JP5572282B2 - Display device and manufacturing method thereof - Google Patents
Display device and manufacturing method thereof Download PDFInfo
- Publication number
- JP5572282B2 JP5572282B2 JP2007257011A JP2007257011A JP5572282B2 JP 5572282 B2 JP5572282 B2 JP 5572282B2 JP 2007257011 A JP2007257011 A JP 2007257011A JP 2007257011 A JP2007257011 A JP 2007257011A JP 5572282 B2 JP5572282 B2 JP 5572282B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- particles
- cell
- substrate
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Description
少なくとも1方は透明な基板間に、帯電ないし磁化した微粒子が液体、液晶またはガス媒
体中に分散された分散系が挟まれてセルを構成しており、該微粒子を横電界ないし横磁界
で移動させて、分散状態の該微粒子の量を変調することによって該セルの基板に垂直方向
の光透過性を変化させる横方向粒子移動型表示装置において、該微粒子を水平方向に移動
させるために、平板状の駆動電極と共通電極が設けられており、該駆動電極と共通電極は
主面が互いに対向した櫛形平行平板電極対よりなり、両電極間にほぼ均一な横電界を形成
するように構成されており、該平板電極の、1画素中の電極による光遮蔽面積を画素面積
で割った値で定義する面積率が20%以下、該平板電極の該基板に平行な面の面積(Δs)
と垂直な主面の面積(Δz)の面積比(Δs/Δz)が0.2以下、該平行平板電極間ピッ
チPが5〜100μm、セルギャップdがピッチPの0.5〜2.0倍に設定されている
ことを特徴とした表示装置であって、高精細小型パネルをライトバルブとした拡大投射表
示、小型からメートルサイズの直視型表示装置、薄型フレキシブルな白黒およびフルカラー
電子ペーパ表示、基本セルないし基本パネルを2次元状に多数配列した超大型表示装置まで
広範囲の表示サイズに適用でき、また反射専用、透過専用あるいは反射、透過両用に適用可
能な表示装置とその製造法に関するものである。
At least one of them forms a cell with a dispersed system in which charged or magnetized fine particles are dispersed in a liquid, liquid crystal or gas medium between transparent substrates, and the fine particles are moved by a transverse electric field or a transverse magnetic field. In order to move the fine particles in a horizontal direction in a lateral particle movement type display device that changes the light transmittance in the vertical direction to the substrate of the cell by modulating the amount of the fine particles in a dispersed state, The drive electrode and the common electrode are composed of a pair of comb-shaped parallel plate electrodes whose main surfaces are opposed to each other, and are configured to form a substantially uniform lateral electric field between the electrodes. An area ratio defined by a value obtained by dividing the light shielding area by the electrode in one pixel by the pixel area of the flat plate electrode is 20% or less, and the area of the plane parallel to the substrate of the flat plate electrode (Δs)
The area ratio (Δs / Δz) of the area (Δz) of the principal surface perpendicular to the surface is 0.2 or less, the pitch P between the parallel plate electrodes is 5 to 100 μm, and the cell gap d is 0.5 to 2.0 of the pitch P. It is a display device characterized in that it is set to double, and it is an enlarged projection display that uses a high-definition small panel as a light valve, a small to meter-size direct-view display device, thin flexible black and white and full-color electronic paper display, It can be applied to a wide range of display sizes up to a very large display device in which a large number of basic cells or basic panels are arranged two-dimensionally, and also relates to a display device applicable to reflection only, transmission only, or both reflection and transmission, and its manufacturing method. is there.
従来の薄型表示装置の代表は液晶表示装置であり、モノクロはじめ赤(R)、緑(G)、青(B)の3色カラーフィルタを設けてそれに対応した液晶層を、透過率を変化させるシャッターとして動作させ、R,G,B光の加色法によってフルカラーを実現している。背後に白色バックライトが設けられたものは透過型カラー液晶装置であり、液晶TV、パソコンモニター、携帯電話の表示装置など広く利用されている。しかるに液晶表示装置の重大なる難点は偏光板を用いることによる50%を超える光ロスであり、またフルカラー表示を実現するためR,G,Bカラーフィルタを並置しているため更に2/3の光線をロスしていることである。 A typical thin display device is a liquid crystal display device, which is provided with a three-color filter of monochrome, red (R), green (G), and blue (B), and changes the transmittance of the corresponding liquid crystal layer. It is operated as a shutter, and a full color is realized by a color adding method of R, G, B light. A transmissive color liquid crystal device provided with a white backlight behind is widely used for liquid crystal TVs, personal computer monitors, mobile phone display devices, and the like. However, a serious difficulty of the liquid crystal display device is an optical loss of more than 50% due to the use of the polarizing plate, and an R, G, B color filter is juxtaposed for realizing a full color display, and further 2/3 rays. It is a loss.
他の表示装置として透明液体ないしガス体に分散された微粒子を表示面に対して水平方向に移動集積させることによって光線透過性を変化させる横電界粒子移動型表示法が提案されている(特許文献1〜13)。その構成は図1(A),(B)に示す通り、透明カウンター電極3を設けた透明基板1と、コレクト電極4を設けた基板2との間に帯電した微粒子が分散された分散系が挟まれており、電極3と電極4間に電圧を印加して粒子をカウンター電極3上に堆積させるか、面積の小さいコレクト電極4上に集積させるかによってセルの光透過率を変えることを特徴としている。すなわち微粒子が黒色光吸収性の場合(A)で暗状態、(B)で明状態になる。図1(C),(D)は透明カウンター電極3がコレクト電極4と同一面上に形成されている場合であり、動作は(A)、(B)と同じである。 As another display device, there has been proposed a horizontal electric field particle movement display method in which light transmittance is changed by moving and accumulating fine particles dispersed in a transparent liquid or gas body in a horizontal direction with respect to a display surface (Patent Document). 1-13). As shown in FIGS. 1A and 1B, a dispersion system in which charged fine particles are dispersed between a transparent substrate 1 provided with a transparent counter electrode 3 and a substrate 2 provided with a collect electrode 4 is provided. The light transmittance of the cell is changed depending on whether a particle is deposited on the counter electrode 3 by applying a voltage between the electrodes 3 and 4 or accumulated on the collect electrode 4 having a small area. It is said. That is, when the fine particles are black light-absorbing, the dark state is obtained in (A) and the light state is obtained in (B). FIGS. 1C and 1D show a case where the transparent counter electrode 3 is formed on the same plane as the collect electrode 4, and the operation is the same as (A) and (B).
他の構成は図2に示されている。ここではコレクト電極4が網目状電極よりなり、粒子を透明カウンター電極3上に堆積させるかないしは粒子分散状態で暗状態、網目状コレクト電極4上に堆積させた時明状態となる。 Other configurations are shown in Figure 2. Here, the collect electrode 4 is formed of a mesh electrode, and the particles are deposited on the transparent counter electrode 3, or in a dark state when dispersed, and in a bright state when deposited on the mesh collect electrode 4 .
図1および図2の如き電極構成及び表示モードでは駆動電圧の上昇、応答速度の低下を来たすという重大な問題を抱えていた。更に電子シャッターとして最重要な光線透過率、光線遮断率についても十分考慮されていなかった。従来の図1の構成では両端のコレクト電極4の中間辺り(すなわちセル中央部)にある粒子は電界が弱い上に、明暗時にこれらの粒子をコレクト電極上ないしカウンター電極中央部までもたらすには長い距離を移動させる必要があり、明、暗の切替時間(応答速度)が極端に悪化する問題があった。また不均一電界中で面積の大きいベタ透明カウンター電極上に粒子を均一に堆積させることが困難であるため、コントラストに優れた表示を実現することが難かしかった。図2の如き電極構成及び表示モードでは確かに画素面内で電界強度を均一化した点で優れている。また暗状態を必ずしも粒子をカウンター電極に集積した状態ではなく、粒子がほぼ均一に分散した状態を用いていることも応答性改善に繋がる。しかしながら透過率に優れた明状態を実現するために重要なパラメータである網状電極の電極面積率、電極の断面形状、電極ピッチ、分散粒子量、セル厚等について十分検討されていなかったため高コントラスト、高透過率、低電圧駆動、高速応答を実現する実用的な表示装置になり得なかった。
表示装置では応答速度は早いことが望ましい。粒子移動表示法の場合実用的な応答速度を実現するには通常0.2〜2V/μm程度の電界強度が必要である。表示装置の画素は用途によって種々のサイズが存在する。拡大投射に用いるライトバルブでは小型、高精細が要求されるから画素サイズは10μm以下の場合もある。一方屋内外に設置される公衆ディスプレイではセンチメートルオーダの画素になる場合もある。本願では横方向粒子移動型ディスプレイをあらゆるサイズの画素に適用し、尚且つ実用的な駆動電圧で透過率、コントラスト、応答速度等ディスプレイとしての重要な特性を最適化することによって実用性を向上させたものである。 It is desirable for the display device to have a high response speed. In the case of the particle movement display method, an electric field strength of about 0.2 to 2 V / μm is usually required to realize a practical response speed. There are various sizes of pixels of a display device depending on applications. Since the light valve used for enlarged projection requires small size and high definition, the pixel size may be 10 μm or less. On the other hand, in a public display installed indoors or outdoors, there are cases where the pixels are in the order of centimeters. In this application , the horizontal particle movement display is applied to pixels of all sizes , and the practical characteristics are improved by optimizing important characteristics as a display such as transmittance, contrast, and response speed with a practical driving voltage. It has been made .
上記課題を解決するために、本発明は従来同様横電界ないし横磁界を用いる粒子移動表示法であるが、応答速度を向上させ、駆動電圧を低減させると共に特に透過率とコントラストを向上させる新規なセル構成を提案するものであり、発明者の特願2007−506602の改良に関するものである。 In order to solve the above-mentioned problems, the present invention is a particle movement display method using a transverse electric field or a transverse magnetic field as in the prior art, but it is a novel method that improves the response speed, reduces the driving voltage, and particularly improves the transmittance and contrast. The present invention proposes a cell configuration and relates to the improvement of the inventor's Japanese Patent Application No. 2007-506602.
本発明の基本セルの構成は図3(A)、(B)に夫々横断面図、(C)に部分斜視図で示す通り、ガラス、プラスチックなど少なくとも一方は透明な2枚の基板1,2間に設けられた隔壁20によりセル8が構成され、該セル内には透明媒体に微粒子5が分散された分散系7が充填されており、細幅縦長の一対の板状電極6−1、6−2が各セルの全面に設けられてセル8が構成されている。図3(A)のようにセル8中にカーボンブラックなどの黒色光吸収性の微粒子5あるいは二酸化チタンのような白色高光散乱性微粒子5が分散された状態では透明基板2から入射した光は、微粒子5の隠ぺい力が十分ならば入射光は微粒子に遮蔽されて黒色となる。 As shown in FIGS. 3A and 3B, the basic cell of the present invention is shown in a cross-sectional view and a partial perspective view in FIG. A cell 8 is constituted by a partition wall 20 provided therebetween, and the cell is filled with a dispersion system 7 in which fine particles 5 are dispersed in a transparent medium, and a pair of narrow and long plate-like electrodes 6-1; 6-2 is provided on the entire surface of each cell to constitute a cell 8. As shown in FIG. 3A, in the state where black light absorbing fine particles 5 such as carbon black or white high light scattering fine particles 5 such as titanium dioxide are dispersed in the cell 8, light incident from the transparent substrate 2 is If the hiding power of the fine particles 5 is sufficient, the incident light is blocked by the fine particles and becomes black.
図3(B)のように電極6−1と6−2間にDC電圧を印加すれば、主として電極6−1
,6−2で形成される電気力線に沿って微粒子5が移動し、正に帯電している場合負極の
電極6−1の側面に集積する。粒子が集積した電極6−1、および未集積の電極6−2以
外の領域は光を遮るものがなく透明となる。ここで6−1、6−2間に逆極性の適切なD
C電圧パルスないしAC電圧を印加すれば6−1上の微粒子は電極を離れてセル8中に再
分布し、セル8は再び不透明となる。このようにセル8内の分散状態の粒子量(したがっ
て6−1へ集積させる粒子量)を変えることによってセル8の基板に垂直方向の透過率を
連続的に変化でき集積状態の粒子は電圧を切って後もその状態を維持するため表示はメモ
リ性を有する。分散系7は透明な液体、透明液晶体、ガス体中に正または負に帯電した微
粒子が分散されたものから成り、分散媒が液体や液晶の場合は粒子の移動は電気泳動と呼
ばれる。電極6−1、6−2の形状は図4に正面図で示すように櫛型の構成で用いられる
。いずれも基板に平行な面は細幅で、側面は高さがほぼセルギャップに等しく広面積であ
ることに特徴がある。
If a DC voltage is applied between the electrodes 6-1 and 6-2 as shown in FIG.
, 6-2, the fine particles 5 move along the electric lines of force, and accumulate on the side surface of the negative electrode 6-1 when positively charged. The regions other than the electrode 6-1 on which the particles are integrated and the electrode 6-2 on which the particles are not integrated have nothing to block light and are transparent. Here, an appropriate D of opposite polarity between 6-1 and 6-2
When a C voltage pulse or an AC voltage is applied, the fine particles on 6-1 redistribute in the cell 8 after leaving the electrode, and the cell 8 becomes opaque again. In this way, by changing the amount of dispersed particles in the cell 8 (and hence the amount of particles accumulated in the 6-1), the transmittance in the direction perpendicular to the substrate of the cell 8 can be continuously changed. The display has a memory property in order to maintain the state after being cut. The dispersion system 7 includes a transparent liquid, a transparent liquid crystal body, and a gas body in which positively or negatively charged fine particles are dispersed. When the dispersion medium is a liquid or liquid crystal, the movement of the particles is called electrophoresis. The electrodes 6-1 and 6-2 are used in a comb-like configuration as shown in the front view of FIG. Both in even plane parallel narrow the substrate, side features there Ru that is equally large area substantially cell gap height.
本発明では粒子を集積する電極6−1を駆動電極、他方の電極6−2を共通電極と呼ぶ。板状の駆動電極がセル全面に存在し、共通電極6−2との間のほぼ均一な横電界により、その方向と粒子の帯電極性に依存して粒子は集積、分散を繰り返すことができる。この粒子移動型表示法を水平(横)電界型粒子移動表示法と名づけている。図3(B)から明らかな通り、微粒子は広面積の駆動電極の両側面に堆積できることが重要な特徴である。電極間ピッチを適切に選べば、セルの周辺のみに電極を設けた図1の場合に較べて特に画素が大きくなった場合低電圧駆動が可能となる。 In the present invention, the electrode 6-1 for accumulating particles is called a drive electrode, and the other electrode 6-2 is called a common electrode. Plate-like drive electrodes are present on the entire surface of the cell, and particles can be repeatedly accumulated and dispersed depending on the direction and the charged polarity of the particles by a substantially uniform lateral electric field between the common electrodes 6-2. This particle movement display method is termed a horizontal (lateral) electric field type particle movement display method. As is clear from FIG. 3B, it is an important feature that the fine particles can be deposited on both side surfaces of the driving electrode having a large area. If the pitch between the electrodes is appropriately selected, low voltage driving can be achieved particularly when the pixels are larger than in the case of FIG. 1 in which electrodes are provided only in the periphery of the cell.
図5に示すように、粒子を堆積できる1個の板状駆動電極6−1の基板に平行な面の面積をΔs、基板に垂直な面の面積をΔzとし、本願ではΔs/Δzを駆動電極のアスペクト比と呼ぶ。板厚の高さに対する割合でもある。本願は低アスペクト比の駆動電極を用いることを特徴としており、粒子堆積状態(明状態)では分散されていた粒子が広面積の駆動電極側面(Δz)に薄く堆積する結果、この部分での光遮蔽効果は小さくこれによってセルの高透過率が実現できる。また隔壁部を除く画素面積をSとし、1画素中の電極数をnとする時、Δs×nが電極そのものによる光遮蔽面積となる。この電極による光遮蔽面積の画素面積に対する割合を本願では電極面積率と名づけている。たとえば画素面積を100μm角とし、電極厚み2μm、高さ100μmの電極(Δs=200μm
2 )が4本設けられていれば電極面積率は8%となる。本願セル構成では共通電極にアスペクト比の小さなものを駆動電極と対向させてあるから共通電極による光遮蔽も小さく、かつ両電極間の電界の均一性も良好であるから、高速、高透過率表示の実現にまさに好適な構成となる。板状電極の厚みは画素サイズ、セルギャップ、製造工法、機械的強度に依存するが通常0.1〜30μm、望ましくは0.2〜20μmで用いられる。セル厚は5〜150μm、後述の通り望ましくは10〜100μmが適切であるからアスペクト比Δs/Δzは0.2以下が適当である。
As shown in FIG. 5, the area of the plane parallel to the substrate of one plate-like drive electrode 6-1 on which particles can be deposited is Δs, the area of the plane perpendicular to the substrate is Δz, and in this application, Δs / Δz is driven. This is called the electrode aspect ratio. It is also the ratio of the plate thickness to the height. The present application is characterized by the use of a drive electrode having a low aspect ratio, and in the particle deposition state (bright state), dispersed particles are thinly deposited on the side surface (Δz) of the large area of the drive electrode. Since the shielding effect is small, a high transmittance of the cell can be realized. When the pixel area excluding the partition wall is S and the number of electrodes in one pixel is n, Δs × n is the light shielding area by the electrodes themselves. The ratio of pixel area of the light shielding area due to the electrode that have named in the present application as electrode area ratio. For example, a pixel area of 100 μm square, an electrode thickness of 2 μm, and a height of 100 μm (Δs = 200 μm)
Electrode area ratio if 2) if provided this 4 is 8%. In the cell configuration of the present application, a common electrode with a small aspect ratio is opposed to the drive electrode, so the light shielding by the common electrode is small, and the uniformity of the electric field between both electrodes is also good, so high-speed, high transmittance display This is a configuration suitable for realizing the above. The thickness of the plate electrode depends on the pixel size, cell gap, manufacturing method, and mechanical strength, but is usually 0.1-30 μm, preferably 0.2-20 μm. The cell thickness is 5 to 150 μm, preferably 10 to 100 μm as described later, and therefore the aspect ratio Δs / Δz is suitably 0.2 or less.
図3では粒子は正か負の単一極性のものを用いるとして説明した。確かに従来の図1の構成では粒子は単一極性でないと満足な明透過率および表示コントラストが得られないことは明白であり、単粒子系の使用が必須条件であった。しかるに図3の構成で粒子の分散状態を暗状態とする本願の場合、正負粒子が混在した双極性分散系が有効に利用できる。すなわち明状態で正負粒子は隔壁面に設けられた電極を除き、電極6−1、6−2両電極の両側面に堆積し、堆積する面積が大きいから付着粒子層の厚みを薄くでき、明状態で高透過率を実現できる。Δsが小さいから共通電極にも不透明なものを使用でき電極材料の選択自由度が高まる。(0010)で粒子を堆積する電極を駆動電極と定義したが双極性分散系では共通電極も粒子を堆積し、この場合は共通電極も駆動電極となる。 In FIG. 3, it is assumed that the particles have positive or negative single polarity. Certainly, in the conventional configuration shown in FIG. 1, it is clear that satisfactory bright transmittance and display contrast cannot be obtained unless the particles have a single polarity, and the use of a single particle system was an essential condition. However, in the case of the present application in which the particle dispersion state is the dark state with the configuration of FIG. 3, a bipolar dispersion system in which positive and negative particles are mixed can be used effectively. That is, positive and negative particles are deposited on both side surfaces of the electrodes 6-1 and 6-2 except for the electrodes provided on the partition wall in the bright state, and the deposited area is large, so that the thickness of the adhered particle layer can be reduced. High transmittance can be realized in the state. Since Δs is small, an opaque material can be used for the common electrode, and the degree of freedom in selecting an electrode material is increased. In (0010), the electrode on which particles are deposited is defined as the drive electrode. However, in the bipolar dispersion system, the common electrode also deposits particles. In this case, the common electrode also becomes the drive electrode.
分散媒がガス体のいわゆるエアロゾル分散系の場合、粒子の帯電は粒子同士の摩擦帯電が主であるから、双極性分散系の方が粒子の帯電安定性に優れることもエアロゾル系を用いる際の利点の1つとなる。 When the dispersion medium is a so-called aerosol dispersion system in which the dispersion medium is a gas, the charge of the particles is mainly frictional charge between the particles. Therefore, the bipolar dispersion system is superior in the charge stability of the particles. One of the advantages.
図5に示すような基板面側は細幅でセル厚方向に広面積のアスペクト比の小さな電極を形成する方法としては、電鋳、導電性高分子や導電性微粒子が樹脂に分散された導電性塗料のマイクロ整形、金属箔や金属薄膜のマイクロ加工など多様な技術が利用できる。 As a method for forming an electrode having a small width and a small aspect ratio in the cell thickness direction on the substrate surface side as shown in FIG. 5, electroforming, conductive polymer or conductive fine particles dispersed in resin Various technologies such as micro-shaping of conductive paint and micro-processing of metal foil and metal thin film can be used.
一例として図6に示すように基板2上にあらかじめ電極および配線パタンを形成しておき(A)、この上にレジストパタンを形成(B)し、電鋳によって電極パタン上のレジストのない孔を金属で埋め(C)、その後レジストを除去(D)する方法が利用できる。厚いレジストに縦方向に幅狭の孔を空ける方法として一般にLIGAプロセス(ドイツ語でX線を用いたフォトリソグラフィ(Lithographie), 電解めっき(Galvanoformung),形成(Abformung)による微細加工を意味する)とよばれるものが有効である。すなわち透過性が高く直進性に優れたシンクロトロン放射光をポリメチルメタクリレート(PMMA)などの厚膜樹脂層のメタルマスク層のない部分に照射し、PMMAを低分子化して易溶解性にすることによって基板に垂直方向に微細でシャープな孔を設けることができ、この孔を電鋳によって金属で充填後、図3(C)に示す如き隔壁部を残してPMMAを溶解除去すればよい。 As an example, as shown in FIG. 6, an electrode and a wiring pattern are formed in advance on the substrate 2 (A), a resist pattern is formed thereon (B), and a resist-free hole on the electrode pattern is formed by electroforming. A method of filling with metal (C) and then removing the resist (D) can be used. In general, LIGA process (meaning fine processing by Lithographie, electroplating (Galvanoformung), forming (Abformung) using X-ray in German) as a method of making a narrow hole in the vertical direction in a thick resist What is called is effective. In other words, irradiate a portion of the thick resin layer, such as polymethyl methacrylate (PMMA), where there is no metal mask layer with synchrotron radiation that has high transparency and excellent straightness, to make PMMA low-molecular and easily soluble. Thus, a fine and sharp hole can be provided in the substrate in the vertical direction. After filling the hole with metal by electroforming, the PMMA may be dissolved and removed leaving a partition wall as shown in FIG.
図6(D)を用いて新たな薄膜電極付き新基板との間で樹脂モールド⇒新基板を剥離して樹脂モールドを転写⇒電鋳によって図6(D)の複製を多数製造可能である。 Using FIG. 6 (D), a new mold with a new thin film electrode can be used to produce a large number of replicas of FIG. 6 (D) by electromolding.
図6(D)を直接用いるのではなくLIGAプロセスを用いてセラミック、ガラス、金属など剛体基板からなる図6(D)の如きオス金型を作り、加熱軟化させた樹脂層や未硬化UV樹脂層に加圧して樹脂層をメス形状化し、樹脂層を硬化後RIE(リアクティブイオンエッチ)などで電極上の残存樹脂を除去して後電鋳を行って図6(D)のような目的とするオス電極構成を実現してもよい。もちろん電極の高さが大きくない場合には通常のフォトレジストや電子ビーム露光プロセスを採用して図6(B)の如き孔空きレジストパタンを形成することも可能である。 The male layer as shown in FIG. 6 (D) made of a rigid substrate such as ceramic, glass, metal, etc. is made using the LIGA process instead of directly using FIG. 6 (D), and the heat-softened resin layer or uncured UV resin The resin layer is pressed into a female shape, and after the resin layer is cured, the residual resin on the electrode is removed by RIE (reactive ion etching) and post-electroforming is performed, as shown in FIG. A male electrode configuration may be realized. Of course, when the height of the electrode is not large, it is possible to form a perforated resist pattern as shown in FIG. 6B by employing a normal photoresist or an electron beam exposure process.
一方図6(B)の如き孔空き樹脂層に電鋳の代わりに導電性高分子ないし導電性塗料を充填、硬化してのち、元の樹脂層を溶解除去して硬化導電樹脂で電極を構成することも出来る。 On the other hand, the porous resin layer as shown in FIG. 6B is filled with a conductive polymer or conductive paint instead of electroforming and cured, and then the original resin layer is dissolved and removed to form the electrode with the cured conductive resin. You can also
セラミックやガラスなど耐熱性の高い基板を用いて図6(B)の如きメス金型を作成し、孔に微細金属粉や導電性トナー微粉末を充填してのち加熱溶融して導電性構造体を作り薄膜電極を設けた基板に転写してもよい。 A female die as shown in FIG. 6B is made using a substrate having high heat resistance such as ceramic or glass, and the hole is filled with fine metal powder or conductive toner fine powder, and then heated and melted to form a conductive structure. May be transferred to a substrate provided with a thin film electrode.
板状電極を形成する第2の方法は、薄膜配線を設けた基板に硬化前の導電性樹脂や導電性塗料層を設け、これに直接メス金型を押し当ててオス状に加工、不要な導電性樹脂層除去の後加熱あるいはUV照射で硬化して図6(D)の如き電極構成体を形成するものである。樹脂の金型からの剥離性を向上するため金型内面はフッ素処理加工などの離型処理がなされていることが必要である。 The second method of forming the plate electrode is to provide a conductive resin or conductive paint layer before curing on a substrate provided with a thin film wiring, and press a female die directly on this to process it into a male shape. The conductive resin layer is removed and then cured by heating or UV irradiation to form an electrode structure as shown in FIG. In order to improve the releasability of the resin from the mold, it is necessary that the inner surface of the mold is subjected to a release treatment such as a fluorine treatment.
板状電極を形成する第3の方法は図7に示すように剛体基板上の所定箇所に凹みを設けたメス金型30を用意する。これに金属箔を被せるかないしは他の剥離基板上に設けた金属薄膜31をメス金型30に転写する(A)。次に専用に設計したオス金型で上からプレスし、金属膜を電極形状に直角に折り曲げる。もちろんプレス前に金属膜をフォトエッチやレーザ描画あるいはパンチング金型で折り曲げが容易化するよう金属膜を部分的にパタン化しておくことも好ましい。ついで孔部分を樹脂で埋めて表面の不要な樹脂ないし金属膜をエッチングや研磨で除去して後、金属膜を蒸着ないしスパッタで設け必要な電極間を相互接続する。しかる後に接着層を設けた基板2に転写して後、電極間に残ったレジストを溶解除去すれば、図6(D)の如き基板2上の電極構造体が形成できる。 As shown in FIG. 7, the third method for forming the plate-like electrode is to prepare a female die 30 having a recess at a predetermined location on a rigid substrate. This is covered with a metal foil, or the metal thin film 31 provided on another release substrate is transferred to the female mold 30 (A). Next, it is pressed from above with a specially designed male mold, and the metal film is bent at right angles to the electrode shape. Of course, it is also preferable to partially pattern the metal film before pressing so that the metal film can be easily bent by photoetching, laser drawing, or a punching die. Next, the hole portion is filled with resin, and unnecessary resin or metal film on the surface is removed by etching or polishing, and then a metal film is provided by vapor deposition or sputtering, and necessary electrodes are interconnected. Then, after transferring to the substrate 2 provided with an adhesive layer, the resist remaining between the electrodes is dissolved and removed, whereby an electrode structure on the substrate 2 as shown in FIG. 6D can be formed.
板状電極を形成する第4の方法は印刷転写法である。すなわち剛体からなるメス金型の凹部に低粘度の導電性樹脂ないし塗料をスキージ等で(必要に応じて減圧下で)充填して後仮硬化し、金属配線の形成された基板へ印刷転写して後加熱ないしUVで本硬化する方法で量産性に適する。金型の離型処理が不可欠である。 A fourth method for forming the plate-like electrode is a printing transfer method. In other words, a low-viscosity conductive resin or paint is filled in the concave part of a female mold made of a rigid body with a squeegee or the like (under reduced pressure if necessary), and then temporarily cured, and printed and transferred to a substrate on which metal wiring is formed. It is suitable for mass productivity by post-heating or UV-curing. Mold release treatment is indispensable.
第5の方法はフィルム上に電極および配線膜を設けたシートを多数枚接着層を介して積層してブロックを作る。積層面を研磨して接着剤を設けた基板に貼り付け、数10μmのセルギャップに相当する厚みにスライスする。スライス面に電極薄膜を形成パタン化して後最終基板に転写して図6(D)の構造を得る。以降はフィルムを溶解除去すればよい。 In the fifth method, a block is formed by laminating a large number of sheets each provided with an electrode and a wiring film on a film via an adhesive layer. The laminated surface is polished and attached to a substrate provided with an adhesive, and sliced to a thickness corresponding to a cell gap of several tens of μm. An electrode thin film is formed on the slice surface and patterned, and then transferred to the final substrate to obtain the structure of FIG. Thereafter, the film may be dissolved and removed.
以上述べたように細幅背高の板状電極はニッケル、クロム、金、銅などの金属や金属合金の電鋳だけでなく、導電性樹脂、導電塗料などの印刷やインクジェット描画などで設けた導電性厚膜のフォトエッチやマイクロエンボス加工、金属膜のマイクロ金型加工、電極構造体の印刷転写法などが有効に利用できる。 As mentioned above, narrow and tall plate electrodes were provided not only for electroforming of metals and metal alloys such as nickel, chromium, gold and copper, but also for printing of conductive resins and conductive paints, ink-jet drawing, etc. Photoetching of conductive thick films, microembossing, metal mold micromolding, and electrode structure printing and transferring methods can be used effectively.
微粒子を駆動電極に集積した時上下基板内面に固着して残存することはセルの明状態の光透過性を阻害するゆえに好ましくない。従ってセルのこの部分には微粒子の固着を妨げるようフッ素化合物などの低表面張力物質のコーティングあるいは単粒子系では粒子の帯電と同極性に帯電するような表面処理がなされていることが望ましい。また分散媒が液体の場合は微粒子と液体の比重は出来るだけ近接していることが粒子の沈降や浮上を生じさせにくいことから望ましい。 When the fine particles are accumulated on the drive electrode, it is not preferable that the fine particles adhere to and remain on the inner surfaces of the upper and lower substrates because the light transmittance in the bright state of the cell is inhibited. Therefore, it is desirable that this portion of the cell is coated with a low surface tension substance such as a fluorine compound or the like so as to prevent the fine particles from sticking, or in the case of a single particle system, a surface treatment is performed so as to be charged to the same polarity as the particles. Further, when the dispersion medium is a liquid, it is desirable that the specific gravity of the fine particles and the liquid be as close as possible because it is difficult for the particles to settle or float.
本発明で暗状態を作り出す粒子分散状態とはブラウン運動により比重差に拘わらず液体中に安定に微粒子が均一分散したコロイド状態は勿論、基板1,2内面のいずれかないし両面に一部ないし殆どの粒子がゆるく付着した状態、粒子が互いにゆるく凝集し、両基板間、ないし両電極間に3次元網目構造を形成している状態も含むものである。また微粒子は1種類である必要はなく、光学的特性を最適化するため各種のものが混在していてもよい。 In the present invention, the particle dispersion state that creates a dark state is a colloid state in which fine particles are stably dispersed uniformly in the liquid regardless of the specific gravity due to Brownian motion. This includes a state in which the particles are loosely adhered and a state in which the particles are loosely aggregated to form a three-dimensional network structure between the two substrates or between the two electrodes. The fine particles need not be of one type, and various types of fine particles may be mixed in order to optimize the optical characteristics.
微粒子5は通常光吸収性のものが使用されるが、二酸化チタンのように白色反射性のものを用いることも可能である。粒子に白色反射性のものを用いた場合、セル8の背面基板2側をたとえば黒色にしておけば、微粒子分散状態で明状態、電極に粒子を集積した状態で暗状態となる反射型表示装置を実現できる。 The fine particles 5 are usually light-absorbing, but it is also possible to use white reflective ones such as titanium dioxide. In the case of using white reflective particles, if the back substrate 2 side of the cell 8 is black, for example, a reflective display device that is in a bright state in a fine particle dispersed state and a dark state in a state where particles are accumulated on an electrode. Can be realized.
本願の如き受動型表示装置では表示性能を決するものは、透過率、コントラスト、色純度、応答速度、解像度、視野角などであり、装置としては駆動電圧、消費電力も重要な要素となる。図3の如き表示装置で透過コントラストは粒子分散状態(暗)の透過率と粒子集積状態(明)の透過率で決定される。特に十分な暗状態を作り出すことがコントラスト向上には必須用件となる。コントラスト1000:1、100:1、10:1以上を実現するにはセルの粒子分散状態での透過率は各々0.1%(光学濃度3以上)、1%(光学濃度2以上)、10%未満(光学濃度1以上)である必要がある。本願のセル構成では分散系の粒子濃度を増せば分散状態の透過率を上記値にすることは極めて容易である。しかし粒子濃度を増すと一般に粒子の移動速度が遅くなる、明状態の透過率が悪化しやすいなどの障害が発生するから不必要に粒子濃度を上げるのは得策ではない。 In a passive display device such as the present application, what determines display performance is transmittance, contrast, color purity, response speed, resolution, viewing angle, and the like, and driving voltage and power consumption are also important factors for the device. In the display device as shown in FIG. 3, the transmission contrast is determined by the transmittance in the particle dispersion state (dark) and the transmittance in the particle accumulation state (bright). In particular, creating a sufficiently dark state is an essential requirement for improving contrast. In order to achieve a contrast of 1000: 1, 100: 1, 10: 1 or more, the transmittance in the particle dispersion state of the cell is 0.1% (optical density 3 or higher), 1% (optical density 2 or higher), 10 % (Optical density of 1 or more). In the cell configuration of the present application, it is very easy to set the transmittance in the dispersed state to the above value by increasing the particle concentration of the dispersed system. However, increasing the particle concentration generally causes problems such as slowing of the moving speed of the particles and easy deterioration of the light transmittance, so it is not a good idea to increase the particle concentration unnecessarily.
図8を用いて本表示装置での粒子集積時の明状態でのセル透過率について述べる。十分ないんぺい性が得られる濃度に微粒子を分散させた分散系中の粒子をすべて上基板に集積したと想定(粒子が双極性であってもとにかく全粒子を片側基板に集積したと想定)しこの時の粒子層の厚みをh、画素の面積をSとする(A)。1画素内の粒子を堆積させる電極の総面積はΔz×n(ただしnは1画素内で粒子を堆積できる面の数)とし、分散粒子をすべてΔz×nに集積したとした明状態では、電極上の粒子層の厚みeはh*S/Δz/nとなる(B)。たとえば通常のカーボンブラックのいんぺい力は9300cm2/gと計測されている。密度が約1.7であるから固体層とすればたった0.63μmである。実際の堆積粒子層では粒子間空隙等存在するから粒子層の厚みはこれよりかなり大きくはなるがせいぜい数μm厚である。仮に粒子層厚h=3μm(空隙率=78%)としてもS≒Δz、n=4のセル構成ではe=h/4=0.75μmにしかならない。すなわち(0011)で述べた100μm角のセルの例では粒子堆積時の明状態では2μm厚の電極が2.75μm厚になったのと等価であるからセルの光透過率は(1002−2.75×100×4)/1002=89%という好ましい高透過率が実現できることになる。電極厚が0.5μm、5μmの場合各々95%、77%の透過率が得られ、従って同時に高コントラストが実現できることになる。当然のことながら画素が小さくなるほど電極厚を薄く構成することに留意する必要がある。 The cell transmittance in the bright state at the time of particle accumulation in this display device will be described with reference to FIG. Assume that all the particles in a dispersion system in which fine particles are dispersed at a concentration that provides sufficient penetration are accumulated on the upper substrate (assuming that all particles are accumulated on one side substrate anyway even if the particles are bipolar). The thickness of the particle layer at this time is h, and the area of the pixel is S (A). In the bright state where the total area of the electrodes for depositing particles in one pixel is Δz × n (where n is the number of surfaces on which particles can be deposited in one pixel) and all dispersed particles are accumulated in Δz × n, The thickness e of the particle layer on the electrode is h * S / Δz / n (B). For example, the penetration force of normal carbon black is measured to be 9300 cm 2 / g. Since the density is about 1.7, the solid layer is only 0.63 μm. In an actual deposited particle layer, there are inter-particle voids and the like, so the thickness of the particle layer is considerably larger than this, but at most several μm thick. Even if the particle layer thickness h = 3 μm (porosity = 78%), in the cell configuration with S≈Δz and n = 4, only e = h / 4 = 0.75 μm. That is, in the example of the 100 μm square cell described in (0011), the light transmittance of the cell is (100 2 −2) because the 2 μm thick electrode is equivalent to 2.75 μm thick in the bright state at the time of particle deposition. .75 × 100 × 4) / 100 2 = 89% A preferable high transmittance can be realized. When the electrode thickness is 0.5 .mu.m and 5 .mu.m, transmittances of 95% and 77% are obtained, respectively, so that high contrast can be realized at the same time. Of course, it should be noted that the smaller the pixel, the thinner the electrode thickness.
粒子濃度を下げれば一般に粒子の移動速度は速くなり、分散系を厚くすれば低粒子濃度(g/cm 3 )でも隠ぺい性を高めることができ高速、高コントラストを実現し易い。しかしながらセルを厚くするほどまた電極ピッチを狭くする程斜め入射光の吸収ロスまた視差による輝度低下が増大する。 Lowering the particle concentration generally increases the moving speed of the particles. If the dispersion system is thickened , the hiding property can be increased even at a low particle concentration (g / cm 3 ), and high speed and high contrast can be easily realized. However, the thicker the cell and the narrower the electrode pitch, the greater the absorption loss of obliquely incident light and the lowering of luminance due to parallax.
図9(A)にセルギャップd(ほぼ電極高さ)、電極ピッチP、バックライト放射角θ、下基板厚Hの関係を示す。分散系は双極性で粒子は駆動、共通電極の両側面に堆積しているものとしている。また放射光の内電極面に垂直な面内の成分のみについて議論している。下基板下面のA点からのバックライト放射光の内垂線からの角度θ(=tan -1 (P/(H+d)))を超える光線の中でθ1、θ2、…θnの成分は堆積粒子層で吸収されて外部に出射できずロスとなる。図9(B)、(C)から明らかな通り、基板厚Hが厚いほど、ギャップdが厚いほど電極ピッチPを大きくしないとθ小すなわち視角が狭くなる。反射型で用いる場合は基板2を反射性にしておけばB点からの反射光となりロスとなる光線はθR(>θ)を超える反射光であるから基板下面からの反射よりは有利になるが、tan(θR)=P/dより、ギャップd大でθR小となり、ピッチPを大きくしないとやはり視角が狭くなりロスが増える。透過で用いる場合は液晶ディスプレイで用いられているようにバックライト光をプリズムシートで平行光化(<θ=tan -1 (P/(H+d))すれば光線ロスは大きく改善される。 FIG. 9A shows the relationship among the cell gap d (approximately the electrode height), the electrode pitch P, the backlight radiation angle θ, and the lower substrate thickness H. The dispersion system is bipolar, and the particles are driven and deposited on both sides of the common electrode. Also, only the component in the plane perpendicular to the inner electrode surface of the emitted light is discussed. Components of θ1, θ2,... Θn are deposited in light rays exceeding the angle θ (= tan −1 (P / (H + d))) from the internal line of the backlight radiated light from the point A on the lower surface of the lower substrate. It is absorbed by the particle layer and cannot be emitted to the outside, resulting in a loss. As is clear from FIGS. 9B and 9C, the smaller the substrate thickness H, the thicker the gap d, the smaller the θ, that is, the narrower the viewing angle, unless the electrode pitch P is increased. In the case of using the reflection type, if the substrate 2 is made reflective, the light beam that becomes reflected light from the point B and becomes a loss is reflected light that exceeds θR (> θ). , Tan (θR) = P / d, the gap d is large and θR is small. If the pitch P is not increased, the viewing angle becomes narrow and the loss increases. When used in transmission, the light loss is greatly improved if the backlight is converted into parallel light with a prism sheet (<θ = tan −1 (P / (H + d))) as used in a liquid crystal display.
図10を用いて本表示装置の輝度の視角特性のセルギャップd、電極ピッチP依存性について述べる。図10に示す通り電極基板面に垂直面内で垂線からの角度θ方向(バックライト放射光ないし反射光は完全拡散光と想定している)から本表示装置を見た場合、図10(A)の電極間領域Pの内ΔP領域(図のΔθ領域に相当)は電極の影になって見えない。電極間領域Pに対して影となる領域ΔPの割合(ΔP/P)を輝度低下割合Fとすると、F=d×tan(θ)/Pで表される。当然ながら図10(B)、(C)に見る通り、角度θが大なる程、ピッチPが小なる程、ギャップdが大なる程輝度ロスFが増大する。低粒子分散濃度で高速、高コントラストを実現するためセルギャップを大にするには限度があり、低電圧、高速駆動のため電極ギャップを小さくすることも限度があることを示す。以上の妥協点として通常セル厚は100μm程度以下で用いるのが望ましく、電極ピッチpはセルギャップdの0.5〜2倍で用いるのがよい。 The dependence of the viewing angle characteristics of the luminance of the display device on the cell gap d and the electrode pitch P will be described with reference to FIG. As shown in FIG. 10, when the display device is viewed from the direction of the angle θ from the perpendicular to the electrode substrate surface (assuming that the backlight radiated light or reflected light is completely diffused light), FIG. The ΔP region (corresponding to the Δθ region in the figure) in the inter-electrode region P of FIG. When the ratio (ΔP / P) of the shaded area ΔP with respect to the interelectrode area P is the luminance reduction ratio F, F = d × tan (θ) / P. Naturally, as seen in FIGS. 10B and 10C, the luminance loss F increases as the angle θ increases, the pitch P decreases, and the gap d increases. This indicates that there is a limit to increasing the cell gap in order to achieve high speed and high contrast at a low particle dispersion concentration, and there is also a limit to reducing the electrode gap for low voltage and high speed driving. As a compromise, the cell thickness is preferably about 100 μm or less, and the electrode pitch p is preferably 0.5 to 2 times the cell gap d.
粒子集積状態から粒子分散状態を作り出すために駆動電極と共通電極間に印加する電圧波形の例を図11に示す。分散系が単粒子系の場合粒子が駆動電極を離れる極性の適切なパルス幅の逆電圧を印加(A)。単粒子系、双粒子系に拘わらず次第に高周波化するAC電圧(B),波高値の減衰するAC電圧(C)。また(B),(C)の組み合わせも有効である。 FIG. 11 shows an example of a voltage waveform applied between the drive electrode and the common electrode in order to create a particle dispersion state from the particle accumulation state. When the dispersion system is a single particle system, a reverse voltage having an appropriate pulse width with which the particles leave the drive electrode is applied (A). An AC voltage (B) that gradually increases in frequency regardless of a single particle system or a twin particle system, and an AC voltage (C) that attenuates the peak value. A combination of (B) and (C) is also effective.
図3で粒子を隔壁20によってセル内部に閉じ込めるのは微粒子が隣のセルに移動するのを妨げ各画素内の粒子濃度を一定に維持するためである。またセルを小さく構成する限り分散媒と粒子の比重差は障害にならないというメリットも発生する。 In FIG. 3, the particles are confined inside the cell by the partition wall 20 in order to prevent the fine particles from moving to the adjacent cell and to maintain the particle concentration in each pixel constant. Further, as long as the cell is made small, there is a merit that the specific gravity difference between the dispersion medium and the particles does not become an obstacle.
分散系を隔壁でセル内に閉じ込める代わりに、分散系をカプセル粒子の内部に閉じ込めてもよい。図12にカプセル粒子を用いた本発明の表示装置を示す。ほぼ球状のカプセル粒子を適切なサイズのスペーサ材を用いて図のような直方体に変形させた方が開口率にすぐれた表示シートになり得る。図12の表示シートでは電極は分散系に直接接していないが、図3と同様、粒子は電極側面に対応したカプセル内壁に集積またカプセル粒子内に分散させて透過率を変調できる。ただし電極と分散系の間にカプセル壁とバインダー樹脂層が介在するため幾分電圧減衰を生じ、駆動電圧の上昇に繋がるからこれら絶縁性ないし半導電性層はできるだけ薄く保つことが望ましい。図12で上基板1を用いずに、カプセル粒子層の上に剛体基板を被せてカプセル粒子を変形させ、UV照射でバインダーを硬化してもよくその後剛体基板を剥離し保護膜を塗布すれば単一基板の表示シートが形成できる。 Instead of confining the dispersion system in the cell with the partition walls, the dispersion system may be confined inside the capsule particles. FIG. 12 shows a display device of the present invention using capsule particles. A display sheet having an excellent aperture ratio can be obtained by transforming substantially spherical capsule particles into a rectangular parallelepiped as shown in the figure using a spacer material of an appropriate size. In the display sheet of FIG. 12, the electrode is not in direct contact with the dispersion system. However, as in FIG. 3, the particles can be collected on the inner wall of the capsule corresponding to the side surface of the electrode or dispersed in the capsule particle to modulate the transmittance. However, since the capsule wall and the binder resin layer are interposed between the electrode and the dispersion system, voltage attenuation occurs somewhat, leading to an increase in driving voltage. Therefore, it is desirable to keep these insulating or semiconductive layers as thin as possible. In FIG. 12, without using the upper substrate 1, the capsule particles may be deformed by covering the capsule particle layer and the binder particles may be cured by UV irradiation. After that, the rigid substrate is peeled off and a protective film is applied. A single substrate display sheet can be formed.
基板にフィルムを用いたフレキシブルシートディスプレイの場合は特に、両基板は隔壁を通じて各々接着していることが好ましい。カプセル粒子系の場合カプセル粒子間にバインダー樹脂が充填されているから両基板に挟み込んで後バインダー樹脂をUV等で硬化すれば両基板の接着の役割を果たす。 Particularly in the case of a flexible sheet display using a film as a substrate, it is preferable that both substrates are bonded to each other through a partition wall. In the case of the capsule particle system, since the binder resin is filled between the capsule particles, if the binder resin is cured with UV or the like after being sandwiched between the two substrates, it plays a role of bonding the two substrates.
本発明でセルとは、隔壁やカプセルで分散系を閉じ込めた領域を言う。図4に示す如き一対の電極は1つのセルに設けられる場合もあれば、カプセル粒子系の場合のように多数のセルに対して1組設けられる場合もある。画素とは図4に示すような一対の電極を有する領域を言うから1個のセルの場合もあれば多数のセルから成る場合もある。 In the present invention, a cell refers to a region in which a dispersion system is confined by a partition wall or a capsule. A pair of electrodes as shown in FIG. 4 may be provided in one cell, or may be provided in one set for many cells as in the case of a capsule particle system. A pixel refers to a region having a pair of electrodes as shown in FIG. 4 and may be a single cell or a number of cells.
図3ないし図12の如きセルを3層積み重ねることによってフルカラー表示パネルを構成できる。ただし3層の微粒子5は各々C(シアン),M(マゼンタ),Y(イエロー)色のものが用いられる。図13にC,M,Yカプセル粒子系を用いるフルカラー表示パネルの断面を示す。ここでは1画素は3×3×3のカプセル粒子から構成されており、各色変調用の電極は図4(A)に示すような電極対が用いられると想定している。Y,M粒子が適度に分散状態にあり、C粒子が電極集積状態にあれば、その部分はR(赤)、C,M粒子が適度に分散状態でY粒子が電極集積状態では同じく減法混色によりB(青)、Y,C粒子が分散状態ではG(緑)となる。勿論C粒子、M粒子、Y粒子のみ分散状態では夫々C,M,Y色となる。C,M,Yパネルに加えて、より完全に光を遮断するために白-黒に変調できる第4の色変調層が追加され4層構成をとる場合もある。またセルの積層順序は任意に選択可能である。白色バックライト13オフ、オンの状態では白色拡散板兼白色バックライトにより反射カラーパネルないし透過カラーパネルとして使用できる。マルチカラー表示では色の異なる分散系の2層構成でもかまわない。 A full-color display panel can be constructed by stacking three layers of cells as shown in FIGS. However, the three layers of fine particles 5 are C (cyan), M (magenta), and Y (yellow). FIG. 13 shows a cross section of a full-color display panel using a C, M, Y capsule particle system. Here, one pixel is composed of 3 × 3 × 3 capsule particles, and it is assumed that an electrode pair as shown in FIG. 4A is used for each color modulation electrode. If Y and M particles are in a moderately dispersed state and C particles are in an electrode-integrated state, that portion is R (red), and if C and M particles are in a moderately dispersed state and Y particles are in an electrode-integrated state, the same subtractive color mixture Thus, B (blue), Y, and C particles become G (green) in a dispersed state. Of course, only C particles, M particles, and Y particles have C, M, and Y colors in a dispersed state, respectively. In addition to the C, M, and Y panels, a fourth color modulation layer that can be modulated to white-black in order to block light more completely may be added to form a four-layer structure. Further, the cell stacking order can be arbitrarily selected. When the white backlight 13 is turned off, it can be used as a reflective color panel or a transmissive color panel with a white diffuser and white backlight. In multi-color display, a two-layer structure of dispersed systems having different colors may be used.
中間基板を除いた図13のカラーパネルにおいても斜め光に対しては各層の電極によるロスに加えて、3層を通過できる光線の角度は限られ視角が問題となるからセル厚を薄くするなり、電極ピッチを広げざるを得ない。反射板として垂直方向への反射強度を高めた集光性反射板を用いることは視角特性は犠牲になるが明るいカラー像を得るには望ましい手段である。 In the color panel of FIG. 13 excluding the intermediate substrate, in addition to the loss due to the electrodes of each layer, the angle of the light beam that can pass through the three layers is limited and the viewing angle becomes a problem, so the cell thickness is reduced. The electrode pitch must be increased. The use of a light-reflecting reflector with increased reflection intensity in the vertical direction as a reflector is a desirable means for obtaining a bright color image at the expense of viewing angle characteristics.
セルを多数積層する表示装置において注意すべきは、界面反射である。屈折率が異なる界面では必ず界面反射が生じる。積層型表示セルでは多数の層(基板、分散媒、カプセル壁、バインダー樹脂など)から成るから出来るだけ透明性が高いのは勿論、屈折率のできるだけ等しい材料で構成し、不要な界面反射を軽減することが重要である。 In a display device in which a large number of cells are stacked, attention should be paid to interface reflection. Interface reflection always occurs at interfaces having different refractive indexes. Multilayer display cells consist of a large number of layers (substrate, dispersion medium, capsule wall, binder resin, etc.). Of course, they are made of materials with the same refractive index as much as possible to reduce unnecessary interface reflections. It is important to.
多数の画素から構成される表示装置の駆動法には(1)スタチック(2)単純マトリクス(3)2端子アクティブマトリクス(4)3端子アクティブマトリクス
などがある。
There are (1) static (2) simple matrix (3) two-terminal active matrix (4) three-terminal active matrix and the like as a driving method of a display device composed of a large number of pixels.
図14は単純マトリクス構成のパネルを製造する工程の1例を示す。ガラス、プラスチックなどの基板2にアルミ、クロム、金などの電極薄膜を蒸着やスパッタで設け、フォトエッチプロセスで図14(A)に示すように列電極Ciおよびこれに連なった駆動電極6−1を形成する。次に少なくとも列電極の所定箇所に絶縁層23を形成して後、共通電極6−2、行電極Riを形成する(B)。以降図6(D)の如き板状電極を形成する方法は先述の通り種々の方法が適用できる。たとえば細線から成る電極膜の所定個所に図6(B)のように孔空きレジスト層を形成後、電解あるいは無電解メッキで縦方向に電極膜を成長させてのち隔壁部を残して溶解除去し、上基板との間に分散系を充填して単純マトリクス表示パネルが形成される。図14(B)の薄膜電極面にあらかじめ別基板に設けた電極構造体を転写する方法を用いる場合はあらかじめ電極面をハンダメッキなどの処理をしておく必要がある。列電極Ciに信号を、線状共通電極Riに走査信号を加えて線順次で表示が果たされる。パネル構成が単純であるから低コストで製造できるメリットがあるが、各画素には閾値特性が要求されるため通常、表示容量の大きい用途には使えない。 FIG. 14 shows an example of a process for manufacturing a panel having a simple matrix configuration. An electrode thin film made of aluminum, chromium, gold or the like is provided on a substrate 2 such as glass or plastic by vapor deposition or sputtering, and a column electrode Ci and a drive electrode 6-1 connected thereto as shown in FIG. Form. Next, the insulating layer 23 is formed at least at a predetermined position of the column electrode, and then the common electrode 6-2 and the row electrode Ri are formed (B). Hereinafter, various methods can be applied to the method of forming the plate-like electrode as shown in FIG. For example, after forming a perforated resist layer as shown in FIG. 6B at a predetermined portion of the electrode film made of fine wires, the electrode film is grown in the vertical direction by electrolysis or electroless plating, and then dissolved and removed leaving the partition wall. A simple matrix display panel is formed by filling the dispersion with the upper substrate. In the case of using the method of transferring an electrode structure provided on a separate substrate in advance to the thin film electrode surface in FIG. 14B, the electrode surface must be previously subjected to a treatment such as solder plating. A signal is applied to the column electrode Ci, and a scanning signal is applied to the linear common electrode Ri, so that display is performed in a line sequential manner. Although the panel configuration is simple, there is an advantage that it can be manufactured at a low cost. However, since each pixel is required to have a threshold characteristic, it cannot normally be used for applications with a large display capacity.
表示容量を拡大するにはアクティブマトリクス(以下AMと略称する)構成を採用する必要がある。図15は陽極酸化膜が金属電極間に挟まれたいわゆるMIM(Metal Insulator Metal)素子からなる2端子AMアレーの製造工程を示す。基板上にアルミ、タンタルなどの金属薄膜で平行線状列電極Ciを形成して後、列電極Ciを陽極酸化して表面に酸化膜を形成(A)。ついで金属膜を蒸着ないしスパッタによって設け、たとえば櫛型駆動電極6−1を形成(B)。駆動電極と列電極が交差する領域に2端子素子21が形成される。次に列電極の、少なくとも後に行電極と交差する箇所に絶縁層23を形成して後、共通電極6−2、走査電極Riを形成(C)することによって2端子AMアレーが形成される。こうして得られた電極付き基板上に(0042)で述べたと同様に駆動、共通電極を縦方向に成長させて上基板との間に分散系或いはカプセル粒子を挟み込んで表示パネルが構成される。MIMの代りに、電極6−1とCiの交点部に酸化亜鉛のような半導体を樹脂に分散した非直線抵抗素子を挟み込んでも2端子AMアレーを形成できる。 In order to increase the display capacity, it is necessary to adopt an active matrix (hereinafter abbreviated as AM) configuration. FIG. 15 shows a manufacturing process of a two-terminal AM array composed of a so-called MIM (Metal Insulator Metal) element in which an anodized film is sandwiched between metal electrodes. After forming parallel linear column electrodes Ci on a substrate with a metal thin film such as aluminum or tantalum, the column electrodes Ci are anodized to form an oxide film on the surface (A). Then, a metal film is provided by vapor deposition or sputtering to form, for example, a comb drive electrode 6-1 (B). A two-terminal element 21 is formed in a region where the drive electrode and the column electrode intersect. Next, the insulating layer 23 is formed at least at a position where the column electrode intersects the row electrode later, and then the common electrode 6-2 and the scanning electrode Ri are formed (C) to form a two-terminal AM array. The display panel is constructed by driving the common electrode in the vertical direction on the substrate with electrodes thus obtained as described in (0042) and sandwiching the dispersed system or capsule particles between the upper substrate. Instead of MIM, a two-terminal AM array can also be formed by sandwiching a non-linear resistance element in which a semiconductor such as zinc oxide is dispersed in a resin at the intersection of electrodes 6-1 and Ci.
次に各画素にTFTスイッチング素子を設けたAMパネルの構成を示す。基板上に図16に示すようなTFT(Thin
film Transistor)3端子素子AMアレーを形成する。信号線Ciとは絶縁層で分離された駆動電極6−1はドレイン(D)電極に接続されており、ソース(S)電極は列電極Ciの1部からなり、S,D間には半導体、ゲート絶縁膜が積層されている。列電極部に層間絶縁膜を設けてのち行電極Ri(ゲート電極)を設けて3端子AMアレーが形成されている。共通電極6−2は列電極、行電極と絶縁層で隔てられて、列電極ないし行電極同様パネル全体に張り巡らされており、全画素共通の1端子としてパネル外に取り出される。こうして得られたAMアレー層の上に(0042)で述べたと同様に駆動、共通電極を成長させてのちは先述と同様にパネルを形成できる。図16ではTFTはスタッガー型で示したが、逆スタッガー型TFTも勿論可能である。
Next, a configuration of an AM panel in which each pixel is provided with a TFT switching element is shown. TFT (Thin) as shown in FIG.
film transistor) to form a three-terminal element AM array. The drive electrode 6-1 separated from the signal line Ci by an insulating layer is connected to a drain (D) electrode, and the source (S) electrode is a part of the column electrode Ci, and a semiconductor between S and D is a semiconductor. The gate insulating film is laminated. A three-terminal AM array is formed by providing an interlayer insulating film in the column electrode portion and then providing a row electrode Ri (gate electrode). The common electrode 6-2 is separated from the column electrode and the row electrode by an insulating layer, and extends over the entire panel like the column electrode or the row electrode, and is taken out of the panel as one terminal common to all pixels. A panel can be formed in the same manner as described above after driving and common electrodes are grown on the AM array layer thus obtained as described in (0042). In FIG. 16, the TFT is shown as a staggered type, but an inverted staggered type TFT is of course possible.
図13のような色変調層積層構成のアクティブマトリクスパネルを製造する方法として大きくは3つの方法が可能である。すなわち(1)C,M,Yカプセル粒子駆動用AMアレーはすべて基板2に形成(不透明TFTの場合は開口率向上のため隔壁ないしスペーサ部の下に設けられていることが望ましい)されており、ついで(イ)1層目電極および次層目ドレイン端子成長用孔空きレジスト層形成(ロ)1色目の電極およびドレイン端子を成長後レジスト除去、(ハ)1色目カプセル粒子を電極間に充填、(ニ)平滑層形成 (ホ)2色目用ドレイン端子部開孔(ヘ)金属膜形成 (ト)2層目用駆動、共通電極パタン化 以降は上記(イ)以降を色数だけ繰り返す。(2)AMアレーとカプセル粒子層充填⇒平滑層形成を各色順次繰り返して積層する方法(3)転写用剛体基板上に剥離層、AM、電極、カプセル粒子充填、平滑化をして後、接着層を設けた最終基板側に各色パネルを順次転写して3層を積層 などの方法が用いられる。 There are roughly three methods for manufacturing an active matrix panel having a color modulation layer laminated structure as shown in FIG. That is, (1) the C, M, Y capsule particle driving AM array is all formed on the substrate 2 (in the case of an opaque TFT, it is desirable to be provided under the partition wall or spacer portion in order to improve the aperture ratio). Next, (a) formation of a holed resist layer for growing the first layer electrode and the next layer drain terminal (b) removing the resist after growing the first color electrode and drain terminal, and (c) filling the first color capsule particles between the electrodes. (D) Smooth layer formation (e) Second color drain terminal portion opening (f) Metal film formation (g) Second layer drive, common electrode patterning Thereafter, the above (a) and subsequent steps are repeated for the number of colors. (2) AM array and capsule particle layer filling ⇒ Method of laminating smooth layer formation in sequence for each color (3) After peeling layer, AM, electrode, capsule particle filling and smoothing on transfer rigid substrate, bonding A method such as laminating three layers by sequentially transferring each color panel to the final substrate side provided with layers is used.
以上述べたようなたとえば縦M画素、横N画素からなる基本パネルを縦m枚、横n枚並べることによってM×m×N×n画素からなる大型表示システムを構成することが可能であり、曲面型はじめ数10mサイズの反射、透過両用の低電力、高精細フルカラー大型表示システムを構成することが可能になる。 For example, a large-sized display system composed of M × m × N × n pixels can be constructed by arranging basic panels composed of vertical M pixels and horizontal N pixels as described above, for example, m vertical and n horizontal panels. It is possible to construct a low-power, high-definition full-color large-sized display system for both reflection and transmission of a curved surface type and several tens of meters in size.
図17はプロジェクターなどに用いる、シリコン基板を用いたAM反射型ライトバルブを示す。シリコン基板15上にFET素子からなるAMアレーを形成⇒絶縁平滑層形成、画素部に反射膜形成⇒透明絶縁層形成⇒FETのドレイン端子部孔空け⇒駆動・共通電極形成(駆動電極とドレイン端子をスルーホール接続)⇒駆動・共通電極縦方向に成長⇒隔壁部を残し樹脂を溶解除去⇒透明基板との間のセルに分散系充填。 以上で隔壁構成型反射ライトバルブが形成される。たとえば1インチサイズでフルHD(1920×1440画素)のライトバルブを構成する場合、画素ピッチはほぼ11μm程度になる。1μm前後の幅の駆動電極を画素中央に1本、両サイド隔壁内面に共通電極を設ければ、10V以下で駆動できるライトバルブが構成可能である。隔壁20を絶縁性黒色にするか上基板と隔壁の間にブラックマトリクス膜を形成することが望ましい。 FIG. 17 shows an AM reflection type light valve using a silicon substrate for use in a projector or the like. Forming an AM array of FET elements on the silicon substrate 15 ⇒ Forming an insulating smooth layer, forming a reflective film on the pixel section ⇒ Forming a transparent insulating layer ⇒ Opening a drain terminal portion of the FET ⇒ Forming a drive / common electrode (drive electrode and drain terminal) Through hole connection) ⇒ Growth in the vertical direction of the drive and common electrode ⇒ Dissolve and remove the resin leaving the partition walls ⇒ Fill the cell between the transparent substrate with the dispersion system. Thus, the partition wall type reflection light valve is formed. For example, when a light valve of 1 inch size and full HD (1920 × 1440 pixels) is configured, the pixel pitch is about 11 μm. If one drive electrode having a width of about 1 μm is provided at the center of the pixel and a common electrode is provided on the inner surfaces of both side partition walls, a light valve that can be driven at 10 V or less can be configured. It is desirable to make the partition wall 20 insulative black or to form a black matrix film between the upper substrate and the partition wall.
図17の反射型ライトバルブの構成はLCOS(liquid−crystal−on−silicon)と称する液晶ライトバルブでの液晶を微粒子分散系に置き換えることによって構成される。LCOSと同様、超高圧水銀ランプなどの白色光源をダイクロイックミラーやプリズムでR,G,B光に分離し各色光を図16のライトバルブに照射して得たR,G,B色光像をレンズを用いてスクリーン上に拡大投射、合成してフルカラー像を得ることが出来る。光源にLEDや半導体レーザを用いれば小型プロジェクターを構成できる。フロントプロジェクターは勿論、途中で光路を折り曲げてリアプロジェクターも可能である。画素ピッチはモノクロの1/3になるが前面にカラーフィルタを設けることによって単板カラーライトバルブを構成することも可能であり、図13の如き3層積層パネルを構成すれば光利用率の高い単板式カラーライトバルブが構成可能である。分散系は隔壁型、カプセル型いずれを用いてもよい。反射型は光線が分散系層を2度通過するから分散系の粒子濃度が透過型の1/2でよく高速応答が可能である。 The reflection type light valve shown in FIG. 17 is configured by replacing the liquid crystal in a liquid crystal light valve called LCOS (liquid-crystal-on-silicon) with a fine particle dispersion system. Similar to LCOS, a white light source such as an ultra-high pressure mercury lamp is separated into R, G, B light by a dichroic mirror or prism, and R, G, B color light images obtained by irradiating each color light to the light valve in FIG. A full color image can be obtained by magnifying and synthesizing the image on a screen. If an LED or a semiconductor laser is used as the light source, a small projector can be configured. In addition to the front projector, a rear projector is possible by bending the optical path along the way. Although the pixel pitch is 1/3 of monochrome, it is possible to construct a single-plate color light valve by providing a color filter on the front surface, and if a three-layer laminated panel as shown in FIG. A single-plate color light bulb can be configured. As the dispersion system, either a partition wall type or a capsule type may be used. In the reflection type, the light beam passes through the dispersion layer twice, so that the particle concentration of the dispersion system is ½ that of the transmission type, and a high-speed response is possible.
上記シリコン基板の代りに、石英などの耐熱性ガラスにポリシリコンなどでAMアレーを構成したAM基板或いはガラス基板上に形成した低温ポリシリコンAMアレーを用いれば、駆動回路を内臓した単板式あるいは3板式高精細透過型ライトバルブを構成することが可能である。 Instead of the silicon substrate, an AM substrate in which an AM array is formed of polysilicon or the like on heat-resistant glass such as quartz, or a low-temperature polysilicon AM array formed on a glass substrate is used. A plate-type high-definition transmission type light valve can be configured.
図18にR,G,B並置カラーフィルタを用いる透過型フルカラーパネルの断面図を示す。現在の液晶カラーパネルのライトバルブとしての液晶を、白黒に透過率を変調できる微粒子を分散した分散系7に置き替えることによって構成している。各画素の駆動電極はAMアレーのドレイン端子に接続され、共通電極は全画素共通の端子に接続されている。バックライトに平行度の高いものを用いれば電極ピッチを狭くすることもセルギャップを厚くすることも可能となる。但し視角が犠牲になるから前面で光拡散させることが望ましい。 FIG. 18 shows a sectional view of a transmission type full color panel using R, G, B juxtaposed color filters. The liquid crystal as the light valve of the current liquid crystal color panel is replaced with a dispersion system 7 in which fine particles capable of modulating transmittance in black and white are dispersed. The drive electrode of each pixel is connected to the drain terminal of the AM array, and the common electrode is connected to a common terminal for all pixels. If a backlight with a high degree of parallelism is used, the electrode pitch can be reduced and the cell gap can be increased. However, since the viewing angle is sacrificed, it is desirable to diffuse light at the front surface.
図18では隣り合う画素にR,G,Bカラーフィルタを設ける構成について述べたが、カラーフィルタを用いる代りに各セルの分散媒をR,G,Bに着色してもよい。但し各色セルをストライプ状ないしドット状に色分けして設ける必要がある。 Although the configuration in which the R, G, and B color filters are provided in adjacent pixels has been described in FIG. 18, the dispersion medium of each cell may be colored in R, G, and B instead of using the color filters. However, it is necessary to provide each color cell in a stripe shape or a dot shape.
図18のカラーパネルはR,G,B並置カラーフィルタないしR、G,B着色液を用いているため光変調素子への白色入射光の2/3をロスする欠点があるが、現状確立しているTFTアレーの量産プロセスと設備がほぼそのまま利用できる利点があり、小型から100インチを超える大型までサイズを問わず製造可能である。液晶カラーパネルの場合と違って、視角拡大フィルム、偏光板、配向膜、配向処理プロセスなどは不要であり、プロセスの簡易化、部材の低減化に加えて、偏光板および透明電極が不要であることからより明るい表示を実現することができる。 The color panel shown in FIG. 18 uses R, G, B juxtaposed color filters or R, G, B coloring liquids, so there is a defect that 2/3 of white incident light to the light modulation element is lost. The TFT array mass production process and equipment have the advantage that they can be used almost as they are, and they can be manufactured in any size from small to over 100 inches. Unlike a liquid crystal color panel, a viewing angle widening film, a polarizing plate, an alignment film, an alignment treatment process, etc. are unnecessary, and in addition to simplifying the process and reducing the number of members, a polarizing plate and a transparent electrode are unnecessary. Therefore, brighter display can be realized.
電子値札やメッセージ表示などでは必ずしもフルカラー表示でなくてもよい用途もある。図19では1層の分散系でカラーフィルタを用いることなくマルチカラー表示を行う例について述べる。透明分散媒中に色と移動速度の異なる微粒子が混合分散された分散系が用いられる。すなわち電極6−1,6−2間にDC電圧を印加(第一パルス)して粒子を一方の電極に堆積(同極性粒子の場合として説明する)(図19(A))させれば、セルは透明(反射で見る場合反射板が白色なら白色)に見える。ここで適切な幅ないし波高値の逆極性DCパルス(第二パルス)を印加すれば、移動速度の速い粒子(第一粒子:黒色とする)がまず電極を離れ分散状態になるからここでパルスを止めればセルは移動速度の速い粒子の分散状態である黒色に見える(図19(B))。第二パルスより幅ないし波高値の大なる逆極性パルスの場合では第一粒子は対向電極6−2に集積してしまい、分散系には速度の遅い第二粒子(赤色とする)のみ分散していることになり、セルはほぼ赤色に見える(図19(C))。電極間に適切なAC電圧を印加すれば第一、第二粒子が共に分散状態になるからこれらの混合色である赤黒色が提示される。すなわち単層パネルで4色の色が選択できることになる。色の異なる微粒子が異極性でも移動速度が異なっていれば利用可能である。 There are uses for electronic price tags, message displays, and the like that do not necessarily require full color display. FIG. 19 describes an example in which multi-color display is performed without using a color filter in a single-layer dispersion system. A dispersion system in which fine particles having different colors and moving speeds are mixed and dispersed in a transparent dispersion medium is used. That is, if a DC voltage is applied between the electrodes 6-1 and 6-2 (first pulse) and particles are deposited on one electrode (described in the case of particles of the same polarity) (FIG. 19A), The cell appears transparent (white when the reflector is white when viewed in reflection). If a reverse polarity DC pulse (second pulse) with an appropriate width or peak value is applied here, particles with fast moving speed (first particle: black) first leave the electrode and become dispersed. If is stopped, the cell looks black, which is a dispersed state of particles having a high moving speed (FIG. 19B). In the case of a reverse polarity pulse having a width or peak value larger than that of the second pulse, the first particles are accumulated on the counter electrode 6-2, and only the second particles having a slow speed (red) are dispersed in the dispersion system. Therefore, the cell looks almost red (FIG. 19C). If an appropriate AC voltage is applied between the electrodes, the first and second particles are both dispersed, and a red-black color, which is a mixture of these, is presented. That is, four colors can be selected on the single-layer panel. Even if fine particles having different colors have different polarities, they can be used as long as their moving speeds are different.
図19では粒子の移動速度の違いを利用して多色表示する例について述べたが、電極に堆積した粒子を逆極性電圧の印加で電極から脱着させるのに粒子、分散媒ならびに電極の性質により閾値特性が発現する場合がある。異なる色の微粒子のこの閾値性の違いは有効に利用可能である。第一、第二粒子の閾値を各々V1、V2(V1>V2)とし、V1>V>V2の電圧Vでは第二粒子のみ分散させることが出来、V>V1の電圧Vでは主として第一粒子のみの分散状態を生じさせることが出来るからである。またV>V1のAC電圧で混合分散色を得ることができ、泳動速度の違いと併せて閾値性の違いも粒子の選択的分散に有効に活用でき、簡単な構成のパネルでマルチカラー表示が可能となる。 In FIG. 19, an example of multi-color display using the difference in the moving speed of the particles is described. However, depending on the properties of the particles, the dispersion medium and the electrodes, the particles deposited on the electrodes can be desorbed from the electrodes by applying a reverse polarity voltage. A threshold characteristic may appear. This threshold property difference between different color microparticles can be used effectively. The threshold values of the first and second particles are V1 and V2 (V1> V2), respectively. When the voltage V is V1> V> V2, only the second particles can be dispersed. When the voltage V is V> V1, the first particles are mainly used. This is because only a dispersed state can be produced. In addition, a mixed dispersion color can be obtained with an AC voltage of V> V1, and a difference in threshold value as well as a difference in migration speed can be effectively utilized for selective dispersion of particles, and a multi-color display can be achieved with a simple configuration panel. It becomes possible.
薄いフィルム基板を用いたパネルや積層パネルを形成する場合、フィルムの温度や張力による伸縮等のため両基板や各パネルの位置合わせが困難化する。両フィルム基板を各々あらかじめガラスなどの剛体基板に単個取りあるいは多数個取りを想定したサイズで貼り付けておき、電極、スイッチ素子、隔壁、スペーサなどの形成プロセスを実施して後、両フィルム間に、分散系を充填してパネルを形成して後、剛体基板からパネルを剥離する方法をとれば、フィルムの薄さ、伸縮性から生じる電極の上下位置合わせなどのプロセスの困難性は軽減する。 When forming a panel or laminated panel using thin film substrates, alignment of both substrates and each panel becomes difficult due to expansion and contraction due to the temperature and tension of the film. Both film substrates are pasted in advance on a rigid substrate such as glass with a size that assumes single or multiple pieces, and after forming processes such as electrodes, switch elements, partition walls, and spacers, between both films In addition, if the method of peeling the panel from the rigid substrate after filling the dispersion and forming the panel is taken, the difficulty of the process such as the vertical alignment of the electrodes due to the thinness of the film and stretchability is reduced. .
パネル自体がフレキシブルであっても駆動回路、バッテリなどを搭載すると表示パネルのペーパライク性が損なわれてしまいがちである。本発明の表示パネルはメモリ性があるから一旦表示を更新すればドライバを切り離しても表示は維持される。従ってパネル電極端子部あるいは信号供給回路部を露出しておき、表示を更新する時のみ信号供給源に接続する、パネル/信号源分離方式を取ることもでき、ドライバを実装していない分低コストでパネルのフレキシブル性を確保できる。勿論フィルム基板上に薄膜駆動回路も設けられておれば、信号供給のための端子数は激減でき好都合である。 Even if the panel itself is flexible, if a drive circuit, a battery, or the like is mounted, the paper-like property of the display panel tends to be impaired. Since the display panel of the present invention has a memory property, once the display is updated, the display is maintained even if the driver is disconnected. Therefore, it is possible to adopt a panel / signal source separation method in which the panel electrode terminal portion or the signal supply circuit portion is exposed and connected to the signal supply source only when the display is updated, and the cost is low because no driver is mounted. This ensures the flexibility of the panel. Of course, if a thin film drive circuit is also provided on the film substrate, the number of terminals for supplying signals can be drastically reduced, which is convenient.
本発明で使用する光変調素子の透明基板としてプラスチックフィルムを使用するとロールツーロールで連続量産できる特徴が発揮できる。たとえば下フィルムに電極膜成膜、パタン化、導電性樹脂層塗布、メス金型ロールで電極整形、電極上の不要樹脂層除去、絶縁性隔壁形成、上フィルムとの間に分散系充填、パネル周辺で樹脂封止、パンチングで個片パネル化、レーザないしカッターで周辺部フィルム除去、電極取り出し部露出 以上がプロセス概略の1例である。低温プロセスが可能な有機、無機TFTなどのAM形成プロセスはロールツーロールプロセスには相性がよく、フレキシブルAMパネル形成に有効に適応可能である。 When a plastic film is used as the transparent substrate of the light modulation element used in the present invention, the feature of continuous mass production by roll-to-roll can be exhibited. For example, electrode film formation on lower film, patterning, conductive resin layer coating, electrode shaping with female die roll, removal of unnecessary resin layer on electrode, formation of insulating partition, filling with dispersion system between upper film, panel Resin sealing at the periphery, forming individual panels by punching, removing the peripheral film with a laser or cutter, and exposing the electrode extraction part. AM forming processes such as organic and inorganic TFTs that can be processed at a low temperature are compatible with the roll-to-roll process, and can be effectively applied to the formation of flexible AM panels.
フィルム材料としてはビニル系のポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリスチレン、フッ素樹脂系など、またポリエステル系のポリカーボネート、ポリエチレンテレフタレートなど、ポリアミド系のナイロン、耐熱性エンジニアリングプラスチックとしてのポリイミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルイミドなど種々のものが利用できる。 Film materials include vinyl polyethylene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polystyrene, fluororesin, polyamide polycarbonate, polyethylene terephthalate, polyamide nylon, heat-resistant engineering plastic, polyimide, poly Various materials such as sulfone, polyether sulfone, polyphenylene sulfide, polyether ketone, and polyetherimide can be used.
ポリマーフィルムは一般にガラス等にくらべてガスを透過しやすい。フィルムパネルの信頼性を向上するためにフィルム表面にガスバリア層を設けるのが有効である。ガスバリア層としては酸化ケイ素、窒化ケイ素などの薄膜、およびこれらの膜とビニルアルコール含有重合体などの有機膜との積層膜が有効なことが知られている。 In general, a polymer film is more permeable to gas than glass. In order to improve the reliability of the film panel, it is effective to provide a gas barrier layer on the film surface. As the gas barrier layer, it is known that thin films such as silicon oxide and silicon nitride, and laminated films of these films and organic films such as vinyl alcohol-containing polymers are known.
以上微粒子の移動に電界を用いる例について述べてきた。微粒子が磁性を有していれば粒子の集積、分散に磁気力を用いることができる。 The example using an electric field for the movement of fine particles has been described above. If the fine particles have magnetism, magnetic force can be used for the accumulation and dispersion of the particles.
たとえば図3の構成で、分散系中に磁性を持った微粒子を分散させたものを使用し、図20に示すようにたとえばフィルムシート表面に薄膜状コイルが形成された駆動電極を用いる。粒子を磁気力で横方向に移動させるに当り、対向した共通電極は不要である。共通電極は全画素共通にコイルの一端が細線で結ばれておればよい。ここでは駆動電極と共通電極のピッチPとは駆動電極のピッチを意味する。図20の例ではコイルの1端がフィルム背面に取り出され共通電極配線として基板2に設けた透明電極帯に繋がっている。各画素のコイルの他端はAMアレーのドレイン端子に接続される。基板に垂直な面にコイルが形成されているから、コイルにパルス電流を流すと水平磁界を発生し、磁気粒子を水平方向に移動させることができる、磁気粒子は駆動電極の両面に堆積する。電流を切った時コイル基板上の堆積微粒子が再分散するか、堆積状態を持続するかは再分散力と微粒子間およびコイル基板との分子間付着力の強さに依存する。磁性流体のように再分散力が強いものを用いる場合は分散媒体にチキソトロピック性を持たせておき、電流パルス印加で横磁界発生時は低粘性化して急速に粒子は電極に集積するが、外部磁界がなくなるとゆっくりと粒子は再分散しセルが不透明化する構成が望ましい。メモリ性は失われるが動画表示、リフレッシュによる静止画表示などには有効に利用できる。 For example, in the configuration of FIG. 3, a dispersion in which fine particles having magnetism are dispersed in a dispersion system is used. As shown in FIG. 20, for example, a drive electrode having a thin film coil formed on the surface of a film sheet is used. When the particles are moved in the lateral direction by magnetic force, an opposing common electrode is not necessary. As for the common electrode, it is only necessary that one end of the coil is connected by a thin line in common to all pixels. Here, the pitch P between the drive electrode and the common electrode means the pitch between the drive electrodes. In the example of FIG. 20, one end of the coil is taken out from the back of the film and connected to a transparent electrode strip provided on the substrate 2 as a common electrode wiring. The other end of the coil of each pixel is connected to the drain terminal of the AM array. Since the coil is formed on the surface perpendicular to the substrate, when a pulse current is passed through the coil, a horizontal magnetic field is generated and the magnetic particles can be moved in the horizontal direction. The magnetic particles are deposited on both surfaces of the drive electrode. Whether the deposited fine particles on the coil substrate are redispersed or maintained in the deposited state when the current is turned off depends on the redispersion force and the strength of the intermolecular adhesion force between the fine particles and the coil substrate. When using a material with strong redispersion force such as a magnetic fluid, the dispersion medium has thixotropic properties, and when a transverse magnetic field is generated by applying a current pulse, the viscosity is reduced and particles are rapidly accumulated on the electrode. It is desirable that when the external magnetic field disappears, the particles are slowly redispersed and the cell becomes opaque. Although the memory is lost, it can be effectively used for moving image display, still image display by refresh, and the like.
磁性流体とは酸化鉄などの強磁性微粒子を界面活性剤で包み水系ないし非水系分散媒にコロイド状に分散させたものである。分散安定性に優れ、十分な光線遮蔽効果も有する。コイル表面に絶縁膜を設けておけば水系磁性流体を用いてもよい。 A magnetic fluid is obtained by wrapping ferromagnetic fine particles such as iron oxide in a surfactant and colloidally dispersing it in an aqueous or non-aqueous dispersion medium. Excellent dispersion stability and sufficient light shielding effect. A water-based magnetic fluid may be used if an insulating film is provided on the coil surface.
垂直基板に微小な薄膜コイルを形成するにはたとえば図7で述べたようにあらかじめ樹脂フィルムないしは絶縁膜を設けた金属箔上に金属薄膜を形成しフォトプロセスで多数のコイルをパタン化したシートを金型で所定部を垂直に折り曲げて形成することが出来る。 In order to form a small thin film coil on a vertical substrate, for example, as described in FIG. 7, a sheet in which a metal thin film is formed on a metal foil provided with a resin film or an insulating film in advance and a large number of coils are patterned by a photo process is used. It can be formed by vertically bending a predetermined portion with a mold.
本発明の表示素子では隔壁部分は光線透過率は変化しないから、光線透過方向のこの部分の幅を極小化し、画素部の開口率を出来るだけ高くすることが望ましい。細幅の隔壁を形成できる点でLIGA法は有用である。隔壁部分が透明性であると光り抜けを生じコントラストを低下するからこの部分を黒色光吸収性にすることが望ましい。1000:1以上の透過率変調を達成するには隔壁部を含む微粒子分散状態でのセルの光透過率を0.1%未満に押さえ込む必要があるが、隔壁部からの光り抜けを必要ならブラックマトリクス(BM)層を設けて防止した上でセルに含有される微粒子の濃度を選定することによって達成可能である。 In the display element of the present invention, since the light transmittance of the partition wall portion does not change, it is desirable to minimize the width of this portion in the light transmission direction and to increase the aperture ratio of the pixel portion as much as possible. The LIGA method is useful in that a narrow partition can be formed. If the partition wall portion is transparent, light leakage occurs and the contrast is lowered. Therefore, it is desirable to make this portion black-absorbing. In order to achieve a transmittance modulation of 1000: 1 or more, it is necessary to suppress the light transmittance of the cell in the fine particle dispersion state including the partition wall to less than 0.1%. This can be achieved by providing a matrix (BM) layer and preventing it, and then selecting the concentration of fine particles contained in the cell.
本発明に使用する材料について述べる。微粒子としては先述の通りできるだけ隠ぺい力の高いものが望ましい。白黒用にはカーボンブラック、ピグメントブラック、黒鉛などまたはこれらが樹脂に埋め込まれたいわゆるトナーが使用できる。C,M,Y微粒子としては印刷インキ、カラー複写機用トナー、インクジェット用インキなどに用いられているアゾ系、フタロシアニン系、ニトロ系、ニトロソ系など各種有機顔料や酸化鉄、カドミウムエロー、カドミウムレッドなどの無機顔料など多様なものを用いることが出来る。Y色微粒子としてはハンザイエロー、ベンジジンイエロー、キノリンイエローなど、M色微粒子としてはピグメントレッド、ローダミンB、ローズベンガル、ジメチルキナクリドンなど、C色微粒子としてはアニリンブルー、フタロシアニンブルー、ピグメントブルーKなど、黒色微粒子としてはC,M,Y微粒子を混合して用いてもよい。 The material used for this invention is described. As described above, it is desirable that the fine particles have as high a hiding power as possible. For black and white, carbon black, pigment black, graphite or the like, or a so-called toner in which these are embedded in a resin can be used. C, M, Y fine particles include various organic pigments such as azo, phthalocyanine, nitro, and nitroso pigments used in printing ink, color copier toner, and ink jet ink, iron oxide, cadmium yellow, and cadmium red. Various things such as inorganic pigments can be used. Y color fine particles such as Hansa Yellow, Benzidine Yellow, and Quinoline Yellow, M Color Fine Particles such as Pigment Red, Rhodamine B, Rose Bengal, and Dimethylquinacridone, and C Color Fine Particles such as aniline blue, phthalocyanine blue, and Pigment Blue K are black. As the fine particles, C, M, and Y fine particles may be mixed and used.
微粒子は単体ばかりではなく帯電性、磁性、色調を最適化するため染料、顔料およびいくつかの色材、磁性体などを樹脂や液体と共に内包したカプセル微粒子を使用してもよい。粒子の形状は球形はじめ針状、棒状、鱗片状などいずれも使用可能である。微粒子のサイズは5nm〜5μm程度が望ましい。微粒子は原子や分子レベルでの表面コートで表面変性したり、分散剤、界面活性剤等を用いて荷電性付与および良分散性がはかられ、電界で集積させた粒子層も逆電界で速やかに再分散されるように調整されている必要がある。 The fine particles are not limited to simple substances, but may be capsule fine particles containing dyes, pigments and some color materials, magnetic materials, etc. together with resins and liquids in order to optimize chargeability, magnetism and color tone. As for the shape of the particles, any of a spherical shape, a needle shape, a rod shape, a scale shape and the like can be used. The size of the fine particles is desirably about 5 nm to 5 μm. Fine particles can be surface-modified by surface coating at the atomic or molecular level, or can be charged and have good dispersibility using a dispersant, surfactant, etc. Must be adjusted to be redistributed.
本願図3のパネルでは駆動電極6−1、共通電極6−2は共に分散系に露出しているとして説明したが、粒子堆積の均一性向上、付着力制御、閾値性制御などの目的で導電性、半導電性あるいは絶縁性の皮膜で被覆する場合もある。 In the panel of FIG. 3 of the present application, it has been described that the drive electrode 6-1 and the common electrode 6-2 are both exposed to the dispersion system. In some cases, it is coated with a conductive, semiconductive or insulating film.
屋外用では強力な光に曝されることになるから、使用する材料(基板、接着剤、微粒子、分散媒、分散剤、カプセル壁材料、バインダー樹脂、隔壁材料、電極、AMなど)には特に耐光性、耐熱性に優れたものを用いる必要がある。屋外用途では紫外線吸収剤を内蔵したフィルムないしは表面にコートして用いるのが望ましい。見易さ改善には反射防止膜も有用である。 Because it will be exposed to strong light for outdoor use, it is especially suitable for the materials used (substrate, adhesive, fine particles, dispersion medium, dispersant, capsule wall material, binder resin, partition material, electrode, AM, etc.) It is necessary to use one that is excellent in light resistance and heat resistance. For outdoor use, it is desirable to use a film or surface coated with a UV absorber. An antireflection film is also useful for improving visibility.
媒体が液体の場合シリコン系、石油系やハロゲン化炭化水素など多種類の高絶縁性溶媒が利用できる。液晶も有用な微粒子分散媒体であり、液晶の誘電異方性により粒子の電極からの脱着に閾値特性が発現することが知られており、単純マトリクスパネル用分散系に有効に利用できる。 When the medium is liquid, various types of highly insulating solvents such as silicon-based, petroleum-based and halogenated hydrocarbons can be used. Liquid crystal is also a useful fine particle dispersion medium, and it is known that threshold characteristics are exhibited in the desorption of particles from electrodes due to the dielectric anisotropy of the liquid crystal, and can be effectively used in a dispersion system for a simple matrix panel.
非直線素子材料としては先述の通りTa,Alなどの薄膜を陽極酸化して他方の金属で挟み込んだMIMや、カルコゲナイト系化合物、酸化亜鉛などの半導体が利用でき、TFT材料としてはa−Si、a−InGaZnO、ポリシリコンなどの無機半導体またペンタセン、ポリフルオレン、ポリフェキシルチオフェンなどの低分子や高分子の有機半導体が用いられる。 As the non-linear element material, as described above, a semiconductor such as MIM, a chalcogenite compound, zinc oxide, etc., in which a thin film of Ta, Al or the like is anodized and sandwiched with the other metal can be used, and a-Si, An inorganic semiconductor such as a-InGaZnO or polysilicon, or a low molecular or high molecular organic semiconductor such as pentacene, polyfluorene, or polyhexylthiophene is used.
本発明は次のような効果を奏する。微粒子を横電界なし横磁界で移動させて、光透過性を変化させる横方向粒子移動型表示装置であって、アスペクト比の小さな、狭幅、縦長の板状電極の採用、板状電極両側面への粒子堆積を用いると共にセル中の微粒子量、電極ピッチ、セル厚、駆動電極面積率に検討を加えたことによって低電圧で高コントラスト、高透過率を達成し、拡大投射用高精細小型ライトバルブ、小型からメートルサイズの直視型表示装置、薄型フレキシブルな白黒およびフルカラー電子ペーパ、数10メートルを超える超大型表示装置まで広範囲の表示サイズに適用可能となり、反射専用、透過専用あるいは反射、透過両用に適用可能な表示装置が実現した。 The present invention has the following effects. A horizontal particle movement display device that changes the light transmission by moving fine particles with a transverse magnetic field without a transverse electric field, adopting narrow and vertically long plate-like electrodes with a small aspect ratio, both sides of the plate-like electrodes particulate amount of cells in conjunction are use a particle deposition to the electrode pitch, the cell thickness, in particular therefore a high contrast at a low voltage plus discussed driving electrode area ratio, to achieve a high transmittance, high definition for extended projection It can be applied to a wide range of display sizes, from small light valves, small to meter-sized direct-view display devices, thin flexible black and white and full-color electronic paper, and super-large display devices exceeding several tens of meters. A display device applicable to both transmission was realized.
1 透明上基板
2 下基板
3 カウンター電極
4 コレクト電極
5 微粒子
6電極
6−1 駆動電極
6−2 共通電極
7 分散系
8 セル
9 スペーサ
10 カプセル粒子
11 接着剤
12 白色拡散板
13 白色バックライト
13a
カラーフィルタ
13b ブラックマトリクス
13c
X−Yアクティブマトリクスアレー
13d
3色用X−Yアクティブマトリクスアレー
14 反射板
15 シリコン基板
16 バインダー
17 バックライトユニット
18
C1,C2,C3,……… 列電極端子
19
R1,R2,R3,……… 行電極端子
20 隔壁
21 2端子素子
22 TFT素子
23 絶縁膜
24 積層セル
25 FETアレー
26 樹脂
27 反射膜
28 マスク層
29 金属
30 金型
31 金属薄膜
32 配線
DESCRIPTION OF SYMBOLS 1 Transparent upper substrate 2 Lower substrate 3 Counter electrode 4 Collect electrode 5 Fine particle 6 Electrode 6-1 Drive electrode 6-2 Common electrode 7 Dispersion system 8 Cell 9 Spacer 10 Capsule particle 11 Adhesive 12 White diffuser plate 13 White backlight 13a
Color filter 13b Black matrix 13c
XY active matrix array 13d
XY active matrix array 14 for three colors Reflector 15 Silicon substrate 16 Binder 17 Backlight unit 18
C1, C2, C3, ……… Column electrode terminal 19
R1, R2, R3,... Row electrode terminal 20 Bulkhead 21 Two-terminal element 22 TFT element 23 Insulating film 24 Stacked cell 25 FET array 26 Resin 27 Reflective film 28 Mask layer 29 Metal 30 Mold 31 Metal thin film 32 Wiring
Claims (1)
At least one of them forms a cell with a dispersed system in which charged or magnetized fine particles are dispersed in a liquid, liquid crystal or gas medium between transparent substrates, and the fine particles are moved by a transverse electric field or a transverse magnetic field. In order to move the fine particles in a horizontal direction in a lateral particle movement type display device that changes the light transmittance in the vertical direction to the substrate of the cell by modulating the amount of the fine particles in a dispersed state, The drive electrode and the common electrode are composed of a pair of comb-shaped parallel plate electrodes whose main surfaces are opposed to each other, and are configured to form a substantially uniform lateral electric field between the electrodes. An area ratio defined by a value obtained by dividing the light shielding area by the electrode in one pixel of the flat plate electrode by the pixel area is 20% or less, and the area (Δs) of the plane parallel to the substrate of the flat plate electrode Area of vertical main surface (Δz) The area ratio (Δs / Δz) is 0.2 or less, the pitch P between the parallel plate electrodes is set to 5 to 100 μm, and the cell gap d is set to 0.5 to 2.0 times the pitch P. Display device
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007257011A JP5572282B2 (en) | 2007-10-01 | 2007-10-01 | Display device and manufacturing method thereof |
PCT/JP2008/002523 WO2009034715A1 (en) | 2007-09-12 | 2008-09-11 | Particle movement type display device and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007257011A JP5572282B2 (en) | 2007-10-01 | 2007-10-01 | Display device and manufacturing method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2009086390A JP2009086390A (en) | 2009-04-23 |
JP2009086390A5 JP2009086390A5 (en) | 2010-11-18 |
JP5572282B2 true JP5572282B2 (en) | 2014-08-13 |
Family
ID=40659871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007257011A Expired - Fee Related JP5572282B2 (en) | 2007-09-12 | 2007-10-01 | Display device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5572282B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011237770A (en) * | 2010-04-12 | 2011-11-24 | Seiko Epson Corp | Electrophoresis display device, driving method of the same and electronic equipment |
CN115971008B (en) * | 2022-12-16 | 2023-12-29 | 富联裕展科技(深圳)有限公司 | Glue filling method and glue filling device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002182249A (en) * | 2000-12-13 | 2002-06-26 | Fujitsu Ltd | Electrophoretic display panel |
JP2004177950A (en) * | 2002-11-13 | 2004-06-24 | Canon Inc | Electrophoresis display apparatus |
US20090027328A1 (en) * | 2004-08-23 | 2009-01-29 | Koninklijke Philips Electronics, N.V. | Active matrix devices |
-
2007
- 2007-10-01 JP JP2007257011A patent/JP5572282B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009086390A (en) | 2009-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5308719B2 (en) | Display device and manufacturing method thereof | |
US8264637B2 (en) | Photonic crystal optical filter, reflective color filter, display apparatus using the reflective color filter, and method of manufacturing the reflective color filter | |
US20080198440A1 (en) | Active reflective polarizer and magnetic display panel comprising the same | |
KR20120108565A (en) | Reflector and display device having the same | |
US20080198441A1 (en) | Color selective active polarizer and magnetic display panel employing the same | |
JP2007279641A (en) | Reflective display device | |
CN113156732B (en) | Reflective display panel, preparation method thereof and display device | |
JP2006171735A (en) | Display device and image display method | |
US7663799B2 (en) | Display apparatus | |
TW200809359A (en) | Method for manufacturing electro-optical device and electro-optical device | |
JP2007298894A (en) | Display device, its manufacturing method and display system | |
JP5572282B2 (en) | Display device and manufacturing method thereof | |
KR100922688B1 (en) | Electrophoresis device comprising holes-containing structure and Method of preparing the same | |
JP4129480B1 (en) | Optical image storage method and display sheet used therefor | |
JP2009069366A (en) | Display device and method of manufacturing the same | |
WO2007132636A1 (en) | Operative reflection/absorption plate and display element using same | |
KR20130067460A (en) | Electrophoretic display apparatus and method for manufacturing the same | |
TW200532254A (en) | Liquid crystal display device | |
TWI644154B (en) | Color display panel and method for preparing the same | |
JP2008233484A (en) | Reflective display device | |
JP4728952B2 (en) | Image display device using image display sheet and electronic paper including image display device | |
JP2007133013A (en) | Particle movement type display device | |
JP2008015161A (en) | Display device | |
CN106249463B (en) | Display panel, manufacturing method thereof and display device | |
JP2009025460A (en) | Reflective type display device and driving method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071029 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100929 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140617 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5572282 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |