WO2008013049A1 - Strain sensor and strain sensor system - Google Patents

Strain sensor and strain sensor system Download PDF

Info

Publication number
WO2008013049A1
WO2008013049A1 PCT/JP2007/063663 JP2007063663W WO2008013049A1 WO 2008013049 A1 WO2008013049 A1 WO 2008013049A1 JP 2007063663 W JP2007063663 W JP 2007063663W WO 2008013049 A1 WO2008013049 A1 WO 2008013049A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
sensor
thin film
film substrate
detection
Prior art date
Application number
PCT/JP2007/063663
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Sugiura
Kouji Michiba
Tatsuaki Sawai
Osamu Muragishi
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Priority to JP2008526721A priority Critical patent/JP5004955B2/en
Publication of WO2008013049A1 publication Critical patent/WO2008013049A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/06Measuring force or stress, in general by measuring the permanent deformation of gauges, e.g. of compressed bodies

Definitions

  • the present invention includes a simple and inexpensive strain detection device that is used by being attached to a measurement object in order to determine whether there is an excessive load by monitoring strain acting on a structure or the like.
  • the present invention relates to a strain detection system.
  • Japanese Patent Application Laid-Open No. 9-005175 discloses a stress measurement sensor for grasping the magnitude of stress received by a structure.
  • this stress measurement sensor both ends of a wire made of a material that breaks with a smaller strain than the object to be measured are fixed to the object to be measured, and the presence / absence of the fracture of the wire is determined by the stress acting on the object to be measured. It is used to determine whether or not the power is greater than the value.
  • This stress measurement sensor is formed by fixing a fixing base to a thin film serving as a base and fixing both ends of the wire to the fixing base with an adhesive or the like.
  • a material with a low breaking strain for example, nickel, titanium, carbon steel, etc.
  • a non-conductive polymer material, a ceramic material, a non-ferrous metal material, or the like is selected. Since this stress measurement sensor is formed by adhering a detection wire to a base fixed on a thin film to be attached to a measurement object, it is difficult to ensure the reproducibility of the shape and dimensions in the manufacturing process. It is difficult to make reliable measurements.
  • Japanese Patent Application Laid-Open No. 2001-281120 discloses a crack type fatigue sensor in which a fracture piece having a crack propagation portion is formed at the center of a metal foil substrate.
  • a slit with a sharp tip is also formed at the crack propagation part, and the side end force is also formed, and a crack occurs at the tip of the slit depending on the degree of repeated stress generated on the measurement object, and the crack progresses.
  • an object of the present invention is to make it possible to detect a distortion generated in a measurement object without error with a simple and inexpensive configuration.
  • a strain detection apparatus includes a thin film substrate that is attached to a measurement object and is distorted together with the measurement object, and the thin film substrate.
  • a pair of strain transmitting pieces which are opposed to each other across a small gap and fixed to the thin film substrate at at least one force point, are pasted on the pair of strain transmitting pieces, and the strain is placed at a position corresponding to the gap.
  • a sectional area smaller than the position affixed to the transmission piece, and a sensor foil having a bridge portion, and one of the pair of strain transmission pieces has a stress that tends to warp in a direction in which the thin film substrate force is also separated. It is characterized by having The stress is an inherent stress given in advance to the strain transmission piece, and the stress transmission piece is constrained to each other via a sensor foil. The distortion caused by is something that does not appear.
  • the sensor foil is stuck across the pair of strain transmission pieces, and the bridge portion having a small cross-sectional area is provided between the pair of strain transmission pieces.
  • the stress when the strain is generated concentrates on the bridge portion of the sensor foil.
  • this strain detector has a strain expansion function.
  • the sensor foil has a predetermined breaking elongation characteristic, and when the local strain of the bridge portion exceeds the breaking elongation, the bridge portion, which is the minimum cross-sectional portion, breaks. When the bridge part breaks, it can be estimated that a strain greater than a predetermined strain determined from the breaking strength of the sensor foil and the concentration of strain has occurred in the measurement target site.
  • the sensor foil is integrally connected until it breaks, if the bridge portion breaks at the position of the flat force gap, the potential stress inherent in one strain transmitting piece becomes obvious.
  • the strain transmitting piece, along with the broken end of the sensor foil warps in a direction away from the thin film substrate, and does not return. For this reason, the operator can know the breakage of the sensor foil easily and accurately without misunderstanding by visually observing the warping of the broken end of the sensor foil.
  • a strain detection sensor which is a combination of a strain transmission piece and a sensor foil that determines the sensitivity of the strain detection device, is formed in advance on the thin film substrate, the strain detection device is attached to the measurement object.
  • the breaking strain of the sensor foil does not change, and the sensor foil can be used as a sensor having sensitivity as designed, improving reliability.
  • the strain detection device is adjusted so that the sensor foil is broken by the strain of the measurement object that occurs when the stress at the application position reaches a predetermined value when it is applied to the measurement object.
  • the sensor foil breakage is controlled by the strain of the thin film substrate affixed to the object to be measured. Varies with load. Therefore, it is preferable to adjust the sensitivity based on the object to be measured and the purpose of the measurement so that the correct damage strength can be detected.
  • the difference in thickness is adjusted as much as possible to ensure accuracy.
  • the measurement range of the maximum strain value can be adjusted.
  • the strain that appears on the sensor foil due to the occurrence of strain on the object to be measured increases as the distance between the bonding positions of the pair of strain transmitting pieces to the thin film substrate increases. Sensitivity can be adjusted.
  • the narrowed portion of the sensor foil can also be accurately formed.
  • the thickness of the sensor foil can be accurately controlled by a two-stage electrical method.
  • the thin film substrate may be formed of stainless steel, and the sensor foil may be formed of rolled copper or electrolytic copper.
  • the thin film substrate may be formed of invar, and the sensor foil may be formed of nickel.
  • the sensor foil has a smaller elongation at break, it can constitute a strain detection device that detects even a small strain of the measurement object.
  • Nickel is sufficiently hard and is suitable for sensor foil because it has accumulated information and technology using fatigue sensors.
  • the back side of the thin film substrate should be a rough surface by etching a number of shallow thin wires, etc., and the adhesion should be improved when it is fixed to the surface of the object to be measured with an adhesive.
  • the sensor foil may include a plurality of the bridge portions in a portion crossing the gap.
  • the strain transmitting piece is subjected to the stress, that is, inherently, by heat input to a portion between the position of the gap and the position fixed to the thin film substrate so as not to be bonded to the thin film substrate. Stress may be applied.
  • the strain transmitting piece is melt-bonded at a portion where the strain transmitting piece is fixed to the thin film substrate by being heated by a local heating device from the thin film substrate side.
  • the stress is applied to the position between the position of the gap and the position fixed to the thin film substrate by heat input to the extent that the strain transmission piece does not join the thin film substrate with a local heating device.
  • the strain transmission piece and the sensor foil are made of metal, and the strain transmission piece and the sensor foil.
  • An insulating adhesive layer is interposed between the sensor foil and it's okay!
  • the strain transmitting piece is integrally connected to a part of the strain transmitting piece, surrounds the strain transmitting piece, and the reinforcing frame having the same material force as that of the strain transmitting piece is removed. It may be formed by.
  • the reinforcing frame and the strain transmitting piece may be formed from a single plate by etching or electroplating.
  • a folding line is provided in which elongated holes partitioned by a thin connecting portion are arranged, and the reinforcing frame is removed by folding the connecting portion. It may be.
  • the connecting frame when the strain detection device is attached to the measurement object, the connecting frame can be broken and the reinforcing frame can be removed, which facilitates handling before installation on the measurement object. In addition, it is possible to prevent damage and the like during product transportation.
  • a plurality of strain detection sensors which are a combination of the pair of strain transmission pieces and the sensor foil, are arranged on the thin film substrate, and one of the pair of strain transmission pieces to the thin film substrate.
  • a distance between the fixed position and the fixed position of the pair of strain transmitting pieces to the other thin film substrate may be different for each of the plurality of strain detection sensors.
  • the plurality of strain detection sensors may be arranged such that detection axes that coincide with the direction in which the pair of strain transmission pieces are aligned are substantially parallel to each other.
  • a strain detection sensor force that is a combination of the pair of strain transmitting pieces and the sensor foil.
  • a plurality of strain detecting sensors are arranged on the thin film substrate, and one of the pair of strain transmitting pieces is fixed to the thin film substrate. The distance between the fixed position of the pair of strain transmission pieces to the other thin film substrate may be the same among the plurality of strain detection sensors.
  • the plurality of strain detection sensors may be arranged such that detection axes that coincide with the direction in which the pair of strain transmission pieces are aligned are substantially parallel.
  • the detection accuracy of the strain detection device is based on the fracture characteristics of the material, and it is impossible to avoid variations in detection accuracy due to material variations and manufacturing variations. Therefore, the detection accuracy can be improved by using a plurality of strain detection sensors of the same type together as in the above configuration.
  • the variation in detection accuracy is the root mean square of the accuracy variation of each strain detection sensor, so reliability is improved by using multiple strain detection sensors.
  • the plurality of strain detection sensors may be arranged such that detection axes that coincide with an arrangement direction of the pair of strain transmission pieces intersect each other.
  • the strain detection device needs to be installed with the detection axis aligned in the direction in which the largest strain is generated in the measurement object.
  • multiple strain detection sensors are used.
  • strain detection devices that are arranged so that the detection axes of the sensors point in different directions (for example, radially), it is possible to detect without overlooking the maximum strain generated in the measurement object. it can.
  • a strain detection sensor which is a combination of the pair of strain transmission pieces and the sensor foil, may be surrounded by a protective cover.
  • the protective cover is a lid made of grease material, matt steel plate, painted steel plate, etc., and covers the entire strain detection sensor so that the operation of the detection sensor is not hindered, and the hem part is bonded or welded with grease. It may be fixed to the thin film substrate with airtightness by screwing or screwing. When connecting one end of an electric wire to an electrode terminal to be described later, the other end of the electric wire should be pulled out of the protective cover.
  • a grease coating may be applied to the pair of strain transmitting pieces and the strain detection sensor of the sensor foil.
  • the weather resistance and corrosion resistance of the sensor can be maintained even when monitoring by the strain detection device is performed over a long period of time.
  • the resin coating should not be so strong and strong that it does not interfere with the operation of the strain detection sensor.
  • the hardness of the resin coating is high, it is preferable to form a space under the coating so as not to prevent the sensor foil from breaking.
  • the sensor foil may have a pair of electrode terminals which have a conductive force and are conducted through the bridge portion.
  • the sensor foil may include a plurality of the bridge portions at a portion crossing the gap, and the electrode terminals may be gathered on one side of the pair of strain transmitting pieces.
  • the electrode terminal may be provided on the opposite side of the bridge portion across the bonding position of the strain transmitting piece and the thin film substrate.
  • the sensor foil has a plurality of the bridge portions at a portion crossing the gap, and the electrode terminal is formed at an end portion of the sensor foils connected in series. May be.
  • a pair of electrode terminals corresponding to the plurality of bridge portions is sufficient, and the pair of electrode terminals is in a non-conducting state. It can be detected that one breaks.
  • a strain detection system includes the above-described strain detection device, a detection circuit that is connected to the electrode terminal of the strain detection device and detects breakage of the bridge portion, and the detection circuit.
  • a transmission circuit that transmits a detection signal when a break is detected, and a reception device that receives the detection signal of the transmission circuit force are provided.
  • the detection circuit transmits a detection signal to the receiving device. Therefore, even if the operator does not look at the sensor foil, the receiving device can know that the sensor foil is broken.
  • the strain detection device can use any material as a measurement object, and is attached to the surface of the measurement object by an adhesive, welding, or the like. Therefore, for example, a strain detection device is affixed to the stress generating part in the steel materials of structures, transportation equipment, buildings, machinery, such as cranes, bridges, railway vehicles, airplanes, automobiles, construction steel frames, reinforcing bars, rotating machinery, etc. Then, the detection signal generated when the load or displacement acting on the part to be measured exceeds a predetermined value is converted into an electrical signal and transmitted to the receiving device, so that the occurrence of an abnormal load condition is monitored by the receiving device. be able to.
  • the strain detection device can be applied to stress generating members other than steel such as non-ferrous materials, polymer materials, composite materials, concrete, asphalt, and wood. A normal load can also be detected.
  • the transmission circuit may transmit the detection signal wirelessly to the receiving device.
  • the transmission circuit takes in the detection signal from the detection circuit, converts it into a radio wave signal, and transmits it wirelessly.
  • the receiving device receives the radio signal and detects the breakage of the sensor foil. If the transmitter circuit and receiver are separated and the radio signal is strong, the signal is received by a receiver installed in a central control room at a remote location, and whether or not the measurement object has received an excessive load. Remote monitoring is also possible.
  • no connection is required between the transmitting circuit and the receiving device, it can also be applied to the case where the object to be measured with a force is a moving body if construction is easy.
  • An independent power supply for supplying power to the detection circuit and the transmission circuit may be further provided.
  • the detection circuit and the transmission circuit are used by being connected to the electrode terminal of the strain detection device, and therefore are installed close to the measurement object. Therefore, in order to take advantage of the use without connecting the transmission circuit and the reception device, it is preferable that the power source for supplying power to the detection circuit and the transmission circuit is an independent power source that does not depend on the power supply line such as a dry cell or a solar cell.
  • the detection circuit and the transmission circuit are part of an IC tag
  • the IC tag includes a storage unit that stores information on whether or not a break is detected by the detection circuit
  • the reception device includes:
  • the IC tag reader may also be capable of reading information from the storage unit of the IC tag.
  • the IC tag is attached to the strain detection device in a state where the IC tag terminal is connected to the electrode terminal of the sensor foil, and the operator attaches the IC tag reading device to the IC tag.
  • the sensor foil break information is transmitted to the IC tag reader as well. Note that it is preferable to use a non-power supply type that uses non-contact power supply when an IC tag is read by an IC tag reader, because an independent power supply is unnecessary.
  • the strain detection device includes a plurality of strain detection sensors of the pair of strain transmission pieces and the sensor foil on the thin film substrate, and one of the pair of strain transmission pieces is fixed to the thin film substrate. And the distance between the fixed position of the pair of strain transmission pieces to the other thin film substrate differs for each of the plurality of strain detection sensors, and the measurement A state sensor that detects a state other than the strain of the object, and a determination circuit that selects one of the plurality of strain detection sensors to be used for strain detection based on the output of the state sensor. .
  • the state quantity of the measurement object detected by the state sensor includes the temperature of the measurement object, the acceleration of the measurement object, angular velocity, vibration, There are things related to movement such as displacement.
  • a strain detection device in which a plurality of strain detection sensors having different fracture strain values are arranged on the thin film substrate;
  • the judgment circuit selects a strain detection sensor with an appropriate breaking strain value according to the output of the temperature sensor for strain detection, so that detection errors due to large temperature changes can be prevented. it can.
  • the sensor foil of a highly sensitive strain detection sensor when the temperature sensor indicates room temperature If the sensor foil of the strain detection sensor for room temperature does not break even if it breaks, it may be determined that there is no overload.
  • the temperature sensor shows a very low temperature
  • the fracture state in the strain detection sensor has a sensor foil that breaks with a slight strain. If you decide overload,
  • An alarm device may be further provided that generates an alarm when the detection circuit detects a break of the bridge portion.
  • this alarm device When this alarm device receives a detection signal that the bridge portion of the sensor foil is broken, it generates an electrical signal such as generation or interruption of current, performs color display, or outputs sound. It is preferable to generate radio waves. For example, if a strain sensing device is used that is adjusted to operate before a mechanical device such as a crane reaches a limit load, if the sensor is activated during operation, the mechanical device is stopped immediately. Safety can be ensured. Instead of making an emergency stop directly due to the operation of the sensor, an alarm may be issued to complain that an emergency stop is necessary.
  • FIG. 1 is a plan view of a strain detection device according to a first embodiment of the present invention.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a bottom view of the strain detection device shown in FIG. 1.
  • FIG. 4 is an enlarged plan view of a bridge portion of the strain detection device shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line V—V in FIG.
  • FIG. 6 is a plan view of the strain detection device shown in FIG. 1 before removal of the reinforcing frame.
  • FIG. 7B is an explanatory diagram regarding the application of stress in the strain detection apparatus shown in FIG.
  • FIG. 8 is a perspective view for explaining an excessive strain detection mechanism of the strain detection device shown in FIG. 1.
  • FIG. 9 is a perspective view of a strain detection device according to a second embodiment of the present invention.
  • FIG. 10 is a perspective view of the strain detection device shown in FIG. 9 when the sensor foil is broken.
  • FIG. 11 is a perspective view of a strain sensing device according to a third embodiment of the present invention.
  • FIG. 12 is a perspective view of the strain detection device shown in FIG. 11 when the sensor foil is broken. 13] A perspective view of a strain sensing device according to a fourth embodiment of the present invention.
  • FIG. 14 is a perspective view of the strain detection device shown in FIG. 13 when the sensor foil is broken.
  • FIG. 15 is a plan view of a strain sensing device according to a fifth embodiment of the present invention.
  • FIG. 16 A plan view of a strain sensing device according to a sixth embodiment of the present invention.
  • FIG. 17 is an explanatory diagram of a method for specifying a detected stress range using the strain detection apparatus shown in FIG.
  • FIG. 20 is a plan view of a strain sensing device according to a ninth embodiment of the present invention.
  • FIG. 21 is a block diagram of a strain detection system according to a tenth embodiment of the present invention.
  • FIG. 22 is a block diagram of a strain detection system according to an eleventh embodiment of the present invention.
  • FIG. 23 is a block diagram of a strain detection system according to a twelfth embodiment of the present invention.
  • FIG. 24 is a block diagram of a strain detection system according to a thirteenth embodiment of the present invention.
  • FIG. 25 is a block diagram of a strain detection system according to a fourteenth embodiment of the present invention.
  • FIG. 26 is an explanatory diagram for explaining functions of the strain detection system shown in FIG. 25.
  • FIG. 27 is a schematic view showing a first usage example of the strain detection apparatus of the present invention.
  • FIG. 28 is a schematic view showing a second usage example of the strain detection apparatus of the present invention.
  • FIG. 29 is a schematic view showing a third usage example of the strain detection apparatus of the present invention.
  • FIG. 30 is a schematic view showing a fourth usage example of the strain detection apparatus of the present invention.
  • FIG. 31 is a plan view of a strain detection device of a modified example in which shear stress is detected for application to the rotating shaft and the like shown in FIG. 30.
  • FIG. 32 is a schematic view showing a fifth usage example of the strain detection apparatus of the present invention.
  • FIG. 33 is a plan view of the strain detection unit used in FIG. 32.
  • FIG. 34 is a schematic view showing a sixth usage example of the strain detection apparatus of the present invention.
  • FIG. 35A is a side view of the sensor plate shown in FIG. 34.
  • FIG. 35B is a plan view of the sensor plate shown in FIG. 34.
  • FIG. 36 is a schematic view showing a seventh example of use of the strain detection apparatus of the present invention.
  • FIG. 37 is an enlarged view of the main part of FIG.
  • FIG. 1 is a plan view of a strain sensing device 1 according to the first embodiment of the present invention.
  • Fig. 2 is a cross-sectional view taken along line II-II in Fig. 1.
  • the strain detection device 1 includes a thin film substrate 2 attached to the measurement object 10 and a pair of strain transmission pieces placed on the thin film substrate 2 with a small gap G interposed therebetween. 3A and 3B, and a sensor foil 4 stuck on the pair of strain transmitting pieces 3A and 3B.
  • the strain transmitting pieces 3A and 3B and the sensor foil 4 are bonded and fixed to each other through an insulating adhesive layer 5. That is, a three-layer thin film structure is formed by the strain transmitting pieces 3A and 3B, the insulating adhesive layer 5 and the sensor foil 4, and one unit of the three-layer thin film structure is referred to as a strain detection sensor 6.
  • the thin film substrate 2 is adhered to the surface of the measurement object 10 with an adhesive, and the distortion of the measurement object 10 is faithfully transmitted to the strain transmitting pieces 3A and 3B.
  • the strain transmission pieces 3A and 3B are made of a metal thin film.
  • the pair of strain transmission pieces 3A and 3B are separated by a very narrow gap G.
  • Spot welds Swl and Sw2 joined to the thin film substrate 2 are formed at the other end where the forces are matched and the gap G force is also separated.
  • the spot welds Swl and Sw2 are formed by performing side force spot welding of the thin film substrate 2.
  • the strain transmitting pieces 3A and 3B are not restrained by the thin film substrate 2 except for the spot welds Swl and Sw2.
  • the strain detection device 1 when the strain detection device 1 is attached to the measurement object 10, the measurement object generated between the spot welded part Sw1 of one strain transmission piece 3A and the spot welded part Sw2 of the other strain transmission piece 3B. Ten strains are measured. That is, the detection region of the strain detection device 1 corresponds to the length L between the spot welds Swl and Sw2. Therefore, the detection area can be adjusted by changing the position of the spot welds Swl and Sw2.
  • the sensor foil 4 has electrode terminals 4e and 4f formed on the strain transmission piece 3B via thin connecting portions 4c and 4d at end portions away from the bridge portions 4a and 4b.
  • the connecting portions 4c and 4d are provided so that heat does not adversely affect the bridge portions 4a and 4b when an electric wire is soldered to the electrode terminals 4e and 4f.
  • the electrode terminals 4e and 4f are located outside the detection area of the length L (see Fig. 4) so that the stress transmitted through the wires does not adversely affect the measurement results. 1 is preferably provided on the right side of spot welded part Sw2.
  • FIG. 3 is a bottom view of the strain detection device 1 shown in FIG.
  • the thin film substrate 2 is bonded to the back side by forming a number of thin wires 7 that are shallow recesses perpendicular to the detection axis that coincides with the alignment direction (tensile direction) of the strain transmission pieces 3A and 3B.
  • An uneven surface is formed. The uneven surface for bonding improves the adhesion of the strain detector 1 to the measurement object 10.
  • FIG. 4 is an enlarged plan view of the bridge portions 4a and 4b of the strain detection device 1 shown in FIG. Fig. 5 is a cross-sectional view taken along line V-V in Fig. 4.
  • the sensor foil 4 is a metal thin film that is thinner than the strain transfer pieces 3A and 3B, and the bridge portions 4a and 4b are formed at positions corresponding to the gaps G of the strain transfer pieces 3A and 3B.
  • stress concentrates corresponding to the cross-sectional area ratio between the strain transmitting pieces 3A and 3B and the bridge portions 4a and 4b, so that the strain generated in the measurement object 10 expands and the bridge portion 4a , 4b has the effect of gathering.
  • Blitz The narrow portion d with a narrower width is formed in the flange portions 4a and 4b, and the strain generated in the detection area of the measurement object 10 is concentrated on the narrow portion d to increase the strain.
  • the strain expansion rate depends on the material of the sensor foil 4 'shape, the material of the strain transmission 3A, 3B', the shape, and the length L of the detection region. Therefore, by adjusting these parameters, the strain expansion rate can be selected as appropriate, and the breaking strain of the strain detector 1 corresponding to the strain value of the measurement object 10 can be determined.
  • the thickness' shape, gap G amount, etc. of each thin film are appropriately designed according to the strain to be detected of the measurement object.
  • the thicknesses of the strain transmitting pieces 3A and 3B, the insulating adhesive layer 5 and the sensor foil 4 are 10 ⁇ m to several 100 ⁇ m, respectively, which is convenient for application to many measurement points.
  • the gap G amount can also be adjusted according to the measurement conditions, and values of several tens of meters to several millimeters are used.
  • the strain transmission pieces 3A and 3B may be made of invar, and the sensor foil 4 may be made of nickel. Regarding the characteristics and manufacturing method of nickel, it is possible to utilize the technology accumulated through the manufacture and use of fatigue sensors.
  • the strain detector 1 can be formed by an etching method.
  • the strain detection device 1 is made by bonding a polyimide film with a thickness of 35 m to be the insulating adhesive layer 5 on a stainless steel (SUS304) thin film with a thickness of 100 m to be the strain transmission pieces 3A and 3B.
  • a three-layer structure to be the strain detection sensor 6 is formed by adhering a 50 m thick copper foil to be the sensor foil 4. Such a three-layer structure is similar to that used for hard disk drives and can also be supplied from the factory.
  • the stainless steel thin film and polyimide film of this three-layer structure are etched, for example, strain transmission pieces 3A and 3B with a gap of 140 m, a width of 6 mm and a total length of 46 mm, and a reinforcement frame 8 (described later). 6) and the copper foil is etched from the opposite side to form the shape of the sensor foil 4 including the bridge portions 4a and 4b and the electrode terminals 4e and 4f.
  • FIG. 6 is a plan view before removal of the reinforcing frame 8 of the strain detection device 1 shown in FIG.
  • the reinforcement frame 8 is made of the same thickness and the same material as the strain transmission pieces 3A and 3B, and is connected correctly to the strain transmission pieces 3A and 3B, which may be separated. Maintain the positional relationship, and protect the bridge parts 4a and 4b of the sensor foil 4 before applying to the measurement object 10. It has a function.
  • the reinforcing frame 8 can be used as a fixing allowance when the strain transmitting pieces 3A and 3B are fixed to the thin film substrate 2 by spot welding or the like.
  • the reinforcing frame 8 can be provided with a marker M for spot welding.
  • the reinforcing frame 8 is a force formed by surrounding the strain transmission pieces 3A and 3B. Between the strain transmission pieces 3A and 3B, elongated holes H separated by a thin connecting portion 9 are arranged to form a crease line. After the detection device 1 is attached to the measurement object 10, the connecting portion 9 is broken and the reinforcing frame 8 is removed, and only the inner strain detection device 1 is attached to the measurement object 10 with an adhesive.
  • the reinforcing frame 8 and the strain transmitting pieces 3A and 3B have the same material force.
  • the reinforcing frame 8 and the strain transmitting pieces 3A and 3B are simultaneously formed by etching. Can be formed.
  • the sensor foil 4 may be directly formed on the strain transmission pieces 3A and 3B by an electric method. Since the shape reproducibility of the electroplating method is extremely high, the strain detection device 1 formed by the electroplating method can obtain an accurate measurement result.
  • the shape of the sensor foil 4 can also be formed by die cutting.
  • the strain detection device 1 is easily handled and the strain detection device 1 is measured. It can be easily applied to the object 10 and the reproducibility of the measurement can be improved.
  • the thin film substrate 2 is formed of the same metal as the strain transmission pieces 3A and 3B, the strain transmission pieces 3A and 3B and the thin film substrate 2 can be firmly bonded by spot welding.
  • the thin film substrate 2 may be formed of resin.
  • the strain transmitting pieces 3A and 3B are fixed to the thin film substrate 2 by several spot welds Swl and Sw2, which are arranged perpendicularly to the strain direction, for example, at one force point, and the length L of the detection region is L. Is decided. Since the thin film substrate 2 is firmly attached to the surface of the measurement object 10, the spot welds Swl and Sw2 of the strain transmitting pieces 3A and 3B can be substantially fixed to the measurement object 10.
  • the elongation ⁇ generated in the detection region of length L due to the extension of the measurement object 10 is distributed to the strain transmission pieces 3 ⁇ , 3 ⁇ and the sensor foil 4 of the strain detection device 1.
  • the distribution rate is influenced by the Young's modulus ⁇ of the material, but it is greatly influenced by the stress concentration related to the cross-sectional area ⁇ of the part, and most of the elongation ⁇ generated in the detection region of length L is at the position of the gap G.
  • a bridge 4a, 4b Distributed to sensor foil 4.
  • E is the Young's modulus of sensor foil 4
  • A is the average cross-sectional area of bridges 4a and 4b
  • E is the Young's modulus of strain transfer pieces 3A and 3B
  • A is the gap of sensor foil 4.
  • the strain transmission pieces 3A and 3B are made of stainless steel foil with Young's modulus of 168GPa and sensor foil 4 with copper foil with Young's modulus of 1 lOGPa
  • the detection area length L is 40mm and the gap G is Measured when the width is 0.14 mm
  • the cross-sectional area of the strain transmitting pieces 3A and 3B is 0.6 mm 2
  • the average cross-sectional area of the two bridge parts 4a and 4b of the sensor foil 4 is 0.009 mm 2
  • the ratio ⁇ / ⁇ of the strain ⁇ in the bridge portions 4a and 4b to the strain ⁇ in the object 10, that is, the strain expansion ratio is about 81 times.
  • the substantial length of the bridge portions 4a and 4b is further shortened, and the strain ⁇ in the bridge portions 4a and 4b is larger than the strain ⁇ of the measurement object 10.
  • the sensitivity as a sensor is improved.
  • the strain ⁇ at the bridge portions 4a and 4b of the sensor foil 4 is the breaking strain ⁇ of the sensor foil 4.
  • sensor foil 4 will break. When the sensor foil 4 is broken, it can be said that the strain ⁇ of the measuring object 10 corresponding to the fracture strain ⁇ of the sensor foil 4 is exceeded. Fracture f
  • is the material of the sensor foil 4, the shape and size of the bridge parts 4a and 4b, the stress intensity factor K, the turtle f
  • the sensor function is also impaired. Further, the amount of warping of the strain transmitting piece 3A is sufficient if the broken bridge portions 4a and 4b do not recover and the person can easily visually recognize the fracture, and need not be too large.
  • FIG. 7A is an explanatory diagram relating to the application of stress in the strain detection device 1 shown in FIG.
  • the spot welded portion Sw for joining the strain transmitting pieces 3A, 3B and the thin film substrate 2 is formed by applying a spot welder from the back side (lower side) of the thin film substrate 2.
  • the heat input portion Sh for warping is formed by applying a spot welder from the upper side of the strain transmitting piece 3A. Then, the strain transmitting piece 3A warps only by an appropriate amount on the gap G side from the position of the heat input portion Sh.
  • FIG. 7B is an explanatory diagram relating to the application of stress in a modification. As shown in Fig.
  • FIG. 7C is an explanatory diagram relating to the application of stress in still another modification.
  • heat is input from the upper side (sensor foil 4 side) for one strain transfer piece 3A, and heat input from the back side (thin film substrate 2 side) for the other strain transfer piece 3B. Even if it carries out, the recontact of the fracture
  • the warping of the strain transmission piece 3A is not as significant as in Figs. 7A and 7B.
  • FIG. 8 is a perspective view for explaining an excessive strain detection mechanism of the strain detection device 1 shown in FIG.
  • the strain detection device 1 is in the same plane with the pair of strain transmission pieces 3A and 3B being coupled to the bridge portions 4a and 4b until the force is broken after being applied to the measurement object 10.
  • the state of the bridge parts 4a and 4b can be reliably confirmed electrically by bringing the probe of the conduction tester T into contact with the electrode terminals 4e and 4f provided at the ends of the sensor foil 4. At the same time, it can be easily confirmed visually.
  • strain detection device 1 of the present embodiment two bridge portions 4a and 4b are provided in the gap G. Since strain detector 1 has a structure that is vertically long in the direction of the detection axis, there is a risk that it may break during manufacturing or construction if there is only one bridge. Strength against bending by providing two bridges 4a and 4b Has improved and prevented accidents. [0088] In addition, since the bridge portions 4a and 4b are provided vigorously and the pair of electrode terminals 4e and 4f are provided on one end side of the strain detection device 1, the strain detection device T is used when inspecting with the energization tester T. If the probe is applied to one end of 1, the workability of the inspection can be improved.
  • the strain detection device 1 concentrates the amount of displacement generated in the detection region of a length L of several mm force and several hundred mm on the bridge portions 4a and 4b to break the sensor foil 4, and visually or energized tester. Since it is detected by a portable simple instrument such as T, the measurement object 10 can be diagnosed as a whole by setting a large number of measurement points. Furthermore, the strain detection device 1 can be formed in a small size with a length of 200 mm or less, and since there is no need for wiring to connect to the monitor by simply attaching it to the surface of the measurement object 10, the number of measurement points increases. However, the measurement cost does not increase.
  • the strain detection device 1 of the present invention can be used for long-term monitoring for monitoring the stress generated in the product structure throughout the service period. It is possible to detect excessive strain that occurs rarely during a long operation period. Long-term monitoring is possible because no measurement equipment is required. It can also be used for strain measurement in environments where measurement devices cannot be used, such as rotating objects, moving objects, and underwater objects. Furthermore, due to the simplicity and economy of the strain detection device, it is possible to extract the approximate distribution of generated strain and the location of the overstrain when applied to a wide measurement area or a large number of measurement points.
  • FIG. 9 is a perspective view of a strain detection apparatus 201 according to the second embodiment of the present invention. Note that portions common to the first embodiment are denoted by the same reference numerals, and the following description is omitted.
  • the thin film substrate 202 has a protrusion 202a that protrudes upward at a position corresponding to one strain transmission piece 3A.
  • the protrusion 202a is formed between the bridge portions 4a and 4b and the spot welded portion Swl. It is formed by folding the plate 202 into a mountain shape, and extends in a direction perpendicular to the detection axis that coincides with the arrangement direction (tensile direction) of the strain transmitting pieces 3A and 3B.
  • the strain transmitting piece 3A is applied with a force to warp upward, but the strain transmitting piece 3A is coupled to the other strain transmitting piece 3B by the sensor foil 4, so that deformation is prevented. Therefore, potential stress is inherent in the strain transmitting piece 3A.
  • FIG. 10 is a perspective view of the strain detection device 201 shown in FIG. 9 when the sensor foil 4 is broken.
  • the bridge portions 4a and 4b are broken, the strain transmitting piece 3A is not restrained by the sensor foil 4, so the stress inherent in the strain transmitting piece 3A becomes obvious, and the strain transmitting piece 3A bridges.
  • the end portions on the side of the parts 4a and 4b are deformed so as to be lifted from the thin film substrate 2. Therefore, the broken state of the sensor foil 4 can be detected easily and reliably.
  • FIG. 11 is a perspective view of a strain detection device 301 according to the third embodiment of the present invention. Note that portions common to the first embodiment are denoted by the same reference numerals, and the following description is omitted.
  • a spacer 310 such as a thin plate is sandwiched between one strain transmission piece 3A and the thin film substrate 2. Spacer 310 is disposed between bridge portions 4a and 4b and spot welded portion Swl, and extends in a direction perpendicular to the detection axis that coincides with the direction in which strain transmitting pieces 3A and 3B are arranged (tensile direction). And As a result, a force is applied to the strain transmission piece 3A to warp upward.
  • the strain transmission piece 3A is coupled to the other strain transmission piece 3B by the sensor foil 4, and therefore, deformation is prevented. It is held in a flat state, and potential stress is inherent in the strain transmitting piece 3A.
  • FIG. 12 is a perspective view of the strain detector 301 shown in FIG. 11 when the sensor foil 4 is broken.
  • the bridge portions 4a and 4b are broken, the strain transmitting piece 3A is not restrained by the sensor foil 4, so that the stress inherent in the strain transmitting piece 3A becomes obvious, and the bridge portion of the strain transmitting piece 3A It is deformed so that the ends on the 4a and 4b sides are lifted from the thin film substrate 2. Therefore, the broken state of the sensor foil 4 can be detected easily and reliably.
  • the protrusions 202a and the spacers 310 described above may be elastic bodies. If it is an elastic body, the broken state of the sensor foil 4 can be detected more reliably. [0095] (Fourth Embodiment)
  • FIG. 13 is a perspective view of the strain detection apparatus 1 according to the fourth embodiment of the present invention. Note that portions common to the first embodiment are denoted by the same reference numerals, and the following description is omitted.
  • the strain detection device 1 of the fourth embodiment is the same as that of the first embodiment, but the installation mode on the measurement object is different. Specifically, the strain detection device 1 is affixed to the curved surface portion of the measurement object, and at least a part 2a of the thin film substrate 2 on the strain transmission piece 3A side is convex toward the upper side (strain transmission piece 3A side). It is used in a curved state.
  • the strain transmitting piece 3A is applied with a force to warp upward, but the strain transmitting piece 3A is coupled to the other strain transmitting piece 3B by the sensor foil 4, thereby preventing deformation.
  • the curved shape along the thin film substrate 2 is held, and potential stress is inherent in the strain transmitting piece 3A.
  • FIG. 14 is a perspective view of the strain sensing device 1 shown in FIG. 13 when the sensor foil 4 is broken.
  • FIG. 15 is a plan view of a strain detection apparatus according to the fifth embodiment of the present invention.
  • strain detection is formed by arranging three sets of strain detection sensors 6 having the same configuration as that used in the first embodiment on one thin film substrate 2. It is device 11. Since the detection characteristics of the strain detector 11 are based on the fracture characteristics of the material, there are variations in detection accuracy due to material variations and manufacturing variations. The variation in detection accuracy is the square root of the root mean square of the accuracy variation of each sensor when multiple sensors are used, so the detection accuracy can be improved by providing multiple strain detection sensors 6. .
  • the strain transmission pieces 3A and 3B are fixed to the thin film substrate 2 at predetermined positions Swl and Sw2 by spot welding, respectively.
  • one strain transmission piece 3B receives heat at an intermediate position Sh between the bridge portion and the fixed position Sw2 to such an extent that it is not welded by a spot welder. Yes.
  • a stress is applied to the strain transmitting piece 3B such that it breaks in the vicinity of the intermediate position Sh and the broken end tends to jump upward.
  • the strain detector 11 is adhered to the surface of the object to be measured, and the fracture state is observed after an appropriate time has elapsed.
  • the sensor foils 4 of the plurality of strain detection sensors 6 are broken, it can be determined that the object to be measured has generated a stress larger than the detection stress ⁇ of the sensor. If the sensor 6 is not broken, it can be determined that no stress greater than the detected stress ⁇ of the sensor has occurred.
  • the variation of the detected stress ⁇ is positively used, and the hysteresis stress of the measurement object is detected by the sensor.
  • the variation range of the detected stress ⁇ that is, between the upper limit value ⁇ and the lower limit value ⁇
  • -Can be estimated to be between +.
  • the three-thread and strain-detecting sensor 6 is formed in the same shape and arranged in parallel with each other.
  • the strain transmitting piece 3 ⁇ on the left side in the figure is fixed to the thin film substrate 2 with a spot welder.
  • the Swl may be configured to be different for each of the three sets of strain detection sensors 6.
  • each strain detection sensor has a different detection stress, and can be configured to have, for example, detection stresses ⁇ ⁇ , ⁇ 2, ⁇ 3 that are different in the order of upward force in the figure.
  • a strain detection device formed so that the detection stress ⁇ is different for each of the plurality of strain detection sensors is attached to the surface of the object to be measured, and observed after an appropriate time has elapsed.
  • the approximate value of the hysteresis stress of the measurement object can be estimated by specifying the strain detection sensor that has broken. For example, when all of the strain detection sensors are not broken, it can be seen that the measurement object has received a hysteresis stress smaller than the smallest detection stress ⁇ 1.
  • FIG. 16 is a plan view of a strain detection apparatus according to the sixth embodiment of the present invention. As shown in FIG. 16, the strain detection device 21 of the present embodiment is formed by arranging two sets of strain detection sensors 6 side by side on one thin film substrate 2.
  • the strain transmitting pieces 3A and 3B are welded and fixed to the thin film substrate 2 by a spot welder at one force point Swl and Sw2, respectively.
  • the distance between the fixed positions of the pair of strain transmission pieces 3A and 3B may be different between the two sets of strain detection sensors 6.
  • the detected stress ⁇ differs for each strain detection sensor.
  • one strain transmitting piece 3 ⁇ receives heat at an intermediate position Sh between the bridge portion and the fixed position Swl to such an extent that it is not welded by a spot welder. Stress is applied to warp upward.
  • the strain detection device 21 is adhered to the surface of the object to be measured, and the fracture state is observed by an operator after an appropriate time has elapsed. The observation may be performed by detecting electrical resistance via the electrode terminals, and the warping state of the strain transmitting piece 3A may be confirmed visually. As a result of observation, if both of the two strain detection sensors 6 break, the two objects are detected by the two strain detection sensors. If neither breaks, the stress of the two strain detection sensors is less than the detected stress ⁇ 1, ⁇ 2, or when one strain detection sensor breaks and the other pair breaks Therefore, it is possible to estimate that the stress between the detected stresses ⁇ 1 and ⁇ 2 of the two sets of strain sensors was recorded.
  • FIG. 17 is an explanatory diagram of a method for specifying a detected stress range using the strain detection apparatus shown in FIG. As shown in Fig. 17, the measurement range of the first strain detection sensor S1 is between the lower limit ⁇ and the upper limit ⁇ across the detected stress design value ⁇ .
  • the range is the lower limit with a design value ⁇ of detected stress larger than that of the first strain sensor.
  • FIG. 18 is an explanatory diagram of a strain detection apparatus according to the seventh embodiment of the present invention.
  • the strain detection device 1 attached to the measurement object of this embodiment is covered with a protective cover 30.
  • the protective cover 30 is made of a resin material, a polished steel plate, a coated steel plate, or the like, and is formed in a lid shape that can cover the strain detector 1.
  • the protective cover 30 protects the strain detection device 1 by hermetically sealing the interior of the object to be measured to the surface of the object to be measured by using grease or the like. Note that the electric wire 34 connected to the electrode terminal in order to electrically detect the breakage of the sensor foil 4 is led out from the protective cover 30 in an airtight manner.
  • FIG. 19 is an explanatory view of a strain detection apparatus according to the eighth embodiment of the present invention.
  • the strain detection device 1 of the present embodiment is coated with a force-resin coating 32 to block outside air, and can be used for a long time.
  • the electric wire 34 connected to the child is led out from the resin coating 32 in an airtight manner.
  • FIG. 20 is a plan view of a strain detection apparatus according to the ninth embodiment of the present invention.
  • Fig. 20 there are multiple measurement systems for cases where the structure of the object to be measured is complex and the direction of stress cannot be determined in advance, or for earthquakes in which the maximum strain direction cannot be predicted.
  • the multi-axis strain detection device 41 in which the strain detection sensors 6 are radially arranged with the detection axis directions slightly shifted from each other, since the unknown maximum strain direction is not overlooked.
  • FIG. 21 is a block diagram of a strain detection system 50 according to the tenth embodiment of the present invention.
  • the strain detection system 50 according to the present embodiment includes a strain detection device 1, a data detection transmission device 51, an independent power source 52, and a reception device 53. Note that the strain detection device 1 described in the first embodiment is used.
  • the data detection transmission device 51 is connected to the electrode terminals 4e and 4f of the strain detection device 1 via the electric wire 34.
  • the data detection transmission device 51 is connected to the electrode terminals 4e and 4f to detect a breakage (non-conduction) of the bridge portions 4a and 4b, and receives a detection signal when the breakage is detected by the detection circuit.
  • 53 has a transmission circuit for wireless transmission.
  • the data detection transmission device 51 is installed close to the strain detection device 1, and the detection circuit detects the presence or absence of breakage of the sensor foil 4 by inspecting the current or resistance between the electrode terminals 4e and 4f, and the transmission circuit. Transmits the detection result wirelessly to the receiving device 53 in a non-contact manner.
  • the independent power supply 52 is disposed in the vicinity of the data detection transmission device 51 or installed in a form incorporated in the data detection transmission device 51, and supplies power to the data detection transmission device 51.
  • the independent power source 52 is an independent device that uses dry cells, solar cells, etc. to eliminate the need for troublesome wiring for the strain detection device 1 and to eliminate on-site wiring work by an electrician.
  • the data detection transmission device 51 electrically detects and detects that the electrode terminals 4e and 4f become non-conductive when the load acting on the measurement object exceeds a predetermined value.
  • a signal is transmitted, and the receiving device 53 receives the detection signal wirelessly and detects an abnormality.
  • Receiver At 53 when an abnormality occurs, an alarm is given to the worker, the abnormal part is displayed and notified, and measures are taken to avoid danger such as issuing an emergency evacuation order or emergency stop of equipment. be able to.
  • the strain detection device 1 and the reception device 53 may be separated from each other. Therefore, it is not necessary for an operator to directly access the strain detection device 1, and a large number of detection results are collected and measured. It can also be used to diagnose the entire object.
  • FIG. 22 is a block diagram of a strain detection system according to the eleventh embodiment of the present invention.
  • the strain detection system 60 of the present embodiment uses a personal computer 61 with a modem 62 having a signal input device PIO as corresponding to the data detection transmission device 51 in the aspect of FIG. Therefore, the detection signal received by the receiving device is transmitted to the central monitoring room 63 (not shown).
  • the detection signal received in the central monitoring room 63 is signal-processed, and when it is determined to be abnormal, an alarm or emergency stop measures can be taken.
  • FIG. 23 is a block diagram of a strain detection system 70 according to the twelfth embodiment of the present invention.
  • the strain detection system 70 of the present embodiment is one in which an IC tag 71 is connected to the strain detection device 1.
  • the IC tag 71 is provided with a detection circuit and a transmission circuit.
  • the IC tag 71 is attached to the object to be measured with its terminals connected to the electrode terminals 4e and 4f of the strain detection device 1. Then, if necessary, the IC tag reading device 72 is held over the IC tag 71, so that the IC tag reading device 72 reads out the presence / absence information of excessive strain from the IC tag 71.
  • IC tag reader 7 for each of multiple strain detectors 1 2 is provided, and the detection results are always transmitted from the IC tag reader 72 to a predetermined management location for centralized management.
  • the IC tag 71 operates in a non-contact manner by receiving energy supply from the IC tag reader 72 when the IC tag reader 72 is approached, detects the breakage state of the sensor foil, and detects the detected information as IC Since it is wirelessly transmitted to the tag reader 72, a power supply device is not required inside. Since the IC tag 71 is sufficiently small and light, it can be attached to a rotating member of a rotating machine integrally with the strain detection device 1 to detect a load state during operation.
  • the operator moves the IC tag reading device 72 held around the place where the strain detection device 1 and the IC tag 71 are installed over the IC tag 71, so that the IC tag reading device 72 becomes the IC tag 71. Since the information related to the presence or absence of sensor foil breakage is read and displayed in a non-contact manner or the information is stored in the IC tag reader 72, it is extremely labor-saving even when a lot of places scattered over a wide area are inspected. Data can be collected.
  • FIG. 24 is a block diagram of a strain detection system according to the thirteenth embodiment of the present invention.
  • the data detection transmission device 51 connected to the strain detection device 1 transmits the detection result to the determination device 81.
  • the determination device 81 determines the detection result based on a predetermined determination criterion, and drives the display device 82 based on the determination result.
  • the display device 82 is equipped with devices that appeal to the sense of sight and hearing, such as indicator lights, liquid crystal display devices, and speakers. Notify the worker by generating an audible voice.
  • the determination device 81 and the display device 82 may be placed at a position away from the measurement object, and the detection result may be transmitted wirelessly from the data detection transmission device 51, or the data detection may be performed. It may be attached to the measurement object together with the transmission device 51 to display an alarm signal or the like at the location of the measurement object.
  • the data detection transmission device 51 and the like are driven by an independent power source 52 installed in the field.
  • FIG. 25 is a block diagram of a strain detection system 90 according to the fourteenth embodiment of the present invention.
  • the strain detection system 90 of the present embodiment is a temperature sensor or the like.
  • an appropriate strain detection sensor SI, S2 is selected and the state is judged.
  • two or more forces in which two strain detection sensors are arranged may be used.
  • the strain detection device 21 includes strain detection sensors SI and S2 having different detection levels as in the sixth embodiment.
  • the data detection transmission device 51 is connected to these strain detection sensors SI and S2. Further, the data detection transmission device 51 is connected to the state sensor 91, and the measured value of the state variable that affects the measurement object is input from the state sensor 91 and transmitted to the determination device 92.
  • the determination device 92 selects an appropriate strain detection sensor based on the measurement value of the state sensor 91, determines whether or not an excessive strain state has occurred in the measurement object, and drives the display device 82.
  • a sensor that measures a state variable that affects the stress state such as a temperature sensor, an acceleration sensor, an angular velocity sensor, a vibration sensor, or a displacement sensor, is selected.
  • a state variable that affects the stress state such as a temperature sensor, an acceleration sensor, an angular velocity sensor, a vibration sensor, or a displacement sensor.
  • a plurality of strain detection sensors SI and S2 with different breaking strains of the sensor foil are arranged, and an appropriate strain detection sensor is selected based on information from the state sensor 91.
  • FIG. 26 is an explanatory diagram for explaining the function of the strain detection system 90 shown in FIG.
  • the first strain detection sensor S1 is adjusted so that the sensor foil breaks when a predetermined load W1 is applied to the measurement object.
  • the second strain detection sensor S2 is adjusted so as to be broken when a load W2 larger than W1 is applied.
  • strain detection sensors S3, S4, S5, and S6 are arranged so as to detect appropriate loads W3, W4, W5, and W6 in sequence.
  • the judgment device 92 selects the strain detection sensor S3, and whether the sensor foil breaks or not is also necessary to alarm. Determine. In this case, even if the low-temperature strain detection sensors S1 and S2 prepared for the higher temperature region are broken, they are ignored.
  • a vibration sensor When a vibration sensor is used as the state sensor 91, when the vibration is large, a highly sensitive strain detection sensor is selected and the presence or absence of the sensor foil is checked. When the vibration is small, the sensitivity is low and the strain is low. When the detection sensor is selected and the presence or absence of sensor foil breakage is observed, it is possible to change the detection level for sudden overload by judging the operating status of the equipment. Further, when an acceleration sensor, an angular velocity sensor, a displacement sensor, or the like is used as the state sensor 91, it can be used to select a strain detection sensor corresponding to the measured value by the determination device as described above.
  • Figs. 27 to 37 are diagrams for explaining examples of use of the strain detection device of the present invention. By devising the position and method of applying the strain detection device for various measurement objects, The advantages of the present invention can be fully exhibited.
  • FIG. 27 is a schematic diagram showing a first usage example of the strain detection device of the present invention.
  • a strain detector is used for the falling bridge warning in the bridge 100.
  • Alarms can be issued by detecting abnormal loads and abnormal displacements of expansion and contraction devices and falling bridge prevention devices that occur during an earthquake.
  • a long bridge 100 having a plurality of bridge girders 101 is provided with bridge piers 103 at appropriate intervals between the abutments 102 built at both ends of the bridge, and the bridge girders 101 are hung between the abutment 102 and the pier 103 or between the piers 103. It is formed by connecting.
  • the bridge girder 101 expands and contracts mainly due to temperature, it cannot be completely fixed to the abutment 102 or the pier 103. Further, at both ends of the bridge girder 101, an expansion / contraction device 104 is interposed in order to prevent the bridge girder 101 from expanding and contracting due to a temperature change and generating a gap between the bridge beams 101.
  • the telescopic device 104 can be configured, for example, by forming comb-shaped protrusions at the end of the bridge beam 101 and arranging the teeth of the combs on both sides to face each other.
  • the bridge girder 101 at both ends is equipped with the abutment 102, and the bridge girder 101 is also connected with a falling bridge prevention device 105, 106 that couples the beam girder 101 with beams or cables.
  • the strain detection device 1 adjusted so that the sensor foil breaks in the vicinity of the strain corresponding to the limit state where the bridge can be safely bridged is attached to the beam of the fall prevention device 105, 106, the support of the cable, etc. If a warning is issued when a strong force is received, appropriate measures can be taken to ensure safety before a serious accident occurs. Alarms can be displayed at the location of the bridge 100, or the management office can be notified to take appropriate measures.
  • FIG. 28 is a schematic view showing a second usage example of the strain detection apparatus of the present invention.
  • the pier 112 on which the bridge 111 is placed is made of reinforced concrete, and the foundation pile 114 is driven and fixed to a sufficient depth underground.
  • the sturdy pier 112 will also be damaged in the event of a major earthquake. For this reason, it is required to design and construct exactly knowing what kind of structure and how much earthquake it can withstand. It is economically difficult to constantly monitor the stresses generated using expensive measuring instruments, and it is difficult to systematically collect actual data for rare earthquakes. Therefore, it is reasonable to collect data after an earthquake has occurred by attaching an inexpensive strain detector 1 to the part to be measured.
  • strain detection devices 1 with different break strain settings are installed in advance, and the strain detection device 1 that breaks after an earthquake occurs and the strain detection device 1 that does not break. By dividing, the actually generated stress can be estimated.
  • the strain detection system 70 having the IC tag 71 as in the twelfth embodiment the surface force of the strain detection device 1 and the IC tag 71 sensor embedded inside can be searched to know the detection result. it can.
  • Damaged columns and reinforcing bars may not be observed from the outside.
  • a large number of strain detectors 1 with different set breaking strains are attached to the reinforcing bars 113 inside the concrete.
  • the pier 112 may be formed by covering with concrete. After the earthquake occurs, the strain detecting device 1 that has broken and the strain detecting device 1 that has not broken can be examined to accurately estimate the maximum stress applied to the reinforcing bar 113. Based on this result, it is possible to judge the availability of service after the earthquake and the necessity for repair. Also, damaged part and sound By analyzing the maximum stress in the part, valuable design data can be obtained.
  • the stress received by each foundation pile 114 cannot be easily known. However, according to this use example, it is also detected from the buried strain detection device. Since the data can be acquired, the stress received by the foundation pile 114 can be estimated, which is extremely effective for earthquake analysis.
  • FIG. 29 is a schematic view showing a third usage example of the strain detection apparatus of the present invention.
  • a strain detector is used to estimate the stress application state in the expansion joint arranged in the pipe.
  • the expansion joint 120 having a bellows pipe is provided in the middle of the pipe, and absorbs the expansion / contraction allowance of the pipe based on changes in temperature and fluid pressure.
  • the strain detection device of the present invention can be used as a method for detecting an abnormality in the expansion joint 120.
  • strain detector 1 is attached to the surface of the bent portion 121 of the bellows tube, or the strain detector 1 is attached to the bolt 122 with the bellows portion sandwiched between flanges and tightened between the flanges, An abnormality can be easily detected and an alarm can be issued.
  • FIG. 30 is a schematic view showing a fourth example of use of the strain sensing device of the present invention.
  • the torsional load on the rotating shaft in the rotating equipment is monitored by a strain detector.
  • the rotating shaft 130 connecting the drive unit and the load unit generates a shearing force due to a torsional load, and the maximum strain direction generated on the surface of the rotating shaft 130 is inclined by approximately 45 ° to the shaft. . Therefore, the strain detector 1 must be attached with the detection axis inclined at 45 ° to the direction of the rotation axis, and the maximum strain must be accurately detected.
  • FIG. 31 is a plan view of a strain detector 140 of a modified example in which shear stress is detected for application to the rotating shaft 130 and the like shown in FIG.
  • the direction of the maximum strain on the surface of the measurement object has a predetermined inclination with respect to the direction of the force. Therefore, if the detection axis direction of the strain detection sensor 6 of the strain detection device 140 is adjusted to the maximum strain direction from the beginning, there is no need to adjust the angle when the strain detection device 140 is attached to the measurement object. Convenient.
  • FIG. 1 is a plan view of a strain detector 140 of a modified example in which shear stress is detected for application to the rotating shaft 130 and the like shown in FIG.
  • the strain detecting sensor 6 is formed with an inclination of 45 ° with respect to the axial direction of the rotating shaft. That is, the strain transmitting pieces 3A and 3B (see FIG. 1) are arranged at the center position of the rectangular thin film substrate 2 so as to have a detection axis in a direction inclined by 45 ° with respect to the side.
  • the detection axis direction of the strain detection sensor 6 is the maximum strain on the surface of the rotation axis. This is convenient because the maximum stress is detected in accordance with the direction of the peak.
  • FIG. 32 is a schematic view showing a fifth usage example of the strain detection apparatus of the present invention.
  • the strain detection device 21 is applied to a crane.
  • a strain detection unit 155 with a strain detection device 1 for detecting an abnormal load is interposed in a portion where the wire 152 for hanging the pulley 151 of the crane 1 50 is fixed to the crane body.
  • the sensor foil of the strain detector 1 breaks and generates a danger signal.
  • the receiving device that receives the danger signal gives a warning to the operator and stops the operation. If the load is close to the dangerous load and the danger is imminent, an emergency stop may be automatically performed. Since the dangerous load that causes the crane 150 to fall or break varies depending on the crane angle, several strain detectors 1 and angle sensors are used in combination to switch off the strain detector 1 to be used for each measured angle range. It may be possible to make an accurate judgment of the risk level.
  • FIG. 33 is a plan view of the strain detection unit 155 used in FIG.
  • the strain detection unit 155 is formed by attaching the strain detection device 1 to a central flat portion 157 of a bar piece 158 having suspension holes 156 at both ends.
  • the material and shape of the bar piece 158 can be arbitrarily selected to suit the load detection. Further, since the strain detection unit 155 has reproducibility, the detection load can be determined experimentally and is highly reliable.
  • Such a general-purpose strain detection unit 155 can be applied to various objects such as crane abnormal load detection.
  • FIG. 34 is a schematic view showing a sixth example of use of the strain sensing device of the present invention. Shown in Figure 34 As described above, this use example uses a strain detection device as an overload warning device for a hanging wire.
  • the suspension wire 161 breaks and drops a cargo when a cargo exceeding a predetermined load is suspended. Therefore, it is preferable to confirm that an excessive load is not suspended and to alert the driver or stop the operation when an excessive load is accidentally applied.
  • a pair of guide rollers 162 is provided on the path of the suspension wire 161, and the detection roller 164 is disposed between the guide rollers 162, and the detection roller 164 is pressed by the tension of the suspension wire 161 generated by the load.
  • the sensor plate 165 is displaced, and a detection signal is generated when the displacement exceeds a predetermined value.
  • FIG. 35A is a side view of sensor plate 165 shown in FIG.
  • FIG. 35B is a plan view of the sensor plate 165 shown in FIG.
  • the sensor plate 165 is obtained by attaching the strain detection device 1 of the present invention to the back side of a strip-shaped substrate 166 provided with a stop hole 166a at both ends, and installed at an appropriate interval.
  • the fixed object 168 is fixed to the lower surface of the fixed object 168 with a stopper 167 through a stop hole 166a, and is arranged so that the detection roller 164 contacts the lower surface of the intermediate part.
  • the sensor plate 165 When the axial position of the detection roller 164 is displaced due to the tension of the hanging wire 161, the sensor plate 165 is squeezed and the thin film substrate 2 (see Fig. 1) of the strain detection device 1 is stretched to reach a preset strain.
  • the sensor foil 4 (see Fig. 1) breaks and an abnormality can be detected.
  • the detection signal is transmitted to a receiving device as shown in FIGS. 21 to 23, and is transmitted to the driver as an alarm signal, or the driving of the hanging wire 161 is controlled to stop.
  • FIG. 36 is a schematic view showing a seventh example of use of the strain sensing device of the present invention.
  • FIG. 37 is an enlarged view of the main part of FIG. As shown in Fig. 36 and Fig. 37, at the part where the bridge girder 170 engages with the abutment 171, the horizontal distance between the bridge girder 170 and the abutment 171 is monitored to detect anomalies that are larger than the predetermined distance.
  • a detection unit 155 and a sensor plate 165 that is installed in a portion where the end of the bridge girder 170 is placed and detects an abnormal load are provided.
  • the strain detection unit 155 is the same as that described in Fig. 33, and is adjusted so that the sensor foil breaks when the distance between the bridge girder 170 and the abutment 17 1 reaches a predetermined dangerous displacement amount. Yes.
  • the sensor plate 165 provided under the bridge girder 171 is the same as that described in FIGS. 35A and 35B.
  • a pressing pin 172 that pushes down the sensor plate 165 protrudes downward. That is, the pressing pin 172 moves up and down as the bridge girder 170 is displaced in the vertical direction. Since the bridge girder 170 has a fulcrum 175 on the upper surface of the abutment 173, it sinks around the fulcrum 175 when a load is applied.
  • the pressing pin 172 is formed so that its tip protrudes in a circular arc shape.
  • the sensor plate 165 of this use example detects an abnormality when an excessive load is loaded on the bridge girder 170 and issues an alarm or automatically displays a prohibition of entry. be able to.
  • the strain detection device of the present invention described above does not require an advanced instrument for measurement, and can be used for long-term monitoring to monitor strain generated in the structure of the product throughout the service period. It is possible to detect excessive strain that occurs rarely during the operation period. It can also be used for strain abnormality alarms in environments where measuring devices cannot be used, such as rotating objects, moving objects, and underwater objects. Furthermore, due to the simplicity and economy of this strain detection device, it can be applied to a wide range of measurement or a large number of measurement points to identify the approximate distribution of generated stress and the location where the overstress occurs. In addition, any load value can be measured by measuring the stress generation part of steel materials in various structures, transportation equipment, buildings, machines, etc.
  • strain detection device of the present invention can be applied to any material as long as the sensor can be adhered to the stress generating part, such as non-ferrous materials, polymer materials, composite materials, concrete, asphalt, and wood, in addition to steel materials. Is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

[PROBLEMS] To detect strain generated in a measuring object without an error by a simple and low-cost configuration. [MEANS FOR SOLVING PROBLEMS] A strain sensor (1) is provided with a thin film substrate (2) adhered on an measuring object (10); a pair of strain transmitting pieces (3A, 3B), which are arranged to face each other on the thin film substrate (2) by sandwiching a small gap (G), and each of which is fixed to the thin film substrate (2) on at least one portion; and a sensor foil (4), which is adhered over the pair of strain transmitting pieces (3A, 3B) and has, at a position corresponding to the gap (G), bridge sections (4a, 4b), which have a cross-section area smaller than that of the foil at a position adhered on the strain transmitting pieces (3A, 3B). One strain transmitting piece (3A) of the transmitting pieces has a stress of warping in a direction to be separated from the thin film substrate (2).

Description

明 細 書  Specification
ひずみ検知装置及びひずみ検知システム  Strain detector and strain detection system
技術分野  Technical field
[0001] 本発明は、構造物等に作用するひずみをモニタリングして過大な荷重の有無を判 定するために、測定対象物に貼り付けて使用する簡素かつ安価なひずみ検知装置 及びそれを有するひずみ検知システムに関するものである。  [0001] The present invention includes a simple and inexpensive strain detection device that is used by being attached to a measurement object in order to determine whether there is an excessive load by monitoring strain acting on a structure or the like. The present invention relates to a strain detection system.
背景技術  Background art
[0002] 構造物等の維持'管理においては、機能が十分果たせなくなるような損傷を供用中 に構造物等が受けたかどうかを把握することが重要である。材料におけるひずみを推 定するために従来から利用される方法に、測定対象にひずみゲージを貼付しておい て、発生するひずみを常時測定する方法がある。この方法は、電源装置や変換器な ど精密な計測装置を用いなければならな 、ので、一度に多数の部位にっ 、て計測 することには適していない。したがって、この方法を大型の構造物等について適用し て、全体的にひずみ履歴状況を把握するようにすることは難 ヽ。  [0002] In the maintenance and management of structures and the like, it is important to know whether or not the structures and the like have been damaged during operation so that their functions cannot be sufficiently performed. One method that has been used in the past to estimate the strain in a material is to always measure the generated strain by attaching a strain gauge to the measurement object. Since this method requires the use of precise measuring devices such as power supply devices and converters, it is not suitable for measuring a large number of parts at once. Therefore, it is difficult to apply this method to large structures, etc. so that the overall history of strain history can be ascertained.
[0003] 特開平 9— 005175号公報には、構造物が受けてきた応力の大きさを把握するた めの応力測定センサが開示されている。この応力測定センサは、測定対象物より小さ なひずみで破壊する材料で製作したワイヤの両端を測定対象物に固定しておき、ヮ ィャの破断の有無力も測定対象物に作用した応力が所定値より大き力つたかどうか を判定するものである。  [0003] Japanese Patent Application Laid-Open No. 9-005175 discloses a stress measurement sensor for grasping the magnitude of stress received by a structure. In this stress measurement sensor, both ends of a wire made of a material that breaks with a smaller strain than the object to be measured are fixed to the object to be measured, and the presence / absence of the fracture of the wire is determined by the stress acting on the object to be measured. It is used to determine whether or not the power is greater than the value.
[0004] この応力測定センサは、ベースとなる薄膜に固定台を固定してワイヤの両端を接着 剤などで固定台に固定して形成される。ワイヤは破断ひずみが小さい材料 (例えば、 ニッケル、チタン、炭素鋼など)が選ばれる。また、固定台は非導電性の高分子材料 、セラミックス系材料、非鉄金属材料などが選ばれる。この応力測定センサは、測定 対象物に貼付する薄膜の上に固定した台に検知ワイヤを接着して形成するものであ るから、製法上形状や寸法の再現性を確保することが難しぐ再現性のある測定をす ることが困難である。特に小さいセンサを用いるときには、検知ワイヤゃ検知板の破 断を観察するときに相応の注意力^^中しなければならない。 [0005] 一方、特開 2001— 281120号公報には、金属箔基板の中央部に亀裂進展部を有 する破断片が形成されたクラック型疲労センサが開示されている。このクラック型疲労 センサでは、その亀裂進展部に先端の鋭いスリットが側端力も形成されていて、測定 対象物に発生する繰返し応力の程度に応じてスリットの先端に亀裂が生じて進展す る。 [0004] This stress measurement sensor is formed by fixing a fixing base to a thin film serving as a base and fixing both ends of the wire to the fixing base with an adhesive or the like. For the wire, a material with a low breaking strain (for example, nickel, titanium, carbon steel, etc.) is selected. For the fixing base, a non-conductive polymer material, a ceramic material, a non-ferrous metal material, or the like is selected. Since this stress measurement sensor is formed by adhering a detection wire to a base fixed on a thin film to be attached to a measurement object, it is difficult to ensure the reproducibility of the shape and dimensions in the manufacturing process. It is difficult to make reliable measurements. Especially when using a small sensor, the detection wire must be moderately cautious when observing breakage of the detection plate. [0005] On the other hand, Japanese Patent Application Laid-Open No. 2001-281120 discloses a crack type fatigue sensor in which a fracture piece having a crack propagation portion is formed at the center of a metal foil substrate. In this crack type fatigue sensor, a slit with a sharp tip is also formed at the crack propagation part, and the side end force is also formed, and a crack occurs at the tip of the slit depending on the degree of repeated stress generated on the measurement object, and the crack progresses.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、構造物や輸送機械などの各種の部材は、溶接、機械加工、押出し成 型、铸造など様々な方法で製作されており、これらの部材について疲労損傷度や寿 命を推定しょうとすると、測定対象物によって疲労センサの亀裂との関係が変わるの で、十分正しい結果を得るためには複雑な演算が必要である。このように、開示され た疲労センサを適切に使用するためには高度な知識と熟練を要求されるという問題 がある。よって、機器や構造物の維持'管理を簡便に実施するために利用するものと して、ひずみゲージのように構造物の表面に貼付して応力をモニタリングし、過大な 荷重があったことを確実にチェックできる簡素かつ安価なセンサの開発が求められる [0006] However, various members such as structures and transporting machines are manufactured by various methods such as welding, machining, extrusion molding, and forging. If we try to estimate, the relationship with the crack of the fatigue sensor changes depending on the object to be measured, so complicated calculations are required to obtain sufficiently correct results. As described above, there is a problem that advanced knowledge and skill are required to properly use the disclosed fatigue sensor. Therefore, it is used for easy maintenance and management of equipment and structures, and it is affixed to the surface of the structure like a strain gauge to monitor the stress and check that there was an excessive load. The development of a simple and inexpensive sensor that can be reliably checked is required.
[0007] そこで本発明は、簡素かつ安価な構成で、測定対象物に生じるひずみを誤りなく検 出できるようにすることを目的として!/、る。 [0007] Therefore, an object of the present invention is to make it possible to detect a distortion generated in a measurement object without error with a simple and inexpensive configuration.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は上述のような事情に鑑みてなされたものであり、本発明に係るひずみ検知 装置は、測定対象物に貼付されて測定対象物と共にひずむ薄膜基板と、前記薄膜 基板上に小さなギャップを挟んで対置され、それぞれ少なくとも 1力所で前記薄膜基 板に固定された一対のひずみ伝達片と、前記一対のひずみ伝達片上に跨って貼付 され、前記ギャップに対応する位置に前記ひずみ伝達片に貼付された位置よりも断 面積が小さ!/、ブリッジ部を有するセンサ箔とを備え、前記一対のひずみ伝達片のうち 一方が、前記薄膜基板力も離反する方向に反れようとする応力を有していることを特 徴とする。なお、前記応力は、ひずみ伝達片に予め与えられた内在的な応力であり、 一対のひずみ伝達片がセンサ箔を介して互いに拘束されていることにより、前記応力 による歪みが現れな 、ものである。 [0008] The present invention has been made in view of the circumstances as described above, and a strain detection apparatus according to the present invention includes a thin film substrate that is attached to a measurement object and is distorted together with the measurement object, and the thin film substrate. A pair of strain transmitting pieces, which are opposed to each other across a small gap and fixed to the thin film substrate at at least one force point, are pasted on the pair of strain transmitting pieces, and the strain is placed at a position corresponding to the gap. A sectional area smaller than the position affixed to the transmission piece, and a sensor foil having a bridge portion, and one of the pair of strain transmission pieces has a stress that tends to warp in a direction in which the thin film substrate force is also separated. It is characterized by having The stress is an inherent stress given in advance to the strain transmission piece, and the stress transmission piece is constrained to each other via a sensor foil. The distortion caused by is something that does not appear.
[0009] 前記構成によれば、一対のひずみ伝達片にセンサ箔が跨って貼付され、一対のひ ずみ伝達片の間には断面積の小さいブリッジ部が設けられているため、測定対象物 がひずみを生じたときの応力がセンサ箔のブリッジ部に集中する。即ち、このひずみ 検知装置は、ひずみの拡大機能を備えることになる。センサ箔は所定の破断伸び特 性を有し、ブリッジ部の局所ひずみが破断伸びを超えると、最小断面部であるブリツ ジ部が破断する。ブリッジ部が破断したときは、センサ箔の破断強度とひずみの集中 度とから決まる所定のひずみ以上のひずみが測定対象部位に発生したと推定するこ とがでさる。  [0009] According to the above configuration, the sensor foil is stuck across the pair of strain transmission pieces, and the bridge portion having a small cross-sectional area is provided between the pair of strain transmission pieces. The stress when the strain is generated concentrates on the bridge portion of the sensor foil. In other words, this strain detector has a strain expansion function. The sensor foil has a predetermined breaking elongation characteristic, and when the local strain of the bridge portion exceeds the breaking elongation, the bridge portion, which is the minimum cross-sectional portion, breaks. When the bridge part breaks, it can be estimated that a strain greater than a predetermined strain determined from the breaking strength of the sensor foil and the concentration of strain has occurred in the measurement target site.
[0010] そして、センサ箔は、破断するまでは一体に繋がっているので平らになっている力 ギャップの位置でブリッジ部が破断すると、片方のひずみ伝達片に内在する潜在的 な応力が顕在化して、そのひずみ伝達片がセンサ箔の破断端と一緒に薄膜基板か ら離反する方向に反り返って浮き上がり、元に戻らない。このため、作業者は、センサ 箔の破断端の反り返りを目視等で観察することにより、誤認することなく簡単かつ正 確にセンサ箔の破断を知ることができる。  [0010] And, since the sensor foil is integrally connected until it breaks, if the bridge portion breaks at the position of the flat force gap, the potential stress inherent in one strain transmitting piece becomes obvious. Thus, the strain transmitting piece, along with the broken end of the sensor foil, warps in a direction away from the thin film substrate, and does not return. For this reason, the operator can know the breakage of the sensor foil easily and accurately without misunderstanding by visually observing the warping of the broken end of the sensor foil.
[0011] さらに、ひずみ検知装置の感度を決めるひずみ伝達片とセンサ箔の組み合わせで あるひずみ検知センサが、薄膜基板の上に予め形成されているので、測定対象物に ひずみ検知装置を貼付したときに前記センサ箔の破断ひずみが変化せず、設計通り の感度を有するセンサとして利用することができ、信頼性が向上する。  [0011] Furthermore, since a strain detection sensor, which is a combination of a strain transmission piece and a sensor foil that determines the sensitivity of the strain detection device, is formed in advance on the thin film substrate, the strain detection device is attached to the measurement object. In addition, the breaking strain of the sensor foil does not change, and the sensor foil can be used as a sensor having sensitivity as designed, improving reliability.
[0012] また、ひずみ検知装置は、測定対象物に貼付したときに貼付位置における応力が 所定値になったときに発生する測定対象物のひずみによりセンサ箔が破断するよう に調整されたものであるとよい。ひずみと荷重の関係は、測定対象物に従って変化 する一方、センサ箔の破断は測定対象物に貼付された薄膜基板のひずみにより支 配されるので、センサの検出感度は測定対象物と目標とする荷重によって変化する。 したがって、測定対象物と測定目的に基づいて感度調整をして、的確な破損強度を 検出できるようにすることが好ま U、。  [0012] Further, the strain detection device is adjusted so that the sensor foil is broken by the strain of the measurement object that occurs when the stress at the application position reaches a predetermined value when it is applied to the measurement object. There should be. While the relationship between strain and load changes according to the object to be measured, the sensor foil breakage is controlled by the strain of the thin film substrate affixed to the object to be measured. Varies with load. Therefore, it is preferable to adjust the sensitivity based on the object to be measured and the purpose of the measurement so that the correct damage strength can be detected.
[0013] ひずみ伝達片とセンサ箔の厚みの差が大きくて両者の剛性差が大きいほど、ひず み感度が大きくなるので、精度が確保できる限り厚みの差を調整して測定対象物の ひずみ最大値の測定範囲を調整することができる。また、測定対象物のひずみの発 生に伴いセンサ箔に現れるひずみは、一対のひずみ伝達片の薄膜基板への夫々の 接合位置の距離が大きいほど大きくなるので、この距離を調整することによりひずみ 感度を調整することができる。 [0013] The greater the difference in thickness between the strain transmitting piece and the sensor foil and the greater the difference in rigidity between the two, the greater the strain sensitivity. Therefore, the difference in thickness is adjusted as much as possible to ensure accuracy. The measurement range of the maximum strain value can be adjusted. In addition, the strain that appears on the sensor foil due to the occurrence of strain on the object to be measured increases as the distance between the bonding positions of the pair of strain transmitting pieces to the thin film substrate increases. Sensitivity can be adjusted.
[0014] センサ箔をエッチングあるいは電铸法で形成するときは、センサ箔の幅の狭いプリ ッジ部も正確に形成することができる。また、センサ箔の厚みは 2段電铸法により正確 に制御することができる。薄膜基板はステンレス鋼で形成され、センサ箔は圧延銅や 電解銅で形成されていてもよい。また、薄膜基板がインバーで形成され、前記センサ 箔がニッケルで形成されてもよい。センサ箔は、その破断伸びが小さい方が、測定対 象物の小さなひずみにも検知するひずみ検知装置を構成することができる。また、特 性がよく知られており、製造が容易な材質を選ぶことが好ましい。したがって、高強度 の銅箔をセンサ箔に使用することが好ましい。また、ニッケルは十分に硬く疲労セン サなどで情報および技術が蓄積されているため、センサ箔に適している。なお、薄膜 基板の裏側には、浅い細線を多数エッチングするなどして凹凸面とし、測定対象物 の表面に接着剤で固定するときに接着性を向上させるとよい。  [0014] When the sensor foil is formed by etching or the electroplating method, the narrowed portion of the sensor foil can also be accurately formed. In addition, the thickness of the sensor foil can be accurately controlled by a two-stage electrical method. The thin film substrate may be formed of stainless steel, and the sensor foil may be formed of rolled copper or electrolytic copper. The thin film substrate may be formed of invar, and the sensor foil may be formed of nickel. When the sensor foil has a smaller elongation at break, it can constitute a strain detection device that detects even a small strain of the measurement object. In addition, it is preferable to select a material whose characteristics are well known and easy to manufacture. Therefore, it is preferable to use a high-strength copper foil for the sensor foil. Nickel is sufficiently hard and is suitable for sensor foil because it has accumulated information and technology using fatigue sensors. Note that the back side of the thin film substrate should be a rough surface by etching a number of shallow thin wires, etc., and the adhesion should be improved when it is fixed to the surface of the object to be measured with an adhesive.
[0015] 前記センサ箔は、前記ギャップを横断する部分で複数の前記ブリッジ部を有しても よい。  [0015] The sensor foil may include a plurality of the bridge portions in a portion crossing the gap.
[0016] 前記構成によれば、破断部位となるブリッジ部が複数設けられて 、るので、信頼性 が向上する。  [0016] According to the above configuration, since a plurality of bridge portions serving as fracture portions are provided, the reliability is improved.
[0017] 前記ひずみ伝達片は、前記ギャップの位置と前記薄膜基板に固定された位置との 間の部位に前記薄膜基板に接合しない程度の入熱がされることにより前記応力、即 ち、内在する応力が付与されていてもよい。  [0017] The strain transmitting piece is subjected to the stress, that is, inherently, by heat input to a portion between the position of the gap and the position fixed to the thin film substrate so as not to be bonded to the thin film substrate. Stress may be applied.
[0018] 具体的には、前記ひずみ伝達片は、該ひずみ伝達片を前記薄膜基板に固定する 部位では該薄膜基板側カゝら局所加熱装置で入熱されることにより溶融接合される一 方、前記ギャップの位置と前記薄膜基板に固定された位置との間の位置に該ひずみ 伝達片側から局所加熱装置で前記薄膜基板に接合しない程度の入熱がされること により前記応力が付与されて 、てもよ 、。  [0018] Specifically, the strain transmitting piece is melt-bonded at a portion where the strain transmitting piece is fixed to the thin film substrate by being heated by a local heating device from the thin film substrate side. The stress is applied to the position between the position of the gap and the position fixed to the thin film substrate by heat input to the extent that the strain transmission piece does not join the thin film substrate with a local heating device. Anyway.
[0019] 前記ひずみ伝達片及び前記センサ箔は金属からなり、前記ひずみ伝達片と前記セ ンサ箔との間には絶縁接着層が介設されて 、てもよ!/、。 [0019] The strain transmission piece and the sensor foil are made of metal, and the strain transmission piece and the sensor foil. An insulating adhesive layer is interposed between the sensor foil and it's okay!
[0020] 前記構成によれば、破断するブリッジ部を挟んだセンサ箔の両側に電流計あるい は抵抗計を接続して破断の存否を検出することができる。そして、ひずみ伝達片とセ ンサ箔との間には絶縁接着層(例えば、ポリイミド膜)が設けられているので、仮に対 向するひずみ伝達片同士が接触しても、各ひずみ伝達片を介して誤って導通するこ ともない。 [0020] According to the above configuration, it is possible to detect the presence or absence of breakage by connecting an ammeter or a resistance meter to both sides of the sensor foil across the bridging bridge portion. Since an insulating adhesive layer (for example, a polyimide film) is provided between the strain transmitting piece and the sensor foil, even if the opposing strain transmitting pieces come into contact with each other, the respective strain transmitting pieces are interposed. There is no accidental conduction.
[0021] なお、現地で電流計あるいは抵抗計のプローブをセンサ箔に当てて導通 Z非導通 を検出する代わりに、センサ箔に電線を接続してブリッジ部の破断の有無に関する情 報を遠隔地で受信可能にしてもよい。また、データ送信は無線通信で行うこともでき ることは言うまでもない。なお、無線通信を利用する場合は、電源装置をひずみ検知 装置に付帯させる必要がある。無線を利用する場合の電源装置は、乾電池や太陽 電池などを使った、配線工事を必要としな 、独立的な電源であるとょ 、。  [0021] Instead of detecting the continuity Z non-conduction by applying an ammeter or resistance meter probe to the sensor foil at the site, information on the presence or absence of breakage of the bridge portion can be obtained by connecting a wire to the sensor foil. May be receivable. Needless to say, data transmission can also be performed by wireless communication. When using wireless communication, the power supply must be attached to the strain detection device. When using wireless, the power supply is an independent power supply that uses dry batteries or solar cells and does not require wiring work.
[0022] 前記ひずみ伝達片は、該ひずみ伝達片の一部に一体的に接続された状態で該ひ ずみ伝達片を囲繞して該ひずみ伝達片と同一材料力 なる補強枠が除去されること により形成されるものであってもよい。例えば、補強枠とひずみ伝達片は 1枚のプレー トからエッチングゃ電铸法により形成するとよい。  [0022] The strain transmitting piece is integrally connected to a part of the strain transmitting piece, surrounds the strain transmitting piece, and the reinforcing frame having the same material force as that of the strain transmitting piece is removed. It may be formed by. For example, the reinforcing frame and the strain transmitting piece may be formed from a single plate by etching or electroplating.
[0023] 前記ひずみ伝達片と前記補強枠との間には、細い連結部で区切られた細長い孔を 並べた折り取り線が設けられ、前記連結部を折り切ることにより前記補強枠が除去さ れるものであってもよい。  [0023] Between the strain transmitting piece and the reinforcing frame, a folding line is provided in which elongated holes partitioned by a thin connecting portion are arranged, and the reinforcing frame is removed by folding the connecting portion. It may be.
[0024] 前記構成によれば、ひずみ検知装置を測定対象物に貼り付ける際に、連結部を折 り切って補強枠を取り外すことができ、測定対象物への設置前の取り扱 、を容易に することができると共に、製品の搬送中における損傷等を防止することが可能となる。  [0024] According to the above configuration, when the strain detection device is attached to the measurement object, the connecting frame can be broken and the reinforcing frame can be removed, which facilitates handling before installation on the measurement object. In addition, it is possible to prevent damage and the like during product transportation.
[0025] 前記一対のひずみ伝達片と前記センサ箔との組み合わせであるひずみ検知セン サが、前記薄膜基板上に複数配置されており、前記一対のひずみ伝達片のうち一方 の前記薄膜基板への固定位置と、前記一対のひずみ伝達片のうち他方の前記薄膜 基板への固定位置との間の距離が、前記複数のひずみ検知センサ毎に異なってい てもよい。  [0025] A plurality of strain detection sensors, which are a combination of the pair of strain transmission pieces and the sensor foil, are arranged on the thin film substrate, and one of the pair of strain transmission pieces to the thin film substrate. A distance between the fixed position and the fixed position of the pair of strain transmitting pieces to the other thin film substrate may be different for each of the plurality of strain detection sensors.
[0026] 前記構成によれば、複数のひずみ検知センサのうち幾つかのセンサ箔が破断し、 残りが破断しな力つたときには、破断したひずみ検知センサの検知応力と、破断しな かったひずみ検知センサの検知応力との間の応力が測定対象物に発生したと推定 することができ、測定対象物の応力履歴の概略値を推定することが可能となる。 [0026] According to the above configuration, some of the plurality of strain detection sensors are broken, When the remaining force does not break, it can be estimated that a stress between the detected stress of the broken strain sensor and the detected stress of the strain sensor that did not break has occurred in the measurement object. An approximate value of the stress history of the object can be estimated.
[0027] その際、前記複数のひずみ検知センサは、前記一対のひずみ伝達片の並び方向 と一致する検知軸が実質的に平行になるように配置されて 、てもよ 、。  In this case, the plurality of strain detection sensors may be arranged such that detection axes that coincide with the direction in which the pair of strain transmission pieces are aligned are substantially parallel to each other.
[0028] 前記構成によれば、 互いに応力感度の異なる 2セット以上のひずみ検知センサの うち、どのひずみ検知センサのセンサ箔が破断し、どのひずみ検知センサのセンサ 箔が破断していないかをチェックすることにより、測定対象物で発生したひずみ値が どのような範囲にあるかを推定することができる。  [0028] According to the above configuration, of two or more sets of strain detection sensors having different stress sensitivities, which strain detection sensor foil is broken and which strain detection sensor foil is not broken is checked. By doing so, it is possible to estimate the range of the strain value generated in the measurement object.
[0029] 前記一対のひずみ伝達片と前記センサ箔の組み合わせであるひずみ検知センサ 力 前記薄膜基板上に複数配置されており、前記一対のひずみ伝達片のうち一方の 前記薄膜基板への固定位置と、前記一対のひずみ伝達片のうち他方の前記薄膜基 板への固定位置との間の距離が、前記複数のひずみ検知センサ同士で互いに同じ であってもよい。  [0029] A strain detection sensor force that is a combination of the pair of strain transmitting pieces and the sensor foil. A plurality of strain detecting sensors are arranged on the thin film substrate, and one of the pair of strain transmitting pieces is fixed to the thin film substrate. The distance between the fixed position of the pair of strain transmission pieces to the other thin film substrate may be the same among the plurality of strain detection sensors.
[0030] その際、前記複数のひずみ検知センサは、前記一対のひずみ伝達片の並び方向 と一致する検知軸が実質的に平行になるように配置されて 、てもよ 、。  [0030] In that case, the plurality of strain detection sensors may be arranged such that detection axes that coincide with the direction in which the pair of strain transmission pieces are aligned are substantially parallel.
[0031] ひずみ検知装置の検出精度は、材料の破断特性に基づくものであり、材料的なバ ラツキ、製造時のバラツキなどを原因とする検出精度のバラツキを避けることができな い。そこで、前記構成のように同種のひずみ検知センサを一緒に複数使用することに より、検出精度を向上させることができる。複数のひずみ検知センサを用いたときには 、検出精度のバラツキは、各ひずみ検知センサの精度バラツキの 2乗平均の平方根 になるから、複数のひずみ検知センサを用いることにより信頼性が向上する。  [0031] The detection accuracy of the strain detection device is based on the fracture characteristics of the material, and it is impossible to avoid variations in detection accuracy due to material variations and manufacturing variations. Therefore, the detection accuracy can be improved by using a plurality of strain detection sensors of the same type together as in the above configuration. When multiple strain detection sensors are used, the variation in detection accuracy is the root mean square of the accuracy variation of each strain detection sensor, so reliability is improved by using multiple strain detection sensors.
[0032] また、前記複数のひずみ検知センサは、前記一対のひずみ伝達片の並び方向と 一致する検知軸が互いに交わるように配置されて 、てもよ 、。  [0032] Further, the plurality of strain detection sensors may be arranged such that detection axes that coincide with an arrangement direction of the pair of strain transmission pieces intersect each other.
[0033] ひずみ検知装置は、測定対象物で最も大きなひずみの発生する方向に検知軸を 合わせて設置する必要がある。しかし、現実には、例えば地震時の応力発生方向や 複雑な構造物における応力の向きなどにように、最大応力軸の方向を予め知るのが 難しい場合がある。このような測定対象物に適用する場合は、複数のひずみ検知セ ンサの夫々の検知軸が異なる方向を向くように (例えば、放射状に)配置されたひず み検知装置を用いることにより、測定対象物において発生した最大ひずみを見落と すことなく検知することができる。 [0033] The strain detection device needs to be installed with the detection axis aligned in the direction in which the largest strain is generated in the measurement object. However, in reality, it may be difficult to know in advance the direction of the maximum stress axis, such as the direction of stress generation during an earthquake or the direction of stress in a complex structure. When applied to such measurement objects, multiple strain detection sensors are used. By using strain detection devices that are arranged so that the detection axes of the sensors point in different directions (for example, radially), it is possible to detect without overlooking the maximum strain generated in the measurement object. it can.
[0034] 前記一対のひずみ伝達片と前記センサ箔の組み合わせであるひずみ検知センサ が保護カバーで囲繞されて 、てもよ 、。  [0034] A strain detection sensor, which is a combination of the pair of strain transmission pieces and the sensor foil, may be surrounded by a protective cover.
[0035] 前記構成によれば、ひずみ検知装置による監視が長期に亘つても、センサの耐候 性や耐食性を維持することができる。保護カバーは、榭脂材料、メツキ鋼板、塗装鋼 板などで形成した蓋で、検知センサの作動を妨げな 、ようにひずみ検知センサの全 体を覆って裾の部分を榭脂による接着や溶接やビス止めなどにより気密を保って薄 膜基板に固定してもよい。後述する電極端子に電線の一端部を接続する場合には、 電線の他端側を保護カバーの外に引き出しておくとよい。  [0035] According to the above configuration, the weather resistance and corrosion resistance of the sensor can be maintained even when monitoring by the strain detection device is performed for a long period of time. The protective cover is a lid made of grease material, matt steel plate, painted steel plate, etc., and covers the entire strain detection sensor so that the operation of the detection sensor is not hindered, and the hem part is bonded or welded with grease. It may be fixed to the thin film substrate with airtightness by screwing or screwing. When connecting one end of an electric wire to an electrode terminal to be described later, the other end of the electric wire should be pulled out of the protective cover.
[0036] 前記一対のひずみ伝達片と前記センサ箔のひずみ検知センサに榭脂被膜が施さ れていてもよい。  [0036] A grease coating may be applied to the pair of strain transmitting pieces and the strain detection sensor of the sensor foil.
[0037] 前記構成によれば、前記同様に、ひずみ検知装置による監視が長期に亘つても、 センサの耐候性や耐食性を維持することができる。なお、センサの感度に干渉しない ためには、榭脂被膜がひずみ検知センサの動作を妨げない程度の強度し力持たな いようにする。榭脂被膜の硬度が高いときには、皮膜の下に空間を形成してセンサ箔 の破断を妨げな 、ようにすることが好ま 、。  [0037] According to the configuration, as described above, the weather resistance and corrosion resistance of the sensor can be maintained even when monitoring by the strain detection device is performed over a long period of time. In order not to interfere with the sensitivity of the sensor, the resin coating should not be so strong and strong that it does not interfere with the operation of the strain detection sensor. When the hardness of the resin coating is high, it is preferable to form a space under the coating so as not to prevent the sensor foil from breaking.
[0038] 前記センサ箔は、導体力 なるとともに前記ブリッジ部を介して導通する一対の電 極端子を有していてもよい。  [0038] The sensor foil may have a pair of electrode terminals which have a conductive force and are conducted through the bridge portion.
[0039] 前記構成によれば、一対の電極端子の間におけるセンサ箔の抵抗変化を電気的 に検査することにより、センサ箔の破断や変形を検出することができる。そして、ひず み伝達片には前述したように応力が与えられているので、センサ箔の破断端同士が 接触することによる検出エラーも確実に防止することができる。  [0039] According to the above configuration, it is possible to detect breakage or deformation of the sensor foil by electrically inspecting the resistance change of the sensor foil between the pair of electrode terminals. Since the strain transmitting piece is stressed as described above, it is possible to reliably prevent a detection error caused by contact between the broken ends of the sensor foil.
[0040] 前記センサ箔は、前記ギャップを横断する部分で複数の前記ブリッジ部を有し、前 記各電極端子は、前記一対のひずみ伝達片のうち一方側に集められていてもよい。  [0040] The sensor foil may include a plurality of the bridge portions at a portion crossing the gap, and the electrode terminals may be gathered on one side of the pair of strain transmitting pieces.
[0041] 前記構成によれば、例えば 2つのブリッジ部がギャップを跨る構成である場合に、電 極端子の位置が一方側にまとめられるので、効率的な回路構成を実現することがで きる。 [0041] According to the above configuration, for example, when the two bridge portions are configured to straddle the gap, the positions of the electrode terminals are combined on one side, and thus an efficient circuit configuration can be realized. wear.
[0042] 前記電極端子は、前記ひずみ伝達片と前記薄膜基板の接合位置を挟んで前記ブ リッジ部と反対側に設けられて 、てもよ 、。  [0042] The electrode terminal may be provided on the opposite side of the bridge portion across the bonding position of the strain transmitting piece and the thin film substrate.
[0043] 前記構成によれば、ひずみ伝達片が薄膜基板に接合された位置とブリッジ部の位 置との間の検知領域に電極端子がないため、電極端子に対して電線等を接続加工 する際の応力がひずみ変化に影響を与えることを防止することができる。 [0043] According to the above configuration, since there is no electrode terminal in the detection region between the position where the strain transmission piece is bonded to the thin film substrate and the position of the bridge portion, an electric wire or the like is connected to the electrode terminal. It is possible to prevent the stress at the time from affecting the strain change.
[0044] 前記センサ箔は、前記ギャップを横断する部分で複数の前記ブリッジ部を有し、前 記電極端子は、前記センサ箔の前記複数のブリッジ部を直列接続した端部に形成さ れていてもよい。 [0044] The sensor foil has a plurality of the bridge portions at a portion crossing the gap, and the electrode terminal is formed at an end portion of the sensor foils connected in series. May be.
[0045] 前記構成によれば、複数のブリッジ部に対応する電極端子が一対で足りることとな るとともに、その一対の電極端子間が非導通状態となることにより、複数のブリッジ部 のうちいずれか 1つが破断したことを検知することができる。  [0045] According to the above configuration, a pair of electrode terminals corresponding to the plurality of bridge portions is sufficient, and the pair of electrode terminals is in a non-conducting state. It can be detected that one breaks.
[0046] また、本発明に係るひずみ検知システムは、前述したひずみ検知装置と、前記ひ ずみ検知装置の前記電極端子に接続され、前記ブリッジ部の破断を検出する検出 回路と、前記検出回路で破断が検出された場合に検出信号を送信する送信回路と、 前記送信回路力もの検出信号を受信する受信装置とを備えていることを特徴とする。  [0046] Further, a strain detection system according to the present invention includes the above-described strain detection device, a detection circuit that is connected to the electrode terminal of the strain detection device and detects breakage of the bridge portion, and the detection circuit. A transmission circuit that transmits a detection signal when a break is detected, and a reception device that receives the detection signal of the transmission circuit force are provided.
[0047] 前記構成によれば、測定対象物におけるひずみが所定値を超えた際にひずみ検 知装置のセンサ箔が破断し、電極端子間の断線が検出回路で検出される。そして、 この検出に応じて送信回路が検出信号を受信装置に送信する。よって、作業者がセ ンサ箔を目視しなくても、センサ箔の破断の発生を受信装置により知ることができる。  [0047] According to the above configuration, when the strain in the measurement object exceeds a predetermined value, the sensor foil of the strain detection device is broken, and the disconnection between the electrode terminals is detected by the detection circuit. In response to this detection, the transmission circuit transmits a detection signal to the receiving device. Therefore, even if the operator does not look at the sensor foil, the receiving device can know that the sensor foil is broken.
[0048] また、ひずみ検知装置は、任意の材料を測定対象物とすることができ、接着剤や溶 接等により測定対象物の表面に貼付される。従って、例えば、クレーン、橋梁、鉄道 車両、航空機、自動車、建築鉄骨、鉄筋、回転機械等のような、構造物、輸送機器、 建造物、機械の鋼材における応力発生部にひずみ検知装置を貼付して、測定対象 部位に作用する荷重や変位が所定値を超えたときに発生する検出信号を電気信号 に変換し、受信装置に伝送することにより、異常荷重状態の発生を受信装置でモニ タリングすることができる。なお、ひずみ検知装置は、非鉄材、高分子材料、複合材、 コンクリート、アスファルト、木材等のような、鋼材以外の応力発生部材に適用して、異 常荷重を検出することもできる。 [0048] In addition, the strain detection device can use any material as a measurement object, and is attached to the surface of the measurement object by an adhesive, welding, or the like. Therefore, for example, a strain detection device is affixed to the stress generating part in the steel materials of structures, transportation equipment, buildings, machinery, such as cranes, bridges, railway vehicles, airplanes, automobiles, construction steel frames, reinforcing bars, rotating machinery, etc. Then, the detection signal generated when the load or displacement acting on the part to be measured exceeds a predetermined value is converted into an electrical signal and transmitted to the receiving device, so that the occurrence of an abnormal load condition is monitored by the receiving device. be able to. The strain detection device can be applied to stress generating members other than steel such as non-ferrous materials, polymer materials, composite materials, concrete, asphalt, and wood. A normal load can also be detected.
[0049] 前記送信回路は、前記受信装置に無線で前記検出信号を送信してもよ 、。  [0049] The transmission circuit may transmit the detection signal wirelessly to the receiving device.
[0050] 前記構成によれば、送信回路は検出信号を検出回路から取り込んで、電波信号に 変換して無線で発信する。受信装置は、その電波信号を受信してセンサ箔の破断を 検出する。送信回路と受信装置は離れており、電波信号が強力であれば、遠隔地に ある中央管理室などに配設された受信装置で受信し、測定対象物が過大荷重を受 けたか否かを遠隔モニタすることもできる。また、送信回路と受信装置の間に結線を 必要としないため、施工が容易であるば力りでなぐ測定対象物が運動体である場合 にも適用することができる。 [0050] According to the above configuration, the transmission circuit takes in the detection signal from the detection circuit, converts it into a radio wave signal, and transmits it wirelessly. The receiving device receives the radio signal and detects the breakage of the sensor foil. If the transmitter circuit and receiver are separated and the radio signal is strong, the signal is received by a receiver installed in a central control room at a remote location, and whether or not the measurement object has received an excessive load. Remote monitoring is also possible. In addition, since no connection is required between the transmitting circuit and the receiving device, it can also be applied to the case where the object to be measured with a force is a moving body if construction is easy.
[0051] 前記検出回路及び前記送信回路に電力を供給する独立電源をさらに備えていて ちょい。 [0051] An independent power supply for supplying power to the detection circuit and the transmission circuit may be further provided.
[0052] 前記構成によれば、検出回路及び送信回路はひずみ検知装置の電極端子に接続 して使用するので、測定対象物に近接して設置される。そこで、送信回路と受信装置 を結線しないで使用する利点を生かすために、検出回路及び送信回路に給電する 電源は、乾電池や太陽電池など給電線に頼らな 、独立電源であると好適である。  [0052] According to the above configuration, the detection circuit and the transmission circuit are used by being connected to the electrode terminal of the strain detection device, and therefore are installed close to the measurement object. Therefore, in order to take advantage of the use without connecting the transmission circuit and the reception device, it is preferable that the power source for supplying power to the detection circuit and the transmission circuit is an independent power source that does not depend on the power supply line such as a dry cell or a solar cell.
[0053] 前記検出回路及び前記送信回路は ICタグの一部であり、該 ICタグは、前記検出回 路による破断の検出の有無に関する情報を記憶する記憶部を有し、前記受信装置 は、前記 ICタグの前記記憶部力も情報を読み出し可能な ICタグ読取装置であっても よい。  [0053] The detection circuit and the transmission circuit are part of an IC tag, and the IC tag includes a storage unit that stores information on whether or not a break is detected by the detection circuit, and the reception device includes: The IC tag reader may also be capable of reading information from the storage unit of the IC tag.
[0054] 前記構成によれば、センサ箔の電極端子に ICタグの端子が接続された状態で、ひ ずみ検知装置に ICタグが付属されることとなり、作業者が ICタグ読取装置を ICタグに 力ざすだけで、センサ箔の破断情報が ICタグ力も ICタグ読取装置に伝送される。な お、 ICタグは、 ICタグ読取装置で読み取られるときに非接触給電される無電源タイプ を用いると、独立電源が不要となり好適である。  [0054] According to the above configuration, the IC tag is attached to the strain detection device in a state where the IC tag terminal is connected to the electrode terminal of the sensor foil, and the operator attaches the IC tag reading device to the IC tag. The sensor foil break information is transmitted to the IC tag reader as well. Note that it is preferable to use a non-power supply type that uses non-contact power supply when an IC tag is read by an IC tag reader, because an independent power supply is unnecessary.
[0055] 前記ひずみ検知装置は、前記一対のひずみ伝達片と前記センサ箔のひずみ検知 センサを前記薄膜基板上に複数有し、前記一対のひずみ伝達片のうち一方の前記 薄膜基板への固定位置と、前記一対のひずみ伝達片のうち他方の前記薄膜基板へ の固定位置との間の距離が、前記複数のひずみ検知センサ毎に異なり、前記測定 対象物のひずみ以外の状態を検知する状態センサと、前記複数のひずみ検知セン サのうちひずみ検知に利用するものを前記状態センサの出力に基づいて選択する 判定回路とをさらに備えていてもよい。 [0055] The strain detection device includes a plurality of strain detection sensors of the pair of strain transmission pieces and the sensor foil on the thin film substrate, and one of the pair of strain transmission pieces is fixed to the thin film substrate. And the distance between the fixed position of the pair of strain transmission pieces to the other thin film substrate differs for each of the plurality of strain detection sensors, and the measurement A state sensor that detects a state other than the strain of the object, and a determination circuit that selects one of the plurality of strain detection sensors to be used for strain detection based on the output of the state sensor. .
[0056] なお、状態センサが検知する測定対象物の状態量、即ち、ひずみ以外で応力条件 に影響がある状態量としては、測定対象物の温度や、測定対象物の加速度、角速度 、振動、変位などの運動に係るものなどがある。  [0056] The state quantity of the measurement object detected by the state sensor, that is, the state quantity that affects the stress condition other than strain, includes the temperature of the measurement object, the acceleration of the measurement object, angular velocity, vibration, There are things related to movement such as displacement.
[0057] 前記構成によれば、例えば、温度によって測定対象物の強度が極端に変化する場 合には、破断ひずみ値の異なる複数のひずみ検知センサを薄膜基板上に配置した ひずみ検知装置と、温度センサとを併設することで、判定回路が温度センサの出力 に応じた適切な破断ひずみ値を有するひずみ検知センサをひずみ検知用に選択す るので、大きな温度変化による検知エラーを防止することができる。具体的には、測 定対象物力 極低温では僅かなひずみで破損しても常温では多少のひずみに耐え られるものである場合、温度センサが常温を示すときには、感度の高いひずみ検知 センサのセンサ箔が破断しても、常温用のひずみ検知センサのセンサ箔が破断しな ければ過大荷重でないと判定すればよい。一方、温度センサが極低温を示すときに は、僅かなひずみで破断するセンサ箔を有するひずみ検知センサにおける破断状
Figure imgf000012_0001
、て過大荷重を判定すればょ 、。
[0057] According to the above configuration, for example, when the strength of the measurement object changes extremely with temperature, a strain detection device in which a plurality of strain detection sensors having different fracture strain values are arranged on the thin film substrate; By adding a temperature sensor, the judgment circuit selects a strain detection sensor with an appropriate breaking strain value according to the output of the temperature sensor for strain detection, so that detection errors due to large temperature changes can be prevented. it can. Specifically, if the temperature of the object to be measured can withstand some strain at room temperature even if it is damaged by a slight strain at extremely low temperatures, the sensor foil of a highly sensitive strain detection sensor when the temperature sensor indicates room temperature If the sensor foil of the strain detection sensor for room temperature does not break even if it breaks, it may be determined that there is no overload. On the other hand, when the temperature sensor shows a very low temperature, the fracture state in the strain detection sensor has a sensor foil that breaks with a slight strain.
Figure imgf000012_0001
If you decide overload,
[0058] 前記検知回路により前記ブリッジ部の破断が検知された場合にアラームを発生する 警報装置をさらに備えていてもよい。  [0058] An alarm device may be further provided that generates an alarm when the detection circuit detects a break of the bridge portion.
[0059] この警報装置は、センサ箔のブリッジ部が破断したことの検出信号を受け取ったとき に、電流の発生や遮断など電気信号を発生したり、色表示を行ったり、音声を出力し たり、電波を発生すると好適である。例えば、クレーン等の機械装置が限界荷重に達 する前に作動するように調整されたひずみ検知装置が用いられて 、る場合には、作 動中にセンサが作動したら機械装置を緊急停止させて安全を確保するようにすること ができる。なお、センサの作動によって直接緊急停止する代わりに、緊急停止の必要 を訴える警報を発生するようにしてもょ ヽ。  [0059] When this alarm device receives a detection signal that the bridge portion of the sensor foil is broken, it generates an electrical signal such as generation or interruption of current, performs color display, or outputs sound. It is preferable to generate radio waves. For example, if a strain sensing device is used that is adjusted to operate before a mechanical device such as a crane reaches a limit load, if the sensor is activated during operation, the mechanical device is stopped immediately. Safety can be ensured. Instead of making an emergency stop directly due to the operation of the sensor, an alarm may be issued to complain that an emergency stop is necessary.
図面の簡単な説明  Brief Description of Drawings
[0060] [図 1]本発明の第 1実施形態に係るひずみ検知装置の平面図である。 [図 2]図 1の Π— II線断面図である。 FIG. 1 is a plan view of a strain detection device according to a first embodiment of the present invention. 2 is a cross-sectional view taken along line II-II in FIG.
[図 3]図 1に示すひずみ検知装置の下面図である。  FIG. 3 is a bottom view of the strain detection device shown in FIG. 1.
[図 4]図 1に示すひずみ検知装置のブリッジ部の拡大平面図である。  FIG. 4 is an enlarged plan view of a bridge portion of the strain detection device shown in FIG.
[図 5]図 4の V— V線断面図である。  FIG. 5 is a cross-sectional view taken along line V—V in FIG.
[図 6]図 1に示すひずみ検知装置の補強枠の除去前の平面図である。  6 is a plan view of the strain detection device shown in FIG. 1 before removal of the reinforcing frame.
[図 7Α]図 1に示すひずみ検知装置の応力の付与に関する説明図である。  FIG. 7B is an explanatory diagram regarding the application of stress in the strain detection apparatus shown in FIG.
圆 7Β]変形例の応力の付与に関する説明図である。 [7]] It is an explanatory view related to the application of stress in the modified example.
圆 7C]さらに別の変形例の応力の付与に関する説明図である。 [7C] It is an explanatory view related to the application of stress in still another modified example.
[図 8]図 1に示すひずみ検知装置の過大ひずみ検知メカニズムを説明する斜視図で ある。  FIG. 8 is a perspective view for explaining an excessive strain detection mechanism of the strain detection device shown in FIG. 1.
圆 9]本発明の第 2実施形態に係るひずみ検知装置の斜視図である。 [9] FIG. 9 is a perspective view of a strain detection device according to a second embodiment of the present invention.
[図 10]図 9に示すひずみ検知装置のセンサ箔破断時における斜視図である。 圆 11]本発明の第 3実施形態に係るひずみ検知装置の斜視図である。  FIG. 10 is a perspective view of the strain detection device shown in FIG. 9 when the sensor foil is broken. [11] FIG. 11 is a perspective view of a strain sensing device according to a third embodiment of the present invention.
[図 12]図 11に示すひずみ検知装置のセンサ箔破断時における斜視図である。 圆 13]本発明の第 4実施形態に係るひずみ検知装置の斜視図である。  FIG. 12 is a perspective view of the strain detection device shown in FIG. 11 when the sensor foil is broken. 13] A perspective view of a strain sensing device according to a fourth embodiment of the present invention.
[図 14]図 13に示すひずみ検知装置のセンサ箔破断時における斜視図である。 圆 15]本発明の第 5実施形態に係るひずみ検知装置の平面図である。  FIG. 14 is a perspective view of the strain detection device shown in FIG. 13 when the sensor foil is broken. [15] FIG. 15 is a plan view of a strain sensing device according to a fifth embodiment of the present invention.
圆 16]本発明の第 6実施形態に係るひずみ検知装置の平面図である。 16] A plan view of a strain sensing device according to a sixth embodiment of the present invention.
圆 17]図 16に示すひずみ検知装置を用いた検知応力範囲の特定方法の説明図で ある。 [17] FIG. 17 is an explanatory diagram of a method for specifying a detected stress range using the strain detection apparatus shown in FIG.
圆 18]本発明の第 7実施形態に係るひずみ検知装置の説明図である。 圆 18] It is explanatory drawing of the distortion | strain detector based on 7th Embodiment of this invention.
圆 19]本発明の第 8実施形態に係るひずみ検知装置の説明図である。 圆 19] It is explanatory drawing of the distortion | strain detector based on 8th Embodiment of this invention.
圆 20]本発明の第 9実施形態に係るひずみ検知装置の平面図である。 [20] FIG. 20 is a plan view of a strain sensing device according to a ninth embodiment of the present invention.
[図 21]本発明の第 10実施形態に係るひずみ検知システムのブロック図である。 FIG. 21 is a block diagram of a strain detection system according to a tenth embodiment of the present invention.
[図 22]本発明の第 11実施形態に係るひずみ検知システムのブロック図である。 FIG. 22 is a block diagram of a strain detection system according to an eleventh embodiment of the present invention.
[図 23]本発明の第 12実施形態に係るひずみ検知システムのブロック図である。 FIG. 23 is a block diagram of a strain detection system according to a twelfth embodiment of the present invention.
[図 24]本発明の第 13実施形態に係るひずみ検知システムのブロック図である。 FIG. 24 is a block diagram of a strain detection system according to a thirteenth embodiment of the present invention.
[図 25]本発明の第 14実施形態に係るひずみ検知システムのブロック図である。 [図 26]図 25に示すひずみ検知システムの機能を説明する説明図である。 FIG. 25 is a block diagram of a strain detection system according to a fourteenth embodiment of the present invention. FIG. 26 is an explanatory diagram for explaining functions of the strain detection system shown in FIG. 25.
[図 27]本発明のひずみ検知装置の第 1使用例を示す概略図である。  FIG. 27 is a schematic view showing a first usage example of the strain detection apparatus of the present invention.
[図 28]本発明のひずみ検知装置の第 2使用例を示す概略図である。  FIG. 28 is a schematic view showing a second usage example of the strain detection apparatus of the present invention.
[図 29]本発明のひずみ検知装置の第 3使用例を示す概略図である。  FIG. 29 is a schematic view showing a third usage example of the strain detection apparatus of the present invention.
[図 30]本発明のひずみ検知装置の第 4使用例を示す概略図である。  FIG. 30 is a schematic view showing a fourth usage example of the strain detection apparatus of the present invention.
[図 31]図 30に示す回転軸等に適用するためにせん断応力を検知するようにした変 形例のひずみ検知装置の平面図である。  FIG. 31 is a plan view of a strain detection device of a modified example in which shear stress is detected for application to the rotating shaft and the like shown in FIG. 30.
[図 32]本発明のひずみ検知装置の第 5使用例を示す概略図である。  FIG. 32 is a schematic view showing a fifth usage example of the strain detection apparatus of the present invention.
[図 33]図 32に使用されるひずみ検知ユニットの平面図である。  FIG. 33 is a plan view of the strain detection unit used in FIG. 32.
[図 34]本発明のひずみ検知装置の第 6使用例を示す概略図である。  FIG. 34 is a schematic view showing a sixth usage example of the strain detection apparatus of the present invention.
[図 35A]図 34に示すセンサプレートの側面図である。  FIG. 35A is a side view of the sensor plate shown in FIG. 34.
[図 35B]図 34に示すセンサプレートの平面図である。  FIG. 35B is a plan view of the sensor plate shown in FIG. 34.
[図 36]本発明のひずみ検知装置の第 7使用例を示す概略図である。  FIG. 36 is a schematic view showing a seventh example of use of the strain detection apparatus of the present invention.
[図 37]図 36の要部拡大図である。  FIG. 37 is an enlarged view of the main part of FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0061] 以下、本発明に係る実施形態を図面を参照して説明する。  Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
[0062] (第 1実施形態)  [0062] (First embodiment)
図 1は本発明の第 1実施形態に係るひずみ検知装置 1の平面図である。図 2は図 1 の II II線断面図である。図 1及び図 2に示すように、ひずみ検知装置 1は、測定対 象物 10に貼付される薄膜基板 2と、薄膜基板 2上に小さなギャップ Gを挟んで対置さ れた一対のひずみ伝達片 3A, 3Bと、一対のひずみ伝達片 3A, 3B上に跨って貼付 されたセンサ箔 4とを備えている。ひずみ伝達片 3A, 3Bとセンサ箔 4とは、互いに絶 縁接着層 5を介して接着固定されている。即ち、ひずみ伝達片 3A, 3B、絶縁接着層 5及びセンサ箔 4により 3層薄膜構造が形成されており、この 3層薄膜構造の 1単位を ひずみ検知センサ 6と称することとする。  FIG. 1 is a plan view of a strain sensing device 1 according to the first embodiment of the present invention. Fig. 2 is a cross-sectional view taken along line II-II in Fig. 1. As shown in FIGS. 1 and 2, the strain detection device 1 includes a thin film substrate 2 attached to the measurement object 10 and a pair of strain transmission pieces placed on the thin film substrate 2 with a small gap G interposed therebetween. 3A and 3B, and a sensor foil 4 stuck on the pair of strain transmitting pieces 3A and 3B. The strain transmitting pieces 3A and 3B and the sensor foil 4 are bonded and fixed to each other through an insulating adhesive layer 5. That is, a three-layer thin film structure is formed by the strain transmitting pieces 3A and 3B, the insulating adhesive layer 5 and the sensor foil 4, and one unit of the three-layer thin film structure is referred to as a strain detection sensor 6.
[0063] 薄膜基板 2は、接着剤で測定対象物 10の表面に貼付され、測定対象物 10のひず みを忠実にひずみ伝達片 3A, 3Bに伝達する。ひずみ伝達片 3A, 3Bは金属薄膜 で形成されている。一対のひずみ伝達片 3A, 3Bは、ごく狭いギャップ Gを隔てて向 力 、合っており、そのギャップ G力も離れた他端部には薄膜基板 2に接合されたスポ ット溶接部 Swl, Sw2がそれぞれ形成されている。このスポット溶接部 Swl, Sw2は 、薄膜基板 2の側力 スポット溶接することで形成されて 、る。 [0063] The thin film substrate 2 is adhered to the surface of the measurement object 10 with an adhesive, and the distortion of the measurement object 10 is faithfully transmitted to the strain transmitting pieces 3A and 3B. The strain transmission pieces 3A and 3B are made of a metal thin film. The pair of strain transmission pieces 3A and 3B are separated by a very narrow gap G. Spot welds Swl and Sw2 joined to the thin film substrate 2 are formed at the other end where the forces are matched and the gap G force is also separated. The spot welds Swl and Sw2 are formed by performing side force spot welding of the thin film substrate 2.
[0064] ひずみ伝達片 3A, 3Bは、スポット溶接部 Swl, Sw2以外では薄膜基板 2に拘束さ れていない。これにより、ひずみ検知装置 1を測定対象物 10に貼付したとき、一方の ひずみ伝達片 3 Aのスポット溶接部 Sw 1と、他方のひずみ伝達片 3Bのスポット溶接 部 Sw2の間に生ずる測定対象物 10のひずみが測定対象となる。即ち、ひずみ検知 装置 1の検知領域は、スポット溶接部 Swl, Sw2の間の長さ Lに対応する。したがつ て、検知領域はスポット溶接部 Swl, Sw2の位置を変えることにより調整することがで きる。 [0064] The strain transmitting pieces 3A and 3B are not restrained by the thin film substrate 2 except for the spot welds Swl and Sw2. Thus, when the strain detection device 1 is attached to the measurement object 10, the measurement object generated between the spot welded part Sw1 of one strain transmission piece 3A and the spot welded part Sw2 of the other strain transmission piece 3B. Ten strains are measured. That is, the detection region of the strain detection device 1 corresponds to the length L between the spot welds Swl and Sw2. Therefore, the detection area can be adjusted by changing the position of the spot welds Swl and Sw2.
[0065] センサ箔 4は、ひずみ伝達片 3B上においてブリッジ部 4a, 4bから離れた端部に細 い連結部 4c, 4dを介して形成された電極端子 4e, 4fを有している。連結部 4c, 4dは 、電極端子 4e, 4fに電線を半田付けする場合に、熱がブリッジ部 4a, 4bに悪影響を 与えないようにするために設けられたものである。また、電極端子 4e, 4fに電線を半 田付けしたときに、電線を伝う応力が測定結果に悪影響を与えないようにするため、 電極端子 4e, 4fは長さ Lの検知領域の外部(図 1中ではスポット溶接部 Sw2の右側) に設けることが好ましい。  [0065] The sensor foil 4 has electrode terminals 4e and 4f formed on the strain transmission piece 3B via thin connecting portions 4c and 4d at end portions away from the bridge portions 4a and 4b. The connecting portions 4c and 4d are provided so that heat does not adversely affect the bridge portions 4a and 4b when an electric wire is soldered to the electrode terminals 4e and 4f. In addition, when the wires are soldered to the electrode terminals 4e and 4f, the electrode terminals 4e and 4f are located outside the detection area of the length L (see Fig. 4) so that the stress transmitted through the wires does not adversely affect the measurement results. 1 is preferably provided on the right side of spot welded part Sw2.
[0066] 図 3は図 1に示すひずみ検知装置 1の下面図である。図 3に示すように、薄膜基板 2 の裏側には、ひずみ伝達片 3A, 3Bの並び方向(引張り方向)と一致する検知軸に 直交する浅い凹部である細線 7が多数形成されることで接着用凹凸面が形成されて いる。接着用凹凸面は、ひずみ検知装置 1の測定対象物 10への接着性を向上させ る。  FIG. 3 is a bottom view of the strain detection device 1 shown in FIG. As shown in Fig. 3, the thin film substrate 2 is bonded to the back side by forming a number of thin wires 7 that are shallow recesses perpendicular to the detection axis that coincides with the alignment direction (tensile direction) of the strain transmission pieces 3A and 3B. An uneven surface is formed. The uneven surface for bonding improves the adhesion of the strain detector 1 to the measurement object 10.
[0067] 図 4は図 1に示すひずみ検知装置 1のブリッジ部 4a, 4bの拡大平面図である。図 5 は図 4の V— V線断面図である。図 4及び図 5に示すように、センサ箔 4は、ひずみ伝 達片 3A, 3Bより薄い金属薄膜で、ひずみ伝達片 3A, 3Bのギャップ Gに対応する位 置にブリッジ部 4a, 4bが形成されている。ブリッジ部 4a, 4bには、ひずみ伝達片 3A , 3Bとブリッジ部 4a, 4bの断面積比に対応して応力が集中するので、測定対象物 1 0に発生したひずみが拡大してブリッジ部 4a, 4bに集まる効果がある。さらに、ブリツ ジ部 4a, 4bの中にさらに狭い幅を持つ狭幅部 dを形成して、測定対象物 10の検知 領域に発生したひずみ量を、狭幅部 dに集中させることによりひずみを拡大している FIG. 4 is an enlarged plan view of the bridge portions 4a and 4b of the strain detection device 1 shown in FIG. Fig. 5 is a cross-sectional view taken along line V-V in Fig. 4. As shown in Figs. 4 and 5, the sensor foil 4 is a metal thin film that is thinner than the strain transfer pieces 3A and 3B, and the bridge portions 4a and 4b are formed at positions corresponding to the gaps G of the strain transfer pieces 3A and 3B. Has been. In the bridge portions 4a and 4b, stress concentrates corresponding to the cross-sectional area ratio between the strain transmitting pieces 3A and 3B and the bridge portions 4a and 4b, so that the strain generated in the measurement object 10 expands and the bridge portion 4a , 4b has the effect of gathering. In addition, Blitz The narrow portion d with a narrower width is formed in the flange portions 4a and 4b, and the strain generated in the detection area of the measurement object 10 is concentrated on the narrow portion d to increase the strain. Have
[0068] ひずみの拡大率は、センサ箔 4の材料 '形状、ひずみ伝達 3A, 3Bの材料 '形状、 さら〖こ、検知領域の長さ Lに依存する。したがって、これらのパラメータを調整すること により、ひずみ拡大率を適宜選択し得て、測定対象物 10のひずみの値に対応する ひずみ検知装置 1の破断ひずみを決めることができる。 [0068] The strain expansion rate depends on the material of the sensor foil 4 'shape, the material of the strain transmission 3A, 3B', the shape, and the length L of the detection region. Therefore, by adjusting these parameters, the strain expansion rate can be selected as appropriate, and the breaking strain of the strain detector 1 corresponding to the strain value of the measurement object 10 can be determined.
[0069] また、各薄膜の厚さ'形状、ギャップ G量などは、測定対象物の検知したいひずみ に応じて適当に設計される。実際に、例えば、ひずみ伝達片 3A, 3B、絶縁接着層 5 、センサ箔 4の厚みを、それぞれ 10 μ m〜数 100 μ mとしたものが多数の測定点に 適用するものとして便利である。また、ギャップ G量も測定の条件に応じて調整するこ とができ、数 10 m〜数 mmの値が用いられる。さらに、ひずみ伝達片 3A, 3Bをィ ンバー、センサ箔 4をニッケルで構成してもよい。ニッケルの特性や製造方法につい ては、疲労センサの製造や使用により蓄積された技術を活用することができる。  [0069] Further, the thickness' shape, gap G amount, etc. of each thin film are appropriately designed according to the strain to be detected of the measurement object. Actually, for example, the thicknesses of the strain transmitting pieces 3A and 3B, the insulating adhesive layer 5 and the sensor foil 4 are 10 μm to several 100 μm, respectively, which is convenient for application to many measurement points. The gap G amount can also be adjusted according to the measurement conditions, and values of several tens of meters to several millimeters are used. Further, the strain transmission pieces 3A and 3B may be made of invar, and the sensor foil 4 may be made of nickel. Regarding the characteristics and manufacturing method of nickel, it is possible to utilize the technology accumulated through the manufacture and use of fatigue sensors.
[0070] ひずみ検知装置 1は、エッチングゃ電铸法により形成することができる。例えば、ひ ずみ検知装置 1は、ひずみ伝達片 3A, 3Bとなる厚さ 100 mのステンレススチール (SUS304)薄膜の上に、絶縁接着層 5となる厚さ 35 mのポリイミド膜を接着し、そ の上にセンサ箔 4となる厚さ 50 mの銅箔を接着して、ひずみ検知センサ 6となる 3 層構造を形成する。このような 3層構造体はハードディスクドライブに使用されたもの と同様であるため、巿場からも供給を受けることができる。この 3層構造体のステンレ ススチール薄膜とポリイミド膜をエッチングして、例えば 140 mのギャップを有する 幅 6mm、 1対分の全長が 46mmのひずみ伝達片 3A, 3Bと後述する補強枠 8 (図 6) との形を生成し、また反対側から銅箔をエッチングしてブリッジ部 4a, 4bや電極端子 4e, 4fなどを含めたセンサ箔 4の形状を形成する。  [0070] The strain detector 1 can be formed by an etching method. For example, the strain detection device 1 is made by bonding a polyimide film with a thickness of 35 m to be the insulating adhesive layer 5 on a stainless steel (SUS304) thin film with a thickness of 100 m to be the strain transmission pieces 3A and 3B. A three-layer structure to be the strain detection sensor 6 is formed by adhering a 50 m thick copper foil to be the sensor foil 4. Such a three-layer structure is similar to that used for hard disk drives and can also be supplied from the factory. The stainless steel thin film and polyimide film of this three-layer structure are etched, for example, strain transmission pieces 3A and 3B with a gap of 140 m, a width of 6 mm and a total length of 46 mm, and a reinforcement frame 8 (described later). 6) and the copper foil is etched from the opposite side to form the shape of the sensor foil 4 including the bridge portions 4a and 4b and the electrode terminals 4e and 4f.
[0071] 図 6は図 1に示すひずみ検知装置 1の補強枠 8の除去前の平面図である。図 6に示 すように、補強枠 8は、ひずみ伝達片 3A, 3Bと同じ厚さ、同じ材質で一体に形成さ れ、バラバラになりかねないひずみ伝達片 3A, 3Bを互いに連結して正しい位置関 係を保持させ、測定対象物 10への貼付前にセンサ箔 4のブリッジ部 4a, 4bを保護す る機能を有する。また、補強枠 8は、ひずみ伝達片 3A, 3Bを薄膜基板 2にスポット溶 接などで固定するときに固定代として利用することができる。さらに、補強枠 8にはス ポット溶接の目印のためのマーカ Mをつけておくこともできる。補強枠 8は、ひずみ伝 達片 3A, 3Bを囲繞して形成される力 ひずみ伝達片 3A, 3Bとの間には細い連結 部 9で区切られた細長い孔 Hを並べて折り取り線とし、ひずみ検知装置 1を測定対象 物 10に貼付した後には、連結部 9を折り切って補強枠 8を取り外し、内側のひずみ検 知装置 1のみが測定対象物 10に接着剤で貼り付けられる。 FIG. 6 is a plan view before removal of the reinforcing frame 8 of the strain detection device 1 shown in FIG. As shown in Fig. 6, the reinforcement frame 8 is made of the same thickness and the same material as the strain transmission pieces 3A and 3B, and is connected correctly to the strain transmission pieces 3A and 3B, which may be separated. Maintain the positional relationship, and protect the bridge parts 4a and 4b of the sensor foil 4 before applying to the measurement object 10. It has a function. Further, the reinforcing frame 8 can be used as a fixing allowance when the strain transmitting pieces 3A and 3B are fixed to the thin film substrate 2 by spot welding or the like. In addition, the reinforcing frame 8 can be provided with a marker M for spot welding. The reinforcing frame 8 is a force formed by surrounding the strain transmission pieces 3A and 3B. Between the strain transmission pieces 3A and 3B, elongated holes H separated by a thin connecting portion 9 are arranged to form a crease line. After the detection device 1 is attached to the measurement object 10, the connecting portion 9 is broken and the reinforcing frame 8 is removed, and only the inner strain detection device 1 is attached to the measurement object 10 with an adhesive.
[0072] 補強枠 8とひずみ伝達片 3A, 3Bとは同じ材料力 形成されることが好ましぐその 場合には、エッチングゃ電铸法により補強枠 8とひずみ伝達片 3A, 3Bとを同時に形 成することができる。センサ箔 4は、電铸法によりひずみ伝達片 3A, 3B上に直接形 成してもよい。電铸法の形状再現性は極めて高いので、電铸法により形成されたひ ずみ検知装置 1は正確な測定結果を得ることができる。なお、センサ箔 4の形状は、 型抜きにより形成することもできる。  [0072] In that case, it is preferable that the reinforcing frame 8 and the strain transmitting pieces 3A and 3B have the same material force. In this case, the reinforcing frame 8 and the strain transmitting pieces 3A and 3B are simultaneously formed by etching. Can be formed. The sensor foil 4 may be directly formed on the strain transmission pieces 3A and 3B by an electric method. Since the shape reproducibility of the electroplating method is extremely high, the strain detection device 1 formed by the electroplating method can obtain an accurate measurement result. The shape of the sensor foil 4 can also be formed by die cutting.
[0073] さらに、 3層構造のひずみ検知センサ 6のひずみ伝達片 3A, 3B側の面を薄膜基板 2に接合することにより、ひずみ検知装置 1のハンドリングを容易にし、ひずみ検知装 置 1を測定対象物 10に簡単に貼付できるようにし、かつ、測定の再現性を向上させる ことができる。薄膜基板 2をひずみ伝達片 3A, 3Bと同じ金属で形成したときは、ひず み伝達片 3A, 3Bと薄膜基板 2をスポット溶接で強固に接着することができる。なお、 薄膜基板 2は榭脂で形成してもよ 、。  [0073] Furthermore, by connecting the surface of the strain transmission piece 3A, 3B side of the strain detection sensor 6 of the three-layer structure to the thin film substrate 2, the strain detection device 1 is easily handled and the strain detection device 1 is measured. It can be easily applied to the object 10 and the reproducibility of the measurement can be improved. When the thin film substrate 2 is formed of the same metal as the strain transmission pieces 3A and 3B, the strain transmission pieces 3A and 3B and the thin film substrate 2 can be firmly bonded by spot welding. The thin film substrate 2 may be formed of resin.
[0074] ひずみ伝達片 3A, 3Bは、それぞれ 1力所で、例えばひずみ方向に対して垂直に 並んだいくつかのスポット溶接部 Swl, Sw2により薄膜基板 2に固定され、検知領域 の長さ Lが決められる。薄膜基板 2は測定対象物 10の表面に強固に貼着されている ので、実質的にひずみ伝達片 3A, 3Bのスポット溶接部 Swl, Sw2を測定対象物 10 に固定することができる。  [0074] The strain transmitting pieces 3A and 3B are fixed to the thin film substrate 2 by several spot welds Swl and Sw2, which are arranged perpendicularly to the strain direction, for example, at one force point, and the length L of the detection region is L. Is decided. Since the thin film substrate 2 is firmly attached to the surface of the measurement object 10, the spot welds Swl and Sw2 of the strain transmitting pieces 3A and 3B can be substantially fixed to the measurement object 10.
[0075] 測定対象物 10が伸びることで長さ Lの検知領域に生じる伸び δは、ひずみ検知装 置 1のひずみ伝達片 3Α, 3Βとセンサ箔 4に分配される。分配率は材料のヤング率 Ε などに影響されるが、部品の断面積 Αに関係する応力集中度に大きく影響され、長さ Lの検知領域に生じた伸び δの殆どがギャップ Gの位置にあるブリッジ部 4a, 4bのセ ンサ箔 4に分配される。 [0075] The elongation δ generated in the detection region of length L due to the extension of the measurement object 10 is distributed to the strain transmission pieces 3Α, 3Β and the sensor foil 4 of the strain detection device 1. The distribution rate is influenced by the Young's modulus 材料 of the material, but it is greatly influenced by the stress concentration related to the cross-sectional area 部品 of the part, and most of the elongation δ generated in the detection region of length L is at the position of the gap G. A bridge 4a, 4b Distributed to sensor foil 4.
[0076] センサ箔 4のヤング率を E、ブリッジ部 4a, 4bの平均的な断面積を A、ひずみ伝 達片 3A, 3Bのヤング率を E、断面積を Aとし、センサ箔 4のギャップ Gにおける伸び  [0076] E is the Young's modulus of sensor foil 4, A is the average cross-sectional area of bridges 4a and 4b, E is the Young's modulus of strain transfer pieces 3A and 3B, and A is the gap of sensor foil 4. Elongation at G
2 2  twenty two
を δ 、 2つのひずみ伝達片 3Α, 3Βの検知領域内における伸びを δ とし、荷重の釣 Δ, and the elongation in the detection area of the two strain transmission pieces 3Α and 3 is δ,
1 2 り合い条件から、測定対象物 10のひずみとセンサ箔 4のひずみ ε の関係を求めると ε Ζ ε = ( δ ZG) Z ( ( S + δ ) /L) 1 2 From the balance condition, the relationship between the strain of the measuring object 10 and the strain ε of the sensor foil 4 is obtained. Ε Ζ ε = (δ ZG) Z ((S + δ) / L)
1 1 1 2  1 1 1 2
=Α Χ Ε X L/ (A Χ Ε X L+A Χ Ε X G)  = Α Χ Ε X L / (A Χ Ε X L + A Χ Ε X G)
2 2 1 1 2 2  2 2 1 1 2 2
となる。  It becomes.
[0077] 例えば、ひずみ伝達片 3A, 3Bをヤング率 168GPaのステンレススチール箔、セン サ箔 4をヤング率 1 lOGPaの銅箔で形成するものとして、検知領域の長さ Lが 40mm 、ギャップ Gの幅が 0. 14mm,ひずみ伝達片 3A, 3Bの断面積が 0. 6mm2,センサ 箔 4の 2つのブリッジ部 4a, 4bを合わせた断面積の平均値が 0. 009mm2のとき、測 定対象物 10におけるひずみ εに対するブリッジ部 4a, 4bにおけるひずみ ε の比 ε / ε、即ち、ひずみ拡大率は約 81倍になる。なお、センサ箔 4に狭幅部 dを形成し たときは、ブリッジ部 4a、 4bの実質的な長さがさらに短くなり測定対象物 10のひずみ εに対するブリッジ部 4a, 4bにおけるひずみ ε が大きくなり、センサとしての感度が 向上する。 [0077] For example, assuming that the strain transmission pieces 3A and 3B are made of stainless steel foil with Young's modulus of 168GPa and sensor foil 4 with copper foil with Young's modulus of 1 lOGPa, the detection area length L is 40mm and the gap G is Measured when the width is 0.14 mm, the cross-sectional area of the strain transmitting pieces 3A and 3B is 0.6 mm 2 , and the average cross-sectional area of the two bridge parts 4a and 4b of the sensor foil 4 is 0.009 mm 2 The ratio ε / ε of the strain ε in the bridge portions 4a and 4b to the strain ε in the object 10, that is, the strain expansion ratio is about 81 times. When the narrow width portion d is formed on the sensor foil 4, the substantial length of the bridge portions 4a and 4b is further shortened, and the strain ε in the bridge portions 4a and 4b is larger than the strain ε of the measurement object 10. Thus, the sensitivity as a sensor is improved.
[0078] センサ箔 4のブリッジ部 4a, 4bにおけるひずみ ε がセンサ箔 4の破断ひずみ ε を  [0078] The strain ε at the bridge portions 4a and 4b of the sensor foil 4 is the breaking strain ε of the sensor foil 4.
1 f 超えればセンサ箔 4が破断する。センサ箔 4が破断したときは、センサ箔 4の破断ひ ずみ ε に対応する測定対象物 10のひずみ εを超えたということができる。破断ひず f  If it exceeds 1 f, sensor foil 4 will break. When the sensor foil 4 is broken, it can be said that the strain ε of the measuring object 10 corresponding to the fracture strain ε of the sensor foil 4 is exceeded. Fracture f
み ε は、センサ箔 4の材質、ブリッジ部 4a, 4bの形状、サイズ、応力拡大係数 K、亀 f  Ε is the material of the sensor foil 4, the shape and size of the bridge parts 4a and 4b, the stress intensity factor K, the turtle f
裂の発生条件などにより変化するので、破断ひずみ ε を調整することによつても、測 f  Since it varies depending on the crack initiation conditions, etc., it is also possible to measure f by adjusting the fracture strain ε.
定条件に適合するよう〖こすることができる。  Can be adapted to meet certain conditions.
[0079] ひずみ伝達片 3A, 3Bのギャップ Gは小さいため、センサ箔 4のブリッジ部 4a, 4bが 単に切断されただけでは、ブリッジ部 4a, 4bの破断状態を目視で判断することが難し いことが考えられる。また、破断したブリッジ部 4a, 4bの端部同士が近接した位置に あると、互いに接触して通電テスターで検出エラーが生じることも考えられる。 [0080] そこで、本発明のひずみ検知装置 1では、一方のひずみ伝達片 3Aに外側 (薄膜基 板 2から離反する方向)に反れようとする潜在的な応力が与えられている。これにより 、ブリッジ部 4a, 4bが破断すれば、ひずみ伝達片 3Aのギャップ G側の端部が薄膜基 板 2から浮き上がるので、破断状態を簡単かつ確実に検出することができる。このよう な潜在的な応力は、例えば、ブリッジ部 4a, 4bとスポット溶接部 Swlとの間において 上側 (センサ箔 4側)カゝらひずみ伝達片 3Aにスポット溶接機 (局所加熱装置)を当て て、薄膜基板 2との間で溶接に至らない程度に入熱した入熱部 Shを形成することで 付与することができる。つまり、ひずみ伝達片 3Aの上側力ゝら入熱すると、入熱部 Sh に縮もうとするような熱ひずみが生じて、ひずみ伝達片 3Aは上側に反り返ろうとする 力 ひずみ伝達片 3Aはセンサ箔 4により他方のひずみ伝達片 3Bと結合されて 、る ために、変形が妨げられて平面状態に保持されることにより、ひずみ伝達片 3Aに応 力が内在することとなる。 [0079] Since the gap G between the strain transmitting pieces 3A and 3B is small, it is difficult to visually determine the fracture state of the bridge portions 4a and 4b simply by cutting the bridge portions 4a and 4b of the sensor foil 4. It is possible. In addition, if the ends of the broken bridge portions 4a and 4b are close to each other, it may be possible that a detection error occurs in the energization tester due to contact with each other. Therefore, in the strain detection device 1 of the present invention, a potential stress that tends to warp outward (in a direction away from the thin film substrate 2) is applied to one strain transmission piece 3A. As a result, when the bridge portions 4a and 4b are broken, the end portion on the gap G side of the strain transmitting piece 3A is lifted from the thin film substrate 2, so that the broken state can be detected easily and reliably. Such potential stress is applied, for example, by applying a spot welder (local heating device) to the strain transmission piece 3A on the upper side (sensor foil 4 side) between the bridge portions 4a and 4b and the spot welded portion Swl. Thus, it can be imparted by forming a heat input portion Sh that has input heat to the thin film substrate 2 so as not to be welded. That is, when heat is applied from the upper force of the strain transmission piece 3A, a thermal strain that tends to shrink is generated in the heat input portion Sh, and the strain transmission piece 3A tries to warp upward. Since the foil 4 is coupled to the other strain transmission piece 3B and thus is prevented from being deformed and held in a flat state, the stress is inherent in the strain transmission piece 3A.
[0081] センサ箔 4のブリッジ部 4a, 4bが破断すれば、この応力が顕在化してひずみ伝達 片 3A, 3Bが入熱部 Shの近傍で折れて、ひずみ伝達片 3Aのギャップ G側の端部が 薄膜基板 2から浮き上がるように変形する。また、スポット溶接部 Swl, Sw2を形成す るときにも、同様に入熱した面の方向に曲がろうとする応力が発生するので、溶接用 の入熱も併せて適度な程度の反り返り量を得ることができる。なお、入熱部 Shにおけ る入熱量は、ひずみ伝達片 3Aと薄膜基板 2の間を溶接結合させる程に大きくてはい けな 、。ひずみ伝達片 3Aと薄膜基板 2が中間で接合するとセンサ機能が損なわれる 力もである。また、ひずみ伝達片 3Aの反り返り量は、破断したブリッジ部 4a, 4bの導 通回復が起こらず、かつ、人が簡単に破断を視認できれば十分で、大きすぎる必要 はない。  [0081] If the bridge portions 4a and 4b of the sensor foil 4 are broken, this stress becomes obvious, and the strain transmitting pieces 3A and 3B are bent near the heat input portion Sh, and the gap G side end of the strain transmitting piece 3A The part is deformed so as to float from the thin film substrate 2. In addition, when forming spot welds Swl and Sw2, a stress that tends to bend in the direction of the heat input surface is generated in the same manner, so that a moderate amount of warping is also achieved with the heat input for welding. Obtainable. The amount of heat input at the heat input portion Sh should not be so large that the strain transmission piece 3A and the thin film substrate 2 are welded together. When the strain transmission piece 3A and the thin film substrate 2 are joined in the middle, the sensor function is also impaired. Further, the amount of warping of the strain transmitting piece 3A is sufficient if the broken bridge portions 4a and 4b do not recover and the person can easily visually recognize the fracture, and need not be too large.
[0082] 図 7Aは図 1に示すひずみ検知装置 1の応力の付与に関する説明図である。図 7A に示すように、ひずみ伝達片 3A, 3Bと薄膜基板 2とを結合するスポット溶接部 Swは 、薄膜基板 2の裏側(下側)からスポット溶接機を当てて形成する。一方、反り返り用 の入熱部 Shは、ひずみ伝達片 3Aの上側からスポット溶接機を当てて形成する。そう すると、ひずみ伝達片 3Aは入熱部 Shの位置よりギャップ G側のみが適当な量だけ 反り返るようになる。 [0083] 図 7Bは変形例の応力の付与に関する説明図である。図 7Bに示すように、反り返り 用の入熱部 Shが形成されるひずみ伝達片 3Aを薄膜基板 2に溶接接合する際に、 上側 (センサ箔 4側)からひずみ伝達片 3Aに入熱すれば、応力がより大きく付与され て反り返り量を増加させることができる。 FIG. 7A is an explanatory diagram relating to the application of stress in the strain detection device 1 shown in FIG. As shown in FIG. 7A, the spot welded portion Sw for joining the strain transmitting pieces 3A, 3B and the thin film substrate 2 is formed by applying a spot welder from the back side (lower side) of the thin film substrate 2. On the other hand, the heat input portion Sh for warping is formed by applying a spot welder from the upper side of the strain transmitting piece 3A. Then, the strain transmitting piece 3A warps only by an appropriate amount on the gap G side from the position of the heat input portion Sh. FIG. 7B is an explanatory diagram relating to the application of stress in a modification. As shown in Fig. 7B, when the strain transmission piece 3A where the heat input part Sh for warping is formed is welded to the thin film substrate 2, heat is applied to the strain transmission piece 3A from the upper side (sensor foil 4 side). The amount of warping can be increased by applying a greater stress.
[0084] 図 7Cはさらに別の変形例の応力の付与に関する説明図である。図 7Cに示すよう に、一方のひずみ伝達片 3Aについては上側(センサ箔 4側)から入熱を行い、他方 のひずみ伝達片 3Bにつ ヽては裏側(薄膜基板 2側)から入熱を行っても、ブリッジ部 4a, 4bの破断後における破断端同士の再接触を防止することができる。ただし、図 7 Cの場合は、ひずみ伝達片 3Aの反り返りが図 7A及び図 7Bに比べて顕著ではない  FIG. 7C is an explanatory diagram relating to the application of stress in still another modification. As shown in Fig. 7C, heat is input from the upper side (sensor foil 4 side) for one strain transfer piece 3A, and heat input from the back side (thin film substrate 2 side) for the other strain transfer piece 3B. Even if it carries out, the recontact of the fracture | rupture ends after fracture | rupture of bridge | bridging part 4a, 4b can be prevented. However, in the case of Fig. 7C, the warping of the strain transmission piece 3A is not as significant as in Figs. 7A and 7B.
[0085] 図 8は図 1に示すひずみ検知装置 1の過大ひずみ検知メカニズムを説明する斜視 図である。図 8に示すように、ひずみ検知装置 1は、測定対象物 10に貼付して力も破 断するまでは、一対のひずみ伝達片 3A, 3Bはブリッジ部 4a, 4bに結合された状態 で同一平面上にあり、ブリッジ部 4a, 4bの状態は、センサ箔 4の端部に設けられた電 極端子 4e, 4fに通電テスター Tのプローブを接触させることで電気的に確実に確認 することができるとともに、目視でも簡単に確認することができる。 FIG. 8 is a perspective view for explaining an excessive strain detection mechanism of the strain detection device 1 shown in FIG. As shown in FIG. 8, the strain detection device 1 is in the same plane with the pair of strain transmission pieces 3A and 3B being coupled to the bridge portions 4a and 4b until the force is broken after being applied to the measurement object 10. The state of the bridge parts 4a and 4b can be reliably confirmed electrically by bringing the probe of the conduction tester T into contact with the electrode terminals 4e and 4f provided at the ends of the sensor foil 4. At the same time, it can be easily confirmed visually.
[0086] モ-リング期間中に測定対象物 10に過大なひずみが生じてセンサ箔 4がブリッジ 部 4a, 4Bの位置で破断すると、一方のひずみ伝達片 3Aがセンサ箔 4と一緒に反り 返って浮き上がり、破断状態を明確に示すこととなる。そこで、電極端子 4e, 4fにプロ ーブを接続した通電テスター Tにより、簡単に破断状態 (非導通状態)を検出すること ができるとともに、目視でも簡単かつ正確に破断状態を知ることができる。なお、電極 端子 4e, 4fに電線を半田付けし、その電線を介して電極端子 4e, 4fを遠隔地の計 器類に接続し、遠隔地で集中的に多数のひずみ検知装置 1の破断状況を把握する ようにしてもよい。  [0086] If excessive strain is generated in the object to be measured 10 during the milling period and the sensor foil 4 is broken at the positions of the bridge portions 4a and 4B, one strain transmitting piece 3A warps together with the sensor foil 4. It floats up and clearly shows the state of fracture. Therefore, the energization tester T in which the probe is connected to the electrode terminals 4e and 4f can easily detect the rupture state (non-conduction state) and can easily and accurately know the rupture state visually. In addition, solder wires to the electrode terminals 4e and 4f, and connect the electrode terminals 4e and 4f to the remote instruments via the wires, so that many strain detectors 1 are broken intensively in the remote areas. You may make it grasp.
[0087] また、本実施形態のひずみ検知装置 1では、ギャップ Gにお 、て 2つのブリッジ部 4 a, 4bが設けられている。ひずみ検知装置 1は検知軸方向に縦長の構造であるため、 ブリッジ部が 1つであると製造中や施工中に破断するおそれがある力 ブリッジ部 4a , 4bを 2つ設けることにより曲げに対する強度が向上し、破損事故を防止している。 [0088] また、ブリッジ部 4a, 4b力 つ設けられ、一対の電極端子 4e, 4fがひずみ検知装置 1の一端側に設けられているので、通電テスター Tで検査するときに、ひずみ検知装 置 1の一端側にプローブを当てればよぐ検査の作業性が向上する。また、電極端子 4e, 4fに電線を接続する場合にも、配線が容易となる。さらに、ブリッジ部 4a, 4bは 電気的に直列に接続されているので、製造時の寸法のばらつきにより破断強度がば らついたときにも、強度の弱い方が確実に破断して非導通状態となるので、信頼性が 向上する。 [0087] Further, in the strain detection device 1 of the present embodiment, two bridge portions 4a and 4b are provided in the gap G. Since strain detector 1 has a structure that is vertically long in the direction of the detection axis, there is a risk that it may break during manufacturing or construction if there is only one bridge. Strength against bending by providing two bridges 4a and 4b Has improved and prevented accidents. [0088] In addition, since the bridge portions 4a and 4b are provided vigorously and the pair of electrode terminals 4e and 4f are provided on one end side of the strain detection device 1, the strain detection device T is used when inspecting with the energization tester T. If the probe is applied to one end of 1, the workability of the inspection can be improved. In addition, wiring is facilitated when an electric wire is connected to the electrode terminals 4e and 4f. In addition, since the bridge parts 4a and 4b are electrically connected in series, even if the breaking strength varies due to dimensional variations during manufacturing, the weaker one will surely break and become non-conductive. Therefore, reliability is improved.
[0089] また、ひずみ検知装置 1は、数 mm力 数 100mmの長さ Lの検知領域に発生する 変位量をブリッジ部 4a, 4bに集中させてセンサ箔 4を破断させ、目視あるいは通電テ スター Tなどの携帯型簡易計器により検出するので、多数の測定点を設定して測定 対象物 10を全体的に診断することができる。さらに、ひずみ検知装置 1は、長さ 200 mm以下の小型に形成することができ、測定対象物 10の表面に貼付するだけでモニ タと接続する配線などが不要であるので、測定点が増えても測定コストが膨大化する ようなことはない。  [0089] In addition, the strain detection device 1 concentrates the amount of displacement generated in the detection region of a length L of several mm force and several hundred mm on the bridge portions 4a and 4b to break the sensor foil 4, and visually or energized tester. Since it is detected by a portable simple instrument such as T, the measurement object 10 can be diagnosed as a whole by setting a large number of measurement points. Furthermore, the strain detection device 1 can be formed in a small size with a length of 200 mm or less, and since there is no need for wiring to connect to the monitor by simply attaching it to the surface of the measurement object 10, the number of measurement points increases. However, the measurement cost does not increase.
[0090] 本発明のひずみ検知装置 1は、供用期間を通して製品の構造に発生する応力を監 視する長期モニタリングに使用することができる。長期の運用期間中にまれに発生す る過大ひずみを検知することができる。計測のための機器が不要のため、長期にわ たるモニタリングが可能である。また、回転体、動体、水中の物体など、計測装置が使 えない環境におけるひずみ計測に利用することができる。さらに、ひずみ検知装置の 簡便性と経済性により、計測領域が広範囲にわたる場合や、計測点数が多数になる 場合に適用すれば、発生ひずみの概略分布や過大ひずみ発生部位の抽出が可能 になる。  The strain detection device 1 of the present invention can be used for long-term monitoring for monitoring the stress generated in the product structure throughout the service period. It is possible to detect excessive strain that occurs rarely during a long operation period. Long-term monitoring is possible because no measurement equipment is required. It can also be used for strain measurement in environments where measurement devices cannot be used, such as rotating objects, moving objects, and underwater objects. Furthermore, due to the simplicity and economy of the strain detection device, it is possible to extract the approximate distribution of generated strain and the location of the overstrain when applied to a wide measurement area or a large number of measurement points.
[0091] (第 2実施形態)  [0091] (Second Embodiment)
図 9は本発明の第 2実施形態に係るひずみ検知装置 201の斜視図である。なお、 第 1実施形態と共通する部分については同一符号を付して以下の説明を省略してい る。図 9に示すように、第 2実施形態のひずみ検知装置 201では、薄膜基板 202は、 一方のひずみ伝達片 3Aに対応する位置で上方に突出する突起部 202aを有してい る。突起部 202aは、ブリッジ部 4a, 4bとスポット溶接部 Swlとの間において薄膜基 板 202を山状に折ることで形成されており、ひずみ伝達片 3A, 3Bの並び方向(引張 り方向)と一致する検知軸に直交する方向に延在している。これにより、ひずみ伝達 片 3Aには上側に反り返ろうとする力が付与されるが、ひずみ伝達片 3Aはセンサ箔 4 により他方のひずみ伝達片 3Bと結合されて 、るために、変形が妨げられて平面状態 に保持され、ひずみ伝達片 3Aに潜在的な応力が内在することとなる。 FIG. 9 is a perspective view of a strain detection apparatus 201 according to the second embodiment of the present invention. Note that portions common to the first embodiment are denoted by the same reference numerals, and the following description is omitted. As shown in FIG. 9, in the strain detection device 201 of the second embodiment, the thin film substrate 202 has a protrusion 202a that protrudes upward at a position corresponding to one strain transmission piece 3A. The protrusion 202a is formed between the bridge portions 4a and 4b and the spot welded portion Swl. It is formed by folding the plate 202 into a mountain shape, and extends in a direction perpendicular to the detection axis that coincides with the arrangement direction (tensile direction) of the strain transmitting pieces 3A and 3B. As a result, the strain transmitting piece 3A is applied with a force to warp upward, but the strain transmitting piece 3A is coupled to the other strain transmitting piece 3B by the sensor foil 4, so that deformation is prevented. Therefore, potential stress is inherent in the strain transmitting piece 3A.
[0092] 図 10は図 9に示すひずみ検知装置 201のセンサ箔 4破断時における斜視図である 。図 10に示すように、ブリッジ部 4a, 4bが破断すれば、ひずみ伝達片 3Aはセンサ箔 4によって拘束されなくなるので、ひずみ伝達片 3Aに内在する応力が顕在化し、ひ ずみ伝達片 3Aのブリッジ部 4a, 4b側の端部が薄膜基板 2から浮き上がるように変形 する。したがって、センサ箔 4の破断状態を簡単かつ確実に検出することができる。  FIG. 10 is a perspective view of the strain detection device 201 shown in FIG. 9 when the sensor foil 4 is broken. As shown in FIG. 10, when the bridge portions 4a and 4b are broken, the strain transmitting piece 3A is not restrained by the sensor foil 4, so the stress inherent in the strain transmitting piece 3A becomes obvious, and the strain transmitting piece 3A bridges. The end portions on the side of the parts 4a and 4b are deformed so as to be lifted from the thin film substrate 2. Therefore, the broken state of the sensor foil 4 can be detected easily and reliably.
[0093] (第 3実施形態)  [0093] (Third embodiment)
図 11は本発明の第 3実施形態に係るひずみ検知装置 301の斜視図である。なお、 第 1実施形態と共通する部分については同一符号を付して以下の説明を省略してい る。図 11に示すように、第 3実施形態のひずみ検知装置 301では、一方のひずみ伝 達片 3Aと薄膜基板 2との間に薄板などのスぺーサ 310が挟まれている。スぺーサ 31 0は、ブリッジ部 4a, 4bとスポット溶接部 Swlとの間に配置され、ひずみ伝達片 3A, 3Bの並び方向(引張り方向)と一致する検知軸に直交する方向に延在して 、る。これ により、ひずみ伝達片 3Aには上側に反り返ろうとする力が付与される力 ひずみ伝 達片 3Aはセンサ箔 4により他方のひずみ伝達片 3Bと結合されているために、変形が 妨げられて平面状態に保持され、ひずみ伝達片 3Aに潜在的な応力が内在すること となる。  FIG. 11 is a perspective view of a strain detection device 301 according to the third embodiment of the present invention. Note that portions common to the first embodiment are denoted by the same reference numerals, and the following description is omitted. As shown in FIG. 11, in the strain sensing device 301 of the third embodiment, a spacer 310 such as a thin plate is sandwiched between one strain transmission piece 3A and the thin film substrate 2. Spacer 310 is disposed between bridge portions 4a and 4b and spot welded portion Swl, and extends in a direction perpendicular to the detection axis that coincides with the direction in which strain transmitting pieces 3A and 3B are arranged (tensile direction). And As a result, a force is applied to the strain transmission piece 3A to warp upward. The strain transmission piece 3A is coupled to the other strain transmission piece 3B by the sensor foil 4, and therefore, deformation is prevented. It is held in a flat state, and potential stress is inherent in the strain transmitting piece 3A.
[0094] 図 12は図 11に示すひずみ検知装置 301のセンサ箔 4破断時における斜視図であ る。図 12に示すように、ブリッジ部 4a, 4bが破断すれば、ひずみ伝達片 3Aはセンサ 箔 4によって拘束されなくなるので、ひずみ伝達片 3Aに内在する応力が顕在化し、 ひずみ伝達片 3Aのブリッジ部 4a, 4b側の端部が薄膜基板 2から浮き上がるように変 形する。したがって、センサ箔 4の破断状態を簡単かつ確実に検出することができる。 なお、前述した突起部 202a及びスぺーサ 310は弾性体であってもよい。弾性体であ ればセンサ箔 4の破断状態を更に確実に検出することができる。 [0095] (第 4実施形態) FIG. 12 is a perspective view of the strain detector 301 shown in FIG. 11 when the sensor foil 4 is broken. As shown in FIG. 12, if the bridge portions 4a and 4b are broken, the strain transmitting piece 3A is not restrained by the sensor foil 4, so that the stress inherent in the strain transmitting piece 3A becomes obvious, and the bridge portion of the strain transmitting piece 3A It is deformed so that the ends on the 4a and 4b sides are lifted from the thin film substrate 2. Therefore, the broken state of the sensor foil 4 can be detected easily and reliably. Note that the protrusions 202a and the spacers 310 described above may be elastic bodies. If it is an elastic body, the broken state of the sensor foil 4 can be detected more reliably. [0095] (Fourth Embodiment)
図 13は本発明の第 4実施形態に係るひずみ検知装置 1の斜視図である。なお、第 1実施形態と共通する部分については同一符号を付して以下の説明を省略している 。図 13に示すように、第 4実施形態のひずみ検知装置 1は、第 1実施形態のものと同 様であるが、測定対象物への設置態様が相違する。具体的には、ひずみ検知装置 1 は測定対象物の曲面部分に貼付され、ひずみ伝達片 3A側の薄膜基板 2の少なくと も一部 2aが上方(ひずみ伝達片 3A側)に向けて凸となるように湾曲した状態で使用 される。これにより、ひずみ伝達片 3Aには上側に反り返ろうとする力が付与されるが 、ひずみ伝達片 3Aはセンサ箔 4により他方のひずみ伝達片 3Bと結合されて 、るた めに、変形が妨げられて薄膜基板 2に沿った湾曲形状に保持され、ひずみ伝達片 3 Aに潜在的な応力が内在することとなる。  FIG. 13 is a perspective view of the strain detection apparatus 1 according to the fourth embodiment of the present invention. Note that portions common to the first embodiment are denoted by the same reference numerals, and the following description is omitted. As shown in FIG. 13, the strain detection device 1 of the fourth embodiment is the same as that of the first embodiment, but the installation mode on the measurement object is different. Specifically, the strain detection device 1 is affixed to the curved surface portion of the measurement object, and at least a part 2a of the thin film substrate 2 on the strain transmission piece 3A side is convex toward the upper side (strain transmission piece 3A side). It is used in a curved state. As a result, the strain transmitting piece 3A is applied with a force to warp upward, but the strain transmitting piece 3A is coupled to the other strain transmitting piece 3B by the sensor foil 4, thereby preventing deformation. Thus, the curved shape along the thin film substrate 2 is held, and potential stress is inherent in the strain transmitting piece 3A.
[0096] 図 14は図 13に示すひずみ検知装置 1のセンサ箔 4破断時における斜視図である。  FIG. 14 is a perspective view of the strain sensing device 1 shown in FIG. 13 when the sensor foil 4 is broken.
図 14に示すように、ブリッジ部 4a, 4bが破断すれば、ひずみ伝達片 3Aはセンサ箔 4 によって拘束されなくなるので、ひずみ伝達片 3Aに内在する応力が顕在化し、ひず み伝達片 3Aのブリッジ部 4a, 4b側の端部が薄膜基板 2から浮き上がるように変形す る。したがって、センサ箔 4の破断状態を簡単かつ確実に検出することができる。  As shown in FIG. 14, when the bridge portions 4a and 4b are broken, the strain transmitting piece 3A is not restrained by the sensor foil 4, so that the stress inherent in the strain transmitting piece 3A becomes obvious, and the strain transmitting piece 3A The ends of the bridge portions 4a and 4b are deformed so as to be lifted from the thin film substrate 2. Therefore, the broken state of the sensor foil 4 can be detected easily and reliably.
[0097] (第 5実施形態)  [0097] (Fifth embodiment)
図 15は本発明の第 5実施形態に係るひずみ検知装置の平面図である。図 15に示 すように、本実施形態は、第 1実施形態において使用されたものと同じ構成を有する 3組のひずみ検知センサ 6を 1枚の薄膜基板 2上に併置して形成したひずみ検知装 置 11である。ひずみ検知装置 11の検知特性は、材料の破断特性に基づくため、材 料的なバラツキ、製造時のバラツキなどを原因とする検知精度のバラツキがある。検 知精度のバラツキは、複数のセンサを用いたときには、各センサの精度バラツキの 2 乗平均の平方根になるから、複数のひずみ検知センサ 6を併設することにより、検知 精度を向上させることができる。  FIG. 15 is a plan view of a strain detection apparatus according to the fifth embodiment of the present invention. As shown in FIG. 15, in this embodiment, strain detection is formed by arranging three sets of strain detection sensors 6 having the same configuration as that used in the first embodiment on one thin film substrate 2. It is device 11. Since the detection characteristics of the strain detector 11 are based on the fracture characteristics of the material, there are variations in detection accuracy due to material variations and manufacturing variations. The variation in detection accuracy is the square root of the root mean square of the accuracy variation of each sensor when multiple sensors are used, so the detection accuracy can be improved by providing multiple strain detection sensors 6. .
[0098] ひずみ伝達片 3A, 3Bは、それぞれスポット溶接により所定の位置 Swl, Sw2で薄 膜基板 2に固定される。また、一方のひずみ伝達片 3Bには、ブリッジ部と固定位置 S w2の中間位置 Shにおいて、スポット溶接機により溶着しない程度に入熱がなされて いる。これにより、ブリッジ部が破断したときには、その中間位置 Shの近傍で折れて、 破断端が上側に跳ね上がろうとするような応力がひずみ伝達片 3Bに与えられる。 The strain transmission pieces 3A and 3B are fixed to the thin film substrate 2 at predetermined positions Swl and Sw2 by spot welding, respectively. In addition, one strain transmission piece 3B receives heat at an intermediate position Sh between the bridge portion and the fixed position Sw2 to such an extent that it is not welded by a spot welder. Yes. As a result, when the bridge portion breaks, a stress is applied to the strain transmitting piece 3B such that it breaks in the vicinity of the intermediate position Sh and the broken end tends to jump upward.
[0099] このひずみ検知装置 11を測定対象物の表面に接着しておき、適当な時間経過し た後に破断状態を観察する。観察の結果、複数のひずみ検知センサ 6のセンサ箔 4 がいずれも破断したときは、測定対象物がセンサの検知応力 σより大きな応力を発 生したと判断することができる一方、複数のひずみ検知センサ 6が 、ずれも破断しな ければセンサの検知応力 σより大きな応力は発生していないと判断することができる 。また、複数のひずみ検知センサ 6のうち幾つかのセンサ箔 4が破断し、残りが破断し なかったときには、検知応力 σのバラツキを積極的に利用して、測定対象物の履歴 応力がセンサの検知応力 σのバラツキ範囲内、すなわち上限値 σ と下限値 σ の [0099] The strain detector 11 is adhered to the surface of the object to be measured, and the fracture state is observed after an appropriate time has elapsed. As a result of observation, when all of the sensor foils 4 of the plurality of strain detection sensors 6 are broken, it can be determined that the object to be measured has generated a stress larger than the detection stress σ of the sensor. If the sensor 6 is not broken, it can be determined that no stress greater than the detected stress σ of the sensor has occurred. In addition, when several sensor foils 4 of the plurality of strain detection sensors 6 are ruptured and the rest are not ruptured, the variation of the detected stress σ is positively used, and the hysteresis stress of the measurement object is detected by the sensor. Within the variation range of the detected stress σ, that is, between the upper limit value σ and the lower limit value σ
- + 間にあると推定することができる。  -Can be estimated to be between +.
[0100] さらに、 3糸且のひずみ検知センサ 6は、同じ形状に形成され互いに平行に配置され ているが、図中左側のひずみ伝達片 3Αをスポット溶接機で薄膜基板 2に固定する位 置 Swlが、 3組のひずみ検知センサ 6ごとに異なるように構成してもよい。そうすると、 各ひずみ検知センサは検知応力がそれぞれ異なり、例えば、図中上力 順に異なる 検知応力 σ ΐ, σ 2, σ 3を有するように構成することができる。  [0100] Furthermore, the three-thread and strain-detecting sensor 6 is formed in the same shape and arranged in parallel with each other. However, the strain transmitting piece 3 片 on the left side in the figure is fixed to the thin film substrate 2 with a spot welder. The Swl may be configured to be different for each of the three sets of strain detection sensors 6. Then, each strain detection sensor has a different detection stress, and can be configured to have, for example, detection stresses σ ΐ, σ 2, σ 3 that are different in the order of upward force in the figure.
[0101] このように、複数のひずみ検知センサごとに検知応力 σが異なるように形成したひ ずみ検知装置を測定対象物の表面に貼付して、適当時間経過後に観察する。このと き、破断したひずみ検知センサを特定することにより、測定対象物の履歴応力の概略 値を推定することができる。例えば、全てのひずみ検知センサが破断しな力つたとき には、測定対象物は、最も小さい検知応力 σ 1より小さな履歴応力しか受けな力 た ことが分かる。また、図中上側のひずみ検知センサが破断したときは、測定対象物は 上側のひずみ検知センサの検知応力 σ 1より大きぐ中央のひずみ検知センサの検 知応力 σ 2より小さな履歴応力を受けたと考えることができる。さらに、全てのひずみ 検知センサが破損したときは、下側のセンサの検知応力 σ 3より大きな履歴応力を受 けたことが分かる。なお、図 15には示していないが、センサ箔 4と一対のひずみ伝達 片 3Α, 3Βとの組み合わせ力 なるひずみ検知センサを複数形成したひずみ検知装 置においても、ひずみ伝達片とつながる補強枠を設けることにより、測定対象物への 貼付前の取り扱 、を容易〖こすることができることは ヽうまでもな!/、。 [0101] In this way, a strain detection device formed so that the detection stress σ is different for each of the plurality of strain detection sensors is attached to the surface of the object to be measured, and observed after an appropriate time has elapsed. At this time, the approximate value of the hysteresis stress of the measurement object can be estimated by specifying the strain detection sensor that has broken. For example, when all of the strain detection sensors are not broken, it can be seen that the measurement object has received a hysteresis stress smaller than the smallest detection stress σ 1. In addition, when the upper strain detection sensor in the figure breaks, it is assumed that the measurement object has received a hysteresis stress that is larger than the detection stress σ 1 of the upper strain detection sensor and smaller than the detection stress σ 2 of the central strain detection sensor. Can think. Furthermore, it can be seen that when all strain detection sensors were damaged, a hysteresis stress greater than the detection stress σ 3 of the lower sensor was received. Although not shown in FIG. 15, even in a strain detection device in which a plurality of strain detection sensors having the combined force of the sensor foil 4 and a pair of strain transmission pieces 3 mm and 3 mm are formed, a reinforcing frame connected to the strain transmission pieces is provided. By providing, to the measurement object Needless to say, it is easy to handle before sticking! /.
[0102] (第 6実施形態)  [0102] (Sixth embodiment)
図 16は本発明の第 6実施形態に係るひずみ検知装置の平面図である。図 16に示 すように、本実施形態のひずみ検知装置 21は、 2組のひずみ検知センサ 6を 1つの 薄膜基板 2上に併置して形成したものである。  FIG. 16 is a plan view of a strain detection apparatus according to the sixth embodiment of the present invention. As shown in FIG. 16, the strain detection device 21 of the present embodiment is formed by arranging two sets of strain detection sensors 6 side by side on one thin film substrate 2.
[0103] ひずみ伝達片 3A, 3Bは、それぞれ 1力所 Swl, Sw2でスポット溶接機により薄膜 基板 2に溶着固定される。一対のひずみ伝達片 3A, 3Bの固定位置の間の距離は、 2組のひずみ検知センサ 6で互いに異なってもよい。固定位置間の距離が異なる場 合は、ひずみ検知センサごとの検知応力 σは異なる。また、一方のひずみ伝達片 3 Αには、ブリッジ部と固定位置 Swlとの中間位置 Shにおいて、スポット溶接機により 溶着しない程度に入熱がなされており、センサ箔 4が破断したときには破断端が上側 に反り返ろうとする応力が与えられて 、る。  [0103] The strain transmitting pieces 3A and 3B are welded and fixed to the thin film substrate 2 by a spot welder at one force point Swl and Sw2, respectively. The distance between the fixed positions of the pair of strain transmission pieces 3A and 3B may be different between the two sets of strain detection sensors 6. When the distance between the fixed positions is different, the detected stress σ differs for each strain detection sensor. In addition, one strain transmitting piece 3 入 receives heat at an intermediate position Sh between the bridge portion and the fixed position Swl to such an extent that it is not welded by a spot welder. Stress is applied to warp upward.
[0104] このひずみ検知装置 21は測定対象物の表面に接着され、適当な時間経過した後 に作業者により破断状態が観察される。観察は電極端子を介した電気的な抵抗検出 によって行ってもょ ヽし、ひずみ伝達片 3Aの反り返り状態を目視で確認してもよ 、。 観察の結果、 2組のひずみ検知センサ 6がいずれも破断したときは、測定対象物が 2 組のひずみ検知センサの検知応力 σ 1, σ 2より大きな応力を、 2組のひずみ検知セ ンサがいずれも破断しなければ 2組のひずみ検知センサの検知応力 σ 1, σ 2より小 さな応力を、また、 1組のひずみ検知センサが破断して他の 1組が破断しな力つたとき には 2組のひずみ検知センサの検知応力 σ 1と σ 2の間の応力を履歴したと推定す ることがでさる。  [0104] The strain detection device 21 is adhered to the surface of the object to be measured, and the fracture state is observed by an operator after an appropriate time has elapsed. The observation may be performed by detecting electrical resistance via the electrode terminals, and the warping state of the strain transmitting piece 3A may be confirmed visually. As a result of observation, if both of the two strain detection sensors 6 break, the two objects are detected by the two strain detection sensors. If neither breaks, the stress of the two strain detection sensors is less than the detected stress σ1, σ2, or when one strain detection sensor breaks and the other pair breaks Therefore, it is possible to estimate that the stress between the detected stresses σ 1 and σ 2 of the two sets of strain sensors was recorded.
[0105] 図 17は図 16に示すひずみ検知装置を用いた検知応力範囲の特定方法の説明図 である。図 17に示すように、第 1のひずみ検知センサ S1の測定範囲は、検知応力設 計値 σ を挟んで下限 σ と上限 σ の間、第 2のひずみ検知センサ S2の測定範 FIG. 17 is an explanatory diagram of a method for specifying a detected stress range using the strain detection apparatus shown in FIG. As shown in Fig. 17, the measurement range of the first strain detection sensor S1 is between the lower limit σ and the upper limit σ across the detected stress design value σ.
1 1- 1 + 1 1- 1 +
囲は、第 1のひずみ検知センサのものより大きな検知応力設計値 σ を挟んで下限  The range is the lower limit with a design value σ of detected stress larger than that of the first strain sensor.
2  2
σ と上限 σ の間とし、第 1のひずみ検知センサ SIの検知応力上限値 σ より From σ to the upper limit σ, from the upper limit σ of the detected stress of the first strain detection sensor SI
2- 2+ 1+ 第 2のひずみ検知センサ S2の検知応力下限値 σ が小さいものとする。 2- 2+ 1+ Detected stress lower limit σ of second strain detection sensor S2 is small.
2- 2-
[0106] そうすると、 2ffi^のひずみ検知センサ SI, S2がいずれも導通している場合、第 1の ひずみ検知センサの上限値 σ [0106] Then, if both strain detection sensors SI and S2 of 2ffi ^ are conducting, the first Upper limit value of strain detection sensor σ
1+より大きな応力は作用しな力つたと判断できる。ま た、第 1のひずみ検知センサ S1が断線し、第 2のひずみ検知センサ S2が導通してい るとき、第 1のひずみ検知センサの下限値 σ と第 2のひずみ検知センサの上限値 σ の間の応力が作用した可能性があると判断する。さらに、 2組のひずみ検知セン It can be judged that a stress greater than 1+ was not applied. Also, when the first strain detection sensor S1 is disconnected and the second strain detection sensor S2 is conductive, the lower limit value σ of the first strain detection sensor and the upper limit value σ of the second strain detection sensor It is judged that the stress in between may have acted. In addition, two strain detection sensors
2 + 2 +
サ SI, S2がいずれも断線している場合、少なくとも第 2のひずみ検知センサの下限 値 σ より大きな応力が作用したと判断できる。  If both SI and S2 are disconnected, it can be judged that at least a stress greater than the lower limit σ of the second strain detection sensor is applied.
2- 2-
[0107] なお、第 1のひずみ検知センサ S1の検知応力上限値 σ より第 2のひずみ検知 [0107] The second strain detection from the upper limit σ of the detected stress of the first strain detection sensor S1
1+  1+
センサ S2の検知応力下限値 σ 力 、さい場合は、第 1のひずみ検知センサ S1が  Lower limit of detection stress of sensor S2 σ force, in this case, the first strain detection sensor S1
2- 導通し、第 2のひずみ検知センサ S2が断線するケースがあり得て、このときには、第 1 のひずみ検知センサの上限値 σ と第 2のひずみ検知センサの下限値 σ の間の  2- There may be a case where the second strain detection sensor S2 is disconnected, and in this case, between the upper limit value σ of the first strain detection sensor and the lower limit value σ of the second strain detection sensor.
1+ 2- 応力が作用したと判断する。なお、第 2及び第 6実施形態において、 2組または 3組の ひずみ検知センサを 1枚の薄膜基板 2上に設けた力 さらに多数のひずみ検知セン サを設けてもよい。  1+ 2- Judge that the stress was applied. In the second and sixth embodiments, a force in which two or three strain detection sensors are provided on one thin film substrate 2 may be provided, and a number of strain detection sensors may be provided.
[0108] (第 7実施形態) [Seventh Embodiment]
図 18は本発明の第 7実施形態に係るひずみ検知装置の説明図である。図 18に示 すように、本実施形態の測定対象物に貼付されたひずみ検知装置 1は保護カバー 3 0で覆われている。保護カバー 30は、榭脂材料、メツキ鋼板、塗装鋼板などカゝらなり、 ひずみ検知装置 1を被覆可能な大きさの蓋形状に形成されている。保護カバー 30は 、その裾部分が測定対象物の表面に榭脂などで接着固定されることで内部を気密に してひずみ検知装置 1を保護している。なお、センサ箔 4の破断を電気的に検出する ために電極端子に接続された電線 34は、保護カバー 30から気密的に導出されてい る。  FIG. 18 is an explanatory diagram of a strain detection apparatus according to the seventh embodiment of the present invention. As shown in FIG. 18, the strain detection device 1 attached to the measurement object of this embodiment is covered with a protective cover 30. The protective cover 30 is made of a resin material, a polished steel plate, a coated steel plate, or the like, and is formed in a lid shape that can cover the strain detector 1. The protective cover 30 protects the strain detection device 1 by hermetically sealing the interior of the object to be measured to the surface of the object to be measured by using grease or the like. Note that the electric wire 34 connected to the electrode terminal in order to electrically detect the breakage of the sensor foil 4 is led out from the protective cover 30 in an airtight manner.
[0109] (第 8実施形態)  [Eighth Embodiment]
図 19は本発明の第 8実施形態に係るひずみ検知装置の説明図である。図 19に示 すように、本実施形態のひずみ検知装置 1は、その上力 榭脂被膜 32がコーティン グされて外気を遮断し、長期の使用を可能にしている。また、適当な大きさの覆いを 設けた上力 榭脂をコーティングし、ひずみ伝達片の反り返りを許容する空洞を十分 に設けることが好ましい。なお、センサ箔 4の破断を電気的に検出するために電極端 子に接続された電線 34は、榭脂被膜 32から気密的に導出されている。 FIG. 19 is an explanatory view of a strain detection apparatus according to the eighth embodiment of the present invention. As shown in FIG. 19, the strain detection device 1 of the present embodiment is coated with a force-resin coating 32 to block outside air, and can be used for a long time. In addition, it is preferable to provide a sufficient cavity that is coated with an upper-strength resin having a cover of an appropriate size and allows the strain transmitting piece to warp. In order to detect the breakage of the sensor foil 4 electrically, The electric wire 34 connected to the child is led out from the resin coating 32 in an airtight manner.
[0110] (第 9実施形態)  [0110] (Ninth Embodiment)
図 20は本発明の第 9実施形態に係るひずみ検知装置の平面図である。図 20に示 すように、測定対象物の構造が複雑で応力方向が予め決められない場合や、どの方 向に最大ひずみ方向があるか予測できない地震に備えた測定システムなどには、複 数のひずみ検知センサ 6を検知軸の方向を互いに少しずつずらして放射状に配置し た多軸ひずみ検知装置 41を使うと、未知の最大ひずみ方向の見落しがないので便 利である。  FIG. 20 is a plan view of a strain detection apparatus according to the ninth embodiment of the present invention. As shown in Fig. 20, there are multiple measurement systems for cases where the structure of the object to be measured is complex and the direction of stress cannot be determined in advance, or for earthquakes in which the maximum strain direction cannot be predicted. It is convenient to use the multi-axis strain detection device 41 in which the strain detection sensors 6 are radially arranged with the detection axis directions slightly shifted from each other, since the unknown maximum strain direction is not overlooked.
[0111] (第 10実施形態)  [0111] (Tenth embodiment)
図 21は本発明の第 10実施形態に係るひずみ検知システム 50のブロック図である 。図 21に示すように、本実施形態のひずみ検知システム 50は、ひずみ検知装置 1、 データ検知伝送装置 51、独立電源 52及び受信装置 53から構成されている。なお、 ひずみ検知装置 1は、第 1実施形態で説明したものが用いられている。  FIG. 21 is a block diagram of a strain detection system 50 according to the tenth embodiment of the present invention. As shown in FIG. 21, the strain detection system 50 according to the present embodiment includes a strain detection device 1, a data detection transmission device 51, an independent power source 52, and a reception device 53. Note that the strain detection device 1 described in the first embodiment is used.
[0112] ひずみ検知装置 1の電極端子 4e, 4fに電線 34を介してデータ検知伝送装置 51が 接続されている。データ検知伝送装置 51は、電極端子 4e, 4fに接続されてブリッジ 部 4a, 4bの破断 (非導通)を検出する検出回路と、その検出回路で破断が検出され た場合に検出信号を受信装置 53に無線送信する送信回路とを有している。データ 検知伝送装置 51は、ひずみ検知装置 1に近接設置されており、検知回路が電極端 子 4e, 4f間の電流若しくは抵抗を検査することによりセンサ箔 4の破断の有無を検知 し、送信回路がその検知結果を無線により非接触で受信装置 53に送信する。  [0112] The data detection transmission device 51 is connected to the electrode terminals 4e and 4f of the strain detection device 1 via the electric wire 34. The data detection transmission device 51 is connected to the electrode terminals 4e and 4f to detect a breakage (non-conduction) of the bridge portions 4a and 4b, and receives a detection signal when the breakage is detected by the detection circuit. 53 has a transmission circuit for wireless transmission. The data detection transmission device 51 is installed close to the strain detection device 1, and the detection circuit detects the presence or absence of breakage of the sensor foil 4 by inspecting the current or resistance between the electrode terminals 4e and 4f, and the transmission circuit. Transmits the detection result wirelessly to the receiving device 53 in a non-contact manner.
[0113] 独立電源 52は、データ検知伝送装置 51に近接配置され、又は、データ検知伝送 装置 51に組み込んだ形で設置され、データ検知伝送装置 51に電力を供給する。独 立電源 52は、ひずみ検知装置 1に対して面倒な配線を施す必要を排除し、電気技 術者による現地配線工事を省略するために、乾電池や太陽電池などを利用した独立 装置である。  The independent power supply 52 is disposed in the vicinity of the data detection transmission device 51 or installed in a form incorporated in the data detection transmission device 51, and supplies power to the data detection transmission device 51. The independent power source 52 is an independent device that uses dry cells, solar cells, etc. to eliminate the need for troublesome wiring for the strain detection device 1 and to eliminate on-site wiring work by an electrician.
[0114] 本実施形態では、データ検知伝送装置 51が、測定対象物に作用する荷重が所定 値を超えたときに電極端子 4e, 4f間が非導通になることを電気的に検出して検出信 号を発信し、受信装置 53がその検出信号を無線で受信し異常を検知する。受信装 置 53では、異常発生時に、作業員に向けて警報を発生したり異常箇所を表示して知 らせたり、緊急避難命令の発令や機器の緊急停止など危険を回避するための措置を とったりすることができる。本実施形態では、ひずみ検知装置 1と受信装置 53との間 が離れて 、てもよ 、ことから、作業員がひずみ検知装置 1に直接アクセスする必要が なぐまた多数の検知結果を集約して測定対象物の全体を診断する用途にも利用す ることがでさる。 [0114] In the present embodiment, the data detection transmission device 51 electrically detects and detects that the electrode terminals 4e and 4f become non-conductive when the load acting on the measurement object exceeds a predetermined value. A signal is transmitted, and the receiving device 53 receives the detection signal wirelessly and detects an abnormality. Receiver At 53, when an abnormality occurs, an alarm is given to the worker, the abnormal part is displayed and notified, and measures are taken to avoid danger such as issuing an emergency evacuation order or emergency stop of equipment. be able to. In this embodiment, the strain detection device 1 and the reception device 53 may be separated from each other. Therefore, it is not necessary for an operator to directly access the strain detection device 1, and a large number of detection results are collected and measured. It can also be used to diagnose the entire object.
[0115] (第 11実施形態) [0115] (Eleventh embodiment)
図 22は本発明の第 11実施形態に係るひずみ検知システムのブロック図である。図 22に示すように、本実施形態のひずみ検知システム 60は、図 21の態様におけるデ 一タ検知伝送装置 51に対応するものとして、信号入力装置 PIOを有するモデム 62を 付属したパソコン 61を利用するもので、図示しな 、受信装置で受信した検出信号は 中央監視室 63に伝達されるようになって ヽる。中央監視室 63で受信した検出信号を 信号処理して、異常と判定された時には警報や緊急停止措置などをとることができる  FIG. 22 is a block diagram of a strain detection system according to the eleventh embodiment of the present invention. As shown in FIG. 22, the strain detection system 60 of the present embodiment uses a personal computer 61 with a modem 62 having a signal input device PIO as corresponding to the data detection transmission device 51 in the aspect of FIG. Therefore, the detection signal received by the receiving device is transmitted to the central monitoring room 63 (not shown). The detection signal received in the central monitoring room 63 is signal-processed, and when it is determined to be abnormal, an alarm or emergency stop measures can be taken.
[0116] 遠隔の測定対象物に対して細密にモニタリングを行うときや、極めて多数のひずみ 検知装置を監視するときに利用される。この態様は、機能が高く安価な市販のバソコ ンを利用することができるので、高機能で安価なシステムを容易に構築することがで きる。このようなモニタリングシステムを利用することにより、測定対象物の過大ひずみ の有無に関する多数の情報が中央監視室 63に自動的に集められるので、中央監視 室 63内の僅かな作業員で全体の状況を把握することができる。 [0116] It is used when monitoring a remote measurement object closely, or when monitoring a very large number of strain detection devices. In this embodiment, since a commercially available personal computer having a high function and a low price can be used, a high-function and low-cost system can be easily constructed. By using such a monitoring system, a large amount of information about the presence or absence of excessive strain on the measurement object is automatically collected in the central monitoring room 63, so that the overall situation can be reduced by a small number of workers in the central monitoring room 63. Can be grasped.
[0117] (第 12実施形態)  [0117] (Twelfth embodiment)
図 23は本発明の第 12実施形態に係るひずみ検知システム 70のブロック図である 。図 23に示すように、本実施形態のひずみ検知システム 70は、ひずみ検知装置 1に ICタグ 71を接続したものである。 ICタグ 71には、検出回路と送信回路が設けられて いる。 ICタグ 71は、その端子をひずみ検知装置 1の電極端子 4e, 4fに接続した状態 で、測定対象物に取り付けられている。そして、必要に応じて ICタグ 71に ICタグ読取 装置 72がかざされることで、 ICタグ読取装置 72により ICタグ 71から過大ひずみの存 否情報が読み出される。あるいは、複数のひずみ検知装置 1ごとに ICタグ読取装置 7 2を設け、常時、 ICタグ読取装置 72から検出結果を所定の管理場所に伝送して集約 管理することちでさる。 FIG. 23 is a block diagram of a strain detection system 70 according to the twelfth embodiment of the present invention. As shown in FIG. 23, the strain detection system 70 of the present embodiment is one in which an IC tag 71 is connected to the strain detection device 1. The IC tag 71 is provided with a detection circuit and a transmission circuit. The IC tag 71 is attached to the object to be measured with its terminals connected to the electrode terminals 4e and 4f of the strain detection device 1. Then, if necessary, the IC tag reading device 72 is held over the IC tag 71, so that the IC tag reading device 72 reads out the presence / absence information of excessive strain from the IC tag 71. Alternatively, IC tag reader 7 for each of multiple strain detectors 1 2 is provided, and the detection results are always transmitted from the IC tag reader 72 to a predetermined management location for centralized management.
[0118] ICタグ 71は、 ICタグ読取装置 72が近づけられたときに非接触で ICタグ読取装置 7 2からエネルギー供給を受けて稼働し、センサ箔の破断状態を検出し、検出情報を I Cタグ読取装置 72に無線送信するので、内部に電源装置を必要としない。 ICタグ 71 は十分に小型軽量であるので、ひずみ検知装置 1と一体にして回転機械の回転部 材等に貼付して、運転中の荷重状態を検知することも可能となる。  [0118] The IC tag 71 operates in a non-contact manner by receiving energy supply from the IC tag reader 72 when the IC tag reader 72 is approached, detects the breakage state of the sensor foil, and detects the detected information as IC Since it is wirelessly transmitted to the tag reader 72, a power supply device is not required inside. Since the IC tag 71 is sufficiently small and light, it can be attached to a rotating member of a rotating machine integrally with the strain detection device 1 to detect a load state during operation.
[0119] なお、作業員はひずみ検知装置 1及び ICタグ 71が設置された場所を巡回しながら 所持する ICタグ読取装置 72を ICタグ 71にかざすことにより、 ICタグ読取装置 72が I Cタグ 71からセンサ箔の破断の有無に係る情報を非接触で読み取り表示したり、 IC タグ読取装置 72内に情報を蓄積するので、広い範囲に散在する多数の場所を巡回 検査する場合にも極めて省力的にデータを収集することができる。  [0119] It should be noted that the operator moves the IC tag reading device 72 held around the place where the strain detection device 1 and the IC tag 71 are installed over the IC tag 71, so that the IC tag reading device 72 becomes the IC tag 71. Since the information related to the presence or absence of sensor foil breakage is read and displayed in a non-contact manner or the information is stored in the IC tag reader 72, it is extremely labor-saving even when a lot of places scattered over a wide area are inspected. Data can be collected.
[0120] (第 13実施形態)  [0120] (Thirteenth embodiment)
図 24は本発明の第 13実施形態に係るひずみ検知システムのブロック図である。図 24に示すように、ひずみ検知装置 1に接続したデータ検知伝送装置 51は、検知結 果を判定装置 81に伝送する。判定装置 81は、予め決められた判定基準に基づいて 検知結果を判定し、判定結果に基づいて表示装置 82を駆動する。表示装置 82は、 表示灯や液晶表示装置あるいはスピーカなど視覚や聴覚に訴える機器を備え、問題 となる状況変化があつたときに、表示灯の点灯や消灯、表示図形や表示色の変化、 注意喚起する音声の発生などにより作業員に知らせる。  FIG. 24 is a block diagram of a strain detection system according to the thirteenth embodiment of the present invention. As shown in FIG. 24, the data detection transmission device 51 connected to the strain detection device 1 transmits the detection result to the determination device 81. The determination device 81 determines the detection result based on a predetermined determination criterion, and drives the display device 82 based on the determination result. The display device 82 is equipped with devices that appeal to the sense of sight and hearing, such as indicator lights, liquid crystal display devices, and speakers. Notify the worker by generating an audible voice.
[0121] 判定装置 81や表示装置 82が、測定対象物から離れた位置に置かれて、検知結果 をデータ検知伝送装置 51から無線で伝達されるようにしてもよいし、また、データ検 知伝送装置 51と一緒に測定対象物に取り付けられて、測定対象物の場所で警報信 号などを表示するようにしてもよい。なお、データ検知伝送装置 51などは、現地に配 設した独立電源 52により駆動される。  [0121] The determination device 81 and the display device 82 may be placed at a position away from the measurement object, and the detection result may be transmitted wirelessly from the data detection transmission device 51, or the data detection may be performed. It may be attached to the measurement object together with the transmission device 51 to display an alarm signal or the like at the location of the measurement object. The data detection transmission device 51 and the like are driven by an independent power source 52 installed in the field.
[0122] (第 14実施形態)  [0122] (14th embodiment)
図 25は本発明の第 14実施形態に係るひずみ検知システム 90のブロック図である 。図 25に示すように、本実施形態のひずみ検知システム 90は、温度センサなどの状 態センサ 91を用いることにより、適当なひずみ検知センサ SI, S2を選択して状態を 判定するようにしている。図 25には、ひずみ検知センサを 2つ配している力 2つ以上 であってもよい。ひずみ検知装置 21は、第 6実施形態のように異なる検知レベルを有 するひずみ検知センサ SI, S2を備えている。データ検知伝送装置 51は、それらひ ずみ検知センサ SI, S2と結線されている。さらに、データ検知伝送装置 51は、状態 センサ 91と接続されており、測定対象物に影響を与える状態変数の測定値が状態セ ンサ 91から入力され、判定装置 92に送信する。判定装置 92は、状態センサ 91の測 定値に基づ 、て適切なひずみ検知センサを選択し、測定対象物に過大ひずみ状態 が生じたカゝ否かを判定し、表示装置 82を駆動する。 FIG. 25 is a block diagram of a strain detection system 90 according to the fourteenth embodiment of the present invention. As shown in FIG. 25, the strain detection system 90 of the present embodiment is a temperature sensor or the like. By using the state sensor 91, an appropriate strain detection sensor SI, S2 is selected and the state is judged. In FIG. 25, two or more forces in which two strain detection sensors are arranged may be used. The strain detection device 21 includes strain detection sensors SI and S2 having different detection levels as in the sixth embodiment. The data detection transmission device 51 is connected to these strain detection sensors SI and S2. Further, the data detection transmission device 51 is connected to the state sensor 91, and the measured value of the state variable that affects the measurement object is input from the state sensor 91 and transmitted to the determination device 92. The determination device 92 selects an appropriate strain detection sensor based on the measurement value of the state sensor 91, determines whether or not an excessive strain state has occurred in the measurement object, and drives the display device 82.
[0123] 状態センサ 91としては、温度センサ、加速度センサ、角速度センサ、振動センサ、 変位センサなど、応力状態に影響を与える状態変数を測定するものが選択される。 たとえば、温度が変化すると、測定対象物の剛性が変化して応力ひずみ係数が変化 し、破壊荷重値も変化する場合がある。そこで、センサ箔の破断ひずみを異ならせた 複数のひずみ検知センサ SI, S2を配して、状態センサ 91からの情報に基づいて適 切なひずみ検知センサを選択するとよ 、。  [0123] As the state sensor 91, a sensor that measures a state variable that affects the stress state, such as a temperature sensor, an acceleration sensor, an angular velocity sensor, a vibration sensor, or a displacement sensor, is selected. For example, when the temperature changes, the stiffness of the measurement object changes, the stress strain coefficient changes, and the fracture load value may also change. Therefore, a plurality of strain detection sensors SI and S2 with different breaking strains of the sensor foil are arranged, and an appropriate strain detection sensor is selected based on information from the state sensor 91.
[0124] 図 26は図 25に示すひずみ検知システム 90の機能を説明する説明図である。図 26 に示すように、第 1のひずみ検知センサ S1は、測定対象物に所定の荷重 W1が加え られるとセンサ箔が破断するように調整されている。また、第 2のひずみ検知センサ S 2は、 W1より大きな荷重 W2が加えられると破断するように調整されている。以下同様 に、順次適当な荷重 W3, W4, W5, W6を検出するように調整されたひずみ検知セ ンサ S3, S4, S5, S6力設けられている。  FIG. 26 is an explanatory diagram for explaining the function of the strain detection system 90 shown in FIG. As shown in FIG. 26, the first strain detection sensor S1 is adjusted so that the sensor foil breaks when a predetermined load W1 is applied to the measurement object. The second strain detection sensor S2 is adjusted so as to be broken when a load W2 larger than W1 is applied. In the same manner, strain detection sensors S3, S4, S5, and S6 are arranged so as to detect appropriate loads W3, W4, W5, and W6 in sequence.
[0125] 高い温度範囲 T5〜T6のときには小さな荷重でも構造物に異常を来す危険がある ので、小さな荷重 W1で破断するひずみ検知センサ S1の破断状態を監視する。これ に対して、低温域 Τ1〜Τ2の領域では、大きな荷重に耐えうるので大きな荷重 W5が かからな!/、と破断しな 、ひずみ検知センサ S5の破断状態によって構造物の健全性 を判定する。  [0125] In the high temperature range T5 to T6, there is a danger that the structure will be abnormal even with a small load. Therefore, the fracture state of the strain detection sensor S1 that breaks with a small load W1 is monitored. On the other hand, in the low temperature range Τ1 to う る 2, it can withstand a large load, so a large load W5 is not applied! / And the soundness of the structure is judged by the rupture state of the strain detection sensor S5 To do.
[0126] たとえば、温度センサの測定値 Tmが温度範囲 Τ3〜Τ4の中にあった場合は、判定 装置 92はひずみ検知センサ S3を選択し、そのセンサ箔破断の有無力も警報の要否 を判定する。この場合は、より高温領域用に用意された低温用ひずみ検知センサ S1 , S2が破断していても無視することになる。 [0126] For example, when the measured value Tm of the temperature sensor is within the temperature range Τ3 to Τ4, the judgment device 92 selects the strain detection sensor S3, and whether the sensor foil breaks or not is also necessary to alarm. Determine. In this case, even if the low-temperature strain detection sensors S1 and S2 prepared for the higher temperature region are broken, they are ignored.
[0127] また、状態センサ 91として振動センサを用いた場合、振動が大きいときには感度の 高いひずみ検知センサを選択してセンサ箔破断の有無を見て、振動が小さいときに は感度の低 、ひずみ検知センサを選択してセンサ箔破断の有無を見ると 、つたよう に、機器の作動状況を判断して突発的な過大荷重に対する検知レベルを変えること ができる。さらに、状態センサ 91として加速度センサ、角速度センサ、変位センサなど を用いた場合も、前記同様に、その測定値に対応するひずみ検知センサを判定装置 で選択することに利用できる。  [0127] When a vibration sensor is used as the state sensor 91, when the vibration is large, a highly sensitive strain detection sensor is selected and the presence or absence of the sensor foil is checked. When the vibration is small, the sensitivity is low and the strain is low. When the detection sensor is selected and the presence or absence of sensor foil breakage is observed, it is possible to change the detection level for sudden overload by judging the operating status of the equipment. Further, when an acceleration sensor, an angular velocity sensor, a displacement sensor, or the like is used as the state sensor 91, it can be used to select a strain detection sensor corresponding to the measured value by the determination device as described above.
[0128] 次に、図 27〜図 37は、本発明のひずみ検知装置の使用例を説明する図面で、各 種測定対象物についてひずみ検知装置を貼付する位置と貼付方法を工夫すること によって、本発明の利点を十分に発揮させることができる。  [0128] Next, Figs. 27 to 37 are diagrams for explaining examples of use of the strain detection device of the present invention. By devising the position and method of applying the strain detection device for various measurement objects, The advantages of the present invention can be fully exhibited.
[0129] (第 1使用例)  [0129] (First usage example)
図 27は本発明のひずみ検知装置の第 1使用例を示す概略図である。図 27に示す ように、本使用例では橋梁 100における落橋警報にひずみ検知装置が利用されてい る。地震時に生じる伸縮装置や落橋防止装置の異常荷重や異常変位を検出して、 警報を行うことができる。複数の橋桁 101を有する長い橋梁 100は、橋の両端に築造 された橋台 102の間に適当間隔で橋脚 103を設けて、橋台 102と橋脚 103の間また 橋脚 103同士の間に橋桁 101を掛けて繋げることにより形成される。  FIG. 27 is a schematic diagram showing a first usage example of the strain detection device of the present invention. As shown in Fig. 27, in this use case, a strain detector is used for the falling bridge warning in the bridge 100. Alarms can be issued by detecting abnormal loads and abnormal displacements of expansion and contraction devices and falling bridge prevention devices that occur during an earthquake. A long bridge 100 having a plurality of bridge girders 101 is provided with bridge piers 103 at appropriate intervals between the abutments 102 built at both ends of the bridge, and the bridge girders 101 are hung between the abutment 102 and the pier 103 or between the piers 103. It is formed by connecting.
[0130] 橋桁 101は主として温度により伸縮するので、橋台 102や橋脚 103に完全に固定 することができない。また、橋桁 101の両端には、温度変化により橋桁 101が伸縮し て橋桁 101同士の間にギャップが生じるのを防止するため伸縮装置 104が介装され ている。伸縮装置 104は、たとえば、橋桁 101の端部に櫛の歯状の突起を形成し、両 側の櫛の歯が相互に突き合わされて入り組むように配置することにより構成すること ができる。さらに、地震があっても橋桁 101が落ちないように、両端の橋桁 101は橋 台 102と、また橋桁 101同士も、ビームやケーブルで結合する落橋防止装置 105, 1 06が設備されている。  [0130] Since the bridge girder 101 expands and contracts mainly due to temperature, it cannot be completely fixed to the abutment 102 or the pier 103. Further, at both ends of the bridge girder 101, an expansion / contraction device 104 is interposed in order to prevent the bridge girder 101 from expanding and contracting due to a temperature change and generating a gap between the bridge beams 101. The telescopic device 104 can be configured, for example, by forming comb-shaped protrusions at the end of the bridge beam 101 and arranging the teeth of the combs on both sides to face each other. Furthermore, in order to prevent the bridge girder 101 from falling even if there is an earthquake, the bridge girder 101 at both ends is equipped with the abutment 102, and the bridge girder 101 is also connected with a falling bridge prevention device 105, 106 that couples the beam girder 101 with beams or cables.
[0131] 異常な力が力かって危険が予想される場合には事前に通行を遮断することが好ま しい。そこで、安全に渡橋できる限界状態に対応するひずみ近辺でセンサ箔が破断 するように調整したひずみ検知装置 1を落橋防止装置 105, 106のビームやケープ ルの支持具などに貼着して、異常な力を受けたときに警報を発するようにすると、重 大事故になる前に適切な措置を執って安全を確保することができる。警報は橋梁 10 0の設置場所で表示することもできるし、管理室に通知して適切な対処をさせるように してちよい。 [0131] It is preferable to block traffic in advance when danger is expected due to abnormal force. That's right. Therefore, the strain detection device 1 adjusted so that the sensor foil breaks in the vicinity of the strain corresponding to the limit state where the bridge can be safely bridged is attached to the beam of the fall prevention device 105, 106, the support of the cable, etc. If a warning is issued when a strong force is received, appropriate measures can be taken to ensure safety before a serious accident occurs. Alarms can be displayed at the location of the bridge 100, or the management office can be notified to take appropriate measures.
[0132] (第 2使用例) [0132] (Second usage example)
図 28は本発明のひずみ検知装置の第 2使用例を示す概略図である。図 28に示す ように、橋梁 111を載置した橋脚 112は鉄筋コンクリート製で、地下十分の深さまで基 礎杭 114を打ち込んで固定している。しかし、頑丈に作った橋脚 112も大地震に遭え ば、破損する。このため、どういう構造であればどの程度の地震に耐えるかを正確に 知って設計施工することが求められている。高価な測定機器を使って発生する応力 を常時監視することは経済的に困難であり、まれに発生する地震について、実地デ ータを組織的に収集することが難しい。そこで、測定したい部分に安価なひずみ検知 装置 1を取り付けておいて、地震が発生した後にデータを収集することが結局合理的 である。  FIG. 28 is a schematic view showing a second usage example of the strain detection apparatus of the present invention. As shown in FIG. 28, the pier 112 on which the bridge 111 is placed is made of reinforced concrete, and the foundation pile 114 is driven and fixed to a sufficient depth underground. However, the sturdy pier 112 will also be damaged in the event of a major earthquake. For this reason, it is required to design and construct exactly knowing what kind of structure and how much earthquake it can withstand. It is economically difficult to constantly monitor the stresses generated using expensive measuring instruments, and it is difficult to systematically collect actual data for rare earthquakes. Therefore, it is reasonable to collect data after an earthquake has occurred by attaching an inexpensive strain detector 1 to the part to be measured.
[0133] 本使用例では、異なる破断ひずみ設定をした適当数のひずみ検知装置 1を予め取 り付けておいて、地震発生後に破断したひずみ検知装置 1と破断しな力つたひずみ 検知装置 1を区分することにより、実際に発生した応力を推定することができる。また 、第 12実施形態のような ICタグ 71を備えたひずみ検知システム 70を使用する場合 は、内部に埋め込んだひずみ検知装置 1及び ICタグ 71センサを表面力も探って感 知結果を知ることができる。  [0133] In this use example, an appropriate number of strain detection devices 1 with different break strain settings are installed in advance, and the strain detection device 1 that breaks after an earthquake occurs and the strain detection device 1 that does not break. By dividing, the actually generated stress can be estimated. In addition, when using the strain detection system 70 having the IC tag 71 as in the twelfth embodiment, the surface force of the strain detection device 1 and the IC tag 71 sensor embedded inside can be searched to know the detection result. it can.
[0134] 柱や鉄筋の損傷状態は外部から観察することができない場合があるが、たとえばコ ンクリート内部の鉄筋 113に、設定された破断ひずみの異なる多数のひずみ検知装 置 1を貼付して、コンクリートで覆って橋脚 112を形成するとよい。地震が発生した後 に、破断したひずみ検知装置 1と破断しなかったひずみ検知装置 1とを調べて、鉄筋 113にカ卩わった最大の応力を正確に推定することができる。この結果に基づいて、地 震後の供用の可否や補修の必要性を判断することができる。また、破損部分と健全 部分における最大応力を解析することにより、貴重な設計資料を得ることができる。 [0134] Damaged columns and reinforcing bars may not be observed from the outside. For example, a large number of strain detectors 1 with different set breaking strains are attached to the reinforcing bars 113 inside the concrete. The pier 112 may be formed by covering with concrete. After the earthquake occurs, the strain detecting device 1 that has broken and the strain detecting device 1 that has not broken can be examined to accurately estimate the maximum stress applied to the reinforcing bar 113. Based on this result, it is possible to judge the availability of service after the earthquake and the necessity for repair. Also, damaged part and sound By analyzing the maximum stress in the part, valuable design data can be obtained.
[0135] なお、基礎杭 114は地下に埋設されるため、簡単には各基礎杭 114が受けた応力 を知ることができないが、本使用例によれば、埋設されたひずみ検知装置からも検知 データを取得することができるので、基礎杭 114が受けた応力を推定することができ 、地震解析には極めて有効である。  [0135] Since the foundation piles 114 are buried underground, the stress received by each foundation pile 114 cannot be easily known. However, according to this use example, it is also detected from the buried strain detection device. Since the data can be acquired, the stress received by the foundation pile 114 can be estimated, which is extremely effective for earthquake analysis.
[0136] (第 3使用例)  [0136] (Third use example)
図 29は本発明のひずみ検知装置の第 3使用例を示す概略図である。図 29に示す ように、本使用例では、配管中に配設される伸縮継手における応力印加状態を推定 するためにひずみ検知装置が利用されている。蛇腹管を有する伸縮継手 120は、配 管の中間に設けられ、温度や流体圧力の変化に基づく配管の伸縮代を吸収する。 伸縮継手 120における異常を検知する方法として、本発明のひずみ検知装置を利 用することができる。  FIG. 29 is a schematic view showing a third usage example of the strain detection apparatus of the present invention. As shown in FIG. 29, in this use example, a strain detector is used to estimate the stress application state in the expansion joint arranged in the pipe. The expansion joint 120 having a bellows pipe is provided in the middle of the pipe, and absorbs the expansion / contraction allowance of the pipe based on changes in temperature and fluid pressure. As a method for detecting an abnormality in the expansion joint 120, the strain detection device of the present invention can be used.
[0137] 蛇腹管の屈曲部 121の表面にひずみ検知装置 1を貼付したり、蛇腹部分をフラン ジで挟んでフランジ間を締めたボルト 122にひずみ検知装置 1を貼付しておけば、応 力の異常を簡単に検知して警報を出すことができる。  [0137] If the strain detector 1 is attached to the surface of the bent portion 121 of the bellows tube, or the strain detector 1 is attached to the bolt 122 with the bellows portion sandwiched between flanges and tightened between the flanges, An abnormality can be easily detected and an alarm can be issued.
[0138] (第 4使用例)  [0138] (Fourth use example)
図 30は本発明のひずみ検知装置の第 4使用例を示す概略図である。図 30に示す ように、本使用例では、回転機器における回転軸のねじり負荷をひずみ検知装置で モニタリングしている。駆動部と負荷部を繋ぐ回転軸 130は、ねじり負荷を受けてせ ん断カを発生し、回転軸 130の表面に発生する最大ひずみ方向が軸に対してほぼ 4 5° 傾いた方向になる。したがって、ひずみ検知装置 1は検知軸を回転軸線方向に 対して 45° 傾けて貼付し、最大ひずみを正確に検知しなければならない。  FIG. 30 is a schematic view showing a fourth example of use of the strain sensing device of the present invention. As shown in Fig. 30, in this use example, the torsional load on the rotating shaft in the rotating equipment is monitored by a strain detector. The rotating shaft 130 connecting the drive unit and the load unit generates a shearing force due to a torsional load, and the maximum strain direction generated on the surface of the rotating shaft 130 is inclined by approximately 45 ° to the shaft. . Therefore, the strain detector 1 must be attached with the detection axis inclined at 45 ° to the direction of the rotation axis, and the maximum strain must be accurately detected.
[0139] 図 31は図 30に示す回転軸 130等に適用するためにせん断応力を検知するように した変形例のひずみ検知装置 140の平面図である。測定対象物にせん断力が作用 するときは、測定対象物の表面における最大ひずみの方向は力の方向に対して所 定の傾きを生じる。そこで、ひずみ検知装置 140のひずみ検知センサ 6の検知軸方 向を初めから最大ひずみ方向に合わせておけば、測定対象物に対してひずみ検知 装置 140を貼付するときに角度調整をする必要がなく便利である。 [0140] 図 31は回転軸などに適用することを前提として形成されたひずみ検知装置 140で 、回転軸の軸方向に対して 45° の傾きをもってひずみ検知センサ 6が形成されてい る。すなわち、四角形の薄膜基板 2の中心位置に、辺に対して 45° 傾いた方向に検 知軸を持つようにひずみ伝達片 3A, 3B (図 1参照)が配置されている。このようにし て形成されたひずみ検知装置 140は、薄膜基板 2の辺が回転軸の軸方向に一致す るように貼付すれば、ひずみ検知センサ 6の検知軸方向が回転軸表面の最大ひず み方向に一致して、最大応力を検知するようになるので、便利である。 FIG. 31 is a plan view of a strain detector 140 of a modified example in which shear stress is detected for application to the rotating shaft 130 and the like shown in FIG. When a shear force acts on the measurement object, the direction of the maximum strain on the surface of the measurement object has a predetermined inclination with respect to the direction of the force. Therefore, if the detection axis direction of the strain detection sensor 6 of the strain detection device 140 is adjusted to the maximum strain direction from the beginning, there is no need to adjust the angle when the strain detection device 140 is attached to the measurement object. Convenient. FIG. 31 shows a strain detection device 140 formed on the premise that it is applied to a rotating shaft or the like, and the strain detecting sensor 6 is formed with an inclination of 45 ° with respect to the axial direction of the rotating shaft. That is, the strain transmitting pieces 3A and 3B (see FIG. 1) are arranged at the center position of the rectangular thin film substrate 2 so as to have a detection axis in a direction inclined by 45 ° with respect to the side. When the strain detection device 140 formed in this way is attached so that the side of the thin film substrate 2 is aligned with the axial direction of the rotation axis, the detection axis direction of the strain detection sensor 6 is the maximum strain on the surface of the rotation axis. This is convenient because the maximum stress is detected in accordance with the direction of the peak.
[0141] (第 5使用例)  [0141] (Fifth use case)
図 32は本発明のひずみ検知装置の第 5使用例を示す概略図である。図 32に示す ように、本使用例は、ひずみ検知装置 21をクレーンに適用したものである。クレーン 1 50の滑車 151を吊下するワイヤ 152をクレーン本体に固定する部分に、異常荷重を 検知するひずみ検知装置 1を貼付したひずみ検知ユニット 155を介装する。  FIG. 32 is a schematic view showing a fifth usage example of the strain detection apparatus of the present invention. As shown in FIG. 32, in this use example, the strain detection device 21 is applied to a crane. A strain detection unit 155 with a strain detection device 1 for detecting an abnormal load is interposed in a portion where the wire 152 for hanging the pulley 151 of the crane 1 50 is fixed to the crane body.
[0142] クレーン 150が吊している荷重が吊せる上限荷重に近付いたら、ひずみ検知装置 1 のセンサ箔が破断して危険信号を発生する。危険信号を受けた受信装置は操作者 に警告を与えて操作を停止させる。荷重が危険荷重に近くて危険が迫っている場合 は、自動的に緊急停止を行うようにしてもよい。なお、クレーン 150が転倒したり破損 する危険荷重はクレーンの角度によって異なるので、幾つかのひずみ検知装置 1と 角度センサを併用して、測定された角度範囲ごとに使用するひずみ検知装置 1を切 り換えるようにして、的確な危険度判断ができるようにしてもょ ヽ。  [0142] When the load suspended by the crane 150 approaches the maximum load that can be hung, the sensor foil of the strain detector 1 breaks and generates a danger signal. The receiving device that receives the danger signal gives a warning to the operator and stops the operation. If the load is close to the dangerous load and the danger is imminent, an emergency stop may be automatically performed. Since the dangerous load that causes the crane 150 to fall or break varies depending on the crane angle, several strain detectors 1 and angle sensors are used in combination to switch off the strain detector 1 to be used for each measured angle range. It may be possible to make an accurate judgment of the risk level.
[0143] 図 33は図 32に使用されるひずみ検知ユニット 155の平面図である。図 33に示すよ うに、ひずみ検知ユニット 155は、両端に吊し穴 156を有する棒片 158の中央平坦部 157にひずみ検知装置 1を貼付して形成したものである。棒片 158の材質や形状は 、荷重検出に合うものを任意に選択することができる。また、ひずみ検知ユニット 155 は再現性があるので、実験的に検出荷重を確定することができ、信頼性が高い。この ような汎用的なひずみ検知ユニット 155は、クレーンの異常荷重検出など種々の対象 に適用することができる。  FIG. 33 is a plan view of the strain detection unit 155 used in FIG. As shown in FIG. 33, the strain detection unit 155 is formed by attaching the strain detection device 1 to a central flat portion 157 of a bar piece 158 having suspension holes 156 at both ends. The material and shape of the bar piece 158 can be arbitrarily selected to suit the load detection. Further, since the strain detection unit 155 has reproducibility, the detection load can be determined experimentally and is highly reliable. Such a general-purpose strain detection unit 155 can be applied to various objects such as crane abnormal load detection.
[0144] (第 6使用例)  [0144] (Sixth use example)
図 34は本発明のひずみ検知装置の第 6使用例を示す概略図である。図 34に示す ように、本使用例は、吊りワイヤにおける過負荷警報装置としてひずみ検知装置を利 用するものである。吊りワイヤ 161は、所定の荷重を超えた貨物を吊ると破断して貨 物を落下させてしまう。したがって、過剰な負荷を吊っていないことを確認し、誤って 過大な荷重を加えたときには運転者に警報を発したり、運転を停止するようにするこ とが好ましい。 FIG. 34 is a schematic view showing a sixth example of use of the strain sensing device of the present invention. Shown in Figure 34 As described above, this use example uses a strain detection device as an overload warning device for a hanging wire. The suspension wire 161 breaks and drops a cargo when a cargo exceeding a predetermined load is suspended. Therefore, it is preferable to confirm that an excessive load is not suspended and to alert the driver or stop the operation when an excessive load is accidentally applied.
[0145] そこで、吊りワイヤ 161の通り道に一対のガイドローラ 162を設けて、その中間に検 出ローラ 164を配置し、負荷により発生する吊りワイヤ 161の張力により検出ローラ 1 64が押し付けられる力がセンサプレート 165を変位させ、変位量が所定の値を超え たときに検知信号を発生するようにして 、る。  [0145] Therefore, a pair of guide rollers 162 is provided on the path of the suspension wire 161, and the detection roller 164 is disposed between the guide rollers 162, and the detection roller 164 is pressed by the tension of the suspension wire 161 generated by the load. The sensor plate 165 is displaced, and a detection signal is generated when the displacement exceeds a predetermined value.
[0146] 図 35Aは図 34に示すセンサプレート 165の側面図である。図 35Bは図 34に示す センサプレート 165の平面図である。図 35A及び図 35Bに示すように、センサプレー ト 165は、両端に止め穴 166aを備えた短冊形基板 166の裏側に本発明のひずみ検 知装置 1を貼付したもので、適当な間隔で設置された固定物 168の下面に止め穴 16 6aを通した止め具 167で固定され、中間部分の下面に検出ローラ 164が当たるよう に配置される。  FIG. 35A is a side view of sensor plate 165 shown in FIG. FIG. 35B is a plan view of the sensor plate 165 shown in FIG. As shown in FIG. 35A and FIG. 35B, the sensor plate 165 is obtained by attaching the strain detection device 1 of the present invention to the back side of a strip-shaped substrate 166 provided with a stop hole 166a at both ends, and installed at an appropriate interval. The fixed object 168 is fixed to the lower surface of the fixed object 168 with a stopper 167 through a stop hole 166a, and is arranged so that the detection roller 164 contacts the lower surface of the intermediate part.
[0147] 検出ローラ 164の軸位置が吊りワイヤ 161の張力により変位すると、センサプレート 165が橈んでひずみ検知装置 1の薄膜基板 2 (図 1参照)が伸びて、予め設定された ひずみに達するとセンサ箔 4 (図 1参照)が破断し、異常を検知することができる。検 知信号は図 21〜図 23に示したような受信装置に送信され、運転者に警報信号とし て伝送されたり、吊りワイヤ 161の駆動が停止制御されたりする。  [0147] When the axial position of the detection roller 164 is displaced due to the tension of the hanging wire 161, the sensor plate 165 is squeezed and the thin film substrate 2 (see Fig. 1) of the strain detection device 1 is stretched to reach a preset strain. The sensor foil 4 (see Fig. 1) breaks and an abnormality can be detected. The detection signal is transmitted to a receiving device as shown in FIGS. 21 to 23, and is transmitted to the driver as an alarm signal, or the driving of the hanging wire 161 is controlled to stop.
[0148] (第 7使用例)  [0148] (Seventh use example)
図 36は本発明のひずみ検知装置の第 7使用例を示す概略図である。図 37は図 3 6の要部拡大図である。図 36及び図 37に示すように、橋桁 170が橋台 171に係合す る部分には、橋桁 170と橋台 171の間の水平距離を監視して所定の距離より大きくな る異常を検知するひずみ検知ユニット 155と、橋桁 170の端部が載置される部分に 設置されて異常荷重を検知するセンサプレート 165が備えられている。  FIG. 36 is a schematic view showing a seventh example of use of the strain sensing device of the present invention. FIG. 37 is an enlarged view of the main part of FIG. As shown in Fig. 36 and Fig. 37, at the part where the bridge girder 170 engages with the abutment 171, the horizontal distance between the bridge girder 170 and the abutment 171 is monitored to detect anomalies that are larger than the predetermined distance. A detection unit 155 and a sensor plate 165 that is installed in a portion where the end of the bridge girder 170 is placed and detects an abnormal load are provided.
[0149] ひずみ検知ユニット 155は、図 33で説明したものと同じもので、橋桁 170と橋台 17 1の間の距離が所定の危険変位量になったらセンサ箔が破断するように調整されて いる。橋桁 171の下に設けられるセンサプレート 165は、図 35A及び Bで説明したも のと同じものである。 [0149] The strain detection unit 155 is the same as that described in Fig. 33, and is adjusted so that the sensor foil breaks when the distance between the bridge girder 170 and the abutment 17 1 reaches a predetermined dangerous displacement amount. Yes. The sensor plate 165 provided under the bridge girder 171 is the same as that described in FIGS. 35A and 35B.
[0150] 橋桁 170の下面には、センサプレート 165を押し下げる押圧ピン 172が下方に向け て突設されている。即ち、押圧ピン 172は、橋桁 170の垂直方向の変位に伴って上 下する。橋桁 170は、橋台 173の上面に支点 175を有するので、荷重が載ると支点 1 75を中心として沈み込む。押圧ピン 172は、その先端が断面円弧状に突出して形成 され、橋桁 170の沈み込みに伴ってセンサプレート 165の上面を押圧すると、センサ プレート 165の下面に貼着されたひずみ検知装置 1の薄膜基板 2 (図 1参照)が伸び 、予め設定されたひずみに達するとセンサ箔 4 (図 1参照)が破断し、異常を検知する ことができる。よって、本使用例のセンサプレート 165は、橋桁 170の上に過剰な積 載物が搭載されたときに、異常を検知して警報を発したり、自動的に進入禁止の表 示を出したりすることができる。  [0150] On the lower surface of the bridge girder 170, a pressing pin 172 that pushes down the sensor plate 165 protrudes downward. That is, the pressing pin 172 moves up and down as the bridge girder 170 is displaced in the vertical direction. Since the bridge girder 170 has a fulcrum 175 on the upper surface of the abutment 173, it sinks around the fulcrum 175 when a load is applied. The pressing pin 172 is formed so that its tip protrudes in a circular arc shape. When the upper surface of the sensor plate 165 is pressed as the bridge girder 170 sinks, the thin film of the strain detection device 1 attached to the lower surface of the sensor plate 165 When the substrate 2 (see Fig. 1) stretches and reaches a preset strain, the sensor foil 4 (see Fig. 1) breaks and an abnormality can be detected. Therefore, the sensor plate 165 of this use example detects an abnormality when an excessive load is loaded on the bridge girder 170 and issues an alarm or automatically displays a prohibition of entry. be able to.
[0151] 以上に説明した本発明のひずみ検知装置は、計測のための高度な機器が不要で あり、供用期間を通して製品の構造に発生するひずみを監視する長期モニタリング に使用することができ、長期の運用期間中にまれに発生する過大ひずみを検知する ことができる。また、回転体、動体、水中の物体など、計測装置が使えない環境にお けるひずみ異常警報に利用することができる。さらに、このひずみ検知装置の簡便性 と経済性により、測定領域が広範囲にわたる場合や、測定点数が多数になる場合に 適用して発生応力の概略分布や過大応力発生部位を特定することができる。また、 クレーン、橋梁、鉄道車両、航空機、自動車、建築鉄骨、鉄筋、回転機械等、各種の 構造物、輸送機器、建造物、機械などにおける鋼材の応力発生部を測定対象として 、任意の荷重値や変位値に感応するように設定して、この値を超えたことを検知する と警報を発したり、直接に緊急措置を執らせたりすることができる。これら鋼材に本発 明のひずみ検知装置を適用するときは、有機接着剤を用いることもできるし、溶接を 用いることもできる。さらに、本発明のひずみ検知装置は、鋼材以外にも、非鉄材料、 高分子材料、複合材、コンクリート、アスファルト、木材など、センサが応力発生部に 貼着できる限り任意の材料にっ 、て適用が可能である。  [0151] The strain detection device of the present invention described above does not require an advanced instrument for measurement, and can be used for long-term monitoring to monitor strain generated in the structure of the product throughout the service period. It is possible to detect excessive strain that occurs rarely during the operation period. It can also be used for strain abnormality alarms in environments where measuring devices cannot be used, such as rotating objects, moving objects, and underwater objects. Furthermore, due to the simplicity and economy of this strain detection device, it can be applied to a wide range of measurement or a large number of measurement points to identify the approximate distribution of generated stress and the location where the overstress occurs. In addition, any load value can be measured by measuring the stress generation part of steel materials in various structures, transportation equipment, buildings, machines, etc. such as cranes, bridges, railway vehicles, aircraft, automobiles, building steel frames, reinforcing bars, rotating machines, etc. It can be set to be sensitive to the displacement value, and when it exceeds this value, an alarm can be issued or an emergency measure can be taken directly. When applying the strain detection device of the present invention to these steel materials, an organic adhesive can be used, or welding can be used. Furthermore, the strain detection device of the present invention can be applied to any material as long as the sensor can be adhered to the stress generating part, such as non-ferrous materials, polymer materials, composite materials, concrete, asphalt, and wood, in addition to steel materials. Is possible.

Claims

請求の範囲 The scope of the claims
[1] 測定対象物に貼付されて測定対象物と共にひずむ薄膜基板と、  [1] a thin film substrate that is attached to the measurement object and distorted together with the measurement object;
前記薄膜基板上に小さなギャップを挟んで対置され、それぞれ少なくとも 1力所で 前記薄膜基板に固定された一対のひずみ伝達片と、  A pair of strain transmitting pieces, which are opposed to each other with a small gap on the thin film substrate, each fixed to the thin film substrate at at least one force point;
前記一対のひずみ伝達片上に跨って貼付され、前記ギャップに対応する位置に前 記ひずみ伝達片に貼付された位置よりも断面積が小さいブリッジ部を有するセンサ 箔とを備え、  A sensor foil having a bridge portion that is affixed across the pair of strain transmission pieces and has a bridge portion having a smaller cross-sectional area than the position affixed to the strain transmission piece at a position corresponding to the gap;
前記一対のひずみ伝達片のうち一方が、前記薄膜基板から離反する方向に反れよ うとする応力を有していることを特徴とするひずみ検知装置。  One of the pair of strain transmitting pieces has a stress that tends to warp in a direction away from the thin film substrate.
[2] 前記センサ箔は、前記ギャップを横断する部分で複数の前記ブリッジ部を有する請 求項 1に記載のひずみ検知装置。  [2] The strain detection device according to claim 1, wherein the sensor foil includes a plurality of the bridge portions in a portion crossing the gap.
[3] 前記ひずみ伝達片は、前記ギャップの位置と前記薄膜基板に固定された位置との 間の部位に前記薄膜基板に接合しない程度の入熱がされることにより前記応力が付 与されて!/、る請求項 1に記載のひずみ検知装置。 [3] The strain transmitting piece is applied with the stress by applying heat to a portion between the gap position and a position fixed to the thin film substrate so as not to join the thin film substrate. The strain detection device according to claim 1.
[4] 前記ひずみ伝達片は、該ひずみ伝達片を前記薄膜基板に固定する部位では該薄 膜基板側から局所加熱装置で入熱されることにより溶融接合される一方、前記ギヤッ プの位置と前記薄膜基板に固定された位置との間の位置に該ひずみ伝達片側から 局所加熱装置で前記薄膜基板に接合しない程度の入熱がされることにより前記応力 が付与されて!、る請求項 3記載のひずみ検知装置。 [4] The strain transmitting piece is melt-bonded at a portion where the strain transmitting piece is fixed to the thin film substrate by heat input from the thin film substrate side with a local heating device, while the position of the gap and the 4. The stress is applied to the position between the position fixed to the thin film substrate from the strain transmission piece side by applying heat to such an extent that it is not joined to the thin film substrate by a local heating device. Strain detector.
[5] 前記ひずみ伝達片及び前記センサ箔は金属からなり、 [5] The strain transmitting piece and the sensor foil are made of metal,
前記ひずみ伝達片と前記センサ箔との間には絶縁接着層が介設されている請求 項 1に記載のひずみ検知装置。  The strain detection device according to claim 1, wherein an insulating adhesive layer is interposed between the strain transmission piece and the sensor foil.
[6] 前記ひずみ伝達片は、該ひずみ伝達片の一部に一体的に接続された状態で該ひ ずみ伝達片を囲繞して該ひずみ伝達片と同一材料力 なる補強枠が除去されること により形成されるものである請求項 1に記載のひずみ検知装置。 [6] The strain transmitting piece is integrally connected to a part of the strain transmitting piece, surrounds the strain transmitting piece, and the reinforcing frame having the same material force as the strain transmitting piece is removed. The strain detection device according to claim 1, wherein the strain detection device is formed by:
[7] 前記ひずみ伝達片と前記補強枠との間には、細い連結部で区切られた細長い孔を 並べた折り取り線が設けられ、前記連結部を折り切ることにより前記補強枠が除去さ れるものである請求項 6に記載のひずみ検知装置。 [7] Between the strain transmitting piece and the reinforcing frame, a folding line is provided in which elongated holes separated by a thin connecting portion are arranged, and the reinforcing frame is removed by breaking the connecting portion. The strain detection device according to claim 6, wherein
[8] 前記一対のひずみ伝達片と前記センサ箔との組み合わせであるひずみ検知セン サが、前記薄膜基板上に複数配置されており、 [8] A plurality of strain detection sensors, which are a combination of the pair of strain transmitting pieces and the sensor foil, are arranged on the thin film substrate,
前記一対のひずみ伝達片のうち一方の前記薄膜基板への固定位置と、前記一対 のひずみ伝達片のうち他方の前記薄膜基板への固定位置との間の距離が、前記複 数のひずみ検知センサ毎に異なる請求項 1に記載のひずみ検知装置。  The distance between the fixed position of one of the pair of strain transmitting pieces to the thin film substrate and the fixed position of the pair of strain transmitting pieces to the other thin film substrate is the plurality of strain detecting sensors. The strain detection apparatus according to claim 1, which is different for each.
[9] 前記一対のひずみ伝達片と前記センサ箔との組み合わせであるひずみ検知セン サが、前記薄膜基板上に複数配置されており、  [9] A plurality of strain detection sensors, which are a combination of the pair of strain transmission pieces and the sensor foil, are arranged on the thin film substrate,
前記一対のひずみ伝達片のうち一方の前記薄膜基板への固定位置と、前記一対 のひずみ伝達片のうち他方の前記薄膜基板への固定位置との間の距離が、前記複 数のひずみ検知センサ同士で互いに同じである請求項 1に記載のひずみ検知装置  The distance between the fixed position of one of the pair of strain transmitting pieces to the thin film substrate and the fixed position of the pair of strain transmitting pieces to the other thin film substrate is the plurality of strain detecting sensors. The strain detection device according to claim 1, which is mutually the same.
[10] 前記一対のひずみ伝達片と前記センサ箔との組み合わせであるひずみ検知セン サが保護カバーで囲繞されて 、る請求項 1に記載のひずみ検知装置。 10. The strain detection device according to claim 1, wherein a strain detection sensor that is a combination of the pair of strain transmission pieces and the sensor foil is surrounded by a protective cover.
[11] 前記一対のひずみ伝達片と前記センサ箔との組み合わせであるひずみ検知セン サに榭脂被膜が施されて 、る請求項 1に記載のひずみ検知装置。 [11] The strain detection device according to claim 1, wherein a resin coating is applied to a strain detection sensor which is a combination of the pair of strain transmission pieces and the sensor foil.
[12] 前記センサ箔は、導体力 なるとともに前記ブリッジ部を介して導通する一対の電 極端子を有して 、る請求項 1に記載のひずみ検知装置。 12. The strain detection device according to claim 1, wherein the sensor foil has a pair of electrode terminals that have a conductive force and are conducted through the bridge portion.
[13] 前記センサ箔は、前記ギャップを横断する部分で複数の前記ブリッジ部を有し、 前記各電極端子は、前記一対のひずみ伝達片のうち一方側に集められている請 求項 12に記載のひずみ検知装置。 [13] The sensor foil according to claim 12, wherein the sensor foil includes a plurality of the bridge portions at a portion crossing the gap, and the electrode terminals are gathered on one side of the pair of strain transmission pieces. The strain detector described.
[14] 前記センサ箔は、前記ギャップを横断する部分で複数の前記ブリッジ部を有し、 前記電極端子は、前記センサ箔の前記複数のブリッジ部を直列接続した端部に形 成されている請求項 12に記載のひずみ検知装置。 [14] The sensor foil has a plurality of the bridge portions in a portion crossing the gap, and the electrode terminal is formed at an end portion of the sensor foils connected in series. The strain detection apparatus according to claim 12.
[15] 請求項 12に記載のひずみ検知装置と、 [15] The strain detection device according to claim 12,
前記ひずみ検知装置の前記電極端子に接続され、前記ブリッジ部の破断を検出す る検出回路と、  A detection circuit connected to the electrode terminal of the strain detection device and detecting breakage of the bridge portion;
前記検出回路で破断が検出された場合に検出信号を送信する送信回路と、 前記送信回路力 の検出信号を受信する受信装置とを備えていることを特徴とする ひずみ検知システム。 A transmission circuit that transmits a detection signal when a break is detected by the detection circuit, and a reception device that receives the detection signal of the transmission circuit force. Strain detection system.
[16] 前記検出回路及び前記送信回路に電力を供給する独立電源をさらに備えている 請求項 15に記載のひずみ検知システム。  16. The strain detection system according to claim 15, further comprising an independent power source that supplies power to the detection circuit and the transmission circuit.
[17] 前記検出回路及び前記送信回路は ICタグの一部であり、該 ICタグは、前記検出回 路による破断の検出の有無に関する情報を記憶する記憶部を有し、  [17] The detection circuit and the transmission circuit are part of an IC tag, and the IC tag includes a storage unit that stores information on whether or not a break is detected by the detection circuit,
前記受信装置は、前記 ICタグの前記記憶部から情報を読み出し可能な ICタグ読 取装置である請求項 15に記載のひずみ検知システム。  16. The strain detection system according to claim 15, wherein the receiving device is an IC tag reading device capable of reading information from the storage unit of the IC tag.
[18] 前記ひずみ検知装置は、前記一対のひずみ伝達片と前記センサ箔のひずみ検知 センサを前記薄膜基板上に複数有し、前記一対のひずみ伝達片のうち一方の前記 薄膜基板への固定位置と、前記一対のひずみ伝達片のうち他方の前記薄膜基板へ の固定位置との間の距離が、前記複数のひずみ検知センサ毎に異なり、  [18] The strain detection device includes a plurality of strain detection sensors on the thin film substrate, and a fixed position of one of the pair of strain transmission pieces on the thin film substrate. And the distance between the fixed position to the other thin film substrate of the pair of strain transmission pieces is different for each of the plurality of strain detection sensors,
前記測定対象物のひずみ以外の状態を検知する状態センサと、前記複数のひず み検知センサのうちひずみ検知に利用するものを前記状態センサの出力に基づい て選択する判定回路とをさらに備えている請求項 15に記載のひずみ検知システム。  A state sensor for detecting a state other than the strain of the measurement object; and a determination circuit for selecting one of the plurality of strain detection sensors to be used for strain detection based on the output of the state sensor. The strain detection system according to claim 15.
[19] 前記検知回路により前記ブリッジ部の破断が検知された場合にアラームを発生する 警報装置をさらに備えている請求項 15に記載のひずみ検知システム。  19. The strain detection system according to claim 15, further comprising an alarm device that generates an alarm when the breakage of the bridge portion is detected by the detection circuit.
PCT/JP2007/063663 2006-07-24 2007-07-09 Strain sensor and strain sensor system WO2008013049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008526721A JP5004955B2 (en) 2006-07-24 2007-07-09 Strain detector and strain detection system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006200939 2006-07-24
JP2006-200939 2006-07-24
JP2007041320 2007-02-21
JP2007-041320 2007-02-21

Publications (1)

Publication Number Publication Date
WO2008013049A1 true WO2008013049A1 (en) 2008-01-31

Family

ID=38981363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063663 WO2008013049A1 (en) 2006-07-24 2007-07-09 Strain sensor and strain sensor system

Country Status (2)

Country Link
JP (1) JP5004955B2 (en)
WO (1) WO2008013049A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044007A (en) * 2008-08-18 2010-02-25 Nippon Sharyo Seizo Kaisha Ltd System for detecting crack of movable object
JP2010281641A (en) * 2009-06-03 2010-12-16 Denso Corp Mechanical quantity sensor and method for manufacturing mechanical quantity sensor
CN102224401A (en) * 2008-11-17 2011-10-19 梅西耶-道提有限公司 Load indicator
JP2012021865A (en) * 2010-07-14 2012-02-02 Tokyo Electric Power Co Inc:The Stress measuring method and device for steel tower members by destressing
JP2018112430A (en) * 2017-01-10 2018-07-19 中国電力株式会社 Device and system for strain detection
JP2018154325A (en) * 2017-03-17 2018-10-04 株式会社リコー Article fittings, moving body device, article fitting method, and article fittings mounting method
WO2019021981A1 (en) * 2017-07-26 2019-01-31 株式会社村田製作所 Pressure sensor and electronic device
WO2019082777A1 (en) * 2017-10-24 2019-05-02 川崎重工業株式会社 Fastening member looseness detection tag
CN112378371A (en) * 2020-12-07 2021-02-19 天津吉达尔重型机械科技股份有限公司 Pull rod stress strain on-line monitoring device and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087246B2 (en) * 2013-09-10 2017-03-01 日本電信電話株式会社 Manhole ceiling deterioration detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346715A (en) * 1999-06-03 2000-12-15 Koden Electronics Co Ltd Trip element and strain reader thereof
JP3132180B2 (en) * 1992-08-27 2001-02-05 石川島播磨重工業株式会社 Structural fatigue life prediction sensor
JP2007078364A (en) * 2005-09-09 2007-03-29 Kawasaki Heavy Ind Ltd Strain sensitive sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3132180B2 (en) * 1992-08-27 2001-02-05 石川島播磨重工業株式会社 Structural fatigue life prediction sensor
JP2000346715A (en) * 1999-06-03 2000-12-15 Koden Electronics Co Ltd Trip element and strain reader thereof
JP2007078364A (en) * 2005-09-09 2007-03-29 Kawasaki Heavy Ind Ltd Strain sensitive sensor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044007A (en) * 2008-08-18 2010-02-25 Nippon Sharyo Seizo Kaisha Ltd System for detecting crack of movable object
CN102224401A (en) * 2008-11-17 2011-10-19 梅西耶-道提有限公司 Load indicator
JP2010281641A (en) * 2009-06-03 2010-12-16 Denso Corp Mechanical quantity sensor and method for manufacturing mechanical quantity sensor
US8225660B2 (en) 2009-06-03 2012-07-24 Denso Corporation Dynamic quantity sensor and method of manufacturing the same
JP2012021865A (en) * 2010-07-14 2012-02-02 Tokyo Electric Power Co Inc:The Stress measuring method and device for steel tower members by destressing
JP2018112430A (en) * 2017-01-10 2018-07-19 中国電力株式会社 Device and system for strain detection
JP2018154325A (en) * 2017-03-17 2018-10-04 株式会社リコー Article fittings, moving body device, article fitting method, and article fittings mounting method
WO2019021981A1 (en) * 2017-07-26 2019-01-31 株式会社村田製作所 Pressure sensor and electronic device
JPWO2019021981A1 (en) * 2017-07-26 2020-02-06 株式会社村田製作所 Press sensor and electronic equipment
US11906373B2 (en) 2017-07-26 2024-02-20 Murata Manufacturing Co., Ltd. Pressure sensor and electronic equipment
WO2019082777A1 (en) * 2017-10-24 2019-05-02 川崎重工業株式会社 Fastening member looseness detection tag
JP2019078611A (en) * 2017-10-24 2019-05-23 川崎重工業株式会社 Fastening member looseness detection tag
US11499582B2 (en) 2017-10-24 2022-11-15 Kawasaki Railcar Manufacturing Co., Ltd. Fastening member loosening detection tag
CN112378371A (en) * 2020-12-07 2021-02-19 天津吉达尔重型机械科技股份有限公司 Pull rod stress strain on-line monitoring device and system

Also Published As

Publication number Publication date
JPWO2008013049A1 (en) 2009-12-17
JP5004955B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5004955B2 (en) Strain detector and strain detection system
AU2013318975B2 (en) Leakage detector, leakage detection method, and pipe network monitoring apparatus
US7938012B2 (en) Smart coat for damage detection information, detecting device and damage detecting method using said coating
US8746077B2 (en) Wireless enabled fatigue sensor for structural health monitoring
JP2952576B2 (en) Method and apparatus for detecting fatigue damage of structural material
CN106840064A (en) Bridge expansion joint displacement monitoring devices
CN102147231A (en) Structural displacement monitoring sensor for building with steel structure
CN210981361U (en) Self-checking and remote control system of bridge structure monitoring system based on multidimensional coupling
JP5917161B2 (en) Crack monitoring method and crack monitoring system for bridge
US6532825B1 (en) Fatigue damage detection sensor for structural materials and mounting method thereof
JP2002221453A (en) System for collecting load information of structure
CN102147284A (en) Sensor for monitoring sound vibration and structural stress change of reinforced concrete structure building
CN106052630A (en) Bridge rubber support deformation monitoring device
JP2007078364A (en) Strain sensitive sensor
KR101685558B1 (en) Diagnosis and Disaster Warning Device of a Building Using a Reinforced Concrete Construction
JPH1031002A (en) Structure and method of detecting crack of structure
KR100710662B1 (en) Fatigue intensity monitorring system of construction
JP5192095B2 (en) Strain sensor
CN214173423U (en) Tunnel safety on-line monitoring system
CN111896589A (en) Bridge steel structure monitoring system based on intelligent coating
US20210396625A1 (en) Building strain monitoring system
KR100900868B1 (en) Control system for construction by change of moment
CN208171332U (en) A kind of Bridge Condition Monitoring system based on GSM message
KR200239172Y1 (en) Measurable bridge bearing
Seki et al. Development of an IoT device for structural health monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526721

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790484

Country of ref document: EP

Kind code of ref document: A1