JP4129480B1 - Optical image storage method and display sheet used therefor - Google Patents

Optical image storage method and display sheet used therefor Download PDF

Info

Publication number
JP4129480B1
JP4129480B1 JP2007507602A JP2007507602A JP4129480B1 JP 4129480 B1 JP4129480 B1 JP 4129480B1 JP 2007507602 A JP2007507602 A JP 2007507602A JP 2007507602 A JP2007507602 A JP 2007507602A JP 4129480 B1 JP4129480 B1 JP 4129480B1
Authority
JP
Japan
Prior art keywords
particles
light
optical image
image
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007507602A
Other languages
Japanese (ja)
Other versions
JPWO2008084513A1 (en
Inventor
太田勲夫
Original Assignee
太田 勲夫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太田 勲夫 filed Critical 太田 勲夫
Application granted granted Critical
Publication of JP4129480B1 publication Critical patent/JP4129480B1/en
Publication of JPWO2008084513A1 publication Critical patent/JPWO2008084513A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

【課題】簡単な構成で明るいモノクロないし色の鮮明なフルカラー像を形成できる超薄型電子ペーパは存在しなかった
【解決手段】少なくとも1方は透明な基板間に、微粒子がガスないし液体媒体中に分散された分散系が挟まれて表示シートを構成しており、内面に透明電極を設けた基板から照射された光像に対応して微粒子を電界で移動させて光像に対応した粒子の空間分布状態を作り出し、基板に垂直方向の光像を得ることを特徴とした光像記憶法ならびにそれに用いる表示シートに関するものであり、微粒子として赤色に感応するシアン色粒子、緑色に感応するマゼンタ色粒子、青色に感応する黄色粒子を混合分散させておくことによってカラー光像を照射して明るく、色の鮮明なフルカラーポジ像を形成することが可能となった
【選択図】図1
There is no ultra-thin electronic paper that can form a bright monochrome or clear-color full-color image with a simple configuration. At least one of the transparent papers has fine particles in a gas or liquid medium. A display sheet is formed by sandwiching the dispersion system dispersed in the substrate, and the particles corresponding to the light image are moved by an electric field corresponding to the light image irradiated from the substrate provided with the transparent electrode on the inner surface. The present invention relates to a light image storage method characterized by creating a spatial distribution state and obtaining a light image perpendicular to a substrate and a display sheet used therefor, cyan particles sensitive to red as fine particles, magenta color sensitive to green By mixing and dispersing particles and yellow particles sensitive to blue, it is possible to irradiate a color light image and form a bright full-color positive image. Figure FIG. 1

Description

少なくとも1方は透明な基板間に、微粒子が分散媒中に分散された分散系が挟まれて表示シートを構成しており、内面に透明電極を設けた該透明基板から照射された光像に対応して該微粒子を基板に垂直ないし/および水平な電界で移動させて光像に対応した粒子の空間分布状態を作り出し、基板に垂直方向の光像を得ることを特徴とした光像記憶法ならびにそれに用いる表示シートに関するものであり、C,M,Y粒子を混合分散しておくことによって容易にフルカラー像を形成できるものである。     At least one of them forms a display sheet by sandwiching a dispersion system in which fine particles are dispersed in a dispersion medium between transparent substrates, and an optical image irradiated from the transparent substrate provided with a transparent electrode on the inner surface. Correspondingly, the fine particles are moved by an electric field that is perpendicular or / and horizontal to the substrate to create a spatial distribution state of the particles corresponding to the optical image, thereby obtaining an optical image perpendicular to the substrate. Further, the present invention relates to a display sheet used therefor, and a full color image can be easily formed by mixing and dispersing C, M, and Y particles.

薄型、軽量で見やすく低消費電力の電子ペーパの要求は極めて大きい。現状では互いに色と荷電極性が異なる微粒子を絶縁液体ないしガス体中に混合分散させた分散系に電界を作用させて2色の色粒子を空間的に分離して反射色を変えるもの、コレステリック液晶の選択反射を用いるもの、などが実用化されており、いずれも電圧を切って後も表示が維持されるメモリ性を有する低電力表示装置として有用なものである。しかるに文章情報、画像情報を表示するにはパネルならびにドライバ回路が複雑化し、また表示切り替えの為のバッテリも搭載しなければならず紙のような超薄型でフレキシブルなものは未開発である。また明るく、色純度に優れたフルカラー表示が強く望まれているが、反射型で明るさにおいても色純度においても印刷物や写真に匹敵できる表示を実現できるものは存在しなかった。 The demand for electronic paper that is thin, lightweight, easy to read and has low power consumption is extremely high. A cholesteric liquid crystal that changes the reflected color by spatially separating two colored particles by applying an electric field to a dispersion system in which fine particles of different colors and charge polarities are mixed and dispersed in an insulating liquid or gas body. Those using selective reflection, etc. have been put into practical use, and any of them is useful as a low power display device having a memory property that can maintain display even after the voltage is turned off. However, in order to display text information and image information, the panel and driver circuit are complicated, and a battery for switching the display must be mounted, and an ultra-thin and flexible one such as paper has not been developed. In addition, there is a strong demand for a full-color display that is bright and excellent in color purity. However, there is no reflective type that can realize a display comparable to a printed matter or a photograph in brightness and color purity.

複雑なX−Yマトリクスパネルならびにドライバ構成を用いることなく、照射した光像に対応して記憶性のある画像を形成する光入力型電子ペーパとして、光導電層とコレステリック等液晶やエレクトロクロミック(EC)層の積層に光像を照射しつつ電圧を印加して光像に対応してコレステリック層やEC層の反射状態を変えるものも提案されている(特許文献1および2)。カラー表示にはこれら積層を3組積層し、各コレステリック層での選択反射による加色混合ないしは積層EC層の減法混色で実現可能であるが多層構成である故にシート構成が複雑化しまた十分可とう性のある超薄型シートの実現は困難であった。またコレステリック液晶の選択反射を用いるものは反射率が原理的に50%以下になってしまい明るい表示の実現が困難であった。 As a light-input type electronic paper that forms a memory image corresponding to the irradiated light image without using a complicated XY matrix panel and driver configuration, a photoconductive layer, a liquid crystal such as cholesteric or electrochromic (EC) In addition, a method has been proposed in which a voltage is applied while irradiating an optical image on the layer stack to change the reflection state of the cholesteric layer or the EC layer in accordance with the optical image (Patent Documents 1 and 2). For color display, these three layers can be stacked and added color mixing by selective reflection at each cholesteric layer or subtractive color mixing of the stacked EC layers, but the multilayer structure makes the sheet structure complicated and sufficiently satisfactory. It has been difficult to realize a super thin sheet with good properties. In addition, those using selective reflection of cholesteric liquid crystal have a reflectivity of 50% or less in principle, making it difficult to realize a bright display.

光感応性微粒子分散系に光像を照射しつつ電圧を印加し、微粒子の荷電状態を変化させて入射光像に対応した粒子の空間的分布状態を作り出すことによって画像を形成する方法が特許文献3に述べられている。しかるにコントラストの好ましい画像を得るため、分散系を挟む基板に粒子の色とは異なる着色層を設けたり、明るい粒子を用いる時は分散媒を暗状態にしておき、ポシ像は光像入射した側とは反対側から観察するという不便なものであった。基本的に基板のいずれかの側に光像状に堆積した粒子像を見るものであり、分散粒子を透明液体で除去するなど面倒な操作を必要とし、また封じ切りシートにフルカラー像を形成する方法については一切言及されていないものであった。 Patent Literature: A method of forming an image by applying a voltage while irradiating a light-sensitive fine particle dispersion system and changing the charged state of the fine particle to create a spatial distribution state of particles corresponding to the incident light image It is stated in 3. However, in order to obtain an image with favorable contrast, a colored layer different from the color of the particles is provided on the substrate sandwiching the dispersion system, or when using bright particles, the dispersion medium is kept in a dark state, and the positive image is incident on the light image. It was inconvenient to observe from the opposite side. Basically, it looks at the particle image deposited on either side of the substrate, necessitates troublesome operations such as removing the dispersed particles with a transparent liquid, and forms a full-color image on the sealing sheet. No method was mentioned at all.

特許文献4および5は媒体中に分散された第一微粒子に光を照射して帯電させ、基板面に垂直な電界により粒子を移動させて第二粒子で移動した粒子を隠蔽することによって画像を形成するものであり、(1)光照射で荷電する粒子の使用 (2)C,M,Y色の第一粒子群と白色第二粒子でカラー像を形成するが、C,M,Y粒子は各吸収主波長でない色光で荷電(3)背面から光像を照射 (4)光照射は色光ごとのシーケンシャル露光 (5)粒子分散媒体はガス体 などに特徴を有している。 In Patent Documents 4 and 5, the first fine particles dispersed in the medium are irradiated with light to be charged, and the particles are moved by an electric field perpendicular to the substrate surface to conceal the moved particles by the second particles. (1) Use of particles charged by light irradiation (2) Color image is formed by C, M, Y color first particle group and white second particles, but C, M, Y particles Is charged with colored light that is not the main absorption wavelength. (3) Irradiates a light image from the back. (4) Sequential exposure for each colored light. (5) The particle dispersion medium is characterized by a gas body.

特許文献6は色と帯電極性の異なる混合粒子系を一方には光導電層を設けた電極間に挟み、電圧印加と光像照射で光照射部の粒子を選択的に移動させて光像を形成するもので、(1)背面から光像照射(2)カラー像形成は白黒粒子分散系と表示面側に設けたR,G,Bカラーフィルタによる加色法 を特徴としている。 In Patent Document 6, a mixed particle system having different colors and charging polarities is sandwiched between electrodes provided with a photoconductive layer on one side, and the light image is selectively moved by applying voltage and irradiating the light image, thereby obtaining a light image. (1) Light image irradiation from the back side (2) Color image formation is characterized by a color addition method using a black and white particle dispersion system and R, G, B color filters provided on the display surface side.

特開1995-199214JP 1995-199214 特開2002-040488JP2002-040488 USP4043655USP 4043655 特開2001-34200JP2001-34200 特開2002-236298JP2002-236298 特開2004-347719JP2004-347719

本発明は、光像入射と電圧を併用して分散系中の微粒子の空間的分布状態を画像状に変化させる光像記憶法ならびにこれに用いる表示シートに関するものであり、単純なシート構成で記憶性のある、モノクロ、マルチカラーおよびフルカラー像の可逆的形成を可能とするものである。画像が形成されたシートには駆動回路や電源は一切付属されていないため正に繰り返し表示内容を更新できるモノクロないしフルカラー超薄型表示シートとして多方面に利用できるものである。 The present invention relates to a light image storage method for changing the spatial distribution state of fine particles in a dispersion system into an image shape by using both light image incidence and voltage, and a display sheet used therefor, and stores the image with a simple sheet configuration. It is possible to reversibly form monochrome, multi-color and full-color images. Since the sheet on which the image is formed is not attached with any drive circuit or power source, it can be used in various fields as a monochrome or full-color ultra-thin display sheet that can update the display content exactly repeatedly.

上記課題を解決するために、本発明では少なくとも1方は透明な基板間に、微粒子が媒体中に分散された分散系が挟まれており、両基板の各々の内面ないしいずれか一方の内面に設けた一対の電極に電圧が印加できるように構成し、該透明基板側から照射された光像に対応して該微粒子を電界で移動させて、基板に垂直方向の光反射性ないし光透過性を変化させることを特徴とした光像記憶法ならびにそれに用いる表示シートに関するものである     In order to solve the above-described problem, in the present invention, a dispersion system in which fine particles are dispersed in a medium is sandwiched between at least one transparent substrate, and the inner surface of each of both substrates or one of the inner surfaces thereof. It is configured so that a voltage can be applied to a pair of provided electrodes, and the fine particles are moved by an electric field corresponding to the light image irradiated from the transparent substrate side, so that light reflectivity or light transmission in a direction perpendicular to the substrate is achieved. The present invention relates to an optical image storage method characterized by changing the temperature and a display sheet used therefor

本発明の光像記憶シートの構成は図1(A)に示す通り、ガラス、プラスチックフィルムなど少なくとも一方は透明な2枚の基板1,2間に設けられたスペーサ9により表示シート5が構成され、該基板間には分散媒7に光感応性微粒子6が分散された分散系8が充填されている。透明基板1の内面には酸化インジウムなどの透明電極3が、下基板2の内面には透明ないし不透明な下電極4が設けられており、両電極間にはDCあるいはAC電圧が印加できるように構成されている。 As shown in FIG. 1A, the optical image storage sheet of the present invention comprises a display sheet 5 composed of a spacer 9 provided between two substrates 1 and 2 that are transparent at least one of glass and plastic film. Between the substrates, a dispersion system 8 in which photosensitive fine particles 6 are dispersed in a dispersion medium 7 is filled. A transparent electrode 3 such as indium oxide is provided on the inner surface of the transparent substrate 1, and a transparent or opaque lower electrode 4 is provided on the inner surface of the lower substrate 2, so that a DC or AC voltage can be applied between the two electrodes. It is configured.

両電極間にたとえば図1(A)に示す通りDC電圧を暗状態で印加(第一ステップ)すれば、もし光感応性微粒子6が負に帯電していた場合、光感応性微粒子6はクーロン力の作用により陽極3に引かれて移動し、陽極3上に堆積する。電圧印加のまま透明基板1と透明電極3を通して図1(B)に示す通り光像を照射(第二ステップ)すれば、光感応性微粒子6がたとえば光導電性であれば、粒子の電気抵抗が低下し、粒子は陽極と電荷授受を行い正に帯電する結果、負極4に向って移動し、図1(B)に示すような粒子分布が形成される。ここで分散媒7がたとえば白色不透明に着色してあれば、図1(B)の状態で透明基板1側からシート5を見れば光の照射された領域は分散媒の色である白色を呈し、光の当たらなかった領域は光感応性微粒子6の色に見えることになり、光感応性微粒子6が黒色であれば光像に対応したポジ像が観察されることになる。像が形成された後は光像照射および電圧印加は不要であり、形成された像は電圧を取り除いて後も粒子の両電極への付着力によって維持され、電力消費から開放される。負極4へ向う粒子量は照射された光強度に依存するから中間調も再現できることは言うまでもない。 For example, if a DC voltage is applied between the electrodes in the dark state (first step) as shown in FIG. 1A, if the photosensitive fine particles 6 are negatively charged, the photosensitive fine particles 6 will be coulombic. It moves by being pulled by the anode 3 by the action of force, and is deposited on the anode 3. If a light image is irradiated (second step) as shown in FIG. 1B through the transparent substrate 1 and the transparent electrode 3 with voltage applied, if the photosensitive fine particles 6 are, for example, photoconductive, the electrical resistance of the particles. As a result of the charge being transferred to the anode and positively charged, the particles move toward the negative electrode 4 to form a particle distribution as shown in FIG. If the dispersion medium 7 is colored, for example, white and opaque, if the sheet 5 is viewed from the transparent substrate 1 side in the state of FIG. 1 (B), the region irradiated with light exhibits white, which is the color of the dispersion medium. The area where the light has not been exposed appears to be the color of the photosensitive fine particle 6, and if the photosensitive fine particle 6 is black, a positive image corresponding to the light image is observed. After the image is formed, light image irradiation and voltage application are unnecessary, and the formed image is maintained by the adhesion force of the particles to both electrodes after the voltage is removed, and is free from power consumption. It goes without saying that the halftone can be reproduced because the amount of particles toward the negative electrode 4 depends on the intensity of the irradiated light.

上記では透明電極上に第一ステップで光感応性粒子集積⇒第二ステップで電圧印加状態で光像照射の2ステッププロセスで画像を形成するとしたが、第一ステップを省略しいきなり第二ステップから実施してもよい。光照射された負帯電粒子が電極部に到達次第次々と電荷授受を行って電荷を反転し、対向電極に向かう一方未照射部では次々粒子が電極に堆積するからである。適切な粒子分布が達成された時点で電圧印加と光像照射を中止するが、粒子分布は粒子の両電極への付着力により維持される。これを1ステッププロセスと名づける。 In the above, the photosensitive particles are accumulated on the transparent electrode in the first step ⇒ In the second step, an image is formed by a two-step process of light image irradiation in the state of voltage application. You may implement. This is because as soon as the negatively charged particles irradiated with light reach the electrode part, they transfer charges one after another to invert the charge, and toward the counter electrode, while in the unirradiated part, the particles are successively deposited on the electrode. When an appropriate particle distribution is achieved, voltage application and light image irradiation are stopped, but the particle distribution is maintained by the adhesion of the particles to both electrodes. This is called a one-step process.

本発明に用いる分散媒は炭化水素系各種絶縁性有機溶媒、シリコン油などの液体のほか空気や窒素などのガス体でもかまわない。分散媒を白色にするには二酸化チタンなどの白色顔料を分散媒に分散すればよい。ただし分散した白色顔料の帯電極性が未照射の光感応性微粒子6と同一であれば光感応性微粒子と同様の動きをし、光像照射時光感応性微粒子に照射される光エネルギーを減ずるから、白色顔料は帯電していないか、移動度は光照射および未照射粒子の移動速度より小さいか、ないしは光照射粒子と同極性であるがこれよりはるかに移動度が小さいものが望ましい。 The dispersion medium used in the present invention may be a liquid body such as various hydrocarbon-based insulating organic solvents and silicon oil, or a gas body such as air or nitrogen. In order to make the dispersion medium white, a white pigment such as titanium dioxide may be dispersed in the dispersion medium. However, if the charged polarity of the dispersed white pigment is the same as that of the non-irradiated photosensitive fine particles 6, it moves in the same manner as the photosensitive fine particles, and reduces the light energy irradiated to the photosensitive fine particles during light image irradiation. It is desirable that the white pigment is not charged, or has a mobility smaller than that of light-irradiated and unirradiated particles, or has the same polarity as that of the light-irradiated particles but much smaller mobility.

図1(B)の粒子分布状態は適切な波高値と持続時間の逆極性パルスを印加することによって図1(C)のように反転させることも可能である。すなわち入力光像のネガポジ反転も可能であることを意味する。分散媒を白色であるとして説明したが染料を溶解したり、顔料を分散して任意の着色が可能であり、形成された像が視覚的に見やすいように感応性粒子と着色した分散媒の色は互いに明度あるいは色相においてコントラストがつくように選んでおくことが望ましい。セル厚は通常数μから100μ程度、光感応性粒子の粒径は50nm〜10μ程度が適切で、印加電圧は通常数ボルトから数1000ボルトで用いられる。 The particle distribution state in FIG. 1 (B) can be inverted as shown in FIG. 1 (C) by applying a reverse polarity pulse having an appropriate peak value and duration. That is, it means that negative / positive inversion of the input light image is possible. Although the dispersion medium has been described as being white, any color can be obtained by dissolving the dye or dispersing the pigment, and the color of the photosensitive particles and the colored dispersion medium so that the formed image can be easily seen visually. It is desirable to select them so that they have contrast in brightness or hue. The cell thickness is usually about several μ to 100 μ, the particle size of the photosensitive particles is about 50 nm to 10 μ, and the applied voltage is usually several volts to several thousand volts.

通常の照明光下程度の強度では感応しない微粒子では図1(A)の如き粒子分布状態を明所で実現できる。この場合光像は通常照明光下より相当強度の高いものを用いれば1ステッププロセス、2ステッププロセス共に明所で実施してもよい。可視光では感応せず紫外光で感応する粒子を用いて紫外光像照射を行えば可視光下で両ステッププロセスを実施することが可能となる。 With fine particles that are not sensitive to normal light intensity, a particle distribution state as shown in FIG. 1A can be realized in a bright place. In this case, if a light image having a considerably higher intensity than that under normal illumination light is used, both the one-step process and the two-step process may be performed in a bright place. By performing ultraviolet light image irradiation using particles that are not sensitive to visible light but sensitive to ultraviolet light, both step processes can be performed under visible light.

背面基板2、下電極4に透明なものを利用すれば背面から光像照射してもよく、明所で光像形成作業が行い易い。背面露光の場合、白色媒体中に黒色微粒子が分散されていれば表示面側にはネガ像となるが、ネガ光像を照射するか第三ステップで逆極性電圧を印加してもよい。黒色分散媒中に白色光感応性微粒子が分散されている場合もポジ光像照射でポジ像が得られる。 If a transparent substrate is used for the back substrate 2 and the lower electrode 4, a light image may be irradiated from the back surface, and the light image forming operation can be easily performed in a bright place. In the case of back exposure, if black fine particles are dispersed in a white medium, a negative image is formed on the display surface side, but a negative light image may be irradiated or a reverse polarity voltage may be applied in the third step. Even when white light-sensitive fine particles are dispersed in a black dispersion medium, a positive image can be obtained by irradiation with a positive light image.

本発明の光像記憶法によって手書きメモシートを構成する場合、レーザダイオード(LD)やLED素子等を内蔵した電子ペンを用いて、照明光より強力な光で描画すれば、明所で取り扱うことが可能な書き替え可能電子シートとなり得る。
もちろんバックライト付き液晶やエレクトロルミネッセンス表示装置などの平板型電子表示装置の表示を本シートの表示面側からないしは背面側から透明電極面に結像ないし密着露光することによって光像を照射してもよく、またライン状光像と表示シートを垂直方向に相対移動させてライン光像を順次照射してもよい。
When a handwritten memo sheet is constructed by the optical image storage method of the present invention, if it is drawn with light stronger than illumination light using an electronic pen incorporating a laser diode (LD), LED element, etc., it should be handled in a bright place. Can be a rewritable electronic sheet.
Of course, it is possible to irradiate a light image by forming or closely exposing the display of a flat panel electronic display device such as a liquid crystal with backlight or an electroluminescence display device on the transparent electrode surface from the display surface side or the back surface side of the sheet. Alternatively, the line light image and the display sheet may be moved relative to each other in the vertical direction to sequentially irradiate the line light image.

図2はフルカラー像を形成する光像記憶法ならびにそれに用いる表示シートを示し、図1との違いは光感応性粒子6として少なくとも赤(R)色に感応性を有するシアン(C)色粒子、緑(G)色に感応性を有するマゼンタ(M)色粒子、青(B)色に感応性を有する黄(Y)色粒子を混合分散させてある点にある。C,M,Y粒子の各吸収主波長はR,G,B光であり、各吸収主波長で感応する少なくとも3種の微粒子が混合分散されている。
各色粒子は光未照射状態で同一の極性の電荷を有していることが望ましい。1ステッププロセス、2ステッププロセスいずれを用いてもよく、電圧印加のままフルカラー像を照射すれば、図1で述べたと同様、図2(B)のように光像の色に対応した粒子分布が達成される。すなわち白色が照射された領域はC,M,Y粒子が電荷を反転する結果殆ど下基板に向かい、白色分散媒の背後に隠れるため白色に見え、光像照射されなかった黒の領域では3色の粒子がそのまま透明電極3に留まるので減法混色の黒になる。R(G、B)光照射領域はC(M,Y)粒子のみ背面に移動し電極3に残ったM(C,Y),Y(M,C)粒子の混色であるR(G,B)色を呈する。C(M,Y)光照射領域は電極3に残る粒子はC(M,Y)粒子のみとなり光像に対応したポジ像が形成されることになる。色と感応波長の異なる2種の粒子の混合分散系ではマルチカラー表示となる。
FIG. 2 shows a light image storage method for forming a full-color image and a display sheet used therefor. The difference from FIG. 1 is cyan (C) colored particles having sensitivity to at least red (R) as photosensitive particles 6. Magenta (M) color particles sensitive to green (G) color and yellow (Y) color particles sensitive to blue (B) color are mixed and dispersed. The main absorption wavelengths of the C, M, and Y particles are R, G, and B light, and at least three kinds of fine particles that are sensitive to the respective absorption main wavelengths are mixed and dispersed.
It is desirable that each color particle has a charge of the same polarity when not irradiated with light. Either a one-step process or a two-step process may be used, and if a full-color image is irradiated with a voltage applied, the particle distribution corresponding to the color of the light image as shown in FIG. Achieved. In other words, the area irradiated with white appears almost white as it is directed to the lower substrate as a result of the C, M, and Y particles reversing the charge and hidden behind the white dispersion medium, and three colors are displayed in the black area not irradiated with the light image. Since the particles remain in the transparent electrode 3 as they are, the subtractive color mixture becomes black. The R (G, B) light irradiation area is a mixed color of M (C, Y), Y (M, C) particles remaining on the electrode 3 after moving only the C (M, Y) particles to the back surface. ) Present a color. In the C (M, Y) light irradiation region, the particles remaining on the electrode 3 are only C (M, Y) particles, and a positive image corresponding to the light image is formed. Multi-color display is obtained in a mixed dispersion system of two kinds of particles having different colors and sensitive wavelengths.

特許文献4、特許文献5にはガス媒中にC,M,Yおよび白色粒子を分散し、光像照射と電圧印加で光像を形成する方法が提示されている。
しかしながらC,M,Y粒子は各吸収主波長でない色光を受けて荷電する、光像照射は背面から、光像照射は色光ごとのシーケンシャル露光などの点で本願と基本的に異なっている。すなはちG,B光で帯電するC粒子、R,B光で帯電するM粒子、R,G光で帯電するY粒子など吸収主波長でない波長で帯電する粒子ではたとえばB(R,G)光照射ではC,M(M,Y;C,Y)粒子が表示面側に移動し確かにポジのB(R,G)色になるが、白色光照射ではC,M、Y粒子が共に表示面へ移動し、表示面は黒色となり反転してしまうからである。C光(B+G光)、M光(B+R光)、Y光(G+R光)照射でもC,M,Y粒子が帯電して移動するから黒色になってしまい同時露光ではまともなカラー像形成になり得ないからである。
Patent Document 4 and Patent Document 5 propose a method in which C, M, Y and white particles are dispersed in a gas medium, and a light image is formed by light image irradiation and voltage application.
However, the C, M, and Y particles are charged by receiving colored light that is not each absorption main wavelength, optical image irradiation is fundamentally different from the present application in terms of light image irradiation from the back and light image irradiation in sequential exposure for each color light. In other words, in the case of particles charged at a wavelength other than the absorption main wavelength, such as C particles charged by G and B light, M particles charged by R and B light, Y particles charged by R and G light, for example, B (R, G) In light irradiation, C, M (M, Y; C, Y) particles move to the display surface side and certainly become positive B (R, G) color, but in white light irradiation, C, M, and Y particles are both This is because the display surface moves to the display surface and becomes black and reversed. Even when irradiated with C light (B + G light), M light (B + R light), or Y light (G + R light), the C, M, and Y particles move and become black, so that the simultaneous exposure is decent. This is because a color image cannot be formed.

図2でカラー像を再現するのに一旦照射するカラー像を紫外〜青領域の光像に変換し、それぞれに対応した波長域に感度を有するC,M,Y色粒子を用いれば十分明るい所で光像記憶作業を行えるが、明所でカラー像のまま表示シートに記憶するには照射カラー像の強度を十分に高めるか基板2側からカラー光像を照射する必要がある。 In order to reproduce a color image in FIG. 2, a color image once irradiated is converted into a light image in the ultraviolet to blue region, and C, M, and Y color particles having sensitivity in the corresponding wavelength range are used to obtain a sufficiently bright place. However, in order to store the color image as it is in a bright place on the display sheet, it is necessary to sufficiently increase the intensity of the irradiation color image or to irradiate the color light image from the substrate 2 side.

図2の如きフルカラー表示記憶装置を手書き電子シートとして用いる場合はR,G,B-LDないしLEDおよびこれらの発光を透明電極部に集光する光学系を内蔵したペンを用いて、選択スイッチで色を選択し本電子シート上で模様を描くと同時にシートの電極間に電圧を印加できるように構成すればよい。 When a full-color display storage device as shown in FIG. 2 is used as a handwritten electronic sheet, a selection switch is used by using a pen containing an R, G, B-LD or LED and an optical system for condensing the emitted light on the transparent electrode section. What is necessary is just to comprise so that a voltage can be applied between the electrodes of a sheet | seat while selecting a color and drawing a pattern on this electronic sheet | seat.

画像を消去するには、両電極間に粒子が電極から離れるに十分なDC電圧を印加して全面白または黒にするか、AC電圧で全面灰色にすることによって全面消去が可能である。電極3ないし電極4のいずれかが帯状ないしマス目状に分割してあれば分割電極と対向電極間に選択的にDCないしAC電圧を印加して分割電極の形状に対応した部分消去が可能である。 In order to erase the image, it is possible to erase the entire surface by applying a DC voltage sufficient for the particles to leave the electrodes to make the entire surface white or black, or by making the entire surface gray with an AC voltage. If any of the electrodes 3 to 4 is divided into strips or grids, a DC or AC voltage can be selectively applied between the divided electrode and the counter electrode to perform partial erasure corresponding to the shape of the divided electrode. is there.

電子ペンに筆圧検知機能を持たせ、所定筆圧以上で両電極間に電圧が印加されるように構成しておけば、描画していない期間に表示シートに電圧を印加し続ける電力浪費や画像ダメージを回避できる。 If the electronic pen has a writing pressure detection function and is configured so that a voltage is applied between both electrodes at a predetermined writing pressure or higher, power consumption that continues to apply voltage to the display sheet during periods when drawing is not possible Image damage can be avoided.

液晶やエレクトロルミネッセンス表示装置の2次元カラー像あるいは1次元カラー像を入力光像に用い、本シートの表示面側からないしは背面側から透明電極面に結像ないし密着露光することによって光像を照射してもよいことは(0016)で述べた通りである。 A two-dimensional color image or a one-dimensional color image of a liquid crystal or electroluminescence display device is used as an input light image, and a light image is irradiated by imaging or closely exposing to a transparent electrode surface from the display surface side or back side of the sheet. What may be done is as described in (0016).

C,M,Y粒子に加えて黒色の光感応性粒子を混在させると黒色の再現性を向上できる。黒色の光感応性粒子は可視光の全波長域に感度を有するパンクロマチックなものでかつ暗所では光感応性粒子と同一極性に帯電しているものが使用される。 When black photosensitive particles are mixed with C, M, and Y particles, black reproducibility can be improved. The black photosensitive particles are panchromatic having sensitivity in the entire wavelength range of visible light and charged in the same polarity as the photosensitive particles in the dark.

図1、図2では垂直電界で光感応性粒子を移動させる光像記憶法について述べたが粒子は水平電界(横電界)によって移動させることも可能である。 1 and 2 describe the optical image storage method in which photosensitive particles are moved by a vertical electric field, the particles can also be moved by a horizontal electric field (lateral electric field).

図3に水平電界法による光像記憶法ならびにそれに用いるシートについて述べる。プラスチックフィルムあるいはガラスなどの絶縁性透明基板1と基板2の間に隔壁10が設けられ分散系8が充填されてセル13を構成しており、基板1の内面には透明電極3、基板2側には各セルごとに図4(A)〜(C)に示すような細線からなる電極4が設けられている。電極4は表示シート5のすべてのセルで繋がっており、電極3と共に表示シートは2端子素子として取り扱われる。 FIG. 3 describes an optical image storage method using the horizontal electric field method and a sheet used therefor. A partition 10 is provided between an insulating transparent substrate 1 such as a plastic film or glass and the substrate 2 and is filled with a dispersion system 8 to form a cell 13. The transparent electrode 3 and the substrate 2 side are formed on the inner surface of the substrate 1. Are provided with electrodes 4 made of fine wires as shown in FIGS. The electrode 4 is connected to all the cells of the display sheet 5, and the display sheet together with the electrode 3 is handled as a two-terminal element.

セルに分散されている光感応性微粒子6が黒色光吸収性で分散媒が透明な場合、粒子6が図3(A)に示すようにセル中に均一に分散している場合は、セルは黒色不透明である。電極3,4間に電極3が陽極となるようにDC電圧を印加しながら上透明基板側から光像を照射すると、光感応性微粒子6が負に帯電している場合、粒子は陽極3に集まるが、陽極3と電荷授受を行って正帯電化して負極4に向かい線状電極4に堆積する。水平電界法では通常分散媒は透明状態で用いられるからこのセルでは光を遮るものは細線上に堆積した黒色粒子層のみであり、この光吸収断面積が小さければ実質的にセルは光透過性になる。一方光の当らなかったセルでは粒子は電極3に堆積したままであるから粒子がセルの電極3に均一に堆積しておれば不透明黒色となり、1ステッププロセスでポシ像が形成されることになる。
勿論一旦粒子を電極3に集めて(図3(C))から電圧を維持しつつ光像を照射する2ステッププロセスを採用してもよく図3(B)のようにポジ像が形成される。
When the photosensitive fine particles 6 dispersed in the cell are black light-absorbing and the dispersion medium is transparent, when the particles 6 are uniformly dispersed in the cell as shown in FIG. It is black opaque. When a light image is irradiated from the upper transparent substrate side while applying a DC voltage so that the electrode 3 becomes an anode between the electrodes 3 and 4, when the photosensitive fine particles 6 are negatively charged, the particles are applied to the anode 3. Collected, the charge is exchanged with the anode 3 to be positively charged and deposited on the linear electrode 4 toward the negative electrode 4. In the horizontal electric field method, since the dispersion medium is usually used in a transparent state, in this cell, the only thing that blocks light is the black particle layer deposited on the thin line. If this light absorption cross-section is small, the cell is substantially light transmissive. become. On the other hand, in the cell where no light is applied, the particles remain deposited on the electrode 3, so if the particles are uniformly deposited on the electrode 3 of the cell, it becomes opaque black, and a positive image is formed in a one-step process. Become.
Of course, a two-step process in which particles are once collected on the electrode 3 (FIG. 3 (C)) and a light image is irradiated while maintaining the voltage may be adopted, and a positive image is formed as shown in FIG. 3 (B). .

電極4は不透明でもよく、明部の透過率を出来るだけ高くするために細線状で出来る限り粒子を厚く堆積させ、光吸収断面積を最小化することが重要である。 The electrode 4 may be opaque, and it is important to deposit the particles as thick as possible to minimize the light absorption cross section in order to increase the transmittance of the bright part as much as possible.

図3の構成での粒子移動では基板に垂直および水平電界が併用されているが、便宜上水平(横)電界法と呼ぶことにする。以下同様である。 In the particle movement in the configuration of FIG. 3, a vertical and horizontal electric field are used in combination with the substrate, but for convenience it will be referred to as a horizontal (lateral) electric field method. The same applies hereinafter.

図4のような線状電極はアルミ、クロム、金、タンタル、酸化インジウムなどの金属や透明導電体を蒸着やスパッタで設けてフォト処理でパタン化した薄膜や、導電性塗料を印刷、インクジェット描画などで設けた導電性厚膜などで構成できる。線状電極の幅は数μから数10μ程度で用いられる。 The linear electrode as shown in FIG. 4 is a thin film obtained by patterning a metal or transparent conductor such as aluminum, chromium, gold, tantalum or indium oxide by vapor deposition or sputtering, and patterned by photo treatment, or conductive paint, and ink jet drawing. For example, the conductive thick film may be provided. The width of the linear electrode is about several μ to several tens μ.

横電界方式の表示シートでフルカラー像を形成するには(0018)で述べたと同様、光感応性微粒子として少なくとも赤(R)色に感応性を有するシアン(C)色粒子、緑(G)色に感応性を有するマゼンタ(M)色粒子、青(B)色に感応性を有する黄(Y)色粒子を混合分散させればよい。各色粒子は光未照射状態で同一の極性の電荷を有していることが望ましい。分散媒が透明で下基板側が白色ならば1ステッププロセス、2ステッププロセスいずれを用いても図3と同様カラーポジ像が形成される。 In order to form a full-color image on a horizontal electric field type display sheet, as described in (0018), cyan (C) color particles and green (G) color having sensitivity to at least red (R) color as photosensitive fine particles. Magenta (M) color particles having sensitivity to yellow and yellow (Y) color particles having sensitivity to blue (B) may be mixed and dispersed. It is desirable that each color particle has a charge of the same polarity when not irradiated with light. If the dispersion medium is transparent and the lower substrate side is white, a color positive image can be formed as in FIG.

従来の電子的カラー像形成は(1)R,G,B並置カラーフィルタと白黒に変調できるライトバルブの組み合わせ(2)R,G,B光の選択反射層の3層積層型(3)C,M,Y変調層の3層積層型で実現せざるを得なかった。(1)では解像度の低下、光利用率の低下が難点であった。(2)、(3)ではパネル構成の複雑化が避けられなかった。本願では垂直型、水平型に拘わらずC,M,Y粒子を混合分散させることにより1つのセルの色を照射光像の色に対応して任意に変えられるため、従来の難点を克服し、簡単な構成で明るく、色純度に優れ、高解像度の画像を形成できるものである。 Conventional electronic color image formation is (1) a combination of R, G, B juxtaposed color filters and a light valve that can be modulated in black and white (2) a three-layer stacked type of selective reflection layers for R, G, B light (3) C , M, Y modulation layer has to be realized in a three-layer laminated type. In (1), it was difficult to reduce the resolution and the light utilization rate. In (2) and (3), the panel configuration is inevitably complicated. In this application, the color of one cell can be arbitrarily changed according to the color of the irradiated light image by mixing and dispersing C, M, Y particles regardless of vertical type or horizontal type, thus overcoming the conventional difficulties. It is bright with a simple structure, excellent in color purity, and can form high-resolution images.

垂直電界法、水平電界法に共通するが、光照射側の透明電極には光照射された粒子との電荷授受を容易にしたり、電荷授受を抑制するための、導体、半導体、絶縁体などからなる電荷授受制御層や対向電極側にも導体、半導体、絶縁体などからなる電荷ブロッキング層、粒子を安定に堆積させる閾値付与層、電極上の電界を収束するための導電突起など必要に応じて適宜設ける場合もある。 Although common to the vertical electric field method and horizontal electric field method, the transparent electrode on the light irradiation side is made of conductors, semiconductors, insulators, etc. to facilitate charge transfer with the light irradiated particles or to suppress charge transfer As necessary, the charge transfer control layer and the counter electrode side also include a charge blocking layer made of a conductor, semiconductor, insulator, etc., a threshold providing layer for stably depositing particles, and a conductive protrusion for converging the electric field on the electrode. It may be provided as appropriate.

液体またはガス分散媒中で粒子が光照射の結果電極との電荷授受によって帯電極性が変化するとして説明したが、光照射された微粒子の帯電状態の変化(帯電量の増減、帯電極性の逆転など)は電極との電荷授受だけでなく、分散媒、分散媒中成分や基板および他の分散粒子との電荷授受によっても起こり得る。本願では電界の存在の有無に係わらず、光照射によって微粒子の帯電状態が変化する(従って移動方向、移動速度、電極との付着力など)現象を広義の光電気泳動現象と名づける。本願の図1,2,3,5の表示シートは垂直電界型、水平電界型に拘わらず光電気泳動現象を光像形成に用いるものである。 Although it has been described that the charge polarity changes due to charge exchange with the electrode as a result of light irradiation in a liquid or gas dispersion medium, changes in the charge state of the light-irradiated particles (increase / decrease in charge amount, reversal of charge polarity, etc.) ) May occur not only by charge transfer with the electrode, but also by charge transfer with the dispersion medium, components in the dispersion medium, the substrate, and other dispersed particles. In the present application, the phenomenon in which the charged state of the fine particles is changed by light irradiation regardless of the presence or absence of an electric field (thus, the moving direction, the moving speed, the adhesion force to the electrode, etc.) is called a photoelectrophoresis phenomenon in a broad sense. The display sheets of FIGS. 1, 2, 3 and 5 of the present application use the photoelectrophoresis phenomenon for light image formation regardless of the vertical electric field type or the horizontal electric field type.

電極に堆積しているか分散媒中に分散している光感応性粒子が電界の有無に係わらず光を吸収した時の振る舞いとして次の4つのケースが起こりえる。1)光吸収前と極性が変化(電荷量に応じて移動速度は向上する場合も減少する場合もあり):第1粒子群と名づける。2)殆ど電荷を有していなかったものが光を吸収して正または負に荷電する:第2粒子群と名づける 3)光吸収前と同じ極性のままで帯電量が増加(従って移動速度向上):第3粒子群と名づける 4)光吸収前と同じ極性のままで帯電量が減少(従って移動速度減少、電荷を消失する場合も含む):第4粒子群と名づける。 The following four cases can occur as the behavior when the photosensitive particles deposited on the electrode or dispersed in the dispersion medium absorb light regardless of the presence or absence of an electric field. 1) Polarity changes before light absorption (moving speed may be increased or decreased depending on the amount of charge): Named first particle group. 2) Those that have little charge absorb light and are charged positively or negatively: Name the second particle group 3) Charge amount increases with the same polarity as before light absorption (thus improving movement speed) ): Named the third particle group 4) Reduced charge amount with the same polarity as before light absorption (thus including the case where the moving speed is reduced and the charge disappears): Named the fourth particle group.

本願では第1〜第4のすべての粒子群が垂直電界構成と水平電界構成を用いて表示に利用可能である。
たとえば第2粒子群を図1または図3の構成を用いて光照射で荷電した粒子を電極4に引き付ける電圧を印加すれば1ステップでポジ像が形成される。
また第3粒子群を図1または図3の構成を用いて光照射で帯電量の増大した粒子を電極4に引き付ける電圧を印加すれば1ステッププロセスでポジ像が形成され、第4粒子群ではネガ像となる
In the present application, all the first to fourth particle groups can be used for display using the vertical electric field configuration and the horizontal electric field configuration.
For example, if a voltage that attracts particles charged by light irradiation to the electrode 4 using the configuration shown in FIG. 1 or 3 is applied to the second particle group, a positive image is formed in one step.
In addition, when a voltage that attracts particles whose charge amount has been increased by light irradiation to the electrode 4 is applied to the third particle group using the configuration of FIG. 1 or FIG. 3, a positive image is formed in a one-step process. Become a negative statue

第2粒子群、第4粒子群は図5に示すような横電界構成セルで有効に利用できる。図5(A)、(E)では図4(D)〜(F)の如き櫛型、渦型ないしこれらと同類の細線状の一対の電極が用いられる。第2粒子群を用いた図5(A)のような表示シートでは光照射して電荷を得た粒子を電極4に堆積させる電圧を電極3,4間に印加すれば、1ステッププロセスでポジ像が得られる。図5(A)の電極3,4は互いに別基板に設けられていても、共に下基板に設けられていてもかまわない。第4群粒子ではこれとは逆に未照射粒子を電極4に堆積させる電圧を印加すれば光照射して電荷を失った粒子は分散状態を維持するから1ステッププロセスでネガ像が得られる。図5(C)の構成では電極3ないし4は図4(A)〜(C)の形状のものが用いられるが、電極3は透明であることが望ましい。図5(A)と同様に画像形成が可能である。図5の構成のセルではいずれも粒子分散状態でセルは不透明、細線電極に粒子を集積した状態で透明となる。 The second particle group and the fourth particle group can be effectively used in a transverse electric field configuration cell as shown in FIG. In FIGS. 5A and 5E, a pair of electrodes in a comb shape, a vortex shape, or the like as shown in FIGS. 4D to 4F is used. In the display sheet using the second particle group as shown in FIG. 5A, if a voltage is applied between the electrodes 3 and 4 to deposit the particles obtained by irradiating light to obtain the electric charge, it is positive in a one-step process. An image is obtained. The electrodes 3 and 4 in FIG. 5A may be provided on different substrates, or may be provided on the lower substrate. On the contrary, in the case of the fourth group particles, if a voltage for depositing unirradiated particles on the electrode 4 is applied, the particles that have lost their charge due to light irradiation maintain the dispersed state, and thus a negative image can be obtained in a one-step process. In the configuration shown in FIG. 5C, the electrodes 3 to 4 having the shapes shown in FIGS. 4A to 4C are used, but the electrode 3 is preferably transparent. Image formation is possible as in FIG. All of the cells having the configuration shown in FIG. 5 are opaque in a particle dispersion state and transparent in a state where particles are accumulated on a thin wire electrode.

本発明で粒子分散状態とはブラウン運動により比重差に拘わらず液体中に安定に微粒子が均一分散したコロイド状態は勿論、基板1,2ないし電極3,4内面のいずれかないし両面に一部ないし殆どの粒子がゆるく付着した状態、粒子が互いにゆるく凝集し、両電極間ないし両基板間に3次元網目構造を形成している状態も含むものである。 In the present invention, the particle dispersion state means not only the colloidal state in which fine particles are stably uniformly dispersed in the liquid regardless of the specific gravity difference due to the Brownian motion, but also any one of the inner surfaces of the substrates 1 and 2 and the electrodes 3 and 4 or a part of both surfaces. This includes a state in which most of the particles are loosely adhered and a state in which the particles are loosely aggregated with each other to form a three-dimensional network structure between the electrodes or the substrates.

図6を用いて横電界構成セルでの粒子集積時の明状態の透過率について述べる。十分ないんぺい性が得られる濃度に光感応性微粒子を分散させた分散系で充填されたセル中の粒子をすべて上基板に集積したと想定しこの時の粒子層の厚みをd、画素となるセルの面積をSとする(A)。1画素の表示面から見た粒子を集積する細線状電極4の総面積をΔsとし、分散粒子をすべてΔsに集積した明状態では、電極4上の粒子層の厚みhはd*S/Δsとなる(B)。明状態はS−Δsを最大化すなわちΔsを最小化することで実現される。Δs/Sを粒子集積電極4の面積率と定義する。面積率を10%、20%とすればほぼ90%、80%の透過率を実現できることになる。しかしながらこの時のΔs上の粒子層の厚みhは各々dの10倍、5倍になる。すなわち極小の面積の集積電極4に出来るだけ厚く粒子を積み上げれば高透過率を実現できることになり、dが小すなわち隠ぺい力の高い粒子を用いるほど薄い粒子層で上記高パフォーマンスが実現できることになる。隠ぺい力は粒子そのものの特性は勿論、粒径が深く関与し、隠ぺい力が高くなる粒径を選ぶべきである。 The transmittance in the bright state at the time of particle accumulation in the transverse electric field configuration cell will be described with reference to FIG. Assuming that all the particles in the cell filled with the dispersion system in which the photosensitive fine particles are dispersed at a concentration at which sufficient covering properties are obtained are accumulated on the upper substrate, the thickness of the particle layer at this time is d, which is a pixel. Let S be the area of the cell (A). In a bright state where the total area of the fine line-like electrode 4 that accumulates particles viewed from the display surface of one pixel is Δs and all the dispersed particles are accumulated in Δs, the thickness h of the particle layer on the electrode 4 is d * S / Δs. (B). The bright state is realized by maximizing S-Δs, that is, minimizing Δs. Δs / S is defined as the area ratio of the particle integrated electrode 4. If the area ratio is 10% and 20%, a transmittance of about 90% and 80% can be realized. However, the thickness h of the particle layer on Δs at this time is 10 times and 5 times of d, respectively. That is, a high transmittance can be realized by stacking particles as thick as possible on the integrated electrode 4 having an extremely small area, and the above high performance can be realized with a thin particle layer as d is small, that is, a particle having a high hiding power is used. . The concealing force should be selected so that the particle size is deeply related and the concealing force becomes high, as well as the characteristics of the particles themselves.

粒子を極小の面積Δsに厚く積み上げるには電極4を細線化して電界を収束させることの他、図5(E)のように電極4が両基板に設けられており、互いに重なる配置にあれば粒子を両電極に堆積できる(図5(F))から、2倍の厚みに堆積したのと同じ効果になり、表示面側から見た光吸収断面積の低減(透過率向上)に寄与する。 In order to stack the particles thickly in a minimum area Δs, the electrode 4 is provided on both substrates as shown in FIG. 5 (E) in addition to thinning the electrode 4 to converge the electric field. Since particles can be deposited on both electrodes (FIG. 5 (F)), the effect is the same as when the particles are deposited twice as thick, and contributes to a reduction in light absorption cross-section as viewed from the display surface (improvement of transmittance). .

光像照射で光像に対応した粒子の空間分布を形成するのに光感応性粒子を用いる例について述べたが、電極表面に光導電層を設けることによっても粒子を光像に対応して移動させることが可能である。 Although an example of using photosensitive particles to form a spatial distribution of particles corresponding to a light image by light image irradiation has been described, particles can also be moved according to a light image by providing a photoconductive layer on the electrode surface. It is possible to make it.

図7にこの構成の光像シートを示す。すなわち図1の光像シートに類似しているが透明電極3に透明光導電層11が設けられている点で異なっている。
不透明分散媒中にこれとは色の異なる粒子が分散された分散系が光導電層を介して一対の電極間に挟まれて表示シートが構成されている。
必要なら透明電極を通して透明光導電層が感じる波長の一様な光を照射し透明光導電層11の抵抗値を下げた状態でDC電圧を印加して微粒子6を電極3ないし電極4に集積(第一ステップ)させ、しかる後に光像を照射しつつ逆極性のDC電圧を印加(第二ステップ)すれば、光照射部の光導電層は電気電導性が増しているためより強い電界が配分されるからこの領域の粒子はより早く逆の電極に向って移動、堆積し、画像が形成されることになる。白色分散媒中に帯電した黒色粒子が分散された分散系の場合は光像未照射側に黒色粒子を堆積させた時ポジ像が、逆の場合はネガ像が形成される。
FIG. 7 shows a light image sheet having this configuration. That is, it is similar to the light image sheet of FIG. 1 except that the transparent photoconductive layer 11 is provided on the transparent electrode 3.
A display system is configured by sandwiching a dispersion system in which particles of a different color from this are dispersed in an opaque dispersion medium between a pair of electrodes via a photoconductive layer.
If necessary, a uniform voltage of the wavelength felt by the transparent photoconductive layer is irradiated through the transparent electrode, and a DC voltage is applied in a state where the resistance value of the transparent photoconductive layer 11 is lowered to accumulate the fine particles 6 on the electrodes 3 to 4 ( If a DC voltage having a reverse polarity is applied while irradiating a light image (second step), the photoconductive layer of the light irradiating portion has a higher electric conductivity, so that a stronger electric field is distributed. Thus, the particles in this region move and deposit more quickly toward the opposite electrode, and an image is formed. In the case of a dispersion system in which charged black particles are dispersed in a white dispersion medium, a positive image is formed when black particles are deposited on the light image non-irradiated side, and in the opposite case, a negative image is formed.

分散媒が液体の場合、分散媒7の着色は染料を溶解したり、顔料を分散して実現できる。分散媒がガス体の場合は流動性の高い微粒子を分散することによって実現される。 When the dispersion medium is liquid, the dispersion medium 7 can be colored by dissolving the dye or dispersing the pigment. When the dispersion medium is a gas body, it is realized by dispersing fine particles having high fluidity.

図3の横電界セルの透明電極3に透明光導電層11を設けた構成も有用な光像記憶表示シートとして利用できる。図7と同様光照射部では光導電層の電気導電性が増すから、光導電層と粒子の電荷授受が促進されたり、光感応性の有無に拘わらず分散粒子にはより強い電界が作用し、速やかな粒子移動が実現でき粒子移動速度の差によって非光照射部と粒子分布を異ならせることができ光像を形成できる。図5の構成の横電界型シートの場合も透明電極3に光導電層を設ければ非光感応性微粒子を用いても画像形成が可能となる。 The configuration in which the transparent photoconductive layer 11 is provided on the transparent electrode 3 of the horizontal electric field cell of FIG. 3 can also be used as a useful optical image storage display sheet. As in FIG. 7, in the light irradiation part, the electrical conductivity of the photoconductive layer is increased, so that charge transfer between the photoconductive layer and the particles is promoted, or a stronger electric field acts on the dispersed particles regardless of the presence or absence of photosensitivity. Thus, rapid particle movement can be realized, and the particle distribution can be made different from that of the non-light-irradiated part due to the difference in particle movement speed, so that a light image can be formed. In the case of the lateral electric field type sheet having the structure shown in FIG. 5, if a photoconductive layer is provided on the transparent electrode 3, an image can be formed even if non-photosensitive fine particles are used.

特許文献6には異なる帯電特性と色を有する粒子分散系を一方は光導電層を設けた透明電極間に挟み、電圧印加と光像照射で光像に対応した粒子分布を実現して画像を形成する方法が述べられている。しかるに光像照射は背面からのみであり、従って対向する電極および基板は共に透明性であることが必須であること、また透明光導電性層を表示面側に設けて表示面側から光像照射する方法については一切述べられていないため電子ペンで表示を見ながら描画するような用途には不向きであった。 In Patent Document 6, a particle dispersion system having different charging characteristics and colors is sandwiched between transparent electrodes provided with a photoconductive layer, and image distribution is realized by applying voltage and light image irradiation to realize particle distribution corresponding to the light image. A method of forming is described. However, the light image irradiation is only from the back surface, and therefore it is essential that both the opposing electrode and the substrate are transparent, and the light image irradiation is performed from the display surface side by providing a transparent photoconductive layer on the display surface side. Since there is no mention of how to do this, it is unsuitable for applications such as drawing while viewing the display with an electronic pen.

電極に光導電層を設けた図7の構成の場合微粒子は光感応性である必要はないが、光感応性粒子の場合も有効に活用できる。すなわち一様な光を光導電層に照射しつつないしは未照射の状態で図7と同様に光感応性粒子を光導電層側に付着させるようDC電圧を印加して後、電圧印加状態で光像を照射する。光を照射された粒子はたとえば導電性の高くなった光導電層との電荷授受が促進され速やかに逆極性の粒子となり電極4に向うが、光照射部の光導電層の電気抵抗が下がっているからこの部分の分散系には強い電界が配分される結果、逆極性化した粒子は速やかに電極4に向い光像が記憶されるからである。 In the case of the configuration of FIG. 7 in which a photoconductive layer is provided on the electrode, the fine particles need not be photosensitive, but can also be effectively used in the case of photosensitive particles. That is, a DC voltage is applied so that the photosensitive particles are attached to the photoconductive layer side in the same manner as in FIG. Illuminate the image. The particles irradiated with light, for example, facilitate charge transfer with the photoconductive layer having high conductivity and quickly become reverse polarity particles toward the electrode 4, but the electrical resistance of the photoconductive layer of the light irradiation portion decreases. As a result, a strong electric field is distributed to the dispersion system in this part, and as a result, the reversely polarized particles are promptly directed to the electrode 4 and an optical image is stored.

光導電層が透明でかつパンクロマチックであり、光感応性粒子として少なくとも赤(R)色に感応性を有するシアン(C)色粒子、緑(G)色に感応性を有するマゼンタ(M)色粒子、青(B)色に感応性を有する黄(Y)色粒子を用いれば図7の垂直電界型のほか、図3、図5の水平電界型セル構成においてもフルカラー像を形成できることは言うまでもない。
光照射で第1〜4粒子群のいずれの状態を示す粒子であっても電圧パルス高、幅、極性を選択することにより、光導電層の抵抗低下も併せて活用できるため、コントラストに優れた画像を迅速に形成できることになる。
The photoconductive layer is transparent and panchromatic, and cyan (C) color particles having sensitivity to at least red (R) as light sensitive particles, and magenta (M) color having sensitivity to green (G) color. Needless to say, if yellow (Y) particles having sensitivity to blue (B) color are used, a full color image can be formed not only in the vertical electric field type shown in FIG. 7 but also in the horizontal electric field type cell structure shown in FIGS. Yes.
Even if the particles show any state of the first to fourth particle groups by light irradiation, by selecting the voltage pulse height, width, and polarity, the resistance reduction of the photoconductive layer can be used together, so the contrast is excellent. An image can be formed quickly.

図1、2、3,5、7の光像記憶シートに共通するが、光導電層も光感応性粒子も光照射された状態が永遠に続くものではない。光照射と電圧印加を休止してから粒子帯電状態が光照射前の状態に戻るまでの時間は主に光感応性粒子、分散媒、電極、基板などの性質によって決まるが、これを時定数と名づけると、当然光像形成は時定数内に終えるべきであり、印加電圧のパルス幅は時定数以下にすべきである。 Although common to the optical image storage sheets of FIGS. 1, 2, 3, 5, and 7, the state in which the photoconductive layer and the photosensitive particles are irradiated with light does not last forever. The time from the suspension of light irradiation and voltage application to the return of the charged particle state to the state before light irradiation is mainly determined by the properties of the photosensitive particles, dispersion medium, electrode, substrate, etc. As a matter of course, optical image formation should be finished within the time constant, and the pulse width of the applied voltage should be less than the time constant.

以上のセル構成では粒子を移動させるための電圧はすべて外部電源を用いて行う例について述べた。光照射によって電圧を発生する光起電力層を設ければ外部電源不要の表示シートが構成できる。 In the above cell configuration, an example in which all voltages for moving particles are performed using an external power source has been described. If a photovoltaic layer that generates voltage by light irradiation is provided, a display sheet that does not require an external power source can be configured.

図7の光導電層の代わりに光起電力層を設けておけば入射光像模様に対応して発生した起電力の大きさ、極性と粒子の極性に応じて粒子は移動し画像が形成できる。光起電力層が透明であれば表示面側に設けることができ、不透明であれば背面側に設け背面側から光像を照射する構成となる。図3,5など水平電界型セルにも適用可能である。 If a photovoltaic layer is provided instead of the photoconductive layer in FIG. 7, the particles move according to the magnitude, polarity and polarity of the generated electromotive force corresponding to the incident light image pattern, and an image can be formed. . If the photovoltaic layer is transparent, it can be provided on the display surface side, and if it is opaque, it is provided on the back side, and a light image is irradiated from the back side. The present invention can also be applied to a horizontal electric field type cell as shown in FIGS.

光起電力層が透明でパンクロマチックであり、微粒子が光感応性であればモノクロのみならず、C,M,Y光感応性粒子を用いてフルカラー像を形成できる。光照射で第1〜4粒子群のいずれの状態を示す粒子であっても、光照射部と非照射部では光感応性粒子の帯電状態と光起電力層の起電力が異なるから微粒子の荷電極性、起電力の極性を選択することにより、ポジまたはネガの画像を選択形成できることになる。 If the photovoltaic layer is transparent and panchromatic and the fine particles are light sensitive, then a full color image can be formed using not only monochrome but also C, M, Y light sensitive particles. Even if the particles show any state of the first to fourth particle groups by light irradiation, the charged state of the photosensitive particles and the electromotive force of the photovoltaic layer are different between the light irradiation part and the non-irradiation part. By selecting the polarity and the polarity of the electromotive force, a positive or negative image can be selectively formed.

光導電層や光起電力層は画素(セル)ごとに分離される場合もある。 The photoconductive layer and the photovoltaic layer may be separated for each pixel (cell).

図1、2、3,5、7の光像記憶シートに共通するが、光照射されたないしされない粒子の電極面への付着力すなわち閾値性が画像形成に大きく影響する。この閾値性の変化は画像形成に有効に利用できる。たとえば光照射された粒子と未照射粒子で電極面への付着力に違い(逆極性電圧印加での電極脱着の閾値性)があれば、光照射した粒子の荷電極性がたとえ変化しなくても画像形成に有効に利用できる。光照射した粒子、未照射粒子の閾値電圧をそれぞれV1,V2とし、V2>V>V1なる逆極性電圧Vを印加すれば光照射された粒子のみが速やかに対向電極側に向かい、対向電極に堆積させてしまうことも分散状態にすることも可能である。一方非照射部の粒子は電極に留まるため粒子の空間分布が変化して画像が形成される。V1>V>V2の電圧では逆に非照射部の粒子が速やかに電極を離れて先のとはネガポジが逆の画像となる。画像を消去するには電極3,4間に電極上の堆積粒子が一旦は電極を離れることのできる閾値以上の逆極性DC電圧パルスないしAC電圧を印加する必要がある。 Although common to the optical image storage sheets of FIGS. 1, 2, 3, 5, and 7, the adhesion force to the electrode surface of the particles irradiated or not irradiated with light, that is, the threshold value, greatly affects image formation. This change in threshold value can be used effectively for image formation. For example, if there is a difference in the adhesion force on the electrode surface between the irradiated particle and the unirradiated particle (threshold property of electrode desorption when a reverse polarity voltage is applied), even if the charged polarity of the irradiated particle does not change It can be used effectively for image formation. When the threshold voltages of the light-irradiated particles and the unirradiated particles are set to V1 and V2, respectively, and a reverse polarity voltage V of V2> V> V1 is applied, only the light-irradiated particles are promptly directed toward the counter electrode, It can be deposited or dispersed. On the other hand, since the particles in the non-irradiated portion remain on the electrodes, the spatial distribution of the particles changes and an image is formed. On the other hand, at a voltage of V1> V> V2, on the contrary, the particles in the non-irradiated part quickly leave the electrode, and the negative / positive image is reversed. In order to erase the image, it is necessary to apply a reverse polarity DC voltage pulse or AC voltage equal to or higher than a threshold value at which the deposited particles on the electrode can once leave the electrode between the electrodes 3 and 4.

図1、2、3,5、7の光像記憶シートに共通するが、シート面内で粒子濃度の均一性を維持するため、基板間に隔壁(仕切り)を設け分散系を小さな直方体、円柱、六角柱などからなるセルに閉じ込めるか、分散系をカプセル粒子の中に閉じ込めるのが望ましい。図8(A)は基板間に隔壁を設けてセルを形成した例であり、図8(B)は分散系をカプセル内に閉じ込めた例であり、電極間のカプセル粒子以外のスペースは透明バインダー樹脂15で充填されている。 Although common to the optical image storage sheets of FIGS. 1, 2, 3, 5, and 7, in order to maintain the uniformity of the particle concentration within the sheet surface, a partition (partition) is provided between the substrates, and the dispersion system is a small rectangular parallelepiped or cylinder. It is desirable to confine them in a cell made of hexagonal columns or the like, or to confine the dispersion in capsule particles. FIG. 8A shows an example in which a cell is formed by providing partition walls between substrates, and FIG. 8B shows an example in which a dispersion system is confined in a capsule. A space other than capsule particles between electrodes is a transparent binder. Filled with resin 15.

隔壁10の領域は色が変化しないから隔壁の厚みは出来るだけ薄く構成し、色が変化する領域の面積割合(開口率)をできるだけ高くすることが優れた画像コントラストを実現する上で望ましい。 In order to achieve excellent image contrast, it is desirable that the partition wall 10 has a thickness that is as thin as possible because the color does not change, and that the area ratio (aperture ratio) of the color change region is as high as possible.

電子ペーパ表示では白色度は重要な要素であるから隔壁の少なくとも表示を眺める側は白色であることが望ましい。カプセル粒子の場合、有機樹脂からなるカプセル壁の厚みは通常ミクロン以下であるから隔壁としては十分薄いメリットがある。図8(B)ではカプセルを球形として描いているが基板間隙をカプセルの直径より小さくして図8(C)に示すように各カプセルを直方体になるように変形させて利用すれば開口率向上に寄与する。 Since whiteness is an important factor in electronic paper display, it is desirable that at least the side of the partition where the display is viewed is white. In the case of capsule particles, since the thickness of the capsule wall made of an organic resin is usually less than a micron, there is a merit that the partition wall is sufficiently thin. In FIG. 8B, the capsule is drawn as a sphere, but if the substrate gap is made smaller than the diameter of the capsule and each capsule is transformed into a rectangular parallelepiped as shown in FIG. 8C, the aperture ratio is improved. Contribute to.

マイクロカプセル粒子を用いる場合両基板はバインダー樹脂を介して固着されているが隔壁型シートの場合も、両基板は隔壁と接する面で各々固着されていることが望ましい。 In the case of using microcapsule particles, both substrates are fixed via a binder resin, but also in the case of a partition-type sheet, it is desirable that both substrates are fixed on the surface in contact with the partition.

本願の表示シートでは解像度はセルサイズに依存するから、高解像度を望む用途ではセルないしカプセル粒子のサイズは数10μから100μ程度で用いるべきである。セルピッチが100μの場合A4サイズ(297×210mm)では2970×2100画素(623.7万画素)のほぼ満足できる解像度が得られる。用途によってはセルピッチ、カプセル粒子径はもっと大きくてもよい。1画素は多数の隔壁型セルないしカプセル粒子から構成されていてもかまわない。 Since the resolution depends on the cell size in the display sheet of the present application, the size of the cell or capsule particle should be about several tens of μ to about 100 μ in applications where high resolution is desired. When the cell pitch is 100 μm, an almost satisfactory resolution of 2970 × 2100 pixels (623.7 million pixels) can be obtained with A4 size (297 × 210 mm). Depending on the application, the cell pitch and capsule particle size may be larger. One pixel may be composed of many partition type cells or capsule particles.

図1、図2で光像形成に電子発光ペンを用いて手書き描画表示を行う方法について述べたが、図3,5の横電界型シート、図7の光導電層や光起電力層利用シートにも適用できることは言うまでもない。 1 and 2, the method of performing handwritten drawing display using an electroluminescent pen for photoimage formation has been described. The lateral electric field type sheet of FIGS. 3 and 5, the photoconductive layer or photovoltaic layer utilization sheet of FIG. Needless to say, it can also be applied.

本発明の表示シートがたとえば基板の両面に形成してあれば両面表示シートとして利用できる。図9に両面表示シートの1例を示す。
たとえば図1,2,3,5,7,8の如き表示シートを両面に設けた両面表示シートは、下基板として紙などを用い、望ましくはこの両面に水分、ガスなどの浸透防止層を形成しその上に下電極を形成、この電極と、透明電極を設けた2枚の透明プラスチックフィルムとの間に各々分散系を挟み周辺をスペーサで封じ切った構成である。たとえ両基板に電極がある電極4層構成であっても電極3どうし、電極4どうしは結線しシートは2端子素子として外部に取り出されるように構成できる。光像は両面同時に形成してもよく、別々に形成してもよい。
If the display sheet of the present invention is formed on both sides of the substrate, for example, it can be used as a double-sided display sheet. FIG. 9 shows an example of a double-sided display sheet.
For example, a double-sided display sheet provided with display sheets on both sides as shown in FIGS. 1, 2, 3, 5, 7, and 8 uses paper or the like as a lower substrate, and preferably forms a permeation preventive layer for moisture, gas, etc. on both sides. A lower electrode is formed thereon, and a dispersion system is sandwiched between this electrode and two transparent plastic films provided with a transparent electrode, and the periphery is sealed with a spacer. Even if the electrode has a four-layer structure with electrodes on both substrates, the electrodes 3 can be connected to each other and the sheet can be connected to the outside as a two-terminal element. The optical images may be formed on both sides simultaneously or separately.

片面表示シートであれ両面表示シートであれ画像を形成した複数の表示シートをルーズリーフ形式で保存、持参するためには図10に示すように表示領域の外側に綴じ代および綴じ孔が設けてあると使いやすい。本願表示シートはたとえば基紙に100μ程度の紙、表基板に20μ程度のプラスチックフィルム、分散系厚みを50μ程度としても両面表示シートで240μ程度で構成できる。勿論各々を更に薄くして通常の書籍や雑誌の紙厚と同程度の100μ前後に構成することも可能であり、文字通り厚み、感触において電子ペーパと呼ぶにふさわしいフレキシブル電子表示シートが実現可能である。 In order to save and bring a plurality of display sheets on which images are formed, whether a single-sided display sheet or a double-sided display sheet, in a loose-leaf format, a binding margin and a binding hole are provided outside the display area as shown in FIG. Easy to use. The display sheet of the present application can be constituted by a double-sided display sheet of about 240 μm, for example, even if the base paper is about 100 μm paper, the front substrate is about 20 μm plastic film, and the dispersion thickness is about 50 μm. Of course, it is also possible to make each of them thinner and have a thickness of about 100 μm, which is about the same as the thickness of a normal book or magazine, and it is possible to realize a flexible electronic display sheet that is literally suitable for being called electronic paper in terms of thickness and feel. .

本発明で使用する表示シートの基板材料としてプラスチックフィルムや紙を使用するとロールツーロールで連続量産できる特徴が発揮できる。
図11はロールツーロールで表示シートを製造する例を示す。あらかじめ電極等が形成されたロール状フィルムが上ロールから供給されたとえばバインダー樹脂に分散されたカプセル粒子インキが印刷などで塗布される。一方電極取り出しのためのパンチング孔が空けられ印刷またはインクジェット描画などでUVシール樹脂などのシール剤、スペーサ、電極などが設けられた下フィルム基板との間に気泡が残らないように両基板を貼合してUV照射して固着する。パンチングなどで綴じ孔16を設けたり、個片に切断して枚葉表示シートを連続生産することが可能である。勿論長尺巻物形式の表示シートを構成してもよい。
When a plastic film or paper is used as the substrate material of the display sheet used in the present invention, the feature of continuous mass production by roll-to-roll can be exhibited.
FIG. 11 shows an example of manufacturing a display sheet by roll-to-roll. A roll-like film on which electrodes and the like are formed in advance is supplied from an upper roll, and for example, capsule particle ink dispersed in a binder resin is applied by printing or the like. On the other hand, both substrates are affixed so that there are no air bubbles left between the lower film substrate provided with a sealant such as UV seal resin, spacers, electrodes, etc. by punching holes for electrode extraction and printing or inkjet drawing. Combined with UV irradiation to fix. A binding hole 16 can be provided by punching or the like, or a sheet display sheet can be continuously produced by cutting into pieces. Of course, a long scroll type display sheet may be configured.

図11は片面表示シート製造の例を示しているが、両面表示シートをロールツーロールで製造することも勿論可能である。 Although FIG. 11 shows an example of manufacturing a single-sided display sheet, it is of course possible to manufacture a double-sided display sheet by roll-to-roll.

図11では上下基板用フィルムが供給されているが、1枚のロールフィルムで表示シートをロールツーロールで製造することも可能である。すなはち図5(A)で示すように電極が片側基板のみでよい構成では。電極が設けられたフィルムの上にカプセル粒子などの形で分散系層を所定位置に印刷し、この上から透明保護樹脂を塗布すれば表示シートとなり得る。 Although the upper and lower substrate films are supplied in FIG. 11, the display sheet can be manufactured by roll-to-roll with a single roll film. In other words, as shown in FIG. 5 (A), the electrode may be only one side substrate. A display sheet can be obtained by printing a dispersion layer in the form of capsule particles or the like on a film provided with electrodes at a predetermined position and applying a transparent protective resin thereon.

隔壁型パネル構成では、フィルムにフォトレジストなどで隔壁を形成するか、UV硬化樹脂を塗布して仮硬化した膜などをエンボス加工などで隔壁とセルを形成後本硬化して分散系を充填し、一対の電極付きフィルムで封止することによって隔壁型フィルムパネルをロールツーロールで製造することも可能となる。 In the partition type panel configuration, the partition is formed on the film with a photoresist or the like, or the film and the like that are pre-cured by applying a UV curable resin are embossed to form the partition and the cell, and then are fully cured to fill the dispersion system. It is also possible to manufacture a partition-type film panel by roll-to-roll by sealing with a pair of electrode-attached films.

本発明に使用する材料について述べる。
光感応性微粒子としてUSP3384488に記載の種々のものが使用できる。すなわちアンソラキノン系、キナクリドン系、アゾ系、フタロシアニン系、トリアジン系などの有機顔料やアモルファスシリコン(a-Si)、酸化亜鉛(ZnO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、セレン(Se)などの無機顔料ないし微粒子などが使用できる。たとえ光感応性がない色材微粒子であっても光感応性粒子と共に樹脂媒体に埋め込んだ光感応性色材トナー粒子として用いたり、粒子の周りを透明光導電体等光感応剤で被覆して用いることができる。色材溶液ないし色材分散系をカプセル化したものを微粒子として用いることも出来、光感応性発現のためこのカプセル粒子の表面を光導電剤などの光感応性材料で被覆してもよい。微粒子は原子や分子レベルでの表面コートで表面変性したり、分散剤、界面活性剤等を用いて荷電性付与および良分散性がはかられる。
The material used for this invention is described.
Various photosensitive fine particles described in US Pat. No. 3,384,488 can be used. That is, organic pigments such as anthoraquinone, quinacridone, azo, phthalocyanine, and triazine, amorphous silicon (a-Si), zinc oxide (ZnO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride Inorganic pigments or fine particles such as (CdTe) and selenium (Se) can be used. Even if the colorant fine particles have no photosensitivity, they can be used as photosensitivity colorant toner particles embedded in a resin medium together with the photosensitivity particles, or the particles can be coated with a photosensitizer such as a transparent photoconductor. Can be used. An encapsulated color material solution or color material dispersion system can also be used as fine particles, and the surface of the capsule particles may be coated with a photo-sensitive material such as a photoconductive agent in order to develop photo-sensitivity. The fine particles can be surface-modified by surface coating at the atomic or molecular level, or can be imparted with chargeability and good dispersibility by using a dispersant, a surfactant or the like.

分散系8が空気や窒素などのガス体中に高流動性の、着色のための微粒子および光感応性微粒子が分散された分散系では光感応粒子の選択的移動に抵抗が少ないから高速応答の表示パネルが可能でかつシートを全固体化できる。微粒子表面に微小な凹凸形状を形成すると更に流動性が高くなること、またシランカップリング剤やシリコンオイルでの粒子の表面処理が帯電性制御、流動性向上に有効なことが知られている。 In the dispersion system in which the dispersion system 8 in which fine particles for coloring and light-sensitive fine particles dispersed in a gas body such as air or nitrogen are dispersed has little resistance to selective movement of the light-sensitive particles, it has a high response speed. A display panel is possible, and the sheet can be solidified. It is known that the formation of minute irregularities on the surface of the fine particles further increases the fluidity, and that the surface treatment of the particles with a silane coupling agent or silicon oil is effective for controlling the chargeability and improving the fluidity.

光導電層材料としては光感応性微粒子と同様の材料や透明光半導体層としてポリビニルカルバゾールなどが使用可能である。分散媒が液体の場合分散する粒子の比重は分散媒とほぼ等しくしておくことが望ましい。比重の大きな無機粒子の場合比重の小さい樹脂に埋め込んだトナー形態として見かけ比重を下げることは有効である。 As the photoconductive layer material, the same material as the photosensitive fine particles, or polyvinyl carbazole as the transparent photo semiconductor layer can be used. When the dispersion medium is a liquid, the specific gravity of the particles to be dispersed is desirably substantially equal to that of the dispersion medium. In the case of inorganic particles having a large specific gravity, it is effective to lower the apparent specific gravity as a toner form embedded in a resin having a small specific gravity.

光起電力層としてはフタロシアニンなど各種染料、顔料等有機半導体やアモルファスシリコン、酸化亜鉛、酸化チタン、カドミウムセレン、カドミウムテルル、ガリウム砒素などの無機半導体のp型、n型を積層したP-N接合、P-I-N接合層が用いられる。光起電力を高めるためには多数のp-n接合が積層して用いられる。 Photovoltaic layers include various semiconductors such as phthalocyanine, pigments, organic semiconductors such as amorphous silicon, zinc oxide, titanium oxide, cadmium selenium, cadmium tellurium, gallium arsenide and other p-type and n-type PN junctions, PIN A bonding layer is used. In order to increase the photovoltaic power, a large number of p-n junctions are stacked and used.

分散媒体が液体の場合シリコン系、石油系やハロゲン化炭化水素など多種類の溶媒が利用でき、常温でゼリー状であっても光像形成時や消去時にシートの温度を上げて分散媒の粘度を下げれば画像形成、消去は可能である。 When the dispersion medium is liquid, a variety of solvents such as silicon, petroleum, and halogenated hydrocarbons can be used. If the value is lowered, image formation and erasure are possible.

本発明は次のような効果を奏する。
一対の電極間に微粒子分散系を挟み込んだ封じ切りシートを用い、光像照射と電圧印加を併用して光像に対応した粒子の空間的分布状態を作り出し、光像消去、新規光像形成を繰り返し行えるように構成したことを特徴とした光像記憶法ならびにそれに用いる表示シートであり、C,M,Yの光感応性微粒子を用いてフルカラー形成が可能である。表示シートは紙同様の薄型が可能であり、表示を更新する時のみ光像とシートに印加する電圧を発生できる表示書替器に装着すれば瞬時に画像更新が可能であるためモノクロはじめフルカラー電子ペーパとして、電子新聞、電子書籍、値札、ポスター、広告看板、掲示板、電子メモ帳、電子絵画、メニューシート、カタログ、ICカード、OHPシートなど多方面に利用可能である。
The present invention has the following effects.
Using a sealing sheet with a fine particle dispersion sandwiched between a pair of electrodes, using light image irradiation and voltage application together to create a spatial distribution of particles corresponding to the light image, light image erasure and new light image formation The optical image storage method and the display sheet used therefor are characterized in that they can be repeated, and full color formation is possible using C, M, and Y photosensitive fine particles. The display sheet can be as thin as paper, and when it is attached to a display rewriting machine that can generate a light image and a voltage to be applied to the sheet only when the display is updated, the image can be updated instantaneously. The paper can be used in various fields such as an electronic newspaper, an electronic book, a price tag, a poster, an advertisement signboard, a bulletin board, an electronic memo pad, an electronic painting, a menu sheet, a catalog, an IC card, and an OHP sheet.

は本発明の垂直電界型光像記憶シートの横断面図と原理説明図FIG. 3 is a cross-sectional view and a principle explanatory view of a vertical electric field type optical image storage sheet of the present invention. は本発明の垂直電界型フルカラー光像記憶シートの横断面図と原理説明図FIG. 3 is a cross-sectional view and a principle explanatory view of a vertical electric field type full color optical image storage sheet of the present invention は本発明の水平電界型光像記憶シートの横断面図と原理説明図FIG. 2 is a transverse sectional view and a principle explanatory view of a horizontal electric field type optical image storage sheet of the present invention. は図3に用いる線状電極の正面図Is a front view of the linear electrode used in FIG. は本発明の水平電界型光像記憶シートの他の構成例Is another example of the horizontal electric field type optical image storage sheet of the present invention は本発明の水平電界型光像記憶シートの明状態の透過率を表す断面図Sectional drawing showing the transmittance | permeability of the bright state of the horizontal electric field type | mold optical image memory sheet of this invention は本発明の光導電層を用いた光像記憶シートの横断面図と原理説明図FIG. 2 is a cross-sectional view and a principle explanatory view of a light image storage sheet using the photoconductive layer of the present invention. は本発明で用いる、分散系を隔壁ないしカプセル化で分離したセル構成の横断面図Is a cross-sectional view of a cell configuration in which a dispersion system is separated by partition walls or encapsulation used in the present invention. は本発明の光像記憶シートを基紙の両面に設けた両面記憶シートの横断面図FIG. 3 is a cross-sectional view of a double-sided storage sheet in which the optical image storage sheet of the present invention is provided on both sides of a base paper. は本発明の表示シートをルーズリーフ形式で複数枚格納するための綴じ孔を設けた表示シートの例Is an example of a display sheet provided with a binding hole for storing a plurality of display sheets of the present invention in a loose-leaf format は本発明の表示シートをロールツーロールで製造する工程図の1例Is an example of a process diagram for producing the display sheet of the present invention by roll-to-roll

符号の説明Explanation of symbols

1:透明基板
2:下基板
3:透明電極
4:下電極
5:表示シート
6:光感応性微粒子
7:分散媒
8:分散系
9:スペーサ
10:隔壁
11:光導電層
12:フォトマスク
13:セル
14:カプセル粒子
15:バインダー
16:綴じ孔

1: Transparent substrate 2: Lower substrate 3: Transparent electrode 4: Lower electrode 5: Display sheet 6: Photosensitive fine particles 7: Dispersion medium 8: Dispersion system 9: Spacer 10: Partition wall 11: Photoconductive layer 12: Photomask 13 : Cell 14: Capsule particle 15: Binder 16: Binding hole

Claims (10)

少なくとも一方は透明な1対の基板間に、光感応性微粒子が分散媒中に分散された分散系が挟まれて表示シートを構成しており、該基板に設けられた一対の電極に電圧を印加しつつ該透明基板から光像を照射し、光照射された該微粒子の帯電状態を変化させ、光像に対応して該微粒子を移動させる光電気泳動光像形成法において、該分散媒は透明であり、該電極の少なくとも一方は細線状電極からなり、他方の電極は透明電極よりなり、該光感応性微粒子を基板に水平な方向に移動させ、該細線状電極に選択的に堆積させて表示シートの光透過性を変調することによって光像を得ることを特徴とした光像記憶法 At least one of them forms a display sheet by sandwiching a dispersion system in which photosensitive fine particles are dispersed in a dispersion medium between a pair of transparent substrates, and a voltage is applied to a pair of electrodes provided on the substrate. In the photoelectrophoretic optical image forming method in which a light image is irradiated from the transparent substrate while being applied, the charged state of the light-irradiated fine particles is changed, and the fine particles are moved in accordance with the light image, the dispersion medium includes: It is transparent, at least one of the electrodes is made of a fine line electrode, and the other electrode is made of a transparent electrode, and the photosensitive fine particles are moved in a horizontal direction on the substrate and selectively deposited on the fine line electrode. Optical image storage method characterized in that a light image is obtained by modulating the light transmittance of the display sheet 請求項1において該透明電極上に透明光導電層ないし透明光起電力層が設けられていることを特徴とした光像記憶法2. The optical image storage method according to claim 1, wherein a transparent photoconductive layer or a transparent photovoltaic layer is provided on the transparent electrode. 請求項1〜2のいずれか1項に記載の光像記憶法において該光感応性微粒子は少なくとも各々感応する光波長が異なりかつ色の異るものが2種以上混在していることを特徴とした光像記憶法3. The optical image storage method according to claim 1, wherein at least two types of photosensitive fine particles having different light wavelengths and different colors are mixed. Optical image storage 請求項1〜3のいずれか1項に記載の光像記憶法において該光感応性微粒子は少なくとも、赤色に感応するシアン色粒子、緑色に感応するマゼンタ色粒子、青色に感応する黄色粒子からなることを特徴とした光像記憶法4. The optical image storage method according to claim 1, wherein the light-sensitive fine particles include at least cyan particles sensitive to red, magenta particles sensitive to green, and yellow particles sensitive to blue. 5. Optical image storage method 請求項1〜4のいずれか1項に記載の光像記憶法に用いる表示シートは表裏両面に光像を記憶するように構成されていることを特徴とした両面記憶表示シート5. A double-sided storage display sheet, wherein the display sheet used in the optical image storage method according to claim 1 is configured to store optical images on both front and back sides. 請求項1〜5のいずれか1項に記載の表示シートにおいて該分散系は基板間に設けられた隔壁によって形成されたセルに充填されているかまたはカプセル粒子の内部に閉じ込められていることを特徴とした表示シートThe display sheet according to any one of claims 1 to 5, wherein the dispersion system is filled in cells formed by partition walls provided between the substrates, or is confined in capsule particles. Display sheet 請求項1〜6のいずれか1項に記載の表示シートはロールツーロールで製造されていることを特徴とした表示シートThe display sheet according to any one of claims 1 to 6, wherein the display sheet is manufactured roll-to-roll. 請求項1〜7のいずれか1項に記載の光像記憶法において該光像は液晶またはエレクトロルミネッセンス表示装置に表示された光像を1次元ないし2次元状に該表示シートに結像させて照射することを特徴とした光像記憶法The optical image storage method according to any one of claims 1 to 7, wherein the optical image is obtained by forming an optical image displayed on a liquid crystal or an electroluminescence display device in a one-dimensional or two-dimensional manner on the display sheet. Optical image storage method characterized by irradiation 請求項1〜7のいずれか1項に記載の光像記憶法において該光像は電子発光素子を内臓したペンによって描画されることを特徴とした光像記憶法The optical image storage method according to claim 1, wherein the optical image is drawn by a pen having an electroluminescent element built therein. 請求項9において該ペンは異なる色光を選択的に発生できるように構成されていることを特徴としたカラー光像記憶法10. A color light image storage method according to claim 9, wherein the pen is configured to selectively generate different color lights.
JP2007507602A 2007-01-07 2007-02-04 Optical image storage method and display sheet used therefor Expired - Fee Related JP4129480B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007000882 2007-01-07
JP2007000882 2007-01-07
PCT/JP2007/000053 WO2008084513A1 (en) 2007-01-07 2007-02-04 Optical image memorizing method and display sheet used for same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007246053A Division JP2008186009A (en) 2007-01-07 2007-09-21 Optical image memorizing method and display sheet used therefor

Publications (2)

Publication Number Publication Date
JP4129480B1 true JP4129480B1 (en) 2008-08-06
JPWO2008084513A1 JPWO2008084513A1 (en) 2010-04-30

Family

ID=39608418

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007507602A Expired - Fee Related JP4129480B1 (en) 2007-01-07 2007-02-04 Optical image storage method and display sheet used therefor
JP2007246053A Pending JP2008186009A (en) 2007-01-07 2007-09-21 Optical image memorizing method and display sheet used therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007246053A Pending JP2008186009A (en) 2007-01-07 2007-09-21 Optical image memorizing method and display sheet used therefor

Country Status (2)

Country Link
JP (2) JP4129480B1 (en)
WO (1) WO2008084513A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510220B2 (en) * 2010-09-13 2014-06-04 大日本印刷株式会社 Temporary substrate-attached electronic paper member, electronic paper, and production method thereof
JP5527227B2 (en) 2011-01-19 2014-06-18 セイコーエプソン株式会社 Electrophoretic display device and electronic apparatus
JP2013015560A (en) * 2011-06-30 2013-01-24 Ricoh Co Ltd Rewritable recording medium, manufacturing method for rewritable recording medium, image recording set, and image recording method
EP3345047A1 (en) * 2015-08-31 2018-07-11 E Ink Corporation Electronically erasing a drawing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108856A (en) * 1975-03-20 1976-09-27 Ricoh Kk
JP3747709B2 (en) * 1999-09-28 2006-02-22 富士ゼロックス株式会社 Optical writable recording display medium and optical writable recording apparatus
JP2002236298A (en) * 2001-02-07 2002-08-23 Fuji Xerox Co Ltd Image display device
JP2003270673A (en) * 2002-03-15 2003-09-25 Toppan Printing Co Ltd Display panel and front plate for display panel
JP4513414B2 (en) * 2004-05-11 2010-07-28 富士ゼロックス株式会社 Image display device

Also Published As

Publication number Publication date
WO2008084513A1 (en) 2008-07-17
JP2008186009A (en) 2008-08-14
JPWO2008084513A1 (en) 2010-04-30

Similar Documents

Publication Publication Date Title
US6704133B2 (en) Electro-optic display overlays and systems for addressing such displays
JP5308719B2 (en) Display device and manufacturing method thereof
WO2011058725A1 (en) Display device and method of manufacture thereof
US7113165B2 (en) Molecular light valve display having sequenced color illumination
KR20120108565A (en) Reflector and display device having the same
US20110304652A1 (en) Electronic display
JP2009175664A (en) Color filter module and device having the same
TWI788646B (en) Electro-optic displays and methods of driving the same
TWI795334B (en) Method for producing a display and method of integrating electrophoretic displays
US11616162B2 (en) Energy harvesting electro-optic displays
JP4129480B1 (en) Optical image storage method and display sheet used therefor
Yeo et al. 69.4: Novel flexible reflective color media integrated with transparent oxide TFT backplane
KR100922688B1 (en) Electrophoresis device comprising holes-containing structure and Method of preparing the same
US11287718B2 (en) Reusable display addressable with incident light
CN113759631B (en) Display panel, preparation method thereof and display device
JP5572282B2 (en) Display device and manufacturing method thereof
KR20050110392A (en) Electrophoretic display device
WO2006079959A2 (en) Electrophoretic light modulator
JP2009069366A (en) Display device and method of manufacturing the same
US10254620B1 (en) Encapsulated photoelectrophoretic display
CN112596319B (en) Light-operated color display device and display method thereof
CN110955093A (en) Display panel, preparation method thereof and display device
US20040084661A1 (en) Class of charge-actuated chromogenic structures based on the oxidation and reduction of optical switchable materials in a thin-film electrochemical cell
US20240241421A1 (en) Electrophoretic display devices
KR20170129091A (en) Electrophoresis display device

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees