WO2008013034A1 - Système de communication mobile, dispositif de station de base et dispositif de station mobile - Google Patents

Système de communication mobile, dispositif de station de base et dispositif de station mobile Download PDF

Info

Publication number
WO2008013034A1
WO2008013034A1 PCT/JP2007/063428 JP2007063428W WO2008013034A1 WO 2008013034 A1 WO2008013034 A1 WO 2008013034A1 JP 2007063428 W JP2007063428 W JP 2007063428W WO 2008013034 A1 WO2008013034 A1 WO 2008013034A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal
mobile
received
modulation symbol
Prior art date
Application number
PCT/JP2007/063428
Other languages
English (en)
French (fr)
Inventor
Hidenobu Fukumasa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP07768178A priority Critical patent/EP2045941A1/en
Priority to US12/374,988 priority patent/US20100020737A1/en
Priority to JP2008526716A priority patent/JPWO2008013034A1/ja
Publication of WO2008013034A1 publication Critical patent/WO2008013034A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • Mobile communication system base station apparatus and mobile station apparatus
  • the present invention relates to a broadcast delivery type communication system using a cellular mobile communication system, such as MBMS (Multimedia Broadcast Multicast Service).
  • MBMS Multimedia Broadcast Multicast Service
  • MBMS multimedia information from a base station device to a plurality of users
  • MBMS uses 3G (3rd generation mobile phone system) networks to provide video and audio broadcast (multicast) type services. Through the point-to-multipoint connection, the same video and audio can be efficiently distributed to many users at the same time and in the same area.
  • 3G 3rd generation mobile phone system
  • OFDM Orthogonal Frequency Division
  • next-generation cellular systems based on Multiplexing (Orthogonal Frequency Division Multiplexing) technology a method for transmitting the same information to multiple mobile station devices is also being studied for use as MBMS. ing.
  • OFDM technology the bandwidth used is divided into a plurality of frequency components and data symbols are assigned to each component, and transmission and reception are performed as synthesized waves. Since they can be arranged closely without interfering with each other, wideband transmission that efficiently uses a limited frequency band is realized, and frequency use efficiency is increased.
  • MBMS signals are transmitted in parallel via four base station apparatuses.
  • the signal is broken down into multiple frequency blocks (chunks).
  • the signals of each chunk are S0, Sl, S2, and S3, it becomes as shown in Fig. 9 (a).
  • Fig. 9 (a) the horizontal direction is the frequency axis.
  • the signal arrangement at this time is as shown in Fig. 10.
  • the vertical direction is the frequency axis.
  • received signals rO, rl, r2, r3 corresponding to each frequency block are as shown in FIG. hi and j indicate the channel gain (complex number including phase and amplitude) corresponding to chunk i of base station apparatus #j.
  • the advantage of the simultaneous transmission soft compiling method is that the signal configuration method is simple, and signals transmitted from a plurality of base station devices are combined and received by the radio propagation path. Demodulation is possible without performing special signal separation processing.
  • Non-Patent Document 1 NTT DoCoMo, "Investigtations on Inter -Sector Diversity in Evoloved UTRA Downlink", 3GPP TSG RAN WG1 Ad Hoc on LTE, Rl -050615.
  • MIMO Multi Input Multi
  • MIMO is one of the space division multiplex communication systems, and is a technology in which a transmitting device and a receiving device are each provided with a plurality of antennas to simultaneously transmit different signals at the same frequency. It is known that the receiver performs signal separation using channel information (CSI), and shows high V communication quality even when no error correction code is used.
  • CSI channel information
  • An object of the present invention is to provide the same information to a plurality of mobile station apparatuses by a plurality of base station apparatuses.
  • MIMO signal processing technology for OFDM systems in data communication services such as MBMS to transmit, it is possible to achieve highly reliable data transmission, which in turn improves transmission speed and expands communication area.
  • a mobile communication system, a base station apparatus, and a mobile station apparatus are provided.
  • the mobile communication system applies the same information series from a server to a plurality of mobile station devices via a base station control device and a plurality of base station devices.
  • a mobile communication system for transmitting
  • the base station control device transmits the same information sequence to the plurality of base station devices, and the base station device generates modulation symbols from the information sequence received from the base station control device.
  • the modulation symbols are transmitted to the mobile station apparatus at different frequencies, and the mobile station apparatus receives the same signal from a plurality of modulation symbols received from a plurality of base station apparatuses.
  • the information sequence is reproduced by detecting a signal including the modulation symbols.
  • a communication frequency band is divided into a plurality of frequency blocks, and the base station control device has the same frequency block between the plurality of base station devices.
  • the control information is transmitted to the base station apparatus so that different modulation symbols are allocated to the base station apparatus.
  • the format of the transmission signal is an OFDM (Orthogonal Frequency Division Multiplexing) system
  • the base station control device transmits the modulation symbol to the OFDM symbol.
  • Control information is transmitted to the base station apparatus so that it is cyclically shifted by an amount different from that of other base station apparatuses in the block corresponding to the number of signal subcarriers, and the modulation symbol after the cyclic shift is allocated to the subcarriers. It is characterized by that.
  • a base station apparatus is a base station apparatus that transmits the same information sequence from a server to a plurality of mobile station apparatuses via a base station control apparatus,
  • a modulation symbol is generated from the information sequence received from the base station controller, and the modulation symbol is transmitted to the mobile station at different frequencies in a plurality of base stations. It transmits to the device.
  • a base station apparatus includes a frequency block allocating unit that divides the modulation symbols and allocates the modulation symbols to different frequencies. A different modulation symbol is assigned to the same frequency block between the base station apparatuses.
  • the format of the transmission signal is OFDM
  • the modulation symbol corresponds to the number of subcarriers of the OFDM signal based on the control information received from the base station control apparatus.
  • a cyclic shift unit that cyclically shifts the block in a different amount from other base station apparatuses, and the modulation symbols after the cyclic shift are allocated to subcarriers.
  • the amount of the cyclic shift is obtained by dividing the number of subcarriers by the number of base station apparatuses having different cyclic shift amounts. It is characterized in that the amount of cyclic shift is determined so that there is a difference for each base station apparatus.
  • a mobile station device is a mobile station device that receives the same information sequence from a server via a base station control device and a plurality of base station devices,
  • the information sequence is reproduced by detecting a signal including the same modulation symbol from a signal including a plurality of modulation symbols for each of a plurality of frequencies received from the plurality of base station apparatuses.
  • the communication frequency band is divided into a plurality of frequency blocks, and the received signal power of the same frequency block is transmitted to the base station apparatus.
  • a MIMO reception signal processing unit for separating and reproducing the information series is provided.
  • the format of the transmission signal is the OFDM system, and OFD M in which modulation symbols transmitted from a plurality of the base station apparatuses are combined on the radio communication path.
  • a MIMO reception unit that detects a signal to which the same modulation symbol is assigned from an OFDM signal detection unit that detects a signal and a plurality of subcarrier signals detected by the OFDM signal detection unit, and reproduces the information sequence And a signal processing unit.
  • the mobile station apparatus according to the eleventh invention is characterized in that the already received data is supplied to the MIMO reception signal processing section and used for modulation symbol detection of newly received data.
  • the mobile communication system, the base station apparatus, and the mobile station apparatus of the present invention are arranged at the same frequency by simultaneously shifting the respective frequencies and transmitting the same information. Since different signals are different for each base station, different signals are mixed at the same frequency.
  • the signal processing technology used in MIMO communications it is possible to obtain an error rate characteristic superior to that of soft con- taining.
  • FIG. 1 is a block diagram of a system including a base station control device and a base station device in a first embodiment.
  • FIG. 2 is a block diagram of a mobile station apparatus in the first embodiment.
  • FIG. 3 is a diagram showing a signal arrangement of a frequency shift method in the present invention.
  • FIG. 4 A graph showing the error rate characteristics in the frequency shift method and soft compiling method when there is no receive diversity.
  • FIG. 5 This is a graph of the error rate characteristics in the frequency shift method and soft combining method when there is 2-branch receive diversity.
  • FIG. 6 is a block diagram of a system consisting of a base station control device and a base station device in the second embodiment.
  • FIG. 7 is a block diagram of a mobile station apparatus in the second embodiment.
  • FIG. 8 is a block diagram of a MIMO reception signal processing unit of a mobile station apparatus in a third embodiment.
  • FIG. 9 is a diagram showing signal arrangement in a conventional example.
  • FIG. 10 is a diagram showing signal arrangement in a conventional example.
  • FIG. 1 shows a block diagram of a system comprising a base station control device and a plurality of base station devices in the first embodiment
  • FIG. 2 shows a block diagram of a mobile station device (mobile terminal).
  • a base station control device 1 and a plurality of base station devices 2 a and 2 b are connected by a network 3.
  • the base station control device 1 is a device that controls a plurality of base station devices 2a and 2b, and is connected through a public line such as a server (not shown) that distributes data and the Internet.
  • Each base station device 2a, 2b is provided with a modulation unit 4, a frequency block allocation unit 5, and an antenna 6 for transmitting data to the mobile station device.
  • the base station control device 1 transmits control information related to modulation, frequency allocation, and the like to the base station devices 2a and 2b.
  • the base station devices 2 a and 2 b that have received the control information set the received control information in the modulation unit 4 and the frequency block allocation unit 5.
  • Data transmitted from the server is transmitted to a plurality of base station apparatuses 2 through the base station control apparatus 1.
  • the modulation unit 4 converts the received transmission data bit string into a QPSK (Quadrature Phase Shift Keying) or 16QAM (16 Quadrature Amplitude Modulation) according to the control information from the base station control device 1.
  • t maps to the shape of the modulation symbol.
  • the frequency block allocation unit 5 that has obtained the output from the modulation unit 4, for example, divides the transmission symbol sequence into four blocks, and assigns different frequencies fl, f2, f3, and f4 to each block. Assigned, output to antenna 6, and transmitted from antenna 6 to mobile station apparatus 10.
  • Signals transmitted from the base station device 2 to the mobile station device 10 are assigned different transmission symbol sequences to the same frequency block by a plurality of different base station devices 2 according to control information from the base station control device 1. It is done.
  • the signals transmitted from each of the four base station apparatuses 2 are arranged as shown in FIG. 3 (hereinafter referred to as “frequency shift method”).
  • the vertical direction is the frequency axis.
  • control information on the modulation, frequency, etc. from the base station controller 1 is also transmitted to the mobile station device 10 as a receiving station via the relay of the base station device 2 before data transmission. Yes.
  • mobile station apparatus 10 is provided with antenna 11 for receiving data, received signal detector 12 and MIMO received signal processor 13.
  • the reception signal detection unit 12 and the MIMO reception signal processing unit 13 of the mobile station apparatus 10 also make settings related to modulation, frequency, and the like.
  • the mobile station apparatus 10 that has received a signal by the antenna 11 extracts a received signal corresponding to each frequency block in the received signal detector 12 connected to the antenna 11.
  • the received signal detection unit 12 includes, for example, four frequency block component extraction units 14a, 14b, 14c, 14d and a PZS (parallel Z serial) conversion unit 15 as shown in FIG.
  • the signal received from 2 is separated into signals corresponding to the respective frequencies by the frequency block component extraction unit 14 and converted into a serial data string by the PZS conversion unit 15.
  • the subcarrier components extracted by the received signal detector 12 are in a combined signal state of different modulation symbols transmitted from different base station apparatuses 2! /, Therefore, MIMO received signal processing
  • the unit 13 performs a process of separating these signals, and demodulates and outputs data for each modulation symbol from the different base station apparatus 2.
  • the MIMO received signal processing unit 13 includes a MIMO received signal preprocessing unit 16 and a MIMO signal processing unit 17.
  • the MIMO received signal preprocessing unit 16 converts the received signal sequence into a general equation such as the following equation: Converted into a typical MIMO signal format and output to the MIMO signal processing unit 17.
  • the MIMO signal is separated and the data is demodulated for each modulation symbol.
  • the signal processing methods used in the MIMO signal processor 17 are MLD (Maximal Likelihood Detection, signal separation by maximum likelihood estimation), V—BLAST (Vertical—Bell Lavoratories Layered Space Time, signal separation by ordered sequential decoding)
  • MLD Maximum Likelihood Detection, signal separation by maximum likelihood estimation
  • V—BLAST Very—Bell Lavoratories Layered Space Time, signal separation by ordered sequential decoding
  • a general MIMO receiver processing method can be applied, and in the present invention, these processing methods are not limited in any way.
  • a two-branch receiving antenna is shown here, one receiving antenna can be realized, or more antennas can be used.
  • signals from a plurality of base station apparatuses are mixed on the radio propagation path and received by the mobile station apparatus. Since the same signal is mixed and received in the soft combining method, it can be interpreted as a model in which a signal transmitted from one base station device is received via a multipath channel.
  • the frequency shift method the signals arranged at the same frequency are different for each base station apparatus, and therefore, when a specific frequency component is viewed, the signals are mixed.
  • the signal components are combined at different frequencies, they are arranged as combinations of the same modulation symbols, and can be considered as a MIMO channel when these are considered in combination. That is, in the present invention, the mobile station apparatus can receive the signal separately using the signal processing technique used in MIMO communication.
  • the error rate characteristics of the conventional software compiling method and the frequency shift method according to the present invention were determined by computer simulation. Each channel coefficient was randomly set as a value corresponding to independent Rayleigh fading, and the bit error rate was calculated for each.
  • the transmission symbol is QPSK, and no error correction code is used.
  • Figures 4 and 5 show graphs of error rate characteristics.
  • Eb No (dB) on the horizontal axis indicates the ratio of energy to noise density (SNR) for each information bit per transmission / reception branch. The larger the value, the lower the noise and the higher the quality of the signal. Means that.
  • the vertical axis shows the bit error rate (BER, Bit Error Rate). As the SNR improves, the BER gets smaller and the slope goes down to the lower right of the graph The larger the value is, the higher the transmission quality is.
  • the signal format is soft compiling (a) and frequency shift.
  • Figure 4 shows the case with 4 base stations and no receive diversity
  • Figure 5 shows the case with 4 base stations and 2 branch receive diversity.
  • a mobile station apparatus can obtain excellent error rate characteristics by processing output signals from a plurality of antennas using a signal processing technique used in MIMO communication.
  • the error rate characteristics are improved compared to the conventional soft compiling to enable highly reliable data transmission, and further, the transmission rate due to the expansion of base stations can be increased. It contributes to improvement and expansion of the communication area.
  • FIG. 6 shows a block diagram of a system composed of a base station control device and a plurality of base station devices in the second embodiment
  • FIG. 7 shows a block diagram of a mobile station device.
  • the same reference numerals as those in FIGS. 1 and 2 represent the same items.
  • the base station control device 1 transmits control information to the base station devices 2a and 2b before data transmission, and the control information is transmitted to the base station devices 2a and 2b. Is set.
  • the server transmits the same transmission data to the plurality of base station apparatuses 2 through the base station control apparatus 1. Data.
  • each base station apparatus 2a, 2b includes a modulation unit 4, an SZP (serial Z parallel) conversion unit 20, a cyclic shift unit 21, an IFFT (Inverse Fast Fourier Transform). Conversion) unit 22, PZS conversion unit 23, GI (guard interval) unit 24, and antenna 6 for the mobile station apparatus are provided.
  • SZP serial Z parallel
  • IFFT Inverse Fast Fourier Transform
  • Conversion PZS conversion unit
  • GI guard interval
  • the modulation unit 4 in each base station device 2 that has received the transmission data from the base station control device 1 maps the transmission bit string into QPSK or 16QAM ! modulation symbols, and in the SZP conversion unit 20, SZP conversion is performed for each modulation symbol to convert to a normal data string.
  • the control information received from the base station control device 1 is used to map different modulation symbols to the same subcarrier in the plurality of adjacent base station devices 2. Shift. That is, the frequency shift is performed so that the modulation symbol allocation corresponding to the subcarrier is changed for each base station apparatus so that the modulation symbols transmitted from the plurality of base station apparatuses 2 are cyclically shifted on the frequency axis. I do.
  • the modulation symbol is cyclically shifted by a different amount from the other base station apparatuses within the block corresponding to the number of subcarriers of the OFDM signal, and the modulation symbol after the cyclic shift is assigned to the subcarrier.
  • the number of subcarriers is Nc
  • the amount of cyclic shifts is set to 0, Nc / 4, NcZ2, and 3Nc / 4 in each of the four base station apparatuses 2, for example. It is set.
  • the signal arrangement is as shown in FIG.
  • the vertical direction is the frequency axis.
  • IFFT unit 22 performs inverse conversion, and P / S conversion unit 23 converts it into a serial data string, whereby a time sequence of the transmission signal can be obtained. Further, in the GI unit 24, a buffer section (guard time) called a guard interval is added to the transmission signal by a normal OFDM method and transmitted from each base station apparatus 2.
  • control information related to modulation, frequency, etc. from the base station control device 1 is transmitted to the mobile station device 10 via the relay of the base station device 2 before data transmission. Has been sent to.
  • mobile station apparatus 10 is provided with antenna 11 for receiving data, OFDM signal detection unit 30, and MIMO reception signal processing unit 13.
  • the OFDM signal detection unit 30 includes a GI removal unit 31, an SZP conversion unit 32, an FFT (Fast Fourier Transform) unit 33, and a PZS conversion unit 34.
  • the GI removal unit 31 connected to the reception antenna 11 removes the guard interval from the received signal
  • the S / P conversion unit 32 converts the signal into parallel
  • the FFT unit 33 performs fast Fourier transform processing.
  • the PZS converter 34 converts the signal into a serial signal and extracts the subcarrier component of the received signal.
  • the subcarrier components extracted by the OFDM signal detection unit 30 are combined signals of different modulation symbols transmitted from different base station apparatuses 2, these signals are transmitted by the MIMO reception signal processing unit 13. Performs processing to separate signals.
  • the MIMO reception signal processing unit 13 includes a MIMO reception signal preprocessing unit 16 and a MIMO signal processing unit 17.
  • the received received signal sequence is converted into a general MIMO signal format in the MIMO received signal preprocessing unit 16 and output to the MIMO signal processing unit 17.
  • the signal format is the same as in the first embodiment.
  • the MIMO signal is separated, the data is demodulated for each modulation symbol from the different base station apparatus 2, and the received data output is obtained.
  • a general MIMO receiver processing method such as MLD or V-BLAST can be applied. In the present invention, this processing method is used. It ’s not a limitation!
  • a two-branch receiving antenna is shown here, one receiving antenna can be realized, or more antennas can be used.
  • error control using an error detection code or an error correction code is often used.
  • these treatments are not particularly described.
  • the same information may be transmitted periodically at certain time intervals. In this case, there may be a case where a part of data transmitted at the same time has already been received by the mobile station apparatus.
  • information on data that has already been received correctly is used for subsequent data processing to improve the error rate and reduce the amount of computation.
  • FIG. 8 shows the basic configuration of the MIMO reception signal processing unit 13 of the mobile station apparatus in the third embodiment, as in the first and second embodiments, and the MIMO reception signal preprocessing unit 16 and It consists of a MIMO signal processor 17.
  • the correctness of the received data is verified by the MIMO signal processing unit 17 using an error detection code or the like.
  • the already correctly received data output from the MIMO signal processing unit 17 is stored in the temporary storage unit 40, and a part thereof is supplied to the MIMO reception signal preprocessing unit 16 as necessary.
  • the MIMO reception signal preprocessing unit 16 when the data stored in the temporary storage unit 40 is included in the reception signal, the data is extracted from the temporary storage unit 40 and used for the MIMO reception signal preprocessing. Specifically, a received signal component corresponding to the data is generated and removed from the received signal.
  • the mobile communication system, the base station apparatus, and the mobile station apparatus of the present invention are not limited to the illustrated examples described above, and various modifications can be made without departing from the scope of the present invention. Of course, you can get it.
  • a plurality of base station devices that have received the same information sequence from a server via a base station control device map the information sequence to a modulation symbol, and block the modulation symbol.
  • the error rate characteristics are improved by assigning different frequency blocks to each of the other base station devices and transmitting to each mobile station device, and demodulating and outputting by the MIMO received signal processing unit. This enables highly reliable data transmission, which in turn contributes to an increase in transmission speed by expanding base stations and expansion of the communication area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

明 細 書
移動通信システム、基地局装置及び移動局装置
技術分野
[0001] 本発明は、 MBMS (Multimedia Broadcast Multicast Service)と呼ばれる ような、セルラ移動通信システムを使用した同報配信型の通信方式に関する。
背景技術
[0002] 第 3世代のセルラ移動通信システムにおいて、基地局装置から複数のユーザに向 けてマルチメディア情報を送信する MBMSと呼ばれるサービスが開始されようとして いる。
[0003] MBMSは、 3G (3rd Generation、第 3世代の携帯電話方式)ネットワークを使い 、映像や音声の同報配信 (マルチキャスト)型サービスの提供を行う。ポイント'ツー' マルチポイント接続を介して、同時刻 ·同エリアに、多数のユーザに対して同じ映像 や音声の配信を効率的に行うことができるものである。
[0004] デジタル通信方式の一つである OFDM (Orthogonal Frequency Division
Multiplexing,直交波周波数分割多重)技術に基づく次世代のセルラシステムにお いて、 MBMSとして利用するため、複数の移動局装置に向けて複数の基地局装置 力も同一の情報を送信する方法が検討されている。 OFDM技術は、使用帯域幅を 細力べ複数の周波数成分に分けてそれぞれの成分にデータシンボルを割り当て、合 成波として送受信を行なうが、直交関係にある複数の搬送波を一部重なりあいながら も互いに干渉することなく密に並べることができるため、限られた周波数帯域を効率 的に利用した広帯域伝送を実現し、周波数の利用効率を上げている。
[0005] この OFDM方式では、無線伝搬路で複数の基地局装置からの信号が合成されて 受信される、同時送信ソフトコンパイニング方式が開発され、有力な候補となっている (例えば、非特許文献 1参照)。
[0006] 例えば、 4基地局装置を介して MBMS信号を並列送信する場合を想定して説明 する。信号は、複数の周波数ブロック (チャンク)に分解される。それぞれのチャンクの 信号を S0、 Sl、 S2、 S3とするとき、図 9 (a)のようになり、それぞれの基地局装置より 送信される。図 9 (a)において、横方向は、周波数軸とする。この時の信号配置は、図 10のようになる。図 10において、縦方向は、周波数軸とする。
[0007] 移動局装置において、各周波数ブロックに対応する受信信号 rO、 rl、 r2、 r3は、図 9このようになる。 hi, jは、基地局装置 #jのチャンク iに対応する通信路ゲイン (位 相、振幅を含む複素数)を示して 、る。
[0008] 同時送信ソフトコンパイニング方式の利点は、信号構成法が簡単であり、複数の基 地局装置カゝら送信された信号が無線伝搬路で合成されて受信されるため、受信機で 特別な信号分離処理を行わなくても復調が可能となる点にある。
非特許文献 1 :NTT DoCoMo, "Investigtations on Inter -Sector Diversi ty in Evoloved UTRA Downlink", 3GPP TSG RAN WG1 Ad Hoc on LTE, Rl -050615.
発明の開示
発明が解決しょうとする課題
[0009] しかしながら、同時送信ソフトコンパイニングでは、無線通信路で信号合成が行わ れるため、必ずしも受信機に有利な合成が行われるわけではない。すなわち、複数 の基地局装置力 の信号を受信しても、ダイバーシティブランチ間での受信レベルに 対応した重みをかけて加算する最大比合成のようなダイバーシティ効果は得られな い。
[0010] また、移動受信は、固定受信より品質が劣化しやすぐ遅延量の大きな遅延波によ つて、受信信号の副搬送波 (サブキャリア)間の直交性が乱れ、復調の際にキャリア 間の干渉が発生することにより、誤り率が劣化するという問題があった。
[0011] 一方で、高速無線通信を実現するための技術として MIMO (Multi Input Multi
Output)が知られている。 MIMOは、空間分割多重通信方式の 1つであり、送信 装置および受信装置にそれぞれ複数のアンテナを設け、同一周波数で異なる信号 を同時に送信する技術である。受信機においてチャネル情報 (CSI、 Channel Sta te Information)を用いて信号分離を行!ヽ、誤り訂正符号を用いな ヽ場合でも、高 Vヽ通信品質を示すことが知られて!/ヽる。
[0012] 本発明の目的は、複数の基地局装置が同一の情報を複数の移動局装置に向けて 送信する MBMSのようなデータ通信サービスで、 OFDM方式に MIMOの信号処理 技術を利用することにより、信頼性の高いデータ伝送を可能にし、延いては、伝送速 度の向上や、通信エリアの拡大につながる移動通信システム、基地局装置及び移動 局装置を提供するものである。
課題を解決するための手段
[0013] 斯カる実情に鑑み、第 1の発明による移動通信システムは、サーバから基地局制御 装置および複数の基地局装置を経由して同一の情報系列を複数の移動局装置にあ てて送信する移動通信システムであって、
前記基地局制御装置は、複数の前記基地局装置に対して、同一の情報系列を送 信し、前記基地局装置は、前記基地局制御装置から受信した前記情報系列から変 調シンボルを生成し、前記変調シンボルをそれぞれ異なる周波数で前記移動局装 置に送信し、前記移動局装置は、複数の前記基地局装置より受信する複数の周波 数それぞれに複数の変調シンボルが含まれる信号から、同一の変調シンボルが含ま れる信号を検出して、前記情報系列を再生することを特徴とする。
[0014] また、第 2の発明による移動通信システムは、通信周波数帯域が複数の周波数プロ ックに分割されており、前記基地局制御装置が、複数の前記基地局装置間で同じ周 波数ブロックにそれぞれ異なる変調シンボルを割り当てるように前記基地局装置に対 して制御情報を送信することを特徴とする。
[0015] また、第 3の発明による移動通信システムは、送信信号の形式が OFDM (Orthog onal Frequency Division Multiplexing)方式であり、前記基地局制御装置が 、前記基地局装置が、前記変調シンボルを OFDM信号のサブキャリア数に対応する ブロック内で他の基地局装置と異なる量で巡回シフトさせ、巡回シフト後の変調シン ボルをサブキャリアに割り当てるように前記基地局装置に対して制御情報を送信する ことを特徴とする。
[0016] また、第 4の発明による基地局装置は、サーバから基地局制御装置を経た同一の 情報系列を複数の移動局装置にあてて送信する基地局装置であって、
前記基地局制御装置から受信した前記情報系列から変調シンボルを生成し、前記 変調シンボルを複数の基地局装置においてそれぞれ異なる周波数で前記移動局装 置に送信することを特徴とする。
[0017] また、第 5の発明による基地局装置は、前記変調シンボルを分割して、それぞれを 異なる周波数に割り当てる周波数ブロック割り当て部を備え、前記基地局制御装置 力 受信した制御情報により、複数の前記基地局装置間で同じ周波数ブロックにそ れぞれ異なる変調シンボルを割り当てることを特徴とする。
[0018] また、第 6の発明による基地局装置は、送信信号の形式が OFDM方式であり、前 記基地局制御装置から受信した制御情報により、前記変調シンボルを OFDM信号 のサブキャリア数に対応するブロック内で他の基地局装置と異なる量で巡回シフトさ せる巡回シフト部を備え、巡回シフト後の変調シンボルをサブキャリアに割り当てるこ とを特徴とする。
[0019] また、第 7の発明による基地局装置は、前記制御情報により、前記巡回シフトの量 は、サブキャリア数を巡回シフト量を異ならせる基地局装置の数で除算し、該除算し た数だけ基地局装置ごとに差となるように巡回シフトの量が定められていることを特徴 とする。
[0020] また、第 8の発明による移動局装置は、サーバから基地局制御装置および複数の 基地局装置を経由して同一の情報系列を受信する移動局装置であって、
複数の前記基地局装置より受信する複数の周波数それぞれに複数の変調シンポ ルが含まれる信号から、同一の変調シンボルが含まれる信号を検出して、前記情報 系列を再生することを特徴とする。
[0021] また、第 9の発明による移動局装置は、通信周波数帯域が複数の周波数ブロックに 分割されており、同一周波数ブロックの受信信号力 複数の基地局装置力 送信さ れた異なる変調シンボルを分離し、前記情報系列を再生する MIMO受信信号処理 部を備えることを特徴とする。
[0022] また、第 10の発明による移動局装置は、送信信号の形式は OFDM方式であり、複 数の前記基地局装置カゝら送信される変調シンボルが無線通信路で合成された OFD M信号を検出する OFDM信号検出部と、前記 OFDM信号検出部で検出された複 数のサブキャリア信号より、同一の変調シンボルが割り当てられている信号を検出し て、前記情報系列を再生する MIMO受信信号処理部とを備えることを特徴とする。 [0023] また、第 11の発明による移動局装置は、既に受信したデータを、前記 MIMO受信 信号処理部に供給して、新たに受信するデータの変調シンボル検出に利用すること を特徴とする。
発明の効果
[0024] 本発明の移動通信システム、基地局装置及び移動局装置は、複数の基地局が同 じ情報を送信する際に、それぞれ周波数をずらして同時に送信することにより、同一 の周波数に配置される信号は基地局毎に異なることとなるので、同一周波数に異な つた信号が混ざりあった状態となって 、る。移動局装置にお!、て MIMO通信で用い られる信号処理技術を用いて複数のアンテナからの出力信号を処理することにより、 ソフトコンノイニングよりも優れた誤り率特性を得ることができる。
[0025] また、本発明の周波数シフトを行うことにより、従来技術であるソフトコンパイニングよ り誤り率特性を向上させて信頼性の高いデータ伝送を可能にし、延いては、基地局 増設による伝送速度の向上や、通信エリアの拡大に寄与するものである。
[0026] また、同時に送信されるデータの一部を既に正しく受信している場合、既に正しく受 信して 、るデータの変調シンボルを生成して MIMO受信信号処理部に再度供給す ることにより、誤り率の改善、および演算量の低減を図ることができる。
図面の簡単な説明
[0027] [図 1]第 1の実施形態における基地局制御装置と基地局装置からなるシステムのプロ ック図である。
[図 2]第 1の実施形態における移動局装置のブロック図である。
[図 3]本発明における周波数シフト法の信号配置を示した図である。
[図 4]受信ダイバーシティ無しの場合の周波数シフト法とソフトコンパイニング法にお ける誤り率特性をグラフにした図である。
[図 5]2ブランチ受信ダイバーシティがある場合の周波数シフト法とソフトコンバイニン グ法における誤り率特性をグラフにした図である。
[図 6]第 2の実施形態における基地局制御装置と基地局装置力 なるシステムのプロ ック図である。
[図 7]第 2の実施形態における移動局装置のブロック図である。 [図 8]第 3の実施形態における移動局装置の MIMO受信信号処理部のブロック図で ある。
[図 9]従来例における信号の配置を示した図である。
[図 10]従来例における信号の配置を示した図である。
符号の説明
[0028] 1 基地局制御装置
2 基地局装置
3 ネットワーク
4 変調部
5 周波数ブロック割り当て部
6、 11 アンテナ
10 移動局装置
12 受信信号検出部
13 MIMO受信信号処理部
14 周波数ブロック成分抽出部
15、 23、 34 PZS変換部
16 MIMO受信信号前処理部
17 MIMO信号処理部
20、 32 SZP変換部
21 サイクリックシフト咅 ^
22 IFFT部
24 GI部
30 OFDM信号検出部
31 GI除去部
33 FFT部
40 一時記憶部
発明を実施するための最良の形態
[0029] 以下、本発明の実施の形態を図示例と共に説明する。 [0030] [第 1の実施形態]
図 1に第 1の実施形態における基地局制御装置と複数の基地局装置からなるシス テムのブロック図を、図 2に移動局装置 (移動端末)のブロック図を示す。
[0031] 図 1に示すように、基地局制御装置 1と、複数の基地局装置 2a、 2bは、ネットワーク 3によりつながっている。
基地局制御装置 1は、複数の基地局装置 2a、 2bの制御を行う装置で、例えば、デ ータ配信を行うサーバ(不図示)〖こインターネット等の公衆回線を通じて、接続されて いる。
[0032] 各基地局装置 2a、 2bには、変調部 4、周波数ブロック割り当て部 5、移動局装置に 向けてデータの送信を行うアンテナ 6が設けられている。
[0033] まず、基地局制御装置 1は、各基地局装置 2a、 2bに向けて、変調、周波数の割り 当て等に関する制御情報を送信する。
[0034] 該制御情報を受信した各基地局装置 2a、 2bは、変調部 4、周波数ブロック割り当て 部 5に、受信した制御情報の設定を行う。
[0035] サーバから送信されたデータは基地局制御装置 1を通して複数の基地局装置 2に 送信される。それぞれの基地局装置 2a、 2bにおいて、変調部 4は、基地局制御装置 1からの制御情報に従い、受信した送信データのビット列を QPSK (Quadrature P hase Shift Keying)又は 16QAM (16 Quadrature Amplitude Modulatio n) t 、つた変調シンボルの形にマッピングする。
[0036] 次に、変調部 4よりの出力を得た周波数ブロック割り当て部 5は、例えば、送信シン ボル列を 4つのブロックに分割し、それぞれのブロックに異なる周波数 fl、 f2、 f3、 f4 を割り当て、アンテナ 6に出力し、アンテナ 6より移動局装置 10に送信される。
[0037] 基地局装置 2から移動局装置 10に向けて送信する信号は、基地局制御装置 1から の制御情報に従う複数の異なる基地局装置 2により、同じ周波数ブロックにそれぞれ 異なる送信シンボル列が割り当てられる。例えば、 4つの基地局装置 2それぞれから 送信される信号は、図 3に示されるような配置となる(以下、「周波数シフト法」という)。 縦方向は、周波数軸とする。これらの割り当てはあら力じめ基地局装置 2に設定され ているものとしても良い。 [0038] また、 OFDMを用いるシステムにおいては、複数の基地局装置 2が同じ情報を送 信する際に、それぞれ周波数をずらして同時に送信するようにすることも可能である。
[0039] 一方、受信局である移動局装置 10へも、基地局制御装置 1からの変調や周波数等 に関する制御情報が、基地局装置 2の中継を介して、データ送信の前に送信されて いる。
[0040] 図 2に示すように、移動局装置 10には、データの受信を行うアンテナ 11、受信信号 検出部 12、 MIMO受信信号処理部 13が設けられて 、る。
[0041] 移動局装置 10の受信信号検出部 12及び MIMO受信信号処理部 13にお 、ても、 変調及び周波数等に関する設定がなされる。
[0042] アンテナ 11により信号を受信した移動局装置 10は、該アンテナ 11に接続された受 信信号検出部 12において、各周波数ブロックに対応する受信信号の抽出を行う。
[0043] 受信信号検出部 12は、例えば図 2のように、 4つの周波数ブロック成分抽出部 14a 、 14b、 14c、 14dと PZS (パラレル Zシリアル)変換部 15から構成され、まず、基地 局装置 2から受信した信号を周波数ブロック成分抽出部 14によりそれぞれの周波数 に応じた信号に分離し、 PZS変換部 15によってシリアルなデータ列に変換される。
[0044] 次に、受信信号検出部 12で抽出されたサブキャリア成分は異なる基地局装置 2か ら送信された異なる変調シンボルの合成信号の状態となって!/、るので、 MIMO受信 信号処理部 13によってこれらの信号を分離する処理を行い、異なる基地局装置 2か らのそれぞれの変調シンボルごとにデータの復調を行 ヽ、出力する。
[0045] MIMO受信信号処理部 13は、 MIMO受信信号前処理部 16と MIMO信号処理 部 17により構成され、まず、 MIMO受信信号前処理部 16において受信信号列を以 下の式のような一般的な MIMO信号の形式に変換して、 MIMO信号処理部 17に出 力する。
[数 1]
¾,o^o + h(',, 1 S] - - h0,2S2 - - Q 3¾ hen) ': U ht -} ho. a ― ¾ ― ! j ,:,S, 4- Λ ] . ] S2 - ¾ - - ¾ ι ", Si
(1 ) ,().¾ + 2—】Sj― - ¾2.2¾ - Λ2 ίι
r:s - '3.2 -一 h3 A —¾.! h 2 ; [0046] さらに、 MIMO信号処理部 17において、 MIMO信号の分離を行い、変調シンポ ルごとにデータの復調を行う。
MIMO信号処理部 17で用いられる信号処理方法は、 MLD (Maxmal Likeliho od Detection、最尤推定による信号の分離)、 V— BLAST (Vertical— Bell Lav oratories Layered Space Time、順序付け逐次復号による信号の分離)など一 般的な MIMO受信機の処理方法が適用可能であり、本発明においてはこれらの処 理方法にっ 、てなんら限定を与えるものではな 、。
[0047] また、ここでは 2ブランチの受信アンテナを示しているが、 1つの受信アンテナであ つても実現可能であり、または、より多くのアンテナを用いることも可能である。
[0048] ソフトコンパイニングにおいても、周波数シフトにおいても、複数の基地局装置から の信号が無線伝搬路上で混じりあい、移動局装置で受信される事に変りはない。ソフ トコンバイニング法では同じ信号が混ざって受信されるので、あたかも、 1つの基地局 装置カゝら送信された信号がマルチパスチャネルを経て受信されるようなモデルとして 解釈できる。一方で、周波数シフト法では同一の周波数に配置される信号は基地局 装置毎に異なるので、特定の周波数成分を見ると異なった信号が混ざりあった信号 となる。しかし、その信号成分は別の周波数を合わせると、同じ変調シンボルの組み 合わせとして配置されており、これらを複合的に考えると MIMOチャネルとしてとらえ ることができる。すなわち、本発明において、移動局装置では MIMO通信で用いら れる信号処理技術を用いてこれを分離して受信することができる。
[0049] 本発明における周波数シフト法の効果を示すため、計算機シミュレーションにより従 来技術におけるソフトコンパイニング法と本発明に係る周波数シフト法の誤り率特性 を求めた。各チャネル係数を独立なレイリーフェージングに対応する値としてランダム に設定し、それぞれのビット誤り率を求めた。送信シンボルは QPSKとしており、誤り 訂正符号ィ匕は行っていない。誤り率特性をグラフにしたものを図 4及び図 5に示す。 横軸の Eb=No (dB)は送受信ブランチあたりの情報ビットごとのエネルギーと雑音密 度の比(SNR、 Signal to Noise Ratio)を示し、数値が大きいほど雑音が少なく 高品質の信号が得られることを意味する。縦軸はビット誤り率 (BER、 Bit Error Ra te)を示す。 SNRが改善されるにつれ BERは小さくなり、グラフの右下に下がる勾配 が大きいほど、高品質な伝送方式であることを示す。
[0050] 信号形式は、ソフトコンパイニング (a)と周波数シフトで、周波数シフトの復調には M
!^ ^;!と ー !^^丁^を適用した。図 4は、 4基地局、受信ダイバーシティ無しの 場合、図 5は、 4基地局、 2ブランチ受信ダイバーシティがある場合を示す。
[0051] 図 4の受信ダイバーシティが無いときは、ソフトコンパイニング(a)と V— BLAST (周 波数シフト法)(c)ではあまり差がないが、 MLD (周波数シフト法)(b)のみ優位な結 果を示している。
[0052] 図 5の受信ダイバーシティがある場合は、 V— BLAST (周波数シフト法)(c)の特性 が大きく改善し、 MLD (周波数シフト法)(b)との差が小さくなり、 V— BLAST (周波 数シフト法)(c)、 MLD (周波数シフト法)(b)ともに優位な結果を示している。
[0053] 以上の結果から、受信ダイバーシティがある場合、周波数シフト法は優れた誤り率 特性を有することがわかる。
[0054] このように、複数の基地局装置が同じ情報を送信する際に、それぞれ周波数をずら して同時に送信することにより、同一の周波数に配置される信号は基地局装置毎に 異なることとなるので、同一周波数に異なった信号が混ざりあった状態となって 、る。 移動局装置にぉ 、て MIMO通信で用いられる信号処理技術を用いて複数のアンテ ナからの出力信号を処理することにより優れた誤り率特性を得ることができる。
[0055] 本発明の周波数シフトを行うことにより、従来技術であるソフトコンパイニングより誤り 率特性を向上させて信頼性の高いデータ伝送を可能にし、延いては、基地局増設に よる伝送速度の向上や、通信エリアの拡大に寄与するものである。
[0056] [第 2の実施形態]
図 6に第 2の実施形態における基地局制御装置と複数の基地局装置からなるシス テムのブロック図を、図 7に移動局装置のブロック図を示す。図中、図 1、図 2と同一の 符号を付した部分は同一物を表わしている。
[0057] 第 1の実施形態と同様、基地局制御装置 1は、データ送信前に、各基地局装置 2a 、 2bに対して制御情報を送信し、各基地局装置 2a、 2bにおいて、制御情報の設定 がなされる。
[0058] サーバは、基地局制御装置 1を通して複数の基地局装置 2に対し、同一の送信デ ータを送信する。
[0059] 図 6に示すように、各基地局装置 2a、 2bには、変調部 4、 SZP (シリアル Zパラレル )変換部 20、サイクリックシフト部 21、 IFFT(Inverse Fast Fourier Transform, 高速逆フーリエ変換)部 22、 PZS変換部 23、 GI (ガードインターバル)部 24、移動 局装置へのアンテナ 6が設けられて 、る。
[0060] 基地局制御装置 1から送信データを受信した各基地局装置 2における変調部 4は、 送信ビット列を QPSKや 16QAMと!、つた変調シンボルの形にマッピングし、 SZP変 換部 20において、変調シンボル毎に SZP変換を行い、ノ ラレルなデータ列に変換 を行う。
[0061] 次に、サイクリックシフト部 21において、基地局制御装置 1から受信した制御情報に より、隣接する複数の基地局装置 2において同一のサブキャリアに異なる変調シンポ ルをマッピングするように周波数シフトを行う。すなわち、複数の基地局装置 2から送 信される変調シンボルが周波数軸上でサイクリックシフトした関係になるように、サブ キャリアに対応する変調シンボルの割り当てを基地局装置ごとに変えるように周波数 シフトを行う。
つまり、変調シンボルを OFDM信号のサブキャリア数に対応するブロック内で他の 基地局装置と異なる量で巡回シフトさせ、巡回シフト後の変調シンボルをサブキヤリ ァに割り当てることとなる。巡回シフトの量は、サブキャリア数を Ncとすると、これに対 して、例えば、 4つの基地局装置 2それぞれにおいて、 0、 Nc/4, NcZ2、 3Nc/4 となるようにあら力じめ設定されて 、る。
周波数シフトの結果、図 3に示されるような関係の信号配置になる。縦方向は、周波 数軸とする。
[0062] その後、 IFFT部 22において逆変換を行い、 P/S変換部 23によりシリアルなデー タ列に変換することによって送信信号の時間系列を得ることができる。更に、 GI部 24 において、送信信号に、通常の OFDM方式によりガードインターバルと呼ばれるバッ ファ区間 (ガード時間)を付加してそれぞれの基地局装置 2より送信する。
[0063] 一方、第 2の実施形態においても、移動局装置 10へ、基地局制御装置 1からの変 調や周波数等に関する制御情報が、基地局装置 2の中継を介して、データ送信の前 に送信されている。
[0064] 図 7に示すように、移動局装置 10には、データの受信を行うアンテナ 11、 OFDM 信号検出部 30、 MIMO受信信号処理部 13が設けられている。
[0065] 各移動局装置 10では、アンテナ 11より基地局装置 2からの OFDM信号を受信す る。 OFDM信号検出部 30は、 GI除去部 31、 SZP変換部 32、 FFT(Fast Fourier Transform,高速フーリエ変換)部 33、 PZS変換部 34により構成されている。受 信アンテナ 11に接続された GI除去部 31にお 、て、受信信号よりガードインターバル が除去され、 S/P変換部 32により信号がパラレルに変換され、 FFT部 33によって 高速フーリエ変換の処理がなされ、 PZS変換部 34にてシリアルな信号に変換し、受 信信号のサブキャリア成分が抽出される。
[0066] 次に、 OFDM信号検出部 30で抽出されたサブキャリア成分は異なる基地局装置 2 力 送信された異なる変調シンボルの合成信号となって 、るので、 MIMO受信信号 処理部 13によってこれらの信号を分離する処理を行う。
[0067] MIMO受信信号処理部 13は、 MIMO受信信号前処理部 16、 MIMO信号処理 部 17により構成されている。
[0068] まず、 MIMO受信信号前処理部 16において受信信号列を一般的な MIMO信号 の形式に変換して MIMO信号処理部 17に出力する。信号の形式は、第 1の実施形 態と同様である。
[0069] 更に、 MIMO信号処理部 17において、 MIMO信号の分離を行い、異なる基地局 装置 2からのそれぞれの変調シンボルごとにデータの復調を行い、受信データ出力 を得る。
[0070] MIMO信号処理部 17で用いられる信号処理方法は、 MLD、 V— BLASTなど一 般的な MIMO受信機の処理方法が適用可能であり、本発明においてはこの処理方 法にっ 、て限定するものではな!/、。
[0071] また、ここでは 2ブランチの受信アンテナを示しているが、 1つの受信アンテナであ つても実現可能であり、又は、より多くのアンテナを用いることも可能である。
[0072] また、この様なデータ通信においては誤り検出符号や誤り訂正符号を用いた誤り制 御が用いられることが多い。本実施例では、これらの処理について特に記載していな いが、送信データをフレーム化して誤り制御を行うことや、周波数ブロック毎に誤り制 御を行うことは容易に適用可能である。
[0073] [第 3の実施形態]
複数の移動局装置宛に同一のデータを送信する MBMSのような放送型のデータ 通信では、同一の情報がある時間間隔をおいて周期的に送信される場合が考えられ る。この場合において、同時に送信されるデータの一部が移動局装置に既に受信さ れている場合が考えられる。
[0074] 本実施形態では、既に正しく受信したデータの情報を、後に続くデータの処理に利 用して誤り率の改善、および演算量の低減を図るものである。
[0075] 図 8に、第 3の実施形態における移動局装置の MIMO受信信号処理部 13を示す 基本的な構成は、第 1及び第 2の実施形態と同様、 MIMO受信信号前処理部 16 及び MIMO信号処理部 17よりなつている。
[0076] 受信データの正当性は誤り検出符号などを用 、て MIMO信号処理部 17にて検証 される。 MIMO信号処理部 17より出力された既に正しく受信されているデータを一 時記憶部 40に記憶しておき、必要に応じてその一部を MIMO受信信号前処理部 1 6に供給する。
[0077] MIMO受信信号前処理部 16では一時記憶部 40に記憶されて 、るデータが受信 信号に含まれる場合、該データを一時記憶部 40から取り出し、 MIMO受信信号前 処理に用いる。具体的には、該データに対応する受信信号成分を生成して受信信 号から除去する。
[0078] このように、受信した一連のデータの一部が正しぐ一部に誤りがある場合、あるい は、既に正しく受信されているデータと同じデータを新たに受信した場合、既に正しく 受信して!/、るデータを MIMO受信信号前処理部 16に供給し、該データに対応する 信号成分を除去することにより、誤り率の改善、及び演算量の低減を図ることができる
[0079] 尚、本発明の移動通信システム、基地局装置及び移動局装置は、上述の図示例に のみ限定されるものではなぐ本発明の要旨を逸脱しない範囲内において種々変更 をカロえ得ることは勿論である。
産業上の利用可能性
以上のように、本発明によれば、サーバから基地局制御装置を経由して同一の情 報系列を受信した複数の基地局装置は、情報系列を変調シンボルにマッピングし、 該変調シンボルをブロックに分割し、それぞれに他の基地局装置と異なる周波数ブ ロックを割り当てて移動局装置に送信し、移動局装置は、 MIMO受信信号処理部に より復調し出力することにより、誤り率特性を向上させて信頼性の高いデータ伝送を 可能にし、延いては、基地局増設による伝送速度の向上や、通信エリアの拡大に寄 与するものである。

Claims

請求の範囲
[1] サーバから基地局制御装置および複数の基地局装置を経由して同一の情報系列 を複数の移動局装置にあてて送信する移動通信システムにおいて、
前記基地局制御装置は、
複数の前記基地局装置に対して、同一の情報系列を送信し、
前記基地局装置は、
前記基地局制御装置から受信した前記情報系列から変調シンボルを生成し、前記 変調シンボルをそれぞれ異なる周波数で前記移動局装置に送信し、
前記移動局装置は、
複数の前記基地局装置より受信する複数の周波数それぞれに複数の変調シンポ ルが含まれる信号から、同一の変調シンボルが含まれる信号を検出して、前記情報 系列を再生することを特徴とする移動通信システム。
[2] 通信周波数帯域は複数の周波数ブロックに分割されており、前記基地局制御装置 は、複数の前記基地局装置間で同じ周波数ブロックにそれぞれ異なる変調シンボル を割り当てるように前記基地局装置に対して制御情報を送信することを特徴とする請 求項 1に記載の移動通信システム。
[3] 送信信号の形式は OFDM (Orthogonal Frequency Division Multiplexing
)方式であり、前記基地局制御装置は、前記基地局装置が、前記変調シンボルを OF DM信号のサブキャリア数に対応するブロック内で他の基地局装置と異なる量で巡 回シフトさせ、巡回シフト後の変調シンボルをサブキャリアに割り当てるように前記基 地局装置に対して制御情報を送信することを特徴とする請求項 1に記載の移動通信 システム。
[4] サーバから基地局制御装置を経た同一の情報系列を複数の移動局装置にあてて 送信する基地局装置において、
前記基地局制御装置から受信した前記情報系列から変調シンボルを生成し、前記 変調シンボルを複数の基地局装置においてそれぞれ異なる周波数で前記移動局装 置に送信することを特徴とする基地局装置。
[5] 前記変調シンボルを分割して、それぞれを異なる周波数に割り当てる周波数ブロッ ク割り当て部を備え、前記基地局制御装置から受信した制御情報により、複数の前 記基地局装置間で同じ周波数ブロックにそれぞれ異なる変調シンボルを割り当てる ことを特徴とする請求項 4に記載の基地局装置。
[6] 送信信号の形式は OFDM方式であり、前記基地局制御装置から受信した制御情 報により、前記変調シンボルを OFDM信号のサブキャリア数に対応するブロック内で 他の基地局装置と異なる量で巡回シフトさせる巡回シフト部を備え、巡回シフト後の 変調シンボルをサブキャリアに割り当てることを特徴とする請求項 4に記載の基地局 装置。
[7] 前記制御情報により、前記巡回シフトの量は、サブキャリア数を巡回シフト量を異な らせる基地局装置の数で除算し、該除算した数だけ基地局装置ごとに差となるように 定められて ヽることを特徴とする請求項 6に記載の基地局装置。
[8] サーバから基地局制御装置および複数の基地局装置を経由して同一の情報系列 を受信する移動局装置において、
複数の前記基地局装置より受信する複数の周波数それぞれに複数の変調シンポ ルが含まれる信号から、同一の変調シンボルが含まれる信号を検出して、前記情報 系列を再生することを特徴とする移動局装置。
[9] 通信周波数帯域は複数の周波数ブロックに分割されており、同一周波数ブロックの 受信信号から複数の基地局装置から送信された異なる変調シンボルを分離し、前記 情報系列を再生する MIMO受信信号処理部を備えることを特徴とする請求項 8に記 載の移動局装置。
[10] 送信信号の形式は OFDM方式であり、
複数の前記基地局装置から送信される変調シンボルが無線通信路で合成された O FDM信号を検出する OFDM信号検出部と、
前記 OFDM信号検出部で検出された複数のサブキャリア信号より、同一の変調シ ンボルが割り当てられて!/、る信号を検出して、前記情報系列を再生する MIMO受信 信号処理部とを備えることを特徴とする請求項 8に記載の移動局装置。
[11] 既に受信したデータを、前記 MIMO受信信号処理部に供給して、新たに受信する データの変調シンボル検出に利用することを特徴とする請求項 9又は請求項 10に記 載の移動局装置。
PCT/JP2007/063428 2006-07-25 2007-07-05 Système de communication mobile, dispositif de station de base et dispositif de station mobile WO2008013034A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07768178A EP2045941A1 (en) 2006-07-25 2007-07-05 Mobile communication system, base station device, and mobile station device
US12/374,988 US20100020737A1 (en) 2006-07-25 2007-07-05 Mobile communication system, base station apparatus and mobile station device
JP2008526716A JPWO2008013034A1 (ja) 2006-07-25 2007-07-05 移動通信システム、基地局装置及び移動局装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006202252 2006-07-25
JP2006-202252 2006-07-25

Publications (1)

Publication Number Publication Date
WO2008013034A1 true WO2008013034A1 (fr) 2008-01-31

Family

ID=38981350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063428 WO2008013034A1 (fr) 2006-07-25 2007-07-05 Système de communication mobile, dispositif de station de base et dispositif de station mobile

Country Status (5)

Country Link
US (1) US20100020737A1 (ja)
EP (1) EP2045941A1 (ja)
JP (1) JPWO2008013034A1 (ja)
CN (1) CN101496334A (ja)
WO (1) WO2008013034A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119041A1 (ja) * 2008-03-26 2009-10-01 パナソニック株式会社 無線通信装置、無線通信システム及び無線通信方法
WO2009140864A1 (zh) * 2008-05-23 2009-11-26 上海贝尔股份有限公司 内容同步方法、通信系统和发送端设备
JP2010141812A (ja) * 2008-12-15 2010-06-24 Kddi Corp 受信機および受信方法
WO2012156666A1 (en) 2011-05-18 2012-11-22 D-Gen Limited Prion protein antibodies for the treatment of alzheimer's disease
JP2014168301A (ja) * 2009-08-25 2014-09-11 Interdigital Patent Holdings Inc グループ通信を管理するための方法および装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120120890A1 (en) * 2010-11-12 2012-05-17 Electronics And Telecommunications Research Institute Apparatus and method for transmitting multimedia data in multimedia service providing system
US9362989B2 (en) 2012-05-22 2016-06-07 Sun Patent Trust Transmission method, reception method, transmitter, and receiver
US9602228B1 (en) * 2013-01-18 2017-03-21 Gregory R. Warnes Method and apparatus for transmission and reception of a signal over multiple frequencies with time offset encoding at each frequency
US9553652B2 (en) * 2014-02-07 2017-01-24 Mediatek Inc. Communications method and apparatus for carrier aggregation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3022865B1 (ja) * 1999-01-04 2000-03-21 株式会社次世代デジタルテレビジョン放送システム研究所 二周波数網方式とその送信装置
WO2005081481A1 (en) * 2004-02-19 2005-09-01 Ntt Docomo, Inc. Channel estimator and method for estimating a channel transfer function and apparatus and method for providing pilot sequences

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2427403C (en) * 2003-04-21 2008-10-28 Regents Of The University Of Minnesota Space-time-frequency coded ofdm over frequency-selective fading channels
US8233555B2 (en) * 2004-05-17 2012-07-31 Qualcomm Incorporated Time varying delay diversity of OFDM

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3022865B1 (ja) * 1999-01-04 2000-03-21 株式会社次世代デジタルテレビジョン放送システム研究所 二周波数網方式とその送信装置
WO2005081481A1 (en) * 2004-02-19 2005-09-01 Ntt Docomo, Inc. Channel estimator and method for estimating a channel transfer function and apparatus and method for providing pilot sequences

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KISHIYAMA Y. ET AL.: "Evolved UTRA Kudari Link OFDM Musen Access ni Okeru Chokko Pilot Channel Koseiho", 2006 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, COMMUNICATION 1, 8 March 2006 (2006-03-08), pages 435, XP003020693 *
MIKI N. ET AL.: "Kudari Link Evolved UTRA OFDM Musen Access ni Okeru Shuhasu Scheduling o Tekiyo shita Bai no Tekio Henfukucho. Channel Fugoka no Kento", 2006 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, COMMUNICATION 1, 8 March 2006 (2006-03-08), pages 436, XP003020694 *
NTT DOCOMO: "Investigations on Inter-Sector Diversity in Evolved UTRA Downlink", 3GPP TSG RAN WG1 AD HOC ON LTE, vol. R1-050615, 21 June 2005 (2005-06-21), pages 1 - 7, XP003020696 *
NTT DOCOMO: "Physical Channels and Multiplexing in Evolved UTRA Downlink", 3GPP TSG RAN WG1 AD HOC ON LTE, vol. R1-050590, 21 June 2005 (2005-06-21), pages 1 - 24, XP003003847 *
NTT DOCOMO: "Pilot Channel and Scrambling Code in Evolved UTRA Downlink", 3GPP TSG RAN WG1 AD HOC LTE, vol. R1-050859, 21 June 2005 (2005-06-21), pages 1 - 24, XP003001798 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119041A1 (ja) * 2008-03-26 2009-10-01 パナソニック株式会社 無線通信装置、無線通信システム及び無線通信方法
WO2009140864A1 (zh) * 2008-05-23 2009-11-26 上海贝尔股份有限公司 内容同步方法、通信系统和发送端设备
JP2010141812A (ja) * 2008-12-15 2010-06-24 Kddi Corp 受信機および受信方法
JP2014168301A (ja) * 2009-08-25 2014-09-11 Interdigital Patent Holdings Inc グループ通信を管理するための方法および装置
WO2012156666A1 (en) 2011-05-18 2012-11-22 D-Gen Limited Prion protein antibodies for the treatment of alzheimer's disease

Also Published As

Publication number Publication date
EP2045941A1 (en) 2009-04-08
JPWO2008013034A1 (ja) 2009-12-17
US20100020737A1 (en) 2010-01-28
CN101496334A (zh) 2009-07-29

Similar Documents

Publication Publication Date Title
US10103862B2 (en) Method, apparatus, and system for transmitting and receiving information of an uncoded channel in an orthogonal frequency division multiplexing system
US10374667B2 (en) Pilot scheme for a MIMO communication system
EP2078356B1 (en) Wireless communication system and methodology for communicating via multiple information streams
US8064389B2 (en) Wireless communication method and system for communicating via multiple information streams
US8976838B2 (en) Apparatus for assigning and estimating transmission symbols
CN101375524B (zh) 用于在高速分组数据系统的前向链路中支持多输入多输出技术的传送/接收设备和方法
WO2008013034A1 (fr) Système de communication mobile, dispositif de station de base et dispositif de station mobile
US20090257371A1 (en) Radio communication base station apparatus and transmission method in the radio communication base station apparatus
TW200533104A (en) Channel mapping for OFDM
JP2005110228A (ja) セキュア通信方法および送信装置、受信装置
KR20070114386A (ko) 송신장치, 송신방법, 수신장치 및 수신방법
JP4920037B2 (ja) マルチキャリア通信における符号化信号配置方法及び通信装置
JP2021168500A (ja) 送信方法、受信方法、送信装置、及び受信装置
KR20070118289A (ko) Ofdm 통신 시스템에서 시그널링 정보의 송신
JP5501229B2 (ja) 中継装置、通信システムおよび中継方法
JP4762203B2 (ja) Ofdm信号の送信方法、ofdm送信機及びofdm受信機
JP2009273180A (ja) 送信装置、送信方法、受信装置及び受信方法
JP2004064240A (ja) 無線通信方法、無線通信システム及び無線端末装置
KR20180042789A (ko) 계층분할다중화 기반 이동통신 송수신 장치 및 방법
CN108449305B (zh) 一种适用于无线通信系统下行传输的多用户复用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028387.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526716

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12374988

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007768178

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU