WO2008012917A1 - Radiation photographing device and radiation detecting signal processing method - Google Patents

Radiation photographing device and radiation detecting signal processing method Download PDF

Info

Publication number
WO2008012917A1
WO2008012917A1 PCT/JP2006/315028 JP2006315028W WO2008012917A1 WO 2008012917 A1 WO2008012917 A1 WO 2008012917A1 JP 2006315028 W JP2006315028 W JP 2006315028W WO 2008012917 A1 WO2008012917 A1 WO 2008012917A1
Authority
WO
WIPO (PCT)
Prior art keywords
lag
image
radiation
irradiation
detection signal
Prior art date
Application number
PCT/JP2006/315028
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Nishimura
Shoichi Okamura
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to PCT/JP2006/315028 priority Critical patent/WO2008012917A1/en
Publication of WO2008012917A1 publication Critical patent/WO2008012917A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm

Definitions

  • the present invention relates to a radiation imaging apparatus and a radiation detection signal processing method for obtaining a radiation image based on a radiation detection signal detected by irradiating a subject, and in particular, a time delay included in a radiation detection signal.
  • the present invention relates to a technique for removing the radiation detection signal force from the minute.
  • an imaging apparatus that detects an X-ray and obtains an X-ray image has conventionally used an image intensifier (I. I) as an X-ray detection means.
  • an image intensifier I. I
  • FPD flat panel X-ray detectors
  • the FPD is configured by laminating a sensitive film on a substrate, detects the radiation incident on the sensitive film, converts the detected radiation into an electric charge, and arranges it in a two-dimensional array.
  • the charge is stored in the capacitor.
  • the accumulated charge is read by turning on the switching element and sent to the image processing unit as a radiation detection signal. Then, an image having pixels based on the radiation detection signal is obtained in the image processing unit.
  • the knock time is used to reduce the long time constant component for the time delay (see, for example, Patent Document 1), or the time delay is the sum of exponential functions having a plurality of time constants.
  • the time delay is the sum of exponential functions having a plurality of time constants.
  • recursive arithmetic processing is performed using these exponential functions to perform lag correction (for example, For example, refer to Patent Document 2) to reduce artifacts due to time delay.
  • Patent Document 1 When a backlight is used as in Patent Document 1 described above, the structure becomes complicated due to the structure for the backlight. In particular, if a backlight is used in an FPD that has achieved a lightweight structure, the structure will become heavy and complicated again. In the case of Patent Document 2 described above, it is necessary to perform lag correction by performing recursive calculation processing for the number of times of sampling for acquiring the X-ray detection signal, and the lag correction is complicated.
  • the time lag correction is performed at the time of non-irradiation before X-ray irradiation in imaging. It is possible to obtain a number of X-ray detection signals, acquire lag images based on these X-ray detection signals, and use them to remove lag from the X-ray images to be imaged.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-9153 (Page 3-8, Fig. 1)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-242741 (Pages 4-11, Fig. 1, 3-6)
  • the method of removing lag from the X-ray image to be imaged using the acquired lag image has the following problems.
  • the lag image acquired by non-irradiation until immediately before imaging has the same value as the lag component superimposed on the X-ray image to be imaged. Then, the X-ray image power is subtracted from the lag image as it is.
  • N itself is also constant, there is no problem in subtracting the lag image (correction data) obtained by weighted average (weighted average) from the X-ray image.
  • the lag decays momentarily. It is appropriate to subtract the X-ray image power from the lag image at the time of non-irradiation until just before. In some cases, a component that is not lag is subtracted, resulting in overcorrection. This is a short time constant component of the time delay! /, Na! / This is probably because the medium time constant component is dominant without decaying.
  • the attenuation state of the lag is acquired in advance and stored in a formula or table, based on the X-ray conditions and elapsed time of the previous imaging!
  • a method of analogizing the lag component superimposed on the X-ray image acquired by this imaging is also conceivable.
  • the attenuation of the lag depends on the X-ray conditions, and a huge amount of attenuation must be maintained in order to cope with many X-ray conditions. Therefore, there is a need for a correction method that can properly analogize the lag even when it is gradually attenuated, and that does not depend on the X-ray conditions.
  • the present invention has been made in view of such circumstances, and the time delay included in the radiation detection signal can be easily removed, and the time delay is included. It is an object of the present invention to provide a radiation imaging apparatus and a radiation detection signal processing method capable of appropriately analogizing lag data.
  • the present invention has the following configuration.
  • the radiation imaging apparatus of the present invention is a radiation imaging apparatus that obtains a radiation image based on a radiation detection signal, and detects radiation that has passed through the subject and radiation irradiating means that irradiates the subject with radiation.
  • the non-irradiation signal acquisition means acquires a plurality of radiation detection signals detected from the radiation detection means at the time of non-irradiation before irradiation of radiation in imaging.
  • the lag image analogy means estimates the lag image by obtaining the current lag information based on the past lag information.
  • the irradiation signal acquisition means acquires the radiation detection signal detected from the radiation detection means at the time of radiation irradiation in imaging. Based on the radiation detection signal acquired by the irradiation signal acquisition means, the radiation image acquisition means acquires a radiation image to be imaged.
  • the time delay included in the radiological detection signal is obtained from the radiation detection signal.
  • the lag correction means performs lag correction related to the time delay due to the removal. In this way, it is not necessary to perform recursive calculation processing and perform lag correction for the number of times of sampling for acquiring a radiation detection signal as in Patent Document 2 described above. Furthermore, because the lag image analogy means obtains the current lag information and analogizes the lag image based on the past lag information, so much time has not passed since the previous radiation exposure. However, it is possible to infer a lag image considering past lag information.
  • An example of the radiation imaging apparatus of the present invention includes a lag image acquisition unit that acquires a lag image based on a plurality of radiation detection signals acquired by the non-irradiation signal acquisition unit described above.
  • the image acquisition means and the lag image analogization means described above are used together, and the lag image analogy is performed by the lag image analogization means by acquiring the lag image by the lag image acquisition means.
  • the acquisition of the lag image by the lag image acquisition unit and the analogy of the lag image by the lag image estimation unit are synonymous.
  • Another example of the radiation imaging apparatus of the present invention is the non-irradiation signal acquisition means described above.
  • a lag image acquisition means for acquiring a lag image is provided, and the lag image acquired by the lag image acquisition means is based on the past lag information.
  • the above-described lag image analogizing means estimates the lag image after correction.
  • the analogy of the lag image includes the function of correcting the former lag image obtained earlier.
  • the radiation detection signal processing method is a radiation detection signal processing method for performing signal processing for obtaining a radiation image based on a radiation detection signal detected by irradiating a subject, wherein the signal The processing includes a non-irradiation signal acquisition step of acquiring a plurality of radiation detection signals at the time of non-irradiation before irradiation of radiation in imaging, and lag information based on those radiation detection signals acquired in the non-irradiation signal acquisition step.
  • the lag image analogy process for estimating the lag image and estimating the lag image Based on the lag information of the lag image, the lag image analogy process for estimating the lag image and estimating the lag image, the irradiation signal acquisition process for acquiring the radiation detection signal at the time of radiation irradiation in the imaging, and the irradiation signal acquisition process Based on the detected radiation detection signal, the radiological image acquisition process for acquiring the radiographic image to be imaged and the radiographic image acquired in the radiological image acquisition process Further, by performing lag removal using the lag image estimated in the lag image analogizing step, lag correction for lag correction by removing the time delay included in the radiation detection signal from the radiation detection signal is performed. And a correction process.
  • the non-irradiation signal acquisition step a plurality of radiation detection signals are acquired at the time of non-irradiation before radiation irradiation in imaging.
  • the lag image is estimated by obtaining the current lag information.
  • a radiation detection signal is acquired at the time of radiation irradiation in imaging. Based on the radiation detection signal acquired in the irradiation signal acquisition step, the radiation image acquisition step acquires a radiation image to be imaged.
  • the lag correction is performed in the lag correction process by removing the lag using the analogized lag image and removing the time lag included in the radiation detection signal by removing the radiation detection signal force.
  • the lag image analogy process obtains the current lag information and analogizes the lag image based on the past lag information, if much time has passed since the radiation exposure in the previous imaging, However, it is possible to infer a lag image considering past lag information.
  • the lag data that is the time delay can be appropriately estimated. Therefore, simply by removing the lag using the analogized lag image, the time delay included in the radiation detection signal can be estimated from the radiation detection signal while appropriately estimating the time delay as lag data. It can be easily removed.
  • the above-described past information is a coefficient represented by a signal ratio regarding the radiation detection signal acquired at the past non-irradiation, and the above-described lag image analogy is described.
  • the current lag information is obtained based on the coefficient, and the lag image is estimated.
  • the past information is not limited to such a signal ratio, and may be a radiation detection signal itself acquired at the past non-irradiation or a signal obtained by multiplying the signal by a constant.
  • Another example of the radiation detection signal processing method of the present invention is a lag image for acquiring a lag image based on the radiation detection signals acquired in the non-irradiation signal acquisition step described above!
  • the image acquisition process includes signal processing, and the lag image acquisition process and the lag image estimation process described above are the same process, and the lag image acquisition process is performed by acquiring the lag image in the lag image acquisition process.
  • the analogy of the lag image is performed.
  • the acquisition of the lag image in the lag image acquisition process and the analogy of the lag image in the lag image analogization process are synonymous.
  • Still another example of the radiation detection signal processing method of the present invention is a lag image acquisition that acquires a lag image based on the radiation detection signals acquired in the non-irradiation signal acquisition step described above.
  • the signal processing is provided, and the lag image acquisition described above is performed by correcting the lag image acquired in the lag image acquisition step based on the past lag information described above. It is to analogize the corrected lag image in the process.
  • the analogy of the lag image includes a function of correcting the former lag image obtained earlier.
  • the above-described past information is a coefficient represented by a signal ratio regarding the past radiation detection signal acquired in the non-irradiation signal acquisition step described above. Therefore, in the above-described lag image analogizing step, the current lag information is obtained based on the coefficient to estimate the lag image.
  • This specific example is also an example in which the above-described example is combined with another example.
  • a further specific example in the above-described further example is that the above-described past information is a correction represented by a signal ratio regarding the past radiation detection signal acquired in the above-described non-irradiation signal acquisition step.
  • the correction coefficient is applied to the lag image acquired in the lag image acquisition process to correct the corrected lag image as the current lag information.
  • This specific example is also an example in which the above-described example and another example are combined.
  • the above-described correction coefficient is obtained for each pixel, and correction is performed by applying each correction coefficient to the lag image for each pixel. Since the attenuation characteristics of the lag data are different for each pixel, a high-quality radiographic image without lag can be obtained by obtaining in this way.
  • the past lag information among the lag information based on the plurality of radiation detection signals acquired at the time of non-irradiation before radiation irradiation in imaging Based on the current lag information Therefore, it is possible to infer a lag image that takes into account past lag information.By simply removing the lag using this estimated lag image, the lag data that is the time delay is properly inferred, The time delay included in the radiation detection signal can be easily removed from the radiation detection signal.
  • FIG. 1 is a block diagram of an X-ray fluoroscopic apparatus according to Embodiment 1.
  • FIG. 2 This is an equivalent circuit of a flat panel X-ray detector used in an X-ray fluoroscopic apparatus as seen from the side.
  • FIG. 4 is a schematic diagram showing a flow of data regarding the image processing unit and the memory unit according to the first embodiment.
  • FIG. 5 is a timing chart regarding irradiation of each X-ray and acquisition of an X-ray detection signal.
  • FIG. 6 is a flowchart showing a series of signal processing by the non-irradiation signal acquisition unit, lag image acquisition unit, lag image analogy unit, irradiation signal acquisition unit, X-ray image acquisition unit, and lag correction unit according to Example 1. .
  • FIG. 7 is a flowchart specifically showing the acquisition Z analogy processing of the lag image of FIG.
  • FIG. 8 is a timing chart regarding the amount of lag (X-ray detection signal at the time of non-irradiation) written together with the irradiation of each X-ray and acquisition of the X-ray detection signal.
  • FIG. 9 is a block diagram of an X-ray fluoroscopic apparatus according to Embodiments 2 and 3.
  • FIG. 10 is a schematic diagram illustrating a data flow regarding an image processing unit and a memory unit according to a second embodiment.
  • FIG. 11 is a flowchart showing a series of signal processing by a non-irradiation signal acquisition unit, a lag image acquisition unit, a lag image analogy unit, an irradiation signal acquisition unit, an X-ray image acquisition unit, and a lag correction unit according to Example 2. is there.
  • FIG. 12 is a flowchart showing a series of signal processing by a non-irradiation signal acquisition unit, a lag image acquisition unit, a lag image analogy unit, an irradiation signal acquisition unit, an X-ray image acquisition unit, and a lag correction unit according to Example 2. is there.
  • FIG. 13 is a schematic diagram showing the flow of data related to the image processing unit and the memory unit according to Example 3. It is a schematic diagram.
  • FIG. 14 is a flow chart showing a series of signal processing by a non-irradiation signal acquisition unit, a lag image acquisition unit, a lag image analogy unit, an irradiation signal acquisition unit, an X-ray image acquisition unit, and a lag correction unit according to Example 3. is there.
  • FIG. 15 is a graph showing the result of application of Example 3 to actual data measured using a 17-inch direct conversion flat panel X-ray detector.
  • FIG. 16 (a) and (b) are timing charts relating to the amount of lag (X-ray detection signal at the time of non-irradiation) written together with conventional X-ray irradiation and X-ray detection signal acquisition.
  • FIG. 1 is a block diagram of an X-ray fluoroscopic apparatus according to Embodiment 1
  • FIG. 2 is an equivalent circuit of a flat panel X-ray detector used in the X-ray fluoroscopic apparatus as viewed from the side.
  • Figure 3 shows the equivalent circuit of a flat panel X-ray detector in plan view.
  • a flat panel X-ray detector hereinafter referred to as “FPD” as appropriate
  • FPD flat panel X-ray detector
  • X-ray fluoroscopy is used as a radiation imaging device.
  • a description will be given by taking a photographing apparatus as an example.
  • the X-ray fluoroscopic apparatus includes a top plate 1 on which the subject M is placed, and an X-ray tube that irradiates the subject M with X-rays. 2 and FPD3 for detecting X-rays transmitted through the subject M.
  • the X-ray tube 2 is compatible with the radiation irradiation means in the present invention.
  • FPD3 corresponds to the radiation detection means in this invention.
  • the X-ray fluoroscopic apparatus also includes a top plate control unit 4 that controls the elevation and horizontal movement of the top plate 1, an FPD control unit 5 that controls scanning of the FPD 3, and a tube voltage of the X-ray tube 2.
  • the image processing unit 9 that performs various processing based on the X-ray detection signal, the controller 10 that controls each of these components, the memory unit 11 that stores processed images, and the operator set the input settings. It has an input unit 12 to perform and a monitor 13 to display processed images.
  • the top board control unit 4 horizontally moves the top board 1 to store the subject eyelid at the imaging position, or moves the top face up to the imaging position, sets the subject eyelid to a desired position by moving up and down, rotating and horizontally, Take an image while moving it horizontally, or move it horizontally after the image is taken and control it to retreat from the image position.
  • the FPD control unit 5 performs control related to scanning by horizontally moving the FPD 3 or rotating it around the body axis of the subject's body.
  • the high voltage generator 6 generates a tube voltage and a tube current for irradiating X-rays and applies them to the X-ray tube 2.
  • the X-ray tube controller 7 moves the X-ray tube 2 horizontally, Rotating and moving around the axis of the body axis of the heel, controls the scanning, and controls the field of view of the collimator (not shown) on the X-ray tube 2 side.
  • the X-ray tube 2 and the FPD 3 move while facing each other so that the FPD 3 can detect the X-rays emitted from the X-ray tube 2.
  • the controller 10 includes a central processing unit (CPU) and the like, and the memory unit 11 includes a storage medium represented by ROM (Read-only Memory), RAM (Random-Access Memory), and the like. It is configured.
  • the input unit 12 includes a pointing device represented by a mouse, a keyboard, a joystick, a trackball, and a touch panel.
  • the FPD3 detects X-rays that have passed through the subject M, and based on the detected X-rays, the image processing unit 9 performs image processing to capture the subject M. I do.
  • the image processing unit 9 performs non-irradiation of a plurality of X-ray detection signals before X-ray irradiation in imaging.
  • a non-irradiation signal acquisition unit 9a that is acquired at the time of irradiation
  • a lag image acquisition unit 9b that acquires a lag image based on the X-ray detection signals acquired by the non-irradiation signal acquisition unit 9a, and detection of these radiations
  • the lag image analogizing unit 9c that obtains the current lag information based on the past lag information and analogizes the lag image, and the irradiation signal acquired when the X-ray detection signal is emitted during the X-ray irradiation
  • the lag correction unit 9f performs lag correction related to the time delay by removing the time delay included in the X-ray detection signal from the X-ray detection signal.
  • the non-irradiation signal acquisition unit 9a corresponds to the non-irradiation signal acquisition unit in the present invention
  • the lag image acquisition unit 9b corresponds to the lag image acquisition unit in the present invention
  • the lag image analogy unit 9c Corresponding to the image analogy means
  • the irradiation signal acquisition unit 9d corresponds to the irradiation signal acquisition means in this invention
  • the X-ray image acquisition unit 9e corresponds to the radiation image acquisition means in this invention
  • the lag correction unit 9f Corresponds to the lag correction means in the present invention.
  • the acquisition of the lag image by the lag image acquisition unit 9b and the analogy of the lag image by the lag image estimation unit 9c are synonymous.
  • the lag image is analogized by acquiring the lag image. That is, in the first embodiment, the lag image acquiring unit 9b and the lag image analogizing unit 9c are used in common.
  • the memory unit 11 includes a non-irradiation signal memory unit 1la for writing and storing each non-irradiation X-ray detection signal acquired by the non-irradiation signal acquisition unit 9a, and a lag image acquisition unit 9bZ. Acquired by the lag image analogizing unit 9c The lag image memory unit 1 lb for writing and storing the lag image estimated by Z and the irradiation X-ray detection signal acquired by the irradiation signal acquiring unit 9d for writing and storing A signal memory unit 1 lc and an X-ray image memory unit 1 Id for writing and storing the X-ray image acquired by the X-ray image acquisition unit 9e.
  • the lag image acquisition unit 9bZ lag image analogy unit 9c acquires the lag image based on each non-irradiation X-ray detection signal read from the non-irradiation signal memory unit 11a.
  • the lag image memory unit l ib is then written and stored (see FIG. 4).
  • the lag image acquisition unit 9b acquires a lag image based on each non-irradiation X-ray detection signal read from the non-irradiation signal memory unit 11a.
  • Lag image memory unit 1 lb is written and stored, and each non-irradiated X-ray detection signal read from the non-irradiation signal memory unit 11a and lag image memory unit ib read from the lag image memory unit 11a.
  • the lag image acquisition unit 9b corrects and analogizes the lag image, and writes and stores the corrected lag image in the lag image memory unit ib (see FIG. 10).
  • the acquisition of the lag image is performed by a recursive weighted average (recursive processing) described later (see FIG. 13).
  • the FPD 3 also includes a glass substrate 31, a thin film transistor TFT formed on the glass substrate 31, and a force.
  • the thin film transistor TFT has a large number of switching elements 32 (for example, 1024 ⁇ 1024) formed in a vertical and horizontal two-dimensional matrix arrangement.
  • the switching elements 32 are formed separately from each other.
  • FPD3 is also a two-dimensional array radiation detector.
  • an X-ray sensitive semiconductor 34 is laminated on the carrier collection electrode 33, and the carrier collection electrode 33 of the switching element 32 is formed as shown in FIGS.
  • a plurality of gate bus lines 36 are connected from the gate driver 35, and each gate bus line 36 is connected to the gate G of the switching element 32.
  • a multiplexer 37 that collects charge signals and outputs them to one is connected to a plurality of data bus lines 39 via amplifiers 38, as shown in FIGS.
  • each data bus line 39 is connected to the drain D of the switching element 32.
  • the gate of the switching element 32 is turned ON by applying the voltage of the gate bus line 36 (or to OV), and the carrier collection electrode 33 is Then, the charge signal (carrier) converted through the X-ray sensitive semiconductor 34 incident on the detection surface side is read out to the data bus line 39 through the source S and drain D of the switching element 32. Until the switching element is turned on, the charge signal is The number is temporarily stored and stored in a capacitor (not shown).
  • the charge signals read out to the data bus lines 39 are amplified by the amplifiers 38 and output together by the multiplexer 37 as one charge signal.
  • the output charge signal is digitized by AZD converter 8 and output as an X-ray detection signal.
  • Step S1 Has the waiting time elapsed?
  • a waiting time T is set so that an X-ray detection signal is acquired at the time of non-irradiation after a predetermined time elapses in the previous imaging, and after the waiting time T has passed, the next step is taken.
  • step S2 Whether or not the waiting time T has elapsed is determined by a timer (illustrated
  • the timer is reset to “0” simultaneously with the end of X-ray irradiation in the previous imaging, and the timer starts counting, which corresponds to the waiting time T.
  • the force waiting time T due to the individual lag characteristics of FPD3 is preferably about 15 seconds.
  • the waiting time T is about 3 seconds.
  • Step S2 Acquisition of X-ray detection signal at non-irradiation
  • the non-irradiation signal acquisition unit 9a samples each X-ray detection signal during non-irradiation after the waiting time T has elapsed.
  • ⁇ w is acquired first immediately after the waiting time ⁇ elapses.
  • X-ray detection signal is I, X acquired immediately before the start of X-ray irradiation in this imaging
  • the line detection signal is I. Note that steps S2 to S5 are continued every sampling time ⁇ 1.
  • Step S4 Raise K by 1
  • X-ray detection signal I acquired by non-irradiation signal acquisition unit 9a in step S2 is not irradiated
  • the X-ray detection signal I acquired at the point (ie, the previous X-ray detection signal) is no longer necessary.
  • Step S2 Since there is no X-ray detection signal, there is no need to reject it. Then, return to step S2 for the next sampling, and repeat steps S2 to S5 every sampling time ⁇ 1 interval.
  • the force that rejects the previous X-ray detection signal and leaves only the latest X-ray detection signal and the X-ray detection signal acquired at the previous time does not necessarily need to be rejected. Steps S2 to S5 described above correspond to the non-irradiation signal acquisition step in this invention.
  • step S3 the sampling time reached the start of X-ray irradiation in the current imaging
  • N- 1 As the lag information of N-1, the X-ray detection signal I and the past lag information (X-ray detection signal I)
  • the lag image acquisition unit 9bZ lag image analogy unit 9c does not receive the X-ray detection signal I acquired immediately before the start of X-ray irradiation in this imaging and the X-ray detection signal I acquired at the previous time point. Irradiation signal
  • the data is read from the memory unit 11a, the coefficient is obtained in step S601 (see FIG. 7), and the lag image is estimated using the coefficient in step S602 (see FIG. 7).
  • the X-ray detection signal I obtained at the previous time point is used as the denominator, and the coefficient C is obtained as shown in the following equation (1).
  • N is a coefficient expressed by the signal ratio related to the X-ray detection signal acquired during the past non-irradiation. Specifically, the past X-ray detection signal (X-ray detection signal acquired in steps S2 to S5). I) is a coefficient expressed as a signal ratio. The coefficient C is
  • Step S602 Analogize lag images using coefficients
  • the lag image L is obtained as shown in equation (2) below.
  • the coefficient C is applied to the X-ray detection signal I acquired immediately before the start of X-ray irradiation.
  • the lag image acquisition unit 9bZ lag image analogization unit 9c writes and analogizes the lag image L to the lag image memory unit 1 lb.
  • Step S6 including steps S601 and 602 corresponds to the lag image acquisition step and the lag image analogy step in the present invention.
  • the lag image acquisition process and the lag image analogization process are the same process, and the lag image in the lag image acquisition process.
  • the lag image is analogized in the lag image analogy process. Therefore, the acquisition of the lag image in the lag image acquisition process and the analogy of the lag image in the lag image analogization process are synonymous.
  • Step S7 Acquisition of X-ray detection signal during irradiation
  • the irradiation signal acquisition unit 9d acquires the X-ray detection signal at the time of irradiation obtained by the irradiation.
  • the X-ray detection signal at the time of irradiation acquired by the irradiation signal acquisition unit 9d is written and stored in the irradiation signal memory unit 1lc.
  • This step S7 corresponds to the irradiation signal acquisition step in the present invention.
  • Step S8 Acquisition of X-ray image by current imaging
  • the X-ray image acquisition unit 9e Based on the X-ray detection signal at the time of irradiation acquired in step S7, the X-ray image acquisition unit 9e acquires the X-ray image to be captured this time. Let this X-ray image be X.
  • the X-ray image X acquired by the X-ray image acquisition unit 9e is written and stored in the X-ray image memory unit id.
  • This step S8 corresponds to the radiation image acquisition step in this invention. Further, the X-ray image X corresponds to a radiographic image to be imaged in the present invention.
  • the lag correction unit 9f uses the lag image L acquired in step S6 as the lag image memory unit l ib.
  • the X-ray image X acquired in step S8 is read from the X-ray image memory unit l id and the lag image L is subtracted from the X-ray image X.
  • the X-ray image after lag correction is
  • the sampling time may be set so as to reach the start of X-ray irradiation in the current imaging in accordance with the timing of reaching.
  • This step S9 corresponds to the lag correction step in this invention.
  • the non-irradiation signal acquisition unit 9a includes a plurality of X-ray detection signals (this embodiment) detected from the flat panel X-ray detector (FPD) 3.
  • FPD flat panel X-ray detector
  • the past lag information (in the first embodiment, the X-ray detection signal I and the coefficient C acquired at the previous time point)
  • the lag image analogy unit 9c Based on N- 1 N, the lag image analogy unit 9c obtains the current lag information (lag image L) and performs analogy
  • the irradiation signal acquisition unit 9d acquires the X-ray detection signal detected from the FPD 3 at the time of X-ray irradiation in imaging. Based on the X-ray detection signal acquired by the irradiation signal acquisition unit 9d, the X-ray image acquisition unit 9e acquires an X-ray image to be imaged.
  • lag removal is performed from the X-ray image acquired by the X-ray image acquisition unit 9e using the lag image estimated by the lag image estimation unit 9c described above, thereby being included in the X-ray detection signal.
  • the lag correction unit 9f performs lag correction related to the time lag by removing the time lag from the X-ray detection signal force.
  • the correction coefficient is preferably obtained, and the current lag information (lag image L) is preferably obtained for each pixel based on each coefficient.
  • multiple X-ray detection signals at the time of non-irradiation before X-ray irradiation in this imaging are acquired.
  • the short time constant component or medium time constant component of the time delay is attenuated in a short time, and after attenuation, the long time constant component is It becomes dominant and continues to remain at about the same strength. Therefore, conventionally, when an X-ray detection signal is acquired immediately after the end of X-ray irradiation in the previous imaging, a signal is acquired with a short Z medium time constant component, and the short / The time delay of the medium time constant component cannot be correctly removed.
  • the present lag information is obtained based on the past lag information and the lag image is inferred, thereby taking into account the past lag information including the time delay of the short Z medium time constant component.
  • the lag image can be inferred, and the X-ray irradiation power in the previous imaging is also the predetermined time (in this example 1, the waiting time T
  • the time delay component of the short Z medium time constant component can be correctly removed even after the passage of time.
  • the X-ray irradiation power in the previous imaging may be acquired as a plurality of X-ray detection signals at the time of non-irradiation after a predetermined time has passed, or the X-rays in the previous imaging may be acquired. Multiple X-ray detection signals may be acquired during non-irradiation without much time elapse from irradiation.
  • the X-ray irradiation power in the previous imaging is acquired at the time of non-irradiation before X-ray irradiation in the current imaging by acquiring multiple X-ray detection signals at the time of non-irradiation after the lapse of a predetermined time. Multiple X-ray detection signals at the time of acquisition, and the signal is acquired with only a long time constant component remaining after a predetermined time has elapsed. It is possible to accurately remove the time delay of the long time constant component with no time delay.
  • FIG. 9 is a block diagram of the fluoroscopic imaging apparatus according to the second and third embodiments
  • FIG. 10 is a schematic diagram illustrating a data flow regarding the image processing unit and the memory unit according to the second embodiment.
  • the portions common to the above-described first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the X-ray fluoroscopic apparatus according to Example 2 including Example 3 to be described later, separately uses the lag image acquisition unit 9b and the lag image analogy unit 9c separately from each other. Except for being independent, the configuration is the same as that of the fluoroscopic imaging apparatus according to the first embodiment.
  • the data flow related to the image processing unit 9 and the memory unit 11 in FIG. 10 the non-irradiation signal acquisition unit 9a, the lag image acquisition unit 9b, the lag image analogy unit 9c, the irradiation signal acquisition unit 9d, and the X-ray image acquisition
  • the series of signal processing by the unit 9e and the lag correction unit 9f is also different from the first embodiment.
  • the lag image acquisition unit 9b performs lag image based on each non-irradiation X-ray detection signal read from the non-irradiation signal memory unit 11a. Is acquired and stored in the lag image memory unit l ib, read from the non-irradiation signal memory unit 11a and read from each non-irradiated X-ray detection signal and lag image memory unit l ib. Based on the lag image, the lag image analogizing unit 9c corrects and analogizes the lag image, and writes and stores the corrected lag image in the lag image memory unit 1 lb.
  • the lag image obtained by the lag image acquisition unit 9b is corrected based on the above-mentioned past lag information (previous lag image), so that the lag image analogy unit 9c Infers the corrected lag image.
  • the analogy of the lag image includes a function of correcting the lag image obtained before correction, and the lag image is acquired after the lag image acquisition unit 9b acquires the lag image.
  • the lag image obtained before correction is corrected by the lag image analogy unit 9c.
  • the non-irradiation signal acquisition unit 9a the lag image acquisition unit 9b, the lag image estimation unit 9c, the irradiation signal acquisition unit 9d, the X-ray image acquisition unit 9e, and the lag correction unit 9f according to the second embodiment.
  • a series of signal processing will be described with reference to the flowcharts in FIGS. Note that the steps common to the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • Step S1 Has the waiting time elapsed?
  • Step S12 Acquisition of X-ray detection signal at non-irradiation
  • Non-irradiated signal memory section without being rejected until the seventh X-ray detection signal I obtained from W 0
  • steps S12 to S14 are continuously performed at every sampling time interval.
  • step S2 Power that reaches 7) Judge whether or not. If so, jump to step S2. If not, go to the next step S14.
  • Step S14 Raise the value of K by 1
  • each X-ray detection signal I acquired by the non-irradiation signal acquisition unit 9a in step S12 is obtained.
  • the non-irradiation signal memory unit 11a is sequentially written and stored. At this time, from X-ray detection signal I
  • K-1 is not rejected, but is stored in the non-irradiation signal memory unit 11a until it contains eight X-ray detection signals. Then, the process returns to step S12 for the next sampling, and steps S12 to S14 are repeated every sampling time interval.
  • the lag image acquisition unit 9b acquires a lag image based on each non-irradiation X-ray detection signal read from the non-irradiation signal memory unit 11a. Specifically, as described above, eight X-ray detection signals are always stored in the non-irradiation signal memory unit 11a, and the latest X-ray detection is newly performed in step S2. When the output signal is stored in the non-irradiation signal memory unit 11a, only the oldest X-ray detection signal is rejected in step S51 described later. On the other hand, the (K ⁇ 6) th X-ray detection signal I stored in the non-irradiation signal memory unit 11a and the (K + 1) th X-ray detection signal I are stored.
  • the lag image L is obtained based on 8 signals at K-7 K. Specifically, the level of these signals
  • This step S21 corresponds to the lag image acquisition step in this invention.
  • Lag image L is corrected based on the
  • Analogize image L That is, the lag image analogizing unit 9c performs the (K + 1) th X-ray detection signal I
  • the correction coefficient c is obtained as follows.
  • the correction factor C is related to the X-ray detection signal acquired during past non-irradiation.
  • the correction coefficient c is the radiation detection acquired at the past non-irradiation in this invention.
  • the X-ray detection signal acquisition time that is, the sampling time force
  • K N + 1) Judgment force
  • Step S4 Raise K by 1
  • Subscript K is incremented by one to prepare for the next sampling, acquisition of the lag image (before correction) and acquisition of correction factors.
  • the oldest X-ray detection signal is no longer necessary and is rejected.
  • the non-irradiation signal memory unit 11a always stores eight X-ray detection signals, and in step S2, the latest X-ray detection signal is newly not irradiated. When stored in the signal memory unit 11a, only the oldest X-ray detection signal is rejected.
  • Step S2 Acquisition of X-ray detection signal at non-irradiation
  • a new X-ray detection signal is acquired during non-irradiation.
  • Step S21 for the next sampling acquisition of the lag image (before correction) and acquisition of the correction coefficient.
  • Step S51, and S2. By repeating this, the correction coefficient C obtained in step S611 is also updated by incrementing the value of the subscript K by one.
  • Step S612 Analogize the lag image using the correction coefficient
  • step S3 When the sampling time in step S3 reaches the start of X-ray irradiation in the current imaging, it was acquired in step S21 using the correction coefficient C obtained in step S611 (
  • the coefficient C in the above equation (2) in the first embodiment is the correction factor in the above equation (2) 'in the second embodiment.
  • the lag image L is corrected and the corrected lag image L is Analogy. Then, the corrected lag image L estimated by the lag image analogizing unit 9c is used as the lag image.
  • This step S612 including the above-described step S611 corresponds to the lag image analogy process in the present invention.
  • the analogy of the lag image includes the function of correcting the lag image obtained previously.
  • Step S7 Acquisition of X-ray detection signal during irradiation
  • Step S8 Acquisition of X-ray image by current imaging
  • the past lag information (in the second embodiment, the previous lag image L and correction coefficient C) is used to determine the current lag information ( Corrected lag
  • the past lag information (in the second embodiment, the previous lag image)
  • the lag image L (before correction) is obtained by directly using eight X-ray detection signals.
  • the number of X-ray detection signals to be used is not limited. Also, the force that found the lag image L by the average of the signals, for example, the lag image L obtained by the median, or the signal strength
  • the histogram power is also determined as the lag image L.
  • the specific method for obtaining the lag image L is not particularly limited.
  • each correction coefficient C is obtained for each pixel in the second embodiment, including the third embodiment described later. Therefore, each correction coefficient is applied to the lag image L (before correction) for each pixel for correction.
  • FIG. 13 is a schematic diagram illustrating a data flow regarding the image processing unit and the memory unit according to the third embodiment.
  • the parts common to the above-described embodiments 1 and 2 are denoted by the same reference numerals and the description thereof is omitted.
  • the X-ray fluoroscopic apparatus according to the third embodiment has the same configuration as that of the X-ray fluoroscopic apparatus according to the second embodiment except for the data flow related to the image processing unit 9 and the memory unit 11 in FIG. is there.
  • Example 3 as shown in FIG. 13, the non-irradiation X-ray detection signal read from the non-irradiation signal memory unit 11a and the lag image memory unit 1 lb were read out. Based on the previous lag image (before correction), the lag image acquisition unit 9b acquires the lag image L (before correction) by recursive calculation processing. Regarding the acquisition of lag image L by recursive calculation processing,
  • Step S1 Has the waiting time elapsed?
  • Step S102 Acquisition of X-ray Detection Signal Immediately after Elapse of Waiting Time As in Examples 1 and 2 above, each X-ray detection signal is not irradiated after waiting time T has elapsed.
  • the signal is acquired sequentially every sampling time ⁇ 1 interval (for example, 1Z30 seconds). First, the X-ray detection signal I immediately after the elapse of the waiting time ⁇ is acquired. This waiting time
  • the X-ray detection signal I acquired at W 0 W is written and stored in the non-irradiation signal memory unit 1 la.
  • the lag image acquisition unit 9b sends the X-ray detection signal I to the non-irradiation signal memory unit 11a.
  • the X-ray detection signal I is read as the lag image L, which is the initial value of the lag image L.
  • Step S2 Acquisition of X-ray detection signal at non-irradiation
  • the second X-ray detection signal I is written and stored in the non-irradiation signal memory unit 11a.
  • Step S21 (Step S611), (Step S3), (Step S4), (Step S51), (Step S2), (Step S612), (Step S7) to (Step S9)
  • step S2 steps S21, S611, S3, S4, S51, S2, S612, and S7 to S9 similar to those in the second embodiment are performed.
  • step S21 steps S21, S611, S3, S4, S51, S2, S612, and S7 to S9 similar to those in the second embodiment are performed.
  • step S21 steps S21, S611, S3, S4, S51, S2, S612, and S7 to S9 similar to those in the second embodiment are performed.
  • the lag image L (before correction) is acquired in step S21, the (K + 1) -th lag image L is not illuminated.
  • the lag image L is acquired by the recursive weighted average (hereinafter referred to as “recursive processing” as appropriate) as shown in the following equation (3).
  • I L.
  • P is a weighted ratio and takes a value between 0 and 1.
  • step S61 the lag image obtained at the sampling time point when the X-ray irradiation start in the current imaging is reached becomes L.
  • step 1 the correction coefficient C is calculated using the above equation (1) 'and the same as step S612.
  • the lag image L is obtained by using the above equation (2) ′.
  • the past lag information (the previous lag image L and the correction coefficient C in the third embodiment) is the same as in the first and second embodiments described above.
  • Example 3 the lag image considering the previous lag image L and the correction coefficient C) is analogized.
  • the time lag included in the X-ray detection signal can be converted to the X-ray detection signal power while properly analogizing the lag data. It can be easily removed.
  • the lag image is acquired by the recursive processing (see the above formula (3)) that is a recursive weighted average as the recursive arithmetic processing, the lag correction is more reliably performed. It can be carried out.
  • Fig. 15 shows the results of applying Example 3 to actual data measured using a 17-inch direct conversion flat panel X-ray detector (FPD).
  • FPD flat panel X-ray detector
  • Copper plate lmm transmission X-ray lugs are shown respectively.
  • the signal attenuation of this lag indicates that, for example, if imaging is performed at 15 seconds (see the arrow in the figure), afterimages, the afterimage of the previous imaging with a signal value of about 70 overlaps on the direct line. .
  • S is the lag correction of the direct irradiation part
  • S is the transmission plate X-ray lag correction of the copper plate lmm
  • the X-ray fluoroscopic apparatus as shown in FIG. 1 has been described as an example.
  • the present invention is, for example, an X-ray fluoroscopic apparatus disposed on a C-type arm. It may also be applied to equipment.
  • the present invention may also be applied to an X-ray CT apparatus. Note that the present invention is particularly useful when performing actual imaging (not through fluoroscopic imaging) like an X-ray imaging apparatus.
  • the flat panel X-ray detector (FPD) 3 has been described as an example.
  • the present invention can be applied to any X-ray detection means that is normally used. can do.
  • an X-ray detector for detecting X-rays has been described as an example.
  • the present invention provides a radioisotope (RI) as in an ECT (Emission Computed Tomography) apparatus.
  • RI radioisotope
  • ECT Electronicd Tomography
  • the present invention is not particularly limited as long as it is a radiation detector that detects radiation, as exemplified by a ⁇ -ray detector that detects y-rays radiated from a subject administered.
  • the present invention is not particularly limited as long as it is an apparatus that detects an image by detecting radiation as exemplified by the ECT apparatus described above.
  • the FPD 3 includes a radiation (X-ray in the embodiment) sensitive semiconductor, and directly converts the incident radiation into a charge signal with the radiation sensitive semiconductor.
  • This is a conversion-type detector, but instead of a radiation-sensitive type, it is equipped with a photo-sensitive type semiconductor and a scintillator. The incident radiation is converted into light by the scintillator, and the converted light is converted into a photo-sensitive type semiconductor.
  • This is an indirect conversion detector that converts the signal into a charge signal.
  • the X-ray irradiation power in the previous imaging is a predetermined time (in each embodiment, the waiting time ⁇ ) X
  • the time constant component of the short ⁇ is dominant, but the time constant of the short ⁇ is obtained by analogizing the lag image by obtaining the current lag information based on the past lag information as in the present invention. It is possible to infer a lag image that takes into account past lag information including the time delay of the component, and the X-ray irradiation power in the previous imaging is also a predetermined time (wait time ⁇ in each example)
  • the time delay component of the short time constant component can be correctly removed.
  • the lag image that is the basis of lag correction is the X-ray detection signal I acquired immediately before the start of X-ray irradiation in the current imaging.
  • the force that included the spider data is always the X-ray detection signal I
  • the lag image including the data of the X-ray detection signal I is used as in each example. It is preferable to perform lag correction by acquiring an image and removing the lag using the lag image. The same applies to radiation other than X-rays.
  • an example of past information is a coefficient represented by a signal ratio related to a radiation detection signal acquired at the time of past non-irradiation, and this time based on the coefficient.
  • the force described as an example of combining the above-described example of estimating the corrected lag image as the lag information this time and the second and third embodiments is not limited to this.
  • the past information is a coefficient (correction coefficient in Examples 2 and 3) represented by a signal ratio related to the radiation detection signal acquired at the past non-irradiation.
  • a coefficient corrected coefficient in Examples 2 and 3
  • the radiation detection signal itself acquired at the time of past non-irradiation or a signal obtained by multiplying the signal by a constant may be used.
  • the coefficient (the correction coefficient in Embodiments 2 and 3) is represented by the signal ratio as in the above equation (1) or (1) '. It is not limited. That is, in each embodiment, the coefficient C (which is a signal ratio) is maintained after one sampling (after one frame).
  • next frame that is, the next sampling time point
  • nth order the case of generalization to the nth order will be described in detail below.
  • the ratio can be considered as a function of time, and if it changes sufficiently smoothly, until the next frame (the next sampling point) If the time is limited, the coefficient C is approximated by the following equation (4)
  • C AXK N + AXK N_1 H——— hA ⁇ ⁇ '+ ⁇ ⁇ ' ⁇ (4)
  • the order ⁇ ⁇ is determined separately as appropriate.
  • the signal ratio C changes with time.
  • polynomial coefficient A is determined from these equations, and the polynomial is used.
  • the correction coefficient C for the next frame (at the next sampling time) is predicted and included in the X-ray image.
  • K + 1 K Kl K-2 C is obtained in the same manner as in the case of following the linear equation, and the lag image is obtained using the correction coefficient C.
  • the order can reduce errors and increase accuracy. If the order increases, the necessary past lag information is required according to the order, and the amount of calculation increases. Therefore, the order may be determined by a trade-off between the required accuracy and the allowable calculation time. Note that the coefficient C described above depends on the lag image L before correction.
  • the function f (I, L) represented by K and the lag image L should be represented by the lag image L (before correction).

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A radiation photographing device is configured to seek and estimate lag information at the present based on lag information in the past out of lag information in accordance with a plurality of X-ray detecting signals acquired at a non-irradiating time prior to irradiating an X-ray in photographing. Thus, a lag image can be reasoned by analogy in consideration of the past lag information and, by making use of this analogical lag image to merely eliminate a lag while time delay components, i.e., lag data are properly reasoned by analogy, the time delay components contained in the X-ray detecting signal can be easily eliminated from the X-ray detecting signal.

Description

明 細 書  Specification
放射線撮像装置および放射線検出信号処理方法  Radiation imaging apparatus and radiation detection signal processing method
技術分野  Technical field
[0001] この発明は、被検体を照射して検出された放射線検出信号に基づいて放射線画 像を得る放射線撮像装置および放射線検出信号処理方法に係り、特に、放射線検 出信号に含まれる時間遅れ分を放射線検出信号力 除去する技術に関する。  TECHNICAL FIELD [0001] The present invention relates to a radiation imaging apparatus and a radiation detection signal processing method for obtaining a radiation image based on a radiation detection signal detected by irradiating a subject, and in particular, a time delay included in a radiation detection signal. The present invention relates to a technique for removing the radiation detection signal force from the minute.
背景技術  Background art
[0002] 放射線撮像装置の例として X線を検出して X線画像を得る撮像装置では、従来に おいて X線検出手段としてイメージインテンシファイア (I. I)が用いられていた力 近 年において、フラットパネル型 X線検出器 (以下、『FPD』と略記する)が用いられてい る。  As an example of a radiation imaging apparatus, an imaging apparatus that detects an X-ray and obtains an X-ray image has conventionally used an image intensifier (I. I) as an X-ray detection means. In Japan, flat panel X-ray detectors (hereinafter abbreviated as “FPD”) are used.
[0003] FPDは、感応膜が基板上に積層されて構成されており、その感応膜に入射した放 射線を検出して、検出された放射線を電荷に変換して、 2次元アレイ状に配置された キャパシタに電荷を蓄積する。蓄積された電荷はスイッチング素子を ONすることで読 み出されて、放射線検出信号として画像処理部に送り込まれる。そして、画像処理部 において放射線検出信号に基づく画素を有した画像が得られる。  [0003] The FPD is configured by laminating a sensitive film on a substrate, detects the radiation incident on the sensitive film, converts the detected radiation into an electric charge, and arranges it in a two-dimensional array. The charge is stored in the capacitor. The accumulated charge is read by turning on the switching element and sent to the image processing unit as a radiation detection signal. Then, an image having pixels based on the radiation detection signal is obtained in the image processing unit.
[0004] 力かる FPDを用いた場合、従来力も用いられて 、るイメージインテンシファイアなど に比べて、軽量で、かつ複雑な検出歪みが発生しない。したがって、装置構造や画 像処理の面で FPDは有利である。  [0004] When a powerful FPD is used, the conventional force is also used, which is lighter and does not cause complicated detection distortion compared to an image intensifier or the like. Therefore, FPD is advantageous in terms of device structure and image processing.
[0005] し力しながら、 FPDを用いると、 X線検出信号に時間遅れ分が含まれる。その時間 遅れ分によって前回の撮像における X線の照射時の残像がアーティファクトとして X 線画像に写りこんでしまう。特に、短時間の時間間隔 (例えば 1Z30秒)で X線照射を 連続的に行う透視においては、時間遅れ分のタイムラグの影響が大きく診断の妨げ となる。  [0005] However, when FPD is used, a time delay is included in the X-ray detection signal. Due to the time delay, the afterimage of X-ray irradiation in the previous imaging is reflected in the X-ray image as an artifact. In particular, in fluoroscopy in which X-ray irradiation is continuously performed at a short time interval (for example, 1Z30 seconds), the influence of the time lag corresponding to the time delay is large and hinders diagnosis.
[0006] そこで、ノ ックライトを用いて時間遅れ分の長時定数成分の低減を図る(例えば、特 許文献 1参照)、あるいは時間遅れ分が複数の時定数を有する指数関数の総和であ るとして、それら指数関数を用いて再帰的演算処理を行って、ラグ補正を行う (例え ば、特許文献 2参照)ことで、時間遅れ分によるアーティファクトを低減させる。 [0006] Therefore, the knock time is used to reduce the long time constant component for the time delay (see, for example, Patent Document 1), or the time delay is the sum of exponential functions having a plurality of time constants. As a result, recursive arithmetic processing is performed using these exponential functions to perform lag correction (for example, For example, refer to Patent Document 2) to reduce artifacts due to time delay.
[0007] 上述した特許文献 1のようにバックライトを用いるとバックライトのための構造によつ て構造が複雑化となる。特に、軽量構造を実現した FPDにバックライトを用いると、構 造が再度に重量化、複雑化となる。また、上述した特許文献 2の場合には、 X線検出 信号を取得するサンプリングの回数分、再帰的演算処理を行ってラグ補正を行う必 要があり、ラグ補正に煩雑さが伴う。 [0007] When a backlight is used as in Patent Document 1 described above, the structure becomes complicated due to the structure for the backlight. In particular, if a backlight is used in an FPD that has achieved a lightweight structure, the structure will become heavy and complicated again. In the case of Patent Document 2 described above, it is necessary to perform lag correction by performing recursive calculation processing for the number of times of sampling for acquiring the X-ray detection signal, and the lag correction is complicated.
[0008] そこで、 X線検出信号に含まれる時間遅れ分を X線検出信号から簡易に除去する ことができるように、ラグ補正を行う際に、撮像における X線の照射前の非照射時に複 数の X線検出信号を取得して、それら X線検出信号に基づくラグ画像を取得し、それ を用いて撮像の対象となる X線画像からラグ除去する手法が考えられる。 [0008] Therefore, when performing lag correction so that the time delay included in the X-ray detection signal can be easily removed from the X-ray detection signal, the time lag correction is performed at the time of non-irradiation before X-ray irradiation in imaging. It is possible to obtain a number of X-ray detection signals, acquire lag images based on these X-ray detection signals, and use them to remove lag from the X-ray images to be imaged.
特許文献 1 :特開平 9— 9153号公報 (第 3— 8頁、図 1)  Patent Document 1: Japanese Patent Laid-Open No. 9-9153 (Page 3-8, Fig. 1)
特許文献 2 :特開 2004— 242741号公報(第 4— 11頁、図 1, 3— 6)  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-242741 (Pages 4-11, Fig. 1, 3-6)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] しカゝしながら、上述した取得されたラグ画像を用いて撮像の対象となる X線画像から ラグ除去する手法では、以下のような問題点がある。すなわち、撮像直前までの非照 射で取得されたラグ画像が、撮像の対象となる X線画像に重畳して ヽるラグ成分と同 じ値であるとしている。そして、そのラグ画像を X線画像力もそのまま減算することにな る。 However, the method of removing lag from the X-ray image to be imaged using the acquired lag image has the following problems. In other words, it is assumed that the lag image acquired by non-irradiation until immediately before imaging has the same value as the lag component superimposed on the X-ray image to be imaged. Then, the X-ray image power is subtracted from the lag image as it is.
[0010] 実際に、図 16 (a)に示すように、ラグの発生源である前回の撮像における X線の照 射から、力なりの時間 (数分、数分以上)が経過している場合には、ラグの量 (すなわ ち非照射時の X線検出信号) I  [0010] Actually, as shown in Fig. 16 (a), a force time (several minutes or more) has passed since the X-ray irradiation in the previous imaging, which is the source of lag. In this case, the amount of lag (that is, the X-ray detection signal when not irradiated) I
Nそのものも一定になっているので、重み付け加算平 均 (加重平均)して得られたラグ画像 (補正データ)を X線画像カゝら減算しても差し支 えはない。しかし、図 16 (b)に示すように、前回の撮像における X線の照射から、それ ほどの時間(1分以内)が経過していない場合には、ラグは時々刻々と減衰している ので、直前までの非照射時でのラグ画像を X線画像力 減算することは適切でな 、。 場合によっては、ラグでない成分まで減算されて過補正になってしまう。これは、それ ほどの時間を経過して!/、な!/、場合には、時間遅れ分のうちの短時定数成分ある ヽは 中時定数成分が減衰せずに支配的になっているからだと考えられる。 Since N itself is also constant, there is no problem in subtracting the lag image (correction data) obtained by weighted average (weighted average) from the X-ray image. However, as shown in Fig. 16 (b), if so much time (within 1 minute) has not elapsed since the X-ray irradiation in the previous imaging, the lag decays momentarily. It is appropriate to subtract the X-ray image power from the lag image at the time of non-irradiation until just before. In some cases, a component that is not lag is subtracted, resulting in overcorrection. This is a short time constant component of the time delay! /, Na! / This is probably because the medium time constant component is dominant without decaying.
[0011] そこで、力かる問題点を解決する対策として、ラグの減衰の状態を予め取得して、 式やテーブルで保持し、前回の撮像の X線条件や経過時間に基づ!/、て今回の撮像 で取得された X線画像に重畳されたラグ成分を類推する手法も考えられる。しかし、 力かる手法の場合には、ラグの減衰は X線条件によって異なり、幾多の X線条件に対 応させるために膨大な量の減衰状態を保持しなければならなくなる。そこで、時々刻 々と減衰している状態でもラグを適切に類推でき、かつ X線条件にも依存することの な 、補正方法が求められて 、る。  [0011] Therefore, as a measure to solve the troublesome problem, the attenuation state of the lag is acquired in advance and stored in a formula or table, based on the X-ray conditions and elapsed time of the previous imaging! A method of analogizing the lag component superimposed on the X-ray image acquired by this imaging is also conceivable. However, in the case of a powerful method, the attenuation of the lag depends on the X-ray conditions, and a huge amount of attenuation must be maintained in order to cope with many X-ray conditions. Therefore, there is a need for a correction method that can properly analogize the lag even when it is gradually attenuated, and that does not depend on the X-ray conditions.
[0012] この発明は、このような事情に鑑みてなされたものであって、放射線検出信号に含 まれる時間遅れ分を放射線検出信号力 簡易に除去することができ、その時間遅れ 分であるラグデータを適切に類推することができる放射線撮像装置および放射線検 出信号処理方法を提供することを目的とする。  [0012] The present invention has been made in view of such circumstances, and the time delay included in the radiation detection signal can be easily removed, and the time delay is included. It is an object of the present invention to provide a radiation imaging apparatus and a radiation detection signal processing method capable of appropriately analogizing lag data.
課題を解決するための手段  Means for solving the problem
[0013] この発明は、このような目的を達成するために、次のような構成をとる。  In order to achieve such an object, the present invention has the following configuration.
すなわち、この発明の放射線撮像装置は、放射線検出信号に基づいて放射線画 像を得る放射線撮像装置であって、被検体に向けて放射線を照射する放射線照射 手段と、被検体を透過した放射線を検出する放射線検出手段と、放射線検出手段か ら検出された複数の放射線検出信号を撮像における放射線の照射前の非照射時に 取得する非照射信号取得手段と、その非照射信号取得手段で取得されたそれら放 射線検出信号に基づくラグ情報のうち、過去のラグ情報に基づいて今回のラグ情報 を求めてラグ画像を類推するラグ画像類推手段と、放射線検出手段から検出された 放射線検出信号を撮像における放射線の照射時に取得する照射信号取得手段と、 その照射信号取得手段で取得された放射線検出信号に基づ ヽて、撮像の対象とな る放射線画像を取得する放射線画像取得手段と、その放射線画像取得手段で取得 された放射線画像から、前記ラグ画像類推手段で類推されたラグ画像を用いてラグ 除去することで、放射線検出信号に含まれる時間遅れ分を放射線検出信号から除去 することによる時間遅れ分に関するラグ補正を行うラグ補正手段とを備えていることを 特徴とするものである。 [0014] この発明の放射線撮像装置によれば、非照射信号取得手段は、放射線検出手段 から検出された複数の放射線検出信号を撮像における放射線の照射前の非照射時 に取得する。その非照射信号取得手段で取得されたそれら放射線検出信号に基づ くラグ情報のうち、過去のラグ情報に基づいて、ラグ画像類推手段は、今回のラグ情 報を求めてラグ画像を類推する。一方、照射信号取得手段は、放射線検出手段から 検出された放射線検出信号を撮像における放射線の照射時に取得する。その照射 信号取得手段で取得された放射線検出信号に基づ ヽて、放射線画像取得手段は、 撮像の対象となる放射線画像を取得する。そして、その放射線画像取得手段で取得 された放射線画像から、上述したラグ画像類推手段で類推されたラグ画像を用いて ラグ除去することで、放射線検出信号に含まれる時間遅れ分を放射線検出信号から 除去することによる時間遅れ分に関するラグ補正をラグ補正手段が行う。このように、 上述した特許文献 2のように放射線検出信号を取得するサンプリングの回数分、再 帰的演算処理を行ってラグ補正を行う必要がない。さらには、過去のラグ情報に基づ V、てラグ画像類推手段は今回のラグ情報を求めてラグ画像を類推するので、前回の 撮像における放射線の照射から、それほどの時間が経過していない場合でも、過去 のラグ情報を考慮したラグ画像を類推することができる。その結果、時間遅れ分であ るラグデータを適切に類推することができる。したがって、この類推されたラグ画像を 用いてラグ除去するだけで、ラグデータである時間遅れ分を適切に類推しつつ、放 射線検出信号に含まれる時間遅れ分を放射線検出信号から簡易に除去することが できる。また、上述した特許文献 1のようなバックライトを用いる必要がなぐ装置の構 造が複雑化となることもない。 That is, the radiation imaging apparatus of the present invention is a radiation imaging apparatus that obtains a radiation image based on a radiation detection signal, and detects radiation that has passed through the subject and radiation irradiating means that irradiates the subject with radiation. A radiation detection means for performing acquisition, a plurality of radiation detection signals detected from the radiation detection means at the time of non-irradiation before irradiation of radiation in imaging, and those acquired by the non-irradiation signal acquisition means Among the lag information based on the radiation detection signal, the lag image analogy means for obtaining the current lag information based on the past lag information and analogizing the lag image, and the radiation detection signal detected from the radiation detection means for imaging radiation Based on the irradiation signal acquisition means acquired at the time of irradiation and the radiation detection signal acquired by the irradiation signal acquisition means, the radiation to be imaged Radiation image acquisition means for acquiring an image, and time included in the radiation detection signal by removing lag from the radiation image acquired by the radiation image acquisition means using the lag image estimated by the lag image estimation means It is characterized by comprising lag correction means for performing lag correction related to the time delay by removing the delay from the radiation detection signal. [0014] According to the radiation imaging apparatus of the present invention, the non-irradiation signal acquisition means acquires a plurality of radiation detection signals detected from the radiation detection means at the time of non-irradiation before irradiation of radiation in imaging. Of the lag information based on the radiation detection signals acquired by the non-irradiation signal acquisition means, the lag image analogy means estimates the lag image by obtaining the current lag information based on the past lag information. . On the other hand, the irradiation signal acquisition means acquires the radiation detection signal detected from the radiation detection means at the time of radiation irradiation in imaging. Based on the radiation detection signal acquired by the irradiation signal acquisition means, the radiation image acquisition means acquires a radiation image to be imaged. Then, by removing the lag from the radiographic image acquired by the radiological image acquisition means using the lag image analogized by the lag image analogizing means described above, the time delay included in the radiological detection signal is obtained from the radiation detection signal. The lag correction means performs lag correction related to the time delay due to the removal. In this way, it is not necessary to perform recursive calculation processing and perform lag correction for the number of times of sampling for acquiring a radiation detection signal as in Patent Document 2 described above. Furthermore, because the lag image analogy means obtains the current lag information and analogizes the lag image based on the past lag information, so much time has not passed since the previous radiation exposure. However, it is possible to infer a lag image considering past lag information. As a result, it is possible to properly estimate the lag data that is the time delay. Therefore, by simply removing the lag using the analogized lag image, the time delay included in the radiation detection signal can be easily removed from the radiation detection signal while appropriately estimating the time delay as lag data. be able to. Further, the structure of the apparatus that does not require the use of the backlight as in Patent Document 1 described above does not become complicated.
[0015] この発明の放射線撮像装置の一例は、上述した非照射信号取得手段で取得され た複数の放射線検出信号に基づ ヽて、ラグ画像を取得するラグ画像取得手段を備 え、そのラグ画像取得手段と上述したラグ画像類推手段とは兼用し、ラグ画像取得手 段によるラグ画像の取得を行うことで、ラグ画像類推手段によるラグ画像の類推を行う ことである。この一例の場合、ラグ画像取得手段によるラグ画像の取得と、ラグ画像類 推手段によるラグ画像の類推とが同義である。  An example of the radiation imaging apparatus of the present invention includes a lag image acquisition unit that acquires a lag image based on a plurality of radiation detection signals acquired by the non-irradiation signal acquisition unit described above. The image acquisition means and the lag image analogization means described above are used together, and the lag image analogy is performed by the lag image analogization means by acquiring the lag image by the lag image acquisition means. In this example, the acquisition of the lag image by the lag image acquisition unit and the analogy of the lag image by the lag image estimation unit are synonymous.
[0016] また、この発明の放射線撮像装置の他の一例は、上述した非照射信号取得手段で 取得された複数の放射線検出信号に基づ ヽて、ラグ画像を取得するラグ画像取得 手段を備え、そのラグ画像取得手段で取得されたラグ画像を上述した過去のラグ情 報に基づ 、て補正することで、上述したラグ画像類推手段は補正後のラグ画像を類 推することである。この他の一例の場合、ラグ画像取得手段によるラグ画像の取得の 後に、ラグ画像を類推するために先に得られた前者のラグ画像の補正をラグ画像類 推手段により行う。したがって、この他の一例の場合、ラグ画像の類推は、先に得られ た前者のラグ画像の補正の機能を含んで 、る。 [0016] Another example of the radiation imaging apparatus of the present invention is the non-irradiation signal acquisition means described above. Based on a plurality of acquired radiation detection signals, a lag image acquisition means for acquiring a lag image is provided, and the lag image acquired by the lag image acquisition means is based on the past lag information. By correcting, the above-described lag image analogizing means estimates the lag image after correction. In another example, after the acquisition of the lag image by the lag image acquisition means, the former lag image is corrected by the lag image estimation means in order to estimate the lag image. Therefore, in the case of this other example, the analogy of the lag image includes the function of correcting the former lag image obtained earlier.
[0017] また、この発明の放射線検出信号処理方法は、被検体を照射して検出された放射 線検出信号に基づいて放射線画像を得る信号処理を行う放射線検出信号処理方法 であって、前記信号処理は、複数の放射線検出信号を撮像における放射線の照射 前の非照射時に取得する非照射信号取得工程と、その非照射信号取得工程で取得 されたそれら放射線検出信号に基づくラグ情報のうち、過去のラグ情報に基づいて 今回のラグ情報を求めてラグ画像を類推するラグ画像類推工程と、放射線検出信号 を撮像における放射線の照射時に取得する照射信号取得工程と、その照射信号取 得工程で取得された放射線検出信号に基づ!/ヽて、撮像の対象となる放射線画像を 取得する放射線画像取得工程と、その放射線画像取得工程で取得された放射線画 像から、前記ラグ画像類推工程で類推されたラグ画像を用いてラグ除去することで、 放射線検出信号に含まれる時間遅れ分を放射線検出信号から除去することによる時 間遅れ分に関するラグ補正を行うラグ補正工程とを備えていることを特徴とするもの である。  The radiation detection signal processing method according to the present invention is a radiation detection signal processing method for performing signal processing for obtaining a radiation image based on a radiation detection signal detected by irradiating a subject, wherein the signal The processing includes a non-irradiation signal acquisition step of acquiring a plurality of radiation detection signals at the time of non-irradiation before irradiation of radiation in imaging, and lag information based on those radiation detection signals acquired in the non-irradiation signal acquisition step. Based on the lag information of the lag image, the lag image analogy process for estimating the lag image and estimating the lag image, the irradiation signal acquisition process for acquiring the radiation detection signal at the time of radiation irradiation in the imaging, and the irradiation signal acquisition process Based on the detected radiation detection signal, the radiological image acquisition process for acquiring the radiographic image to be imaged and the radiographic image acquired in the radiological image acquisition process Further, by performing lag removal using the lag image estimated in the lag image analogizing step, lag correction for lag correction by removing the time delay included in the radiation detection signal from the radiation detection signal is performed. And a correction process.
[0018] この発明の放射線検出信号処理方法によれば、非照射信号取得工程では、複数 の放射線検出信号を撮像における放射線の照射前の非照射時に取得する。その非 照射信号取得工程で取得されたそれら放射線検出信号に基づくラグ情報のうち、過 去のラグ情報に基づいて、ラグ画像類推工程では、今回のラグ情報を求めてラグ画 像を類推する。一方、照射信号取得では、放射線検出信号を撮像における放射線 の照射時に取得する。その照射信号取得工程で取得された放射線検出信号に基づ いて、放射線画像取得工程では、撮像の対象となる放射線画像を取得する。そして 、その放射線画像取得工程で取得された放射線画像から、上述したラグ画像類推ェ 程で類推されたラグ画像を用いてラグ除去することで、放射線検出信号に含まれる 時間遅れ分を放射線検出信号力 除去することによる時間遅れ分に関するラグ補正 をラグ補正工程で行う。このように、上述した特許文献 2のように放射線検出信号を取 得するサンプリングの回数分、再帰的演算処理を行ってラグ補正を行う必要がな 、。 さらには、過去のラグ情報に基づいてラグ画像類推工程では今回のラグ情報を求め てラグ画像を類推するので、前回の撮像における放射線の照射から、それほどの時 間が経過して 、な 、場合でも、過去のラグ情報を考慮したラグ画像を類推することが できる。その結果、時間遅れ分であるラグデータを適切に類推することができる。した がって、この類推されたラグ画像を用いてラグ除去するだけで、ラグデータである時 間遅れ分を適切に類推しつつ、放射線検出信号に含まれる時間遅れ分を放射線検 出信号から簡易に除去することができる。 According to the radiation detection signal processing method of the present invention, in the non-irradiation signal acquisition step, a plurality of radiation detection signals are acquired at the time of non-irradiation before radiation irradiation in imaging. Of the lag information based on the radiation detection signals acquired in the non-irradiation signal acquisition process, based on the past lag information, in the lag image analogization process, the lag image is estimated by obtaining the current lag information. On the other hand, in irradiation signal acquisition, a radiation detection signal is acquired at the time of radiation irradiation in imaging. Based on the radiation detection signal acquired in the irradiation signal acquisition step, the radiation image acquisition step acquires a radiation image to be imaged. Then, from the radiographic image acquired in the radiographic image acquisition step, the above-described lag image analogization is performed. The lag correction is performed in the lag correction process by removing the lag using the analogized lag image and removing the time lag included in the radiation detection signal by removing the radiation detection signal force. As described above, it is not necessary to perform lag correction by performing recursive arithmetic processing for the number of times of sampling for obtaining the radiation detection signal as in Patent Document 2 described above. Furthermore, since the lag image analogy process obtains the current lag information and analogizes the lag image based on the past lag information, if much time has passed since the radiation exposure in the previous imaging, However, it is possible to infer a lag image considering past lag information. As a result, the lag data that is the time delay can be appropriately estimated. Therefore, simply by removing the lag using the analogized lag image, the time delay included in the radiation detection signal can be estimated from the radiation detection signal while appropriately estimating the time delay as lag data. It can be easily removed.
[0019] この発明の放射線検出信号処理方法の一例は、上述した過去の情報は、過去の 非照射時に取得された放射線検出信号に関する信号比で表された係数であって、 上述したラグ画像類推工程で、その係数に基づ ヽて今回のラグ情報を求めてラグ画 像を類推することである。なお、過去の情報は、このような信号比に限定されず、過去 の非照射時に取得された放射線検出信号そのものや、その信号を定数倍したもので あってもよい。 In an example of the radiation detection signal processing method of the present invention, the above-described past information is a coefficient represented by a signal ratio regarding the radiation detection signal acquired at the past non-irradiation, and the above-described lag image analogy is described. In the process, the current lag information is obtained based on the coefficient, and the lag image is estimated. The past information is not limited to such a signal ratio, and may be a radiation detection signal itself acquired at the past non-irradiation or a signal obtained by multiplying the signal by a constant.
[0020] また、この発明の放射線検出信号処理方法の他の一例は、上述した非照射信号取 得工程で取得されたそれら放射線検出信号に基づ!/ヽて、ラグ画像を取得するラグ画 像取得工程を信号処理は備え、そのラグ画像取得工程と上述したラグ画像類推工程 とは同一工程であって、ラグ画像取得工程でのラグ画像の取得を行うことで、ラグ画 像類推工程でのラグ画像の類推を行うことである。この他の一例の場合、ラグ画像取 得工程でのラグ画像の取得と、ラグ画像類推工程でのラグ画像の類推とが同義であ る。  [0020] Another example of the radiation detection signal processing method of the present invention is a lag image for acquiring a lag image based on the radiation detection signals acquired in the non-irradiation signal acquisition step described above! The image acquisition process includes signal processing, and the lag image acquisition process and the lag image estimation process described above are the same process, and the lag image acquisition process is performed by acquiring the lag image in the lag image acquisition process. The analogy of the lag image is performed. In another example, the acquisition of the lag image in the lag image acquisition process and the analogy of the lag image in the lag image analogization process are synonymous.
[0021] また、この発明の放射線検出信号処理方法のさらなる他の一例は、上述した非照 射信号取得工程で取得されたそれら放射線検出信号に基づ ヽて、ラグ画像を取得 するラグ画像取得工程を信号処理は備え、そのラグ画像取得工程で取得されたラグ 画像を上述した過去のラグ情報に基づ 、て補正することで、上述したラグ画像取得 工程で補正後のラグ画像を類推することである。このさらなる他の一例の場合、ラグ 画像取得工程でのラグ画像の取得の後に、ラグ画像を類推するために先に得られた 前者のラグ画像の補正をラグ画像取得工程で行う。したがって、このさらなる他の一 例の場合、ラグ画像の類推は、先に得られた前者のラグ画像の補正の機能を含んで いる。 [0021] Still another example of the radiation detection signal processing method of the present invention is a lag image acquisition that acquires a lag image based on the radiation detection signals acquired in the non-irradiation signal acquisition step described above. The signal processing is provided, and the lag image acquisition described above is performed by correcting the lag image acquired in the lag image acquisition step based on the past lag information described above. It is to analogize the corrected lag image in the process. In this further example, after the lag image is acquired in the lag image acquisition step, the former lag image obtained in advance is corrected in the lag image acquisition step in order to analogize the lag image. Therefore, in this other example, the analogy of the lag image includes a function of correcting the former lag image obtained earlier.
[0022] 上述した他の一例における、さらなる具体的な一例は、上述した過去の情報は、上 述した非照射信号取得工程で取得された過去の放射線検出信号に関する信号比で 表された係数であって、上述したラグ画像類推工程で、その係数に基づいて今回の ラグ情報を求めてラグ画像を類推することである。この具体的な一例は、上述した一 例と他の一例とを組み合わせた例でもある。  [0022] In a further specific example in the other example described above, the above-described past information is a coefficient represented by a signal ratio regarding the past radiation detection signal acquired in the non-irradiation signal acquisition step described above. Therefore, in the above-described lag image analogizing step, the current lag information is obtained based on the coefficient to estimate the lag image. This specific example is also an example in which the above-described example is combined with another example.
[0023] この具体的な一例では、各画素ごとに上述した係数を求め、各係数に基づいて今 回のラグ情報を各画素ごとに求めるのが好ましい。各画素ごとにラグデータの減衰特 性が異なるので、このように求めることでラグのない良質な放射線画像を得ることがで きる。  [0023] In this specific example, it is preferable to obtain the coefficient described above for each pixel and obtain the current lag information for each pixel based on each coefficient. Since the attenuation characteristics of lag data are different for each pixel, a high-quality radiographic image without lag can be obtained by this calculation.
[0024] 上述したさらなる他の一例における、さらなる具体的な一例は、上述した過去の情 報は、上述した非照射信号取得工程で取得された過去の放射線検出信号に関する 信号比で表された補正係数であって、上述したラグ画像類推工程で、その補正係数 を上述したラグ画像取得工程で取得されたラグ画像に作用させて補正することで、今 回のラグ情報として補正後のラグ画像を類推することである。この具体的な一例は、 上述した一例とさらなる他の一例とを組み合わせた例でもある。  [0024] A further specific example in the above-described further example is that the above-described past information is a correction represented by a signal ratio regarding the past radiation detection signal acquired in the above-described non-irradiation signal acquisition step. In the lag image analogy process described above, the correction coefficient is applied to the lag image acquired in the lag image acquisition process to correct the corrected lag image as the current lag information. By analogy. This specific example is also an example in which the above-described example and another example are combined.
[0025] この具体的な一例では、各画素ごとに上述した補正係数を求め、各補正係数を各 画素ごとにラグ画像に作用させて補正するのが好ましい。各画素ごとにラグデータの 減衰特性が異なるので、このように求めることでラグのない良質な放射線画像を得る ことができる。  In this specific example, it is preferable that the above-described correction coefficient is obtained for each pixel, and correction is performed by applying each correction coefficient to the lag image for each pixel. Since the attenuation characteristics of the lag data are different for each pixel, a high-quality radiographic image without lag can be obtained by obtaining in this way.
発明の効果  The invention's effect
[0026] この発明に係る放射線撮像装置および放射線検出信号処理方法によれば、撮像 における放射線の照射前の非照射時に取得された複数の放射線検出信号に基づく ラグ情報のうち、過去のラグ情報に基づいて今回のラグ情報を求めてラグ画像を類 推するので、過去のラグ情報を考慮したラグ画像を類推することができ、この類推さ れたラグ画像を用いてラグ除去するだけで、時間遅れ分であるラグデータを適切に 類推しつつ、放射線検出信号に含まれる時間遅れ分を放射線検出信号から簡易に 除去することができる。 [0026] According to the radiation imaging apparatus and the radiation detection signal processing method according to the present invention, the past lag information among the lag information based on the plurality of radiation detection signals acquired at the time of non-irradiation before radiation irradiation in imaging. Based on the current lag information Therefore, it is possible to infer a lag image that takes into account past lag information.By simply removing the lag using this estimated lag image, the lag data that is the time delay is properly inferred, The time delay included in the radiation detection signal can be easily removed from the radiation detection signal.
図面の簡単な説明 Brief Description of Drawings
[図 1]実施例 1に係る X線透視撮影装置のブロック図である。 FIG. 1 is a block diagram of an X-ray fluoroscopic apparatus according to Embodiment 1.
[図 2]X線透視撮影装置に用いられて ヽる側面視したフラットパネル型 X線検出器の 等価回路である。  [Fig. 2] This is an equivalent circuit of a flat panel X-ray detector used in an X-ray fluoroscopic apparatus as seen from the side.
[図 3]平面視したフラットパネル型 X線検出器の等価回路である。  [Fig. 3] Equivalent circuit of flat panel X-ray detector in plan view.
[図 4]実施例 1に係る画像処理部およびメモリ部に関するデータの流れを示した概略 図である。  FIG. 4 is a schematic diagram showing a flow of data regarding the image processing unit and the memory unit according to the first embodiment.
[図 5]各 X線の照射および X線検出信号の取得に関するタイミングチャートである。  FIG. 5 is a timing chart regarding irradiation of each X-ray and acquisition of an X-ray detection signal.
[図 6]実施例 1に係る非照射信号取得部やラグ画像取得部やラグ画像類推部や照射 信号取得部や X線画像取得部やラグ補正部による一連の信号処理を示すフローチ ヤートである。 FIG. 6 is a flowchart showing a series of signal processing by the non-irradiation signal acquisition unit, lag image acquisition unit, lag image analogy unit, irradiation signal acquisition unit, X-ray image acquisition unit, and lag correction unit according to Example 1. .
[図 7]図 6のラグ画像の取得 Z類推処理を具体的に示すフローチャートである。  FIG. 7 is a flowchart specifically showing the acquisition Z analogy processing of the lag image of FIG.
[図 8]各 X線の照射および X線検出信号の取得に併記したラグの量 (非照射時の X線 検出信号)に関するタイミングチャートである。  FIG. 8 is a timing chart regarding the amount of lag (X-ray detection signal at the time of non-irradiation) written together with the irradiation of each X-ray and acquisition of the X-ray detection signal.
[図 9]実施例 2, 3に係る X線透視撮影装置のブロック図である。  FIG. 9 is a block diagram of an X-ray fluoroscopic apparatus according to Embodiments 2 and 3.
[図 10]実施例 2に係る画像処理部およびメモリ部に関するデータの流れを示した概 略図である。  FIG. 10 is a schematic diagram illustrating a data flow regarding an image processing unit and a memory unit according to a second embodiment.
[図 11]実施例 2に係る非照射信号取得部やラグ画像取得部やラグ画像類推部や照 射信号取得部や X線画像取得部やラグ補正部による一連の信号処理を示すフロー チャートである。  FIG. 11 is a flowchart showing a series of signal processing by a non-irradiation signal acquisition unit, a lag image acquisition unit, a lag image analogy unit, an irradiation signal acquisition unit, an X-ray image acquisition unit, and a lag correction unit according to Example 2. is there.
[図 12]実施例 2に係る非照射信号取得部やラグ画像取得部やラグ画像類推部や照 射信号取得部や X線画像取得部やラグ補正部による一連の信号処理を示すフロー チャートである。  FIG. 12 is a flowchart showing a series of signal processing by a non-irradiation signal acquisition unit, a lag image acquisition unit, a lag image analogy unit, an irradiation signal acquisition unit, an X-ray image acquisition unit, and a lag correction unit according to Example 2. is there.
[図 13]実施例 3に係る画像処理部およびメモリ部に関するデータの流れを示した概 略図である。 FIG. 13 is a schematic diagram showing the flow of data related to the image processing unit and the memory unit according to Example 3. It is a schematic diagram.
[図 14]実施例 3に係る非照射信号取得部やラグ画像取得部やラグ画像類推部や照 射信号取得部や X線画像取得部やラグ補正部による一連の信号処理を示すフロー チャートである。  FIG. 14 is a flow chart showing a series of signal processing by a non-irradiation signal acquisition unit, a lag image acquisition unit, a lag image analogy unit, an irradiation signal acquisition unit, an X-ray image acquisition unit, and a lag correction unit according to Example 3. is there.
[図 15]17インチ直接変換型フラットパネル型 X線検出器を用いて測定した実データ に対する、実施例 3の適用結果を示すグラフである。  FIG. 15 is a graph showing the result of application of Example 3 to actual data measured using a 17-inch direct conversion flat panel X-ray detector.
[図 16] (a) , (b)は、従来の各 X線の照射および X線検出信号の取得に併記したラグ の量 (非照射時の X線検出信号)に関するタイミングチャートである。  [FIG. 16] (a) and (b) are timing charts relating to the amount of lag (X-ray detection signal at the time of non-irradiation) written together with conventional X-ray irradiation and X-ray detection signal acquisition.
符号の説明  Explanation of symbols
[0028] 2 … X線管 [0028] 2… X-ray tube
3 … フラットパネル型 X線検出器 (FPD)  3… Flat panel X-ray detector (FPD)
9a … 非照射信号取得部  9a… Non-irradiation signal acquisition unit
9b … ラグ画像取得部  9b… Lag image acquisition unit
9c … ラグ画像類推部  9c… Lag image analogy part
9d … 照射信号取得部  9d… Irradiation signal acquisition unit
9e … X線画像取得部  9e… X-ray image acquisition unit
9f … ラグ補正部  9f… Lag correction part
M … 被検体  M… Subject
実施例 1  Example 1
[0029] 以下、図面を参照してこの発明の実施例 1を説明する。図 1は、実施例 1に係る X線 透視撮影装置のブロック図であり、図 2は、 X線透視撮影装置に用いられている側面 視したフラットパネル型 X線検出器の等価回路であり、図 3は、平面視したフラットパ ネル型 X線検出器の等価回路である。後述する実施例 2, 3も含めて、本実施例 1で は放射線検出手段としてフラットパネル型 X線検出器 (以下、適宜「FPD」という)を例 に採るとともに、放射線撮像装置として X線透視撮影装置を例に採って説明する。  [0029] Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an X-ray fluoroscopic apparatus according to Embodiment 1, and FIG. 2 is an equivalent circuit of a flat panel X-ray detector used in the X-ray fluoroscopic apparatus as viewed from the side. Figure 3 shows the equivalent circuit of a flat panel X-ray detector in plan view. In Example 1, including Examples 2 and 3 described later, a flat panel X-ray detector (hereinafter referred to as “FPD” as appropriate) is taken as an example of radiation detection means, and X-ray fluoroscopy is used as a radiation imaging device. A description will be given by taking a photographing apparatus as an example.
[0030] 本実施例 1に係る X線透視撮影装置は、図 1に示すように、被検体 Mを載置する天 板 1と、その被検体 Mに向けて X線を照射する X線管 2と、被検体 Mを透過した X線を 検出する FPD3とを備えている。 X線管 2は、この発明における放射線照射手段に相 当し、 FPD3はこの発明における放射線検出手段に相当する。 As shown in FIG. 1, the X-ray fluoroscopic apparatus according to the first embodiment includes a top plate 1 on which the subject M is placed, and an X-ray tube that irradiates the subject M with X-rays. 2 and FPD3 for detecting X-rays transmitted through the subject M. The X-ray tube 2 is compatible with the radiation irradiation means in the present invention. FPD3 corresponds to the radiation detection means in this invention.
[0031] X線透視撮影装置は、他に、天板 1の昇降および水平移動を制御する天板制御部 4や、 FPD3の走査を制御する FPD制御部 5や、 X線管 2の管電圧や管電流を発生 させる高電圧発生部 6を有する X線管制御部 7や、 FPD3から電荷信号である X線検 出信号をディジタルィ匕して取り出す AZD変 8や、 AZD変 8から出力され た X線検出信号に基づいて種々の処理を行う画像処理部 9や、これらの各構成部を 統括するコントローラ 10や、処理された画像などを記憶するメモリ部 11や、オペレー タが入力設定を行う入力部 12や、処理された画像などを表示するモニタ 13などを備 えている。 [0031] The X-ray fluoroscopic apparatus also includes a top plate control unit 4 that controls the elevation and horizontal movement of the top plate 1, an FPD control unit 5 that controls scanning of the FPD 3, and a tube voltage of the X-ray tube 2. Output from the X-ray tube control unit 7 having the high voltage generator 6 that generates the tube current, the AZD modification 8 that extracts the X-ray detection signal that is a charge signal from the FPD3, and the AZD modification 8 The image processing unit 9 that performs various processing based on the X-ray detection signal, the controller 10 that controls each of these components, the memory unit 11 that stores processed images, and the operator set the input settings. It has an input unit 12 to perform and a monitor 13 to display processed images.
[0032] 天板制御部 4は、天板 1を水平移動させて被検体 Μを撮像位置にまで収容したり、 昇降、回転および水平移動させて被検体 Μを所望の位置に設定したり、水平移動さ せながら撮像を行ったり、撮像終了後に水平移動させて撮像位置カゝら退避させる制 御などを行う。 FPD制御部 5は、 FPD3を水平移動させたり、被検体 Μの体軸の軸心 周りに回転移動させることによる走査に関する制御などを行う。高電圧発生部 6は、 X 線を照射させるための管電圧や管電流を発生して X線管 2に与え、 X線管制御部 7は 、 X線管 2を水平移動させたり、被検体 Μの体軸の軸心周りに回転移動させること〖こ よる走査に関する制御や、 X線管 2側のコリメータ(図示省略)の照視野の設定の制 御などを行う。なお、 X線管 2や FPD3の走査の際には、 X線管 2から照射された X線 を FPD3が検出できるように X線管 2および FPD3が互いに対向しながらそれぞれの 移動を行う。  [0032] The top board control unit 4 horizontally moves the top board 1 to store the subject eyelid at the imaging position, or moves the top face up to the imaging position, sets the subject eyelid to a desired position by moving up and down, rotating and horizontally, Take an image while moving it horizontally, or move it horizontally after the image is taken and control it to retreat from the image position. The FPD control unit 5 performs control related to scanning by horizontally moving the FPD 3 or rotating it around the body axis of the subject's body. The high voltage generator 6 generates a tube voltage and a tube current for irradiating X-rays and applies them to the X-ray tube 2. The X-ray tube controller 7 moves the X-ray tube 2 horizontally, Rotating and moving around the axis of the body axis of the heel, controls the scanning, and controls the field of view of the collimator (not shown) on the X-ray tube 2 side. When scanning the X-ray tube 2 or the FPD 3, the X-ray tube 2 and the FPD 3 move while facing each other so that the FPD 3 can detect the X-rays emitted from the X-ray tube 2.
[0033] コントローラ 10は、中央演算処理装置 (CPU)などで構成されており、メモリ部 11は 、 ROM (Read-only Memory)や RAM (Random— Access Memory)などに代表される 記憶媒体などで構成されている。また、入力部 12は、マウスやキーボードやジョイス ティックゃトラックボールゃタツチパネルなどに代表されるポインティングデバイスで構 成されている。 X線透視撮影装置では、被検体 Mを透過した X線を FPD3が検出して 、検出された X線に基づ!/、て画像処理部 9で画像処理を行うことで被検体 Mの撮像 を行う。  [0033] The controller 10 includes a central processing unit (CPU) and the like, and the memory unit 11 includes a storage medium represented by ROM (Read-only Memory), RAM (Random-Access Memory), and the like. It is configured. The input unit 12 includes a pointing device represented by a mouse, a keyboard, a joystick, a trackball, and a touch panel. In the X-ray fluoroscope, the FPD3 detects X-rays that have passed through the subject M, and based on the detected X-rays, the image processing unit 9 performs image processing to capture the subject M. I do.
[0034] なお、画像処理部 9は、複数の X線検出信号を撮像における X線の照射前の非照 射時に取得する非照射信号取得部 9aと、その非照射信号取得部 9aで取得されたそ れら X線検出信号に基づいて、ラグ画像を取得するラグ画像取得部 9bと、それら放 射線検出信号に基づくラグ情報のうち、過去のラグ情報に基づいて今回のラグ情報 を求めてラグ画像を類推するラグ画像類推部 9cと、 X線検出信号を撮像における X 線の照射時に取得する照射信号取得部 9dと、その照射信号取得部 9dで取得された X線検出信号に基づ!/ヽて、撮像の対象となる X線画像を取得する X線画像取得部 9e と、その X線画像取得部 9eで取得された X線画像から、上述したラグ画像類推部 9c で類推されたラグ画像を用いてラグ除去するラグ補正部 9fとを備えて ヽる。 X線画像 力 ラグ画像を用いてラグ除去することで、 X線検出信号に含まれる時間遅れ分を X 線検出信号から除去することによる時間遅れ分に関するラグ補正をラグ補正部 9fが 行う。非照射信号取得部 9aは、この発明における非照射信号取得手段に相当し、ラ グ画像取得部 9bは、この発明におけるラグ画像取得手段に相当し、ラグ画像類推部 9cは、この発明におけるラグ画像類推手段に相当し、照射信号取得部 9dは、この発 明における照射信号取得手段に相当し、 X線画像取得部 9eは、この発明における放 射線画像取得手段に相当し、ラグ補正部 9fは、この発明におけるラグ補正手段に相 当する。 [0034] Note that the image processing unit 9 performs non-irradiation of a plurality of X-ray detection signals before X-ray irradiation in imaging. A non-irradiation signal acquisition unit 9a that is acquired at the time of irradiation, a lag image acquisition unit 9b that acquires a lag image based on the X-ray detection signals acquired by the non-irradiation signal acquisition unit 9a, and detection of these radiations Among the lag information based on the signal, the lag image analogizing unit 9c that obtains the current lag information based on the past lag information and analogizes the lag image, and the irradiation signal acquired when the X-ray detection signal is emitted during the X-ray irradiation An acquisition unit 9d, an X-ray image acquisition unit 9e that acquires an X-ray image to be imaged based on the X-ray detection signal acquired by the irradiation signal acquisition unit 9d, and the X-ray image A lag correction unit 9f that removes lag from the X-ray image acquired by the acquisition unit 9e using the lag image estimated by the lag image analogization unit 9c described above is provided. X-ray image force By removing the lag using the lag image, the lag correction unit 9f performs lag correction related to the time delay by removing the time delay included in the X-ray detection signal from the X-ray detection signal. The non-irradiation signal acquisition unit 9a corresponds to the non-irradiation signal acquisition unit in the present invention, the lag image acquisition unit 9b corresponds to the lag image acquisition unit in the present invention, and the lag image analogy unit 9c Corresponding to the image analogy means, the irradiation signal acquisition unit 9d corresponds to the irradiation signal acquisition means in this invention, the X-ray image acquisition unit 9e corresponds to the radiation image acquisition means in this invention, and the lag correction unit 9f Corresponds to the lag correction means in the present invention.
[0035] なお、本実施例 1では、後述する実施例 2, 3と相違して、ラグ画像取得部 9bによる ラグ画像の取得と、ラグ画像類推部 9cによるラグ画像の類推とが同義であって、ラグ 画像の取得を行うことでラグ画像の類推を行う。すなわち、本実施例 1では、ラグ画像 取得部 9bとラグ画像類推部 9cとは互いに兼用する。  In the first embodiment, unlike the second and third embodiments described later, the acquisition of the lag image by the lag image acquisition unit 9b and the analogy of the lag image by the lag image estimation unit 9c are synonymous. The lag image is analogized by acquiring the lag image. That is, in the first embodiment, the lag image acquiring unit 9b and the lag image analogizing unit 9c are used in common.
[0036] なお、メモリ部 11は、非照射信号取得部 9aで取得された非照射時の各 X線検出信 号を書き込んで記憶する非照射信号用メモリ部 1 laと、ラグ画像取得部 9bZラグ画 像類推部 9cで取得 Z類推されたラグ画像を書き込んで記憶するラグ画像用メモリ部 1 lbと、照射信号取得部 9dで取得された照射時の X線検出信号を書き込んで記憶 する照射信号用メモリ部 1 lcと、 X線画像取得部 9eで取得された X線画像を書き込ん で記憶する X線画像用メモリ部 1 Idとを備えて 、る。  [0036] Note that the memory unit 11 includes a non-irradiation signal memory unit 1la for writing and storing each non-irradiation X-ray detection signal acquired by the non-irradiation signal acquisition unit 9a, and a lag image acquisition unit 9bZ. Acquired by the lag image analogizing unit 9c The lag image memory unit 1 lb for writing and storing the lag image estimated by Z and the irradiation X-ray detection signal acquired by the irradiation signal acquiring unit 9d for writing and storing A signal memory unit 1 lc and an X-ray image memory unit 1 Id for writing and storing the X-ray image acquired by the X-ray image acquisition unit 9e.
[0037] 本実施例 1では、非照射信号用メモリ部 11aから読み出された非照射時の各 X線検 出信号に基づいてラグ画像取得部 9bZラグ画像類推部 9cはラグ画像を取得 Z類推 して、ラグ画像用メモリ部 l ibに書き込んで記憶する(図 4を参照)。なお、後述する実 施例 2では、非照射信号用メモリ部 11aから読み出された非照射時の各 X線検出信 号に基づ 、てラグ画像取得部 9bはラグ画像を取得して、ラグ画像用メモリ部 1 lbに 書き込んで記憶し、上述した非照射信号用メモリ部 11aから読み出された非照射時 の各 X線検出信号およびラグ画像用メモリ部 l ibから読み出されたラグ画像に基づ V、てラグ画像取得部 9bはそのラグ画像を補正して類推して、補正後のラグ画像をラ グ画像用メモリ部 l ibに書き込んで記憶する(図 10を参照)。また、後述する実施例 3 では、ラグ画像の取得については後述する再帰的な加重平均(リカーシブ処理)によ つて行われる(図 13を参照)。 [0037] In the first embodiment, the lag image acquisition unit 9bZ lag image analogy unit 9c acquires the lag image based on each non-irradiation X-ray detection signal read from the non-irradiation signal memory unit 11a. analogy The lag image memory unit l ib is then written and stored (see FIG. 4). In Example 2 to be described later, the lag image acquisition unit 9b acquires a lag image based on each non-irradiation X-ray detection signal read from the non-irradiation signal memory unit 11a. Lag image memory unit 1 lb is written and stored, and each non-irradiated X-ray detection signal read from the non-irradiation signal memory unit 11a and lag image memory unit ib read from the lag image memory unit 11a. Based on the image, the lag image acquisition unit 9b corrects and analogizes the lag image, and writes and stores the corrected lag image in the lag image memory unit ib (see FIG. 10). In Example 3 described later, the acquisition of the lag image is performed by a recursive weighted average (recursive processing) described later (see FIG. 13).
[0038] FPD3は、図 2に示すように、ガラス基板 31と、ガラス基板 31上に形成された薄膜ト ランジスタ TFTと力も構成されている。薄膜トランジスタ TFTについては、図 2、図 3に 示すように、縦'横式 2次元マトリクス状配列でスイッチング素子 32が多数個(例えば 、 1024個 X 1024個)形成されており、キャリア収集電極 33ごとにスイッチング素子 32 が互いに分離形成されている。すなわち、 FPD3は、 2次元アレイ放射線検出器でも ある。 As shown in FIG. 2, the FPD 3 also includes a glass substrate 31, a thin film transistor TFT formed on the glass substrate 31, and a force. As shown in FIG. 2 and FIG. 3, the thin film transistor TFT has a large number of switching elements 32 (for example, 1024 × 1024) formed in a vertical and horizontal two-dimensional matrix arrangement. The switching elements 32 are formed separately from each other. In other words, FPD3 is also a two-dimensional array radiation detector.
[0039] 図 2に示すようにキャリア収集電極 33の上には X線感応型半導体 34が積層形成さ れており、図 2、図 3に示すようにキャリア収集電極 33は、スイッチング素子 32のソー ス Sに接続されて!、る。ゲートドライバ 35からは複数本のゲートバスライン 36が接続さ れているとともに、各ゲートバスライン 36はスイッチング素子 32のゲート Gに接続され ている。一方、図 3に示すように、電荷信号を収集して 1つに出力するマルチプレクサ 37には増幅器 38を介して複数本のデータバスライン 39が接続されているとともに、 図 2、図 3に示すように各データバスライン 39はスイッチング素子 32のドレイン Dに接 続されている。  As shown in FIG. 2, an X-ray sensitive semiconductor 34 is laminated on the carrier collection electrode 33, and the carrier collection electrode 33 of the switching element 32 is formed as shown in FIGS. Connected to source S! A plurality of gate bus lines 36 are connected from the gate driver 35, and each gate bus line 36 is connected to the gate G of the switching element 32. On the other hand, as shown in FIG. 3, a multiplexer 37 that collects charge signals and outputs them to one is connected to a plurality of data bus lines 39 via amplifiers 38, as shown in FIGS. Thus, each data bus line 39 is connected to the drain D of the switching element 32.
[0040] 図示を省略する共通電極にバイアス電圧を印加した状態で、ゲートバスライン 36の 電圧を印加(または OVに)することでスイッチング素子 32のゲートが ONされて、キヤ リア収集電極 33は、検出面側で入射した X線カゝら X線感応型半導体 34を介して変換 された電荷信号 (キャリア)を、スイッチング素子 32のソース Sとドレイン Dとを介してデ ータバスライン 39に読み出す。なお、スイッチング素子が ONされるまでは、電荷信 号はキャパシタ(図示省略)で暫定的に蓄積されて記憶される。各データバスライン 3 9に読み出された電荷信号を増幅器 38で増幅して、マルチプレクサ 37で 1つの電荷 信号にまとめて出力する。出力された電荷信号を AZD変 8でディジタルィ匕して X線検出信号として出力する。 [0040] With the bias voltage applied to the common electrode (not shown), the gate of the switching element 32 is turned ON by applying the voltage of the gate bus line 36 (or to OV), and the carrier collection electrode 33 is Then, the charge signal (carrier) converted through the X-ray sensitive semiconductor 34 incident on the detection surface side is read out to the data bus line 39 through the source S and drain D of the switching element 32. Until the switching element is turned on, the charge signal is The number is temporarily stored and stored in a capacitor (not shown). The charge signals read out to the data bus lines 39 are amplified by the amplifiers 38 and output together by the multiplexer 37 as one charge signal. The output charge signal is digitized by AZD converter 8 and output as an X-ray detection signal.
[0041] 次に、本実施例 1に係る非照射信号取得部 9aやラグ画像取得部 9bやラグ画像類 推部 9cや照射信号取得部 9dや X線画像取得部 9eやラグ補正部 9fによる一連の信 号処理について、図 5、図 8のタイミングチャートおよび図 6、図 7のフローチャートを 参照して説明する。なお、この処理では、前回の撮像における X線の照射の終了から 、今回の撮像における X線の照射までを例に採って説明する。  [0041] Next, by the non-irradiation signal acquisition unit 9a, the lag image acquisition unit 9b, the lag image estimation unit 9c, the irradiation signal acquisition unit 9d, the X-ray image acquisition unit 9e, and the lag correction unit 9f according to the first embodiment. A series of signal processing will be described with reference to the timing charts of FIGS. 5 and 8 and the flowcharts of FIGS. In this process, the process from the end of X-ray irradiation in the previous imaging to the X-ray irradiation in the current imaging will be described as an example.
[0042] (ステップ S1)待ち時間が経過したか?  [0042] (Step S1) Has the waiting time elapsed?
前回の撮像における X線の照射の終了から、図 5に示すように所定の待ち時間 T  From the end of X-ray irradiation in the previous imaging, a predetermined waiting time T as shown in Fig. 5
W  W
が経過したカゝ否かを判断する。照射の終了直後には時間遅れ分のうちの短時定数 成分ある 、は中時定数成分が多く含まれる。これら短 Z中時定数成分は短時間で減 衰し、減衰後は長時定数成分が支配的になり、ほぼ同じ強さで残留し続ける。そこで 、前回の撮像における X線の照射力 所定時間経過後の非照射時に X線検出信号 を取得するように待ち時間 T を設け、その待ち時間 T が経過してから、次のステツ  It is determined whether or not the time has passed. Immediately after the end of irradiation, a short time constant component or a medium time constant component is included in the time delay. These time constant components in the short Z decay in a short time, and after the decay, the long time constant component becomes dominant and remains at almost the same strength. Therefore, a waiting time T is set so that an X-ray detection signal is acquired at the time of non-irradiation after a predetermined time elapses in the previous imaging, and after the waiting time T has passed, the next step is taken.
W W  W W
プ S2に進むようにする。なお、待ち時間 T が経過したか否かの判断を、タイマ(図示  Proceed to step S2. Whether or not the waiting time T has elapsed is determined by a timer (illustrated
W  W
省略)によって行えばよい。すなわち、前回の撮像における X線の照射の終了と同時 にタイマをリセットして『0』にして、タイマのカウントを開始して、待ち時間 T に相当す  (Omitted). In other words, the timer is reset to “0” simultaneously with the end of X-ray irradiation in the previous imaging, and the timer starts counting, which corresponds to the waiting time T.
W  W
るカウントに達したら、待ち時間 T が経過したと判断すればよい。  It can be determined that the waiting time T has passed.
W  W
[0043] また、 FPD3個別のラグ特性にもよる力 待ち時間 T については 15秒程度が好ま  [0043] Also, the force waiting time T due to the individual lag characteristics of FPD3 is preferably about 15 seconds.
W  W
しぐ 30秒程あれば十分である。また、待ち時間 T は長いほど、例えば 30秒以上が  Just 30 seconds is enough. The longer the waiting time T is, for example, 30 seconds or more.
W  W
望ましいが、時間を長くとりすぎると撮影間の時間が延長してしまう。そこで、実際に は待ち時間 T は 3秒程度が現実的である。  Although it is desirable, if the time is too long, the time between photographing is extended. Therefore, in practice, the waiting time T is about 3 seconds.
W  W
[0044] (ステップ S2)非照射時の X線検出信号の取得  [0044] (Step S2) Acquisition of X-ray detection signal at non-irradiation
非照射信号取得部 9aは、待ち時間 T経過後の非照射時に各 X線検出信号をサン  The non-irradiation signal acquisition unit 9a samples each X-ray detection signal during non-irradiation after the waiting time T has elapsed.
W  W
プリング時間 ΔΤ1間隔毎に逐次に取得する。今回の撮像における X線の照射の開 始までのサンプリング回数を (N+ 1) (ただし、 K=0, 1, 2, · ··, Ν- 1, Νとする)とし 、待ち時間 T 経過直後に最初に取得する添え字を Κ = 0とする。そして、(K+ 1)番Pulling time Acquired sequentially every ΔΤ1 interval. Sampling count until the start of X-ray irradiation in this imaging is (N + 1) (where K = 0, 1, 2, ...,,-1, Ν) The first subscript to be acquired immediately after the waiting time T has elapsed is Κ = 0. And (K + 1) number
W W
目に取得する X線検出信号を I とすると、待ち時間 τ 経過直後に最初に取得される κ w  If the X-ray detection signal acquired by the eye is I, κ w is acquired first immediately after the waiting time τ elapses.
X線検出信号は Iとなり、今回の撮像における X線の照射の開始直前に取得される X  X-ray detection signal is I, X acquired immediately before the start of X-ray irradiation in this imaging
0  0
線検出信号は I となる。なお、サンプリング時間 ΔΤ1毎にステップ S2〜S5を続けて  The line detection signal is I. Note that steps S2 to S5 are continued every sampling time ΔΤ1.
N  N
行うとする。  Suppose you do.
[0045] (ステップ S3)今回の撮像に達したか?  [0045] (Step S3) Has this imaging been reached?
ステップ S2での X線検出信号の取得の時点、すなわちサンプリング時点力 今回 の撮像における X線の照射の開始に達したか (ここでは K=N+ 1になった力 )否かを 判断する。もし、達した場合には、ステップ S6に跳ぶ。もし、達していない場合には、 次のステップ S4に進む。  At the time of acquisition of the X-ray detection signal in step S2, that is, the sampling time force It is determined whether or not the start of X-ray irradiation in the current imaging has been reached (here, the force at which K = N + 1). If so, jump to step S6. If not, go to the next step S4.
[0046] (ステップ S4)Kの値を 1ずつ繰り上げる [0046] (Step S4) Raise K by 1
添え字 Kの値を 1ずつ繰り上げて、次のサンプリングのために準備する。  Prepare the next sampling by incrementing the value of the subscript K by one.
[0047] (ステップ S5)前の X線検出信号の棄却 [0047] Reject X-ray detection signal before (Step S5)
ステップ S2で非照射信号取得部 9aによって取得された X線検出信号 Iを非照射  X-ray detection signal I acquired by non-irradiation signal acquisition unit 9a in step S2 is not irradiated
K  K
信号用メモリ部 11aに書き込んで記憶する。このとき、 X線検出信号 Iよりも前々の時  Write and store in the signal memory unit 11a. At this time, before X-ray detection signal I
K  K
点で取得された X線検出信号 I (すなわち前々回の X線検出信号)は不要となるの  The X-ray detection signal I acquired at the point (ie, the previous X-ray detection signal) is no longer necessary.
K-2  K-2
で棄却する。したがって、最新の X線検出信号および前の時点で取得された X線検 出信号のみが非照射信号用メモリ部 11aに記憶されることになる。なお、ステップ S4 で K=0から K= 1に繰り上げてステップ S5に進んだ場合と、ステップ S4で Κ= 1から Κ= 2に繰り上げてステップ S5に進んだ場合には、 X線検出信号 Iよりも前々の時点  Reject with. Therefore, only the latest X-ray detection signal and the X-ray detection signal acquired at the previous time point are stored in the non-irradiation signal memory unit 11a. In step S4, if X is increased from K = 0 to K = 1 and the process proceeds to step S5, or if step S4 is increased from Κ = 1 to Κ = 2 and the process proceeds to step S5, the X-ray detection signal I Earlier than
0  0
では X線検出信号は存在しないので棄却する必要がない。そして、次のサンプリング のためにステップ S2に戻って、サンプリング時間 ΔΤ1間隔毎にステップ S2〜S5を 繰り返して行う。本実施例 1では前々回の X線検出信号を棄却して最新の X線検出 信号および前の時点で取得された X線検出信号のみを残した力 もちろん、必ずしも 棄却する必要はない。上述したステップ S2〜S5は、この発明における非照射信号 取得工程に相当する。  Since there is no X-ray detection signal, there is no need to reject it. Then, return to step S2 for the next sampling, and repeat steps S2 to S5 every sampling time ΔΤ1 interval. In the first embodiment, the force that rejects the previous X-ray detection signal and leaves only the latest X-ray detection signal and the X-ray detection signal acquired at the previous time, of course, does not necessarily need to be rejected. Steps S2 to S5 described above correspond to the non-irradiation signal acquisition step in this invention.
[0048] (ステップ S6)ラグ画像の取得 Z類推 [0048] (Step S6) Acquisition of lag image Z analogy
ステップ S3でサンプリング時点が今回の撮像における X線の照射の開始に達した ら、ステップ S2で取得された (N+ 1)番目の X線検出信号 Iおよび前の時点である N In step S3, the sampling time reached the start of X-ray irradiation in the current imaging The (N + 1) th X-ray detection signal I acquired in step S2 and the previous time N
N  N
番目の X線検出信号 I のうち、前の時点である N番目の X線検出信号 I を過去  The Nth X-ray detection signal I that was the previous point in time
N- 1 N- 1 のラグ情報として、その X線検出信号 Iおよび過去のラグ情報 (X線検出信号 I )に  N- 1 As the lag information of N-1, the X-ray detection signal I and the past lag information (X-ray detection signal I)
N N- 1 基づいて今回のラグ情報であるラグ画像を取得 z類推する。すなわち、ラグ画像取 得部 9bZラグ画像類推部 9cは、今回の撮像における X線の照射の開始直前に取得 された X線検出信号 Iおよび前の時点で取得された X線検出信号 I を非照射信号  Obtain the lag image that is the current lag information based on N N- 1 z Analogy. That is, the lag image acquisition unit 9bZ lag image analogy unit 9c does not receive the X-ray detection signal I acquired immediately before the start of X-ray irradiation in this imaging and the X-ray detection signal I acquired at the previous time point. Irradiation signal
N N- 1  N N- 1
用メモリ部 11aから読み出して、ステップ S601で係数を求め(図 7を参照)、ステップ S602で係数を用いてラグ画像を類推する(図 7を参照)。  The data is read from the memory unit 11a, the coefficient is obtained in step S601 (see FIG. 7), and the lag image is estimated using the coefficient in step S602 (see FIG. 7).
[0049] (ステップ S601)係数を求める [0049] (Step S601) Obtain coefficients
X線の照射の開始直前に取得された X線検出信号 I  X-ray detection signal I acquired just before the start of X-ray irradiation I
Nを分子にして、前の時点で取 得された X線検出信号 I を分母にして、下記(1)式のように係数 Cを求める。  Using N as the numerator, the X-ray detection signal I obtained at the previous time point is used as the denominator, and the coefficient C is obtained as shown in the following equation (1).
N- 1 N  N- 1 N
[0050] C =1 ÷Ι · '· (1)  [0050] C = 1 ÷ Ι · '· (1)
N N N- 1  N N N- 1
したがって、係数 C  Therefore, the coefficient C
Nは、過去の非照射時に取得された X線検出信号に関する信号 比で表された係数であって、具体的にはステップ S2〜S5で取得された過去の X線 検出信号 (X線検出信号 I )に関する信号比で表された係数である。係数 C は、こ  N is a coefficient expressed by the signal ratio related to the X-ray detection signal acquired during the past non-irradiation. Specifically, the past X-ray detection signal (X-ray detection signal acquired in steps S2 to S5). I) is a coefficient expressed as a signal ratio. The coefficient C is
N- 1 N の発明における過去の非照射時に取得された放射線検出信号に関する信号比で表 された係数に相当し、この発明における非照射信号取得工程で取得された過去の放 射線検出信号に関する信号比で表された係数にも相当し、この発明における過去の ラグ情報にも相当する。  Corresponds to the coefficient represented by the signal ratio related to the radiation detection signal acquired during past non-irradiation in the N- 1 N invention, and the signal related to the past radiation detection signal acquired in the non-irradiation signal acquisition process in this invention. This also corresponds to the coefficient expressed as a ratio, and also corresponds to past lag information in the present invention.
[0051] (ステップ S602)係数を用いてラグ画像を類推 [0051] (Step S602) Analogize lag images using coefficients
ステップ S601で求められた係数 Cを用いて、下記(2)式のようにラグ画像 Lを求  Using the coefficient C obtained in step S601, the lag image L is obtained as shown in equation (2) below.
N X  N X
める。  I will.
[0052] L =C X I - -- (2)  [0052] L = C X I--(2)
X N N  X N N
上記(2)式のように、 X線の照射の開始直前に取得された X線検出信号 I に係数 C  As shown in equation (2) above, the coefficient C is applied to the X-ray detection signal I acquired immediately before the start of X-ray irradiation.
N  N
Nを乗算することでラグ画像 L  Lag image L by multiplying N
Xを取得 Z類推する。そして、ラグ画像取得部 9bZラグ 画像類推部 9cで取得,類推されたラグ画像 Lをラグ画像用メモリ部 1 lbに書き込ん  Get X Z analogy. Then, the lag image acquisition unit 9bZ lag image analogization unit 9c writes and analogizes the lag image L to the lag image memory unit 1 lb.
X  X
で記憶する。このステップ S601, 602を含んだステップ S6は、この発明におけるラグ 画像取得工程およびラグ画像類推工程に相当する。 [0053] なお、本実施例 1では、画像処理部 9での説明でも述べたように、ラグ画像取得ェ 程とラグ画像類推工程とは同一工程であって、ラグ画像取得工程でのラグ画像の取 得を行うことで、ラグ画像類推工程でのラグ画像の類推を行っている。したがって、ラ グ画像取得工程でのラグ画像の取得と、ラグ画像類推工程でのラグ画像の類推とが 同義である。 Remember me. Step S6 including steps S601 and 602 corresponds to the lag image acquisition step and the lag image analogy step in the present invention. In the first embodiment, as described in the description of the image processing unit 9, the lag image acquisition process and the lag image analogization process are the same process, and the lag image in the lag image acquisition process. As a result, the lag image is analogized in the lag image analogy process. Therefore, the acquisition of the lag image in the lag image acquisition process and the analogy of the lag image in the lag image analogization process are synonymous.
[0054] (ステップ S7)照射時の X線検出信号の取得  [0054] (Step S7) Acquisition of X-ray detection signal during irradiation
今回の撮像における X線の照射を終了すると、その照射によって得られた照射時の X線検出信号を照射信号取得部 9dは取得する。照射信号取得部 9dで取得された 照射時の X線検出信号を照射信号用メモリ部 1 lcに書き込んで記憶する。このステツ プ S7は、この発明における照射信号取得工程に相当する。  When the X-ray irradiation in the current imaging is finished, the irradiation signal acquisition unit 9d acquires the X-ray detection signal at the time of irradiation obtained by the irradiation. The X-ray detection signal at the time of irradiation acquired by the irradiation signal acquisition unit 9d is written and stored in the irradiation signal memory unit 1lc. This step S7 corresponds to the irradiation signal acquisition step in the present invention.
[0055] (ステップ S8)今回の撮像での X線画像の取得 [0055] (Step S8) Acquisition of X-ray image by current imaging
ステップ S7で取得された照射時の X線検出信号に基づ 、て、今回の撮像の対象と なる X線画像を X線画像取得部 9eは取得する。この X線画像を Xとする。 X線画像取 得部 9eによって取得された X線画像 Xを X線画像用メモリ部 l idに書き込んで記憶 する。このステップ S8は、この発明における放射線画像取得工程に相当する。また、 X線画像 Xは、この発明における撮像の対象となる放射線画像に相当する。  Based on the X-ray detection signal at the time of irradiation acquired in step S7, the X-ray image acquisition unit 9e acquires the X-ray image to be captured this time. Let this X-ray image be X. The X-ray image X acquired by the X-ray image acquisition unit 9e is written and stored in the X-ray image memory unit id. This step S8 corresponds to the radiation image acquisition step in this invention. Further, the X-ray image X corresponds to a radiographic image to be imaged in the present invention.
[0056] (ステップ S9)ラグ補正 [0056] (Step S9) Lag correction
ラグ補正部 9fは、ステップ S6で取得されたラグ画像 Lをラグ画像用メモリ部 l ibか  The lag correction unit 9f uses the lag image L acquired in step S6 as the lag image memory unit l ib.
X  X
ら読み出すとともに、ステップ S8で取得された X線画像 Xを X線画像用メモリ部 l idか ら読み出して、 X線画像 Xからラグ画像 Lを減算する。ラグ補正後の X線画像を Yと  The X-ray image X acquired in step S8 is read from the X-ray image memory unit l id and the lag image L is subtracted from the X-ray image X. The X-ray image after lag correction is
X  X
すると、 Y=X-Lとなる。  Then Y = X-L.
X  X
[0057] なお、実際には、今回の撮像における X線の照射のタイミングは必ずしも予め決定 されているわけでない。したがって、 K=N+ 1に達するタイミングも必ずしも事前にわ 力つているわけでない。そこで、実際には、上述したステップ S2〜S5をサンプリング 時間間隔毎に繰り返し行って、ステップ S3でサンプリング時点が今回の撮像におけ る X線の照射の開始に達したとき力 K=N+ 1に達したタイミングとなる。もちろん、 今回の撮像における X線の照射のタイミングが予め決定されている場合には、 K=N + 1に達するタイミングも事前にわかって 、るので、 Nの値を予め決定して K = N+ 1 に達したタイミングに合わせて、サンプリング時点が今回の撮像における X線の照射 の開始に達するように設定してもよい。このステップ S9は、この発明におけるラグ補正 工程に相当する。 [0057] In practice, the timing of X-ray irradiation in the current imaging is not necessarily determined in advance. Therefore, the timing to reach K = N + 1 is not always in advance. Therefore, in practice, steps S2 to S5 described above are repeatedly performed at every sampling time interval, and when the sampling time reaches the start of X-ray irradiation in the current imaging in step S3, the force K = N + 1 is set. It is time to reach. Of course, if the timing of X-ray irradiation in this imaging is determined in advance, the timing of reaching K = N + 1 is also known in advance, so the value of N is determined in advance and K = N + 1 The sampling time may be set so as to reach the start of X-ray irradiation in the current imaging in accordance with the timing of reaching. This step S9 corresponds to the lag correction step in this invention.
[0058] 以上のように構成された本実施例 1によれば、非照射信号取得部 9aは、フラットパ ネル型 X線検出器 (FPD) 3から検出された複数の X線検出信号 (本実施例 1では I ,  [0058] According to the first embodiment configured as described above, the non-irradiation signal acquisition unit 9a includes a plurality of X-ray detection signals (this embodiment) detected from the flat panel X-ray detector (FPD) 3. In Example 1, I,
0 0
1 , 1 , · ··, I , I )を撮像における X線の照射前の非照射時に取得する。その非照1, 1, ..., I, I) are acquired at the time of non-irradiation before X-ray irradiation in imaging. Non-light
1 2 N- 1 N 1 2 N- 1 N
射信号取得部 9aで取得されたそれら X線検出信号に基づくラグ情報のうち、過去の ラグ情報 (本実施例 1では、前の時点で取得された X線検出信号 I および係数 C )  Among the lag information based on the X-ray detection signals acquired by the radiation signal acquisition unit 9a, the past lag information (in the first embodiment, the X-ray detection signal I and the coefficient C acquired at the previous time point)
N- 1 N に基づいて、ラグ画像類推部 9cは、今回のラグ情報 (ラグ画像 L )を求めて類推する  Based on N- 1 N, the lag image analogy unit 9c obtains the current lag information (lag image L) and performs analogy
X  X
[0059] 一方、照射信号取得部 9dは、 FPD3から検出された X線検出信号を撮像における X線の照射時に取得する。その照射信号取得部 9dで取得された X線検出信号に基 づいて、 X線画像取得部 9eは、撮像の対象となる X線画像を取得する。 On the other hand, the irradiation signal acquisition unit 9d acquires the X-ray detection signal detected from the FPD 3 at the time of X-ray irradiation in imaging. Based on the X-ray detection signal acquired by the irradiation signal acquisition unit 9d, the X-ray image acquisition unit 9e acquires an X-ray image to be imaged.
[0060] そして、その X線画像取得部 9eで取得された X線画像から、上述したラグ画像類推 部 9cで類推されたラグ画像を用いてラグ除去することで、 X線検出信号に含まれる時 間遅れ分を X線検出信号力 除去することによる時間遅れ分に関するラグ補正をラグ 補正部 9fが行う。  [0060] Then, lag removal is performed from the X-ray image acquired by the X-ray image acquisition unit 9e using the lag image estimated by the lag image estimation unit 9c described above, thereby being included in the X-ray detection signal. The lag correction unit 9f performs lag correction related to the time lag by removing the time lag from the X-ray detection signal force.
[0061] このように、上述した特許文献 2のように X線検出信号を取得するサンプリングの回 数分、再帰的演算処理を行ってラグ補正を行う必要がない。さらには、過去のラグ情 報 (X線検出信号 I および係数 C )に基づ ヽてラグ画像類推部 9cは今回のラグ情  In this way, it is not necessary to perform lag correction by performing recursive arithmetic processing for the number of times of sampling for acquiring an X-ray detection signal as in Patent Document 2 described above. Furthermore, based on the past lag information (X-ray detection signal I and coefficient C), the lag image estimation unit 9c
N- 1 N  N- 1 N
報 (ラグ画像 L )を求めて類推するので、前回の撮像における X線の照射から、それ  Report (lag image L) and analogize it.
X  X
ほどの時間(1分以内)が経過して!/、な!/、場合で、非照射時の X線検出信号 I (ラグ  The time has passed (within 1 minute)! / Wow! / In some cases, X-ray detection signal I (lag
N  N
の量)が時々刻々と減衰(図 8を参照)して 、ても、過去のラグ情報を考慮したラグ画 像を類推することができる。その結果、時間遅れ分であるラグデータを適切に類推す ることができる。したがって、この類推されたラグ画像を用いてラグ除去するだけで、ラ グデータである時間遅れ分を適切に類推しつつ、 X線検出信号に含まれる時間遅れ 分を X線検出信号力も簡易に除去することができる。また、上述した特許文献 1のよう なバックライトを用いる必要がなぐ装置の構造が複雑化となることもない。 [0062] なお、後述する実施例 2, 3も含めて、本実施例 1では、各画素ごとに係数 C (後述 However, even if the amount of lag decreases (see Fig. 8), it is possible to infer a lag image considering past lag information. As a result, the lag data, which is the time delay, can be estimated appropriately. Therefore, by simply removing the lag using this analogized lag image, the time delay included in the X-ray detection signal can be easily removed while also properly estimating the time delay as the lag data. can do. Further, the structure of the apparatus that does not require the use of a backlight as in Patent Document 1 described above does not become complicated. [0062] It should be noted that in Example 1, including Examples 2 and 3 described later, a coefficient C (described later) is set for each pixel.
N  N
する実施例 2, 3では補正係数)を求め、各係数に基づいて今回のラグ情報である(ラ グ画像 L )を各画素ごとに求めるのが好ましい。各画素ごとにラグデータの減衰特性 In the second and third embodiments, the correction coefficient) is preferably obtained, and the current lag information (lag image L) is preferably obtained for each pixel based on each coefficient. Lag data attenuation characteristics for each pixel
X X
が異なるので、このように求めることでラグのない良質な X線画像を得ることができる。  Therefore, a high-quality X-ray image with no lag can be obtained by calculating in this way.
[0063] 後述する実施例 2, 3も含めて、本実施例 1では、前回の撮像における X線の照射 から所定時間(本実施例 1では待ち時間 T )経過後の非照射時に複数の X線検出 [0063] In the present embodiment 1, including later-described embodiments 2 and 3, a plurality of X's at the time of non-irradiation after the elapse of a predetermined time (the waiting time T in the present embodiment 1) has elapsed since the X-ray irradiation in the previous imaging. Line detection
W  W
信号を取得することで、今回の撮像における X線の照射前の非照射時での複数の X 線検出信号を取得している。前回の撮像における X線の照射が終了して非照射状態 に移行すれば、時間遅れ分のうちの短時定数成分あるいは中時定数成分は短時間 で減衰し、減衰後は長時定数成分が支配的になり、ほぼ同じ強さで残留し続ける。し たがって、従来であれば、前回の撮像における X線の照射が終了した直後に、 X線 検出信号を取得すると短 Z中時定数成分が含まれた状態で信号が取得されて、短 /中時定数成分の時間遅れ分まで正しく除去することができな 、。このことは図 8や 従来の図 16でも説明したとおりである。そこで、この発明のように過去のラグ情報に 基づいて今回のラグ情報を求めてラグ画像を類推することで、短 Z中時定数成分の 時間遅れ分も含めて過去のラグ情報を考慮した考慮したラグ画像を類推することが できて、前回の撮像における X線の照射力も所定時間(本実施例 1では待ち時間 T  By acquiring the signals, multiple X-ray detection signals at the time of non-irradiation before X-ray irradiation in this imaging are acquired. When the X-ray irradiation in the previous imaging is completed and the state shifts to the non-irradiation state, the short time constant component or medium time constant component of the time delay is attenuated in a short time, and after attenuation, the long time constant component is It becomes dominant and continues to remain at about the same strength. Therefore, conventionally, when an X-ray detection signal is acquired immediately after the end of X-ray irradiation in the previous imaging, a signal is acquired with a short Z medium time constant component, and the short / The time delay of the medium time constant component cannot be correctly removed. This is the same as explained in Fig. 8 and conventional Fig. 16. Therefore, as in the present invention, the present lag information is obtained based on the past lag information and the lag image is inferred, thereby taking into account the past lag information including the time delay of the short Z medium time constant component. The lag image can be inferred, and the X-ray irradiation power in the previous imaging is also the predetermined time (in this example 1, the waiting time T
W  W
)経過後でなくとも短 Z中時定数成分の時間遅れ分を正しく除去することができる。  ) The time delay component of the short Z medium time constant component can be correctly removed even after the passage of time.
[0064] もちろん、本実施例 1のように、前回の撮像における X線の照射力も所定時間経過 後の非照射時に複数の X線検出信号を取得してもよいし、前回の撮像における X線 の照射から、それほどの時間が経過せずに非照射時に複数の X線検出信号を取得 してもよい。本実施例 1のように、前回の撮像における X線の照射力 所定時間経過 後の非照射時に複数の X線検出信号を取得することで、今回の撮像における X線の 照射前の非照射時での複数の X線検出信号を取得することになり、所定時間経過後 に残留して 、る長時定数成分のみが含まれた状態で信号が取得されるので、短 Z中 時定数成分の時間遅れ分がなぐかつ長時定数成分の時間遅れ分をも正確に除去 することができる。 [0064] Of course, as in the first embodiment, the X-ray irradiation power in the previous imaging may be acquired as a plurality of X-ray detection signals at the time of non-irradiation after a predetermined time has passed, or the X-rays in the previous imaging may be acquired. Multiple X-ray detection signals may be acquired during non-irradiation without much time elapse from irradiation. As in Example 1, the X-ray irradiation power in the previous imaging is acquired at the time of non-irradiation before X-ray irradiation in the current imaging by acquiring multiple X-ray detection signals at the time of non-irradiation after the lapse of a predetermined time. Multiple X-ray detection signals at the time of acquisition, and the signal is acquired with only a long time constant component remaining after a predetermined time has elapsed. It is possible to accurately remove the time delay of the long time constant component with no time delay.
実施例 2 [0065] 次に、図面を参照してこの発明の実施例 2を説明する。図 9は、実施例 2, 3に係る X線透視撮影装置のブロック図であり、図 10は、実施例 2に係る画像処理部およびメ モリ部に関するデータの流れを示した概略図である。上述した実施例 1と共通する箇 所については同じ符号を付してその説明を省略する。後述する実施例 3も含めて、実 施例 2に係る X線透視撮影装置は、図 9に示すように、ラグ画像取得部 9bとラグ画像 類推部 9cとは互いに兼用せずにそれぞれ個別に独立している点を除けば、実施例 1 に係る X線透視撮影装置と同様の構成である。また、図 10の画像処理部 9およびメ モリ部 11に関するデータの流れや、非照射信号取得部 9aやラグ画像取得部 9bゃラ グ画像類推部 9cや照射信号取得部 9dや X線画像取得部 9eやラグ補正部 9fによる 一連の信号処理についても、実施例 1と異なる。 Example 2 Next, Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 9 is a block diagram of the fluoroscopic imaging apparatus according to the second and third embodiments, and FIG. 10 is a schematic diagram illustrating a data flow regarding the image processing unit and the memory unit according to the second embodiment. The portions common to the above-described first embodiment are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIG. 9, the X-ray fluoroscopic apparatus according to Example 2, including Example 3 to be described later, separately uses the lag image acquisition unit 9b and the lag image analogy unit 9c separately from each other. Except for being independent, the configuration is the same as that of the fluoroscopic imaging apparatus according to the first embodiment. In addition, the data flow related to the image processing unit 9 and the memory unit 11 in FIG. 10, the non-irradiation signal acquisition unit 9a, the lag image acquisition unit 9b, the lag image analogy unit 9c, the irradiation signal acquisition unit 9d, and the X-ray image acquisition The series of signal processing by the unit 9e and the lag correction unit 9f is also different from the first embodiment.
[0066] 本実施例 2では、図 10に示すように、非照射信号用メモリ部 11aから読み出された 非照射時の各 X線検出信号に基づ 、てラグ画像取得部 9bはラグ画像を取得して、ラ グ画像用メモリ部 l ibに書き込んで記憶し、非照射信号用メモリ部 11aから読み出さ れた非照射時の各 X線検出信号およびラグ画像用メモリ部 l ibから読み出されたラ グ画像に基づ!、てラグ画像類推部 9cはそのラグ画像を補正して類推して、補正後の ラグ画像をラグ画像用メモリ部 1 lbに書き込んで記憶する。前回のラグ画像を過去の ラグ情報とすると、ラグ画像取得部 9bで取得されたラグ画像を上述した過去のラグ情 報 (前回のラグ画像)に基づいて補正することで、ラグ画像類推部 9cは補正後のラグ 画像を類推する。本実施例 2の場合には、ラグ画像の類推は、先に得られた補正前 のラグ画像の補正の機能を含んでおり、ラグ画像取得部 9bによるラグ画像の取得の 後に、ラグ画像を類推するために先に得られた補正前のラグ画像の補正をラグ画像 類推部 9cにより行う。  In the second embodiment, as shown in FIG. 10, the lag image acquisition unit 9b performs lag image based on each non-irradiation X-ray detection signal read from the non-irradiation signal memory unit 11a. Is acquired and stored in the lag image memory unit l ib, read from the non-irradiation signal memory unit 11a and read from each non-irradiated X-ray detection signal and lag image memory unit l ib. Based on the lag image, the lag image analogizing unit 9c corrects and analogizes the lag image, and writes and stores the corrected lag image in the lag image memory unit 1 lb. If the previous lag image is the past lag information, the lag image obtained by the lag image acquisition unit 9b is corrected based on the above-mentioned past lag information (previous lag image), so that the lag image analogy unit 9c Infers the corrected lag image. In the case of the second embodiment, the analogy of the lag image includes a function of correcting the lag image obtained before correction, and the lag image is acquired after the lag image acquisition unit 9b acquires the lag image. In order to make an analogy, the lag image obtained before correction is corrected by the lag image analogy unit 9c.
[0067] 次に、本実施例 2に係る非照射信号取得部 9aやラグ画像取得部 9bやラグ画像類 推部 9cや照射信号取得部 9dや X線画像取得部 9eやラグ補正部 9fによる一連の信 号処理について、図 11、図 12のフローチャートを参照して説明する。なお、上述した 実施例 1と共通するステップについては、同じ番号を付してその説明を省略する。  [0067] Next, the non-irradiation signal acquisition unit 9a, the lag image acquisition unit 9b, the lag image estimation unit 9c, the irradiation signal acquisition unit 9d, the X-ray image acquisition unit 9e, and the lag correction unit 9f according to the second embodiment. A series of signal processing will be described with reference to the flowcharts in FIGS. Note that the steps common to the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
[0068] (ステップ S1)待ち時間が経過したか?  [0068] (Step S1) Has the waiting time elapsed?
上述した実施例 1と同じように、前回の撮像における X線の照射の終了から待ち時 間 T が経過したか否かを判断する。待ち時間 Τ が経過してから、次のステップ S12As in the case of Example 1 described above, it is waited after the end of X-ray irradiation in the previous imaging. Judge whether the interval T has elapsed. After waiting time Τ has passed, the next step S12
W W W W
に進む。  Proceed to
[0069] (ステップ S12)非照射時の X線検出信号の取得  [0069] (Step S12) Acquisition of X-ray detection signal at non-irradiation
上述した実施例 1と同じように、待ち時間 Τ経過後の非照射時に各 X線検出信号  As in Example 1 above, each X-ray detection signal during non-irradiation after elapse of waiting time
W  W
をサンプリング時間 ΔΤ1間隔 (例えば 1Z30秒)毎に逐次に取得する。ただし、本実 施例 2では、後述する説明から明らかなように、 8番目の X線検出信号 17 (すなわち Κ = 7)を取得するまでは、待ち時間 Τ経過直後に最初に取得された X線検出信号 I Are acquired sequentially every sampling time ΔΤ1 interval (for example, 1Z30 seconds). However, in Example 2, as will be apparent from the following description, until the eighth X-ray detection signal 1 7 (that is, Κ = 7) is acquired, it is first acquired immediately after the elapse of the waiting time Τ. X-ray detection signal I
W 0 カゝら 7番目に取得された X線検出信号 Iまでは棄却されずに、非照射信号用メモリ部  Non-irradiated signal memory section without being rejected until the seventh X-ray detection signal I obtained from W 0
6  6
1 laに記憶された状態である。なお、サンプリング時間間隔毎にステップ S12〜S14 を続けて行うとする。  1 la memorized. It is assumed that steps S12 to S14 are continuously performed at every sampling time interval.
[0070] (ステップ S13)K= 7 ? [0070] (Step S13) K = 7?
添え字 Kが 7になったか、すなわちサンプリング時点が 8番目に達したか(ここでは K Whether the subscript K has reached 7, that is, whether the sampling time has reached 8th (here K
= 7になった力 )否かを判断する。もし、達した場合には、ステップ S2に跳ぶ。もし、達 していない場合には、次のステップ S14に進む。 = Power that reaches 7) Judge whether or not. If so, jump to step S2. If not, go to the next step S14.
[0071] (ステップ S14)Kの値を 1ずつ繰り上げる [0071] (Step S14) Raise the value of K by 1
上述した実施例 1と同じように、添え字 Kの値を 1ずつ繰り上げて、次のサンプリング のために準備する。そして、 8番目の X線検出信号 I (すなわち K= 7)を取得するま では、ステップ S12で非照射信号取得部 9aによって取得された各 X線検出信号 Iを  As in Example 1 above, the value of the subscript K is incremented by 1 to prepare for the next sampling. Until the eighth X-ray detection signal I (that is, K = 7) is acquired, each X-ray detection signal I acquired by the non-irradiation signal acquisition unit 9a in step S12 is obtained.
K  K
順に非照射信号用メモリ部 11aに書き込んで記憶する。このとき、 X線検出信号 Iより  The non-irradiation signal memory unit 11a is sequentially written and stored. At this time, from X-ray detection signal I
K  K
も前の時点で取得された X線検出信号 I  X-ray detection signal I acquired at the previous time
K- 1については棄却せずに、非照射信号用メ モリ部 11aに記憶した状態として、 X線検出信号が 8個分になるまで蓄積する。そして 、次のサンプリングのためにステップ S12に戻って、サンプリング時間間隔毎にステツ プ S 12〜S 14を繰り返して行う。  K-1 is not rejected, but is stored in the non-irradiation signal memory unit 11a until it contains eight X-ray detection signals. Then, the process returns to step S12 for the next sampling, and steps S12 to S14 are repeated every sampling time interval.
[0072] (ステップ S21)ラグ画像の取得 [0072] (Step S21) Acquisition of a lag image
ステップ S13でサンプリング時点が 8番目に達したら、非照射信号用メモリ部 11aか ら読み出された非照射時の各 X線検出信号に基づいてラグ画像取得部 9bはラグ画 像を取得する。具体的には、上述したように、非照射信号用メモリ部 11aには 8個分 の X線検出信号が常に記憶されるようにしており、ステップ S2で新たに最新の X線検 出信号が非照射信号用メモリ部 11aに記憶されると、後述するステップ S51で最古の X線検出信号のみが棄却されるようになっている。一方、非照射信号用メモリ部 11a に記憶された (K— 6)番目の X線検出信号 I カゝら (K+ 1)番目の X線検出信号 Iま When the sampling time reaches the eighth in step S13, the lag image acquisition unit 9b acquires a lag image based on each non-irradiation X-ray detection signal read from the non-irradiation signal memory unit 11a. Specifically, as described above, eight X-ray detection signals are always stored in the non-irradiation signal memory unit 11a, and the latest X-ray detection is newly performed in step S2. When the output signal is stored in the non-irradiation signal memory unit 11a, only the oldest X-ray detection signal is rejected in step S51 described later. On the other hand, the (K−6) th X-ray detection signal I stored in the non-irradiation signal memory unit 11a and the (K + 1) th X-ray detection signal I are stored.
K-7 K での 8個分の信号に基づいてラグ画像 Lを求める。具体的には、これらの信号の平  The lag image L is obtained based on 8 signals at K-7 K. Specifically, the level of these signals
K  K
均をラグ画像 Lとして求める(L =∑1 /8、ただし∑は1=:«:—7〜:《:の総和)。そし  The average is obtained as a lag image L (L = ∑1 / 8, where ∑ is 1 =: «: -7 to: <<: the sum of :). So
K K i  K K i
て、ラグ画像取得部 9bで取得されたラグ画像をラグ画像用メモリ部 1 lbに書き込んで 記憶する。このステップ S21は、この発明におけるラグ画像取得工程に相当する。  Then, the lag image acquired by the lag image acquisition unit 9b is written and stored in the lag image memory unit 1 lb. This step S21 corresponds to the lag image acquisition step in this invention.
[0073] (ステップ S611)補正係数を求める [0073] (Step S611) Obtain Correction Factor
(K+ 1)番目の X線検出信号 Iおよび前回のラグ画像 L のうち、前回のラグ画像  Of the (K + 1) th X-ray detection signal I and the previous lag image L, the previous lag image
K K- 1  K K- 1
L を過去のラグ情報として、その X線検出信号 Iおよび過去のラグ情報 (X線検出 With L as past lag information, the X-ray detection signal I and past lag information (X-ray detection)
K- 1 K K- 1 K
信号し )に基づ 、てラグ画像 Lを補正して、今回のラグ情報である補正後のラグ Lag image L is corrected based on the
K- 1 K K- 1 K
画像 Lを類推する。すなわち、ラグ画像類推部 9cは、(K+ 1)番目の X線検出信号 I Analogize image L. That is, the lag image analogizing unit 9c performs the (K + 1) th X-ray detection signal I
X X
を非照射信号用メモリ部 11aから読み出すとともに、前回のラグ画像 L をラグ画 Is read from the non-irradiation signal memory unit 11a and the previous lag image L
K K- 1 K K- 1
像用メモリ部 l ibから読み出して、このステップ S611で補正係数を求め、後述するス テツプ S612で補正係数を用いてラグ画像を補正することで類推する。 (K+ 1)番目 の X線検出信号 Iを分子にして、前回のラグ画像 L を分母にして、下記(1) '式の  This is estimated by reading out from the image memory unit l ib, obtaining a correction coefficient in step S611, and correcting the lag image using the correction coefficient in step S612 described later. Using the (K + 1) th X-ray detection signal I as the numerator and the previous lag image L as the denominator,
K K- 1  K K- 1
ように補正係数 cを求める。  The correction coefficient c is obtained as follows.
K  K
[0074] C =1 ÷L  [0074] C = 1 ÷ L
K K K- 1 ·'· (1Γ  K K K- 1
したがって、補正係数 C は、過去の非照射時に取得された X線検出信号に関する  Therefore, the correction factor C is related to the X-ray detection signal acquired during past non-irradiation.
K  K
信号比で表された係数であって、具体的にはステップ S2〜S5で取得された過去の X線検出信号に関する、かつ前回のラグ画像 L の信号比で表された補正係数で  This is a coefficient expressed by the signal ratio, specifically, a correction coefficient related to the past X-ray detection signal acquired in steps S2 to S5 and expressed by the signal ratio of the previous lag image L.
K- 1  K- 1
ある。補正係数 c は、この発明における過去の非照射時に取得された放射線検出  is there. The correction coefficient c is the radiation detection acquired at the past non-irradiation in this invention.
K  K
信号に関する信号比で表された係数に相当し、この発明における非照射信号取得 工程で取得された過去の放射線検出信号に関する信号比で表された係数にも相当 し、この発明における過去のラグ情報にも相当する。  This corresponds to the coefficient represented by the signal ratio related to the signal, corresponds to the coefficient represented by the signal ratio related to the past radiation detection signal acquired in the non-irradiation signal acquisition step in the present invention, and the past lag information in the present invention. It corresponds to.
[0075] (ステップ S3)今回の撮像に達したか?  [0075] (Step S3) Has this imaging been reached?
上述した実施例 1と同じように、 X線検出信号の取得の時点、すなわちサンプリング 時点力 今回の撮像における X線の照射の開始に達したか (ここでは K=N+ 1にな つた力 )否かを判断する。もし、達した場合には、ステップ S612に跳ぶ。もし、達して いない場合には、次のステップ S4に進む。 As in Example 1 above, the X-ray detection signal acquisition time, that is, the sampling time force, has reached the start of X-ray irradiation in this imaging (in this case K = N + 1) Judgment force) or not. If reached, jump to step S612. If not, go to the next step S4.
[0076] (ステップ S4)Kの値を 1ずつ繰り上げる [0076] (Step S4) Raise K by 1
添え字 Kの値を 1ずつ繰り上げて、次のサンプリング、(補正前の)ラグ画像の取得 および補正係数の取得のために準備する。  Subscript K is incremented by one to prepare for the next sampling, acquisition of the lag image (before correction) and acquisition of correction factors.
[0077] (ステップ S51)前の X線検出信号の棄却 [0077] Reject X-ray detection signal before (Step S51)
上述した実施例 1と同じように、最古の X線検出信号は不要となるので棄却する。す なわち、上述したように非照射信号用メモリ部 11 aには 8個分の X線検出信号が常に 記憶されるようにしており、ステップ S2で新たに最新の X線検出信号が非照射信号 用メモリ部 11aに記憶されると、最古の X線検出信号のみが棄却されることになる。  As in the first embodiment described above, the oldest X-ray detection signal is no longer necessary and is rejected. In other words, as described above, the non-irradiation signal memory unit 11a always stores eight X-ray detection signals, and in step S2, the latest X-ray detection signal is newly not irradiated. When stored in the signal memory unit 11a, only the oldest X-ray detection signal is rejected.
[0078] (ステップ S2)非照射時の X線検出信号の取得 [0078] (Step S2) Acquisition of X-ray detection signal at non-irradiation
上述した実施例 1と同じように、非照射時に X線検出信号を新たに取得する。そして As in the first embodiment described above, a new X-ray detection signal is acquired during non-irradiation. And
、次のサンプリング、(補正前の)ラグ画像の取得および補正係数の取得のためにス テツプ S21【こ戻って、サンプリング時 [¾厶丁1[¾隔毎【こステップ S21、 S611、 S3、 S4 , S51、 S2を繰り返して行う。この繰り返しによって、ステップ S611で求められた補正 係数 Cも添え字 Kの値が 1ずつ繰り上がって更新される。 Step S21 for the next sampling, acquisition of the lag image (before correction) and acquisition of the correction coefficient. Repeat S4, S51, and S2. By repeating this, the correction coefficient C obtained in step S611 is also updated by incrementing the value of the subscript K by one.
K  K
[0079] (ステップ S612)補正係数を用いてラグ画像を類推  [0079] (Step S612) Analogize the lag image using the correction coefficient
ステップ S3でサンプリング時点が今回の撮像における X線の照射の開始に達した ら、ステップ S611で求められた補正係数 C を用いて、ステップ S21で取得された(  When the sampling time in step S3 reaches the start of X-ray irradiation in the current imaging, it was acquired in step S21 using the correction coefficient C obtained in step S611 (
N  N
補正前の)ラグ画像 L に作用させて補正する。今回の撮像における X線の照射の開  It is corrected by acting on the lag image L before correction. Open X-ray irradiation in this imaging
N  N
始に達したサンプリング時点は K=N+ 1の時点なので、ステップ S611で求められた 補正係数は C となり、ステップ S21で取得された (補正前の)ラグ画像は L となる。ス  Since the sampling point that reached the beginning is a point when K = N + 1, the correction coefficient obtained in step S611 is C, and the lag image (before correction) acquired in step S21 is L. The
N N  N N
テツプ S611で求められた補正係数 C を用いて、下記(2) '式のようにラグ画像 Lを  Using the correction coefficient C obtained in step S611, the lag image L is
N X  N X
求める。  Ask.
[0080] L =C X L - -- (2) '  [0080] L = C X L--(2) '
X N N  X N N
実施例 1での上記(2)式中の係数 C は、本実施例 2での上記(2) '式では補正係  The coefficient C in the above equation (2) in the first embodiment is the correction factor in the above equation (2) 'in the second embodiment.
N  N
数 C となる。上述した(2) '式のように、 X線の照射の開始直前に取得されたラグ画像 The number C. The lag image acquired immediately before the start of X-ray irradiation as shown in equation (2) 'above.
N N
L に補正係数 C を乗算することで、ラグ画像 L を補正して補正後のラグ画像 Lを 類推する。そして、ラグ画像類推部 9cで類推された補正後のラグ画像 Lをラグ画像 By multiplying L by the correction coefficient C, the lag image L is corrected and the corrected lag image L is Analogy. Then, the corrected lag image L estimated by the lag image analogizing unit 9c is used as the lag image.
X  X
用メモリ部 1 lbに書き込んで記憶する。上述したステップ S611を含んだこのステップ S612は、この発明におけるラグ画像類推工程に相当する。  Write to memory 1 lb for storage. This step S612 including the above-described step S611 corresponds to the lag image analogy process in the present invention.
[0081] なお、本実施例 2では、画像処理部 9での説明でも述べたように、ラグ画像取得ェ 程でのラグ画像の取得の後に、ラグ画像を類推するために先に得られた (補正前の) ラグ画像の補正をラグ画像取得工程で行う。したがって、本実施例 2の場合、ラグ画 像の類推は、先に得られたラグ画像の補正の機能を含んで 、る。  [0081] In the second embodiment, as described in the description of the image processing unit 9, after the acquisition of the lag image in the lag image acquisition process, the lag image was obtained in advance. The lag image is corrected in the lag image acquisition process (before correction). Therefore, in the case of the second embodiment, the analogy of the lag image includes the function of correcting the lag image obtained previously.
[0082] (ステップ S7)照射時の X線検出信号の取得  [0082] (Step S7) Acquisition of X-ray detection signal during irradiation
上述した実施例 1と同じなので、その説明を省略する。  Since it is the same as the first embodiment described above, description thereof is omitted.
[0083] (ステップ S8)今回の撮像での X線画像の取得  [0083] (Step S8) Acquisition of X-ray image by current imaging
上述した実施例 1と同じなので、その説明を省略する。  Since it is the same as the first embodiment described above, description thereof is omitted.
[0084] (ステップ S9)ラグ補正  [0084] (Step S9) Lag Correction
上述した実施例 1と同じなので、その説明を省略する。  Since it is the same as the first embodiment described above, description thereof is omitted.
[0085] 以上のように構成された本実施例 2によれば、上述した実施例 1と同様に、撮像に おける X線の照射前の非照射時に取得された複数の X線検出信号 (本実施例 2では I I  According to the second embodiment configured as described above, as in the first embodiment described above, a plurality of X-ray detection signals (this book) acquired at the time of non-irradiation before X-ray irradiation in imaging are used. In Example 2, II
N-7、1  N-7, 1
N-6、…ェ N- 1、 N )に基づくラグ情報のうち、過去のラグ情報 (本実施例 2では、 前回のラグ画像 L および補正係数 C )に基づ ヽて今回のラグ情報 (補正後のラグ  Among the lag information based on (N-6, ... N-1, N), the past lag information (in the second embodiment, the previous lag image L and correction coefficient C) is used to determine the current lag information ( Corrected lag
K- 1 K  K- 1 K
画像 L )を求めて類推するので、過去のラグ情報 (本実施例 2では、前回のラグ画像 Since the image L) is obtained and analogized, the past lag information (in the second embodiment, the previous lag image)
X X
L および補正係数 C )を考慮したラグ画像を類推することができ、この類推された L and the correction factor C) can be inferred, and this analogy
K- 1 K K- 1 K
ラグ画像を用いてラグ除去するだけで、時間遅れ分であるラグデータを適切に類推し つつ、 X線検出信号に含まれる時間遅れ分を X線検出信号カゝら簡易に除去すること ができる。  By simply removing the lag using the lag image, it is possible to easily remove the time lag included in the X-ray detection signal from the X-ray detection signal while properly analogizing the lag data that is the time lag. .
[0086] 本実施例 2では 8個分の X線検出信号を直接的に用いて (補正前の)ラグ画像 Lを  [0086] In the second embodiment, the lag image L (before correction) is obtained by directly using eight X-ray detection signals.
K  K
求めたが、用いる X線検出信号の個数については限定されない。また、信号の平均 でラグ画像 Lを求めた力 例えば中央値でラグ画像 Lを求める、あるいは信号の強  The number of X-ray detection signals to be used is not limited. Also, the force that found the lag image L by the average of the signals, for example, the lag image L obtained by the median, or the signal strength
K K  K K
度に関するヒストグラムを取って、そのヒストグラム力も最頻値をラグ画像 Lとして求め  Taking a histogram of degree, the histogram power is also determined as the lag image L.
K  K
るなど、ラグ画像 Lの具体的な求め方については特に限定されない。  The specific method for obtaining the lag image L is not particularly limited.
K  K
[0087] なお、後述する実施例 3も含めて、本実施例 2では、各画素ごとに補正係数 Cを求 め、各補正係数を各画素ごとに (補正前の)ラグ画像 L に作用させて補正するのが [0087] It should be noted that the correction coefficient C is obtained for each pixel in the second embodiment, including the third embodiment described later. Therefore, each correction coefficient is applied to the lag image L (before correction) for each pixel for correction.
N  N
好ましい。各画素ごとにラグデータの減衰特性が異なるので、このように求めることで ラグのない良質な X線画像を得ることができる。  preferable. Since the attenuation characteristics of lag data differ for each pixel, a high-quality X-ray image without lag can be obtained by calculating in this way.
実施例 3  Example 3
[0088] 次に、図面を参照してこの発明の実施例 3を説明する。図 13は、実施例 3に係る画 像処理部およびメモリ部に関するデータの流れを示した概略図である。上述した実 施例 1, 2と共通する箇所については同じ符号を付してその説明を省略する。また、 実施例 3に係る X線透視撮影装置は、図 13の画像処理部 9およびメモリ部 11に関す るデータの流れを除けば、実施例 2に係る X線透視撮影装置と同様の構成である。ま た、非照射信号取得部 9aやラグ画像取得部 9bやラグ画像類推部 9cや照射信号取 得部 9dや X線画像取得部 9eやラグ補正部 9fによる一連の信号処理につ ヽても、実 施例 1, 2と異なる。  Next, Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 13 is a schematic diagram illustrating a data flow regarding the image processing unit and the memory unit according to the third embodiment. The parts common to the above-described embodiments 1 and 2 are denoted by the same reference numerals and the description thereof is omitted. Further, the X-ray fluoroscopic apparatus according to the third embodiment has the same configuration as that of the X-ray fluoroscopic apparatus according to the second embodiment except for the data flow related to the image processing unit 9 and the memory unit 11 in FIG. is there. Also, a series of signal processing by the non-irradiation signal acquisition unit 9a, lag image acquisition unit 9b, lag image analogy unit 9c, irradiation signal acquisition unit 9d, X-ray image acquisition unit 9e, and lag correction unit 9f This is different from Examples 1 and 2.
[0089] 本実施例 3では、図 13に示すように、非照射信号用メモリ部 11aから読み出された 非照射時の X線検出信号、およびラグ画像用メモリ部 1 lbから読み出された (補正前 の)前回のラグ画像に基づ 、て、ラグ画像取得部 9bは再帰的演算処理で (補正前の )ラグ画像 Lを取得する。再帰的演算処理によるラグ画像 Lの取得については、後  In Example 3, as shown in FIG. 13, the non-irradiation X-ray detection signal read from the non-irradiation signal memory unit 11a and the lag image memory unit 1 lb were read out. Based on the previous lag image (before correction), the lag image acquisition unit 9b acquires the lag image L (before correction) by recursive calculation processing. Regarding the acquisition of lag image L by recursive calculation processing,
K K  K K
述する図 14のフローチャートで説明する。そして、再帰的演算処理を経て (補正前の )ラグ画像 Lを取得する。なお、それ以外のデータの流れについては、上述した実施  This will be described with reference to the flowchart of FIG. A lag image L (before correction) is acquired through recursive calculation processing. For other data flows, the above-mentioned implementation
K  K
例 2と同様である。  Same as Example 2.
[0090] 次に、本実施例 3に係る非照射信号取得部 9aやラグ画像取得部 9bやラグ画像類 推部 9cや照射信号取得部 9dや X線画像取得部 9eやラグ補正部 9fによる一連の信 号処理について、図 14のフローチャートを参照して説明する。なお、上述した実施例 1, 2と共通するステップについては、同じ番号を付してその説明を省略する。  [0090] Next, by the non-irradiation signal acquisition unit 9a, the lag image acquisition unit 9b, the lag image estimation unit 9c, the irradiation signal acquisition unit 9d, the X-ray image acquisition unit 9e, and the lag correction unit 9f according to the third embodiment. A series of signal processing will be described with reference to the flowchart of FIG. Note that the steps common to the above-described embodiments 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
[0091] (ステップ S1)待ち時間が経過したか?  [0091] (Step S1) Has the waiting time elapsed?
上述した実施例 1, 2と同じように、前回の撮像における X線の照射の終了から待ち 時間 T が経過したか否かを判断する。待ち時間 T が経過してから、次のステップ S As in the first and second embodiments described above, it is determined whether or not the waiting time T has elapsed since the end of X-ray irradiation in the previous imaging. After waiting time T has passed, the next step S
W W W W
102に進む。  Proceed to 102.
[0092] (ステップ S102)待ち時間経過直後の X線検出信号の取得 上述した実施例 1, 2と同じように、待ち時間 T経過後の非照射時に各 X線検出信 [0092] (Step S102) Acquisition of X-ray Detection Signal Immediately after Elapse of Waiting Time As in Examples 1 and 2 above, each X-ray detection signal is not irradiated after waiting time T has elapsed.
W  W
号をサンプリング時間 ΔΤ1間隔 (例えば 1Z30秒)毎に逐次に取得する。先ず、待 ち時間 Τ経過直後の X線検出信号 Iを取得する。この待ち時間 Τ経過直後に最初 The signal is acquired sequentially every sampling time ΔΤ1 interval (for example, 1Z30 seconds). First, the X-ray detection signal I immediately after the elapse of the waiting time Τ is acquired. This waiting time
W 0 W に取得された X線検出信号 Iを非照射信号用メモリ部 1 laに書き込んで記憶する。 The X-ray detection signal I acquired at W 0 W is written and stored in the non-irradiation signal memory unit 1 la.
0  0
[0093] (ステップ S 103)初期値のラグ画像の取得  [0093] (Step S103) Acquisition of Initial Value Lag Image
そして、ラグ画像取得部 9bは、この X線検出信号 Iを非照射信号用メモリ部 11aか  Then, the lag image acquisition unit 9b sends the X-ray detection signal I to the non-irradiation signal memory unit 11a.
0  0
ら読み出して、その X線検出信号 Iをラグ画像 Lの初期値であるラグ画像 Lとして取  The X-ray detection signal I is read as the lag image L, which is the initial value of the lag image L.
0 K 0 得する。そして、ラグ画像取得部 9bによって取得された初期値のラグ画像 Lをラグ画  0 K 0 get. Then, the initial value of the lag image L acquired by the lag image acquisition unit 9b is converted into the lag image.
0 像用メモリ部 1 lbに書き込んで記憶する。  0 Image memory unit Write to 1 lb and store.
[0094] (ステップ S2)非照射時の X線検出信号の取得 [0094] (Step S2) Acquisition of X-ray detection signal at non-irradiation
サンプリング時点が 2番目(K= l)の X線検出信号 Iを取得する。この 2番目の X線 検出信号 Iを非照射信号用メモリ部 11aに書き込んで記憶する。  Obtain the second X-ray detection signal I at the sampling time (K = l). The second X-ray detection signal I is written and stored in the non-irradiation signal memory unit 11a.
[0095] (ステップ S21)、 (ステップ S611)、 (ステップ S3)、 (ステップ S4)、 (ステップ S51) 、 (ステップ S2)、 (ステップ S612)、 (ステップ S7)〜(ステップ S9) [0095] (Step S21), (Step S611), (Step S3), (Step S4), (Step S51), (Step S2), (Step S612), (Step S7) to (Step S9)
ステップ S2で 2番目の X線検出信号 Iを取得したら、上述した実施例 2と同様のス テツプ S21, S611, S3, S4, S51, S2, S612, S7〜S9を行う。ただし、ステップ S2 1で (補正前の)ラグ画像 Lを取得する際には、(K+ 1)番目のラグ画像 Lを、非照  When the second X-ray detection signal I is obtained in step S2, steps S21, S611, S3, S4, S51, S2, S612, and S7 to S9 similar to those in the second embodiment are performed. However, when the lag image L (before correction) is acquired in step S21, the (K + 1) -th lag image L is not illuminated.
K K  K K
射信号用メモリ部 11aから読み出された非照射時の X線検出信号 I、およびラグ画像  Non-irradiation X-ray detection signal I and lag image read from the emission signal memory unit 11a
K  K
用メモリ部 l ibから読み出された前回のラグ画像 L に基づく再帰的演算処理で求  It is obtained by recursive calculation processing based on the previous lag image L read from the memory unit l ib.
K- 1  K- 1
める。本実施例 3では、再帰的な加重平均(以下、適宜「リカーシブ処理」という)によ つて、下記の(3)式のようにラグ画像 Lを取得する。  I will. In the third embodiment, the lag image L is acquired by the recursive weighted average (hereinafter referred to as “recursive processing” as appropriate) as shown in the following equation (3).
K  K
[0096] L = (1 -P) X L +P X I · '· (3)  [0096] L = (1 -P) X L + P X I · '· (3)
Κ Κ- 1 κ  Κ Κ- 1 κ
ただし、上述したように I =Lである。また、 Pは加重比率であって、 0〜1の値をとる  However, as described above, I = L. P is a weighted ratio and takes a value between 0 and 1.
0 0  0 0
[0097] さらに、これらの一連のリカーシブ処理を経て、今回の撮像における X線の照射の 開始に達したサンプリング時点で得られたラグ画像は Lとなる。そして、ステップ S61 [0097] Further, through these series of recursive processes, the lag image obtained at the sampling time point when the X-ray irradiation start in the current imaging is reached becomes L. And step S61
N  N
1と同様に、上記(1) '式を用いて補正係数 Cを求めるとともに、ステップ S612と同  As in step 1, the correction coefficient C is calculated using the above equation (1) 'and the same as step S612.
K  K
様に、上記(2) '式を用いてラグ画像 Lを求める。 [0098] 以上のように構成された本実施例 3によれば、上述した実施例 1, 2と同様に、過去 のラグ情報 (本実施例 3では、前回のラグ画像 L および補正係数 C )に基づ 、て Similarly, the lag image L is obtained by using the above equation (2) ′. According to the third embodiment configured as described above, the past lag information (the previous lag image L and the correction coefficient C in the third embodiment) is the same as in the first and second embodiments described above. Based on
K- 1 K  K- 1 K
今回のラグ情報 (補正後のラグ画像 L )を求めて類推するので、過去のラグ情報 (本  Since the current lag information (corrected lag image L) is obtained and analogized, past lag information (this
X  X
実施例3では、前回のラグ画像 L および補正係数 C )を考慮したラグ画像を類推 In Example 3 , the lag image considering the previous lag image L and the correction coefficient C) is analogized.
K- 1 K  K- 1 K
することができ、この類推されたラグ画像を用いてラグ除去するだけで、時間遅れ分 であるラグデータを適切に類推しつつ、 X線検出信号に含まれる時間遅れ分を X線 検出信号力も簡易に除去することができる。  By simply removing the lag using this analogized lag image, the time lag included in the X-ray detection signal can be converted to the X-ray detection signal power while properly analogizing the lag data. It can be easily removed.
[0099] 本実施例 3の場合には、再帰的演算処理として再帰的な加重平均であるリカーシ ブ処理 (上記(3)式を参照)によってラグ画像を取得するので、ラグ補正をより確実に 行うことができる。  [0099] In the case of the third embodiment, since the lag image is acquired by the recursive processing (see the above formula (3)) that is a recursive weighted average as the recursive arithmetic processing, the lag correction is more reliably performed. It can be carried out.
[0100] なお、 17インチ直接変換型フラットパネル型 X線検出器 (FPD)を用いて測定した 実データに対する、実施例 3の適用結果を図 15に示す。時刻 0秒の時点で、胸部正 面撮影相当の X線条件(125KV,3.2mAs)の照射を行!、、そこ力も 60秒間の非照射デ ータ(すなわちラグ)をプロットしている。図中の S は直接線照射部分のラグを、 S は  [0100] Fig. 15 shows the results of applying Example 3 to actual data measured using a 17-inch direct conversion flat panel X-ray detector (FPD). At time 0 seconds, X-ray conditions (125 KV, 3.2 mAs) equivalent to frontal chest imaging were performed! The force was also plotted for 60 seconds of non-irradiated data (ie, lag). In the figure, S is the lag of the direct irradiation part, S is
A C  A C
銅板 lmmの透過 X線のラグをそれぞれ示す。このラグの信号減衰は、例えば 15秒(図 中の矢印を参照)の所で撮像を行ったとすると、その撮像後には直接線では信号値 7 0程度の前回の撮像の残像が重なることを示す。  Copper plate lmm transmission X-ray lugs are shown respectively. The signal attenuation of this lag indicates that, for example, if imaging is performed at 15 seconds (see the arrow in the figure), afterimages, the afterimage of the previous imaging with a signal value of about 70 overlaps on the direct line. .
[0101] これに対して、本実施例 3を適用した場合、ラグの信号減衰は、 Sまたは Sのよう [0101] On the other hand, when Example 3 is applied, the signal attenuation of the lag is S or S.
B D  B D
になる。 Sは直接線照射部分のラグ補正後を、 S は銅板 lmmの透過 X線のラグ補正  become. S is the lag correction of the direct irradiation part, S is the transmission plate X-ray lag correction of the copper plate lmm
B D  B D
後をそれぞれ示す。この図 15のグラフから明らかなように、大幅なラグ補正が可能に なった。この図 15では、短 Z中時定数成分が支配的な前回の撮像から 5秒後に次の 撮像を行っても、前回の撮像のラグを補正することができる。  Each is shown below. As can be seen from the graph in Fig. 15, significant lag correction is possible. In Fig. 15, the lag of the previous imaging can be corrected even if the next imaging is performed 5 seconds after the previous imaging in which the short-Z medium time constant component is dominant.
[0102] この発明は、上記実施形態に限られることはなぐ下記のように変形実施することが できる。 [0102] The present invention is not limited to the above-described embodiment, and can be modified as follows.
[0103] (1)上述した各実施例では、図 1に示すような X線透視撮影装置を例に採って説明 したが、この発明は、例えば C型アームに配設された X線透視撮影装置にも適用して もよい。また、この発明は、 X線 CT装置にも適用してもよい。なお、この発明は、 X線 撮影装置のように (透視撮影でなく)実際に撮影を行うとき特に有用である。 [0104] (2)上述した各実施例では、フラットパネル型 X線検出器 (FPD) 3を例に採って説 明したが、通常において用いられる X線検出手段であれば、この発明は適用すること ができる。 (1) In each of the above-described embodiments, the X-ray fluoroscopic apparatus as shown in FIG. 1 has been described as an example. However, the present invention is, for example, an X-ray fluoroscopic apparatus disposed on a C-type arm. It may also be applied to equipment. The present invention may also be applied to an X-ray CT apparatus. Note that the present invention is particularly useful when performing actual imaging (not through fluoroscopic imaging) like an X-ray imaging apparatus. (2) In each of the above-described embodiments, the flat panel X-ray detector (FPD) 3 has been described as an example. However, the present invention can be applied to any X-ray detection means that is normally used. can do.
[0105] (3)上述した各実施例では、 X線を検出する X線検出器を例に採って説明したが、 この発明は、 ECT (Emission Computed Tomography)装置のように放射性同位元素( RI)を投与された被検体から放射される y線を検出する γ線検出器に例示されるよう に、放射線を検出する放射線検出器であれば特に限定されない。同様に、この発明 は、上述した ECT装置に例示されるように、放射線を検出して撮像を行う装置であれ ば特に限定されない。  [0105] (3) In each of the above-described embodiments, an X-ray detector for detecting X-rays has been described as an example. However, the present invention provides a radioisotope (RI) as in an ECT (Emission Computed Tomography) apparatus. ) Is not particularly limited as long as it is a radiation detector that detects radiation, as exemplified by a γ-ray detector that detects y-rays radiated from a subject administered. Similarly, the present invention is not particularly limited as long as it is an apparatus that detects an image by detecting radiation as exemplified by the ECT apparatus described above.
[0106] (4)上述した各実施例では、 FPD3は、放射線 (実施例では X線)感応型の半導体 を備え、入射した放射線を放射線感応型の半導体で直接的に電荷信号に変換する 直接変換型の検出器であつたが、放射線感応型の替わりに光感応型の半導体を備 えるとともにシンチレータを備え、入射した放射線をシンチレータで光に変換し、変換 された光を光感応型の半導体で電荷信号に変換する間接変換型の検出器であって ちょい。  [0106] (4) In each of the above-described embodiments, the FPD 3 includes a radiation (X-ray in the embodiment) sensitive semiconductor, and directly converts the incident radiation into a charge signal with the radiation sensitive semiconductor. This is a conversion-type detector, but instead of a radiation-sensitive type, it is equipped with a photo-sensitive type semiconductor and a scintillator. The incident radiation is converted into light by the scintillator, and the converted light is converted into a photo-sensitive type semiconductor. This is an indirect conversion detector that converts the signal into a charge signal.
[0107] (5)上述した各実施例では、前回の撮像における X線の照射力 所定時間(各実 施例では待ち時間 Τ ) X  (5) In each of the above-described embodiments, the X-ray irradiation power in the previous imaging is a predetermined time (in each embodiment, the waiting time Τ) X
W経過後の非照射時に 線検出信号の取得を開始した力 前 回の撮像における X線の照射が終了して非照射状態に移行するのと同時に X線検 出信号の取得を開始してもよい。 X線以外の放射線においても同様である。従来で あれば、短 Ζ中時定数成分が支配的であるが、この発明のように過去のラグ情報に 基づいて今回のラグ情報を求めてラグ画像を類推することで、短 ζ中時定数成分の 時間遅れ分も含めて過去のラグ情報を考慮した考慮したラグ画像を類推することが できて、前回の撮像における X線の照射力も所定時間(各実施例では待ち時間 τ )  The force that started acquiring the line detection signal when no irradiation was performed after the elapse of W Good. The same applies to radiation other than X-rays. Conventionally, the time constant component of the short Ζ is dominant, but the time constant of the short ζ is obtained by analogizing the lag image by obtaining the current lag information based on the past lag information as in the present invention. It is possible to infer a lag image that takes into account past lag information including the time delay of the component, and the X-ray irradiation power in the previous imaging is also a predetermined time (wait time τ in each example)
W  W
経過後でなくとも短 Ζ中時定数成分の時間遅れ分を正しく除去することができる。  Even after the lapse of time, the time delay component of the short time constant component can be correctly removed.
[0108] (6)上述した各実施例では、ラグ補正の基となるラグ画像は、今回の撮像における X線の照射の開始直前に取得される X線検出信号 I  (6) In each of the embodiments described above, the lag image that is the basis of lag correction is the X-ray detection signal I acquired immediately before the start of X-ray irradiation in the current imaging.
Νのデータが含まれていた力 必 ずしも X線検出信号 I  The force that included the spider data is always the X-ray detection signal I
Νのデータを含める必要はない。ただし、直前のデータ力 Sもっと も信頼性が高いことから、各実施例のように X線検出信号 Iのデータを含めてラグ画 像を取得して、そのラグ画像を用いてラグ除去することでラグ補正を行うのが好ま 、 。 X線以外の放射線においても同様である。 It is not necessary to include cocoon data. However, since the data power S immediately before S is more reliable, the lag image including the data of the X-ray detection signal I is used as in each example. It is preferable to perform lag correction by acquiring an image and removing the lag using the lag image. The same applies to radiation other than X-rays.
[0109] (7)上述した各実施例では、過去の情報の一例は、過去の非照射時に取得された 放射線検出信号に関する信号比で表された係数であって、その係数に基づいて今 回のラグ情報を求めてラグ画像を類推するという上述した一例と実施例 1とを組み合 わせた例を述べるとともに、その補正係数を (補正前の)ラグ画像に作用させて補正 することで、今回のラグ情報として補正後のラグ画像を類推するという上述した一例と 実施例 2, 3とを組み合わせた一例を述べた力 これに限定されない。  [0109] (7) In each of the embodiments described above, an example of past information is a coefficient represented by a signal ratio related to a radiation detection signal acquired at the time of past non-irradiation, and this time based on the coefficient. An example of combining the above-described example of finding the lag information and estimating the lag image with Example 1 and correcting the lag image by applying the correction coefficient to the lag image (before correction) The force described as an example of combining the above-described example of estimating the corrected lag image as the lag information this time and the second and third embodiments is not limited to this.
[0110] (8)上述した各実施例では、過去の情報は、過去の非照射時に取得された放射線 検出信号に関する信号比で表された係数 (実施例 2, 3では補正係数)であったが、 このような信号比に限定されず、過去の非照射時に取得された放射線検出信号その ものや、その信号を定数倍したものであってもよい。  [8] (8) In each of the above-described examples, the past information is a coefficient (correction coefficient in Examples 2 and 3) represented by a signal ratio related to the radiation detection signal acquired at the past non-irradiation. However, it is not limited to such a signal ratio, and the radiation detection signal itself acquired at the time of past non-irradiation or a signal obtained by multiplying the signal by a constant may be used.
[0111] (9)上述した各実施例では、係数 (実施例 2, 3では補正係数)を上記(1)式あるい は(1) '式のような信号比で表したが、これに限定されない。すなわち、各実施例では 、サンプリング 1つ分後(1フレーム後)〖こも(信号比である)係数 Cが維持されている  (9) In each of the above-described embodiments, the coefficient (the correction coefficient in Embodiments 2 and 3) is represented by the signal ratio as in the above equation (1) or (1) '. It is not limited. That is, in each embodiment, the coefficient C (which is a signal ratio) is maintained after one sampling (after one frame).
K  K
ことを仮定している。これは、当該比について、次のフレーム(すなわち次のサンプリ ング時点)を一定の値で近似し、順次更新していくと見なすことができる。そこで、 n次 に一般化した場合を以下に詳しく説明する。  Assume that. For this ratio, it can be considered that the next frame (that is, the next sampling time point) is approximated by a constant value and is updated sequentially. Therefore, the case of generalization to the nth order will be described in detail below.
[0112] ラグは時間の経過とともに暫時的に減少するので当該比は時間の関数であるとも 見なすことができ、充分に滑らかに変化するのであれば、次のフレーム (次のサンプリ ング時点)までの限られた時間であれば、係数 Cを下記 (4)式の多項式で近似する [0112] Since the lag decreases momentarily over time, the ratio can be considered as a function of time, and if it changes sufficiently smoothly, until the next frame (the next sampling point) If the time is limited, the coefficient C is approximated by the following equation (4)
K  K
ことができる (κを時間とする)。  (Kappa is time).
[0113] C =A X KN+A X KN_1H—— hA Χ Κ'+Α ·'· (4) [0113] C = AXK N + AXK N_1 H—— hA Χ Κ '+ Α ·' · (4)
Κ Ν Ν- 1 1 0  Κ Ν Ν- 1 1 0
次数 Νについては別途適宜に決定する。なお、信号比 Cは時間とともに変化する「  The order す る is determined separately as appropriate. The signal ratio C changes with time.
Κ  Κ
信号強度変化比」とも見なせる。  It can also be regarded as a “signal intensity change ratio”.
[0114] 実施例 2, 3を例に採って説明すると、補正前の複数のラグ画像を L 、L 、 κ-τ K-T+ 1 [0114] Taking Examples 2 and 3 as an example, a plurality of lag images before correction are represented as L 1, L 2, κ-τ K-T + 1
· · ·、 L とする(ただし τは任意の正の数)。これらの各々のラグ画像と (K+ 1)番目· · · · L (where τ is any positive number). Each of these lag images and (K + 1) th
K- 1 K- 1
の X線検出信号 Iとの比で、信号比をそれぞれ決定する。信号比を c 、 c 、…ゝ C とすると、 C =1 ÷L 、C =1 ÷L 、…ゝ C =I ÷L でThe signal ratio is determined by the ratio to the X-ray detection signal I. C, c ,… ゝ C, C = 1 ÷ L, C = 1 ÷ L,… ゝ C = I ÷ L
K K-T+l K K-T K-T+2 K K-T+l K K K-l 各々の信号比は決定される。 K K-T + l K K-T K-T + 2 K K-T + l K K K-l Each signal ratio is determined.
[0115] これらの式から具体的な多項式 (多項式の係数 A )を決定し、当該多項式にしたが  [0115] A specific polynomial (polynomial coefficient A) is determined from these equations, and the polynomial is used.
I  I
つて次のフレーム (次のサンプリング時点)の補正係数 C を予測し、 X線画像に含  Therefore, the correction coefficient C for the next frame (at the next sampling time) is predicted and included in the X-ray image.
K +1  K +1
まれるラグ画像 Lを類推する。なお、上述した実施例 2, 3は 0次式にしたがうと見な  Analogize the lag image L. It should be noted that the above-described Examples 2 and 3 are assumed to follow the 0th order equation.
X  X
せる。  Make it.
[0116] 例えば、信号比 (信号強度変化比)がー次式にしたがうとすれば、 C =1 ÷L  [0116] For example, if the signal ratio (signal strength change ratio) follows the following formula: C = 1 / L
K-l K Κ-2 K-l K Κ-2
、 C =1 ÷L から、多項式の各係数を求め、決定した Cの多項式にしたがって、, C = 1 ÷ L, find each coefficient of the polynomial, and according to the determined C polynomial,
K K K-l K K K K-l K
最終的には、次のフレーム (次のサンプリング時点)の補正係数を下記(5)式のように 求めることができる。  Eventually, the correction coefficient for the next frame (next sampling time) can be obtained as shown in the following equation (5).
[0117] C =2XC C ---(5)  [0117] C = 2XC C --- (5)
K+l K K-1  K + l K K-1
上記(5)式の右辺の Cおよび C は、 C =1 ÷L 、C =1 ÷L から求め  C and C on the right side of equation (5) above are obtained from C = 1 / L and C = 1 / L
Κ Κ-1 Κ-1 Κ Κ-2 Κ Κ Κ-1  Κ Κ-1 Κ-1 Κ Κ-2 Κ Κ Κ-1
、次のフレーム(次のサンプリング時点)の補正係数である左辺の C を(5)式から  , C on the left side, which is the correction coefficient for the next frame (next sampling time)
K+1  K + 1
求める。次のフレーム(次のサンプリング時点)で Κが 1つ繰り上がった場合には、(5) 式の右辺も C および C にそれぞれ繰り上がる力 繰り上がる前に(5)式力 求め  Ask. When Κ is raised by 1 at the next frame (at the next sampling time), the right side of equation (5) is also the force that raises to C and C respectively.
Κ+1 Κ  Κ + 1 Κ
られた左辺の C を用いずに、(5)式の右辺の C および C は、 C =1 ÷L 、  C and C on the right side of Eq. (5) are calculated as follows: C = 1 ÷ L
Κ+1 Κ +1 κ κ κ κ-ι Κ + 1 Κ +1 κ κ κ κ-ι
C =1 ÷Lから求め、左辺の C を(5)式から求める。 Find C = 1 ÷ L, and find C on the left side from Equation (5).
K + 1 K K K+2  K + 1 K K K + 2
[0118] 今回の撮像における X線の照射の開始に達した場合、すなわち X線を照射した場 合、今回の撮像における X線の照射の開始に達したサンプリング時点の補正係数は C となるので、既知の L 、L 、1 から C 、 C を求め、(5)式の右辺に相当 [0118] When the start of X-ray irradiation in the current imaging is reached, that is, when X-ray irradiation is performed, the correction coefficient at the sampling time point when the X-ray irradiation starts in the current imaging is reached is C. , Find C and C from known L, L, 1 and correspond to the right side of equation (5)
N +1 N-2 N-1 N N-1 N N +1 N-2 N-1 N N-1 N
する C 、じカもじ を求める。そして、その補正係数 C を用いて補正前のラグ Ask for C, Jikamoji. Then, using the correction coefficient C, the lag before correction
N-1 N N+1 N+1 N-1 N N + 1 N + 1
画像 L を補正することで、 X線画像に含まれるラグ画像 Lを類推する(L =C X By correcting the image L, the lag image L included in the X-ray image is analogized (L = C X
N X X N+1N X X N + 1
L )。 L).
N  N
[0119] また、信号比 (信号強度変化比)が二次式にしたがうとすれば、 C =1 ÷L 、  [0119] If the signal ratio (signal strength change ratio) follows the quadratic equation, C = 1 / L,
K-2 K K-3 K-2 K K-3
C =1 ÷L 、 C =1 ÷L から、多項式の各係数を求め、決定した Cの多項Polynomial of C determined by calculating each coefficient of the polynomial from C = 1 ÷ L and C = 1 ÷ L
K-l K K-2 K K K-l K 式にしたがって、最終的には、次のフレーム (次のサンプリング時点)の補正係数を下 記(6)式のように求めることができる。 According to the equation K-l K K-2 K K K-l K, the correction coefficient for the next frame (next sampling point) can be finally obtained as shown in equation (6) below.
[0120] C =3XC -3XC +C ---(6)  [0120] C = 3XC -3XC + C --- (6)
K+1 K K-l K-2 一次式にしたがう場合と同様に C を求め、その補正係数 C を用いてラグ画像 K + 1 K Kl K-2 C is obtained in the same manner as in the case of following the linear equation, and the lag image is obtained using the correction coefficient C.
N+ 1 N+ 1  N + 1 N + 1
Lを類推する。三次式、四次式と次数が増えても同様に、補正係数 C を過去の数 Analogy with L. In the same way, even if the order increases with the cubic, quartic, etc.
X N+ 1 値から求めればよい。 Calculate from X N + 1 value.
[0121] この次数を上げることで誤差を減らすことができて、精度を上げることができる。なお 、次数が増えれば必要な過去のラグ情報が次数に応じて必要となり、計算量が増大 する。したがって、求められる精度と許容される計算時間とのトレードオフで次数を決 定すればよい。なお、上述した係数 C は、補正前のラグ画像 L に応じてサンプリン  [0121] Increasing the order can reduce errors and increase accuracy. If the order increases, the necessary past lag information is required according to the order, and the amount of calculation increases. Therefore, the order may be determined by a trade-off between the required accuracy and the allowable calculation time. Note that the coefficient C described above depends on the lag image L before correction.
K K  K K
グ時間毎に更新されるので、前回の撮像における X線の照射から、それほどの時間( 1分以内)が経過していない場合でも、充分に経過した場合でも柔軟に追随すること ができる。  Since it is updated every time, even if not much time (within 1 minute) has elapsed since the X-ray irradiation in the previous imaging, it can be flexibly followed.
[0122] (10)上述した実施例 3では、上記(3)式に示すような再帰的な加重平均(リカーシ ブ処理)であったが、再帰的演算処理であれば、再帰的な加重平均に限定されず、 重み付けなしの再帰的演算処理であってもよい。したがって、 X線検出信号 I  (10) In Embodiment 3 described above, the recursive weighted average (recursive processing) as shown in the above equation (3) is used. It is not limited to this, and recursive calculation processing without weight may be used. Therefore, X-ray detection signal I
Kとラグ 画像 L とで表される関数 f (I 、L )が、(補正前の)ラグ画像 Lで表されればよ The function f (I, L) represented by K and the lag image L should be represented by the lag image L (before correction).
K- 1 K K- 1 K K- 1 K K- 1 K
い。  Yes.

Claims

請求の範囲 The scope of the claims
[1] 放射線検出信号に基づ 、て放射線画像を得る放射線撮像装置であって、被検体 に向けて放射線を照射する放射線照射手段と、被検体を透過した放射線を検出す る放射線検出手段と、放射線検出手段から検出された複数の放射線検出信号を撮 像における放射線の照射前の非照射時に取得する非照射信号取得手段と、その非 照射信号取得手段で取得されたそれら放射線検出信号に基づくラグ情報のうち、過 去のラグ情報に基づいて今回のラグ情報を求めてラグ画像を類推するラグ画像類推 手段と、放射線検出手段から検出された放射線検出信号を撮像における放射線の 照射時に取得する照射信号取得手段と、その照射信号取得手段で取得された放射 線検出信号に基づ!/、て、撮像の対象となる放射線画像を取得する放射線画像取得 手段と、その放射線画像取得手段で取得された放射線画像から、前記ラグ画像類推 手段で類推されたラグ画像を用いてラグ除去することで、放射線検出信号に含まれ る時間遅れ分を放射線検出信号力 除去することによる時間遅れ分に関するラグ補 正を行うラグ補正手段とを備えていることを特徴とする放射線撮像装置。  [1] A radiation imaging apparatus for obtaining a radiation image based on a radiation detection signal, a radiation irradiating means for irradiating radiation toward a subject, and a radiation detecting means for detecting radiation transmitted through the subject; Based on the non-irradiation signal acquisition means for acquiring a plurality of radiation detection signals detected from the radiation detection means at the time of non-irradiation before irradiation of radiation in the image and the radiation detection signals acquired by the non-irradiation signal acquisition means Among the lag information, the lag image estimation means that obtains the current lag information based on the past lag information and analogizes the lag image, and the radiation detection signal detected from the radiation detection means is acquired at the time of radiation irradiation in imaging. Irradiation signal acquisition means; and radiation image acquisition means for acquiring a radiographic image to be imaged based on the radiation detection signal acquired by the irradiation signal acquisition means! The time delay included in the radiation detection signal is removed from the radiation image acquired by the radiation image acquisition means using the lag image estimated by the lag image analogization means. A radiation imaging apparatus, comprising: lag correction means for performing lag correction related to a time delay due to operation.
[2] 請求項 1に記載の放射線撮像装置にお!、て、前記非照射信号取得手段で取得さ れた前記複数の放射線検出信号に基づ!/ヽて、ラグ画像を取得するラグ画像取得手 段を備え、そのラグ画像取得手段と前記ラグ画像類推手段とは兼用し、ラグ画像取 得手段によるラグ画像の取得を行うことで、ラグ画像類推手段によるラグ画像の類推 を行うことを特徴とする放射線撮像装置。  [2] In the radiation imaging apparatus according to claim 1, based on the plurality of radiation detection signals acquired by the non-irradiation signal acquisition means! A lag image acquisition means for acquiring a lag image is provided, and the lag image acquisition means and the lag image analogy means are combined to acquire the lag image by the lag image acquisition means. A radiation imaging apparatus characterized by analogizing a lag image by analogy means.
[3] 請求項 1に記載の放射線撮像装置にお!、て、前記非照射信号取得手段で取得さ れた前記複数の放射線検出信号に基づ!/ヽて、ラグ画像を取得するラグ画像取得手 段を備え、そのラグ画像取得手段で取得されたラグ画像を前記過去のラグ情報に基 づ!、て補正することで、前記ラグ画像類推手段は補正後のラグ画像を類推することを 特徴とする放射線撮像装置。  [3] In the radiation imaging apparatus according to claim 1, based on the plurality of radiation detection signals acquired by the non-irradiation signal acquisition means! A lag image acquisition means for acquiring a lag image is provided, and the lag image analogization means is corrected by correcting the lag image acquired by the lag image acquisition means based on the past lag information! Is a radiation imaging apparatus characterized by analogizing a lag image after correction.
[4] 被検体を照射して検出された放射線検出信号に基づ!、て放射線画像を得る信号 処理を行う放射線検出信号処理方法であって、前記信号処理は、複数の放射線検 出信号を撮像における放射線の照射前の非照射時に取得する非照射信号取得ェ 程と、その非照射信号取得工程で取得されたそれら放射線検出信号に基づくラグ情 報のうち、過去のラグ情報に基づいて今回のラグ情報を求めてラグ画像を類推するラ グ画像類推工程と、放射線検出信号を撮像における放射線の照射時に取得する照 射信号取得工程と、その照射信号取得工程で取得された放射線検出信号に基づ ヽ て、撮像の対象となる放射線画像を取得する放射線画像取得工程と、その放射線画 像取得工程で取得された放射線画像から、前記ラグ画像類推工程で類推されたラグ 画像を用いてラグ除去することで、放射線検出信号に含まれる時間遅れ分を放射線 検出信号力 除去することによる時間遅れ分に関するラグ補正を行うラグ補正工程と を備えて ヽることを特徴とする放射線検出信号処理方法。 [4] A radiation detection signal processing method for performing signal processing for obtaining a radiographic image based on a radiation detection signal detected by irradiating a subject, wherein the signal processing includes a plurality of radiation detection signals. The non-irradiation signal acquisition process acquired at the time of non-irradiation before irradiation in imaging, and the lag information based on those radiation detection signals acquired in the non-irradiation signal acquisition process The lag image analogy process that obtains the current lag information based on the past lag information and analogizes the lag image, the irradiation signal acquisition process that acquires the radiation detection signal at the time of radiation irradiation in imaging, and the Based on the radiation detection signal acquired in the irradiation signal acquisition step, the lag image is acquired from the radiation image acquisition step of acquiring a radiation image to be imaged and the radiation image acquired in the radiation image acquisition step. A lag correction step for performing a lag correction on the time delay by removing the radiation detection signal force from the time delay included in the radiation detection signal by removing the lag using the lag image estimated in the analogy process. A radiation detection signal processing method characterized by comprising:
[5] 請求項 4に記載の放射線検出信号処理方法にお 、て、前記過去の情報は、過去 の非照射時に取得された放射線検出信号に関する信号比で表された係数であって 、前記ラグ画像類推工程で、その係数に基づいて前記今回のラグ情報を求めてラグ 画像を類推することを特徴とする放射線検出信号処理方法。  [5] The radiation detection signal processing method according to claim 4, wherein the past information is a coefficient represented by a signal ratio related to a radiation detection signal acquired at the time of past non-irradiation, and the lag A radiation detection signal processing method characterized in that, in the image analogizing step, the lag information of this time is obtained based on the coefficient to analogize the lag image.
[6] 請求項 4に記載の放射線検出信号処理方法にお 、て、前記非照射信号取得工程 で取得されたそれら放射線検出信号に基づ!ヽて、ラグ画像を取得するラグ画像取得 工程を前記信号処理は備え、そのラグ画像取得工程と前記ラグ画像類推工程とは同 一工程であって、ラグ画像取得工程でのラグ画像の取得を行うことで、ラグ画像類推 工程でのラグ画像の類推を行うことを特徴とする放射線検出信号処理方法。  [6] The radiation detection signal processing method according to claim 4, further comprising: a lag image acquisition step for acquiring a lag image based on the radiation detection signals acquired in the non-irradiation signal acquisition step. The signal processing is provided, and the lag image acquisition process and the lag image analogization process are the same process, and the lag image is acquired in the lag image acquisition process. A radiation detection signal processing method characterized by performing analogy.
[7] 請求項 4に記載の放射線検出信号処理方法にお 、て、前記非照射信号取得工程 で取得されたそれら放射線検出信号に基づ!ヽて、ラグ画像を取得するラグ画像取得 工程を前記信号処理は備え、そのラグ画像取得工程で取得されたラグ画像を前記 過去のラグ情報に基づ 、て補正することで、前記ラグ画像取得工程で補正後のラグ 画像を類推することを特徴とする放射線検出信号処理方法。  [7] The radiation detection signal processing method according to claim 4, further comprising: a lag image acquisition step of acquiring a lag image based on the radiation detection signals acquired in the non-irradiation signal acquisition step. The signal processing is provided, and by correcting the lag image acquired in the lag image acquisition step based on the past lag information, the lag image corrected in the lag image acquisition step is analogized. A radiation detection signal processing method.
[8] 請求項 6に記載の放射線検出信号処理方法において、前記過去の情報は、前記 非照射信号取得工程で取得された過去の放射線検出信号に関する信号比で表され た係数であって、前記ラグ画像類推工程で、その係数に基づいて前記今回のラグ情 報を求めてラグ画像を類推することを特徴とする放射線検出信号処理方法。  [8] The radiation detection signal processing method according to claim 6, wherein the past information is a coefficient represented by a signal ratio regarding the past radiation detection signal acquired in the non-irradiation signal acquisition step, A radiation detection signal processing method characterized in that, in a lag image analogizing step, the lag information of the current time is obtained on the basis of the coefficient to estimate the lag image.
[9] 請求項 7に記載の放射線検出信号処理方法において、前記過去の情報は、前記 非照射信号取得工程で取得された過去の放射線検出信号に関する信号比で表され た補正係数であって、前記ラグ画像類推工程で、その補正係数を前記ラグ画像取得 工程で取得されたラグ画像に作用させて補正することで、前記今回のラグ情報として 補正後のラグ画像を類推することを特徴とする放射線検出信号処理方法。 [9] In the radiation detection signal processing method according to claim 7, the past information is represented by a signal ratio related to the past radiation detection signal acquired in the non-irradiation signal acquisition step. The correction coefficient is corrected by applying the correction coefficient to the lag image acquired in the lag image acquisition step and correcting the lag image as the current lag information. A radiation detection signal processing method characterized by analogizing.
[10] 請求項 8に記載の放射線検出信号処理方法において、各画素ごとに前記係数を 求め、各係数に基づいて前記今回のラグ情報を各画素ごとに求めることを特徴とする 放射線検出信号処理方法。  10. The radiation detection signal processing method according to claim 8, wherein the coefficient is obtained for each pixel, and the current lag information is obtained for each pixel based on the coefficient. Method.
[11] 請求項 9に記載の放射線検出信号処理方法において、各画素ごとに前記補正係 数を求め、各補正係数を各画素ごとに前記ラグ画像に作用させて補正することを特 徴とする放射線検出信号処理方法。 [11] The radiation detection signal processing method according to claim 9, wherein the correction coefficient is obtained for each pixel, and correction is performed by applying each correction coefficient to the lag image for each pixel. Radiation detection signal processing method.
PCT/JP2006/315028 2006-07-28 2006-07-28 Radiation photographing device and radiation detecting signal processing method WO2008012917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/315028 WO2008012917A1 (en) 2006-07-28 2006-07-28 Radiation photographing device and radiation detecting signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/315028 WO2008012917A1 (en) 2006-07-28 2006-07-28 Radiation photographing device and radiation detecting signal processing method

Publications (1)

Publication Number Publication Date
WO2008012917A1 true WO2008012917A1 (en) 2008-01-31

Family

ID=38981233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315028 WO2008012917A1 (en) 2006-07-28 2006-07-28 Radiation photographing device and radiation detecting signal processing method

Country Status (1)

Country Link
WO (1) WO2008012917A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004329932A (en) * 2003-05-02 2004-11-25 Ge Medical Systems Global Technology Co Llc Method and apparatus for processing fluoroscopic image
JP2005283422A (en) * 2004-03-30 2005-10-13 Shimadzu Corp Radioactive rays imaging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004329932A (en) * 2003-05-02 2004-11-25 Ge Medical Systems Global Technology Co Llc Method and apparatus for processing fluoroscopic image
JP2005283422A (en) * 2004-03-30 2005-10-13 Shimadzu Corp Radioactive rays imaging device

Similar Documents

Publication Publication Date Title
JP4462349B2 (en) Radiation imaging apparatus and radiation detection signal processing method
JP5042887B2 (en) Radiation imaging equipment
EP3066825A1 (en) Digital radiography detector image readout system and process
US20220365004A1 (en) Radiation imaging system, imaging control apparatus, and method
KR100859042B1 (en) Radiographic apparatus and radiation defection signal progressing method
JP2008246022A (en) Radiographic equipment
US7792251B2 (en) Method for the correction of lag charge in a flat-panel X-ray detector
JP4706705B2 (en) Radiation imaging apparatus and radiation detection signal processing method
JP2006304213A (en) Imaging apparatus
WO2007096968A1 (en) Radiation image pick-up device and radiation detecting signal processing method
JP2008125691A (en) Radiation image operation method and apparatus and program
JP2011072358A (en) Radiography method and radiography apparatus
JP2009078034A (en) Image generation apparatus and method for energy subtraction
JP4581504B2 (en) Radiation imaging apparatus and radiation detection signal processing method
JP2009077839A (en) Apparatus and method for processing radiation image
WO2008012917A1 (en) Radiation photographing device and radiation detecting signal processing method
JP4645480B2 (en) Radiation imaging apparatus and radiation detection signal processing method
WO2008072312A1 (en) Radiography apparatus and radiation detection signal processing method
JP2008245999A (en) Radiographic equipment
JP2008167854A (en) Radioimaging apparatus
JP2009219529A (en) Radiographic apparatus
JP4968364B2 (en) Imaging device
JP5007632B2 (en) Radiation imaging device
JP2017192444A (en) Radiation imaging apparatus, processing device, and radiation imaging method
JP2022134547A (en) Image processing device, radiation imaging system, image processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06781938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06781938

Country of ref document: EP

Kind code of ref document: A1