WO2008012934A1 - Display device, and its manufacturing method - Google Patents

Display device, and its manufacturing method Download PDF

Info

Publication number
WO2008012934A1
WO2008012934A1 PCT/JP2007/000039 JP2007000039W WO2008012934A1 WO 2008012934 A1 WO2008012934 A1 WO 2008012934A1 JP 2007000039 W JP2007000039 W JP 2007000039W WO 2008012934 A1 WO2008012934 A1 WO 2008012934A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
electrode
particles
cell
color
Prior art date
Application number
PCT/JP2007/000039
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Ota
Original Assignee
Isao Ota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isao Ota filed Critical Isao Ota
Priority to JP2007506602A priority Critical patent/JPWO2008012934A1/en
Publication of WO2008012934A1 publication Critical patent/WO2008012934A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes

Definitions

  • At least one of the transparent substrates comprises a cell in which a dispersed system in which charged fine particles are dispersed in a medium is sandwiched, and the fine particles are moved by an electric field to form a cell on the cell substrate.
  • the pitch P between the drive electrode and the common electrode provided for applying an electric field is 5 to 100, and the drive within the pixel
  • a display device characterized by an electrode area ratio of 20% or less and a cell gap d set between 0.2 and 1.5 times the pitch p.
  • a typical thin display device is a liquid crystal display device, which is provided with a three-color filter of monochrome (Red), green (G), and blue (B) and a corresponding liquid crystal layer. It is operated as a shutter that changes the color, and full color is realized by the additive method of R, G, B light.
  • the one with a white backlight on the back is a transmissive color liquid crystal device, which is widely used for liquid crystal TVs, personal computer monitors, mobile phone displays, and so on.
  • one of the serious difficulties of liquid crystal display devices is optical loss exceeding 50% due to the use of polarizing plates.
  • Transverse electric field type particle movement display method for changing light transmissivity or light reflectivity by moving and accumulating fine particles dispersed in a transparent liquid or gas as a display device other than liquid crystal in the horizontal direction with respect to the display surface (Patent Literature) 1 to 1 3).
  • a fine particle dispersion system is sandwiched between a transparent substrate 1 provided with a transparent counter electrode 3 and a substrate 2 provided with a collect electrode 4. It is characterized in that the light transmittance of the cell is changed depending on whether particles are deposited on the counter electrode 3 by applying a voltage between the electrodes 4 or accumulated on the collector electrode 4 having a small area.
  • the fine particles are black light-absorbing, they are in the dark state in (A) and (C) and in the bright state in (B) and (D).
  • FIG. Another configuration is shown in FIG.
  • the transparent collect electrode 4 and the transparent force counter electrode 3 are provided on the same surface, and the particles are deposited on the transparent counter electrode 3 or deposited on the transparent collector electrode 4 in the dark state in a dispersed state. When you let it go, it becomes bright.
  • the dark state is not necessarily the state in which particles are accumulated on the counter electrode, but the use of a state in which particles are dispersed almost uniformly also leads to improved responsiveness.
  • large area From the standpoint of practical use, the same optical loss as in Fig. 1 (A) and Fig. 2 (A) is unavoidable due to the provision of a solid transparent pixel electrode, and the amount of dispersed particles, collect electrode width, electrode pitch, cell thickness, etc.
  • Patent Document 1 JP-A-49-24695
  • Patent Document 2 Japanese Patent Laid-Open No. 03_91 722
  • Patent Document 3 US P5, 745,094
  • Patent Document 4 Japanese Patent Laid-Open No. 9_21 1 499
  • Patent Document 5 JP 2001 _ 201 770
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004_2081 8
  • Patent Document 7 Special Table 2005—500572
  • Patent Document 8 JP 2002-333643
  • Patent Document 9 Japanese Patent Laid-Open No. 2003-248244
  • Patent Document 10 JP-A-2005-3964
  • Patent Document 11 JP-A-2004-25861 5
  • Patent Document 12 Japanese Patent Application Laid-Open No. 2004-252277
  • Patent Document 13 Japanese Patent Laid-Open No. 2002_1 22890
  • the display device It is desirable for the display device to have a high response speed. In order to realize a practical response speed, an electric field strength of about 0.2 to 2 VZ is usually required for particle migration by electrophoresis.
  • an electric field strength of about 0.2 to 2 VZ is usually required for particle migration by electrophoresis.
  • the pixel size may be 10 or less.
  • the pixel may be in the order of centimeters. In this application, the particle display is applied to pixels of all sizes, and the transmittance, By optimizing important display characteristics such as trust and response speed, practicality has been improved.
  • the present invention uses a horizontal electric field as in the prior art.
  • the cell configuration and the display mode improve the display performance such as transmittance, contrast, response speed, and reduce the drive voltage. This is a proposal.
  • FIG. 3 (A) The configuration of the basic cell of the present invention is as shown in FIG. 3 (A).
  • Cell 8 is constituted by partition walls 20 provided between two substrates 1 and 2, at least one of which is transparent, such as glass and plastic.
  • the cell is filled with a dispersion system 7 in which fine particles 5 are dispersed in a transparent medium, and a pair of electrodes 6-1 and 6-2 made of fine wires as shown in FIG.
  • a cell 8 is formed on the entire surface of the cell.
  • Dispersion system 7 consists of a gas or a transparent liquid in which positively or negatively charged fine particles are dispersed. In the case of a liquid, the movement of the particles is called electrophoresis.
  • the shapes of electrodes 6 _ 1 and 6 _ 2 are comb-shaped, vortex-shaped, and similar shapes. .
  • the overall shape is arbitrary, such as short, circular, hexagonal.
  • the electrode 6-1 for accumulating particles is called a drive electrode
  • the other electrode 6-2 is called a common electrode.
  • the electric field strength for moving the particles is determined by the distance between the electrodes 6 _ 1 and 6 _ 2 and the driving voltage, so that a sufficient electric field can be applied even at low voltages regardless of the cell size. High-speed response can be realized.
  • the thin line drive electrode is a conductive film provided by depositing a metal such as aluminum, chromium, gold, or tantalum with a spatter and patterning by photo processing, or printing conductive paint, drawing ink jets, etc. A thick film can be used.
  • the pair of electrodes may be provided on the upper substrate 1.
  • the surface of the common electrode is fixed to the gap between both electrodes or the inner surfaces of the upper and lower substrates because the light transmittance of the bright state of the cell is inhibited. Therefore, it is desirable that this part of the cell is coated with a low surface tension material such as a fluorine compound or surface treatment so as to be charged with the same polarity as the charged particles so as to prevent the fine particles from sticking.
  • a low surface tension material such as a fluorine compound or surface treatment
  • the dispersed state is a colloidal state in which fine particles are stably dispersed uniformly in the liquid regardless of the specific gravity difference due to Brownian motion, as well as some or most of the particles on either of the inner surfaces of the substrates 1 and 2.
  • the fine particles do not have to be one kind, and various kinds of fine particles may be mixed to optimize the optical characteristics.
  • the fine particles 5 are usually light-absorbing, but it is also possible to use white or other reflective materials such as titanium dioxide. In this case, the incident light is scattered by the fine particles in the dispersed state of the cells 8.
  • Reflected light is attenuated according to the degree of reflection.
  • the particle color If the lower part of the plate 2 or the transparent substrate 2 is a color different from the particles (for example, black), the reflected color in the particle accumulation state is almost black.
  • the passive display device As in the present application, what determines the display performance is transmittance (reflectance), contrast, color purity, response speed, resolution, viewing angle, etc.
  • the drive voltage and power consumption of the device Is also an important factor.
  • the transmission contrast is determined by the transmittance in the particle dispersion state (dark) and the transmittance in the particle accumulation state (bright). In particular, creating a sufficiently dark state is an essential requirement for improving contrast.
  • the transmittance of the cell in the particle dispersion state is 0.1% (optical density of 3 or higher), 1% (optical density of 32 or higher), 10 Must be less than% (optical density 1 or more).
  • increasing the particle concentration generally slows the moving speed of the particles and tends to deteriorate the light transmittance, so it is not a good idea to increase the particle concentration unnecessarily.
  • the thickness of the particle layer at this time is d, and the area of the pixel is S (A )
  • the thickness h of the particle layer on the drive electrode is d * S / As ( B).
  • the bright state is realized by maximizing S_As, ie minimizing As.
  • AsZS is defined as the area ratio of the drive electrode. If the area ratio is 10% and 20%, the transmittance of 90% and 80% can be realized.
  • the thickness h of the particle layer on ⁇ s at this time is 10 times and 5 times of d, respectively.
  • the concealment force is not only the characteristics of the particles themselves, but also the particle size is deeply involved, and the particle size should be selected to increase the concealment force.
  • the minimum area ratio can be realized by using a thin wire electrode as shown in FIG. 4, and the drive electrode width can be considered in consideration of ease of manufacture, reliability of the electrode, and stability of the integrated particle layer.
  • the line width should be 30 or less, preferably 10 or less.
  • the area ratio is 20%, and the area ratio can be reduced to 10% or less by making the electrodes thinner.
  • the particle concentration is lowered, the moving speed of the particles is increased, and if the dispersion is thickened, the hiding property or coloring power can be increased even at a low particle concentration (gZcm 3 ).
  • the farther away from the electrode the weaker the electric field acting on the particles, and the particles need to move a longer distance to accumulate on the electrodes, resulting in a slower response.
  • the cell gap is selected to be about 0.2 to 1.5 times the electrode pitch P (20 to 1 50%), so that the electric field ripple is secured, and therefore the response when on (bright) and off (dark). Can be secured.
  • an electric field strength of about 0.2 to 2 VZU is necessary to realize a practical responsiveness by particle movement by electrophoresis, and it is desirable to ensure this electric field strength regardless of the pixel size.
  • the electrode pitch p shown in Fig. 4 (A) is selected to be about 5 to 100, and the cell gap d is set to 0.2 to 1.5 times (1 to 1 50) of the electrode pitch p, the voltage between the counter electrodes
  • the electric field strength of 0.2 to 2 VZ can be almost secured at 1 V to 200 V.
  • the electrode pitch is about 20-50, cell gap 10-75, and applied voltage 4-100V are practical. Even if the display is an ultra-large display with pixels of several mm to several cm, it can be driven at a sufficiently low voltage if the electrode pitch is set to about 20 to 50 above.
  • the electrodes are used at an electrode pitch of about 10 provided at both ends of the cell, or provided at both ends of the cell, the lower part of the partition wall, or the side wall of the partition wall.
  • a common (drive) electrode may be inserted between the drive (common) electrodes and used at a pitch of about 5.
  • the drive voltage and response speed are reduced by setting the electrode pitch and the corresponding cell thickness.
  • the transmittance and contrast are improved by reducing As, the selection of dispersed particles, and the optimum amount of dispersed particles. It can be said that it can be realized by the conversion.
  • Fig. 6 (A) shows the case where one electrode of Fig. 4 is provided on the counter substrate. Even if the dispersion is a little thicker, it is possible to apply a stronger electric field to the particles as a whole than in the case of Fig. 3.
  • Each common linear electrode may have a closed electrode configuration such as a stripe, lattice, or vortex.
  • FIG. 6 (A) is slightly shifted from each other (FIG. 6 (B)).
  • the common electrode should be transparent, and there is an advantage that a strong electric field can be applied to the particles in the center between each electrode, but the particles have both positive and negative polarities.
  • particles with the same polarity should be selected because of the disadvantage that the transmittance decreases.
  • FIG. 6 (C) has a common electrode and a drive electrode pair as shown in FIG. 4 on both substrates, and is arranged so that the drive electrode and the common electrode overlap with each other, as in FIG. 6 (B).
  • the fine particles are redispersed, the fluid flow between the substrates due to the electric field is fine Contributes to child distribution.
  • FIG. 6 (D) is an arrangement in which the drive electrodes are overlapped with each other. Since particles can be stacked in the same region as viewed from the display surface, it contributes to an improvement in transmittance.
  • FIG. 6 (E) shows the case where the common electrode is on a separate substrate from the drive electrode and is a transparent solid electrode.
  • the drive electrode can be selected from either closed stripes, grids, vortices, etc., or non-closed electrode configurations as shown in Fig. 4.
  • an electric field is likely to act on the particles between the linear drive electrodes, but if the particles are not unipolar, the aperture ratio is disadvantageous.
  • the dark state in transmission can be realized by the particle dispersion state or the particle deposition state on the solid electrode.
  • the common electrode is transparent, it absorbs a certain amount of spectrum, so there is a disadvantage that the optical loss increases when cells are stacked as described above.
  • the pitch P between the drive electrode and the common electrode means the shortest distance between the drive electrode and the common electrode. To do.
  • FIG. 6 (F) shows a configuration in which a drive and common electrode pair as shown in FIG. 4 is provided on the opposite side of the transparent solid common electrode of FIG. 6 (E). Although this is a useful configuration for speeding up the particle dispersion state, the common electrode should be transparent.
  • fine line-like drive electrodes 6 _ 1 are similarly provided with a pitch shifted from each other with a fine line-like common electrode 6 _ 2 and an insulating layer 23 as shown in FIGS.
  • the fact that both electrodes can be formed only on one side of the substrate has the advantage of increasing the degree of freedom of shape of both electrodes.
  • the common electrode 6_2 should be transparent and the dispersion thickness should be thin so as not to reduce the response speed.
  • FIG. 6 (H) is obtained by replacing the common electrode 6_2 in FIG. 6 (G) with a solid transparent electrode.
  • both electrodes can be formed only on one side of the substrate.
  • the dark state can be realized only by the particle dispersion state or by evenly depositing the particles on the insulating layer 23 other than the drive electrode portion.
  • each electrode configuration of FIG. 6 even if each of the drive electrode and the common electrode is on different substrates, the cells are electrically coupled to each other so that the cell operates as a two-terminal element of the drive electrode and the common electrode. It is configured as follows. [0029] Although all the particles are described as being unipolar in Fig. 6, the bipolar particles may be more advantageous depending on the electrode configuration.
  • Fig. 8 (A) shows an example in which the accumulated cross-sectional area of particles on the drive electrode is stacked in an almost elliptical shape with the major axis perpendicular to the substrate.
  • the common electrode can be made to be almost the same type as the drive electrode pattern, and the electric fields on the drive electrodes can be converged by arranging them so that the patterns overlap each other.
  • the integrated cross-sectional area can be reduced by providing a thin depression in the electrode portion and forcibly attracting the particles into the depression.
  • the depression can be formed, for example, by uniformly applying a photoresist resist or the like on the common electrode or the drive electrode surface, and piercing the upper portion of the electrode by photoetching.
  • the driving electrode is provided with minute protrusions to concentrate the local electric field.
  • Fig. 8 (D) As shown in Fig. 8 (D), if positive and negative particles are mixed in the dispersion system, the particles can be accumulated on both the drive electrode and the common electrode. If the two layers overlap each other, it is substantially equivalent to doubling the thickness of the accumulated particle layer in the case of a single polarity, and high transmittance can be realized.
  • both electrodes may be opaque electrodes, and the degree of freedom in selecting electrode materials is increased.
  • the dispersion medium is a gas body
  • particles that are likely to have positive and negative charge series are mixed. Since the positive and negative charge amounts of the particles can always be held stably due to the Katsumasato charge, it is also advantageous to realize a highly stable dispersion system compared to the single particle system.
  • the area ratio of the drive electrode is 20% or less, preferably 10% or less by utilizing the above-described measures for improving the aperture ratio.
  • transparent electrodes are used for both electrodes.
  • the driving electrode may be opaque as long as it is thinned because it aims to stack particles as much as possible on the thin driving electrodes.
  • the particles are confined inside the cell by the partition wall 20 in order to prevent the fine particles from moving to the adjacent cells and to maintain the particle concentration in each pixel constant.
  • the fine particle dispersion system may be confined in the force cell.
  • FIG. 9 (A) shows a cross-sectional view in which capsule particles 10 incorporating a fine particle dispersion system are arranged.
  • capsule particles 10 incorporating a fine particle dispersion system
  • a planar comb-shaped drive electrode made of fine wires and a common electrode are provided at the bottom of each capsule, one capsule can be made into one pixel, and a pair of electrodes straddling n horizontal force cells
  • a pair of electrodes straddling n horizontal force cells For example, in the case of a square pixel, one pixel is formed by n ⁇ n capsules.
  • FIG. 9 (B) shows an example in which spherical capsule particles 10 are deformed so as to form a substantially rectangular parallelepiped by the pressure applied between the substrates, and a gap is formed with a spacer smaller than the diameter of the capsule particles.
  • the capsule is drawn with a single particle layer, but the capsule particle does not necessarily have to be a single layer as is clear from the display principle. However, an equiaxed structure in which the capsule centers are aligned in the direction perpendicular to the substrate is desirable.
  • both the substrates are respectively bonded to the upper and lower surfaces of the partition wall.
  • Capsule particles When used, the binder resin contributes to the adhesion between the upper and lower substrates.
  • Another advantage of confining the fine particles in the force cell is that the fine particle dispersion system as a liquid or fluid powder can be solidified and can be easily applied to the display element surface and the upper and lower substrates. That's it.
  • capsule particles When capsule particles are used, the electrode patterns and electrode configurations shown in Figs. 3, 4, 6, 7 can be selected.
  • a cell refers to a region in which particles are confined by a partition or a capsule.
  • a pair of electrodes may be provided in one cell or a set of many cells.
  • a pixel is a region having a pair of electrodes, and may be a single cell or a number of cells.
  • Fig. 10 (A) shows a cross section of a full-color display element that prevents light loss, and a backlight unit 17 consisting of a light source 13 is provided on the back surface so that it can be used for transmission. It is composed of laminated cells 24, which are three layers of cells. However, the three layers of fine particles 5 are C (cyan), M (magenta), and Y (yellow) colors, respectively. If Y and soot particles are in a moderately dispersed state, and C particles are in an electrode-integrated state, that portion is R (red), and C and M particles are in a moderately dispersed state and Y particles are in an electrode-integrated state.
  • B (blue), Y, and C particles become G (green) in the dispersed state.
  • C particles, soot particles, and soot particles become C, M, and Y colors when dispersed.
  • a fourth cell that can be modulated from white to black to block the light more completely is added to form a four-layer structure. Further, the cell stacking order can be arbitrarily selected.
  • the white light source is off, it can be used as a reflective color panel with a white diffuser.
  • a two-layer structure with dispersive systems with different colors may be used.
  • the color panel of the present invention is formed by laminating at least three particle layers that change to C, M, and Y as in Patent Document 7, but has a configuration that does not use a transparent electrode. As a result, a low-cost, bright and highly reliable panel can be manufactured.
  • FIG. 10 (B) is provided with electrode pins on the back surface of the stacked cell 24 as shown in FIG. 10 (A), and with electrode pins 25 configured to apply signals to the drive electrodes and light sources of each color.
  • a full color element is shown.
  • a full-color element with a thickness of several millimeters can be obtained by using a film substrate for each color and configuring the backlight unit with a thin light source such as 0-1_.
  • Each element may be used as a color indicator, but by arranging a large number of such basic cells in an X_Y matrix, both the reflective and light-emitting elements are turned into a reflective type when the light source is turned off and a light-emitting type when turned on.
  • a full-color super-large display system can be configured.
  • a panel with a multi-pixel pin using a single-pixel element as well as a multi-pixel panel is possible. It is also possible to display a curved surface by arranging each element in a curved shape. Since the terminals of each pixel can be taken out through the pins, the flexibility of driving methods such as static drive, multiplex drive, and active matrix drive is increased.
  • the viewing angle is limited when viewed in reflection.
  • the cross-sectional view shows one pixel, see the correct color because the reflected light does not pass through all three layers when viewed from the direction beyond the angle 0 from the substrate normal. Does not appear.
  • Fig. 11 shows a cross-sectional view of a color panel in which C, M, and Y capsule particles are laminated. Since a substrate in which an electrode is provided and capsules are laid out can be laminated in order for each color through an adhesive, the number of substrates can be easily reduced, and a cell advantageous in view angle characteristics can be configured.
  • FIG. 12 shows a process of manufacturing a panel having a simple matrix configuration.
  • An electrode thin film made of aluminum, chromium, gold or the like is deposited on the substrate 2 such as glass or plastic by vapor deposition or sputtering, and then connected to the column electrode C i and this as shown in Fig. 12 (A) in the photoetching process.
  • the drive electrode 6_1 is formed.
  • the common electrode 6-2 and the row electrode Ri are formed (B).
  • a display panel is formed by confining the dispersion system at a predetermined position by partitioning a partition wall between the substrate with electrodes thus obtained and another insulating substrate.
  • a signal is applied to the column electrode C i, and a scanning signal is applied to the linear common electrode R i, so that a line sequential display is achieved.
  • the panel configuration is simple, there is a merit that it can be manufactured at low cost.
  • each pixel requires threshold characteristics, it cannot be used for applications with large display capacity.
  • FIG. 13 shows that the anodized film is sandwiched between metal electrodes.
  • MIM Metal Insulator Metal
  • the column electrodes Ci are anodized to form an oxide film on the surface (A).
  • a metal film is provided by vapor deposition or sputtering to form, for example, a comb drive electrode 6_1 (B).
  • a two-terminal element 21 is formed in a region where the drive electrode and the column electrode intersect.
  • an insulating layer 23 is formed at least at a location where the column electrode intersects the row electrode later, and then a common electrode 6_2 and a scanning electrode Ri are formed (C), thereby forming a two-terminal AM array.
  • a display panel is formed by confining the dispersion system at a predetermined position by partitioning or encapsulating between the substrate with electrodes thus obtained and another insulating substrate.
  • a two-terminal AM array can also be formed by inserting a non-linear resistance element in which a semiconductor such as zinc oxide is dispersed in resin at the intersection of electrodes 6_1 and Ci.
  • FIG. 14 is a front view showing an electrode configuration for two pixels of an AM array composed of TFT (Thin Film Transistor) three-terminal elements.
  • the drive electrode 6_1 separated from the signal line Ci by an insulating layer is connected to the drain (D) electrode, the source (S) electrode consists of one part of the column electrode Ci, and a semiconductor between S and D
  • the gate insulating film is laminated.
  • a three-terminal AM array is formed by providing an interlayer insulating film in the column electrode portion and then providing a row electrode Ri (gate electrode).
  • the common electrode 6_2 is separated from the column electrode and the row electrode by an insulating layer, and is stretched around the entire panel like the column electrode and the row electrode, and is taken out of the panel as one terminal common to all pixels.
  • the partition panel is placed in the C i, R i part of the AM array substrate made of TFTs thus obtained, or force pusher particles are installed in the center of the pixel, and the display panel is confined between the transparent insulating substrate and the dispersion system. Composed.
  • the TFT is shown as a staggered type, but of course a reverse staggered type TFT is also possible.
  • the array configuration in Fig. 14 is almost similar to the array configuration of an IPS (In-Plane-Switching) mode TFT panel currently used in LCD monitors, LCD TVs, etc. (however, Fig. 4 (A ) Comb electrode configuration).
  • the drain is applied to hold the voltage applied to the pixel drain.
  • the insulating layer between the common electrode and the drain electrode can be used as a parallel capacitance.
  • FIG. 15 shows a three-layer laminated panel having further excellent viewing angle characteristics.
  • one pixel is illustrated as being composed of 3 ⁇ 3 single-layer capsule particles 10. If the capsule particle size is 20 then the spacer needs to be about 60 height. If the substrate is provided with a recess corresponding to the diameter of the capsule particles in advance, the spacer may be about 50.
  • all three color XY active matrix arrays are formed on the lower substrate 2 for the TFT and other switch elements to apply an electric field to the first, second and third capsule particles. It is shown as being composed of 3d.
  • the AM array for driving C, M, and Y capsule particles is all formed on the substrate 2 (preferably provided under the partition wall or spacer to improve the aperture ratio).
  • the electrode and the common electrode opposite to the electrode are formed inside or through the surface of the partition wall or the spacer. After the array substrate and the partition wall or the spacer are formed, the capsule particles are stacked one by one.
  • the TFTs for driving C, M, Y capsule particles are all the same as (1) in that they are formed on the substrate 2, but the drain electrodes for each color, the common electrode, etc. are formed and formed below. Wiring with the corresponding color drain electrode is added after the color capsules are spread.
  • a large display system composed of MX mX N Xn pixels can be configured by arranging m basic panels of vertical M pixels and N horizontal panels, for example, as described above.
  • the electrodes of each panel are pulled out to the back of the panel in a direction perpendicular to the panel surface using a thin FPC, etc., and connected to the drive circuit provided behind the back substrate or backlight. Configured to be driven.
  • FIG. 16 shows an AM reflective line valve using a silicon substrate, which is used in a projector or the like.
  • Insulating film 23, pixel part reflecting film 14, insulating film 23, electrodes 6_1, 6-2 are provided on AM array made of FET elements formed on silicon substrate 15 and each electrode is provided on insulating film 23 Connected to the corresponding drain terminal and common terminal on the corresponding AM substrate through the holes, and the dispersion system 7 is sandwiched between the transparent substrate 1 and the light valve is configured.
  • the pixel pitch is about 11 1. The lower the partition wall height, the easier it is to manufacture.
  • the drive electrode pitch and cell thickness are set to several microns, it is possible to construct a live valve that can be driven at 1 OV or less.
  • the partition is made of insulating black or a reflective partition, it is desirable to form a black film between the upper substrate and the partition.
  • the reflection type light valve shown in Fig. 16 is configured by replacing the liquid crystal in the liquid crystal line valve called L COS (I iquid-crysta ⁇ on-si I icon) with a fine particle dispersion system.
  • L COS liquid crystal line valve
  • the pixel consists of an upper transparent electrode, a liquid crystal layer, and a lower reflective electrode, but the electrode configuration in this application can have various configurations as shown in Figs.
  • the reflector 14 is essential.
  • a white light source such as an ultra-high pressure mercury lamp is separated into R, G, and B light by a dichroic mirror and prism, and each color light is irradiated onto the light valve in Fig.
  • a full-color image can be obtained by magnifying and synthesizing a colored light image on a screen using a lens. If an LED or semiconductor laser is used as the light source, a compact projector can be constructed. A rear projector can be used as well as a front projector by bending the optical path along the way. Although the pixel pitch is monochrome 1 Z 3, it is also possible to configure a single-plate color line valve by providing a color filter on the front, and if a three-layer laminated panel as shown in Fig. 15 is configured, light utilization will be possible A single plate type color light bulb with a high rate can be constructed. As the dispersion system, either a partition wall type or a force-pessel type may be used. In the reflection type, since the light beam passes through the dispersion layer twice, the dispersion particle concentration is 1 Z 2 which is a transmission type, and a high-speed response is possible.
  • a single-plate or three-plate high-definition transparent line valve can be configured by using an AM substrate in which an AM array is made of polysilicon or the like in heat-resistant glass such as quartz. Is possible.
  • a full color panel can be easily configured by replacing the liquid crystal of the current liquid crystal color panel with the light modulation element of the present invention.
  • Figure 17 shows a cross-sectional view of the transmissive full-color panel of the present invention. It can be constructed by replacing the liquid crystal as the line valve of the current liquid crystal color panel with a dispersion system 7 in which fine particles capable of modulating transmittance in black and white are dispersed. That is, a transparent glass substrate 2 on which an AM array with an X—Y matrix configuration 13 C is formed, and transparent with R, G, B color filters 1 3 a and black matrix 1 3 b in the form of stripes or dots A dispersion system 7 is sandwiched between the substrate 1 and the substrate 1.
  • the drive electrode 6 _ 1 and the common electrode 6-2 that are each pixel are connected to the drain electrode and the common electrode of the AM array 13 C. Any of the configurations shown in FIGS. 4, 6, and 7 may be used for the electrodes of each pixel.
  • each color cell may be colored in R, G, and B .
  • each color cell must be color-coded in a stripe or dock shape.
  • R, G, B side-by-side color filter or R, G, B coloring liquid is used, so light
  • 2 Z 3 of white incident light to the modulation element is required, there is an advantage that the mass production process and equipment of the TFT array that has been established can be used almost as it is.
  • Figure 18 describes an example of multi-color display without using a color filter in a single-layer dispersion system.
  • a dispersion system in which fine particles having different colors and moving speeds are mixed and dispersed in a transparent dispersion medium may be used. That is, if a DC voltage is applied between electrodes 6–1 and 6 _2 (first pulse) and particles are deposited on one electrode (in the case of the same polarity particles) (Fig. 18 (A)), the cell becomes It looks transparent (white when the reflector is white).
  • the fast moving particles (first particles: red) will first leave the electrode and become dispersed.
  • the cell appears red, which is a dispersed state of particles with a fast moving speed (Fig. 12 (B)).
  • the first particles accumulate on the counter electrode 6_2, and only the second particles (which are black) that are slow in speed are dispersed in the dispersion system. The cell looks almost black (Fig. 12 (C)).
  • the first and second particles are both dispersed, and a red-black color, which is a mixture of these, is presented.
  • a red-black color which is a mixture of these.
  • four colors can be selected on a single-layer panel. Even if the microparticles of different colors have different polarities, they can be used if the moving speed is different.
  • Figure 18 shows an example of multi-color display using the difference in particle movement speed.
  • the properties of the particles and electrodes are used to desorb particles deposited on the electrodes from the electrodes by applying a reverse polarity voltage.
  • This difference in threshold characteristics of different color particles can be used effectively.
  • First and second particle threshold values for each V 1 and V 2 (V 1> V 2), and when the voltage V 1>V> V 2, only the second particles can be dispersed. This is because it is possible to produce a distributed state of.
  • mixed dispersion colors can be obtained with AC voltages of V> V 1, and differences in threshold as well as differences in migration speed can be effectively utilized for selective dispersion of particles. Display is possible.
  • the display medium After performing the formation process of switch elements, partition walls, etc., the display medium is sandwiched between the film substrate provided on the other substrate and sealed to form a film panel, and then from the rigid substrate. If the panel is peeled off, the difficulty of the process such as the vertical alignment of the electrodes due to the thinness of the film and the elasticity will be reduced.
  • an electrode surface of a thin substrate such as a film provided with an electrode and a capsule particle layer are bonded together with an adhesive to complete a display panel on a rigid substrate.
  • the substrate that will be the final panel is used as the transfer substrate, and the display panel that has been formed on the rigid substrate is transferred via an adhesive.
  • a stacked full-color panel with the configuration shown in Fig. 11 can be formed.
  • Capsule particles If it is transferred and laminated on the substrate to be transferred when it is spread, a laminated panel with the configuration shown in Fig. 15 is possible, and a laminate consisting of only a substantial particle layer can be constructed. Even if protective sheets are provided only on the top and bottom, a full color display panel suitable for applications where flexibility such as electronic paper is desired can be realized.
  • the panel may be completed by peeling without using a transfer substrate.
  • a transfer substrate not only capsule particle systems but also partition-type panels are possible. Transfer of only the AM array, transfer after filling the dispersion system, peeling after forming the panel, etc., peeling and transfer methods are acceptable. It can be used very effectively for the panel formation of the present invention using a conductive film substrate. Using a film with a thickness of about 10 and forming a full-color panel with a cell thickness of 30 for each color, the thickness of the panel with the configuration shown in Fig. A flexible display like paper can be realized.
  • the panel itself is flexible, if a drive circuit, a battery, or the like is mounted, the vapor-like property of the display panel tends to be impaired. Since the display panel of the present invention has a memory property, once the display is updated, the display is maintained even if the driver is disconnected. Therefore, it is possible to use the panel Z signal source separation method in which the panel electrode terminal part or signal supply circuit part is exposed and connected to the signal supply source only when the display is updated. The flexibility of the panel can be secured with cost.
  • aS i AM amorphous silicon
  • sS i AM cannot be formed directly on the film.
  • all high-temperature processes are performed on a heat-resistant rigid substrate, and it is inferior in heat resistance and can be peeled and transferred near normal temperature onto an organic film that stretches rapidly due to temperature changes. Is an extremely effective method. Release transfer can be realized when the adhesive force on the transfer substrate side exceeds the adhesive force on the release layer side. Irradiate pulsed laser light etc.
  • each layer is composed of a number of layers (substrate, dispersion medium, adhesive layer) per monochrome element. It is important to use materials with the same rate as possible to reduce unnecessary interface reflections.
  • Figure 19 shows an example of manufacturing a roll-to-roll panel.
  • a film-like film pre-formed with an AM array, electrode pattern, spacer, etc. is supplied from the upper film, and the dispersion system is applied in the form of capsule particles.
  • punching holes for electrode removal are opened and both substrates are accurately placed so that bubbles do not remain between the lower film substrate with a sealant such as UV seal resin for printing or ink jet drawing. Align and paste and fix. It is possible to produce multiple single-color film panels at once by cutting with punching.
  • An AM formation process such as organic TFT, which can be processed at low temperature, is compatible with a single-roll, one-roll process, and of course can be effectively applied to the roll-to-roll panel formation of the present application. If the previous process such as electrode pattern A M formation can be formed by roll-to-roll, it can be an ideal mass production method.
  • the roll-to-roll method can be performed even with a single continuous film, and is particularly easy with a one-sided electrode configuration.
  • a capsule particle layer is provided by printing or the like at a predetermined location, and then a transparent protective layer is applied.
  • the partition may be formed on the lower film with a photoresist, etc., but the partition and cells are formed by emulsifying a temporary cured film after applying UV curable resin and then cured to form a dispersion. It is also possible to manufacture a partition-type film panel by filling with and sealing with an electrode or an upper film with AM It becomes ability.
  • film materials include vinyl polyethylene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polystyrene, fluororesin, polyester polycarbonate, polyethylene terephthalate, polyamide nylon, and heat resistant engineering plastic.
  • Polyimide, polysulfone, polyethersulfone, polyphenylenesulfide, polyetherketone, polyetherimide, etc. can be used
  • a polymer film is generally more permeable to gas than glass or the like.
  • the film may be exposed to the outside air, and moisture may enter the dispersion system and degrade the characteristics. Therefore, in order to improve the reliability of the film panel, it is effective to provide a gas barrier layer on the film surface.
  • the gas barrier layer it is known that thin films such as silicon oxide and silicon nitride, and laminated films of these films and organic films such as vinyl alcohol-containing polymers are known.
  • the width of this part in the light transmission direction is as narrow as possible.
  • this part is transparent, light leakage occurs and the light blocking power of the light modulation element is reduced, so that pure black cannot be obtained. Therefore, it is desirable to make this part black light absorbing or light reflecting. .
  • BM black matrix
  • the fine particles have as high a concealing power or coloring power as possible.
  • black and white carbon black, pigment black, graphite, etc., or a toner in which these are embedded in a resin can be used.
  • CM As Y fine particles, various organic pigments such as azo, phthalocyanine, nitro, nitroso, etc. used in printing ink, color copier toner, ink-jet ink, etc., iron oxide, force damme yellow, cadmium red, etc.
  • a variety of inorganic pigments can be used.
  • amber particles Hansa Yellow, Benzine Yellow, Quinoline Yellow, etc.
  • Pigment Red Pigment Red
  • Rhodamine ⁇ Rose Bengal
  • Dimethylquinacridone etc.
  • c-colored particles Aniline Blue, Phthalocyanine Blue, Pigment Blue, etc.
  • the black fine particles may be mixed with C, M, Y fine particles.
  • the fine particles are not limited to simple substances but may be capsule fine particles in which a dye, a pigment, and some color materials are encapsulated with a resin or a liquid in order to optimize chargeability and color tone.
  • Particles with an anisotropic shape such as a spherical shape, needle shape, rod shape, scale shape, etc. can be said to be suitable when a linear electrode is used as in the present application. This is because particles are oriented in all directions in a dispersed state, and have high light absorption ability and light scattering ability. When they are accumulated on an electrode, needle-like and rod-like particles are arranged parallel to the electrode, and in a scale-like form, they overlap each other.
  • the size of the fine particles is desirably about 5 nm to 5. Fine particles can be surface-modified by surface coating at the atomic or molecular level, or can be charged and imparted with good dispersion using a dispersant, surfactant, etc. It needs to be adjusted so that it can be quickly redistributed.
  • Typical interfacial polymerization methods as chemical methods and ins are e-polymerization methods (interfacial reaction methods)
  • Typical submerged drying methods, coacervation methods, melt dispersion cooling as physicochemical methods (3) Typical spray drying method as a mechanical method , Dry mixing, orifice method, etc.
  • a variety of polymer materials such as gelatin, gum arabic, melamine resin, urea resin, formalin resin, urea resin, polyurea resin, amino acid resin, and melamine formaldehyde resin can be used as the membrane material for the microcapsules.
  • Microcapsules with a gas body inside are generally called microballoons.
  • the method for producing a microballoon containing fine particles is as follows: (1) For example, a diazo component that generates nitrogen gas or the like when irradiated with ultraviolet light is introduced or adsorbed on the surface, and the fine particle group is polymerized. After covering with resin, ultraviolet light is irradiated to generate gas inside to form a hollow capsule with fine particles (2) Encapsulate particles with bubbles (3) Dry matter such as dry ice in a gaseous state For example, the liquid can be liquefied at a low temperature or solidified into a fine powder and encapsulated at a low temperature with fine particles.
  • the dispersion system 7 is a dispersion system in which fine particles with high fluidity are dispersed in a gas body such as air or nitrogen, a display panel with a high-speed response is possible because the resistance to particle movement is low. It is known that the formation of minute irregularities on the surface of the fine particles further increases the fluidity, and that the surface treatment of the particles with a silane-powered pulling agent or silicone oil is effective for controlling the chargeability and improving the fluidity.
  • the panel surface should be reinforced with an acrylic plate or with a built-in UV absorber or coated on the surface. An anti-reflective coating is also useful for improving visibility.
  • the medium is a liquid
  • various types of highly insulating solvents such as silicon-based, petroleum-based and halogenated hydrocarbons can be used.
  • non-linear element materials semiconductors such as MIM, chalcogenide-based compounds, and zinc oxide, in which thin films such as Ta and AI are anodized and sandwiched between other metals, can be used.
  • semiconductors such as MIM, chalcogenide-based compounds, and zinc oxide, in which thin films such as Ta and AI are anodized and sandwiched between other metals.
  • a—S i, a- l nGaZnO polysilicon Inorganic semiconductors such as low molecular and high molecular organic semiconductors such as pentacene, polyfluorene, and polyphenylthiophene are used.
  • the present invention has the following effects.
  • a display device that changes the light transmissivity by moving charged fine particles with an electric field.
  • Low voltage by examining the electrode configuration, the amount of fine particles in the cell, the electrode pitch, the cell thickness, and the drive electrode area ratio Achieves high contrast and high transmittance, high-definition compact light bulb for enlarged projection, small to meter-size direct-view display, thin flexible black-and-white and full-color electronic vapor, more than 10 meters Applicable to a wide range of display sizes up to ultra-large display devices, realizing a display device that can be used exclusively for reflection, transmission, or both reflection and transmission.
  • FIG. 1 is a cross-sectional view showing the principle of a conventional horizontal electric field particle movement type display device.
  • FIG. 2 is another cross-sectional view showing the principle of a conventional horizontal electric field particle movement type display device.
  • FIG. 3 is a cross-sectional view showing the principle of the horizontal electric field particle movement type display device of the present invention.
  • FIG. 4 is a front view of electrodes used in the display device of the present invention.
  • FIG. 5 is a diagram for explaining light state transparency of the display device of the present invention.
  • FIG. 6 is a cross-sectional view showing another electrode configuration of the display device of the present invention.
  • FIG. 7 is a front view of another electrode used in the display device of the present invention.
  • FIG. 8 is a cross-sectional view of an electrode part for improving the transparency in the bright state of the display device of the present invention.
  • FIG. 9 is a cross-sectional view showing another configuration of the display device of the present invention.
  • FIG. 10 (A) is a cross-sectional view of the laminated color panel of the present invention, and (B) is a perspective view of the pinned color panel of the present invention.
  • FIG. 11 Sectional view of a color panel laminated with C, M, Y capsule particles of the present invention.
  • FIG. 14 is a front view of the electrode configuration of the pixel portion of the 3-terminal AM panel of the present invention.
  • FIG. 15 Cross section of another color panel in which C, M, Y capsule particles of the present invention are laminated
  • FIG. 16 is a sectional view of a reflective type light valve using the silicon integrated circuit of the present invention as a lower substrate.
  • FIG. 17 is a sectional view of a color panel with a color filter of the present invention.
  • FIG. 18 is a sectional view showing the operating principle of the single-layer multi-color panel of the present invention.
  • FIG. 19 An example of a process diagram for producing the panel of the present invention by roll-to-roll

Abstract

A liquid crystal display device has used a polarizing plate to cause an optical loss of 50 %. Moreover, the transverse-field particle moving type display device of the prior art is defective in a response speed, a drive voltage, brightness, a contrast and so on. Provided is a display device having a cell constituted by sandwiching a dispersion system having fine particles dispersed between substrates, at least one of which is transparent, so that an optical transmittivity or an optical reflectivity normal to the substrates of the cell may be varied by moving the fine particles with an electric field. Monochromatic and color displays of ahightransmittivity, a high contrast and a low-voltage drive can be made in a thin type, in a light weight and at a high speed, by setting an electrode pitch (p) between a drive electrode and a common electrode for applying an electric field, to 5μ to 100 μ, by setting a cell thickness (d) to 0.2 to 1.5 times as large as p, and by setting the electrode area percentage of the drive electrode to 20 % or less. The display device can be applied to various aspects such as a superhigh light modulating element, a display for a portable device, electronic paper, a large-size monitor, a large-size TV or a very large public display.

Description

明 細 書  Specification
表示装置とその製造法  Display device and manufacturing method thereof
技術分野  Technical field
[0001 ] 少なくとも 1方は透明な基板間に、 帯電した微粒子が媒体中に分散され た分散系が挟まれてセルを構成しており、 該微粒子を電界で移動させて、 該 セルの基板に垂直方向の光透過性あるいは光反射率を変化させる表示装置に おいて、 電界を印加するために設けられた駆動電極と共通電極の電極間ピッ チ Pが 5〜 1 0 0 、 画素内の駆動電極面積率が 2 0 %以下、 セルギャップ dをピッチ pの 0 . 2〜 1 . 5倍に設定したことを特徴とした表示装置であ つて、 高精細小型パネルをライトバルブとした拡大投射表示、 小型からメー トルサイズの直視型表示装置、 薄型フレキシブルな白黒およびフルカラー電 子ぺーパ表示、 基本セルないし基本パネルを 2次元状に多数配列した数 1 0 メートルを超える超大型表示装置まで広範囲の表示サイズに適用でき、 また 反射専用、 透過専用あるいは反射、 透過両用に適用可能な表示装置とその製 造法に関するものである。 背景技術  [0001] At least one of the transparent substrates comprises a cell in which a dispersed system in which charged fine particles are dispersed in a medium is sandwiched, and the fine particles are moved by an electric field to form a cell on the cell substrate. In a display device that changes the light transmittance or light reflectance in the vertical direction, the pitch P between the drive electrode and the common electrode provided for applying an electric field is 5 to 100, and the drive within the pixel A display device characterized by an electrode area ratio of 20% or less and a cell gap d set between 0.2 and 1.5 times the pitch p. A wide range of displays from small to meter-sized direct-view display devices, thin flexible black and white and full-color electronic paper displays, and super-large display devices with a number of basic cells or two or more basic panels arranged in two dimensions. Suitable for size The present invention relates to a display device that can be used only for reflection, transmission only, or applicable to both reflection and transmission, and a manufacturing method thereof. Background art
[0002] 従来の薄型表示装置の代表は液晶表示装置であり、 モノクロはじめ赤 (R) 、 緑 (G ) 、 青 (B ) の 3色カラーフィルタを設けてそれに対応した液晶層 を、 透過率を変化させるシャッターとして動作させ、 R, G , B光の加色法 によってフルカラーを実現している。 背後に白色バックライ卜が設けられた ものは透過型カラー液晶装置であり、 液晶 T V、 パソコンモニター、 携帯電 話の表示装置など広く利用されている。 しかるに液晶表示装置の重大なる難 点の 1つは偏光板を用いることによる 5 0 %を超える光ロスである。  [0002] A typical thin display device is a liquid crystal display device, which is provided with a three-color filter of monochrome (Red), green (G), and blue (B) and a corresponding liquid crystal layer. It is operated as a shutter that changes the color, and full color is realized by the additive method of R, G, B light. The one with a white backlight on the back is a transmissive color liquid crystal device, which is widely used for liquid crystal TVs, personal computer monitors, mobile phone displays, and so on. However, one of the serious difficulties of liquid crystal display devices is optical loss exceeding 50% due to the use of polarizing plates.
[0003] 液晶以外の表示装置として透明液体ないしガス体に分散された微粒子を表示 面に対して水平方向に移動集積させることによって光線透過性ないしは光線 反射性を変化させる横電界方式粒子移動表示法が提案されている (特許文献 1〜1 3 ) 。 その構成は図 1および図 2に示す通り、 透明カウンター電極 3 を設けた透明基板 1と、 コレク卜電極 4を設けた基板 2との間に微粒子分散 系が挟まれておリ、 電極 3と電極 4間に電圧を印加して粒子をカウンター電 極 3上に堆積させるか、 面積の小さいコレク卜電極 4上に集積させるかによ つてセルの光透過率を変えることを特徴としている。 すなわち微粒子が黒色 光吸収性の場合 (A) , ( C) では暗状態、 (B ) 、 ( D ) では明状態にな る。 [0003] Transverse electric field type particle movement display method for changing light transmissivity or light reflectivity by moving and accumulating fine particles dispersed in a transparent liquid or gas as a display device other than liquid crystal in the horizontal direction with respect to the display surface (Patent Literature) 1 to 1 3). As shown in FIGS. 1 and 2, a fine particle dispersion system is sandwiched between a transparent substrate 1 provided with a transparent counter electrode 3 and a substrate 2 provided with a collect electrode 4. It is characterized in that the light transmittance of the cell is changed depending on whether particles are deposited on the counter electrode 3 by applying a voltage between the electrodes 4 or accumulated on the collector electrode 4 having a small area. In other words, when the fine particles are black light-absorbing, they are in the dark state in (A) and (C) and in the bright state in (B) and (D).
[0004] 他の構成は図 2に示されている。 ここでは透明コレクト電極 4および透明力 ゥンター電極 3が同一面上に設けられており、 粒子を透明カウンター電極 3 上に堆積させるかないしは粒子分散状態で暗状態、 透明コレク卜電極 4上に 堆積させた時明状態となる。  [0004] Another configuration is shown in FIG. Here, the transparent collect electrode 4 and the transparent force counter electrode 3 are provided on the same surface, and the particles are deposited on the transparent counter electrode 3 or deposited on the transparent collector electrode 4 in the dark state in a dispersed state. When you let it go, it becomes bright.
[0005] 図 1および図 2の如き電極構成及び表示モードでは駆動電圧の上昇、 応答速 度の低下を来たすという重大な問題を抱えていた。 すなわち図 1 ( A) 、 図 2 ( A) から明らかな通り、 両端のコレクト電極 4の中間辺り (すなわちセ ル中央部) にある粒子は電界が弱い上に、 明暗時にこれらの粒子をコレクト 電極上ないしカウンター電極中央部までもたらすには長い距離を移動させる 必要があり、 明、 暗の切替時間 (応答速度) が極端に悪化する問題があった 。 また不均一電界中で面積の大きいベタ透明カウンター電極上に粒子を均一 に堆積させることが困難であるため、 コントラス卜に優れた表示を実現する ことが難かしかった。 さらに画素に大きな透明カウンター電極を設けている ため反射型で使用する場合、 光線は透明電極を 2回通過するからたとえ透過 率が 9 0 %であっても (0 . 9 2 = 0 . 8 1 ) 2 0 %以上の光線ロスを発生す る。 3層積層した場合には 0 . 9 6より反射明度は 5 3 %以下に低下するとい う難点があった。 従来の表示装置では高コントラスト、 高透過率を実現する 条件が提示されていなかった。 図 1 ( C) の如き電極構成及び表示モードで は確かに画素面内で電界強度を均一化した点で優れている。 また暗状態を必 ずしも粒子をカウンター電極に集積した状態ではなく、 粒子がほぼ均一に分 散した状態を用いていることも応答性改善に繋がる。 しかしながら大面積の ベタ透明画素電極を設けている点で図 1 (A) , 図 2 (A) と同様の光ロス は避けられないことと分散粒子量、 コレクト電極幅、 電極ピッチ、 セル厚等 について実用面からの検討がなされておらず、 高コントラスト、 高透過率、 低電圧駆動、 高速応答を実現する条件も提示されていなかったために実用性 に乏しいものであった。 特許文献 1 :特開昭 49— 24695公報 [0005] The electrode configuration and the display mode as shown in Figs. 1 and 2 have serious problems in that the drive voltage increases and the response speed decreases. In other words, as is clear from Fig. 1 (A) and Fig. 2 (A), the particles in the middle of the collect electrodes 4 at both ends (that is, the center of the cell) have a weak electric field, and these particles are collected in the dark and dark. In order to bring it to the top or the center of the counter electrode, it is necessary to move a long distance, and there is a problem that the switching time (response speed) of light and dark becomes extremely worse. In addition, since it is difficult to deposit particles uniformly on a solid transparent counter electrode having a large area in a non-uniform electric field, it was difficult to achieve a display with excellent contrast. Furthermore when used in reflective type because they provided a large transparent counter electrode to a pixel, even if the transmittance because light passes twice a transparent electrode is 90% (0.9 2 = 0.8 1 ) Generates 20% or more light loss. When the three-layer laminated 0. 9 6 from reflection brightness had difficulty cormorants have when reduced to 5 3% or less. In conventional display devices, conditions for realizing high contrast and high transmittance were not presented. The electrode configuration and display mode as shown in Fig. 1 (C) are certainly excellent in that the electric field strength is uniform in the pixel plane. In addition, the dark state is not necessarily the state in which particles are accumulated on the counter electrode, but the use of a state in which particles are dispersed almost uniformly also leads to improved responsiveness. However, large area From the standpoint of practical use, the same optical loss as in Fig. 1 (A) and Fig. 2 (A) is unavoidable due to the provision of a solid transparent pixel electrode, and the amount of dispersed particles, collect electrode width, electrode pitch, cell thickness, etc. However, the conditions for realizing high contrast, high transmittance, low voltage drive, and high-speed response were not presented, so the practicality was poor. Patent Document 1: JP-A-49-24695
特許文献 2:特開平 03_91 722公報 Patent Document 2: Japanese Patent Laid-Open No. 03_91 722
特許文献 3: US P5, 745,094 Patent Document 3: US P5, 745,094
特許文献 4:特開平 9 _ 21 1 499 Patent Document 4: Japanese Patent Laid-Open No. 9_21 1 499
特許文献 5:特開 2001 _ 201 770 Patent Document 5: JP 2001 _ 201 770
特許文献 6:特開 2004 _ 2081 8 Patent Document 6: Japanese Patent Application Laid-Open No. 2004_2081 8
特許文献 7:特表 2005— 500572 Patent Document 7: Special Table 2005—500572
特許文献 8:特開 2002— 333643 Patent Document 8: JP 2002-333643
特許文献 9:特開 2003— 248244 Patent Document 9: Japanese Patent Laid-Open No. 2003-248244
特許文献 10:特開 2005 _ 3964 Patent Document 10: JP-A-2005-3964
特許文献 11 :特開 2004 _ 25861 5 Patent Document 11: JP-A-2004-25861 5
特許文献 12:特開 2004— 252277 Patent Document 12: Japanese Patent Application Laid-Open No. 2004-252277
特許文献 13:特開 2002 _ 1 22890 Patent Document 13: Japanese Patent Laid-Open No. 2002_1 22890
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
表示装置では応答速度は早いことが望ましい。 実用的な応答速度を実現する には電気泳動による粒子移動の場合、 通常 0. 2〜2 VZ 程度の電界強度 が必要である。 表示装置の画素は用途によって種々のサイズが存在する。 拡 大投射に用いるライ卜バルブでは小型、 高精細が要求されるから画素サイズ は 1 0 以下の場合もある。 一方屋内外に設置される公衆ディスプレイでは センチメートルオーダの画素になる場合もある。 本願では粒子ディスプレイ をあらゆるサイズの画素に適用し、 尚且つ実用的な駆動電圧で透過率、 コン トラスト、 応答速度等ディスプレイとしての重要な特性を最適化することに よって実用性を向上させたものである。 It is desirable for the display device to have a high response speed. In order to realize a practical response speed, an electric field strength of about 0.2 to 2 VZ is usually required for particle migration by electrophoresis. There are various sizes of pixels of a display device depending on applications. Since the light bulb used for enlarged projection requires small size and high definition, the pixel size may be 10 or less. On the other hand, in a public display installed indoors or outdoors, the pixel may be in the order of centimeters. In this application, the particle display is applied to pixels of all sizes, and the transmittance, By optimizing important display characteristics such as trust and response speed, practicality has been improved.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するために、 本発明では従来同様横電界を用いるもので あるが、 透過率、 コントラスト、 応答速度など表示性能を向上させると共に 、 駆動電圧を低減させるセル構成と表示モードを提案するものである。  [0007] In order to solve the above problems, the present invention uses a horizontal electric field as in the prior art. However, the cell configuration and the display mode improve the display performance such as transmittance, contrast, response speed, and reduce the drive voltage. This is a proposal.
[0008] 本発明の基本セルの構成は図 3 ( A) に示す通り、 ガラス、 プラスチックな ど少なくとも一方は透明な 2枚の基板 1, 2間に設けられた隔壁 2 0により セル 8が構成され、 該セル内には透明媒体に微粒子 5が分散された分散系 7 が充填されておリ、 下基板には図 4に示すような細線からなる一対の電極 6 - 1、 6—2がセルの全面に設けられてセル 8が構成されている。  The configuration of the basic cell of the present invention is as shown in FIG. 3 (A). Cell 8 is constituted by partition walls 20 provided between two substrates 1 and 2, at least one of which is transparent, such as glass and plastic. The cell is filled with a dispersion system 7 in which fine particles 5 are dispersed in a transparent medium, and a pair of electrodes 6-1 and 6-2 made of fine wires as shown in FIG. A cell 8 is formed on the entire surface of the cell.
図 3 ( A) のようにセル 8中にカーボンブラックなどの黒色光吸収性の微粒 子 5が均一に分散された状態では透明基板 2から入射した光は、 微粒子 5の 隠べい力が十分ならば黒色となる。  As shown in Fig. 3 (A), when the black light-absorbing fine particles 5 such as carbon black are uniformly dispersed in the cell 8, the light incident from the transparent substrate 2 has sufficient hiding power of the fine particles 5. Then it becomes black.
[0009] 図 3 ( B ) のように電極 6—1と 6— 2間に D C電圧を印加すれば、 微粒子 5 が正に帯電している場合クーロン力により負極の電極 6 _ 1上に集積する。 この場合粒子が集積した線状電極 6— 1以外の領域は光を遮るものがなく透 明となる。 ここで 6—1、 6— 2間に逆極性の適切な D C電圧パルスないし A C電圧を印加すれば 6— 1上の微粒子は電極を離れてセル 8中に拡散分布し 、 セル 8は再び不透明となる。 このようにセル 8内の分散状態の粒子量 (し たがって 6 _ 1へ集積させる粒子量) を変えることによってセルの透過率を 連続的に変化でき集積状態の粒子も、 分散状態の粒子も電圧を切って後もそ の状態を維持するため表示はメモリ性を有する。 分散系 7はガス又は透明な 液体中に正または負に帯電した微粒子が分散されたものから成り、 液体の場 合は粒子の移動は電気泳動と呼ばれる。 電極 6 _ 1、 6 _ 2の形状は図 4に 示すように、 櫛型、 渦型、 これらと類似形状など種々の形が用いられるがい ずれも細線から構成されていることが共通している。 全体形状は短形、 円形 、 六角形など任意である。 [0010] 本発明では粒子を集積する電極 6— 1を駆動電極、 他方の電極 6— 2を共通 電極と呼ぶ。 細線状の駆動電極がセル全面に存在する故に共通電極 6— 2と の間の強いエッジ電界で粒子は集積、 分散を繰り返すことが出来、 セルの周 辺のみに電極を設けた図 1の場合に較べて特に画素が大きくなった場合応答 速度が顕著に向上する。 また粒子を移動させる電界強度は 6 _ 1と 6 _ 2の 電極間距離、 駆動電圧で決まるからセルサイズに拘わらず低電圧でも十分な 電界を作用させることが可能になリ、 低電圧駆動で高速応答を実現できるこ とになる。 When a DC voltage is applied between the electrodes 6-1 and 6-2 as shown in FIG. 3 (B), when the fine particles 5 are positively charged, they are accumulated on the negative electrode 6 _ 1 by the Coulomb force. To do. In this case, the region other than the linear electrode 6-1 where the particles are accumulated is transparent because it does not block light. If an appropriate DC voltage pulse or AC voltage of opposite polarity is applied between 6-1 and 6-2 here, the fine particles on 6-1 will diffuse and distribute in the cell 8 leaving the electrode, and the cell 8 will become opaque again. It becomes. In this way, by changing the amount of dispersed particles in cell 8 (and thus the amount of particles accumulated in 6_1), the transmittance of the cell can be continuously changed. The display has a memory property in order to maintain the state after the voltage is turned off. Dispersion system 7 consists of a gas or a transparent liquid in which positively or negatively charged fine particles are dispersed. In the case of a liquid, the movement of the particles is called electrophoresis. As shown in Fig. 4, the shapes of electrodes 6 _ 1 and 6 _ 2 are comb-shaped, vortex-shaped, and similar shapes. . The overall shape is arbitrary, such as short, circular, hexagonal. In the present invention, the electrode 6-1 for accumulating particles is called a drive electrode, and the other electrode 6-2 is called a common electrode. In the case of Fig. 1 where particles are accumulated and dispersed by the strong edge electric field between the common electrode 6-2 and the electrode is provided only on the periphery of the cell because the thin line drive electrode exists on the entire cell surface. The response speed is remarkably improved especially when the pixel size is increased. In addition, the electric field strength for moving the particles is determined by the distance between the electrodes 6 _ 1 and 6 _ 2 and the driving voltage, so that a sufficient electric field can be applied even at low voltages regardless of the cell size. High-speed response can be realized.
細線状の駆動電極はアルミ、 クロム、 金、 タンタルなどの金属を蒸着ゃスパ ッタで設けてフォト処理でパタン化した薄膜や、 導電性塗料を印刷、 インク ジエツ卜描画などで設けた導電性厚膜などで構成できる。 一対の電極は上基 板 1に設けられていてもかまわない。  The thin line drive electrode is a conductive film provided by depositing a metal such as aluminum, chromium, gold, or tantalum with a spatter and patterning by photo processing, or printing conductive paint, drawing ink jets, etc. A thick film can be used. The pair of electrodes may be provided on the upper substrate 1.
[001 1 ] 微粒子を駆動電極に集積した時共通電極表面ゃ両電極間隙、 あるいは上下基 板内面に固着して残存することはセルの明状態の光透過性を阻害するゆえに 好ましくない。 従ってセルのこの部分には微粒子の固着を妨げるようフッ素 化合物などの低表面張力物質のコーティングあるいは粒子の帯電と同極性に 帯電するような表面処理がなされていることが望ましい。 また分散媒が液体 の場合は微粒子と液体の比重は出来るだけ近接していることが粒子の沈降や 浮上を生じさせにくいことから望ましい。  [001 1] When the fine particles are accumulated on the drive electrode, it is not preferable that the surface of the common electrode is fixed to the gap between both electrodes or the inner surfaces of the upper and lower substrates because the light transmittance of the bright state of the cell is inhibited. Therefore, it is desirable that this part of the cell is coated with a low surface tension material such as a fluorine compound or surface treatment so as to be charged with the same polarity as the charged particles so as to prevent the fine particles from sticking. When the dispersion medium is a liquid, it is desirable that the specific gravity of the fine particles and the liquid be as close as possible because it is difficult for the particles to settle or float.
[0012] 本発明で分散状態とはブラウン運動により比重差に拘わらず液体中に安定に 微粒子が均一分散したコロイド状態は勿論、 基板 1, 2内面のいずれかない し両面に一部ないし殆どの粒子がゆるく付着した状態、 粒子が互いにゆるく 凝集し、 両電極間に 3次元網目構造を形成している状態も含むものである。 また微粒子は 1種類である必要はなく、 光学的特性を最適化するため各種の ものが混在していてもよい。 微粒子 5は通常光吸収性のものが使用されるが 、 二酸化チタンのように白色等反射性のものを用いることも可能であり、 こ の場合セル 8の微粒子分散状態では入射光が微粒子で散乱反射されその程度 に応じて透過光は減衰する。 反射で見る場合は粒子分散状態で粒子の色、 基 板 2ないし透明基板 2の下部が粒子と異なる色 (たとえば黒色) であれば粒 子集積状態での反射色はほぼ黒色となる。 In the present invention, the dispersed state is a colloidal state in which fine particles are stably dispersed uniformly in the liquid regardless of the specific gravity difference due to Brownian motion, as well as some or most of the particles on either of the inner surfaces of the substrates 1 and 2. This includes the state in which the particles are loosely attached, and the particles are loosely aggregated together to form a three-dimensional network structure between the two electrodes. The fine particles do not have to be one kind, and various kinds of fine particles may be mixed to optimize the optical characteristics. The fine particles 5 are usually light-absorbing, but it is also possible to use white or other reflective materials such as titanium dioxide. In this case, the incident light is scattered by the fine particles in the dispersed state of the cells 8. Reflected light is attenuated according to the degree of reflection. When viewed through reflection, the particle color, If the lower part of the plate 2 or the transparent substrate 2 is a color different from the particles (for example, black), the reflected color in the particle accumulation state is almost black.
[0013] 本願の如き受動型表示装置では表示性能を決するものは、 透過率 (反射率) 、 コントラスト、 色純度、 応答速度、 解像度、 視野角などであり、 装置とし ては駆動電圧、 消費電力も重要な要素となる。 図 3の如き表示装置で透過コ ントラストは粒子分散状態 (暗) の透過率と粒子集積状態 (明) の透過率で 決定される。 特に十分な暗状態を作り出すことがコントラス卜向上には必須 用件となる。 コントラスト 1000 : 1、 100 : 1、 10 : 1以上を実現 するにはセルの粒子分散状態での透過率は各々 0. 1 % (光学濃度 3以上) 、 1 % (光学濃度 32上) 、 10%未満 (光学濃度 1以上) である必要があ る。 本願のセル構成では分散系の粒子濃度を増せば分散状態の透過率を上記 値にすることは極めて容易である。 しかし粒子濃度を増すと一般に粒子の移 動速度が遅くなる、 明状態の透過率が悪化しやすいなどの障害が発生するか ら不必要に粒子濃度を上げるのは得策ではない。  [0013] In the passive display device as in the present application, what determines the display performance is transmittance (reflectance), contrast, color purity, response speed, resolution, viewing angle, etc. The drive voltage and power consumption of the device Is also an important factor. In the display device as shown in Fig. 3, the transmission contrast is determined by the transmittance in the particle dispersion state (dark) and the transmittance in the particle accumulation state (bright). In particular, creating a sufficiently dark state is an essential requirement for improving contrast. To achieve a contrast of 1000: 1, 100: 1, 10: 1 or higher, the transmittance of the cell in the particle dispersion state is 0.1% (optical density of 3 or higher), 1% (optical density of 32 or higher), 10 Must be less than% (optical density 1 or more). In the cell configuration of the present application, it is very easy to set the transmittance in the dispersed state to the above value by increasing the particle concentration of the dispersed system. However, increasing the particle concentration generally slows the moving speed of the particles and tends to deteriorate the light transmittance, so it is not a good idea to increase the particle concentration unnecessarily.
[0014] 図 5を用いて本表示装置での粒子集積時の明状態の透過率について述べる。  [0014] The transmittance in the bright state at the time of particle accumulation in this display device will be described with reference to FIG.
十分ないんぺい性が得られる濃度に微粒子を分散させた分散系中の粒子をす ベて上基板に集積したと想定しこの時の粒子層の厚みを d、 画素の面積を S とする (A) 。 1画素の表示面から見た駆動電極の総面積を Asとし、 分散 粒子をすベて Δ sに集積した明状態では、 駆動電極上の粒子層の厚み hは d* S/Asとなる (B) 。 明状態は S_Asを最大化すなわち Asを最小化する ことで実現される。 AsZSを駆動電極の面積率と定義する。 面積率を 10 %、 20%とすればほぼ 90%、 80%の透過率を実現できることになる。 しかしながらこの時の Δ s上の粒子層の厚み hは各々 dの 10倍、 5倍にな る。 すなわち極小の面積の駆動電極に出来るだけ厚く粒子を積み上げれば高 透過率と高コントラス卜を実現できることになリ、 dが小すなわち隠べい力 の高い粒子を用いるほど薄い粒子層で上記高パフォ一マンスが実現できるこ とが期待できる。 隠べい力は粒子そのものの特性は勿論、 粒径が深く関与し 、 隠べい力が高くなる粒径を選ぶべきである。 [0015] 極小の面積率は図 4の如き細線状の電極を利用して実現でき、 駆動電極幅は 製造の容易さ、 、 電極の信頼性および集積粒子層の安定性を考慮して可能な 限り最小幅で形成すべきである。 線幅 30 以下、 望ましくは 1 0 以下、 ライ卜バルブ等では数 以下で用いるのが望ましい。 たとえば 1 00 幅の 画素に 5 幅の駆動電極を 4本設けても面積率 20%であり、 電極をより細 線化することによって面積率を 1 0%以下にすることは可能である。 Assuming that all the particles in the dispersion system in which fine particles are dispersed at a concentration that provides sufficient coverage are collected on the upper substrate, the thickness of the particle layer at this time is d, and the area of the pixel is S (A ) In the bright state in which the total area of the drive electrode viewed from the display surface of one pixel is As and all dispersed particles are accumulated in Δs, the thickness h of the particle layer on the drive electrode is d * S / As ( B). The bright state is realized by maximizing S_As, ie minimizing As. AsZS is defined as the area ratio of the drive electrode. If the area ratio is 10% and 20%, the transmittance of 90% and 80% can be realized. However, the thickness h of the particle layer on Δs at this time is 10 times and 5 times of d, respectively. In other words, if the particles are stacked as thick as possible on the drive electrode with the smallest area, high transmittance and high contrast can be realized, and the smaller the d, the higher the hiding power, the thinner the particle layer It can be expected that performance will be realized. The concealment force is not only the characteristics of the particles themselves, but also the particle size is deeply involved, and the particle size should be selected to increase the concealment force. [0015] The minimum area ratio can be realized by using a thin wire electrode as shown in FIG. 4, and the drive electrode width can be considered in consideration of ease of manufacture, reliability of the electrode, and stability of the integrated particle layer. It should be formed with the smallest possible width. The line width should be 30 or less, preferably 10 or less. For example, even if four 5-width drive electrodes are provided in a 100-width pixel, the area ratio is 20%, and the area ratio can be reduced to 10% or less by making the electrodes thinner.
粒子濃度を下げれば粒子の移動速度は速くなリ、 分散系を厚くすれば低粒子 濃度 (gZcm3) でも隠べい性ないし着色力を高めることができる。 しかし ながら電極から遠のくほど粒子に作用する電界が弱まり、 かつ電極に集積す るには粒子は長い距離を移動する必要があり応答が遅くなる。 If the particle concentration is lowered, the moving speed of the particles is increased, and if the dispersion is thickened, the hiding property or coloring power can be increased even at a low particle concentration (gZcm 3 ). However, the farther away from the electrode, the weaker the electric field acting on the particles, and the particles need to move a longer distance to accumulate on the electrodes, resulting in a slower response.
経験上セルギャップは電極ピッチ Pの 0. 2〜1. 5倍程度 (20〜1 50 %) に選ぶと電界の波及性が確保され従ってオン (明) 、 オフ (暗) 時の応 答性が確保できる。  From experience, the cell gap is selected to be about 0.2 to 1.5 times the electrode pitch P (20 to 1 50%), so that the electric field ripple is secured, and therefore the response when on (bright) and off (dark). Can be secured.
[0016] 電気泳動での粒子移動で実用的な応答性実現には先述の通り 0. 2〜2VZ U程度の電界強度が必要であり、 画素サイズに係らずこの電界強度は確保し たい。 図 4 (A) に示す電極ピッチ pを 5〜 1 00 程度に選び、 セルギヤッ プ dを電極ピッチ pの 0. 2〜1. 5倍 ( 1 〜 1 50 ) にすれば、 対向電 極間電圧 1 V〜 200 Vで上記電界強度 0. 2〜 2 VZ がほぼ確保できる 。 直視型ディスプレイに限れば電極ピッチは 20〜 50 程度、 セルギヤッ プ 1 0〜75 、 印加電圧 4〜1 00Vが実用的である。 公衆表示の超大型 ディスプレイで画素が数 mm〜数 c mのものでも電極ピッチを上記 20〜 5 0 程度で構成すれば十分低電圧で駆動できることになる。  [0016] As described above, an electric field strength of about 0.2 to 2 VZU is necessary to realize a practical responsiveness by particle movement by electrophoresis, and it is desirable to ensure this electric field strength regardless of the pixel size. If the electrode pitch p shown in Fig. 4 (A) is selected to be about 5 to 100, and the cell gap d is set to 0.2 to 1.5 times (1 to 1 50) of the electrode pitch p, the voltage between the counter electrodes The electric field strength of 0.2 to 2 VZ can be almost secured at 1 V to 200 V. For direct-view displays, the electrode pitch is about 20-50, cell gap 10-75, and applied voltage 4-100V are practical. Even if the display is an ultra-large display with pixels of several mm to several cm, it can be driven at a sufficiently low voltage if the electrode pitch is set to about 20 to 50 above.
[0017] 一方ライ卜バルブのような小型高精細パネルで画素サイズが 1 0 程度では 電極をセル両端に設けた電極ピッチ約 1 0 で用いるか、 セル両端ないし隔 壁の下部または隔壁側面に設けた駆動 (共通) 電極間に共通 (駆動) 電極 1 本を入れて、 ピッチ約 5 で用いればよい。  [0017] On the other hand, if the pixel size is about 10 with a small high-definition panel such as a line valve, the electrodes are used at an electrode pitch of about 10 provided at both ends of the cell, or provided at both ends of the cell, the lower part of the partition wall, or the side wall of the partition wall. A common (drive) electrode may be inserted between the drive (common) electrodes and used at a pitch of about 5.
以上、 電極ピッチ、 セル厚は駆動電圧、 応答速度に深く係り、 それぞれの実 用的な値を示した。 [0018] ちなみに特許文献 2では 400 幅の電極が 1 000 の間隙で配置される 実例が記載されているから面積率 =厶 sZS = 400/1 400 = 28. 5% となり、 1 00 のセルギャップに 1 00〜30 OVを印加して 55%の透 過率と 1 1 0のコントラストが報告されている。 セルギャップの電極ピッチ に対する割合は 1 00/1 400 = 7. 1 %で極めて小さく帯状電極間中央部 の電界は極度に弱くなつてしまう。 最大電界強度 1〜3 v/ であるが、 これ はあくまでも対向している電極間の電界であって帯状電極間中央部では粒子 に作用する電界は図 1 (A) と同様極めて低下せざるを得ず応答速度の低下 をきたし電界均一化がなされているとは言い難く実用上問題があった。 As described above, the electrode pitch and cell thickness are closely related to the drive voltage and response speed, and practical values are shown. [0018] Incidentally, Patent Document 2 describes an example in which a 400-width electrode is arranged with a gap of 1 000, so the area ratio = 厶 sZS = 400/1 400 = 28.5%, and a cell gap of 100 A 100% to 30 OV was applied to the sample, and 55% transmission and 110 ° contrast were reported. The ratio of the cell gap to the electrode pitch is 100/1 400 = 7.1%, which is extremely small, and the electric field at the center between the strip electrodes becomes extremely weak. Although the maximum electric field strength is 1 to 3 v /, this is only an electric field between the electrodes facing each other, and the electric field acting on the particles at the center between the strip electrodes must be extremely reduced as in Fig. 1 (A). It was difficult to say that the response speed was lowered and the electric field was made uniform.
[0019] 以上述べた通り、 駆動電圧、 応答速度の低減は電極ピッチとそれに対応した セル厚の設定により、 透過率、 コントラストの向上は A sの低減、 分散粒子 の選定、 分散粒子量の最適化によって実現できると言える。  [0019] As described above, the drive voltage and response speed are reduced by setting the electrode pitch and the corresponding cell thickness. The transmittance and contrast are improved by reducing As, the selection of dispersed particles, and the optimum amount of dispersed particles. It can be said that it can be realized by the conversion.
[0020] 本発明で用いる電極構成は図 3、 図 4に示したものの他、 種々の形式が利用 可能である。  [0020] In addition to the electrode configurations used in the present invention, those shown in Figs. 3 and 4, various types can be used.
図 6 (A) には図 4の一方の電極を対向基板上に設けた場合を示す。 分散系 が多少厚くなつても図 3の場合より全体として粒子に強い電界を印加できる 図 6 (A) のようにそれぞれを異なる基板上に電極を設ける場合、 図 7に示 すように駆動、 共通各線状電極はストライプ、 格子、 渦など閉じられた電極 構成でもよい。  Fig. 6 (A) shows the case where one electrode of Fig. 4 is provided on the counter substrate. Even if the dispersion is a little thicker, it is possible to apply a stronger electric field to the particles as a whole than in the case of Fig. 3.When electrodes are provided on different substrates as shown in Fig. 6 (A), driving as shown in Fig. 7, Each common linear electrode may have a closed electrode configuration such as a stripe, lattice, or vortex.
[0021] 駆動電極と共通電極が同一パタンで互いに重なり合う位置にある図 6 (A) と互いに少しずらす場合 (図 6 (B) ) がある。 図 6 (B) の場合は共通電 極は透明にすべきであり、 各電極間の中央部にある粒子にはよリ強い電界を 作用できる利点があるが粒子に正、 負両極性のものを用いた場合透過率が低 下する欠点が発生するから粒子は同極性のものを選ぶべきである。  [0021] There are a case where the drive electrode and the common electrode are located at positions where they overlap each other in the same pattern, and FIG. 6 (A) is slightly shifted from each other (FIG. 6 (B)). In the case of Fig. 6 (B), the common electrode should be transparent, and there is an advantage that a strong electric field can be applied to the particles in the center between each electrode, but the particles have both positive and negative polarities. When using, particles with the same polarity should be selected because of the disadvantage that the transmittance decreases.
[0022] 図 6 (C) は両基板にそれぞれ図 4の如き共通電極と駆動電極対を有するも ので尚且つ駆動電極と共通電極が重なり合うように配置したもので、 図 6 ( B) と同様微粒子を再分散させる時に電界による基板間の流体の流れが微粒 子分散に寄与する。 [0022] FIG. 6 (C) has a common electrode and a drive electrode pair as shown in FIG. 4 on both substrates, and is arranged so that the drive electrode and the common electrode overlap with each other, as in FIG. 6 (B). When the fine particles are redispersed, the fluid flow between the substrates due to the electric field is fine Contributes to child distribution.
[0023] 図 6 ( D ) は駆動電極どうしを重ね合わすよう配置したもので表示面から見 て同一領域に粒子を多層に積層できるから、 透過率向上に寄与する。  [0023] FIG. 6 (D) is an arrangement in which the drive electrodes are overlapped with each other. Since particles can be stacked in the same region as viewed from the display surface, it contributes to an improvement in transmittance.
[0024] 図 6 ( E ) は共通電極が駆動電極とは別基板にあり、 かつ透明ベタ電極の場 合を示す。 駆動電極は図 7のようにストライプ、 格子、 渦など閉じられたも のかあるいは図 4のような閉じられない電極構成が自由に選択できる。 この 場合も線状駆動電極間にある粒子に電界を作用させやすいが、 粒子は単極性 でなければ開口率で不利になる。 透過での暗状態は粒子分散状態やベタ電極 への粒子堆積状態で実現できる。 共通電極が透明であるとはいえ幾分光を吸 収するから先述した通りセルを積層して使用する場合光ロスが大きくなる不 利益が発生する。 本発明で共通電極がベタ電極の場合や駆動電極と共通電極 が異なる基板に設けられている構成では、 駆動電極と共通電極の電極間ピッ チ Pとは駆動電極と共通電極の最短距離を意味する。  FIG. 6 (E) shows the case where the common electrode is on a separate substrate from the drive electrode and is a transparent solid electrode. As shown in Fig. 7, the drive electrode can be selected from either closed stripes, grids, vortices, etc., or non-closed electrode configurations as shown in Fig. 4. In this case as well, an electric field is likely to act on the particles between the linear drive electrodes, but if the particles are not unipolar, the aperture ratio is disadvantageous. The dark state in transmission can be realized by the particle dispersion state or the particle deposition state on the solid electrode. Even though the common electrode is transparent, it absorbs a certain amount of spectrum, so there is a disadvantage that the optical loss increases when cells are stacked as described above. In the present invention, when the common electrode is a solid electrode or the drive electrode and the common electrode are provided on different substrates, the pitch P between the drive electrode and the common electrode means the shortest distance between the drive electrode and the common electrode. To do.
[0025] 図 6 ( F ) は図 6 ( E ) の透明ベタ共通電極の対向側に図 4の如き駆動、 共 通電極対を設けた構成である。 粒子分散状態を高速化するのに有用な構成で あるが、 共通電極は透明なものを用いるべきである。  FIG. 6 (F) shows a configuration in which a drive and common electrode pair as shown in FIG. 4 is provided on the opposite side of the transparent solid common electrode of FIG. 6 (E). Although this is a useful configuration for speeding up the particle dispersion state, the common electrode should be transparent.
[0026] 図 6 ( G ) は図 4ないし図 7の如き細線状共通電極 6 _ 2と絶縁層 2 3を隔 てて同じく細線状駆動電極 6 _ 1がピッチをずらせて設けられている。 両電 極を片側基板側のみに形成できることゃ両電極の形状自由度が高まる利点が ある。 共通電極 6 _ 2には透明なものを用いるべきであり、 応答速度の低下 を来たさないよう分散系厚は薄く構成すべきである。  In FIG. 6 (G), fine line-like drive electrodes 6 _ 1 are similarly provided with a pitch shifted from each other with a fine line-like common electrode 6 _ 2 and an insulating layer 23 as shown in FIGS. The fact that both electrodes can be formed only on one side of the substrate has the advantage of increasing the degree of freedom of shape of both electrodes. The common electrode 6_2 should be transparent and the dispersion thickness should be thin so as not to reduce the response speed.
[0027] 図 6 ( H ) は図 6 ( G ) の共通電極 6 _ 2をベタ透明電極に置き換えたもの である。 両電極を片側基板側のみに形成できる利点がある。 透過で用いる時 は暗状態は粒子分散状態かないしは駆動電極部以外の絶縁層 2 3上に粒子を 均一に堆積させることによつても実現できる。  [0027] FIG. 6 (H) is obtained by replacing the common electrode 6_2 in FIG. 6 (G) with a solid transparent electrode. There is an advantage that both electrodes can be formed only on one side of the substrate. When used for transmission, the dark state can be realized only by the particle dispersion state or by evenly depositing the particles on the insulating layer 23 other than the drive electrode portion.
[0028] 以上、 図 6の各電極構成で駆動電極、 共通電極の各々がたとえ異なる基板に あっても互いに電気的に結合してセルは駆動電極、 共通電極の 2端子素子と して動作させるよう構成されている。 [0029] 図 6ではすベて粒子は単一極性として説明したが、 電極構成によっては両極 性粒子の方が有利な場合がある。 As described above, in each electrode configuration of FIG. 6, even if each of the drive electrode and the common electrode is on different substrates, the cells are electrically coupled to each other so that the cell operates as a two-terminal element of the drive electrode and the common electrode. It is configured as follows. [0029] Although all the particles are described as being unipolar in Fig. 6, the bipolar particles may be more advantageous depending on the electrode configuration.
[0030] 先にも述べた通り、 不透明な分散粒子を表示面から見て最小の断面積で集積 できれば透過率を最大化できる。 決められた粒子量の集積断面積を小さくす るということは粒子を出来るだけ厚く積み上げることであり、 以下にその対 策を示す。 [0030] As described above, if opaque dispersed particles can be accumulated with a minimum cross-sectional area when viewed from the display surface, the transmittance can be maximized. Reducing the integrated cross-sectional area of the determined amount of particles means that the particles are stacked as thick as possible, and the countermeasures are shown below.
[0031 ] 図 8 ( A) は駆動電極上での粒子の集積断面積が長軸が基板に垂直なほぼ楕 円形状に積み上った例であり、 (1 ) 粒子の電気抵抗が小さい場合集積粒子 層により局所電界は強められるから粒子層は図のように厚く集積し易い。  [0031] Fig. 8 (A) shows an example in which the accumulated cross-sectional area of particles on the drive electrode is stacked in an almost elliptical shape with the major axis perpendicular to the substrate. (1) When the electrical resistance of the particles is small Since the local electric field is strengthened by the accumulated particle layer, the particle layer is thick and easy to accumulate as shown in the figure.
[0032] ( 2 ) 共通電極と駆動電極間の電界が出来るだけ狭い範囲に収束している場 合も集積粒子層を厚くするのに有効であり、 片方ないし両方の電極幅を狭く すること、 また図 6 ( A) のように共通電極も駆動電極パタンとほぼ同型に して互いのパタンがほぼ重なるように配置することで駆動電極上の電界を収 束できる。  [0032] (2) Even when the electric field between the common electrode and the drive electrode is converged in a narrow range as much as possible, it is effective for increasing the thickness of the integrated particle layer, and reducing the width of one or both electrodes, In addition, as shown in Fig. 6 (A), the common electrode can be made to be almost the same type as the drive electrode pattern, and the electric fields on the drive electrodes can be converged by arranging them so that the patterns overlap each other.
[0033] ( 3 ) 図 8 ( B ) に示すように電極部に細い窪みを設けておき粒子を強制的 に窪みに誘い込めば集積断面積を小さくできる。 窪みはたとえば共通電極な いしは駆動電極面に一様にフォトレジス卜などを塗布し、 フォトエッチング で電極上部を穴あけして形成できる。  (3) As shown in FIG. 8 (B), the integrated cross-sectional area can be reduced by providing a thin depression in the electrode portion and forcibly attracting the particles into the depression. The depression can be formed, for example, by uniformly applying a photoresist resist or the like on the common electrode or the drive electrode surface, and piercing the upper portion of the electrode by photoetching.
[0034] ( 4 ) 図 8 ( C) に示すように駆動電極に微小突起を設けて局所電界を集中 させる。  [0034] (4) As shown in FIG. 8 (C), the driving electrode is provided with minute protrusions to concentrate the local electric field.
[0035] ( 5 ) 図 8 ( D ) に示すように分散系に正、 負両極性の粒子を混在させてお けば駆動電極、 共通電極の両方に粒子を集積できることになリ、 両電極が互 いに重なる位置関係にあれば実質的に集積粒子層の厚みを単一極性の場合の 2倍にすることに相当し、 高透過率が実現できる。  [0035] (5) As shown in Fig. 8 (D), if positive and negative particles are mixed in the dispersion system, the particles can be accumulated on both the drive electrode and the common electrode. If the two layers overlap each other, it is substantially equivalent to doubling the thickness of the accumulated particle layer in the case of a single polarity, and high transmittance can be realized.
[0036] 図 6 ( A) 、 ( C) のような電極構成の時、 両極性分散系が有効である。 こ のような電極構成の場合は両電極共不透明電極でよく電極材料の選択自由度 が増す。  [0036] When the electrodes are configured as shown in Figs. 6 (A) and (C), an ambipolar dispersion system is effective. In the case of such an electrode configuration, both electrodes may be opaque electrodes, and the degree of freedom in selecting electrode materials is increased.
[0037] 分散媒がガス体の場合、 帯電系列が正、 負になりやすい粒子を混在させてお くとまさつ帯電などで常に粒子の正、 負電荷量を安定して保持できることか ら、 単粒子系よリよリ安定性の高い分散系が実現できることも好都合である [0037] When the dispersion medium is a gas body, particles that are likely to have positive and negative charge series are mixed. Since the positive and negative charge amounts of the particles can always be held stably due to the Katsumasato charge, it is also advantageous to realize a highly stable dispersion system compared to the single particle system.
[0038] 両極性粒子系では再度セルを暗状態にするにはお互いの電極上の粒子が電極 を離れきる程度までの適切なパルス幅の逆電圧が選ばれるべきである。 適切 な周波数の A C電圧を印加しても粒子を分散状態にすることができる。 [0038] In the bipolar particle system, in order to make the cell dark again, a reverse voltage with an appropriate pulse width to such an extent that the particles on each electrode can leave the electrode should be selected. Even when an AC voltage of an appropriate frequency is applied, the particles can be dispersed.
[0039] 上に述べた開口率向上策を活用して駆動電極の面積率を 2 0 %以下、 好まし くは 1 0 %以下にすることが望ましい。 特許文献 2では両電極に透明なもの を使用しているが、 本願では細い駆動電極上に粒子をできるだけ積み上げる ことを目指しているから細くする限り駆動電極は不透明でよい。 [0039] It is desirable that the area ratio of the drive electrode is 20% or less, preferably 10% or less by utilizing the above-described measures for improving the aperture ratio. In Patent Document 2, transparent electrodes are used for both electrodes. However, in this application, the driving electrode may be opaque as long as it is thinned because it aims to stack particles as much as possible on the thin driving electrodes.
[0040] 図 3で粒子を隔壁 2 0によってセル内部に閉じ込めるのは微粒子が隣のセル に移動するのを妨げ各画素内の粒子濃度を一定に維持するためである。 隔壁 で微粒子を閉じ込める代リに、 微粒子分散系を力プセル内に閉じ込めてもよ い。 In FIG. 3, the particles are confined inside the cell by the partition wall 20 in order to prevent the fine particles from moving to the adjacent cells and to maintain the particle concentration in each pixel constant. Instead of confining the fine particles with the partition walls, the fine particle dispersion system may be confined in the force cell.
[0041 ] 図 9 ( A) では微粒子分散系を内臓したカプセル粒子 1 0を配列した断面図 を示す。 各カプセルの下部にたとえば細線からなる面状の櫛型駆動電極、 共 通電極が設けられている場合は 1個のカプセルを 1画素とでき、 横 n個の力 プセルにまたがって 1対の電極が設けられている場合はたとえば正方画素で は n X n個のカプセルで 1画素を形成する。 図 9 ( B ) は球形カプセル粒子 1 0を基板間に加えた圧力でほぼ直方体になるように変形させた例であり、 カプセル粒子の直径より小さいスぺーザでギャップを形成している。 このよ うな変形を加えることによつて隔壁と同様な直方体の形で用いることができ 、 開口率向上と隔壁を形成する工程を除くことができる。 本願ではカプセル を単粒子層で描いているが、 カプセル粒子は表示原理から明らかな通り必ず しも単層である必要はない。 ただしカプセル中心が基板垂直方向に一直線に 並ぶ等軸構造が望ましい。  [0041] Fig. 9 (A) shows a cross-sectional view in which capsule particles 10 incorporating a fine particle dispersion system are arranged. For example, when a planar comb-shaped drive electrode made of fine wires and a common electrode are provided at the bottom of each capsule, one capsule can be made into one pixel, and a pair of electrodes straddling n horizontal force cells For example, in the case of a square pixel, one pixel is formed by n × n capsules. FIG. 9 (B) shows an example in which spherical capsule particles 10 are deformed so as to form a substantially rectangular parallelepiped by the pressure applied between the substrates, and a gap is formed with a spacer smaller than the diameter of the capsule particles. By applying such a modification, it can be used in the form of a rectangular parallelepiped similar to the partition, and the step of improving the aperture ratio and forming the partition can be eliminated. In this application, the capsule is drawn with a single particle layer, but the capsule particle does not necessarily have to be a single layer as is clear from the display principle. However, an equiaxed structure in which the capsule centers are aligned in the direction perpendicular to the substrate is desirable.
[0042] 基板にフィルムを用いたフレキシブルシートディスプレイの場合は特に、 両 基板は隔壁の上下両面と各々接着していることが好ましい。 カプセル粒子を 用いた場合はバインダ一樹脂が上下基板の接着に寄与する。 微粒子を力プセ ルに閉じ込めることによる他の利点は、 液状ないし流動性粉体としての微粒 子分散系を固体化でき表示素子面への塗布、 上下基板の貼り合わせ等におけ る取り扱いの容易さである。 カプセル粒子を用いる場合も電極パタン及び電 極構成は図 3、 4, 6 , 7の種々の構成が選択できる。 [0042] Particularly in the case of a flexible sheet display using a film as a substrate, it is preferable that both the substrates are respectively bonded to the upper and lower surfaces of the partition wall. Capsule particles When used, the binder resin contributes to the adhesion between the upper and lower substrates. Another advantage of confining the fine particles in the force cell is that the fine particle dispersion system as a liquid or fluid powder can be solidified and can be easily applied to the display element surface and the upper and lower substrates. That's it. When capsule particles are used, the electrode patterns and electrode configurations shown in Figs. 3, 4, 6, 7 can be selected.
[0043] 本発明でセルとは、 隔壁ないしカプセルで粒子を閉じ込めた領域を言う。 一 対の電極は 1つのセルに設けられる場合もあれば、 多数のセルに対して 1組 設けられる場合もある。 画素とは一対の電極を有する領域を言うから 1個の セルの場合もあれば多数のセルから成る場合もある。  [0043] In the present invention, a cell refers to a region in which particles are confined by a partition or a capsule. A pair of electrodes may be provided in one cell or a set of many cells. A pixel is a region having a pair of electrodes, and may be a single cell or a number of cells.
[0044] 図 1 0 ( A ) は光線ロスを防止したフルカラー表示素子の断面を示し透過で も使えるよう背面に光源 1 3からなるバックライ卜ュニッ卜 1 7を設けたも ので、 図 3の如きセルを 3層積み重ねた積層セル 2 4で構成されている。 た だし 3層の微粒子 5は各々 C (シアン) , M (マゼンタ) , Y (イェロー) 色のものが用いられる。 Y, Μ粒子が適度に分散状態にあり、 C粒子が電極 集積状態にあれば、 その部分は R (赤) 、 C, M粒子が適度に分散状態で Y 粒子が電極集積状態では同じく減法混色により B (青) 、 Y, C粒子が分散 状態では G (緑) となる。 勿論 C粒子、 Μ粒子、 Υ粒子のみ分散状態では夫 々C, M , Y色となる。 C, M , Yパネルに加えて、 より完全に光を遮断す るために白-黒に変調できる第 4のセルが追加され 4層構成をとる場合もある 。 またセルの積層順序は任意に選択可能である。 白色光源オフの状態では白 色拡散板により反射カラーパネルとして使用できる。 マルチカラー表示では 色の異なる分散系の 2層構成でもかまわない。  [0044] Fig. 10 (A) shows a cross section of a full-color display element that prevents light loss, and a backlight unit 17 consisting of a light source 13 is provided on the back surface so that it can be used for transmission. It is composed of laminated cells 24, which are three layers of cells. However, the three layers of fine particles 5 are C (cyan), M (magenta), and Y (yellow) colors, respectively. If Y and soot particles are in a moderately dispersed state, and C particles are in an electrode-integrated state, that portion is R (red), and C and M particles are in a moderately dispersed state and Y particles are in an electrode-integrated state. Thus, B (blue), Y, and C particles become G (green) in the dispersed state. Of course, only C particles, soot particles, and soot particles become C, M, and Y colors when dispersed. In addition to the C, M, and Y panels, a fourth cell that can be modulated from white to black to block the light more completely is added to form a four-layer structure. Further, the cell stacking order can be arbitrarily selected. When the white light source is off, it can be used as a reflective color panel with a white diffuser. For multi-color display, a two-layer structure with dispersive systems with different colors may be used.
[0045] 良好なコントラスト、 色純度のカラー表示を実現するには、 C, M , Y各パ ネルで十分なコントラストが実現される必要がある。 C, M , Y粒子はそれ ぞれ R, G , B光を吸収する粒子である。 先述した通り本願で用いる C, M , Yパネルはそれぞれ R, G , B光の吸収帯において透過率が 2 0 %以下、 望ましくは 1 0 %以下になるように各パネルの粒子濃度を設定することが望 ましい。 [0046] 本発明のカラーパネルは図 1 0に示す通り、 特許文献 7と同様少なくとも C , M、 Yに変化する粒子層を 3層積層するものであるが、 透明電極を用いな い構成が可能であるため、 低コストで明るく、 高信頼性のパネルが製造でき る。 すなわち特許文献 7のセル構成では 1色当り少なくとも 1層の透明電極 が用いられているから反射で見る場合、 入射光は 6回透明電極を通過しなけ ればならず、 透明電極の透過率が仮に 9 0 %でも 0 . 9 6 = 0 . 5 3で 4 7 % の光エネルギーをロスしてしまうことになリ明るい白色は再現できない。 ま た画素が大きくなると駆動に高電圧を要する難点も有していたが本願では画 素の大小に係わらず低電圧で駆動できる特徴が発揮できる。 [0045] In order to realize color display with good contrast and color purity, sufficient contrast must be realized in each of the C, M, and Y panels. C, M, and Y particles absorb R, G, and B light, respectively. As described above, the C, M, and Y panels used in the present application are set so that the transmittance is 20% or less, preferably 10% or less, in the R, G, and B light absorption bands, respectively. I hope that. [0046] As shown in Fig. 10, the color panel of the present invention is formed by laminating at least three particle layers that change to C, M, and Y as in Patent Document 7, but has a configuration that does not use a transparent electrode. As a result, a low-cost, bright and highly reliable panel can be manufactured. In other words, in the cell configuration of Patent Document 7, at least one transparent electrode is used for each color, so when viewed by reflection, incident light must pass through the transparent electrode six times, and the transmittance of the transparent electrode is low. if 9 0 any 0%. 9 6 = 0. 3 in 4 7% of Li bright white, such that the light energy results in loss can not be reproduced. In addition, when a pixel becomes large, there is a problem that a high voltage is required for driving, but in the present application, a feature that can be driven at a low voltage regardless of the size of the pixel can be exhibited.
[0047] 図 1 0 ( B ) は図 1 0 ( A) の如き積層セル 2 4の背面に電極ピンを設け、 各色の駆動電極および光源に信号を印加できるように構成した電極ピン 2 5 付きフルカラー素子を示す。 各色にフィルム基板を用い、 し巳0ゃ巳1_のょ うな薄型光源でバックライ卜ュニッ卜を構成すれば数 mm厚のフルカラー素 子とすることも可能である。 各素子をカラー指示器として用いてもよいが、 このような基本セルを X _ Yマトリクス状に多数並べることによつて光源非 点時は反射型、 点灯時は発光型となる反射、 発光両用のフルカラー超大型表 示システムを構成することができる。  [0047] FIG. 10 (B) is provided with electrode pins on the back surface of the stacked cell 24 as shown in FIG. 10 (A), and with electrode pins 25 configured to apply signals to the drive electrodes and light sources of each color. A full color element is shown. A full-color element with a thickness of several millimeters can be obtained by using a film substrate for each color and configuring the backlight unit with a thin light source such as 0-1_. Each element may be used as a color indicator, but by arranging a large number of such basic cells in an X_Y matrix, both the reflective and light-emitting elements are turned into a reflective type when the light source is turned off and a light-emitting type when turned on. A full-color super-large display system can be configured.
[0048] 単一画素素子は勿論多画素のパネルを用いた多画素ピン付きパネルが可能で あることは言うまでもない。 各素子を曲面状に配置することによって曲面表 示も可能である。 各画素の端子がピンを通じて外部に取り出せるから、 スタ チック駆動、 マルチプレクス駆動、 アクティブマトリクス駆動など駆動方式 の自由度は高まる。  [0048] Needless to say, a panel with a multi-pixel pin using a single-pixel element as well as a multi-pixel panel is possible. It is also possible to display a curved surface by arranging each element in a curved shape. Since the terminals of each pixel can be taken out through the pins, the flexibility of driving methods such as static drive, multiplex drive, and active matrix drive is increased.
[0049] 図 1 0 ( A) の 3層積層型表示装置では画素サイズにくらべて間に入る基板 の厚さが厚い場合、 反射で見た時視角が制約される。 図 1 0 ( A) において 断面図は 1画素を示すとした場合、 基板垂線からの角度 0を越えた方向から 見ると反射光線は 3層すベてを通過していないから正しい色を見ることが出 来ない。 画素サイズを Sとすれば 1色分のセル厚 q (上基板、 分散系、 下基 板、 接着層の合計) は q = S / (3 x tan 0 ) となる。 一般に n層積層では q = S/ ( n x tan (Θ) ) となる。 0 = 60度(tan(0)=1. 7 3)では q=S/5 . 1 9より、 画素サイズが 0.1mm、 1 mmの場合 q =、 1 9. 2 、 1 90 、 0 = 80度(tan(0) = 5. 65)の時 q = 5. 9 μ、 59 となる。 すな わち積層型反射表示装置は間に入る基板を極力薄くしないと視野角に優れた 表示を実現することが困難になる。 この点透明基板としてフィルムは薄さゆ えに有利である。 In the three-layer stacked display device shown in FIG. 10 (A), when the thickness of the intervening substrate is thicker than the pixel size, the viewing angle is limited when viewed in reflection. In Fig. 10 (A), if the cross-sectional view shows one pixel, see the correct color because the reflected light does not pass through all three layers when viewed from the direction beyond the angle 0 from the substrate normal. Does not appear. If the pixel size is S, the cell thickness q for one color q (the total of the upper substrate, dispersion system, lower substrate, and adhesive layer) is q = S / (3 x tan 0). In general, q = n layers S / (nx tan (Θ)). 0 = 60 degrees (tan (0) = 1. 7 3) From q = S / 5.19, when the pixel size is 0.1mm, 1mm q =, 19.2, 190, 0 = 80 When degrees (tan (0) = 5.65), q = 5. 9 μ, 59. In other words, in a multilayer reflective display device, it is difficult to realize a display with an excellent viewing angle unless the intervening substrate is made as thin as possible. As this point transparent substrate, the film is advantageous in terms of thinness.
[0050] 図 1 1は C, M, Yのカプセル粒子を積層したカラーパネルの断面図を示す 。 電極を設けた基板にカプセルを敷き詰めたものを接着剤を介して各色順次 積層すればよいから基板枚数を減らし易く、 視角特性の点で有利なセルが構 成できる。  [0050] Fig. 11 shows a cross-sectional view of a color panel in which C, M, and Y capsule particles are laminated. Since a substrate in which an electrode is provided and capsules are laid out can be laminated in order for each color through an adhesive, the number of substrates can be easily reduced, and a cell advantageous in view angle characteristics can be configured.
[0051] 多数の画素から構成される表示装置の駆動法には (1 ) スタチック (2) 単 純マトリクス (3) 2端子アクティブマトリクス (4) 3端子アクティブ マトリクス などがある。 [0051] There are (1) static (2) simple matrix (3) two-terminal active matrix (4) three-terminal active matrix and the like as driving methods for a display device composed of a large number of pixels.
[0052] 図 1 2は単純マトリクス構成のパネルを製造する工程を示す。 ガラス、 ブラ スチックなどの基板 2にアルミ、 クロム、 金などの電極薄膜を蒸着やスパッ タで設けて後フォトエッチプロセスで図 1 2 (A) に示すように列電極 C i およびこれに連なった駆動電極 6 _ 1を形成する。 次に少なくとも列電極の 所定箇所に絶縁層 23を形成して後、 共通電極 6— 2、 行電極 R iを形成す る (B) 。 こうして得られた電極付き基板と他の絶縁性基板との間に隔壁か カプセル化によって分散系を所定位置に閉じ込め表示パネルが構成される。 列電極 C iに信号を、 線状共通電極 R iに走査信号を加えて線順次で表示が果 たされる。 パネル構成が単純であるから低コス卜で製造できるメリッ卜があ るが、 各画素には閾値特性が要求されるため通常、 表示容量の大きい用途に は使えない。  FIG. 12 shows a process of manufacturing a panel having a simple matrix configuration. An electrode thin film made of aluminum, chromium, gold or the like is deposited on the substrate 2 such as glass or plastic by vapor deposition or sputtering, and then connected to the column electrode C i and this as shown in Fig. 12 (A) in the photoetching process. The drive electrode 6_1 is formed. Next, after forming an insulating layer 23 at least at a predetermined position of the column electrode, the common electrode 6-2 and the row electrode Ri are formed (B). A display panel is formed by confining the dispersion system at a predetermined position by partitioning a partition wall between the substrate with electrodes thus obtained and another insulating substrate. A signal is applied to the column electrode C i, and a scanning signal is applied to the linear common electrode R i, so that a line sequential display is achieved. Although the panel configuration is simple, there is a merit that it can be manufactured at low cost. However, since each pixel requires threshold characteristics, it cannot be used for applications with large display capacity.
[0053] 表示容量を拡大するにはアクティブマトリクス (以下 AMと略称する) 構成 を採用する必要がある。 図 1 3は陽極酸化膜が金属電極間に挟まれたいわゆ る M I M (Metal Insulator Metal) 素子からなる 2端子 AMアレーの製造ェ 程を示す。 アルミ、 タンタルなどの金属薄膜で平行線状列電極 Ciを形成して 後、 列電極 Ciを陽極酸化して表面に酸化膜を形成する (A) 。 ついで金属膜 を蒸着ないしスパッタによって設け、 たとえば櫛型駆動電極 6_ 1を形成す る (B) 。 駆動電極と列電極が交差する領域に 2端子素子 21が形成される 。 次に列電極の、 少なくとも後に行電極と交差する箇所に絶縁層 23を形成 して後、 共通電極 6_2、 走査電極 R iを形成 (C) することによって 2端 子 AMアレーが形成される。 こうして得られた電極付き基板と他の絶縁性基 板との間に隔壁かカプセル化によって所定位置に分散系を閉じ込め表示パネ ルが構成される。 M I Mの代りに、 電極 6_ 1と C iの交点部に酸化亜鉛の ような半導体を樹脂に分散した非直線抵抗素子を挟み込んでも 2端子 A Mァ レーを形成できる。 In order to increase the display capacity, it is necessary to adopt an active matrix (hereinafter abbreviated as AM) configuration. Fig. 13 shows that the anodized film is sandwiched between metal electrodes. The manufacturing process of a 2-terminal AM array consisting of MIM (Metal Insulator Metal) elements. After forming parallel linear column electrodes Ci with a metal thin film such as aluminum or tantalum, the column electrodes Ci are anodized to form an oxide film on the surface (A). Next, a metal film is provided by vapor deposition or sputtering to form, for example, a comb drive electrode 6_1 (B). A two-terminal element 21 is formed in a region where the drive electrode and the column electrode intersect. Next, an insulating layer 23 is formed at least at a location where the column electrode intersects the row electrode later, and then a common electrode 6_2 and a scanning electrode Ri are formed (C), thereby forming a two-terminal AM array. A display panel is formed by confining the dispersion system at a predetermined position by partitioning or encapsulating between the substrate with electrodes thus obtained and another insulating substrate. Instead of MIM, a two-terminal AM array can also be formed by inserting a non-linear resistance element in which a semiconductor such as zinc oxide is dispersed in resin at the intersection of electrodes 6_1 and Ci.
[0054] 図 14は T FT (Thin f i lm Transistor) 3端子素子から成る AMアレーの 2画素分の電極構成を正面図で示す。 信号線 C iとは絶縁層で分離された駆 動電極 6_1はドレイン (D) 電極に接続されており、 ソース (S) 電極は 列電極 Ciの 1部からなり、 S, D間には半導体、 ゲート絶縁膜が積層されて いる。 列電極部に層間絶縁膜を設けてのち行電極 Ri (ゲート電極) を設けて 3端子 AMアレーが形成される。 共通電極 6_2は列電極、 行電極と絶縁層 で隔てられて、 列電極ないし行電極同様パネル全体に張リ巡らされており、 全画素共通の 1端子としてパネル外に取り出されている。 こうして得られた T FTからなる AMアレー基板の C i , R i部に隔壁を設けるか画素中央部 に力プセル粒子を設置し、 透明絶縁性基板との間に分散系を閉じ込めて表示 パネルが構成される。 図 14では T FTはスタツガー型で示したが、 逆スタ ッガー型 T FTも勿論可能である。  FIG. 14 is a front view showing an electrode configuration for two pixels of an AM array composed of TFT (Thin Film Transistor) three-terminal elements. The drive electrode 6_1 separated from the signal line Ci by an insulating layer is connected to the drain (D) electrode, the source (S) electrode consists of one part of the column electrode Ci, and a semiconductor between S and D The gate insulating film is laminated. A three-terminal AM array is formed by providing an interlayer insulating film in the column electrode portion and then providing a row electrode Ri (gate electrode). The common electrode 6_2 is separated from the column electrode and the row electrode by an insulating layer, and is stretched around the entire panel like the column electrode and the row electrode, and is taken out of the panel as one terminal common to all pixels. The partition panel is placed in the C i, R i part of the AM array substrate made of TFTs thus obtained, or force pusher particles are installed in the center of the pixel, and the display panel is confined between the transparent insulating substrate and the dispersion system. Composed. In FIG. 14, the TFT is shown as a staggered type, but of course a reverse staggered type TFT is also possible.
[0055] 図 14のアレー構成は現在液晶モニター、 液晶 TVなどで用いられている I PS (In-Plane-Switching) モードの T F Tパネルのアレー構成と殆ど類似 している (但し、 図 4 (A) の櫛型電極構成) 。 図 13や図 14のァクティ ブマ卜リクスパネルでは画素のドレインに印加された電圧を保持するためド レイン (駆動電極) と共通電極間に並列容量を付加することが望ましが、 共 通電極とドレイン電極間の絶縁層は並列容量として利用できる。 [0055] The array configuration in Fig. 14 is almost similar to the array configuration of an IPS (In-Plane-Switching) mode TFT panel currently used in LCD monitors, LCD TVs, etc. (however, Fig. 4 (A ) Comb electrode configuration). In the active matrix panel of FIGS. 13 and 14, the drain is applied to hold the voltage applied to the pixel drain. Although it is desirable to add a parallel capacitance between the rain (drive electrode) and the common electrode, the insulating layer between the common electrode and the drain electrode can be used as a parallel capacitance.
図 1 2〜図 1 4のマ卜リクスパネルでは電極はすべて片側基板に設けたもの で説明したが、 図 6の種々の電極構成を採用してもよいことは言うまでもな い。  In the matrix panels in FIGS. 12 to 14, all the electrodes are provided on one side of the substrate, but it goes without saying that the various electrode configurations in FIG. 6 may be adopted.
[0056] 図 1 5は更に視角特性に優れた 3層積層パネルを示す。 ここでは 1画素を 3 X 3個の単層カプセル粒子 1 0から成るとして図示している。 カプセル粒子 径が 2 0 であればスぺーサは約 6 0 の高さを必要とする。 あらかじめ基 板にカプセル粒子の直径に相当する凹みを設けておけばスぺーサは約 5 0 でよい。 図 1 5では 1層目、 2層目、 3層目のカプセル粒子に電界を作用さ せるための T F Tなどのスイツチ素子はすべて下基板 2に形成された 3色用 X— Yアクティブマトリクスアレー 1 3 dで構成されているとして図示してあ る。  [0056] FIG. 15 shows a three-layer laminated panel having further excellent viewing angle characteristics. Here, one pixel is illustrated as being composed of 3 × 3 single-layer capsule particles 10. If the capsule particle size is 20 then the spacer needs to be about 60 height. If the substrate is provided with a recess corresponding to the diameter of the capsule particles in advance, the spacer may be about 50. In Fig. 15, all three color XY active matrix arrays are formed on the lower substrate 2 for the TFT and other switch elements to apply an electric field to the first, second and third capsule particles. It is shown as being composed of 3d.
[0057] 図 1 5のような構成のアクティブマトリクスパネルを製造する方法として大 きくは 4つの方法が可能である。 すなわち (1 ) C, M, Yカプセル粒子駆 動用 A Mアレーはすべて基板 2に形成 (開口率向上のため隔壁ないしスぺー ザの下に設けられていることが望ましい) されており、 各色用ドレイン電極 とこれに対向する共通電極は隔壁ないしスぺーザの内部か表面を通して形成 し、 アレー基板と隔壁ないしスぺーザが形成された後にカプセル粒子を 1層 ずつ積み上げる。 (2 ) C , M, Yカプセル粒子駆動用 T F Tはすべて基板 2に形成されている点で (1 ) と同様であるが、 各色用ドレイン電極、 共通 電極などの形成及び下部に形成されている対応する色用ドレイン電極との配 線は色カプセルを敷き詰めた後に追加してゆく。 (3 ) 1色目のアレーが形 成された基板に 1色目のカプセル粒子を敷き詰めて、 表面を平坦化して後 2 色目の T F Tアレーを形成するというように、 アレーとカプセル粒子層を順 次形成してゆく。 (4 ) あらかじめ T F Tアレーと色粒子で構成された単色 アクティブマトリクスが形成された転写用基板から、 接着層を設けた最終基 板側に順次転写して 3層を積層する。 以上いずれの方法に於ても導体の積み 上げには導体ペース卜のィンクジエツ卜描画法やアディティブ法として広く 用いられている電解ないし無電解メツキ法などが利用できる。 [0057] There are roughly four methods for manufacturing an active matrix panel configured as shown in FIG. (1) The AM array for driving C, M, and Y capsule particles is all formed on the substrate 2 (preferably provided under the partition wall or spacer to improve the aperture ratio). The electrode and the common electrode opposite to the electrode are formed inside or through the surface of the partition wall or the spacer. After the array substrate and the partition wall or the spacer are formed, the capsule particles are stacked one by one. (2) The TFTs for driving C, M, Y capsule particles are all the same as (1) in that they are formed on the substrate 2, but the drain electrodes for each color, the common electrode, etc. are formed and formed below. Wiring with the corresponding color drain electrode is added after the color capsules are spread. (3) Sequentially form the array and capsule particle layer, such as laying the first color capsule particles on the substrate on which the first color array is formed, flattening the surface, and then forming the second color TFT array. I will do it. (4) From the transfer substrate on which a single-color active matrix composed of a TFT array and color particles has been formed in advance, transfer three layers sequentially to the final substrate side where the adhesive layer is provided. In any of the above methods, conductor stacking For the raising, a method of drawing a conductive pace of the conductor pace or an electroless or electroless plating method widely used as an additive method can be used.
[0058] 以上述べたようなたとえば縦 M画素、 横 N画素からなる基本パネルを縦 m枚 、 横 n枚並べることによって MX mX N X n画素からなる大型表示システム を構成することが可能である。 それぞれパネル間の隙間を出来る限り狭くす るよう各パネルの電極は薄い F P Cなどを用いてパネル面と垂直方向にパネ ル背面に引き出し、 背面基板ないしバックライ卜の背後に設けた駆動回路と 接続して駆動するように構成される。 このような基本パネルを用いて、 数 1 Omサイズの反射、 透過両用の低電力、 高精細フルカラー大型公衆表示シス テムを構成することが可能になる。  [0058] A large display system composed of MX mX N Xn pixels can be configured by arranging m basic panels of vertical M pixels and N horizontal panels, for example, as described above. In order to make the gap between the panels as narrow as possible, the electrodes of each panel are pulled out to the back of the panel in a direction perpendicular to the panel surface using a thin FPC, etc., and connected to the drive circuit provided behind the back substrate or backlight. Configured to be driven. By using such a basic panel, it is possible to construct a low-power, high-definition full-color large-sized public display system for both reflection and transmission of several tens of ohms.
[0059] 図 1 6はプロジェクターなどに用いる、 シリコン基板を用いた AM反射型ラ ィ卜バルブを示す。 シリコン基板 1 5上に形成された FET素子からなる A Mアレー上に絶縁膜 23、 画素部反射膜 1 4、 絶縁膜 23、 電極 6_ 1、 6 - 2を設け、 各電極は絶縁膜 23に設けた孔を介して対応する A M基板上の ドレイン端子、 共通端子と接続されており、 透明基板 1との間に分散系 7が 挟まれてライトバルブが構成される。 たとえば 1インチサイズでフル HD ( 1 920 X 1 440画素) のライ卜バルブを構成する場合、 画素ピッチはほ ぼ 1 1 程度になる。 隔壁高さは低いほど製造が容易であるから駆動電極ピ ツチ及びセル厚を数ミクロンとすれば、 1 OV以下で駆動できるライ卜バル ブが構成可能である。 隔壁を絶縁性黒色にするか反射性隔壁の場合は上基板 と隔壁の間に黒色膜を形成することが望ましい。  [0059] FIG. 16 shows an AM reflective line valve using a silicon substrate, which is used in a projector or the like. Insulating film 23, pixel part reflecting film 14, insulating film 23, electrodes 6_1, 6-2 are provided on AM array made of FET elements formed on silicon substrate 15 and each electrode is provided on insulating film 23 Connected to the corresponding drain terminal and common terminal on the corresponding AM substrate through the holes, and the dispersion system 7 is sandwiched between the transparent substrate 1 and the light valve is configured. For example, when a 1-inch full HD (1 920 x 1 440 pixels) line valve is configured, the pixel pitch is about 11 1. The lower the partition wall height, the easier it is to manufacture. Therefore, if the drive electrode pitch and cell thickness are set to several microns, it is possible to construct a live valve that can be driven at 1 OV or less. In the case where the partition is made of insulating black or a reflective partition, it is desirable to form a black film between the upper substrate and the partition.
[0060] 図 1 6の反射型ライトバルブの構成は L COS (I iquid-crysta卜 on-si I icon) と称する液晶ライ卜バルブでの液晶を微粒子分散系に置き換えることによつ て構成される。 L COSでは画素は上側透明電極、 液晶層、 下側反射電極構 成となるが、 本願での電極構成は図 4、 図 6、 図 7に示す種々の構成が可能 であるが、 反射率を上げるため反射板 1 4は必須である。 L COSと同様、 超高圧水銀ランプなどの白色光源をダイクロイツクミラーやプリズムで R, G, B光に分離し各色光を図 1 6のライトバルブに照射して得た R, G, B 色光像をレンズを用いてスクリーン上に拡大投射、 合成してフルカラー像を 得ることが出来る。 光源に L E Dや半導体レーザを用いれば小型プロジェク ターを構成できる。 フロントプロジェクタ一は勿論、 途中で光路を折り曲げ てリアプロジェクターも可能である。 画素ピッチはモノクロの 1 Z 3になる が前面にカラーフィルタを設けることによって単板カラーライ卜バルブを構 成することも可能であり、 図 1 5の如き 3層積層パネルを構成すれば光利用 率の高い単板式カラーライトバルブが構成可能である。 分散系は隔壁型、 力 プセル型いずれを用いてもよい。 反射型は光線が分散系層を 2度通過するか ら分散系の粒子濃度が透過型の 1 Z 2でよく高速応答が可能である。 [0060] The reflection type light valve shown in Fig. 16 is configured by replacing the liquid crystal in the liquid crystal line valve called L COS (I iquid-crysta 卜 on-si I icon) with a fine particle dispersion system. The In L COS, the pixel consists of an upper transparent electrode, a liquid crystal layer, and a lower reflective electrode, but the electrode configuration in this application can have various configurations as shown in Figs. In order to raise, the reflector 14 is essential. Like L COS, a white light source such as an ultra-high pressure mercury lamp is separated into R, G, and B light by a dichroic mirror and prism, and each color light is irradiated onto the light valve in Fig. 16 to obtain R, G, B A full-color image can be obtained by magnifying and synthesizing a colored light image on a screen using a lens. If an LED or semiconductor laser is used as the light source, a compact projector can be constructed. A rear projector can be used as well as a front projector by bending the optical path along the way. Although the pixel pitch is monochrome 1 Z 3, it is also possible to configure a single-plate color line valve by providing a color filter on the front, and if a three-layer laminated panel as shown in Fig. 15 is configured, light utilization will be possible A single plate type color light bulb with a high rate can be constructed. As the dispersion system, either a partition wall type or a force-pessel type may be used. In the reflection type, since the light beam passes through the dispersion layer twice, the dispersion particle concentration is 1 Z 2 which is a transmission type, and a high-speed response is possible.
[0061 ] 上記シリコン基板の代りに、 石英などの耐熱性ガラスにポリシリコンなどで A Mアレーを構成した A M基板を用いれば、 単板式あるいは 3板式高精細透 過型ライ卜バルブを構成することが可能である。  [0061] Instead of the silicon substrate, a single-plate or three-plate high-definition transparent line valve can be configured by using an AM substrate in which an AM array is made of polysilicon or the like in heat-resistant glass such as quartz. Is possible.
[0062] 現在の液晶カラーパネルの液晶を本発明の光変調素子で置き換えることによ つて容易にフルカラーパネルを構成できる。  A full color panel can be easily configured by replacing the liquid crystal of the current liquid crystal color panel with the light modulation element of the present invention.
図 1 7に本発明の透過型フルカラーパネルの断面図を示す。 現在の液晶カラ 一パネルのライ卜バルブとしての液晶を、 白黒に透過率を変調できる微粒子 を分散した分散系 7に置き替えることによって構成できる。 すなわち X— Y マトリクス構成の A Mアレー 1 3 Cが形成された透明ガラス基板 2とストライ プ状あるいはドット状に R, G , Bカラーフィルタ 1 3 a、 ブラックマトリク ス 1 3 bが設けられた透明基板 1との間に分散系 7が挟まれて構成されてい る。 各画素となる駆動電極 6 _ 1、 共通電極 6— 2は A Mアレー 1 3 Cの各ド レイン電極、 共通電極と接続されている。 各画素の電極は図 4、 図 6、 図 7 のいずれの構成を用いてもよい。  Figure 17 shows a cross-sectional view of the transmissive full-color panel of the present invention. It can be constructed by replacing the liquid crystal as the line valve of the current liquid crystal color panel with a dispersion system 7 in which fine particles capable of modulating transmittance in black and white are dispersed. That is, a transparent glass substrate 2 on which an AM array with an X—Y matrix configuration 13 C is formed, and transparent with R, G, B color filters 1 3 a and black matrix 1 3 b in the form of stripes or dots A dispersion system 7 is sandwiched between the substrate 1 and the substrate 1. The drive electrode 6 _ 1 and the common electrode 6-2 that are each pixel are connected to the drain electrode and the common electrode of the AM array 13 C. Any of the configurations shown in FIGS. 4, 6, and 7 may be used for the electrodes of each pixel.
[0063] 図 1 7では隣り合う画素に R, G , Bカラーフィルタを設ける構成について 述べたが、 カラーフィルタを用いる代りに各セルの分散媒を R, G , Bに着 色してもよい。 但し各色セルをス卜ライプ状ないしドッ卜状に色分けして設 ける必要がある。 [0063] In FIG. 17, the configuration in which R, G, and B color filters are provided in adjacent pixels has been described, but instead of using the color filter, the dispersion medium of each cell may be colored in R, G, and B . However, each color cell must be color-coded in a stripe or dock shape.
[0064] R, G , B併置カラーフィルタないし R、 G , B着色液を用いているため光 変調素子への白色入射光の 2 Z 3を口スする欠点があるが、 現状確立してい る T F Tアレーの量産プロセスと設備がほぼそのまま利用できる利点があり[0064] R, G, B side-by-side color filter or R, G, B coloring liquid is used, so light Although there is a drawback that 2 Z 3 of white incident light to the modulation element is required, there is an advantage that the mass production process and equipment of the TFT array that has been established can be used almost as it is.
、 小型から 1 0 0インチを超える大型までサイズを問わず製造可能である。 液晶カラーパネルの場合と違って、 視角拡大フィルム、 偏光板、 配向膜、 配 向処理プロセスなどは不要であり、 プロセスの簡易化、 部材の低減化に加え て、 偏光板が不要であることからより明るく、 広視角の表示を実現すること ができる。 It can be manufactured in any size from small to large exceeding 100 inches. Unlike LCD color panels, viewing angle widening films, polarizing plates, alignment films, alignment processing processes, etc. are unnecessary, and in addition to simplifying the process and reducing the number of components, polarizing plates are unnecessary. Brighter and wider viewing angle can be realized.
[0065] 電子値札やメッセージ表示などでは必ずしもフルカラー表示でなくてもよい 用途もある。 図 1 8では 1層の分散系でカラーフィルタを用いることなくマ ルチカラ一表示を行う例について述べる。 透明分散媒中に色と移動速度の異 なる微粒子が混合分散された分散系を用いればよい。 すなわち電極 6— 1, 6 _ 2間に D C電圧を印加 (第一パルス) して粒子を一方の電極に堆積 (同 極性粒子の場合) (図 1 8 ( A) ) させれば、 セルは透明 (反射で見る場合 反射板が白色なら白色) に見える。 ここで適切な幅ないし波高値の逆極性 D Cパルス (第二パルス) を印加すれば、 移動速度の速い粒子 (第一粒子:赤 色とする) がまず電極を離れ分散状態になるからここでパルスを止めればセ ルは移動速度の速い粒子の分散状態である赤色に見える (図 1 2 ( B ) ) 。 第二パルスより幅ないし波高値の大なる逆極性パルスの場合では第一粒子は 対向電極 6 _ 2に集積してしまい、 分散系には速度の遅い第二粒子 (黒色と する) のみ分散していることになリ、 セルはほぼ黒色に見える (図 1 2 ( C ) ) 。 電極間に適切な A C電圧を印加すれば第一、 第二粒子が共に分散状態 になるからこれらの混合色である赤黒色が提示される。 すなわち単層パネル で 4色の色が選択できることになる。 色の異なる微粒子が異極性でも移動速 度が異なっていれば利用可能である。  [0065] There are uses that do not necessarily require full color display for electronic price tags, message display, and the like. Figure 18 describes an example of multi-color display without using a color filter in a single-layer dispersion system. A dispersion system in which fine particles having different colors and moving speeds are mixed and dispersed in a transparent dispersion medium may be used. That is, if a DC voltage is applied between electrodes 6–1 and 6 _2 (first pulse) and particles are deposited on one electrode (in the case of the same polarity particles) (Fig. 18 (A)), the cell becomes It looks transparent (white when the reflector is white). Here, if a reverse polarity DC pulse (second pulse) with an appropriate width or peak value is applied, the fast moving particles (first particles: red) will first leave the electrode and become dispersed. When the pulse is stopped, the cell appears red, which is a dispersed state of particles with a fast moving speed (Fig. 12 (B)). In the case of a reverse polarity pulse having a width or peak value larger than that of the second pulse, the first particles accumulate on the counter electrode 6_2, and only the second particles (which are black) that are slow in speed are dispersed in the dispersion system. The cell looks almost black (Fig. 12 (C)). When an appropriate AC voltage is applied between the electrodes, the first and second particles are both dispersed, and a red-black color, which is a mixture of these, is presented. In other words, four colors can be selected on a single-layer panel. Even if the microparticles of different colors have different polarities, they can be used if the moving speed is different.
[0066] 図 1 8では粒子の移動速度の違いを利用して多色表示する例について述べた が、 電極に堆積した粒子を逆極性電圧の印加で電極から脱着させるのに粒子 ならびに電極の性質によリ閾値電圧が存在する場合がある。 異なる色の微粒 子のこの閾値性の違いは有効に利用可能である。 第一、 第二粒子の閾値を各 々V 1、 V 2 ( V 1 > V 2 ) とし、 V 1 > V > V 2の電圧 Vでは第二粒子の み分散させることが出来、 V > V 1の電圧 Vでは主として第一粒子のみの分 散状態を生じさせることが出来るからである。 また V > V 1の A C電圧で混 合分散色を得ることができ、 泳動速度の違いと併せて閾値性の違いも粒子の 選択的分散に有効に活用でき、 簡単な構成のパネルでマルチカラー表示が可 能となる。 [0066] Figure 18 shows an example of multi-color display using the difference in particle movement speed. However, the properties of the particles and electrodes are used to desorb particles deposited on the electrodes from the electrodes by applying a reverse polarity voltage. There may be a threshold voltage. This difference in threshold characteristics of different color particles can be used effectively. First and second particle threshold values for each V 1 and V 2 (V 1> V 2), and when the voltage V 1>V> V 2, only the second particles can be dispersed. This is because it is possible to produce a distributed state of. In addition, mixed dispersion colors can be obtained with AC voltages of V> V 1, and differences in threshold as well as differences in migration speed can be effectively utilized for selective dispersion of particles. Display is possible.
[0067] 薄いフィルム基板を用いて図 6 ( A ) 、 ( B ) 、 ( C ) , ( D ) など両面に 電極を有するパネルや図 1 0、 図 1 1、 図 1 5などの積層パネルを形成する 場合、 温度や張力によるフィルムの伸縮や曲がリのため両基板や各パネルの 位置合わせが困難化する。 両フィルム基板をあらかじめガラスなどの剛体基 板に単個取りあるいは多数個取りを想定したサイズで貼り付けておき、 電極 [0067] Panels with electrodes on both sides, such as Fig. 6 (A), (B), (C), (D), and laminated panels such as Fig. 10, Fig. 11, and Fig. 15 using a thin film substrate. When it is formed, it becomes difficult to align both substrates and panels because the film expands and contracts due to temperature and tension. Attaching both film substrates to a rigid substrate such as glass in advance with a size that assumes single-piece or multiple-piece production.
、 スィッチ素子、 隔壁などの形成プロセスを実施して後、 他方の基板に設け られたフィルム基板との間に表示媒体の挟み込み、 封止を行なつてフィルム パネルを形成し、 しかる後剛体基板からパネルをはがす方法をとれば、 フィ ルムの薄さ、 伸縮性から生じる電極の上下位置合わせなどのプロセスの困難 性は軽減する。 After performing the formation process of switch elements, partition walls, etc., the display medium is sandwiched between the film substrate provided on the other substrate and sealed to form a film panel, and then from the rigid substrate. If the panel is peeled off, the difficulty of the process such as the vertical alignment of the electrodes due to the thinness of the film and the elasticity will be reduced.
[0068] 本願のフレキシブルパネルの製造に有効に活用できる転写法をたとえば積層 型カラーパネルの製造に適用する場合について述べる。 ガラスなどの耐熱性 剛体基板にあらかじめアモルファスシリコン等の無機皮膜、 ポリイミド、 シ リコン樹脂などの有機皮膜からなる剥離層を設け、 その上に数ミクロン厚の 有機ないし無機の基板材を設け、 この上に電極や A M、 必要に応じてスぺー サを形成し、 カプセル粒子を所定位置に敷き詰め、 必要ならバインダーを U Vないし熱で硬化する。 ついでこの上に、 使用する電極構成によっては電極 を設けたフィルムなどの薄い基板の電極面とカプセル粒子層を接着剤を介し て貼り合わせて一旦剛体基板上に表示パネルを完成させる。 ついで最終パネ ルとなる基板を被転写基板とし接着剤を介して剛体基板上に形成済みの表示 パネルを転写する。 同様の方法で 2色目、 3色目を転写することによって図 1 1のような構成の積層型フルカラーパネルを形成できる。 カプセル粒子を 敷き詰めた段階で被転写基板に転写、 積層してゆけば図 1 5のような構成の 積層パネルが可能であり、 実質粒子層のみからなる積層が構成可能である。 上下にのみ保護シートを設けても電子ぺーパ等柔軟性が望まれる用途に好適 なフルカラ一表示パネルが実現できる。 [0068] The case where the transfer method that can be effectively used for the production of the flexible panel of the present application is applied to the production of a laminated color panel, for example, will be described. Heat resistance such as glass A release layer consisting of an inorganic film such as amorphous silicon or an organic film such as polyimide or silicon resin is provided on a rigid substrate in advance, and an organic or inorganic substrate material with a thickness of several microns is provided on top of this. Electrodes, AM, and spacers are formed as needed, and the capsule particles are spread in place. If necessary, the binder is cured with UV or heat. Then, depending on the electrode configuration to be used, an electrode surface of a thin substrate such as a film provided with an electrode and a capsule particle layer are bonded together with an adhesive to complete a display panel on a rigid substrate. Next, the substrate that will be the final panel is used as the transfer substrate, and the display panel that has been formed on the rigid substrate is transferred via an adhesive. By transferring the second and third colors in the same way, a stacked full-color panel with the configuration shown in Fig. 11 can be formed. Capsule particles If it is transferred and laminated on the substrate to be transferred when it is spread, a laminated panel with the configuration shown in Fig. 15 is possible, and a laminate consisting of only a substantial particle layer can be constructed. Even if protective sheets are provided only on the top and bottom, a full color display panel suitable for applications where flexibility such as electronic paper is desired can be realized.
[0069] 単色パネルでは被転写基板を用いることなく剥離してパネルを完成させても よい。 カプセル粒子系のみならず隔壁型パネルも当然可能であり、 A Mァレ 一のみの転写、 分散系まで充填してからの転写、 パネルまで形成してからの 剥離等、 剥離、 転写法は可とう性フィルム基板を用いる本発明のパネル形成 に極めて有効に活用できる。 1 0 厚程度のフィルムを用い、 各色セル厚 3 0 のフルカラーパネルを構成して各セル間の接着剤厚を考慮しても図 1 0 の構成のパネルでも 0 . 2 m m以下の厚みに収まり、 正に紙のようなフレキ シブルディスプレイが実現できる。  [0069] In the case of a single-color panel, the panel may be completed by peeling without using a transfer substrate. Of course, not only capsule particle systems but also partition-type panels are possible. Transfer of only the AM array, transfer after filling the dispersion system, peeling after forming the panel, etc., peeling and transfer methods are acceptable. It can be used very effectively for the panel formation of the present invention using a conductive film substrate. Using a film with a thickness of about 10 and forming a full-color panel with a cell thickness of 30 for each color, the thickness of the panel with the configuration shown in Fig. A flexible display like paper can be realized.
[0070] パネル自体がフレキシブルであっても駆動回路、 バッテリなどを搭載すると 表示パネルのベーパライク性が損なわれてしまいがちである。 本発明の表示 パネルはメモリ性があるから一旦表示を更新すればドライバを切り離しても 表示は維持される。 従ってパネル電極端子部あるいは信号供給回路部を露出 しておき、 表示を更新する時のみ信号供給源に接続する、 パネル Z信号源分 離方式を取ることもでき、 ドライバを実装していない分低コス卜でパネルの フレキシブル性を確保できる。  [0070] Even if the panel itself is flexible, if a drive circuit, a battery, or the like is mounted, the vapor-like property of the display panel tends to be impaired. Since the display panel of the present invention has a memory property, once the display is updated, the display is maintained even if the driver is disconnected. Therefore, it is possible to use the panel Z signal source separation method in which the panel electrode terminal part or signal supply circuit part is exposed and connected to the signal supply source only when the display is updated. The flexibility of the panel can be secured with cost.
[0071 ] 現行のアモルファスシリコン(a-S i ) A Mの形成には 4 0 0 °C程度の高温プロ セスを必要としているためフィルム上に直接 s-S i A Mを形成することが出来 ない。 しかるに耐熱性剛体基板上ですベての高温プロセスを遂行しておき、 耐熱性に劣リ、 温度変化で伸縮の激しい有機フィルム上に常温近くで剥離、 転写できることは位置合わせが困難なフィルム処理には極めて有効な手法と 言える。 剥離転写は被転写基板側の接着力が剥離層側の接着力に勝る時に実 現できる。 剥離層側の接着力を弱めるためにパルスレーザ光などを照射して 、 剥離層と剛体基板の熱膨張性の違いを利用したり、 光照射で剥離層にガス を発生させて接着力を弱める方法などが利用される。 [0072] セルを多数積層する表示装置において注意すべきは、 界面反射である。 屈折 率が異なる界面では必ず界面反射が生じる。 図 1 0、 図 1 1の 3層積層型表 示セルでは、 モノクロ素子 1層辺り多数の層 (基板、 分散媒、 接着層) から 成るから各層は出来るだけ透明性が高いのは勿論、 屈折率のできるだけ等し い材料で構成し、 不要な界面反射を軽減することが重要である。 [0071] The formation of the current amorphous silicon (aS i) AM requires a high-temperature process of about 400 ° C., so sS i AM cannot be formed directly on the film. However, all high-temperature processes are performed on a heat-resistant rigid substrate, and it is inferior in heat resistance and can be peeled and transferred near normal temperature onto an organic film that stretches rapidly due to temperature changes. Is an extremely effective method. Release transfer can be realized when the adhesive force on the transfer substrate side exceeds the adhesive force on the release layer side. Irradiate pulsed laser light etc. to weaken the adhesive strength on the release layer side, use the difference in thermal expansion between the release layer and rigid substrate, or generate gas in the release layer by light irradiation and weaken the adhesive strength Methods are used. In a display device in which a large number of cells are stacked, attention should be paid to interface reflection. Interface reflections always occur at interfaces with different refractive indices. In the three-layer stacked display cell shown in Fig. 10 and Fig. 11, each layer is composed of a number of layers (substrate, dispersion medium, adhesive layer) per monochrome element. It is important to use materials with the same rate as possible to reduce unnecessary interface reflections.
[0073] 本発明で使用する光変調素子の透明基板としてプラスチックフィルムを使用 するとロールツーロールで連続量産できる特徴が発揮できる。 [0073] When a plastic film is used as the transparent substrate of the light modulation element used in the present invention, the feature of continuous mass production by roll-to-roll can be exhibited.
図 1 9はロールツーロールでパネルを製造する例を示す。 あらかじめ A Mァ レーや電極パタン、 スぺーサなどが形成された口ール状フィルムが上口ール から供給されカプセル粒子の形態などで分散系が塗布される。 一方、 電極取 リ出しのためのパンチング孔が空けられ印刷またはインクジエツ卜描画など で U Vシール樹脂などのシール剤が設けられた下フィルム基板との間に気泡 が残らないように両基板を正確に位置合わせして貼合、 固着される。 パンチ ングなどで切断して 1色用フィルムパネルを一括複数枚連続生産することが 可能である。 低温プロセスが可能な有機 T F Tなどの A M形成プロセスは口 一ルツ一ロールプロセスには相性がよく、 勿論本願のロールツーロールパネ ル形成に有効に適応可能である。 電極パタンゃ A M形成など前工程もロール ツー口ールで形成できれば正に理想的な口一ルツ一口ール量産工法になリ得 る。  Figure 19 shows an example of manufacturing a roll-to-roll panel. A film-like film pre-formed with an AM array, electrode pattern, spacer, etc. is supplied from the upper film, and the dispersion system is applied in the form of capsule particles. On the other hand, punching holes for electrode removal are opened and both substrates are accurately placed so that bubbles do not remain between the lower film substrate with a sealant such as UV seal resin for printing or ink jet drawing. Align and paste and fix. It is possible to produce multiple single-color film panels at once by cutting with punching. An AM formation process such as organic TFT, which can be processed at low temperature, is compatible with a single-roll, one-roll process, and of course can be effectively applied to the roll-to-roll panel formation of the present application. If the previous process such as electrode pattern A M formation can be formed by roll-to-roll, it can be an ideal mass production method.
[0074] ロールツーロール工法は 1枚の連続フィルムでも実施でき、 片側電極構成で は特に容易である。 口ールから供給されたフィルムに電極や A Mアレーを形 成して後、 カプセル粒子層を所定箇所に印刷等で設けて後、 透明保護層を塗 布すればよい。  [0074] The roll-to-roll method can be performed even with a single continuous film, and is particularly easy with a one-sided electrode configuration. After forming an electrode or an AM array on the film supplied from the mouthpiece, a capsule particle layer is provided by printing or the like at a predetermined location, and then a transparent protective layer is applied.
[0075] 特に本願では図 3のように片側基板にしか電極を必要としないパネル構成で は製造の自由度が高い。 下側フィルムにフォトレジス卜などで隔壁を形成し ておいてもよいが、 U V硬化樹脂を塗布して仮硬化した膜などをエンボス加 ェなどで隔壁とセルを形成後本硬化して分散系を充填し、 電極や A M付き上 フィルムで封止することによつて隔壁型フィルムパネルを製造することも可 能となる。 In particular, in the present application, a panel configuration that requires an electrode only on one side substrate as shown in FIG. The partition may be formed on the lower film with a photoresist, etc., but the partition and cells are formed by emulsifying a temporary cured film after applying UV curable resin and then cured to form a dispersion. It is also possible to manufacture a partition-type film panel by filling with and sealing with an electrode or an upper film with AM It becomes ability.
[0076] フィルム材料としてはビニル系のポリエチレン、 ポリ塩化ビニル、 ポリ塩化 ビニリデン、 ポリプロピレン、 ポリスチレン、 フッ素樹脂系など、 またポリ エステル系のポリカーボネート、 ポリエチレンテレフタレートなど、 ポリア ミド系のナイロン、 耐熱性エンジニアリングプラスチックとしてのポリイミ ド、 ポリスルフォン、 ポリエーテルスルフォン、 ポリフエ二レンサルフアイ ド、 ポリエーテルケトン、 ポリエーテルイミドなど種々のものが利用できる  [0076] Examples of film materials include vinyl polyethylene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polystyrene, fluororesin, polyester polycarbonate, polyethylene terephthalate, polyamide nylon, and heat resistant engineering plastic. Polyimide, polysulfone, polyethersulfone, polyphenylenesulfide, polyetherketone, polyetherimide, etc. can be used
[0077] ポリマーフィルムは一般にガラス等にくらべてガスを透過しやすい。 フィル ムを使用した表示装置でフィルムが外気に曝されて水分などが分散系に入リ 込み特性を劣化させる場合が生じる。 従ってフィルムパネルの信頼性を向上 するためにはフィルム表面にガスバリア層を設けるのが有効である。 ガスバ リア層としては酸化ゲイ素、 窒化ゲイ素などの薄膜、 およびこれらの膜とビ ニルアルコール含有重合体などの有機膜との積層膜が有効なことが知られて いる。 [0077] A polymer film is generally more permeable to gas than glass or the like. In a display device using a film, the film may be exposed to the outside air, and moisture may enter the dispersion system and degrade the characteristics. Therefore, in order to improve the reliability of the film panel, it is effective to provide a gas barrier layer on the film surface. As the gas barrier layer, it is known that thin films such as silicon oxide and silicon nitride, and laminated films of these films and organic films such as vinyl alcohol-containing polymers are known.
[0078] 本発明の光変調素子では隔壁部分ないし力プセル粒子間の隙間は光線透過率 は変化しないから、 光線透過方向のこの部分の幅は出来るだけ狭いことが望 ましい。 逆にこの部分が透明性であると光り抜けを生じ光変調素子の光線遮 断力を低下させ純黒が得られなくなるからこの部分を黒色光吸収性にするか 光反射性にすることが望ましい。 1 0 0 0 : 1以上の透過率変調を達成する には隔壁部を含む微粒子分散状態でのセルの光透過率を 0 . 1 %未満に押さ え込む必要があるが、 隔壁部やカプセルのすき間からの光り抜けを必要なら ブラックマトリクス (B M) 層を設けて防止した上でセルないしカプセルに 含有される微粒子の濃度を選定することによって達成可能である。  In the light modulation element of the present invention, since the light transmittance does not change in the gaps between the partition walls or the force pusher particles, it is desirable that the width of this part in the light transmission direction is as narrow as possible. On the other hand, if this part is transparent, light leakage occurs and the light blocking power of the light modulation element is reduced, so that pure black cannot be obtained. Therefore, it is desirable to make this part black light absorbing or light reflecting. . In order to achieve a transmittance modulation of 1 0 00: 1 or more, it is necessary to keep the light transmittance of the cell in a fine particle dispersed state including the partition wall portion to less than 0.1%. If it is necessary to prevent light from passing through the gap, it can be achieved by selecting the concentration of fine particles contained in the cells or capsules after providing a black matrix (BM) layer.
[0079] 本発明に使用する材料について述べる。  [0079] The materials used in the present invention will be described.
微粒子としては先に述べた通りできるだけ隠べい力ないし着色力の高いもの が望ましい。 白黒用にはカーボンブラック、 ビグメントブラック、 黒鉛など またはこれらが樹脂に埋め込まれたいわゆるトナーが使用できる。 C, M, Y微粒子としては印刷インキ、 カラー複写機用トナー、 インクジェット用ィ ンキなどに用いられているァゾ系、 フタロシアニン系、 ニトロ系、 ニトロソ 系など各種有機顔料や酸化鉄、 力ドミゥムエロー、 カドミウムレツドなどの 無機顔料など多様なものを用いることが出来る。 Υ色微粒子としてはハンザ イェロー、 ベンジジンイェロー、 キノリンイェローなど、 Μ色微粒子として はビグメントレッド、 ローダミン Β、 ローズベンガル、 ジメチルキナクリド ンなど、 c色微粒子としてはァニリンブルー、 フタロシアニンブルー、 ビグ メントブルー など、 黒色微粒子としては C, M, Y微粒子を混合して用い てもよい。 As described above, it is desirable that the fine particles have as high a concealing power or coloring power as possible. For black and white, carbon black, pigment black, graphite, etc., or a toner in which these are embedded in a resin can be used. CM, As Y fine particles, various organic pigments such as azo, phthalocyanine, nitro, nitroso, etc. used in printing ink, color copier toner, ink-jet ink, etc., iron oxide, force damme yellow, cadmium red, etc. A variety of inorganic pigments can be used. As amber particles, Hansa Yellow, Benzine Yellow, Quinoline Yellow, etc., As amber particles, Pigment Red, Rhodamine Β, Rose Bengal, Dimethylquinacridone, etc. As c-colored particles, Aniline Blue, Phthalocyanine Blue, Pigment Blue, etc. The black fine particles may be mixed with C, M, Y fine particles.
[0080] 微粒子は単体ばかりではなく帯電性や色調を最適化するため染料、 顔料およ びいくつかの色材を樹脂や液体と共に内包したカプセル微粒子を使用しても よい。 粒子の形状は球形はじめ針状、 棒状、 鱗片状など異方形状のものは本 願のように線状電極を用いる場合適したものと言える。 何故なら分散状態で は粒子はあらゆる方向を向いており、 光線吸収能、 光散乱能が高く、 電極に 集積した状態では針状や棒状粒子は電極に平行に配列しゃすく、 鱗片状では 互いに重なり易いから、 共に吸収ないし散乱断面積が減じコントラス卜が高 まり易いからである。 微粒子のサイズは 5 n m〜 5 程度が望ましい。 微粒 子は原子や分子レベルでの表面コートで表面変性したり、 分散剤、 界面活性 剤等を用いて荷電性付与および良分散性がはかられ、 電界で集積させた粒子 層も逆電界で速やかに再分散されるように調整されている必要がある。  [0080] The fine particles are not limited to simple substances but may be capsule fine particles in which a dye, a pigment, and some color materials are encapsulated with a resin or a liquid in order to optimize chargeability and color tone. Particles with an anisotropic shape such as a spherical shape, needle shape, rod shape, scale shape, etc. can be said to be suitable when a linear electrode is used as in the present application. This is because particles are oriented in all directions in a dispersed state, and have high light absorption ability and light scattering ability. When they are accumulated on an electrode, needle-like and rod-like particles are arranged parallel to the electrode, and in a scale-like form, they overlap each other. This is because both the absorption and scattering cross sections are reduced and the contrast is easily increased. The size of the fine particles is desirably about 5 nm to 5. Fine particles can be surface-modified by surface coating at the atomic or molecular level, or can be charged and imparted with good dispersion using a dispersant, surfactant, etc. It needs to be adjusted so that it can be quickly redistributed.
[0081 ] 隔壁型パネルでは図 6 ( G ) 、 ( H ) を除き電極 6— 1 、 6— 2は共に分散 系に露出しているとして説明したが、 粒子堆積の均一性向上、 付着力制御、 閾値性制御などの目的で導電性、 半導電性あるいは絶縁性の皮膜で被覆する 口'もあ <©。  [0081] In the bulkhead panel, it was explained that the electrodes 6-1 and 6-2 were both exposed to the dispersion system except for Fig. 6 (G) and (H). There is also a mouth that is covered with a conductive, semi-conductive or insulating film for the purpose of controlling threshold properties.
[0082] 本発明で使用するマイクロカプセルの製法は公知の種々の方法が適用できる 。 すなわち、 ( 1 ) 化学的方法として代表的な界面重合法や i n-sは e重合法 (界面反応法) (2 ) 物理化学的方法として代表的な液中乾燥法、 コアセル ベーション法、 融解分散冷却法 ( 3 ) 機械的方法として代表的な噴霧乾燥法 、 乾式混合、 オリフィス法などである。 マイクロカプセルの膜材としてはゼ ラチン、 アラビアゴム、 メラミン樹脂、 尿素樹脂、 ホルマリン樹脂、 ウレタ ン樹脂、 ポリウレァ樹脂、 アミノ酸樹脂、 メラミンホルムアルデヒド樹脂な ど多様な高分子材料が使用可能である。 内部がガス体のマイクロカプセルは 一般にマイクロバルーンと称される。 [0082] Various known methods can be applied to the method for producing the microcapsules used in the present invention. (1) Typical interfacial polymerization methods as chemical methods and ins are e-polymerization methods (interfacial reaction methods) (2) Typical submerged drying methods, coacervation methods, melt dispersion cooling as physicochemical methods (3) Typical spray drying method as a mechanical method , Dry mixing, orifice method, etc. A variety of polymer materials such as gelatin, gum arabic, melamine resin, urea resin, formalin resin, urea resin, polyurea resin, amino acid resin, and melamine formaldehyde resin can be used as the membrane material for the microcapsules. Microcapsules with a gas body inside are generally called microballoons.
[0083] 微粒子を内蔵したマイクロバルーンの製法としては、 (1 ) 微粒子にたとえ ば紫外光照射で窒素ガス等を発生するジァゾ成分などを導入ないし表面に吸 着させておき、 微粒子群を高分子樹脂で覆って後、 紫外光を照射して内部に ガスを発生させて微粒子内蔵中空カプセルを形成する (2 ) 粒子群を気泡 と共にカプセル化する (3 ) ドライアイスなど常温近辺で気体状態の物質 を低温で液体化あるいは微粉末固体化して微粒子と共に低温下でカプセル化 する などの方法が利用できる。  [0083] The method for producing a microballoon containing fine particles is as follows: (1) For example, a diazo component that generates nitrogen gas or the like when irradiated with ultraviolet light is introduced or adsorbed on the surface, and the fine particle group is polymerized. After covering with resin, ultraviolet light is irradiated to generate gas inside to form a hollow capsule with fine particles (2) Encapsulate particles with bubbles (3) Dry matter such as dry ice in a gaseous state For example, the liquid can be liquefied at a low temperature or solidified into a fine powder and encapsulated at a low temperature with fine particles.
[0084] 分散系 7が空気や窒素などのガス体中に流動性の高い微粒子が分散された分 散系では粒子移動に抵抗が少ないから高速応答の表示パネルが可能になる。 微粒子表面に微小な凹凸形状を形成すると更に流動性が高くなること、 また シラン力ップリング剤ゃシリコンオイルでの粒子の表面処理が帯電性制御、 流動性向上に有効なことが知られている。  [0084] When the dispersion system 7 is a dispersion system in which fine particles with high fluidity are dispersed in a gas body such as air or nitrogen, a display panel with a high-speed response is possible because the resistance to particle movement is low. It is known that the formation of minute irregularities on the surface of the fine particles further increases the fluidity, and that the surface treatment of the particles with a silane-powered pulling agent or silicone oil is effective for controlling the chargeability and improving the fluidity.
[0085] 屋外用では強力な光に曝されることになるから、 使用する材料 (透明基板、 接着剤、 微粒子、 分散媒、 カプセル材料、 バインダー樹脂、 隔壁材料、 電極 、 A Mなど) には特に耐光性、 耐熱性に優れたものを用いる必要がある。 パ ネル表面はアクリル板などで補強したり紫外線吸収剤を内蔵したものないし は表面にコー卜して用いるべきである。 見易さ改善には反射防止膜も有用で める。  [0085] Because it will be exposed to strong light for outdoor use, especially for the materials used (transparent substrate, adhesive, fine particles, dispersion medium, capsule material, binder resin, partition material, electrode, AM, etc.) It is necessary to use one with excellent light resistance and heat resistance. The panel surface should be reinforced with an acrylic plate or with a built-in UV absorber or coated on the surface. An anti-reflective coating is also useful for improving visibility.
[0086] 媒体が液体の場合シリコン系、 石油系やハロゲン化炭化水素など多種類の高 絶縁性溶媒が利用できる。  [0086] When the medium is a liquid, various types of highly insulating solvents such as silicon-based, petroleum-based and halogenated hydrocarbons can be used.
[0087] 非直線素子材料としては先述の通り T a, A Iなどの薄膜を陽極酸化して他 方の金属で挟み込んだ M I Mや、 カルコゲナイ卜系化合物、 酸化亜鉛などの 半導体が利用でき、 T F T材料としては a— S i、 a- l nGaZnO、 ポリシリコン などの無機半導体またペンタセン、 ポリフルオレン、 ポリフエキシルチオフ ェンなどの低分子や高分子の有機半導体が用いられる。 [0087] As described above, as non-linear element materials, semiconductors such as MIM, chalcogenide-based compounds, and zinc oxide, in which thin films such as Ta and AI are anodized and sandwiched between other metals, can be used. As a—S i, a- l nGaZnO, polysilicon Inorganic semiconductors such as low molecular and high molecular organic semiconductors such as pentacene, polyfluorene, and polyphenylthiophene are used.
発明の効果  The invention's effect
[0088] 本発明は次のような効果を奏する。  [0088] The present invention has the following effects.
帯電した微粒子を電界で移動させて、 光透過性を変化させる表示装置であつ て、 電極構成、 セル中の微粒子量、 電極ピッチ、 セル厚、 駆動電極面積率に 検討を加えたことによって低電圧で高コントラスト、 高透過率を達成し、 拡 大投射用高精細小型ライ卜バルブ、 小型からメートルサイズの直視型表示装 置、 薄型フレキシブルな白黒およびフルカラー電子べーパ、 数 1 0メートル を超える超大型表示装置まで広範囲の表示サイズに適用可能となり、 反射専 用、 透過専用あるいは反射、 透過両用に適用可能な表示装置が実現した。 図面の簡単な説明  A display device that changes the light transmissivity by moving charged fine particles with an electric field. Low voltage by examining the electrode configuration, the amount of fine particles in the cell, the electrode pitch, the cell thickness, and the drive electrode area ratio Achieves high contrast and high transmittance, high-definition compact light bulb for enlarged projection, small to meter-size direct-view display, thin flexible black-and-white and full-color electronic vapor, more than 10 meters Applicable to a wide range of display sizes up to ultra-large display devices, realizing a display device that can be used exclusively for reflection, transmission, or both reflection and transmission. Brief Description of Drawings
[0089] [図 1 ]は従来の横電界粒子移動型表示装置の原理を示す横断面図  [0089] FIG. 1 is a cross-sectional view showing the principle of a conventional horizontal electric field particle movement type display device.
[図 2]は従来の横電界粒子移動型表示装置の原理を示す他の横断面図  FIG. 2 is another cross-sectional view showing the principle of a conventional horizontal electric field particle movement type display device.
[図 3]は本発明の横電界粒子移動型表示装置の原理を示す横断面図  FIG. 3 is a cross-sectional view showing the principle of the horizontal electric field particle movement type display device of the present invention.
[図 4]は本発明の表示装置に用いる電極の正面図  FIG. 4 is a front view of electrodes used in the display device of the present invention.
[図 5]は本発明の表示装置の明状態の透過性を説明する図  FIG. 5 is a diagram for explaining light state transparency of the display device of the present invention.
[図 6]は本発明の表示装置の他の電極構成を示す横断面図  FIG. 6 is a cross-sectional view showing another electrode configuration of the display device of the present invention.
[図 7]は本発明の表示装置に用いる他の電極の正面図  FIG. 7 is a front view of another electrode used in the display device of the present invention.
[図 8]は本発明の表示装置の明状態の透過性を向上するための電極部の横断面 図  [FIG. 8] is a cross-sectional view of an electrode part for improving the transparency in the bright state of the display device of the present invention.
[図 9]は本発明の表示装置の他の構成を示す横断面図  FIG. 9 is a cross-sectional view showing another configuration of the display device of the present invention.
[図 10] ( A ) は本発明の積層型カラーパネルの断面図、 (B ) は本発明のピ ン付きカラーパネルの斜視図  [FIG. 10] (A) is a cross-sectional view of the laminated color panel of the present invention, and (B) is a perspective view of the pinned color panel of the present invention.
[図 11 ]本発明の C, M, Yカプセル粒子を積層したカラーパネルの断面図 [図 12]本発明の単純マトリクスパネルの製造工程と電極構成の正面図  [FIG. 11] Sectional view of a color panel laminated with C, M, Y capsule particles of the present invention. [FIG.
[図 13]発明の 2端子 A Mアレー製造工程と電極構成の正面図 [図 14]本発明の 3端子 A Mパネルの画素部の電極構成の正面図 [FIG. 13] Front view of the 2-terminal AM array manufacturing process and electrode configuration of the invention FIG. 14 is a front view of the electrode configuration of the pixel portion of the 3-terminal AM panel of the present invention.
[図 15]本発明の C, M, Yカプセル粒子を積層した他のカラーパネルの断面 図  [Fig. 15] Cross section of another color panel in which C, M, Y capsule particles of the present invention are laminated
[図 16]本発明のシリコン集積回路を下基板に用いた反射型ライ卜バルブの断 面図  FIG. 16 is a sectional view of a reflective type light valve using the silicon integrated circuit of the present invention as a lower substrate.
[図 17]本発明のカラーフィルタ付きカラーパネルの断面図  FIG. 17 is a sectional view of a color panel with a color filter of the present invention.
[図 18]本発明の単層マルチカラーパネルの動作原理を示す断面図 FIG. 18 is a sectional view showing the operating principle of the single-layer multi-color panel of the present invention.
[図 19]本発明のパネルをロールツーロールで製造する工程図の 1例 [FIG. 19] An example of a process diagram for producing the panel of the present invention by roll-to-roll
符号の説明 Explanation of symbols
1 透明上基板  1 Transparent upper substrate
2 下基板  2 Lower board
3 カウンター電極  3 Counter electrode
4 コレク卜電極 4 Collect electrode
5 微粒子  5 Fine particles
6 - 1 駆動電極  6-1 Drive electrode
6-2 共通電極 6-2 Common electrode
分散系  Distributed system
8 セル  8 cells
9 スぺーサ 9 Spacer
1 0 力プセル粒子 1 0 force pushell particle
1 1 接着剤 1 1 Adhesive
1 2 白色拡散板 1 2 White diffuser
1 3 光源  1 3 Light source
1 3a カラーフィルタ 1 3a Color filter
1 3 b 1 3 b
ブラックマ卜リクス Black marix
1 3c X_Yアクティブマトリクスアレー  1 3c X_Y active matrix array
1 3d 3色用 Χ— Υアクティブマトリクスアレー 反射板 1 3d For 3 colors Χ— ΥActive matrix array a reflector
シリコン基板  Silicon substrate
バインダー  Binder
バックライトュニッ卜  Backlight unit
C1,C2,C3, 列電極端子 R1.R2, R3, 行電極端子 隔壁  C1, C2, C3, Column electrode terminal R1.R2, R3, Row electrode terminal Bulkhead
2端子素子  2-terminal element
T FT素子 T FT element
絶縁膜 Insulation film
積層セル Stacked cell
電極ピン Electrode pin

Claims

請求の範囲 The scope of the claims
[1 ] 少なくとも 1方は透明な基板間に、 帯電した微粒子が液体またはガス媒体中 に分散された分散系が挟まれてセルを構成しておリ、 該微粒子を電界で移動 させて、 該セルの基板に垂直方向の光透過性あるいは光反射性を変化させる 表示装置において、 電界を印加するために設けられた駆動電極と共通電極の 電極間ピッチ Pが 5〜 1 0 0 、 画素内の駆動電極面積率が 2 0 %以下、 セ ルギャップ dをピッチ pの 0 . 2〜 1 . 5倍に設定したことを特徴とした表 示装置  [1] At least one of them forms a cell by sandwiching a dispersion system in which charged fine particles are dispersed in a liquid or gas medium between transparent substrates, and the fine particles are moved by an electric field, In a display device that changes the light transmittance or light reflectivity in the direction perpendicular to the cell substrate, the electrode pitch P between the drive electrode and the common electrode provided for applying an electric field is 5 to 100, A display device characterized in that the drive electrode area ratio is 20% or less and the cell gap d is set to 0.2 to 1.5 times the pitch p.
[2] 請求項 1において該セル中の微粒子量は微粒子分散状態において該セルの光 学的透過率が 1 0 %以下になるように調整されていることを特徴とした表示 装置  [2] The display device according to claim 1, wherein the amount of fine particles in the cell is adjusted so that the optical transmittance of the cell is 10% or less in a fine particle dispersed state.
[3] 請求項 1〜請求項 2において駆動電極面積率が 1 0 %以下であることを特徴 とした表示装置  [3] The display device according to claim 1 or 2, wherein the drive electrode area ratio is 10% or less.
[4] 請求項 1〜請求項 3のセルは基板間に設けられた隔壁によって形成されてい るかまたは分散系を内蔵した力プセル粒子によつて形成されていることを特 徴とした表示装置  [4] The display device characterized in that the cell according to claims 1 to 3 is formed by partition walls provided between the substrates, or is formed by force pusher particles incorporating a dispersion system.
[5] 請求項 1〜請求項 4において該微粒子は単一極性に荷電したものであること を特徴とした表示装置  [5] The display device according to any one of claims 1 to 4, wherein the fine particles are charged with a single polarity.
[6] 請求項 1〜請求項 4において該微粒子は正、 負に荷電したものが混在してい ることを特徴とした表示装置 [6] The display device according to claim 1 to 4, wherein the fine particles are a mixture of positively and negatively charged particles.
[7] 請求項 1〜請求項 6において該微粒子は反射性であり、 下基板側の色は粒子 の色と異なっていることを特徴とした表示装置 [7] The display device according to any one of [1] to [6], wherein the fine particles are reflective, and the color of the lower substrate side is different from the color of the particles.
[8] 請求項 1〜請求項 7の表示装置において該分散系は ( 1 ) 色と移動速度が異 なる混合粒子系ないしは (2 ) 色が異なりかつ電極からの脱着閾値特性も異 なる粒子が混在した混合粒子系からなることを特徴とした表示装置 [8] In the display device according to any one of claims 1 to 7, the dispersion system is (1) a mixed particle system having a different color and moving speed or (2) particles having different colors and different desorption threshold characteristics from electrodes. Display device comprising mixed mixed particle system
[9] 請求項 1〜請求項 7の表示装置において異なる色の微粒子が分散された分散 系が積層されていることを特徴とした表示装置 [9] The display device according to any one of claims 1 to 7, wherein a dispersion system in which fine particles of different colors are dispersed is laminated.
[10] 請求項 9において、 微粒子がそれぞれ赤色を吸収するシアン色透過性、 緑色 を吸収するマゼンタ色透過性、 青色を吸収するイエロ一色透過性であリ少な くともこれら 3層が積層されていることを特徴としたフル力ラー表示装置 [10] In claim 9, the cyan particles each of which absorbs red color, green A full-power error display device characterized in that at least these three layers are laminated.
[11 ] 請求項 9〜請求項 1 0の表示装置において、 異なる色の分散系が n層積層さ れている時、 基板垂線からの角度を 0、 画素サイズを Sとした時、 必要な視 野角 »を得るために、 基板および分散系からなる 1色当りのセルの厚みが、 q≤S Ztan ( 6» ) Z nを満たすように構成されていることを特徴としたカラー 表示装置 [11] In the display device according to claim 9 to claim 10, when n layers of dispersion systems of different colors are stacked, an angle from the substrate normal is 0, and a pixel size is S, a necessary view A color display device characterized in that the cell thickness per color consisting of the substrate and the dispersion system is configured to satisfy q≤S Ztan (6 ») Z n
[12] 請求項 1〜請求項 6の表示装置は隣り合う画素にそれぞれ R, G , Bのカラ 一フィルタが設けられていることを特徴としたカラー表示装置  [12] The color display device according to any one of [1] to [6], wherein color filters of R, G, and B are provided in adjacent pixels, respectively.
[13] 請求項 1〜請求項 1 2において、 該電極が単純マトリクス駆動、 スタチック 駆動ないしァクティブマ卜リクス駆動されるように構成されたことを特徴と した表示装置  [13] The display device according to any one of claims 1 to 12, wherein the electrode is configured to be driven in a simple matrix drive, a static drive or an active matrix drive.
[14] 請求項 1〜請求項 1 3の表示装置は背面に光源を設けていることを特徴とし た表示装置  [14] The display device according to claims 1 to 13 is characterized in that a light source is provided on the back surface.
[15] 請求項 1〜請求項 1 4の表示装置は単一セルないし多数のセルからなるパネ ルを X, Y方向に多数集合させて構成されていることを特徴とした表示装置  [15] The display device according to claim 1 to claim 14, wherein the display device is configured by assembling a plurality of panels composed of a single cell or a large number of cells in the X and Y directions.
[16] 請求項 1〜請求項 1 5の表示装置は曲面形状になるように構成されているこ とを特徴とした表示装置。 16. The display device according to any one of claims 1 to 15, wherein the display device is configured to have a curved shape.
[17] 請求項 1〜請求項 1 6の表示装置は剛体基板に設けられた剥離層上に分散系 層形成までのプロセスまたはパネル形成までのプロセスを実施してのち剥離 することを特徴とした表示装置とその製造法 [17] The display device according to claim 1 to claim 16, wherein the display device is peeled after the process up to the formation of the dispersion layer or the process up to the panel formation is performed on the release layer provided on the rigid substrate. Display device and manufacturing method thereof
[18] 請求項 1〜請求項 1 6の表示装置はロールフィルムを用いたロールツーロー ルで製造されることを特徴とした表示装置とその製造法 [18] The display device according to claim 1 to claim 16 is manufactured by roll-to-roll using a roll film, and a method for manufacturing the display device
PCT/JP2007/000039 2006-07-24 2007-01-30 Display device, and its manufacturing method WO2008012934A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007506602A JPWO2008012934A1 (en) 2006-07-24 2007-01-30 Display device and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006200250 2006-07-24
JP2006-200250 2006-07-24
JP2006208927 2006-07-31
JP2006-208927 2006-07-31

Publications (1)

Publication Number Publication Date
WO2008012934A1 true WO2008012934A1 (en) 2008-01-31

Family

ID=38981250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000039 WO2008012934A1 (en) 2006-07-24 2007-01-30 Display device, and its manufacturing method

Country Status (2)

Country Link
JP (2) JPWO2008012934A1 (en)
WO (1) WO2008012934A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128915A (en) * 2007-11-26 2009-06-11 Samsung Corning Precision Glass Co Ltd Optical film for display apparatus using electrophoresis and filter for display apparatus having the same
JP2011514555A (en) * 2008-02-26 2011-05-06 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Electrophoretic display device
JP2011237770A (en) * 2010-04-12 2011-11-24 Seiko Epson Corp Electrophoresis display device, driving method of the same and electronic equipment
JP2013526727A (en) * 2010-05-21 2013-06-24 イー インク コーポレイション Multicolor electro-optic display
WO2014061492A1 (en) * 2012-10-17 2014-04-24 シャープ株式会社 Optical device and display device provided with same
EP3511771A4 (en) * 2016-09-09 2019-09-11 LG Chem, Ltd. Transmittance-variable device
WO2020161005A1 (en) * 2019-02-04 2020-08-13 Elstar Dynamics Patents B.V. Improved optical modulator
US11099453B1 (en) 2020-08-03 2021-08-24 Elstar Dynamics Patents B.V. Light modulator, light modulator method and smart glazing
US11099451B1 (en) 2020-07-31 2021-08-24 Elstar Dynamics Patents B.V. Light modulator, substrate comprising electrodes and smart glazing
WO2023117191A1 (en) * 2021-12-24 2023-06-29 Elstar Dynamics Patents B.V. Substrate comprising electrodes and light modulator with reduced diffraction

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423603B2 (en) * 2010-07-26 2014-02-19 日立化成株式会社 Suspended particle device and driving method thereof
KR101759643B1 (en) * 2010-12-17 2017-08-01 삼성디스플레이 주식회사 Electrophoresis display apparatus
JP5556762B2 (en) 2011-08-01 2014-07-23 日立化成株式会社 Suspended particle device, light control device using suspended particle device, and driving method thereof
KR101882734B1 (en) * 2011-08-22 2018-08-27 삼성디스플레이 주식회사 Electrophoretic display device
KR101936682B1 (en) * 2011-08-24 2019-01-10 엘지디스플레이 주식회사 Electrophoretic display device and driving method the same
JP5516616B2 (en) 2012-02-07 2014-06-11 日立化成株式会社 Suspended particle device, light control device using the same, and driving method thereof
JP2013213953A (en) * 2012-04-03 2013-10-17 Hitachi Chemical Co Ltd Dimmer device
KR101994816B1 (en) * 2012-11-14 2019-07-01 엘지디스플레이 주식회사 Transparent organic light emitting diodes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391722A (en) * 1989-09-04 1991-04-17 Toyota Motor Corp Driving method for electrophoresis display element
JP2002511607A (en) * 1998-04-10 2002-04-16 イー−インク コーポレイション Multi-color sub-pixel full-color reflective display
JP2002333643A (en) * 2001-05-11 2002-11-22 Konica Corp Electrophoresis type color display device
JP2004198861A (en) * 2002-12-20 2004-07-15 Fuji Xerox Co Ltd Image display device
JP2004341464A (en) * 2003-05-13 2004-12-02 Ind Technol Res Inst Method for manufacturing electrophoretic display
JP2006099093A (en) * 2004-09-27 2006-04-13 Idc Llc System and method of arranging device to mutually connected array
JP2006162737A (en) * 2004-12-03 2006-06-22 Bridgestone Corp Manufacturing method for panel for information display, panel for information display, and information display device using same
JP2006162969A (en) * 2004-12-07 2006-06-22 Canon Inc Particle transfer type display element and particle transfer type display apparatus

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222236B2 (en) * 1972-05-04 1977-06-16
JPH0641222Y2 (en) * 1989-10-06 1994-10-26 トヨタ自動車株式会社 Electrophoretic display element
JPH0533403U (en) * 1991-10-08 1993-04-30 トヨタ自動車株式会社 Functional color variable vehicle lighting
US5345251A (en) * 1993-01-11 1994-09-06 Copytele, Inc. Electrophoretic display panel with interleaved cathode and anode
JP2000089261A (en) * 1998-09-11 2000-03-31 Brother Ind Ltd Charged particle, display device and display medium
JP2000298292A (en) * 1999-04-13 2000-10-24 Sony Corp Display device
JP4508322B2 (en) * 1999-10-22 2010-07-21 キヤノン株式会社 Display device
JP3625421B2 (en) * 1999-11-08 2005-03-02 キヤノン株式会社 Electrophoretic display device
TW574512B (en) * 2001-03-14 2004-02-01 Koninkl Philips Electronics Nv Electrophoretic display device
JP2002311461A (en) * 2001-04-17 2002-10-23 Sharp Corp Display element
KR20030011098A (en) * 2001-04-25 2003-02-06 코닌클리케 필립스 일렉트로닉스 엔.브이. Electrophoretic color display device
JP2002350903A (en) * 2001-05-24 2002-12-04 Konica Corp Electrophoresis type display device and its manufacturing method
TW539928B (en) * 2001-08-20 2003-07-01 Sipix Imaging Inc An improved transflective electrophoretic display
JP2003172951A (en) * 2001-12-07 2003-06-20 Bridgestone Corp Display panel for household electric appliance
JP2004177950A (en) * 2002-11-13 2004-06-24 Canon Inc Electrophoresis display apparatus
JP4176452B2 (en) * 2002-11-14 2008-11-05 株式会社日立製作所 Electrophoretic display device
JP4287310B2 (en) * 2004-03-10 2009-07-01 株式会社東芝 Driving method of electrophoretic display element
JP2005265921A (en) * 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd Display device and manufacturing method therefor
JP4255126B2 (en) * 2004-06-30 2009-04-15 株式会社東芝 Electrophoretic display device and manufacturing method thereof
WO2006021900A1 (en) * 2004-08-23 2006-03-02 Koninklijke Philips Electronics N.V. Active matrix devices
JP2006113399A (en) * 2004-10-15 2006-04-27 Canon Inc Method for driving electrophoretic display apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391722A (en) * 1989-09-04 1991-04-17 Toyota Motor Corp Driving method for electrophoresis display element
JP2002511607A (en) * 1998-04-10 2002-04-16 イー−インク コーポレイション Multi-color sub-pixel full-color reflective display
JP2002333643A (en) * 2001-05-11 2002-11-22 Konica Corp Electrophoresis type color display device
JP2004198861A (en) * 2002-12-20 2004-07-15 Fuji Xerox Co Ltd Image display device
JP2004341464A (en) * 2003-05-13 2004-12-02 Ind Technol Res Inst Method for manufacturing electrophoretic display
JP2006099093A (en) * 2004-09-27 2006-04-13 Idc Llc System and method of arranging device to mutually connected array
JP2006162737A (en) * 2004-12-03 2006-06-22 Bridgestone Corp Manufacturing method for panel for information display, panel for information display, and information display device using same
JP2006162969A (en) * 2004-12-07 2006-06-22 Canon Inc Particle transfer type display element and particle transfer type display apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128915A (en) * 2007-11-26 2009-06-11 Samsung Corning Precision Glass Co Ltd Optical film for display apparatus using electrophoresis and filter for display apparatus having the same
JP2011514555A (en) * 2008-02-26 2011-05-06 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Electrophoretic display device
JP2011237770A (en) * 2010-04-12 2011-11-24 Seiko Epson Corp Electrophoresis display device, driving method of the same and electronic equipment
JP2013526727A (en) * 2010-05-21 2013-06-24 イー インク コーポレイション Multicolor electro-optic display
WO2014061492A1 (en) * 2012-10-17 2014-04-24 シャープ株式会社 Optical device and display device provided with same
JP5906321B2 (en) * 2012-10-17 2016-04-20 シャープ株式会社 Optical device and display device having the same
EP3511771A4 (en) * 2016-09-09 2019-09-11 LG Chem, Ltd. Transmittance-variable device
US10996459B2 (en) 2016-09-09 2021-05-04 Lg Chem, Ltd. Transmittance-variable element
WO2020161005A1 (en) * 2019-02-04 2020-08-13 Elstar Dynamics Patents B.V. Improved optical modulator
US10852616B2 (en) 2019-02-04 2020-12-01 Elstar Dynamics Patents B.V. Optical modulator
US10935866B2 (en) 2019-02-04 2021-03-02 Elstar Dynamics Patents B.V. Optical modulator
US11809055B2 (en) 2019-02-04 2023-11-07 Elstar Dynamics Patents B.V. Optical modulator
US11099451B1 (en) 2020-07-31 2021-08-24 Elstar Dynamics Patents B.V. Light modulator, substrate comprising electrodes and smart glazing
US11099453B1 (en) 2020-08-03 2021-08-24 Elstar Dynamics Patents B.V. Light modulator, light modulator method and smart glazing
WO2023117191A1 (en) * 2021-12-24 2023-06-29 Elstar Dynamics Patents B.V. Substrate comprising electrodes and light modulator with reduced diffraction

Also Published As

Publication number Publication date
JP5308719B2 (en) 2013-10-09
JPWO2008012934A1 (en) 2009-12-17
JP2008209953A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP5308719B2 (en) Display device and manufacturing method thereof
TWI251710B (en) Electrophoretic dispersion, electrophoresis display device, method for manufacturing electrophoresis display device, and electronic appliance
US7839564B2 (en) Components and methods for use in electro-optic displays
KR20180092326A (en) Display device
EP2073057A2 (en) Display
US20110304652A1 (en) Electronic display
US20070268446A1 (en) Liquid crystal device and method for forming the same
JP5464264B2 (en) Electrophoretic display device and electronic apparatus
TW200809359A (en) Method for manufacturing electro-optical device and electro-optical device
JP2007298894A (en) Display device, its manufacturing method and display system
JP2007139913A (en) Image display device
US20130114125A1 (en) Multi-color electrophoretic display device, image sheet, and manufacturing method thereof
EP2711770B1 (en) Electro-optic displays
WO2014034569A1 (en) Display device
JP2009069366A (en) Display device and method of manufacturing the same
JP4917913B2 (en) Electrophoretic display device, electrophoretic display device manufacturing method, and electronic apparatus
JP5572282B2 (en) Display device and manufacturing method thereof
US8270065B2 (en) Colored electrophoretic display
JP2008015161A (en) Display device
JP2008020828A (en) Large-sized display device
CN113759631A (en) Display panel, preparation method thereof and display device
JP3687888B2 (en) Writing device
US20080212163A1 (en) Image Display Element, Image Display Sheet, Image Display and Image Displaying Method
US8094248B2 (en) Liquid crystal display device
JP2007304449A (en) Optical modulation element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007506602

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07713480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07713480

Country of ref document: EP

Kind code of ref document: A1