、図示例のタイヤにおいて、インナーライナ一 5には、上述したインナーライナ 一が適用される。以下に、図を参照しながら、上記空気入りタイヤに用いる本発明の インナーライナ一について詳細に説明する。図 2は、本発明の空気入りタイヤ用イン ナーライナ一の一例の部分断面図である。図 2に示すインナーライナ一は、樹脂フィ ルム層 (A) 9と、ゴム状弾性体層(B) 10とが、接着剤層(C) 11を介して接合されてい る。ここで、ゴム状弾性体層(B) 10が、上記空気入りタイヤにおけるカーカス 4の内側 のタイヤ内面に接合されている。なお、図示例のインナーライナ一は、ゴム状弾性体 層(B) 10を備える力 S、本発明の第 2の空気入りタイヤ用インナーライナ一においては 、ゴム状弾性体層を有していなくてもよい。この場合、上記カーカス 4の内側のタイヤ 内面に接着剤層(C) 11を直接接合することになる。 It should be noted that the inner liner 1 described above is applied to the inner liner 5 in the illustrated tire. Hereinafter, the inner liner 1 of the present invention used for the pneumatic tire will be described in detail with reference to the drawings. FIG. 2 is a partial cross-sectional view of an example of an inner liner for a pneumatic tire according to the present invention. The inner liner shown in Fig. 2 The rum layer (A) 9 and the rubber-like elastic layer (B) 10 are joined via the adhesive layer (C) 11. Here, the rubber-like elastic layer (B) 10 is joined to the tire inner surface inside the carcass 4 in the pneumatic tire. The illustrated inner liner 1 has a force S including the rubber-like elastic layer (B) 10, and the second inner liner 1 for a pneumatic tire according to the present invention does not have the rubber-like elastic layer. May be. In this case, the adhesive layer (C) 11 is directly bonded to the inner surface of the tire inside the carcass 4.
[0068] また、図示例のインナーライナ一において、上記樹脂フィルム層(A) 9は、例えば、 変性エチレン ビュルアルコール共重合体(D)を含む層を一層のみ有するが、本発 明のインナーライナ一は、図 3に示すように更に他の層を有してもよい。  [0068] In the illustrated inner liner, the resin film layer (A) 9 has only one layer containing, for example, a modified ethylene butyl alcohol copolymer (D). One may have other layers as shown in FIG.
[0069] 図 3は、本発明のインナーライナ一の他の例の部分断面図である。図示例のインナ 一ライナーは、樹脂フィルム層(A) 12として、上記変性エチレン—ビュルアルコール 共重合体 (D)を含む層 13と、該層 13に隣接して配設された二層の熱可塑性ウレタ ン系エラストマ一からなる層 14とを備える。また、図 2と同じ符号は同じ部材であること を示す。  FIG. 3 is a partial cross-sectional view of another example of the inner liner 1 of the present invention. The inner liner of the illustrated example includes, as a resin film layer (A) 12, a layer 13 containing the modified ethylene-butyl alcohol copolymer (D) and two layers of heat disposed adjacent to the layer 13. And a layer 14 made of a plastic urethane elastomer. The same reference numerals as those in Fig. 2 indicate the same members.
[0070] 本発明の空気入りタイヤは、上述したインナーライナ一を適用し、常法により製造す ること力 Sできる。なお、本発明の空気入りタイヤにおいて、タイヤ内に充填する気体と しては、通常の或いは酸素分圧を変えた空気、又は窒素等の不活性ガスを用いるこ と力 Sできる。  [0070] The pneumatic tire of the present invention can be manufactured by a conventional method using the inner liner 1 described above. In the pneumatic tire of the present invention, as the gas filled in the tire, it is possible to use normal air or air having a changed oxygen partial pressure, or an inert gas such as nitrogen.
[0071] < <実施例〉〉  <Example>
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例 に何ら限定されるものではなレ、。  EXAMPLES The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the following examples.
[0072] (変性エチレン ビュルアルコール共重合体(D)の合成例)  [0072] (Synthesis Example of Modified Ethylene Bull Alcohol Copolymer (D))
加圧反応槽に、エチレン含量 44モル%、ケン化度 99.9%のエチレン—ビュルアル コール共重合体( 190°C、 216 Og荷重下での MFR: 5.5g/ 10分) 2質量部及び N- メチル -2-ピロリドン 8質量部を仕込み、 120°Cで 2時間加熱撹拌して、エチレンービ ニルアルコール共重合体を完全に溶解させた。これにエポキシ化合物としてェポキ シプロパン 0.4質量部を添加後、 160°Cで 4時間加熱した。加熱終了後、蒸留水 100 質量部に析出させ、多量の蒸留水で充分に N-メチル -2-ピロリドン及び未反応のェ ポキシプロパンを洗浄し、変性エチレン—ビュルアルコール共重合体(D)を得た。更 に、得られた変性エチレン ビュルアルコール共重合体(D)を粉砕機で粒子径 2m m程度に細力べした後、再度多量の蒸留水で十分に洗浄した。洗浄後の粒子を 8時 間室温で真空乾燥した後、二軸押出機を用いて 200°Cで溶融し、ペレット化した。得 られた変性エチレン ビュルアルコール共重合体(D)は、 23°Cにおけるヤング率が 1300MPaであった。 In a pressurized reactor, ethylene-butyl alcohol copolymer with an ethylene content of 44 mol% and a saponification degree of 99.9% (190 ° C, MFR under 216 Og load: 5.5 g / 10 min) 2 parts by mass and N- 8 parts by mass of methyl-2-pyrrolidone was charged, and heated and stirred at 120 ° C for 2 hours to completely dissolve the ethylene-vinyl alcohol copolymer. To this was added 0.4 parts by mass of epoxypropane as an epoxy compound, and then heated at 160 ° C. for 4 hours. After heating, precipitate in 100 parts by weight of distilled water, and use a large amount of distilled water to sufficiently dissolve N-methyl-2-pyrrolidone and unreacted ether. Poxypropane was washed to obtain a modified ethylene-butyl alcohol copolymer (D). Furthermore, after the obtained modified ethylene butyl alcohol copolymer (D) was vigorously reduced to a particle size of about 2 mm with a pulverizer, it was thoroughly washed again with a large amount of distilled water. The washed particles were vacuum-dried at room temperature for 8 hours and then melted at 200 ° C. using a twin-screw extruder to be pelletized. The resulting modified ethylene butyl alcohol copolymer (D) had a Young's modulus of 1300 MPa at 23 ° C.
[0073] なお、変性エチレン—ビュルアルコール共重合体(D)の 23°Cにおけるヤング率は 下記の方法で測定した。  [0073] The Young's modulus at 23 ° C of the modified ethylene-butyl alcohol copolymer (D) was measured by the following method.
[0074] (1)ヤング率の測定  [0074] (1) Measurement of Young's modulus
得られたペレットを用い、東洋精機社製二軸押出機によって、下記押出条件で製 膜し、厚さ 20 mの単層フィルムを作製した。次に該フィルムを用いて、幅 15mmの 短冊状の試験片を作製し、 23°C、 50%RHの条件下で恒温室内に 1週間放置した 後、株式会社島津製作所製オートグラフ [AG— A500型]を用いて、チャック間隔 50 mm、引張速度 50mm/分の条件で、 23°C、 50%RHにおける S— Sカーブ(応力 歪み曲線)を測定し、 S— Sカーブの初期傾きからヤング率を求めた。  Using the obtained pellets, a single-layer film having a thickness of 20 m was produced using a twin-screw extruder manufactured by Toyo Seiki Co., Ltd. under the following extrusion conditions. Next, using this film, a strip-shaped test piece having a width of 15 mm was prepared and left in a temperature-controlled room at 23 ° C. and 50% RH for one week, and then autograph [AG- A500] was used to measure the S-S curve (stress-strain curve) at 23 ° C and 50% RH under conditions of chuck spacing of 50 mm and tensile speed of 50 mm / min. Young's modulus was determined.
[0075] スクリュー: 20mm φ、フルフライト  [0075] Screw: 20mm φ, full flight
シリンダー、ダイ温度設定: C1/C2/C3/ダイ = 200/200/200/200 (。C) Cylinder, die temperature setting: C1 / C2 / C3 / die = 200/200/200/200 (.C)
[0076] また、上記エチレン ビュルアルコール共重合体のエチレン含有量及びケン化度 は、重水素化ジメチルスルホキシドを溶媒とした1 H-NMR測定 [日本電子社製「JN M— GX— 500型」を使用]で得られたスペクトルから算出した値である。更に、上記 エチレン一ビュルアルコール共重合体のメルトフローレート(MFR)は、メルトインデク サー L244 [宝工業株式会社製]の内径 9.55mm、長さ 162mmのシリンダーにサン プルを充填し、 190°Cで溶融した後、重さ 2160g、直径 9.48mmのプランジャーを使 用して均等に荷重をかけ、シリンダーの中央に設けた径 2.1mmのオリフィスより単位 時間あたりに押出される樹脂量 (g/10分)から求めた。但し、エチレン—ビュルアル コール共重合体の融点が 190°C付近あるいは 190°Cを超える場合は、 2160g荷重 下、融点以上の複数の温度で測定し、片対数グラフで絶対温度の逆数を横軸、 MF Rの対数を縦軸にプロットし、 190°Cに外揷して算出した値をメルトフローレート(MF R)とした。 [0076] Further, the ethylene content and the saponification degree of the above ethylene butyl alcohol copolymer were determined by 1 H-NMR measurement using deuterated dimethyl sulfoxide as a solvent [JN M-GX-500 type manufactured by JEOL Ltd.] Is a value calculated from the spectrum obtained in [Use]. Furthermore, the melt flow rate (MFR) of the above ethylene monobutyl alcohol copolymer was measured at 190 ° C by filling a sample into a cylinder with an inner diameter of 9.55 mm and a length of 162 mm of a melt indexer L244 [manufactured by Takara Kogyo Co., Ltd.] After melting, an even load is applied using a plunger with a weight of 2160g and a diameter of 9.48mm, and the amount of resin extruded per unit time from a 2.1mm diameter orifice provided in the center of the cylinder (g / 10 Min). However, when the melting point of the ethylene-butyl alcohol copolymer is around 190 ° C or exceeds 190 ° C, measurement is made at multiple temperatures above the melting point under a load of 2160g. The logarithm of MFR is plotted on the vertical axis, and the value calculated by adding it to 190 ° C is the melt flow rate (MF R).
[0077] (柔軟樹脂 (E)の合成例)  [0077] (Synthesis example of flexible resin (E))
無水マレイン酸変性水素添加スチレン エチレン ブタジエン スチレンブロック 共重合体を公知の方法により合成し、ペレット化した。得られた無水マレイン酸変性 水素添加スチレン エチレン ブタジエン スチレンブロック共重合体は、ヤング率 力 ¾MPa、スチレン含量が 20%、無水マレイン酸量が 0.3meq/gであった。なお、 無水マレイン酸変性水素添加スチレン エチレン ブタジエン スチレンブロック共 重合体のヤング率は、上記の方法で測定した。  Maleic anhydride-modified hydrogenated styrene ethylene butadiene styrene block copolymer was synthesized by a known method and pelletized. The resulting maleic anhydride-modified hydrogenated styrene ethylene butadiene styrene block copolymer had a Young's modulus power of 3 MPa, a styrene content of 20%, and a maleic anhydride content of 0.3 meq / g. The Young's modulus of the maleic anhydride-modified hydrogenated styrene ethylene butadiene styrene block copolymer was measured by the above method.
[0078] (フィルム A1の作製)  [0078] (Preparation of film A1)
合成例で得られた変性エチレン ビュルアルコール共重合体(D)のペレットを用 いて、 40πιιη φ押出機 [プラスチック工学研究所製 PLABOR 0丁ー40—八]と丁ダィ 力もなる製膜機を用いて、下記押出条件で製膜し、厚さ 20 πιの単層フィルムを得 た。  Using the pellets of the modified ethylene butyl alcohol copolymer (D) obtained in the synthesis example, a 40πιιη φ extruder [PLABOR 0-c. 40-8] manufactured by the Institute of Plastics Engineering, and a film-forming machine that also has the power of Ding. And a film was formed under the following extrusion conditions to obtain a single-layer film having a thickness of 20 πι.
[0079] 形式:単軸押出機(ノンベントタイプ)  [0079] Format: Single screw extruder (non-vent type)
L/D: 24  L / D: 24
口径: 40mm φ  Diameter: 40mm φ
スクリュー:一条フルフライトタイプ、表面窒化鋼  Screw: single-flight full flight type, surface nitrided steel
スクリュー回転数: 40rpm  Screw rotation speed: 40rpm
ダイス: 550mm幅コートノヽンガーダイ  Dice: 550mm wide coat nonga die
リップ間隙: 0.3mm  Lip gap: 0.3mm
シリンダー、ダイ温度設定: C1/C2/C3/アダプター/ダイ = 180/200/210 /210/210 (°C)  Cylinder, die temperature setting: C1 / C2 / C3 / Adapter / Die = 180/200/210 / 210/210 (° C)
[0080] (フィルム B1の作製) [0080] (Preparation of film B1)
合成例で得られた変性エチレン ビュルアルコール共重合体 (D)と柔軟樹脂(E) とを二軸押出機で混練して樹脂組成物 (F)を調製し、フィルム A1の作製と同様にし て、厚さ 20 mの単層フィルムを得た。ここで、樹脂組成物(F)中の柔軟樹脂(E)の 含有率は 20質量%である。また、樹脂組成物 (F)中の柔軟樹脂 (E)の平均粒径は、 得られた樹脂組成物(F)の試料を凍結した後、該試料をミクロトームにより切片にして 、透過電子顕微鏡で測定すると、 1.0 であった。 The resin composition (F) was prepared by kneading the modified ethylene butyl alcohol copolymer (D) obtained in the synthesis example and the flexible resin (E) with a twin-screw extruder, in the same manner as the production of the film A1. A monolayer film having a thickness of 20 m was obtained. Here, the content of the flexible resin (E) in the resin composition (F) is 20% by mass. In addition, the average particle diameter of the flexible resin (E) in the resin composition (F) is determined by freezing a sample of the obtained resin composition (F) and then cutting the sample with a microtome. It was 1.0 when measured with a transmission electron microscope.
[0081] (フィルム A2の作製) [0081] (Preparation of film A2)
合成例で得られた変性エチレン ビュルアルコール共重合体(D)のペレットと、熱 可塑性ポリウレタン [(株)クラレ製クラミロン 3190]とを使用し、 2種 3層共押出装置を 用いて、下記共押出成形条件で 3層フィルム(熱可塑性ポリウレタン層/変性 EVOH (D)層/熱可塑性ポリウレタン層,厚さ: 20 ^ m/20 μ m/20 μ m)を作製した。  Using the modified ethylene butyl alcohol copolymer (D) pellets obtained in the synthesis example and thermoplastic polyurethane [Kuraray 3190, Kuraray Co., Ltd.], the following co-extrusion equipment was used. A three-layer film (thermoplastic polyurethane layer / modified EVOH (D) layer / thermoplastic polyurethane layer, thickness: 20 ^ m / 20 μm / 20 μm) was prepared under extrusion molding conditions.
[0082] 各樹脂の押出温度: C1/C2/C3/ダイ = 170/170/200/200°C [0082] Extrusion temperature of each resin: C1 / C2 / C3 / die = 170/170/200/200 ° C
各樹脂の押出機仕様:  Extruder specifications for each resin:
熱可塑性ポリウレタン: 25mm φ押出機 Ρ25— 18 AC [大阪精機工作株式会社製 Thermoplastic polyurethane: 25mm φ Extruder —25—18 AC [Osaka Seiki Co., Ltd.
] ]
変性 EVOH (D): 20mm φ押出機ラボ機 ME型 CO— EXT [株式会社東洋精機 製]  Modified EVOH (D): 20mm φ Extruder Lab Machine ME Type CO—EXT [Toyo Seiki Co., Ltd.]
Tダイ仕様: 500mm幅 2種 3層用 [株式会社プラスチック工学研究所製] 冷却ロールの温度:50°C  T-die specification: 500mm width, 2 types, 3 layers [Plastic Engineering Laboratory Co., Ltd.] Cooling roll temperature: 50 ° C
引き取り速度: 4m/分  Pickup speed: 4m / min
[0083] (フィルム B2の作製) [0083] (Preparation of film B2)
フィルム B1の作製で調製した樹脂組成物(F)と、熱可塑性ポリウレタン [(株)クラレ 製クラミロン 3190]とを使用し、フィルム A2の作製と同様にして、 3層フィルム(熱可塑 性ポリウレタン層/樹脂組成物(F)層/熱可塑性ポリウレタン層,厚さ: 20 m/20 μ m/20 μ m)を作製した。  Using the resin composition (F) prepared in the production of the film B1 and the thermoplastic polyurethane [Kuraray Co., Ltd. Kuramylon 3190], the three-layer film (thermoplastic polyurethane layer) was produced in the same manner as the production of the film A2. / Resin composition (F) layer / thermoplastic polyurethane layer, thickness: 20 m / 20 μm / 20 μm).
[0084] 上記のようにして得られたフィルムの酸素透過係数を下記の方法で評価した。結果 を表 1に示す。 [0084] The oxygen permeability coefficient of the film obtained as described above was evaluated by the following method. The results are shown in Table 1.
[0085] (2)フィルムの酸素透過係数の測定 [0085] (2) Measurement of oxygen permeability coefficient of film
上記フィルムを、 20°C、 65%RHで 5日間調湿した。得られた調湿済みのフィルム を 2枚使用して、モダンコントロール社製 MOCON OX— TRAN2/20型を用い、 2 0°C、 65%RHの条件下で JIS K7126 (等圧法)に準拠して、酸素透過係数を測定 し、その平均値を求めた。 [0086] The film was conditioned at 20 ° C. and 65% RH for 5 days. Using the two humidity-adjusted films obtained, using MOCON OX—TRAN2 / 20, manufactured by Modern Control, in compliance with JIS K7126 (isobaric method) at 20 ° C and 65% RH Then, the oxygen transmission coefficient was measured and the average value was obtained. [0086]
Figure imgf000023_0001
Figure imgf000023_0001
[0087] (ゴム状弾性体層(B)の作製例 1) (Example of production of rubber-like elastic layer (B) 1)
ブチルゴム SR (株)製, Butyl 268] 100質量部に対して、 GPFカーボンブラック [旭カーボン(株)製, # 55]60質量部、 SUNPAR2280 [日本サン石油(株)製] 7質 量部、ステアリン酸 [旭電化工業 (株)製] 1質量部、ノクセラー DM [大内新興化学ェ 業 (株)製] 1.3質量部、酸化亜鉛 [白水化学工業 (株)製] 3質量部及び硫黄 [鶴見化 学 (株)製] 0.5質量部を配合してゴム組成物を調製し、該ゴム組成物を用いて厚さ 50 0 a mの未加硫のゴム状弾性体層(B)を作製した。  Butyl rubber SR Co., Ltd., Butyl 268] 100 parts by mass, GPF carbon black [Asahi Carbon Co., Ltd., # 55] 60 parts by mass, SUNPAR2280 [Nihon Sun Sekiyu Co., Ltd.] 7 parts by mass, Stearic acid [Asahi Denka Kogyo Co., Ltd.] 1 part by mass, Noxeller DM [Ouchi Shinsei Chemical Co., Ltd.] 1.3 parts by mass, Zinc oxide [Shiramizu Chemical Co., Ltd.] 3 parts by mass and sulfur [ Tsurumi Chemical Co., Ltd.] A rubber composition was prepared by blending 0.5 part by mass, and an unvulcanized rubber-like elastic layer (B) having a thickness of 500 am was produced using the rubber composition. .
[0088] (ゴム状弾性体層(B)の作製例 2)  [0088] (Production Example 2 of Rubber Elastic Body Layer (B))
作製例 1のブチルゴムの代わりに臭素化ブチルゴム SR (株)製, Bromobutyl 2 244]を用いる以外は、上記作製例 1と同様にして、厚さ 500 mの未加硫のゴム状 弾性体層(B)を作製した。  An unvulcanized rubber-like elastic layer with a thickness of 500 m was used in the same manner as in Preparation Example 1 except that brominated butyl rubber SR, Bromobutyl 2 244] was used instead of the butyl rubber of Preparation Example 1. B) was prepared.
[0089] (接着剤組成物 (H)の調製)  [0089] (Preparation of adhesive composition (H))
臭素化ブチルゴム [JSR (株)製, Bromobutyl 2244] 100質量部に対して、カーボ ンブラック [東海カーボン (株)製,シースト NB]10質量部、フエノール樹脂 [住友べ一 クライト (株)製, PR— SC— 400]20質量部、ステアリン酸ほ亓日本理化(株)製, 50S] 1質量部、酸化亜鉛 [ハクスィテック (株)製] 3質量部、ポリ- P-ジニトロソベンゼン [大 内新興化学工業 (株)製,バルノック DNB]3質量部、 1,4-フエ二レンジマレイミド [大 内新興化学工業 (株)製,バルノック PM]3質量部、加硫促進剤 ZTC [大内新興化学 工業 (株)製,ノクセラー ZTC,ジベンジルジチォカルバミン酸亜鉛] 1質量部、加硫 促進剤 DM [大内新興化学工業 (株)製,ノクセラー DM,ジ -2-ベンゾチアゾリルジ スルフイド] 0.5質量部、加硫促進剤 D [大内新興化学工業 (株)製,ノクセラー D, 1,3 -ジフエニルダァニジン] 1質量部及び硫黄 [鶴見化学 (株)製,金華印微粉硫黄] 1.5 質量部を配合して接着剤組成物 (H)を調製した。 Brominated butyl rubber [JSR Co., Ltd., Bromobutyl 2244] 100 parts by mass of carbon black [Tokai Carbon Co., Ltd., Seast NB] 10 parts by mass, phenolic resin [Sumitomo Beichikrite Co., Ltd., PR-SC-400] 20 parts by mass, stearic acid manufactured by Nippon Rika Co., Ltd., 50S] 1 part by mass, zinc oxide [by Hakutech Co., Ltd.] 3 parts by mass, poly-P-dinitrosobenzene [Ouchi Shinsei Chemical Industry Co., Ltd., Barnock DNB] 3 parts by mass, 1,4-phenylene dimaleimide [Ouchi Shinsei Chemical Co., Ltd., Barnock PM] 3 parts by mass, vulcanization accelerator ZTC [Ouchi Eshin Chemical Industry Co., Ltd., Noxeller ZTC, Zinc dibenzyldithiocarbamate] 1 part by mass, Vulcanization accelerator DM [Ouchi Shinsei Chemical Co., Ltd., Noxeller DM, Di-2-benzothiazolyl disulfide ] 0.5 parts by mass, vulcanization accelerator D [Ouchi Shinsei Chemical Co., Ltd., Noxeller D, 1,3-Diphenyl Dani Down] 1 part by mass and sulfur [Tsurumi Chemical Co., Ltd., Jinhua mark micronized sulfur] 1.5 An adhesive composition (H) was prepared by blending parts by mass.
[0090] (実施例 1-1)  [0090] (Example 1-1)
日新ノヽィボルテージ株式会社製電子線照射装置「生産用キュアトロン EBC200-1 00」を使用して、カロ速電圧 200kV、照射エネルギー 30Mradの条件でフィルム A1に 電子線照射して架橋処理を施した後、得られた架橋フィルムの表面に、信光電気計 装 (株)製コロナ放電処理装置「コロナマスター PS— 1M」を使用して、電極間隔 lm m、放電電圧 7kV、周波数 15kHzの条件でコロナ放電処理(表面酸化処理)を施し た。次に、上記接着剤組成物(H) 100質量部をトルエン( δ値: 18. 2MPa1/2) 1000 質量部に添加し、分散又は溶解して、塗工液を調製した。得られた塗工液を、酸化 処理したフィルムの片面に塗布した後、乾燥して接着剤層(C)を形成し、該接着剤 層(C)の表面に作製例 1のゴム状弾性体層(B)を貼り合わせた後、 160°Cで 15分間 加硫処理を行い、図 3に示す構造のインナーライナ一を作製した。得られたインナー ライナーを用いて、図 1に示す構造でサイズ 195/65R15の乗用車用空気入りタイ ャを常法に従って作製した。 Using a Nisshin Noise Voltage Co., Ltd. electron beam irradiation device “Curetron EBC200-100 for production”, film A1 was irradiated with an electron beam under the conditions of a quick calorie voltage of 200 kV and an irradiation energy of 30 Mrad to perform crosslinking treatment. After that, on the surface of the obtained cross-linked film, a corona discharge treatment device “Corona Master PS-1M” manufactured by Shinko Electric Instruments Co., Ltd. was used under the conditions of electrode spacing lm m, discharge voltage 7 kV, frequency 15 kHz. Corona discharge treatment (surface oxidation treatment) was performed. Next, 100 parts by mass of the adhesive composition (H) was added to 1000 parts by mass of toluene (δ value: 18.2 MPa 1/2 ), and dispersed or dissolved to prepare a coating solution. The obtained coating liquid is applied to one side of an oxidized film and then dried to form an adhesive layer (C). The rubber-like elastic body of Production Example 1 is formed on the surface of the adhesive layer (C). After laminating layer (B), vulcanization was performed at 160 ° C for 15 minutes to produce an inner liner having the structure shown in FIG. Using the obtained inner liner, a pneumatic tire for passenger cars of size 195 / 65R15 with the structure shown in FIG. 1 was produced according to a conventional method.
[0091] (実施例 1-2〜; 1-8)  [0091] (Examples 1-2 to 1-8)
表 2に示す樹脂フィルム層(A)及びゴム状弾性体層(B)を用いる以外は、上記実 施例; 1-1と同様にして、空気入りタイヤを作製した。  A pneumatic tire was produced in the same manner as in the above Example; 1-1 except that the resin film layer (A) and rubber-like elastic layer (B) shown in Table 2 were used.
[0092] (実施例 1-9〜; 1-10)  [0092] (Examples 1-9 to 1-10)
表 2に示す樹脂フィルム層(A)及びゴム状弾性体層(B)を用い、また、表面酸化処 理として上記コロナ放電処理の代わりに、春日電気 (株)製プラズマ照射表面改質装 置「PS— 601C型」を使用して、出力 10kVの条件でプラズマ放電処理を施す以外 は、上記実施例; 1-1と同様にして、空気入りタイヤを作製した。  The resin film layer (A) and rubber-like elastic layer (B) shown in Table 2 were used, and instead of the corona discharge treatment as a surface oxidation treatment, a plasma irradiation surface modification device manufactured by Kasuga Electric Co., Ltd. A pneumatic tire was produced in the same manner as in the above Example; 1-1 except that the plasma discharge treatment was performed under the condition of an output of 10 kV using “PS-601C type”.
[0093] (比較例 1-1)  [0093] (Comparative Example 1-1)
表面酸化処理を行わない以外は、上記実施例; 1-1と同様にして、空気入りタイヤを 作製した。  A pneumatic tire was produced in the same manner as in the above Example; 1-1 except that the surface oxidation treatment was not performed.
[0094] (比較例 1-2〜; 1-4)  [0094] (Comparative Examples 1-2 and 1-4; 1-4)
表 2に示す樹脂フィルム層(A)及びゴム状弾性体層(B)を用いる以外は、上記比 較例; 1-1と同様にして、空気入りタイヤを作製した。 [0095] 次に、得られたタイヤの耐久性試験を下記の方法で行い、故障の有無を評価した。 結果を表 2に示す。 A pneumatic tire was produced in the same manner as in Comparative Example 1-1, except that the resin film layer (A) and rubber-like elastic layer (B) shown in Table 2 were used. [0095] Next, a durability test of the obtained tire was performed by the following method to evaluate the presence or absence of a failure. The results are shown in Table 2.
[0096] (3)タイヤの耐久性試験  [0096] (3) Tire durability test
各試作タイヤをリム組みし、内圧を 175kPaとして、荷重 4.5kNの下、速度 80km/ h、温度 20°Cの条件でドラム走行テストを行い、 10,000km走行後にタイヤのイン ナーライナ一外観を目視観察した。 目視観察により、故障が発見されな力 た場合を 良好とし、亀裂やクラックが生じたり、剥がれや浮き上がりが見られた場合を不良とし た。  Each prototype tire is assembled with a rim, the internal pressure is 175 kPa, the load is 4.5 kN, the speed is 80 km / h, the temperature is 20 ° C, and the drum running test is performed. After running 10,000 km, the inner liner appearance of the tire is visually observed. Observed. By visual observation, the case where no failure was detected was determined to be good, and the case where cracks or cracks occurred, or peeling or lifting was determined to be defective.
[0097] ^  [0097] ^
Figure imgf000025_0001
Figure imgf000025_0001
[0098] 表 2から明らかなように、実施例のタイヤは、いずれの樹脂フィルム層(A)及びゴム 状弾性体層(B)をインナーライナ一に用いても、剥がれや浮き上がり等が観察されず 、樹脂フィルム層 (A)とゴム状弾性体層(B)との剥離抗力が高いことが分かる。また、 亀裂やクラック等も発生していないことから、本発明のインナーライナ一は、屈曲時の 耐破断性に優れてレ、ること力 S分力、る。 [0098] As is apparent from Table 2, in the tires of the examples, peeling and lifting were observed regardless of which resin film layer (A) and rubber-like elastic body layer (B) were used as the inner liner. It can be seen that the peel resistance between the resin film layer (A) and the rubber-like elastic layer (B) is high. In addition, since no cracks or cracks are generated, the inner liner of the present invention has excellent breaking resistance at the time of bending.
[0099] (実施例 2-;!〜 2-8及び比較例 2-;!〜 2-3)  [0099] (Example 2-;! To 2-8 and Comparative Example 2-;! To 2-3)
日新ノヽィボルテージ株式会社製電子線照射装置「生産用キュアトロン EBC200-1 00」を使用して、カロ速電圧 200kV、照射エネルギー 30Mradの条件でフィルム A2に 電子線照射して架橋処理を施した後、得られた架橋フィルムの表面に、信光電気計 装 (株)製コロナ放電処理装置「コロナマスター PS— 1M」(電極間隔 lmm、周波数 15kHz)を使用して、表 3〜4に示す条件で、架橋フィルムの少なくとも片面に表面酸 化処理を施した。次に、上記接着剤組成物(H) 100質量部をトルエン( δ値: 18. 2 MPa172) 1000質量部に添加し、分散又は溶解して、塗工液を調製した。得られた塗 ェ液を、酸化処理したフィルムの片面に塗布した後、乾燥して接着剤層(C)を形成し 、該接着剤層(C)の表面に作製例 1のゴム状弾性体層(B)を貼り合わせた後、 160 °Cで 15分間加硫処理を行い、図 3に示す構造のインナーライナ一を作製した。次に 、得られたインナーライナ一を用いて、図 1に示す構造でサイズ: 195/65R15の乗 用車用空気入りタイヤを常法に従って作製した。 Using a Nisshin Noi Voltage Co., Ltd. electron beam irradiation device “Curetron EBC200-100 for production”, film A2 was irradiated with an electron beam under the conditions of a quick calorie voltage of 200 kV and an irradiation energy of 30 Mrad, and then subjected to crosslinking treatment. After that, on the surface of the obtained crosslinked film, Shinko Electric Meter Using a corona discharge treatment device “Corona Master PS-1M” (electrode spacing lmm, frequency 15kHz) manufactured by Sou Co., Ltd., surface oxidation treatment was performed on at least one side of the crosslinked film under the conditions shown in Tables 3-4. did. Next, 100 parts by mass of the above adhesive composition (H) was added to 1000 parts by mass of toluene (δ value: 18.2 MPa 172 ), and dispersed or dissolved to prepare a coating solution. The obtained coating solution was applied to one side of an oxidized film and then dried to form an adhesive layer (C). The rubber-like elastic body of Production Example 1 was formed on the surface of the adhesive layer (C). After laminating layer (B), a vulcanization treatment was performed at 160 ° C. for 15 minutes to produce an inner liner having the structure shown in FIG. Next, using the obtained inner liner, a pneumatic tire for a passenger car having a size of 195 / 65R15 having the structure shown in FIG. 1 was produced according to a conventional method.
[0100] なお、上記架橋フィルムの少なくとも片面に表面酸化処理を施したフィルムについ て、表面自由エネルギーを下記の方法で測定した。この場合、該フィルムの接着剤 層(C)を形成させる側の面を A-2とし、接着剤層(C)を形成させる面と反対側の面を A-1とした。結果を表 3〜4に示す。  [0100] With respect to the film obtained by subjecting at least one surface of the crosslinked film to surface oxidation treatment, the surface free energy was measured by the following method. In this case, the surface of the film on which the adhesive layer (C) was formed was designated as A-2, and the surface opposite to the surface on which the adhesive layer (C) was formed was designated as A-1. The results are shown in Tables 3-4.
[0101] (4)表面自由エネルギー  [0101] (4) Surface free energy
協和界面科学 (株)製 DropMaster700を用いて、水、ジョードメタン及び n_へキサ デカンの接触角を測定し、これらの接触角から下記式にて表面自由エネルギーを算 し/し。  Using DropMaster700 manufactured by Kyowa Interface Science Co., Ltd., the contact angles of water, jodomethane and n_hexadecane were measured, and the surface free energy was calculated / calculated from these contact angles using the following formula.
d I p h  d I p h
γ = γ 十 γ 十 γ  γ = γ ten γ ten γ
36.4 ( l + cos θ Η) = (29.1 γ d) 1/2+ (1.3 γ Ρ) 1/2 + (42.4 γ h) 1/2 36.4 (l + cos θ Η) = (29.1 γ d) 1/2 + (1.3 γ Ρ) 1/2 + (42.4 γ h) 1/2
25.4 (l + cos θ ') = (46.8 γ d) 1/2 + (4 γ ρ) 1/2 25.4 (l + cos θ ') = (46.8 γ d ) 1/2 + (4 γ ρ ) 1/2
13.8 (l + cos 0 D) = (27.6 y d) 1/2 13.8 (l + cos 0 D ) = (27.6 y d ) 1/2
式中、 γは表面自由エネルギー(mN/m)であり、 y dは表面自由エネルギーの分 散力成分(mN/m)であり、 γ Ρは表面自由エネルギーの双極子引力成分(mN/m )であり、 γ 11は表面自由エネルギーの水素結合成分(mN/m)であり、 θ Hは水の接 触角(° )であり、 Θ 1はジョードメタンの接触角(° )であり、 e Dは n-へキサデカンの 接触角(° )である。 Where γ is the surface free energy (mN / m), y d is the surface free energy dispersive component (mN / m), and γ Ρ is the surface free energy dipole attractive component (mN / m) ), Γ 11 is the hydrogen bond component of surface free energy (mN / m), θ H is the contact angle of water (°), Θ 1 is the contact angle of jode methane (°), e D is the contact angle (°) of n-hexadecane.
[0102] 次に、得られたタイヤの特性試験を下記の方法で行い、評価した。結果を表 3〜4 に示す。 [0103] (5)成形時の拡張によるインナーライナ一のジョイント部の剥がれ確認試験 各条件で作製したインナーライナ一を有するタイヤ 100本をそれぞれ用意して、該 タイヤを室温で一日放置し、そのタイヤ内面のインナーライナ一のジョイント部のジョ イントの性状を目視にて確認し、下記基準で評価した。 [0102] Next, a characteristic test of the obtained tire was performed and evaluated by the following method. The results are shown in Tables 3-4. [0103] (5) Test for confirming peeling of joint portion of inner liner due to expansion during molding Prepare 100 tires each having an inner liner prepared under each condition, and leave the tire at room temperature for one day. The joint properties of the inner liner of the tire inner surface were visually confirmed and evaluated according to the following criteria.
タイヤ 100本のうち、全てのタイヤにジョイント部の剥がれが確認されなかったものを Of the 100 tires, all tires for which no joint peeling was confirmed
「〇」、 1本のタイヤにジョイント部の剥がれが確認されたものを「△」、 4本以上のタイ ャにジョイント部の剥がれが確認されたものを「 X」とした。 “◯”, “△” means that the joint part was confirmed to be peeled off on one tire, and “X” means that the joint part was confirmed to be peeled off on four or more tires.
[0104] (6)タイヤの耐久試験 [0104] (6) Tire durability test
各試作タイヤをリム組みし、内圧を 175kPaとして、荷重 4.5kNの下、速度 80km/ h、温度 20°Cの条件でドラム走行テストを行い、 10,000km走行後にタイヤ内面を 目視にて検査した。 目視観察により、故障が発見されなかった場合を「〇」とし、亀裂 やクラックが生じたり、剥がれや浮き上がりが見られた場合を「 X」とした。 Each prototype tire was assembled on a rim, the internal pressure was 175 kPa, the load was 4.5 kN, the speed was 80 km / h, the temperature was 20 ° C, and the drum running test was performed. After running 10,000 km, the inner surface of the tire was visually inspected. . When no failure was found by visual observation, “◯” was assigned, and when cracks or cracks were observed, or when peeling or lifting was observed, “X” was assigned.
表 3 Table 3
Figure imgf000028_0001
Figure imgf000028_0001
S星
Figure imgf000029_0001
表 3及び 4から、実施例 2-3〜2-7のタイヤのインナーライナ一は、樹脂フィルム層( A)の A-1面の表面自由エネルギーが 50mN/m以上であるため、タイヤ成型時の 拡張に耐え得る耐久性を有していることが分かる。また、実施例 2-;!〜 2-2及び 2-8 のタイヤのインナーライナ一は、樹脂フィルム層(A)の A-1面の表面自由エネルギー が 50mN/m未満である力 A-2面の表面自由エネルギーが 50mN/m以上であ るため、接着剤層(C)の粘着力が改善されており、タイヤとして問題なく製造可能な 耐久性を有して!/、ること力 S分力、る。
S star
Figure imgf000029_0001
From Tables 3 and 4, the tire inner liners of Examples 2-3 to 2-7 have a surface free energy of 50 mN / m or more on the A-1 surface of the resin film layer (A). It can be seen that it has the durability to withstand the expansion of. Also, Example 2-;! To 2-2 and 2-8 The inner liner of this tire has a force that the surface free energy on the A-1 surface of the resin film layer (A) is less than 50 mN / m, and the surface free energy on the A-2 surface is 50 mN / m or more. The adhesive strength of the agent layer (C) has been improved, and it has the durability that can be produced without any problem as a tire!
実施例 2-;!〜 2-3及び 2-6〜2-8のタイヤのインナーライナ一は、樹脂フィルム層( A)の A-2面の表面自由エネルギー力 ¾0mN/m以上であるため、タイヤの内面とィ ンナーライナ一との剥離抗力に優れることが分かる。  Since the inner liners of tires of Examples 2-;! To 2-3 and 2-6 to 2-8 have a surface free energy force of ¾0 mN / m or more on the A-2 surface of the resin film layer (A), It can be seen that the peeling resistance between the inner surface of the tire and the inner liner is excellent.

Claims

請求の範囲 The scope of the claims
[1] 樹脂フィルム層 (A)とゴム状弾性体層(B)とが、接着剤層(C)を介して接合されて なる空気入りタイヤ用インナーライナ一であって、  [1] An inner liner for a pneumatic tire in which a resin film layer (A) and a rubber-like elastic body layer (B) are joined via an adhesive layer (C),
前記樹脂フィルム層(A)の少なくとも接着剤層(C)側の面が表面改質されているこ とを特徴とする空気入りタイヤ用インナーライナ一。  An inner liner for a pneumatic tire, wherein at least a surface of the resin film layer (A) on the side of the adhesive layer (C) is surface-modified.
[2] 前記樹脂フィルム層(A)の少なくとも接着剤層(C)側の面に表面酸化処理が施さ れて!/、ることを特徴とする請求項 1に記載の空気入りタイヤ用インナーライナ一。 [2] The inner liner for a pneumatic tire according to claim 1, wherein at least a surface of the resin film layer (A) on the side of the adhesive layer (C) is subjected to surface oxidation treatment! one.
[3] 前記表面酸化処理がコロナ放電処理であることを特徴とする請求項 2に記載の空 気入りタイヤ用インナーライナ一。 [3] The inner liner for a pneumatic tire according to claim 2, wherein the surface oxidation treatment is a corona discharge treatment.
[4] 樹脂フィルム層 (A)と、該樹脂フィルム層 (A)上に配設された接着剤層 (B)とを備 える積層体からなり、 [4] A laminate comprising a resin film layer (A) and an adhesive layer (B) disposed on the resin film layer (A),
前記樹脂フィルム層(A)の少なくとも片面の表面自由エネルギーが、 50mN/m以 上であることを特徴とする空気入りタイヤ用インナーライナ一。  An inner liner for a pneumatic tire, wherein a surface free energy of at least one surface of the resin film layer (A) is 50 mN / m or more.
[5] 前記樹脂フィルム層(A) 1 エチレン—ビュルアルコール共重合体を反応させて得 られる変性エチレン ビュルアルコール共重合体 (D)を含む層を少なくとも含むこと を特徴とする請求項 1又は 4に記載の空気入りタイヤ用インナーライナ一。  [5] The resin film layer (A), comprising at least a layer containing a modified ethylene butyl alcohol copolymer (D) obtained by reacting an ethylene ethylene butyl alcohol copolymer. An inner liner for a pneumatic tire as described in 1.
[6] 前記エチレン ビュルアルコール共重合体のエチレン含有量が 25〜50モル%で あることを特徴とする請求項 5に記載の空気入りタイヤ用インナーライナ一。  6. The inner liner for a pneumatic tire according to claim 5, wherein the ethylene content of the ethylene butyl alcohol copolymer is 25 to 50 mol%.
[7] 前記エチレン ビュルアルコール共重合体のケン化度が 90%以上であることを特 徴とする請求項 5に記載の空気入りタイヤ用インナーライナ一。  7. The inner liner for a pneumatic tire according to claim 5, wherein the ethylene butyl alcohol copolymer has a saponification degree of 90% or more.
[8] 前記変性エチレン ビュルアルコール共重合体(D)が、前記エチレン ビュルァ ルコール共重合体 100質量部に対し、エポキシ化合物 1〜 50質量部を反応させたも のであることを特徴とする請求項 5に記載の空気入りタイヤ用インナーライナ一。  [8] The modified ethylene butyl alcohol copolymer (D) is obtained by reacting 1 to 50 parts by mass of an epoxy compound with 100 parts by mass of the ethylene butyl alcohol copolymer. 5. An inner liner for a pneumatic tire according to 5.
[9] 前記変性エチレン ビュルアルコール共重合体 (D)を含む層が、前記変性ェチレ ン—ビュルアルコール共重合体 (D)からなるマトリックス中に、水酸基と反応する官 能基を有し、ヤング率力 ^OOMPa以下である柔軟樹脂(E)が分散した樹脂組成物( F)からなることを特徴とする請求項 5に記載の空気入りタイヤ用インナーライナ一。  [9] The layer containing the modified ethylene butyl alcohol copolymer (D) has a functional group that reacts with a hydroxyl group in the matrix composed of the modified ethylene butyl alcohol copolymer (D). 6. The inner liner for a pneumatic tire according to claim 5, comprising a resin composition (F) in which a flexible resin (E) having a power of ^ OOMPa or less is dispersed.
[10] 前記樹脂フィルム層(A)は、 20°C、 65%RHにおける酸素透過係数が 3.0 X 10— 12 cm3'cm/cm2' sec 'cmHg以下であることを特徴とする請求項 1又は 4に記載の空 気入りタイヤ用インナーライナ一。 [10] The resin film layer (A), 20 ° C, the oxygen permeability at 65% RH is 3.0 X 10- 12 cm 3 'cm / cm 2' sec ' claim 1 or 4 empty pneumatic tire for an inner liner one described, characterized in that cmHg or less.
[11] 前記樹脂フィルム層(A)の厚さが 100 m以下であることを特徴とする請求項 1又 は 4に記載の空気入りタイヤ用インナーライナ一。 [11] The inner liner for a pneumatic tire according to [1] or [4], wherein the thickness of the resin film layer (A) is 100 m or less.
[12] 前記樹脂フィルム層(A)が架橋されていることを特徴とする請求項 1又は 4に記載 の空気入りタイヤ用インナーライナ一。 [12] The inner liner for a pneumatic tire according to claim 1 or 4, wherein the resin film layer (A) is crosslinked.
[13] 前記変性エチレン ビュルアルコール共重合体 (D)が架橋されていることを特徴と する請求項 5に記載のタイヤ用インナーライナ一。 [13] The tire inner liner according to [5], wherein the modified ethylene butyl alcohol copolymer (D) is crosslinked.
[14] 前記樹脂フィルム層(A)力 、前記変性エチレン—ビュルアルコール共重合体 (D) を含む層に隣接して、更にエラストマ一からなる補助層(G)を一層以上備えることを 特徴とする請求項 5に記載の空気入りタイヤ用インナーライナ一。 [14] The resin film layer (A) is further provided with one or more auxiliary layers (G) made of an elastomer adjacent to the layer containing the modified ethylene-butyl alcohol copolymer (D). The inner liner for a pneumatic tire according to claim 5.
[15] 前記補助層(G)が熱可塑性ウレタン系エラストマ一を含むことを特徴とする請求項15. The auxiliary layer (G) includes a thermoplastic urethane elastomer.
14に記載の空気入りタイヤ用インナーライナ一。 14. An inner liner for a pneumatic tire according to 14.
[16] 前記補助層(G)の厚さの合計力 S、 10〜; 100 の範囲であることを特徴とする請 求項 14に記載の空気入りタイヤ用インナーライナ一。 [16] The inner liner for a pneumatic tire according to claim 14, wherein the total force S of the thicknesses of the auxiliary layers (G) is in the range of 10 to 100.
[17] 接着剤組成物 (H)と有機溶媒とを含む塗工液を、少なくとも片面が表面改質された 前記樹脂フィルム層(A)の表面に塗布及び乾燥して前記接着剤層(C)を形成し、更 に該接着剤層(C)の表面にゴム状弾性体層(B)を貼り合わせ、加硫処理を行うこと により得られることを特徴とする請求項 4に記載の空気入りタイヤ用インナーライナ一[17] A coating liquid containing an adhesive composition (H) and an organic solvent is applied to the surface of the resin film layer (A) whose surface has been modified on at least one side and dried to form the adhesive layer (C 5. The air according to claim 4, which is obtained by forming a rubber elastic body layer (B) on the surface of the adhesive layer (C) and performing a vulcanization treatment. Inner liner for entering tires
Yes
[18] 接着剤組成物 (H)と有機溶媒とを含む塗工液を、ゴム状弾性体層(B)の表面に塗 布及び乾燥して前記接着剤層(C)を形成し、該接着剤層(C)の表面に少なくとも片 面が表面改質された前記樹脂フィルム層(A)を貼り合わせ、加硫処理を行うことによ り得られることを特徴とする請求項 4に記載の空気入りタイヤ用インナーライナ一。  [18] A coating liquid containing the adhesive composition (H) and an organic solvent is applied to the surface of the rubber-like elastic layer (B) and dried to form the adhesive layer (C). 5. The adhesive layer (C) according to claim 4, wherein the resin film layer (A) having at least one surface modified is bonded to the surface of the adhesive layer (C) and vulcanized. Inner liner for pneumatic tires.
[19] 前記ゴム状弾性体層(B)力 ブチルゴム及び/又はハロゲン化ブチルゴムを含む ことを特徴とする請求項 1、 17又は 18に記載の空気入りタイヤ用インナーライナ一。  [19] The inner liner for a pneumatic tire according to [1], [17] or [18], wherein the rubber-like elastic layer (B) force includes butyl rubber and / or halogenated butyl rubber.
[20] 接着剤組成物 (H)と有機溶媒とを含む塗工液を、前記樹脂フィルム層 (A)の表面 改質された面に塗布及び乾燥して接着剤層(C)を形成し、次!/、で該接着剤層(C)の 表面に前記ゴム状弾性体層(B)を貼り合わせ、加硫処理を行うことを特徴とする請求 項 1、 17又は 18に記載の空気入りタイヤ用インナーライナ一の製造方法。 [20] A coating solution containing the adhesive composition (H) and an organic solvent is applied to the surface-modified surface of the resin film layer (A) and dried to form an adhesive layer (C). Next! /, Of the adhesive layer (C) 19. The method for manufacturing an inner liner for a pneumatic tire according to claim 1, 17 or 18, wherein the rubber-like elastic layer (B) is bonded to a surface and vulcanization is performed.
[21] 接着剤組成物 (H)と有機溶媒とを含む塗工液を、前記ゴム状弾性体層(B)の表面 に塗布及び乾燥して接着剤層(C)を形成し、次!/、で該接着剤層(C)の表面に前記 樹脂フィルム層(A)の表面改質された面を貼り合わせ、加硫処理を行うことを特徴と する請求項項 1、 17又は 18に記載の空気入りタイヤ用インナーライナ一の製造方法[21] A coating solution containing the adhesive composition (H) and an organic solvent is applied to the surface of the rubber-like elastic layer (B) and dried to form an adhesive layer (C). The surface of the adhesive layer (C) is bonded to the surface of the adhesive layer (C) with /, and a vulcanization treatment is performed. Method for manufacturing an inner liner for a pneumatic tire according to claim
Yes
[22] 請求項;!〜 19の!/、ずれかに記載の空気入りタイヤ用インナーライナ一を備えること を特徴とする空気入りタイヤ。  [22] A pneumatic tire comprising the inner liner for a pneumatic tire according to any one of claims! To 19! /.
PCT/JP2007/064527 2006-07-24 2007-07-24 Inner liner for pneumatic tire, method for producing the same and pneumatic tire WO2008013183A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006200904A JP4939863B2 (en) 2006-07-24 2006-07-24 INNERLINER FOR PNEUMATIC TIRE, MANUFACTURING METHOD THEREOF, AND PNEUMATIC TIRE
JP2006-200904 2006-07-24
JP2007-191370 2007-07-23
JP2007191370 2007-07-23

Publications (1)

Publication Number Publication Date
WO2008013183A1 true WO2008013183A1 (en) 2008-01-31

Family

ID=38981494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064527 WO2008013183A1 (en) 2006-07-24 2007-07-24 Inner liner for pneumatic tire, method for producing the same and pneumatic tire

Country Status (1)

Country Link
WO (1) WO2008013183A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143188A1 (en) * 2007-05-17 2008-11-27 Bridgestone Corporation Radial tire for heavy load
JP2010069828A (en) * 2008-09-22 2010-04-02 Bridgestone Corp Processing method for tire inner surface and processing device for tire inner surface
WO2015079384A1 (en) * 2013-11-29 2015-06-04 Pirelli Tyre S.P.A. Self-sealing tyre for motor vehicle wheels and self-sealing tyre
US9832428B2 (en) 2012-12-27 2017-11-28 Kateeva, Inc. Fast measurement of droplet parameters in industrial printing system
US11207919B2 (en) 2016-06-21 2021-12-28 Bridgestone Americas Tire Operations, Llc Methods for treating inner liner surface, inner liners resulting therefrom and tires containing such inner liners
US11697306B2 (en) 2016-12-15 2023-07-11 Bridgestone Americas Tire Operations, Llc Sealant-containing tire and related processes
US11697260B2 (en) 2016-06-30 2023-07-11 Bridgestone Americas Tire Operations, Llc Methods for treating inner liners, inner liners resulting therefrom and tires containing such inner liners
US11794430B2 (en) 2016-12-15 2023-10-24 Bridgestone Americas Tire Operations, Llc Methods for producing polymer-containing coatings upon cured inner liners, methods for producing tires containing such inner liners, and tires containing such inner liners

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113908A (en) * 1999-09-22 2001-04-24 Goodyear Tire & Rubber Co:The Tire having air permeation preventing layer
JP2005103760A (en) * 2003-09-26 2005-04-21 Yokohama Rubber Co Ltd:The Laminate and pneumatic tire using it
WO2006059621A1 (en) * 2004-12-03 2006-06-08 Bridgestone Corporation Laminate, method for producing the same and tire using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113908A (en) * 1999-09-22 2001-04-24 Goodyear Tire & Rubber Co:The Tire having air permeation preventing layer
JP2005103760A (en) * 2003-09-26 2005-04-21 Yokohama Rubber Co Ltd:The Laminate and pneumatic tire using it
WO2006059621A1 (en) * 2004-12-03 2006-06-08 Bridgestone Corporation Laminate, method for producing the same and tire using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143188A1 (en) * 2007-05-17 2008-11-27 Bridgestone Corporation Radial tire for heavy load
JP2010069828A (en) * 2008-09-22 2010-04-02 Bridgestone Corp Processing method for tire inner surface and processing device for tire inner surface
US9832428B2 (en) 2012-12-27 2017-11-28 Kateeva, Inc. Fast measurement of droplet parameters in industrial printing system
WO2015079384A1 (en) * 2013-11-29 2015-06-04 Pirelli Tyre S.P.A. Self-sealing tyre for motor vehicle wheels and self-sealing tyre
US11207919B2 (en) 2016-06-21 2021-12-28 Bridgestone Americas Tire Operations, Llc Methods for treating inner liner surface, inner liners resulting therefrom and tires containing such inner liners
US11697260B2 (en) 2016-06-30 2023-07-11 Bridgestone Americas Tire Operations, Llc Methods for treating inner liners, inner liners resulting therefrom and tires containing such inner liners
US11697306B2 (en) 2016-12-15 2023-07-11 Bridgestone Americas Tire Operations, Llc Sealant-containing tire and related processes
US11794430B2 (en) 2016-12-15 2023-10-24 Bridgestone Americas Tire Operations, Llc Methods for producing polymer-containing coatings upon cured inner liners, methods for producing tires containing such inner liners, and tires containing such inner liners

Similar Documents

Publication Publication Date Title
JP4668926B2 (en) Laminated body, manufacturing method thereof, and tire using the same
JP5019812B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, AND TIRE USING THE SAME
WO2008013152A1 (en) Multilayer body, method for producing the same, inner liner for pneumatic tire and pneumatic tire
JP5039332B2 (en) Inner liner for pneumatic tire and pneumatic tire provided with the same
EP2420393B1 (en) Pneumatic tire
JP6144194B2 (en) Adhesive composition, bonding method and pneumatic tire
WO2008013183A1 (en) Inner liner for pneumatic tire, method for producing the same and pneumatic tire
JP2008024217A (en) Inner liner for pneumatic tire and pneumatic tire equipped with the same
WO2007141973A1 (en) Pneumatic tire
JP4939863B2 (en) INNERLINER FOR PNEUMATIC TIRE, MANUFACTURING METHOD THEREOF, AND PNEUMATIC TIRE
WO2012165512A1 (en) Laminate, tire, and method for producing tire
JP4629420B2 (en) Laminated body, manufacturing method thereof, and tire using the same
JP5001597B2 (en) Pneumatic tire
JP5746938B2 (en) Adhesive composition and bonding method using the same
JP4939027B2 (en) Method for producing adhesive composition
JP2009220793A (en) Tire
JP2009083776A (en) Inner liner for tire, and tire using it
JP4963574B2 (en) Pneumatic tire
JP5707031B2 (en) Pneumatic tire and manufacturing method thereof
JP5016248B2 (en) tire
JP4976730B2 (en) Tire member laminate and tire using the tire member laminate
JP5890615B2 (en) Pneumatic tire
JP2009040117A (en) Tire
JP4944477B2 (en) Method for manufacturing laminated body for tire member
JP4909557B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, AND TIRE USING THE SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07791252

Country of ref document: EP

Kind code of ref document: A1