WO2008010318A1 - Biodegradable resin composition, method for producing the same, and molded body using the same - Google Patents

Biodegradable resin composition, method for producing the same, and molded body using the same Download PDF

Info

Publication number
WO2008010318A1
WO2008010318A1 PCT/JP2007/000769 JP2007000769W WO2008010318A1 WO 2008010318 A1 WO2008010318 A1 WO 2008010318A1 JP 2007000769 W JP2007000769 W JP 2007000769W WO 2008010318 A1 WO2008010318 A1 WO 2008010318A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
biodegradable
fatty acid
biodegradable resin
layered silicate
Prior art date
Application number
PCT/JP2007/000769
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuhiro Kawahara
Miho Nakai
Kazue Ueda
Original Assignee
Unitika Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd. filed Critical Unitika Ltd.
Priority to JP2008525787A priority Critical patent/JP5489460B2/en
Publication of WO2008010318A1 publication Critical patent/WO2008010318A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols

Definitions

  • Biodegradable resin composition process for producing the same, and molded article using the same
  • the present invention relates to a biodegradable resin composition, a method for producing the same, and a molded body using the same.
  • biodegradable resins such as polylactic acid have attracted attention from the viewpoint of environmental conservation.
  • polylactic acid has good transparency and can be mass-produced from plant-derived raw materials such as corn and sweet potato. Because it is possible, it is highly useful.
  • a biodegradable resin containing a polylactic acid has insufficient heat resistance.
  • a collection of polymer papers 2 0 5 2 5 9 1 2 7 6 0-7 6 6 proposes a method of adding a layered silicate to improve this problem.
  • the dispersibility is not sufficient, and aggregation is likely to occur, which may cause a problem in the appearance of a molded product using the resin. For this reason, this method is not suitable for resin compositions used for packaging materials and containers that often require a good appearance.
  • JP-A-2 0 0 4-0 2 7 1 3 6 uses a layered silicate that has been swollen in advance with water or an aqueous solvent at a temperature lower than the melting point of polylactic acid.
  • a method for improving dispersibility by kneading with this polylactic acid is disclosed.
  • this method requires a special kneading machine and is not economically preferable.
  • the molecular weight of the resin composition is lowered during kneading, which may cause thermal deterioration during molding.
  • JP-A-2 0 0 4-3 2 3 7 5 8 includes a lactide or a low molecular weight polylactic acid having a number average molecular weight of 5 0 00 0 0 or less inserted between the layers to increase the interlayer distance.
  • a method for improving the dispersibility of the layered silicate has been proposed. However, this method has room for further improvement with regard to the dispersibility of the layered silicate.
  • JP-A-2 0 0 3-2 6 1 6 9 5 includes a compound having a number average molecular weight of 2 0 0 to 5 0 00 0 consisting of repeating alkylene oxide units in polylactic acid.
  • a film in which a layered silicate is dispersed is presented.
  • the alkylene oxide compound has high hydrophilicity and does not have high heat resistance, so the amount that can be added is limited. Therefore, even with this method, there is room for further improvement in the dispersibility of the layered silicate.
  • the present invention solves the above-mentioned problems, and has heat resistance, transparency and low agglomerates, that is, biodegradability that maintains a good appearance. It is an object to provide a resin composition.
  • a biodegradable polyester resin contains a layered silicate, a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid. It has been found that by adding this, it is possible to provide a resin composition that has heat resistance, improves the dispersibility of the layered silicate, and maintains transparency, that is, good appearance.
  • the gist of the present invention is as follows.
  • biodegradable polyester resin mainly comprising any one of an S-hydroxycarboxylic acid unit and an ⁇ -hydroxycanoate unit, a layered silicate, and a sugar alcohol
  • a biodegradable resin composition comprising a dehydration condensate and a fatty acid ester comprising a fatty acid.
  • the sugar alcohol is erythritol, arabitol, ribitol, xylitol, sorb! Le, Zulci I Le, Manni!
  • the biodegradable resin composition according to any one of (1) to (3), characterized in that it is at least one of the above.
  • the biodegradable polyester resin contains 0.1 to 15 parts by mass of a fatty acid ester composed of a dehydrated condensate of sugar alcohol and a fatty acid per 100 parts by mass of the biodegradable polyester resin ( The biodegradable resin composition according to any one of 1) to (4).
  • a layered silicic acid is added to a resin containing a biodegradable polyester resin at the time of melt-kneading or molding.
  • a method for producing a biodegradable resin composition comprising adding a salt and a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid.
  • a molded article comprising the biodegradable resin composition according to any one of (1) to (7) above.
  • a layered silicic acid is added to a biodegradable polyester resin mainly composed of either one of S-hydroxycarboxylic acid units and ⁇ -hydroxyalkylene units.
  • a biodegradable resin composition having improved heat resistance and dispersibility of the layered silicate can be provided.
  • layered silicic acid Salts are effective in improving heat resistance
  • fatty acid esters composed of sugar alcohol dehydration condensates and fatty acids are effective in improving the dispersibility of layered silicates.
  • the resin composition of the present invention is biodegradable, it can be composted when discarded, and the amount of waste can be reduced or reused as fertilizer.
  • fatty acid esters composed of sugar alcohol dehydration condensate and fatty acids can be produced from plant-derived raw materials in general, and are safe and hygienic, and are also derived from plants as biodegradable polyester resins. Using certain polylactic acid contributes to the prevention of oil resource depletion and can provide environmentally friendly materials.
  • the biodegradable polyester resin in the present invention is a biodegradable polyester resin mainly composed of either one and / or; an S-hydroxy carboxylic acid unit and an ⁇ -hydroxyalkyl unit. It is.
  • S-hydroxycarboxylic acid units include D-lactic acid, L_lactic acid, mixtures thereof, glycolic acid, 3-hydroxybutyric acid, 3_hydroxyvaleric acid, 3-hydroxy Examples thereof include cabronic acid, and mixtures and copolymers thereof.
  • D_lactic acid and L_lactic acid are particularly preferred.
  • ⁇ -Hydroxyl force unit includes prolactone and (5-valerolacton.
  • oxalic acid and succinic acid can be used as long as they do not impair the biodegradability of the polyester resin.
  • Aliphatic carboxylic acids such as glutaric acid, sebacic acid, and adipic acid, and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid may be copolymerized. Included in polyester resin.
  • biodegradable polyester resin of the present invention include poly (D_lactic acid), poly (L-lactic acid), polyglycolic acid, poly (3-hydroxybutyric acid), poly (3— Hydroxy (valeric acid), and poly ( ⁇ -hydroxy) represented by poly (one-prone prolacton) and poly (S_valerolacton). And the like. These components may be used alone or in combination of two or more, may be mixed, or may be copolymerized.
  • polylactic acid when a material containing 50% by mass or more of polylactic acid is used, it has a high effect on the environment due to its high degree of plant origin, and it can balance the transparency and heat resistance. Is more preferable.
  • the content of polylactic acid is preferably 60% by mass or more, more preferably 80% by mass or more. If the biodegradable resin other than polylactic acid exceeds 50% by mass, the mechanical properties, transparency and heat resistance of the resulting biodegradable resin composition will be insufficient, even though polylactic acid is used. .
  • a plant-derived raw material is used as a raw material other than polylactic acid
  • the plant-derived resin content increases, and the effect of reducing the amount of petroleum resources used increases.
  • the resin made from plant-derived materials include polylactic acid, nylon 11 and natural rubber.
  • the biodegradable polyester resin is produced by a known melt polymerization method or, if necessary, by further using a solid phase polymerization method.
  • Poly (3-hydroxybutyric acid) and poly (3-hydroxyvaleric acid) can be produced by microorganisms.
  • the biodegradable polyester resin may be partially crosslinked. Also, it may be modified with an epoxy compound or the like.
  • a terminal blocking agent may be added to block the terminal of the resin.
  • the end-capping agent include strong lupodiimide compounds, epoxy compounds, oxazoline compounds, isocyanate compounds and the like.
  • the addition amount is not particularly limited, but is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin.
  • the molecular weight of the biodegradable polyester resin is not particularly limited. If the melt flow rate (MFR) at 190 ° C and 21.2 N (2.16 kgf) is in the range of 0 ! ⁇ 50 g / 10 min, the polyester resin A more preferable range is 0.2 to 40 g / 10 min.
  • the layered silicate used in the present invention is a kind of swellable layered clay mineral, and specific examples include smectite, vermiculite, and swellable fluoromica.
  • smect tie include montmorillonite, bidet light, heavy light, and saponate.
  • bar mixture are Na type bar mixture, Li type bar mixture, Mg type bar mixture, and the like.
  • swellable fluorinated mica include Na-type fluorinated tetracathetic mica, Na-type teniolite, Li-type teniolite, and the like.
  • layered silicates that do not contain aluminum or magnesium, such as kanemite, magiteite, magadiite, and kenyaite, can also be used. Preferred are montmorillonite and swellable fluorinated mica. Synthetic products may be used in addition to natural products. Examples of the synthesis method include a melting method, an intercalation method, and a hydrothermal method, and any method may be used. These layered silicates may be used singly or in combination of two or more kinds having different mineral types, origins, and particle sizes.
  • primary to quaternary ammonium ion, pyridinium ion, imidazolium ion or phosphonium ion are preferably ionically bonded.
  • the 1st to 3rd class ammonium ions are the products of the corresponding 1st to 3rd class amines.
  • primary amines include octylamine, dodecylamine, and octadecylamine.
  • secondary amines include dioctylamine, methyloctadecylamine, and dioctadecylamine.
  • tertiary amines include trioctylamine, dimethyldodecylamine, didodecylmonomethylamine and the like.
  • the quaternary ammonium ions include dihydroxyethylmethyloctade Silammonium, Tetraethylammonum, Octadecyltrimethylammonium, Dimethyldioctadecylammonium, Hydroxyethyldimethyloctadecylammonium, Hydroxyethyldimethyldodecylammonium, Benzyldihydroxye Tildedecyl ammonium, benzyldihydroxyloctyloctadecyl ammonium, dodecyl (dihydroxyethyl) methylammonium, octadecyl (dihydroxyethyl) methylammonium, N, N-bis (2-hydroxyethyl) ) _ N _ (3
  • Examples of pyridinium ions include 1-dodecylpyridinium.
  • Examples of the imidazolium ion include 1-ethylmethylimidazole, 1_heptadecyl-1,2'-ethylhydroxyethylimidazolium, and the like.
  • Examples of phosphonium ions include tetraethylphosphonium, tetrabutylphosphonium, hexadecyltributylphosphonium, tetrakis (hydroxymethyl) phosphonium, and 2-hydroxyethyltriphenylphosphonium.
  • hydroxyl groups in the molecule such as methyl, methyldodecyl bis (polyethylene glycol) ammonium, methyl jetyl (polypropylene glycol) ammonium, 2-hydroxyethyl triphenyl phosphonium, or Layered silicate
  • the method of treating the layered silicate with the above primary to quaternary ammonium ions, pyridinium ions, imidazolium ions, or phosphonium ions For example, by first dispersing the layered silicate in water or alcohol, adding the above primary to tertiary amine and acid (such as hydrochloric acid), or the quaternary ammonium salt or phosphonium salt, and stirring and mixing. Examples include a method in which inorganic ions between layers of a layered silicate are ion exchanged with the above ammonium ions and phosphonium ions, followed by filtration, washing, and drying.
  • the amount of the layered silicate is preferably 0.5 to 10 parts by weight, more preferably 2 to 8 parts by weight, even more preferably 100 parts by weight of the biodegradable polyester resin. 2 to 5 parts by mass. If the amount is less than 0.1 part by mass, it is difficult to obtain the effect of improving the target physical properties of the present invention. If the amount exceeds 10 parts by mass, molding processability tends to deteriorate due to deterioration of the appearance or molecular weight. Is
  • the sugar alcohol used in the fatty acid ester consisting of a dehydration condensate of a sugar alcohol and a fatty acid used in the present invention is a reduction of the aldehyde group and the ketone group of the sugar to produce a primary alcohol group and a secondary alcohol group, respectively. It is a polyvalent alcohol equivalent to the above.
  • trititol with 3 carbon atoms tetritol with 4 carbon atoms, pentitol with 5 carbon atoms, hexitol with 6 carbon atoms, heptitol with 7 carbon atoms, 8 carbon atoms Octitol, nonitol having 9 carbon atoms, decitol having 10 carbon atoms, dodecitol having 12 carbon atoms, and the like.
  • the tritol having 3 carbon atoms includes glycerin.
  • examples of tetritol having 4 carbon atoms include D, L-traitol, and erythritol.
  • Examples of pentitols having 5 carbon atoms include D, L-arabitol, ribitol, and xylitol. Hex with 6 carbons! D, L—Sorbi! Le, D, L—Manni! Le , Zulsi I, D, L—Tari I, D, L_Iji! And Ali I.
  • Examples of heptitol having 7 carbon atoms include perseitol and polemitol.
  • octitols having 8 carbon atoms include D-erythro L-galactyl I, D-erythro L-talocitol I, erythromann octitol, D-treo L-galactitol.
  • Nonitol with 9 carbon atoms includes D-Alappo D-mannononitol.
  • decitol having 10 carbon atoms include D-gluco_D_galadecitol.
  • the sugar alcohol can be synthesized by reducing the corresponding sugar by a known method such as sodium amalgam, electrolysis, high pressure contact method or the like. These sugar alcohols can be used regardless of the type of optical isomer, natural product or synthetic product. These may be used alone or in combination of two or more. Among these, erythritol I, arabi I, rivil I, xylyl I, sorbyl I, dulcitol and mannitol are preferable, and sorbitol is most preferable.
  • sorbitol dehydration condensate of sugar alcohol are approved as food additives in Japan, have high safety, and can be suitably used for packaging materials and containers.
  • the most preferred sorbitol dehydration condensate is sorbitan, which is widely used industrially, so it is highly useful in terms of cost.
  • dehydration condensates of sorbitol include 1,4_sorbitan, 3,6-sorbitan, or 1,5-sorbitan, which is a single molecule dehydrate, and 1,4,3, which is a bimolecular dehydrate. , 6 _ sorbide.
  • Fatty acids suitable for use in the present invention to form a fatty acid ester with a dehydration condensate of a sugar alcohol are 3 to 36 carbon atoms, preferably 8 to 22 carbon atoms, particularly preferably.
  • Specific fatty acids include saturated fatty acids such as strong prillic acid, lauric acid, myristic acid, palmitic acid, stearic acid, lignoceric acid, and unsaturated fatty acids such as undecylenic acid, oleic acid, linoleic acid, and linolenic acid. .
  • Particularly preferred fatty acid esters are sorbitan mono-, di-, and triesters having the above fatty acids, and more specifically, sorbitan mono-force plate, sorbitan dicaplate, sorbitan tricaplate, sorbitan monolaurate, Sorbitan dilaurate, sorbitan trilaurate, sorbitan monomyristate, sorbitan dimyristate, sorbitan trimyristate, sorbitan monopalmitate, sorbitan dipalmitate, sorbitan dipalmitate, sorbitan monostearate, sorbitan monostearate Rate, sorbitan tristearate, sorbitan monolignocerate, sorbitan dilignocerate, sorbitan trilignocerate, sorbitan mononolate, sorbitandiole , Sorbitan trioleate Ichito, sorbitan Monorinoreto, sorbitan distearate
  • a method for producing a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid is not particularly limited, and a known method may be used. Moreover, as a fatty acid ester composed of a sugar alcohol dehydration condensate and a fatty acid, a commercially available product produced by a known method may be used.
  • sorbitan laurate (Rikenmar L-250A manufactured by Riken Vitamin Co., Ltd .; Leodor S P_ L 1 0, Leodol Sulpap _S P_ L 1 0 manufactured by Kao Corporation), Sorbitan Palmitate (Rikenmar P manufactured by Riken Vitamin Co., Ltd.) — 300, Riquemar SP—250, Riquemar AF—004; Leodoll SP—P 1 0) manufactured by Kao Corporation, Sorbitan stearate (Riquemar S_300W, RIKEN Vitamin Company, Poem S—60; Leodol SP—S 1 0 V manufactured by Kao Corporation , Leodol AS-10 V), sorbitan tristearate (RIKEN Vitamin, Poem S—65 V; Kao Leodol SP—S 30 V), sorbitanate (RIKEN Vitamin, Poem O—80V; Kao) Manufactured by Leodoles SP—CM OV,
  • the addition amount of the fatty acid ester composed of the sugar alcohol dehydration condensate and the fatty acid is preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the biodegradable polyester resin.
  • the amount is more preferably 5 to 10 parts by mass, and particularly preferably 0.5 to 8 parts by mass. If it is less than 1 part by mass, the transparency as the object of the present invention cannot be obtained, and if it exceeds 15 parts by mass, the physical properties and moldability of the resin of the base material are lowered.
  • the resin composition of the present invention has excellent appearance by being excellent in transparency, dispersibility of the layered silicate, and the haze when formed into a 1 mm-thick molded product may be 60% or less. it can. If the haze is greater than this value, the product value may be low if the transparency is insufficient, or even if the haze does not exceed this value, coarse aggregates are seen. is there.
  • turbidity refers to turbidity measured with a turbidimeter. The larger the haze, the stronger the turbidity, and the smaller the haze, the weaker the turbidity and the clearer it is.
  • a molded body having a thickness of 1 mm preferably has a haze of 60% or less, more preferably has a haze of 50% or less, and more preferably has a haze of 35% or less, as described above. Has a haze of 25 ⁇ 1 ⁇ 2 or less.
  • a method for adding a layered silicate and a fatty acid ester comprising a dehydration condensate of sugar alcohol and a fatty acid a method of adding at the time of polymerization of the biodegradable resin.
  • a method of adding at the time of melt kneading examples thereof include a method of adding at the time of melt kneading and a method of adding at the time of molding.
  • the manufacturing process can be simplified, or thermal degradation of layered silicates, fatty acid esters composed of dehydrated condensates of sugar alcohols and fatty acids, and resin compositions containing them can be reduced as much as possible.
  • melt-kneading or molding As an addition method to be added at the time of melt-kneading or molding, a general method is described in which a resin, a lamellar silicate, a fatty acid ester composed of a sugar alcohol dehydration condensate and a fatty acid are pre-dried in advance. Examples thereof include a method of supplying to a kneader and a molding machine, a method of adding from the middle of kneading using a side feeder, and a method of injecting liquid using a quantitative supply pump in the case of liquid.
  • the layered silicate and the fatty acid ester composed of a sugar alcohol dehydration condensate and a fatty acid may be supplied simultaneously or separately. However, for the purpose of improving the dispersibility of the layered silicate, it is preferable to add a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid to the resin at the same time.
  • a general kneader such as a single screw extruder, a twin screw extruder, a roll kneader, or a brabender can be used, and in order to improve the dispersibility of additives. It is preferred to use a twin screw extruder.
  • the resin composition of the present invention includes a crystal nucleating agent, a heat stabilizer, an antioxidant, a pigment, a dye, a light resistance agent, a weather resistance agent, a flame retardant, a plasticizer, and the like within a range not impairing the effects of the present invention.
  • Lubricants, mold release agents, antistatic agents, fillers, dispersants other than those defined in the present invention, end-capping agents and the like may be added.
  • Crystal nucleating agents include organic amide compounds, Examples include organic hydrazide compounds, carboxylic acid ester compounds, organic sulfonates, phthalocyanine compounds, melanin compounds, and organic phosphonates.
  • heat stabilizers and antioxidants examples include phosphite-based organic compounds, hindered phenol-based compounds, benzotriazole-based compounds, triazine-based compounds, hindered amine-based compounds, thio compounds, copper compounds, and aluminum halides. Alternatively, a mixture of these can be used. These additives are generally added during melt-kneading or polymerization.
  • inorganic fillers include talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon , Chikichi Pump Rack, Zinc Oxide, Antimony Trioxide, Zeolite, Hydrotalite, Metal Fiber, Metal Whisker, Ceramics Whisker, Potassium Titanate, Boron Nitride, Graphite, Glass Fiber, Carbon Fiber, etc. Is mentioned.
  • organic fillers include monosaccharides, polysaccharides such as starch, cellulose fine particles, wood flour, okara, fir shell, bran, kenaf, and other naturally occurring polymers, and modified products thereof.
  • a polyester comprising a dicarboxylic acid and / or an aromatic dicarboxylic acid and an aliphatic diol, a polyester amide, and a polyester strength are used as long as the effects of the present invention are not impaired.
  • the resin composition of the present invention can be formed into various molded products by known molding methods such as injection molding, blow molding, and extrusion molding.
  • injection molding method in addition to the general injection molding method, gas injection molding method, injection A press molding method can be employed.
  • the cylinder temperature at the time of injection molding needs to be equal to or higher than the melting point (T m) or the flow start temperature of the resin composition, preferably 180 to 230 ° C, more preferably 190 to 2 The range is 20 ° C. If the molding temperature is too low, it tends to cause molding defects and equipment overload due to a decrease in resin fluidity. On the other hand, if the molding temperature is too high, the biodegradable polyester resin decomposes, causing problems such as reduced strength of the molded product and coloring.
  • the mold temperature is preferably (T g ⁇ 10 ° C.) or less when it is T g (glass transition temperature) or less of the resin composition. Further, in order to promote crystallization of the resin composition for the purpose of improving rigidity and heat resistance, the mold temperature can be set to Tg or more and (Tm_30 ° C) or less.
  • the blow molding method includes, for example, a direct blow method in which molding is performed directly from a raw material chip, and an injection port one molding method in which blow molding is performed after a preformed body (bottom parison) is first molded by injection molding. Can be mentioned. In addition, both hot parison method in which blow molding is continuously performed after molding of the preform, and cold / rison method in which the preform is once cooled and taken out and heated again to perform pro molding. Can be adopted.
  • a T-die method, a round die method, or the like can be applied as the extrusion molding method.
  • the extrusion temperature must be equal to or higher than the melting point (T m) of the resin composition or equal to or higher than the flow start temperature, preferably 180 to 230 ° C, more preferably 190 to 220. It is in the range of ° C. If the molding temperature is too low, the operation may become unstable or overloaded. On the other hand, if the molding temperature is too high, the biodegradable polyester component is decomposed, and problems such as a decrease in strength and coloring of the extruded product occur. Sheets, pipes, etc. can be produced by extrusion.
  • Specific applications of the sheet or pipe obtained by the extrusion method include: deep drawing raw sheet, batch foam raw sheet, credit card and other strengths, underlay, clear File, Strut One, Agriculture ⁇ Hard pipe for horticulture.
  • the sheet is further subjected to deep drawing such as vacuum forming, compressed air forming, vacuum compressed air forming, etc. Blister pack containers, press-through pack containers, etc. can be manufactured.
  • the deep drawing temperature and the heat treatment temperature are preferably (T g + 20 ° C.) to (T g + 100 ° C.). Deep drawing becomes difficult when the deep drawing temperature is less than (T g + 20 ° C).
  • Food containers are not particularly limited in form, but in order to accommodate food, goods, chemicals, etc., deep drawing to a depth of 2 mm or more It is preferable that The thickness of the container is not particularly limited, but from the viewpoint of strength, it is preferably 5 O m or more, and more preferably 1550 to 500 m.
  • Specific examples of food containers include fresh food trays, instant food containers, fast food containers, and lunch boxes.
  • Agriculture ⁇ Specific examples of horticultural containers include nursery pots.
  • Specific examples of blister pack containers include packaging containers for various product groups such as office supplies, toys, and dry batteries in addition to food.
  • molded articles produced using the resin composition of the present invention include dishes such as plates, bowls, bowls, chopsticks, spoons, forks, knives, fluid containers, container caps, rulers,
  • dishes such as plates, bowls, bowls, chopsticks, spoons, forks, knives, fluid containers, container caps, rulers,
  • For office supplies such as writing utensils, clear cases, CD cases, triangular corners for kitchens, trash cans, washbasins, toothbrushes, combs, hangers, and other toys, plastic models, and other electrical appliances such as air conditioner panels and housings Resin parts, bumper, instrument panel, automotive resin parts such as door trim.
  • the form of the fluid container is not particularly limited, but is preferably formed to a depth of 2 O mm or more in order to accommodate the fluid.
  • the thickness of the container is not particularly limited, but is preferably 0.1 mm or more and more preferably 0.1 to 5 mm from the viewpoint of strength.
  • Specific examples of fluid containers include beverage cups and beverage pots for dairy products, soft drinks, and alcoholic beverages, soy sauce, sauces, mayonnaise, ketchup, and edible oils. Storage containers, shampoo, rinsing containers, cosmetic containers, agricultural chemical containers, etc.
  • the resin composition of the present invention may be a fiber.
  • the production method is not particularly limited, but a method of melt spinning and stretching is preferred.
  • the melt spinning temperature is preferably 160 to 260 ° C. If it is less than 160 ° C, melt-extrusion tends to be difficult. On the other hand, if it exceeds 250 ° C, decomposition tends to be remarkable, and it becomes difficult to obtain high-strength fibers.
  • the melt-spun fiber yarn may be drawn at a temperature of T g or higher so as to obtain the desired fiber diameter.
  • the fibers obtained by the above method are used as clothing fibers, industrial material fibers, short fiber nonwoven fabrics, and the like.
  • the resin composition of the present invention can also be developed into a long fiber nonwoven fabric.
  • the production method is not particularly limited, and examples thereof include a method of depositing fibers obtained by spinning a resin composition by a high-speed spinning method and then forming a web using a means such as heat pressure welding. .
  • JISK-7 1 3 6 measurement was performed on a 1 mm thick press sheet formed of a resin composition. Specifically, a test sheet machine manufactured by Tester Sangyo Co., Ltd. was used for the resin composition, and the resin composition was pressed at 190 ° C. for about 3 minutes to produce a press sheet having a thickness of 1 mm as a molded body.
  • This press paper was measured using a NDH-2200 type turbidity haze meter manufactured by Nippon Denshoku Industries Co., Ltd. A case where the haze was 60% or less was judged good, and a case where the haze was larger than 60% was judged bad.
  • the resin composition was used for evaluation based on moldability with a high-temperature mold. In other words, the production of blow bottles at a mold temperature of 120 ° C was attempted, and the ones that were taken out without deformation were evaluated as having good heat resistance ( ⁇ ), and those with deformation or distortion were not heat resistant. Evaluated as good (X).
  • a resin composition having good transparency and heat resistance was evaluated as good ( ⁇ ), and when it did not satisfy at least one of transparency and heat resistance, it was judged as defective (X).
  • Layered silicate B Montmorillonite with interstitial ions substituted with dioctadecyldimethylammonium ions (Hojoyun, Sven W)
  • Layered silicate C Swelling synthetic fluorinated mica in which interlayer ions are replaced with dihydroxyethylmethyldodecyl ammonium ion (Coop Chemical Co., Somash ME E, average particle size 6.2 m)
  • Layered silicate D Swellable synthetic fluorinated mica in which interlayer ions are replaced with methyltrioctylammonium ions (Somacif MT E, manufactured by Corp Chemical) (3) Esters consisting of sugar alcohol dehydration condensate and fatty acids
  • E Sorbitan stearate (Riken Vitamin, Poem S—300W)
  • F Sorbitan tristearate (Riken Vitamin, Poem S—65V)
  • a PCM-30 type twin screw extruder manufactured by Ikekai Co., Ltd. was used for melt-kneading.
  • the screw diameter was 3 Omm0 and the average groove depth was 2.5 mm.
  • Example 1 Compared to Example 1, the composition of the resin composition was changed as shown in Table 1. Other than that, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. [0069] Comparative Example 1
  • Example 1 Compared to Example 1, without adding a fatty acid ester composed of a sugar alcohol dehydration condensate and a fatty acid, the same kneading was performed only by adding a layered silicate to a biodegradable polyester resin, and a molded product was obtained. Obtained and evaluated. The results are shown in Table 1
  • Example 2 Compared to Example 2, the same kneading was performed only by adding a layered silicate to a biodegradable polyester resin without adding a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid. Obtained and evaluated. The results are shown in Table 1
  • Example 2 Compared to Example 2, instead of a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid, another fatty acid ester was added and kneaded in the same manner to obtain a molded product for evaluation. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

Disclosed is a biodegradable resin composition containing a biodegradable polyester resin mainly composed of either of an α- and/or β-hydroxycarboxylic acid unit and an ω-hydroxyalkanoate unit, a layered silicate, and a fatty acid ester composed of a dehydration condensation product of a sugar alcohol and a fatty acid. This biodegradable resin composition has heat resistance, while having high transparency and less agglomerates, thereby maintaining good appearance.

Description

明 細 書  Specification
生分解性樹脂組成物、 その製造方法、 およびそれを用いた成形体 技術分野  Biodegradable resin composition, process for producing the same, and molded article using the same
[0001 ] 本発明は、 生分解性樹脂組成物、 その製造方法、 およびそれを用いた成形 体に関する。  [0001] The present invention relates to a biodegradable resin composition, a method for producing the same, and a molded body using the same.
背景技術  Background art
[0002] 近年、 環境保全の見地から、 ポリ乳酸をはじめとする生分解性樹脂が注目 されている。 生分解性樹脂のうちでポリ乳酸は、 透明性が良好であり、 また トウモロコシゃサツマィモなどの植物由来原料から大量生産可能なため、 コ ス卜が低いうえに石油原料の使用量削減にも貢献できることから、 有用性が 高い。  [0002] In recent years, biodegradable resins such as polylactic acid have attracted attention from the viewpoint of environmental conservation. Among the biodegradable resins, polylactic acid has good transparency and can be mass-produced from plant-derived raw materials such as corn and sweet potato. Because it is possible, it is highly useful.
[0003] し力、し、 ポリ乳酸などを含む生分解性樹脂は耐熱性が不十分である。 例え ば高分子論文集、 2 0 0 2年 5 9号 1 2巻 7 6 0〜7 6 6頁では、 この問題 を改善するために層状珪酸塩を添加する方法が提案されている。 ところが、 生分解性樹脂に層状珪酸塩を添加すると、 その分散性が十分でないために、 凝集が起こりやすく、 樹脂を用いた成形物の外観に問題が生じる可能性があ る。 このため、 良好な外観を必要とすることが多い包装材料や容器に用いる 樹脂組成物には、 この方法は不適である。  [0003] A biodegradable resin containing a polylactic acid has insufficient heat resistance. For example, a collection of polymer papers, 2 0 5 2 5 9 1 2 7 6 0-7 6 6 proposes a method of adding a layered silicate to improve this problem. However, when a layered silicate is added to a biodegradable resin, the dispersibility is not sufficient, and aggregation is likely to occur, which may cause a problem in the appearance of a molded product using the resin. For this reason, this method is not suitable for resin compositions used for packaging materials and containers that often require a good appearance.
[0004] この問題を解決する方法として、 J P— A—2 0 0 4— 0 2 7 1 3 6には 、 水又は水系溶媒で予め膨潤させた層状珪酸塩を用いてポリ乳酸の融点以下 でこのポリ乳酸と混練することにより、 分散性を高める方法が開示されてい る。 しかしながら、 この方法では、 特殊な混練機が必要になり経済的に好ま しくなく、 また混練中に樹脂組成物の分子量が低下することにより成形時に 熱劣化が生じる可能性がある。  [0004] As a method for solving this problem, JP-A-2 0 0 4-0 2 7 1 3 6 uses a layered silicate that has been swollen in advance with water or an aqueous solvent at a temperature lower than the melting point of polylactic acid. A method for improving dispersibility by kneading with this polylactic acid is disclosed. However, this method requires a special kneading machine and is not economically preferable. Further, the molecular weight of the resin composition is lowered during kneading, which may cause thermal deterioration during molding.
[0005] J P - A - 2 0 0 4 - 3 2 3 7 5 8には、 層間にラクチドもしくは数平均 分子量が 5 0 0 0 0以下の低分子量ポリ乳酸が挿入されて層間距離が拡大さ れた層状珪酸塩を用いて、 その分散性を向上させる方法が提示されている。 しかし、 この方法では、 層状珪酸塩の分散性に関してはさらなる改善の余地 がある。 [0005] JP-A-2 0 0 4-3 2 3 7 5 8 includes a lactide or a low molecular weight polylactic acid having a number average molecular weight of 5 0 00 0 0 or less inserted between the layers to increase the interlayer distance. A method for improving the dispersibility of the layered silicate has been proposed. However, this method has room for further improvement with regard to the dispersibility of the layered silicate.
[0006] J P - A - 2 0 0 3 - 2 6 1 6 9 5には、 アルキレンォキシド単位の繰返 しからなる数平均分子量 2 0 0〜5 0 0 0 0の化合物によりポリ乳酸中に層 状珪酸塩を分散させたフィルムが提示されている。 し力、し、 アルキレンォキ シド化合物は親水性が高く、 耐熱性が高くないため、 添加可能な量が限られ てしまう。 したがって、 この方法でも、 層状珪酸塩の分散性に関してはさら なる改善の余地がある。  [0006] JP-A-2 0 0 3-2 6 1 6 9 5 includes a compound having a number average molecular weight of 2 0 0 to 5 0 00 0 consisting of repeating alkylene oxide units in polylactic acid. A film in which a layered silicate is dispersed is presented. However, the alkylene oxide compound has high hydrophilicity and does not have high heat resistance, so the amount that can be added is limited. Therefore, even with this method, there is room for further improvement in the dispersibility of the layered silicate.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、 上記のような問題点を解決するものであり、 耐熱性があるとと もに、 透明性が高く凝集物の少ない、 すなわち良好な外観を維持した、 生分 解性樹脂組成物を提供することを課題とする。  [0007] The present invention solves the above-mentioned problems, and has heat resistance, transparency and low agglomerates, that is, biodegradability that maintains a good appearance. It is an object to provide a resin composition.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、 上記課題を解決するために鋭意研究を重ねた結果、 生分解 性ポリエステル樹脂に、 層状珪酸塩と、 糖アルコールの脱水縮合物と脂肪酸 とからなる脂肪酸エステルとを添加することにより、 耐熱性があり、 しかも 層状珪酸塩の分散性を改善して透明性すなわち良好な外観を維持した樹脂組 成物を提供できることを見出した。  [0008] As a result of intensive studies to solve the above problems, the present inventors have found that a biodegradable polyester resin contains a layered silicate, a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid. It has been found that by adding this, it is possible to provide a resin composition that has heat resistance, improves the dispersibility of the layered silicate, and maintains transparency, that is, good appearance.
[0009] 本発明の要旨は、 次のとおりである。  [0009] The gist of the present invention is as follows.
[0010] ( 1 ) ひ一および/または; S—ヒドロキシカルボン酸単位と ω—ヒドロキ シァルカノエ一ト単位とのいずれかを主成分とする生分解性ポリエステル樹 脂と、 層状珪酸塩と、 糖アルコールの脱水縮合物と脂肪酸とからなる脂肪酸 エステルとを含有することを特徴とする生分解性樹脂組成物。  [0010] (1) One and / or; a biodegradable polyester resin mainly comprising any one of an S-hydroxycarboxylic acid unit and an ω-hydroxycanoate unit, a layered silicate, and a sugar alcohol A biodegradable resin composition comprising a dehydration condensate and a fatty acid ester comprising a fatty acid.
[001 1 ] ( 2 ) 生分解性ポリエステル樹脂がポリ乳酸を 5 0質量%以上含有したも のであることを特徴とする (1 ) の生分解性樹脂組成物。  [001 1] (2) The biodegradable resin composition according to (1), wherein the biodegradable polyester resin contains 50% by mass or more of polylactic acid.
[0012] ( 3 ) 生分解性ポリエステル樹脂 1 0 0質量部あたり、 層状珪酸塩が 0 .  [0012] (3) Biodegradable polyester resin
5〜 1 0質量部含有されていることを特徴とする (1 ) または (2 ) の生分 解性樹脂組成物。 (1) or (2) raw material characterized by containing 5 to 10 parts by mass A degradable resin composition.
[0013] (4) 糖アルコールが、 エリ トリ トール、 ァラビトール、 リビトール、 キ シリ I ル、 ソルビ! ル、 ズルシ I ル、 マンニ! ルのうちの少なくと も 1種であることを特徴とする (1 ) から (3) までのいずれかの生分解性 樹脂組成物。  [0013] (4) The sugar alcohol is erythritol, arabitol, ribitol, xylitol, sorb! Le, Zulci I Le, Manni! The biodegradable resin composition according to any one of (1) to (3), characterized in that it is at least one of the above.
[0014] (5) 生分解性ポリエステル樹脂 1 00質量部あたり、 糖アルコールの脱 水縮合物と脂肪酸とからなる脂肪酸エステルが 0. 1〜1 5質量部含有され ていることを特徴とする (1 ) から (4) までのいずれかの生分解性樹脂組 成物。  [0014] (5) The biodegradable polyester resin contains 0.1 to 15 parts by mass of a fatty acid ester composed of a dehydrated condensate of sugar alcohol and a fatty acid per 100 parts by mass of the biodegradable polyester resin ( The biodegradable resin composition according to any one of 1) to (4).
[0015] (6) 層状珪酸塩の層間に、 1級〜 4級アンモニゥムイオン、 ピリジニゥ ムイオン、 イミダゾリゥムイオン、 またはホスホニゥムイオンが結合してい ることを特徴とする (1 ) から (5) までのいずれかの生分解性樹脂組成物  [0015] (6) The primary to the fourth grade ammonium ion, pyridinium ion, imidazolium ion, or phosphonium ion are bonded between the layered silicate layers (1) to (5) Any biodegradable resin composition up to
[0016] (7) 厚み 1 mmの成形体としたときのヘーズが 60%以下であることを 特徴とする (1 ) から (6) までのいずれかの生分解性樹脂組成物。 [0016] (7) The biodegradable resin composition according to any one of (1) to (6), wherein the haze is 60% or less when a molded body having a thickness of 1 mm is formed.
[0017] (8) 上記 (1 ) から (7) までのいずれかの生分解性樹脂組成物を製造 するに際して、 溶融混練時または成形時に、 生分解性ポリエステル樹脂を含 有する樹脂に、 層状珪酸塩と、 糖アルコールの脱水縮合物と脂肪酸とからな る脂肪酸エステルとを添加することを特徴とする生分解性樹脂組成物の製造 方法。  [0017] (8) In producing the biodegradable resin composition according to any one of (1) to (7) above, a layered silicic acid is added to a resin containing a biodegradable polyester resin at the time of melt-kneading or molding. A method for producing a biodegradable resin composition, comprising adding a salt and a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid.
[0018] (9) 上記 (1 ) から (7) までのいずれかの生分解性樹脂組成物からな ることを特徴とする成形体。  [0018] (9) A molded article comprising the biodegradable resin composition according to any one of (1) to (7) above.
発明の効果  The invention's effect
[0019] 本発明によれば、 ひ一および/または; S—ヒドロキシカルボン酸単位と ω —ヒドロキシアル力ノエ一ト単位とのいずれかを主成分とする生分解性ポリ エステル樹脂に、 層状珪酸塩と、 糖アルコールの脱水縮合物と脂肪酸とから なる脂肪酸エステルとを添加することにより、 耐熱性と層状珪酸塩の分散性 とが改善された生分解性樹脂組成物を提供することができる。 特に層状珪酸 塩は耐熱性の改善に有効であり、 糖アルコールの脱水縮合物と脂肪酸とから なる脂肪酸エステルは層状珪酸塩の分散性の改善に有効である。 また、 本発 明の樹脂組成物は、 生分解性を有することから、 廃棄する際にはコンポスト 化でき、 廃棄物の減量化や、 肥料としての再利用化が可能である。 さらに、 糖アルコールの脱水縮合物と脂肪酸とからなる脂肪酸エステルは一般に植物 に由来する原料から製造することが可能であり、 安全性や衛生性も良く、 生 分解性ポリエステル樹脂として同様に植物由来であるポリ乳酸を使用した場 合は、 石油資源の枯渴防止に貢献し、 環境にやさしい材料を提供することが できる。 [0019] According to the present invention, a layered silicic acid is added to a biodegradable polyester resin mainly composed of either one of S-hydroxycarboxylic acid units and ω-hydroxyalkylene units. By adding a salt and a fatty acid ester composed of a sugar alcohol dehydration condensate and a fatty acid, a biodegradable resin composition having improved heat resistance and dispersibility of the layered silicate can be provided. Especially layered silicic acid Salts are effective in improving heat resistance, and fatty acid esters composed of sugar alcohol dehydration condensates and fatty acids are effective in improving the dispersibility of layered silicates. In addition, since the resin composition of the present invention is biodegradable, it can be composted when discarded, and the amount of waste can be reduced or reused as fertilizer. Furthermore, fatty acid esters composed of sugar alcohol dehydration condensate and fatty acids can be produced from plant-derived raw materials in general, and are safe and hygienic, and are also derived from plants as biodegradable polyester resins. Using certain polylactic acid contributes to the prevention of oil resource depletion and can provide environmentally friendly materials.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、 本発明を詳細に説明する。  [0020] Hereinafter, the present invention will be described in detail.
[0021 ] 本発明における生分解性ポリエステル樹脂は、 ひ一および/または; S—ヒ ドロキシカルポン酸単位と、 ω—ヒドロキシアル力ノエ一ト単位とのいずれ かを主成分とする生分解性ポリエステル樹脂である。  [0021] The biodegradable polyester resin in the present invention is a biodegradable polyester resin mainly composed of either one and / or; an S-hydroxy carboxylic acid unit and an ω-hydroxyalkyl unit. It is.
[0022] ひ一および/または; S—ヒドロキシカルボン酸単位の例としては、 D—乳 酸、 L _乳酸、 これらの混合物、 グリコール酸、 3—ヒドロキシ酪酸、 3 _ ヒドロキシ吉草酸、 3—ヒドロキシカブロン酸など、 およびこれらの混合物 、 共重合体が挙げられる。 D _乳酸、 L _乳酸が特に好ましい。 ω—ヒドロ キシアル力ノエ一ト単位としては、 ど一力プロラク トン、 (5—バレロラク ト ンが挙げられる。 なお、 ポリエステル樹脂の生分解性を損なわない範囲であ れば、 シユウ酸、 コハク酸、 グルタル酸、 セバシン酸、 アジピン酸などの脂 肪族カルボン酸や、 テレフタル酸、 イソフタル酸などの芳香族ジカルボン酸 が共重合されていてもよく、 こうした共重合ポリエステルも本発明でいう生 分解性ポリエステル樹脂に含まれる。  [0022] Examples of S-hydroxycarboxylic acid units include D-lactic acid, L_lactic acid, mixtures thereof, glycolic acid, 3-hydroxybutyric acid, 3_hydroxyvaleric acid, 3-hydroxy Examples thereof include cabronic acid, and mixtures and copolymers thereof. D_lactic acid and L_lactic acid are particularly preferred. ω-Hydroxyl force unit includes prolactone and (5-valerolacton. In addition, oxalic acid and succinic acid can be used as long as they do not impair the biodegradability of the polyester resin. Aliphatic carboxylic acids such as glutaric acid, sebacic acid, and adipic acid, and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid may be copolymerized. Included in polyester resin.
[0023] 本発明の生分解性ポリエステル樹脂の具体例としては、 ポリ (D _乳酸) 、 ポリ ( L—乳酸) のほか、 ポリグリコ一ル酸、 ポリ ( 3—ヒドロキシ酪酸 ) 、 ポリ (3—ヒドロキシ吉草酸) などが挙げられ、 またポリ (ど 一力プロ ラク トン) やポリ (S _バレロラク トン) に代表されるポリ (ω—ヒドロキ シァルカノエ一ト) などが挙げられる。 これらの成分は、 1種でも、 2種以 上用いてもよく、 混合されていてもよいし、 共重合されていてもよい。 また 、 ポリ乳酸としては、 L _乳酸、 D _乳酸の含有比率は特に限定されないが 、 市販されているものとしては (L—乳酸/ D—乳酸) = 8 0 / 2 0〜9 9 . 9 5 / 0 . 0 5 (モル比) の範囲のものが一般的であり制限なく使用でき る。 Specific examples of the biodegradable polyester resin of the present invention include poly (D_lactic acid), poly (L-lactic acid), polyglycolic acid, poly (3-hydroxybutyric acid), poly (3— Hydroxy (valeric acid), and poly (ω-hydroxy) represented by poly (one-prone prolacton) and poly (S_valerolacton). And the like. These components may be used alone or in combination of two or more, may be mixed, or may be copolymerized. Moreover, as polylactic acid, the content ratio of L_lactic acid and D_lactic acid is not particularly limited, but as a commercially available one, (L-lactic acid / D-lactic acid) = 80/20 to 99.9 Those in the range of 5 / 0.05 (molar ratio) are common and can be used without limitation.
[0024] 中でも、 ポリ乳酸を 5 0質量%以上含有している材料を用いると、 植物由 来度が高いことから環境への効果が高い上に、 透明性、 耐熱性とのバランス もとれるためにさらに好ましい。 ポリ乳酸の含有量は、 好ましくは 6 0質量 %以上、 さらに好ましくは 8 0質量%以上である。 ポリ乳酸以外の生分解性 樹脂が 5 0質量%を超えると、 ポリ乳酸を使用しているにもかかわらず、 得 られる生分解性樹脂組成物の機械的特性や透明性や耐熱性が不足する。  [0024] Above all, when a material containing 50% by mass or more of polylactic acid is used, it has a high effect on the environment due to its high degree of plant origin, and it can balance the transparency and heat resistance. Is more preferable. The content of polylactic acid is preferably 60% by mass or more, more preferably 80% by mass or more. If the biodegradable resin other than polylactic acid exceeds 50% by mass, the mechanical properties, transparency and heat resistance of the resulting biodegradable resin composition will be insufficient, even though polylactic acid is used. .
[0025] ポリ乳酸以外の原料として植物由来の原料を使用すると、 植物由来の樹脂 含量が増えることになり、 石油資源の使用量の削減効果が大きくなる。 植物 由来原料からなる樹脂としては、 ポリ乳酸のほか、 ナイロン 1 1、 天然ゴム などが挙げられる。  [0025] When a plant-derived raw material is used as a raw material other than polylactic acid, the plant-derived resin content increases, and the effect of reducing the amount of petroleum resources used increases. Examples of the resin made from plant-derived materials include polylactic acid, nylon 11 and natural rubber.
[0026] 生分解性ポリエステル樹脂は、 公知の溶融重合法で、 あるいは必要に応じ てさらに固相重合法を併用して、 製造される。 ポリ (3—ヒドロキシ酪酸) およびポリ (3—ヒドロキシ吉草酸) などは、 微生物による生産が可能であ る。  [0026] The biodegradable polyester resin is produced by a known melt polymerization method or, if necessary, by further using a solid phase polymerization method. Poly (3-hydroxybutyric acid) and poly (3-hydroxyvaleric acid) can be produced by microorganisms.
[0027] 生分解性ポリエステル樹脂は、 一部が架橋されていてもかまわない。 また 、 エポキシ化合物などで修飾されていてもかまわない。  [0027] The biodegradable polyester resin may be partially crosslinked. Also, it may be modified with an epoxy compound or the like.
[0028] 生分解性ポリエステル樹脂の耐久性を向上させるために、 末端封鎖剤を添 加して、 樹脂の末端を封鎖することができる。 末端封鎖剤としては、 力ルポ ジイミ ド化合物、 エポキシ化合物、 ォキサゾリン化合物、 イソシァネート化 合物などが挙げられる。 添加量は、 特に限定されないが、 樹脂 1 0 0質量部 に対し、 0 . 1〜5質量部が好ましい。  [0028] In order to improve the durability of the biodegradable polyester resin, a terminal blocking agent may be added to block the terminal of the resin. Examples of the end-capping agent include strong lupodiimide compounds, epoxy compounds, oxazoline compounds, isocyanate compounds and the like. The addition amount is not particularly limited, but is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin.
[0029] 生分解性ポリエステル樹脂の分子量は、 特に限定されないが、 その指標と なる 1 9 0 °C、 2 1 . 2 N ( 2 . 1 6 k g f ) におけるメルトフローレ一ト ( M F R ) が 0 . "!〜 5 0 g / 1 0 m i nの範囲であれば、 そのポリエステ ル樹脂を好ましく使用することができる。 さらに好ましい範囲は、 0 . 2〜 4 0 g / 1 0 m i nである。 [0029] The molecular weight of the biodegradable polyester resin is not particularly limited. If the melt flow rate (MFR) at 190 ° C and 21.2 N (2.16 kgf) is in the range of 0 !! ~ 50 g / 10 min, the polyester resin A more preferable range is 0.2 to 40 g / 10 min.
[0030] 本発明に用いられる層状珪酸塩は、 膨潤性層状粘土鉱物の一種であり、 具 体的には、 スメクタイ ト、 バーミキユラィ ト、 膨潤性フッ素雲母などが挙げ られる。 スメクタイ 卜の例としては、 モンモリ口ナイ ト、 バイデライ ト、 へ ク トライ ト、 サボナイ トなどが挙げられる。 バ一ミキユラィ 卜の例としては 、 N a型バ一ミキユライ ト、 L i型バ一ミキユライ ト、 M g型バ一ミキユラ イ トなどが挙げられる。 膨潤性フッ素雲母の例としては、 N a型フッ素四ケ ィ素雲母、 N a型テニォライ ト、 L i型テニォライ トなどが挙げられる。 ま た上記の他に、 カネマイ ト、 マ力タイ ト、 マガディアイ ト、 ケニアィ トなど の、 アルミニウムやマグネシウムを含まない層状珪酸塩を使用することもで きる。 好ましいものは、 モンモリロナイ ト、 膨潤性フッ素雲母などである。 天然品以外に合成品でもよく、 合成方法としては、 溶融法、 インターカレー シヨン法、 水熱法などが挙げられるが、 いずれの方法であってもよい。 これ らの層状珪酸塩は単独で使用してもよいし、 鉱物の種類、 産地、 粒径などが 異なるものを 2種類以上組み合わせて使用してもよい。  [0030] The layered silicate used in the present invention is a kind of swellable layered clay mineral, and specific examples include smectite, vermiculite, and swellable fluoromica. Examples of smect tie include montmorillonite, bidet light, heavy light, and saponate. Examples of bar mixture are Na type bar mixture, Li type bar mixture, Mg type bar mixture, and the like. Examples of swellable fluorinated mica include Na-type fluorinated tetracathetic mica, Na-type teniolite, Li-type teniolite, and the like. In addition to the above, layered silicates that do not contain aluminum or magnesium, such as kanemite, magiteite, magadiite, and kenyaite, can also be used. Preferred are montmorillonite and swellable fluorinated mica. Synthetic products may be used in addition to natural products. Examples of the synthesis method include a melting method, an intercalation method, and a hydrothermal method, and any method may be used. These layered silicates may be used singly or in combination of two or more kinds having different mineral types, origins, and particle sizes.
[0031 ] 生分解性ポリエステル樹脂中での層状珪酸塩の分散性を向上させるために 、 層状珪酸塩の層間には、 1級ないし 4級アンモニゥムイオン、 ピリジニゥ ムイオン、 イミダゾリゥムイオンまたはホスホニゥムイオンがイオン結合し ていることが好ましい。 1級ないし 3級アンモニゥムイオンは、 対応する 1 級ないし 3級ァミンがプロ トン化したものである。 1級ァミンとしては、 ォ クチルァミン、 ドデシルァミン、 ォクタデシルァミンなどが挙げられる。 2 級ァミンとしては、 ジォクチルァミン、 メチルォクタデシルァミン、 ジォク タデシルァミンなどが挙げられる。 3級ァミンとしては、 トリオクチルアミ ン、 ジメチルドデシルァミン、 ジドデシルモノメチルァミンなどが挙げられ る。 4級アンモニゥムイオンとしては、 ジヒドロキシェチルメチルォクタデ シルアンモニゥム、 テトラェチルアンモニゥム、 ォクタデシルトリメチルァ ンモニゥム、 ジメチルジォクタデシルアンモニゥム、 ヒドロキシェチルジメ チルォクタデシルアンモニゥム、 ヒドロキシェチルジメチルドデシルアンモ 二ゥム、 ベンジルジヒドロキシェチルドデシルアンモニゥム、 ベンジルジヒ ドロキシェチルォクタデシルアンモニゥム、 ドデシル (ジヒドロキシェチル ) メチルアンモニゥム、 ォクタデシル (ジヒドロキシェチル) メチルアンモ 二ゥム、 N , N—ビス (2—ヒドロキシェチル) _ N _ ( 3 ' —ドデシルォ キシ一2 ' —ヒドロキシプロピル) メチルアンモニゥム、 メチルドデシルビ ス (ポリエチレングリコール) アンモニゥム、 メチルジェチル (ポリプロピ レングリコール) アンモニゥムなどが挙げられる。 ピリジニゥムイオンとし ては、 1—ドデシルピリジニゥムなどが挙げられる。 イミダゾリゥムイオン としては、 1—ェチルメチルイミダゾリゥム、 1 _ヘプタデシル一2 , 2 ' —ェチルヒドロキシェチルイミダゾリゥムなどが挙げられる。 ホスホニゥム イオンとしては、 テトラェチルホスホニゥム、 テトラブチルホスホニゥム、 へキサデシルトリブチルホスホニゥム、 テトラキス (ヒドロキシメチル) ホ スホニゥム、 2—ヒドロキシェチルトリフエニルホスホニゥムなどが挙げら れる。 これらのうち、 ジメチルジォクタデシルアンモニゥム、 ォクタデシル トリメチルアンモニゥム、 ジヒドロキシェチルメチルォクタデシルアンモニ ゥム、 ヒドロキシェチルジメチルォクタデシルアンモニゥム、 ヒドロキシェ チルジメチルドデシルアンモニゥム、 ドデシル (ジヒドロキシェチル) メチ ルアンモニゥム、 ォクタデシル (ジヒドロキシェチル) メチルアンモニゥム 、 N , N—ビス (2—ヒドロキシェチル) _ N _ ( 3 ' —ドデシルォキシ一 2 ' —ヒドロキシプロピル) メチルアンモニゥム、 メチルドデシルビス (ポ リエチレングリコール) アンモニゥム、 メチルジェチル (ポリプロピレング リコール) アンモニゥム、 2—ヒドロキシェチルトリフエニルホスホニゥム などの、 分子内に 1つ以上の水酸基を有するか、 または炭素数 1 2〜1 8の アルキル基を有するアンモニゥムイオンやホスホニゥムイオンで処理した層 状珪酸塩は、 生分解性ポリエステル樹脂との親和性が特に高く、 層状珪酸塩 の分散性が向上するため、 特に好ましい。 これらのイオン化合物は単独で使 用してもよいし、 2種以上を組み合わせて使用してもよい。 [0031] In order to improve the dispersibility of the layered silicate in the biodegradable polyester resin, between the layers of the layered silicate, primary to quaternary ammonium ion, pyridinium ion, imidazolium ion or phosphonium ion Are preferably ionically bonded. The 1st to 3rd class ammonium ions are the products of the corresponding 1st to 3rd class amines. Examples of primary amines include octylamine, dodecylamine, and octadecylamine. Examples of secondary amines include dioctylamine, methyloctadecylamine, and dioctadecylamine. Examples of tertiary amines include trioctylamine, dimethyldodecylamine, didodecylmonomethylamine and the like. The quaternary ammonium ions include dihydroxyethylmethyloctade Silammonium, Tetraethylammonum, Octadecyltrimethylammonium, Dimethyldioctadecylammonium, Hydroxyethyldimethyloctadecylammonium, Hydroxyethyldimethyldodecylammonium, Benzyldihydroxye Tildedecyl ammonium, benzyldihydroxyloctyloctadecyl ammonium, dodecyl (dihydroxyethyl) methylammonium, octadecyl (dihydroxyethyl) methylammonium, N, N-bis (2-hydroxyethyl) ) _ N _ (3 '— dodecyloxy 1 2' — hydroxypropyl) methylammonium, methyldodecylbis (polyethylene glycol) ammonium, methyljetyl (polypropylene glycol) ammonium . Examples of pyridinium ions include 1-dodecylpyridinium. Examples of the imidazolium ion include 1-ethylmethylimidazole, 1_heptadecyl-1,2'-ethylhydroxyethylimidazolium, and the like. Examples of phosphonium ions include tetraethylphosphonium, tetrabutylphosphonium, hexadecyltributylphosphonium, tetrakis (hydroxymethyl) phosphonium, and 2-hydroxyethyltriphenylphosphonium. Of these, dimethyldioctadecyl ammonium, octadecyl trimethylammonium, dihydroxyethylmethyloctadecylammonium, hydroxyethyldimethyloctadecylammonium, hydroxyethyldimethyldodecylammonium, Dodecyl (dihydroxyethyl) methylammonium, Octadecyl (dihydroxyethyl) methylammonium, N, N-bis (2-hydroxyethyl) _ N _ (3 '— dodecyloxy 1 2' — hydroxypropyl) methylammonium Have one or more hydroxyl groups in the molecule, such as methyl, methyldodecyl bis (polyethylene glycol) ammonium, methyl jetyl (polypropylene glycol) ammonium, 2-hydroxyethyl triphenyl phosphonium, or Layered silicates treated with ammonium ions and phosphonium ions having an alkyl group with 12 to 18 carbon atoms have a particularly high affinity with biodegradable polyester resins. This is particularly preferable because of improved dispersibility. These ionic compounds may be used alone or in combination of two or more.
[0032] 層状珪酸塩を上記 1級ないし 4級アンモニゥムイオン、 ピリジニゥムィォ ン、 イミダゾリゥムイオン、 ホスホニゥムイオンで処理する方法は、 特に制 限はない。 例えば、 まず層状珪酸塩を水またはアルコール中に分散させ、 こ こへ上記 1級ないし 3級ァミンと酸 (塩酸など) 、 または 4級アンモニゥム 塩もしくはホスホニゥム塩を添加して撹拌混合することにより、 層状珪酸塩 の層間の無機イオンを上記アンモニゥムイオン、 ホスホニゥムイオンとィォ ン交換させた後、 濾別■洗浄■乾燥する方法が挙げられる。  [0032] There is no particular limitation on the method of treating the layered silicate with the above primary to quaternary ammonium ions, pyridinium ions, imidazolium ions, or phosphonium ions. For example, by first dispersing the layered silicate in water or alcohol, adding the above primary to tertiary amine and acid (such as hydrochloric acid), or the quaternary ammonium salt or phosphonium salt, and stirring and mixing. Examples include a method in which inorganic ions between layers of a layered silicate are ion exchanged with the above ammonium ions and phosphonium ions, followed by filtration, washing, and drying.
[0033] 層状珪酸塩の配合量は、 生分解性ポリエステル樹脂 1 0 0質量部に対して 0 . 5〜 1 0質量部とすることが好ましく、 より好ましくは 2〜8質量部、 いっそう好ましくは 2〜5質量部である。 0 . 1質量部未満では、 本発明の 目的とする物性の向上効果を得にくく、 また 1 0質量部を超える場合には、 外観の悪化や、 分子量低下などによる成形加工性の悪化が生じる傾向がある  [0033] The amount of the layered silicate is preferably 0.5 to 10 parts by weight, more preferably 2 to 8 parts by weight, even more preferably 100 parts by weight of the biodegradable polyester resin. 2 to 5 parts by mass. If the amount is less than 0.1 part by mass, it is difficult to obtain the effect of improving the target physical properties of the present invention. If the amount exceeds 10 parts by mass, molding processability tends to deteriorate due to deterioration of the appearance or molecular weight. Is
[0034] 本発明に用いられる糖アルコールの脱水縮合物と脂肪酸とからなる脂肪酸 エステルで使用される糖アルコールとは、 糖のアルデヒド基およびケトン基 を還元して各々第一、 第二アルコール基としたものに相当する多価アルコ一 ルのことである。 具体的には、 炭素数が 3のトリ トール、 炭素数が 4のテト リ トール、 炭素数が 5のペンチトール、 炭素数が 6のへキシトール、 炭素数 が 7のへプチトール、 炭素数が 8のォクチトール、 炭素数が 9のノニトール 、 炭素数が 1 0のデシトール、 炭素数が 1 2のドデシトールなどが挙げられ る。 [0034] The sugar alcohol used in the fatty acid ester consisting of a dehydration condensate of a sugar alcohol and a fatty acid used in the present invention is a reduction of the aldehyde group and the ketone group of the sugar to produce a primary alcohol group and a secondary alcohol group, respectively. It is a polyvalent alcohol equivalent to the above. Specifically, trititol with 3 carbon atoms, tetritol with 4 carbon atoms, pentitol with 5 carbon atoms, hexitol with 6 carbon atoms, heptitol with 7 carbon atoms, 8 carbon atoms Octitol, nonitol having 9 carbon atoms, decitol having 10 carbon atoms, dodecitol having 12 carbon atoms, and the like.
[0035] 糖アルコールの具体例として、 炭素数が 3のトリ トールとしては、 グリセ リンが挙げられる。 炭素数が 4のテトリ トールとしては、 D , L—トレイ ト —ル、 エリ トリ トールが挙げられる。 炭素数が 5のペンチトールとしては、 D , L—ァラビトール、 リビトール、 キシリ トールが挙げられる。 炭素数が 6のへキシ! ルとしては、 D , L—ソルビ! ル、 D , L—マンニ! ル 、 ズルシ I ル、 D , L—タリ I ル、 D , L _イジ! ル、 ァリ I ルが 挙げられる。 炭素数が 7のへプチトールとしては、 ペルセィ トールゃポレミ トールが挙げられる。 炭素数が 8のォクチトールとしては、 D—エリ トロー L—ガラォクチ I ル、 D—エリ トロー L—タロォクチ I ル、 エリ トロマ ンノォクチトール、 D—トレオー L—ガラオクチトールなどが挙げられる。 炭素数が 9のノニトールとしては、 D—ァラポー D—マンノノニトールが挙 げられる。 炭素数が 1 0のデシトールとしては、 D—グルコ _ D_ガラデシ トールなどが挙げられる。 糖アルコールは、 相当する糖をナトリウムァマル ガム、 電気分解、 高圧接触法などの公知の方法で還元することにより合成す ることができる。 これらの糖アルコールは、 光学異性体の種類や、 天然品ま たは合成品に関わらず使用することができる。 また、 これらは単独で使用し てもよいし、 2種以上を組み合わせて使用してもよい。 これらの中でも、 ェ リ トリ I ル、 ァラビ I ル、 リビ I ル、 キシリ I ル、 ソルビ I ル、 ズルシトール、 マンニトールが好ましく、 ソルビトールが最も好ましい。 [0035] As a specific example of the sugar alcohol, the tritol having 3 carbon atoms includes glycerin. Examples of tetritol having 4 carbon atoms include D, L-traitol, and erythritol. Examples of pentitols having 5 carbon atoms include D, L-arabitol, ribitol, and xylitol. Hex with 6 carbons! D, L—Sorbi! Le, D, L—Manni! Le , Zulsi I, D, L—Tari I, D, L_Iji! And Ali I. Examples of heptitol having 7 carbon atoms include perseitol and polemitol. Examples of octitols having 8 carbon atoms include D-erythro L-galactyl I, D-erythro L-talocitol I, erythromann octitol, D-treo L-galactitol. Nonitol with 9 carbon atoms includes D-Alappo D-mannononitol. Examples of the decitol having 10 carbon atoms include D-gluco_D_galadecitol. The sugar alcohol can be synthesized by reducing the corresponding sugar by a known method such as sodium amalgam, electrolysis, high pressure contact method or the like. These sugar alcohols can be used regardless of the type of optical isomer, natural product or synthetic product. These may be used alone or in combination of two or more. Among these, erythritol I, arabi I, rivil I, xylyl I, sorbyl I, dulcitol and mannitol are preferable, and sorbitol is most preferable.
[0036] 糖アルコールおよび糖アルコールの脱水縮合物は、 日本国において食品添 加物として認可されており、 安全性が高く、 包装材料や容器に好適に用いる ことができる。 最も好ましいソルビト一ルの脱水縮合物であるソルビタンは 、 工業的に広く使われていることから、 コスト面でも有用性が高い。 例えば ソルビトールの脱水縮合物としては、 1分子脱水物である 1 , 4 _ソルビタ ン、 3 , 6—ソルビタン、 あるいは 1 , 5—ソルビタンが挙げられ、 また 2 分子脱水物である 1 , 4 , 3 , 6 _ソルビドが挙げられる。  [0036] Sugar alcohol and dehydrated condensate of sugar alcohol are approved as food additives in Japan, have high safety, and can be suitably used for packaging materials and containers. The most preferred sorbitol dehydration condensate is sorbitan, which is widely used industrially, so it is highly useful in terms of cost. For example, dehydration condensates of sorbitol include 1,4_sorbitan, 3,6-sorbitan, or 1,5-sorbitan, which is a single molecule dehydrate, and 1,4,3, which is a bimolecular dehydrate. , 6 _ sorbide.
[0037] 本発明で用いられる、 糖アルコールの脱水縮合物とによって脂肪酸エステ ルを形成するのに適当な脂肪酸は、 炭素原子を 3〜3 6個、 好ましくは 8〜 2 2個、 殊に好ましくは 1 0〜 2 0個有する、 飽和または単不飽和または多 価不飽和の、 非分枝鎖状または分枝鎖状カルボン酸である。 具体的な脂肪酸 としては、 力プリル酸、 ラウリン酸、 ミスチリン酸、 パルミチン酸、 ステア リン酸、 リグノセリン酸などの飽和脂肪酸、 ゥンデシレン酸、 ォレイン酸、 リノール酸、 リノレン酸などの不飽和脂肪酸が挙げられる。 [0038] 特に好ましい脂肪酸エステルは、 上記脂肪酸を有するソルビタンのモノ一 、 ジ一およびトリエステルであり、 殊に具体的にはソルビタンモノ力プレー ト、 ソルビタンジカプレート、 ソルビタントリカプレート、 ソルビタンモノ ラウレート、 ソルビタンジラウレート、 ソルビタントリラウレ一ト、 ソルビ タンモノミスチレ一ト、 ソルビタンジミスチレ一ト、 ソルビタントリミスチ レート、 ソルビタンモノパルミテート、 ソルビタンジパルミテート、 ソルビ タントリパルミテート、 ソルビタンモノステアレート、 ソルビタンジステア レート、 ソルビタントリステアレート、 ソルビタンモノリグノセレート、 ソ ルビタンジリグノセレート、 ソルビタントリリグノセレート、 ソルビタンモ ノォレート、 ソルビタンジォレート、 ソルビタントリオレ一ト、 ソルビタン モノリノレート、 ソルビタンジリノレート、 ソルビタントリリノレート、 ソ ルビタンモノリノレネ一ト、 ソルビタンジリノレネート、 ソルビタントリリ ノレネ一トなどが挙げられる。 これらの脂肪酸エステルは単独で使用しても よいし、 2種以上を組み合わせて使用してもよい。 [0037] Fatty acids suitable for use in the present invention to form a fatty acid ester with a dehydration condensate of a sugar alcohol are 3 to 36 carbon atoms, preferably 8 to 22 carbon atoms, particularly preferably. Is a saturated or monounsaturated or polyunsaturated, unbranched or branched carboxylic acid having 10 to 20 units. Specific fatty acids include saturated fatty acids such as strong prillic acid, lauric acid, myristic acid, palmitic acid, stearic acid, lignoceric acid, and unsaturated fatty acids such as undecylenic acid, oleic acid, linoleic acid, and linolenic acid. . [0038] Particularly preferred fatty acid esters are sorbitan mono-, di-, and triesters having the above fatty acids, and more specifically, sorbitan mono-force plate, sorbitan dicaplate, sorbitan tricaplate, sorbitan monolaurate, Sorbitan dilaurate, sorbitan trilaurate, sorbitan monomyristate, sorbitan dimyristate, sorbitan trimyristate, sorbitan monopalmitate, sorbitan dipalmitate, sorbitan dipalmitate, sorbitan monostearate, sorbitan monostearate Rate, sorbitan tristearate, sorbitan monolignocerate, sorbitan dilignocerate, sorbitan trilignocerate, sorbitan mononolate, sorbitandiole , Sorbitan trioleate Ichito, sorbitan Monorinoreto, sorbitan distearate linoleate, sorbitan tanto Lili methylate, Seo sorbitan mono Reno Rene Ichito, sorbitan Jiri Honoré sulfonates, and the like Sorubitantoriri Norene one bets. These fatty acid esters may be used alone or in combination of two or more.
[0039] 糖アルコールの脱水縮合物と脂肪酸とからなる脂肪酸エステルの製造方法 は、 特に限定されることはなく、 公知の方法を用いてよい。 また糖アルコ一 ルの脱水縮合物と脂肪酸とからなる脂肪酸エステルとして、 公知の方法を用 いて製造された市販品を用いてもよい。 例えば市販品としては、 ソルビタン ラウレート (理研ビタミン社製 リケマール L—250A ; 花王社製 レ オドール S P_ L 1 0、 レオド一ルス一パ _S P_ L 1 0) 、 ソルビタンパ ルミテート (理研ビタミン社製 リケマール P— 300、 リケマール S P— 250、 リケマール A F— 004 ; 花王社製 レオドール S P— P 1 0) 、 ソルビタンステアレート (理研ビタミン社製 リケマール S_300W、 ポエム S— 60 ; 花王社製 レオドール S P— S 1 0 V、 レオドール AS - 1 0 V) 、 ソルビタントリステアレート (理研ビタミン社製 ポエム S— 65 V ; 花王社製 レオドール S P— S 30 V) 、 ソルビタンォレート ( 理研ビタミン社製 ポエム O—80V ; 花王社製 レオドール S P— CM OV、 レオドール AO— 1 0 V) 、 ソルビタントリオレ一ト (理研ビタミン 社製 リケマール OR—85 ; 花王社製 レオドール S P— 030 V) 、 ソルビタントリベへネート (理研ビタミン社製 リケマール B— 1 50) 、 ソルビタンカプリレート (理研ビタミン社製 リケマール C_ 250) 、 ポ リオキシエチレンソルビタンモノォレート (東邦化学工業社製 ソルボン T -80 ; 花王社製 レオドール TW—01 20 V、 レオドール TW—CM 06 V) 、 ポリオキシエチレンソルビタントリオレート (東邦化学工業社製 ソルボン T— 85 ; 花王社製 レオドール TW—0320 V) 、 ソルビ タンセスキォレエ一ト (花王社製 レオドール AO_ 1 5V) 、 ポリオキシ エチレンソルビタンヤシ脂肪酸エステル (花王社製 レオドール TW— L 1 20、 レオド一ルス一パ一 TW_ L 1 20) 、 ポリオキシエチレンソルビタ ンモノラウレート (花王社製 レオドール TW_ L 1 06) 、 ポリオキシェ チレンソルビタンモノパルミテート (花王社製 レオドール TW—P 1 20 ) 、 ポリオキシエチレンソルビタンモノステアレート (花王社製 レオドー ル TW— S 1 20 V、 レオドール TW— S 1 06 V) 、 ポリオキシエチレン ソルビタントリステアレート (花王社製 レオドール TW—S 320 V) 、 ポリオキシエチレンソルビタントリイソステアレート (花王社製 レオドー ル TW_ I S 399 C) などが挙げられる。 [0039] A method for producing a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid is not particularly limited, and a known method may be used. Moreover, as a fatty acid ester composed of a sugar alcohol dehydration condensate and a fatty acid, a commercially available product produced by a known method may be used. For example, sorbitan laurate (Rikenmar L-250A manufactured by Riken Vitamin Co., Ltd .; Leodor S P_ L 1 0, Leodol Sulpap _S P_ L 1 0 manufactured by Kao Corporation), Sorbitan Palmitate (Rikenmar P manufactured by Riken Vitamin Co., Ltd.) — 300, Riquemar SP—250, Riquemar AF—004; Leodoll SP—P 1 0) manufactured by Kao Corporation, Sorbitan stearate (Riquemar S_300W, RIKEN Vitamin Company, Poem S—60; Leodol SP—S 1 0 V manufactured by Kao Corporation , Leodol AS-10 V), sorbitan tristearate (RIKEN Vitamin, Poem S—65 V; Kao Leodol SP—S 30 V), sorbitanate (RIKEN Vitamin, Poem O—80V; Kao) Manufactured by Leodoles SP—CM OV, Leodoles AO—10 V), sorbitan trioleate (RIKEN vitamins) Riquemar OR—85 manufactured by Kao Corporation, Ridodol SP—030 V manufactured by Kao Corporation, Riquemar B—150, manufactured by Riken Vitamin Co., Sorbitan caprylate (Riquemar C_250 manufactured by Riken Vitamin Co.), polyoxy Ethylene sorbitan monooleate (Sorbon T-80, manufactured by Toho Chemical Industry Co., Ltd .; Rhedol TW—01 20 V, Rhedol TW—CM 06 V, manufactured by Kao Corp.), polyoxyethylene sorbitan triolate (Sorbon T—85, manufactured by Toho Chemical Industry Co., Ltd.) ; Leodol TW—0320 V manufactured by Kao Co., Ltd., Sorbi Tanseschioleate (Reodol AO_ 1 5V manufactured by Kao Co., Ltd.), Polyoxyethylene sorbitan palm fatty acid ester (Reodol TW— L 1 20 manufactured by Kao Co., Ltd., TW_ L) 1 20), polyoxyethylene sorbitan monolaurate (Rheodor TW_L 1 06 manufactured by Kao), polyoxyethylene Sorbitan monopalmitate (Leodol TW—P 120, manufactured by Kao), polyoxyethylene sorbitan monostearate (Leodol TW—S 120V, Leodol TW—S 106V), polyoxyethylene sorbitan Examples include tristearate (Reodol TW—S 320 V manufactured by Kao) and polyoxyethylene sorbitan triisostearate (Leodol TW_IS 399 C manufactured by Kao).
[0040] 糖アルコールの脱水縮合物と脂肪酸とからなる脂肪酸エステルの添加量は 、 生分解性ポリエステル樹脂 1 00質量部に対して 0. 1〜 1 5質量部であ ることが好ましく、 0. 5〜1 0質量部であることがより好ましく、 特に好 ましくは 0. 5〜8質量部である。 0. 1質量部未満では本発明の目的とす る透明性が得られず、 1 5質量部を超えると基材の樹脂の物性や成形性が低 下する。 [0040] The addition amount of the fatty acid ester composed of the sugar alcohol dehydration condensate and the fatty acid is preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the biodegradable polyester resin. The amount is more preferably 5 to 10 parts by mass, and particularly preferably 0.5 to 8 parts by mass. If it is less than 1 part by mass, the transparency as the object of the present invention cannot be obtained, and if it exceeds 15 parts by mass, the physical properties and moldability of the resin of the base material are lowered.
[0041] 本発明の樹脂組成物は、 透明性や層状珪酸塩の分散性などに優れることに より外観に優れ、 厚み 1 mmの成形体としたときのヘーズを 60%以下とす ることができる。 ヘーズがこの値より大きいものでは、 透明性が不十分であ る場合や、 たとえヘーズがこの値をそれほど大きくは超えない場合でも粗大 な凝集物が見られるために、 商品価値が低くなる場合がある。 ここでいうへ ーズとは、 濁度計で測定した濁度のことをいう。 ヘーズが大きいほど濁度は 強く、 ヘーズが小さいほど、 濁度が弱く透明であることを示す。 厚み 1 m m の成形体で、 好ましくは上述のようにヘーズが 6 0 %以下であり、 より好ま しくはヘーズが 5 0 %以下であり、 さらに好ましくはヘーズが 3 5 %以下で あり、 最も好ましくはヘーズが 2 5 <½以下である。 [0041] The resin composition of the present invention has excellent appearance by being excellent in transparency, dispersibility of the layered silicate, and the haze when formed into a 1 mm-thick molded product may be 60% or less. it can. If the haze is greater than this value, the product value may be low if the transparency is insufficient, or even if the haze does not exceed this value, coarse aggregates are seen. is there. Here The term “turbidity” refers to turbidity measured with a turbidimeter. The larger the haze, the stronger the turbidity, and the smaller the haze, the weaker the turbidity and the clearer it is. A molded body having a thickness of 1 mm, preferably has a haze of 60% or less, more preferably has a haze of 50% or less, and more preferably has a haze of 35% or less, as described above. Has a haze of 25 <½ or less.
[0042] 本発明の樹脂組成物の製造方法に関し、 層状珪酸塩、 および糖アルコール の脱水縮合物と脂肪酸とからなる脂肪酸エステルの添加方法としては、 生分 解性樹脂の重合時に添加する方法、 溶融混練時に添加する方法、 成形時に添 加する方法などが挙げられる。 なかでも、 製造工程が簡略化できる、 あるい は、 層状珪酸塩や、 糖アルコールの脱水縮合物と脂肪酸とからなる脂肪酸ェ ステルや、 それらを添加した樹脂組成物の熱劣化を少しでも低減するという 理由により、 溶融混練時または成形時に添加することが好ましい。 溶融混練 時や成形時に添加する添加方法としては、 樹脂と、 層状珪酸塩と、 糖アルコ ールの脱水縮合物と脂肪酸とからなる脂肪酸エステルとを予めドライブレン ドしておいてから一般的な混練機や成形機に供給する方法や、 サイ ドフィ一 ダーを利用して混練の途中から添加する方法や、 液体の場合には定量供給ポ ンプを用いて液注する方法などが挙げられる。 層状珪酸塩と、 糖アルコール の脱水縮合物と脂肪酸とからなる脂肪酸エステルとは、 同時に供給してもよ いし、 別々に供給しても構わない。 しかし、 層状珪酸塩の分散性を向上させ るという目的からは、 同時に、 あるいは糖アルコールの脱水縮合物と脂肪酸 とからなる脂肪酸エステルを先に、 樹脂中へ添加することが好ましい。  [0042] Regarding the method for producing the resin composition of the present invention, as a method for adding a layered silicate and a fatty acid ester comprising a dehydration condensate of sugar alcohol and a fatty acid, a method of adding at the time of polymerization of the biodegradable resin, Examples thereof include a method of adding at the time of melt kneading and a method of adding at the time of molding. In particular, the manufacturing process can be simplified, or thermal degradation of layered silicates, fatty acid esters composed of dehydrated condensates of sugar alcohols and fatty acids, and resin compositions containing them can be reduced as much as possible. For this reason, it is preferable to add at the time of melt-kneading or molding. As an addition method to be added at the time of melt-kneading or molding, a general method is described in which a resin, a lamellar silicate, a fatty acid ester composed of a sugar alcohol dehydration condensate and a fatty acid are pre-dried in advance. Examples thereof include a method of supplying to a kneader and a molding machine, a method of adding from the middle of kneading using a side feeder, and a method of injecting liquid using a quantitative supply pump in the case of liquid. The layered silicate and the fatty acid ester composed of a sugar alcohol dehydration condensate and a fatty acid may be supplied simultaneously or separately. However, for the purpose of improving the dispersibility of the layered silicate, it is preferable to add a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid to the resin at the same time.
[0043] 溶融混練に際しては、 単軸押出機、 二軸押出機、 ロール混練機、 ブラベン ダ一などの一般的な混練機を使用することができ、 添加剤の分散性向上のた めには二軸押出機を使用することが好ましい。  [0043] In melt kneading, a general kneader such as a single screw extruder, a twin screw extruder, a roll kneader, or a brabender can be used, and in order to improve the dispersibility of additives. It is preferred to use a twin screw extruder.
[0044] 本発明の樹脂組成物には、 本発明の効果を損なわない範囲において、 結晶 核剤、 熱安定剤、 酸化防止剤、 顔料、 染料、 耐光剤、 耐候剤、 難燃剤、 可塑 剤、 滑剤、 離型剤、 帯電防止剤、 充填材、 本発明で規定した以外の分散剤、 末端封鎖剤などを添加してもよい。 結晶核剤としては、 有機アミ ド化合物、 有機ヒドラジド化合物、 カルボン酸エステル系化合物、 有機スルホン酸塩、 フタロシアニン系化合物、 メラニン系化合物、 あるいは有機ホスホン酸塩な どが挙げられる。 熱安定剤や酸化防止剤としては、 たとえばホスフアイ ト系 有機化合物、 ヒンダードフエノール系化合物、 ベンゾトリアゾール系化合物 、 トリアジン系化合物、 ヒンダードアミン系化合物、 ィォゥ化合物、 銅化合 物、 アル力リ金属のハロゲン化物あるいはこれらの混合物を使用することが できる。 これらの添加剤は一般に溶融混練時あるいは重合時に加えられる。 充填材のうち、 無機充填材としては、 タルク、 炭酸カルシウム、 炭酸亜鉛、 ワラストナイ ト、 シリカ、 アルミナ、 酸化マグネシウム、 ケィ酸カルシウム 、 アルミン酸ナトリウム、 アルミン酸カルシウム、 アルミノ珪酸ナトリウム 、 珪酸マグネシウム、 ガラスバルーン、 力一ポンプラック、 酸化亜鉛、 三酸 化アンチモン、 ゼォライ ト、 ハイ ドロタルサイ ト、 金属繊維、 金属ウイスカ ―、 セラミツクウイス力一、 チタン酸カリウム、 窒化ホウ素、 グラフアイ ト 、 ガラス繊維、 炭素繊維などが挙げられる。 有機充填材としては、 単糖類、 でんぷんなどの多糖類、 セルロース微粒子、 木粉、 おから、 モミ殻、 フスマ 、 ケナフなどの天然に存在するポリマーやこれらの変性品が挙げられる。 [0044] The resin composition of the present invention includes a crystal nucleating agent, a heat stabilizer, an antioxidant, a pigment, a dye, a light resistance agent, a weather resistance agent, a flame retardant, a plasticizer, and the like within a range not impairing the effects of the present invention. Lubricants, mold release agents, antistatic agents, fillers, dispersants other than those defined in the present invention, end-capping agents and the like may be added. Crystal nucleating agents include organic amide compounds, Examples include organic hydrazide compounds, carboxylic acid ester compounds, organic sulfonates, phthalocyanine compounds, melanin compounds, and organic phosphonates. Examples of heat stabilizers and antioxidants include phosphite-based organic compounds, hindered phenol-based compounds, benzotriazole-based compounds, triazine-based compounds, hindered amine-based compounds, thio compounds, copper compounds, and aluminum halides. Alternatively, a mixture of these can be used. These additives are generally added during melt-kneading or polymerization. Among the fillers, inorganic fillers include talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon , Chikichi Pump Rack, Zinc Oxide, Antimony Trioxide, Zeolite, Hydrotalite, Metal Fiber, Metal Whisker, Ceramics Whisker, Potassium Titanate, Boron Nitride, Graphite, Glass Fiber, Carbon Fiber, etc. Is mentioned. Examples of organic fillers include monosaccharides, polysaccharides such as starch, cellulose fine particles, wood flour, okara, fir shell, bran, kenaf, and other naturally occurring polymers, and modified products thereof.
[0045] 本発明の樹脂組成物には、 本発明の効果を損なわない限り、 脂肪族ジカル ボン酸および/または芳香族ジカルボン酸と脂肪族ジオールとからなるポリ エステル、 ポリエステルアミ ド、 ポリエステル力一ポネート、 ポリアミ ド ( ナイロン) 、 ポリエチレン、 ポリプロピレン、 ポリブタジエン、 ポリスチレ ン、 A S樹脂、 A B S樹脂、 ポリ (アクリル酸) 、 ポリ (アクリル酸エステ ル) 、 ポリ (メタクリル酸) 、 ポリ (メタクリル酸エステル) 、 ポリエチレ ンテレフタレ一ト、 ポリ トリメチレンテレフタレ一ト、 ポリブチレンテレフ タレ一ト、 ポリエチレンナフタレート、 ポリ力一ポネート、 ポリアリレート およびそれらの共重合体などの、 非生分解性樹脂を添加してもよい。  [0045] In the resin composition of the present invention, a polyester comprising a dicarboxylic acid and / or an aromatic dicarboxylic acid and an aliphatic diol, a polyester amide, and a polyester strength are used as long as the effects of the present invention are not impaired. Ponate, Polyamide (Nylon), Polyethylene, Polypropylene, Polybutadiene, Polystyrene, AS resin, ABS resin, Poly (acrylic acid), Poly (acrylic acid ester), Poly (methacrylic acid), Poly (methacrylic acid ester), Even if non-biodegradable resins such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystrandone, polyarylate and copolymers thereof are added Good.
[0046] 本発明の樹脂組成物は、 射出成形、 ブロー成形、 押出成形などの公知の成 形方法により、 各種成形体とすることができる。  [0046] The resin composition of the present invention can be formed into various molded products by known molding methods such as injection molding, blow molding, and extrusion molding.
[0047] 射出成形法としては、 一般的な射出成形法のほか、 ガス射出成形法、 射出 プレス成形法などを採用できる。 射出成形時のシリンダ温度は、 樹脂組成物 の融点 (T m ) または流動開始温度以上であることが必要であり、 好ましく は 1 8 0〜2 3 0 °C、 さらに好ましくは 1 9 0〜2 2 0 °Cの範囲である。 成 形温度が低すぎると、 樹脂の流動性の低下により成形不良や装置の過負荷に 陥りやすい。 逆に成形温度が高すぎると、 生分解性ポリエステル樹脂が分解 し、 成形体の強度低下、 着色などの問題が発生する。 一方、 金型温度に関し ては、 樹脂組成物の T g (ガラス転移温度) 以下とする場合には、 好ましく は ( T g - 1 0 °C) 以下である。 また、 剛性、 耐熱性向上を目的として樹脂 組成物の結晶化を促進するために、 金型温度を、 T g以上かつ (T m _ 3 0 °C) 以下とすることもできる。 [0047] As the injection molding method, in addition to the general injection molding method, gas injection molding method, injection A press molding method can be employed. The cylinder temperature at the time of injection molding needs to be equal to or higher than the melting point (T m) or the flow start temperature of the resin composition, preferably 180 to 230 ° C, more preferably 190 to 2 The range is 20 ° C. If the molding temperature is too low, it tends to cause molding defects and equipment overload due to a decrease in resin fluidity. On the other hand, if the molding temperature is too high, the biodegradable polyester resin decomposes, causing problems such as reduced strength of the molded product and coloring. On the other hand, the mold temperature is preferably (T g −10 ° C.) or less when it is T g (glass transition temperature) or less of the resin composition. Further, in order to promote crystallization of the resin composition for the purpose of improving rigidity and heat resistance, the mold temperature can be set to Tg or more and (Tm_30 ° C) or less.
[0048] ブロー成形法としては、 例えば原料チップから直接成形を行うダイレク ト ブロー法や、 まず射出成形で予備成形体 (有底パリソン) を成形後にブロー 成形を行う射出ブ口一成形法などが挙げられる。 また予備成形体の成形後に 連続してブロー成形を行うホットパリソン法、 いったん予備成形体を冷却し 取り出して力、ら再度加熱してプロ一成形を行うコ一ルド / リソン法のいずれ の方法も採用できる。  [0048] The blow molding method includes, for example, a direct blow method in which molding is performed directly from a raw material chip, and an injection port one molding method in which blow molding is performed after a preformed body (bottom parison) is first molded by injection molding. Can be mentioned. In addition, both hot parison method in which blow molding is continuously performed after molding of the preform, and cold / rison method in which the preform is once cooled and taken out and heated again to perform pro molding. Can be adopted.
[0049] 押出成形法としては、 Tダイ法、 丸ダイ法などを適用することができる。  [0049] As the extrusion molding method, a T-die method, a round die method, or the like can be applied.
押出成形温度は樹脂組成物の融点 (T m ) 以上または流動開始温度以上であ ることが必要であり、 好ましくは 1 8 0〜2 3 0 °C、 さらに好ましくは 1 9 0〜2 2 0 °Cの範囲である。 成形温度が低すぎると、 操業が不安定になった り、 過負荷に陥ったりしゃすい。 逆に成形温度が高すぎると、 生分解性ポリ エステル成分が分解し、 押出成形体の強度低下や着色などの問題が発生する 。 押出成形により、 シートやパイプなどを作製することができる。  The extrusion temperature must be equal to or higher than the melting point (T m) of the resin composition or equal to or higher than the flow start temperature, preferably 180 to 230 ° C, more preferably 190 to 220. It is in the range of ° C. If the molding temperature is too low, the operation may become unstable or overloaded. On the other hand, if the molding temperature is too high, the biodegradable polyester component is decomposed, and problems such as a decrease in strength and coloring of the extruded product occur. Sheets, pipes, etc. can be produced by extrusion.
[0050] 押出成形法により得られたシ一トまたはパイプの具体的用途としては、 深 絞り成形用原反シート、 バッチ式発泡用原反シート、 クレジットカードなど の力一ド類、 下敷き、 クリアファイル、 スト口一、 農業■園芸用硬質パイプ などが挙げられる。 また、 シートに、 さらに、 真空成形や、 圧空成形や、 真 空圧空成形などの深絞り成形を行うことで、 食品用容器、 農業■園芸用容器 、 ブリスターパック容器、 プレススルーパック容器などを製造することがで きる。 深絞り成形温度および熱処理温度は、 (T g + 2 0 °C) 〜 (T g + 1 0 0 °C) であることが好ましい。 深絞り温度が ( T g + 2 0 °C) 未満では深 絞りが困難になり、 逆に深絞り温度が (T g + 1 0 0 °C) を超えると、 生分 解性ポリエステル成分が分解して、 偏肉が生じたり、 配向がくずれて耐衝撃 性が低下したりする場合がある。 食品用容器、 農業■園芸用容器、 プリスタ 一パック容器、 プレススルーパック容器の形態は、 特に限定されないが、 食 品、 物品、 薬品などを収容するためには、 深さ 2 m m以上に深絞りされてい ることが好ましい。 容器の厚さは、 特に限定されないが、 強力の点から、 5 O m以上であることが好ましく、 1 5 0〜5 0 0 mであることがより好 ましい。 食品用容器の具体例としては、 生鮮食品のトレ一、 インスタント食 品容器、 ファーストフード容器、 弁当箱などが挙げられる。 農業■園芸用容 器の具体例としては、 育苗ポットなどが挙げられる。 ブリスターパック容器 の具体例としては、 食品以外にも事務用品、 玩具、 乾電池などの多様な商品 群の包装容器が挙げられる。 [0050] Specific applications of the sheet or pipe obtained by the extrusion method include: deep drawing raw sheet, batch foam raw sheet, credit card and other strengths, underlay, clear File, Strut One, Agriculture ■ Hard pipe for horticulture. In addition, the sheet is further subjected to deep drawing such as vacuum forming, compressed air forming, vacuum compressed air forming, etc. Blister pack containers, press-through pack containers, etc. can be manufactured. The deep drawing temperature and the heat treatment temperature are preferably (T g + 20 ° C.) to (T g + 100 ° C.). Deep drawing becomes difficult when the deep drawing temperature is less than (T g + 20 ° C). Conversely, when the deep drawing temperature exceeds (T g + 100 ° C), the biodegradable polyester component decomposes. As a result, uneven thickness may occur or the orientation may be lost and impact resistance may be reduced. Food containers, agriculture ■ Horticulture containers, Prista single pack containers, press-through pack containers are not particularly limited in form, but in order to accommodate food, goods, chemicals, etc., deep drawing to a depth of 2 mm or more It is preferable that The thickness of the container is not particularly limited, but from the viewpoint of strength, it is preferably 5 O m or more, and more preferably 1550 to 500 m. Specific examples of food containers include fresh food trays, instant food containers, fast food containers, and lunch boxes. Agriculture ■ Specific examples of horticultural containers include nursery pots. Specific examples of blister pack containers include packaging containers for various product groups such as office supplies, toys, and dry batteries in addition to food.
[0051 ] 本発明の樹脂組成物を用いて製造されるその他の成形品としては、 皿、 椀 、 鉢、 箸、 スプーン、 フォーク、 ナイフなどの食器、 流動体用容器、 容器用 キャップ、 定規、 筆記具、 クリアケース、 C Dケースなどの事務用品、 台所 用三角コーナ一、 ゴミ箱、 洗面器、 歯ブラシ、 櫛、 ハンガーなどの日用品、 プラモデルなどの各種玩具類、 エアコンパネル、 各種筐体などの電化製品用 樹脂部品、 バンパー、 インパネ、 ドアトリムなどの自動車用樹脂部品などが 挙げられる。 [0051] Other molded articles produced using the resin composition of the present invention include dishes such as plates, bowls, bowls, chopsticks, spoons, forks, knives, fluid containers, container caps, rulers, For office supplies such as writing utensils, clear cases, CD cases, triangular corners for kitchens, trash cans, washbasins, toothbrushes, combs, hangers, and other toys, plastic models, and other electrical appliances such as air conditioner panels and housings Resin parts, bumper, instrument panel, automotive resin parts such as door trim.
[0052] なお、 流動体用容器の形態は、 特に限定されないが、 流動体を収容するた めには深さ 2 O m m以上に成形されていることが好ましい。 容器の厚さは、 特に限定されないが、 強力の点から、 0 . 1 m m以上であることが好ましく 、 0 . 1〜 5 m mであることがより好ましい。 流動体用容器の具体例として は、 乳製品や清涼飲料水や酒類などのための飲料用コップおよび飲料用ポト ル、 醤油、 ソース、 マヨネーズ、 ケチャップ、 食用油などの調味料の一時保 存容器、 シャンプー、 リンスなどの容器、 化粧品用容器、 農薬用容器などが 挙げられる。 [0052] The form of the fluid container is not particularly limited, but is preferably formed to a depth of 2 O mm or more in order to accommodate the fluid. The thickness of the container is not particularly limited, but is preferably 0.1 mm or more and more preferably 0.1 to 5 mm from the viewpoint of strength. Specific examples of fluid containers include beverage cups and beverage pots for dairy products, soft drinks, and alcoholic beverages, soy sauce, sauces, mayonnaise, ketchup, and edible oils. Storage containers, shampoo, rinsing containers, cosmetic containers, agricultural chemical containers, etc.
[0053] 本発明の樹脂組成物は、 繊維とすることもできる。 その製造方法は、 特に 限定されないが、 溶融紡糸し、 延伸する方法が好ましい。 溶融紡糸温度とし ては、 1 6 0 °C〜 2 6 0 °Cが好ましい。 1 6 0 °C未満では溶融押出しが困難 となる傾向にあり、 一方、 2 5 0 °Cを超えると分解が顕著となって、 高強度 の繊維を得られ難くなる傾向にある。 溶融紡糸した繊維糸条は、 目的とする 繊維径となるように T g以上の温度で延伸させるとよい。  [0053] The resin composition of the present invention may be a fiber. The production method is not particularly limited, but a method of melt spinning and stretching is preferred. The melt spinning temperature is preferably 160 to 260 ° C. If it is less than 160 ° C, melt-extrusion tends to be difficult. On the other hand, if it exceeds 250 ° C, decomposition tends to be remarkable, and it becomes difficult to obtain high-strength fibers. The melt-spun fiber yarn may be drawn at a temperature of T g or higher so as to obtain the desired fiber diameter.
[0054] 上記方法により得られた繊維は、 衣料用繊維、 産業資材用繊維、 短繊維不 織布などとして利用される。  [0054] The fibers obtained by the above method are used as clothing fibers, industrial material fibers, short fiber nonwoven fabrics, and the like.
[0055] 本発明の樹脂組成物は、 長繊維不織布に展開することもできる。 その製造 方法は、 特に限定されないが、 樹脂組成物を高速紡糸法により紡糸して得ら れる繊維を堆積した後ウエッブ化し、 さらに熱圧接などの手段を用いて布帛 化する方法を挙げることができる。  [0055] The resin composition of the present invention can also be developed into a long fiber nonwoven fabric. The production method is not particularly limited, and examples thereof include a method of depositing fibers obtained by spinning a resin composition by a high-speed spinning method and then forming a web using a means such as heat pressure welding. .
実施例  Example
[0056] 以下、 本発明を実施例によってさらに具体的に説明する。 ただし、 本発明 は下記の実施例のみに限定されるものではない。  [0056] Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited only to the following examples.
[0057] 下記の実施例および比較例の評価に用いた方法は、 次のとおりである。 [0057] The methods used for the evaluation of the following Examples and Comparative Examples are as follows.
[0058] ( 1 ) 透明性 [0058] (1) Transparency
■ヘーズ  ■ Haze
J I S K - 7 1 3 6に従い、 樹脂組成物にて形成された厚さ 1 m mのプ レスシートに対して測定を行った。 詳細には、 樹脂組成物にテスター産業社 製の卓上テストプレス機を使用し、 1 9 0 °Cで約 3分間プレスして、 成形体 として厚さ 1 m mのプレスシ一トを作製した。 このプレスシ一卜について、 日本電色工業社製 N D H—2 0 0 0型 濁度 .曇り度計を用いて、 測定を 行った。 ヘーズが 6 0 %以下の場合を良好、 6 0 %より大きい場合を不良と した。  According to JISK-7 1 3 6, measurement was performed on a 1 mm thick press sheet formed of a resin composition. Specifically, a test sheet machine manufactured by Tester Sangyo Co., Ltd. was used for the resin composition, and the resin composition was pressed at 190 ° C. for about 3 minutes to produce a press sheet having a thickness of 1 mm as a molded body. This press paper was measured using a NDH-2200 type turbidity haze meter manufactured by Nippon Denshoku Industries Co., Ltd. A case where the haze was 60% or less was judged good, and a case where the haze was larger than 60% was judged bad.
•外観評価 厚み 1 mmのプレスシートとした成形体の目視評価を行い、 凝集物がある ものを不良 (X) 、 凝集物がほとんど無いものを良 (〇) 、 凝集物が全く確 認できないものを最良 (◎) とした。 • Appearance evaluation Visual evaluation of the 1 mm-thick pressed sheet was performed, and the one with aggregates was defective (X), the one with almost no aggregates was good (O), and the one with no aggregates was best ( ◎)
[0059] ( 2 ) ブローポトルの成形性および耐熱性 [0059] (2) Moldability and heat resistance of blow pottor
樹脂組成物を用いて、 高温金型での成形性にもとづき評価した。 すなわち 、 金型温度 1 20°Cでブローボトルの作製を試み、 容器が変形せずに取り出 せたものを耐熱性良好 (〇) と評価し、 変形や歪みが生じたものを耐熱性不 良 (X) と評価した。  The resin composition was used for evaluation based on moldability with a high-temperature mold. In other words, the production of blow bottles at a mold temperature of 120 ° C was attempted, and the ones that were taken out without deformation were evaluated as having good heat resistance (○), and those with deformation or distortion were not heat resistant. Evaluated as good (X).
[0060] (3) メルトフローレ一ト (M F R) [0060] (3) Melt flow rate (M F R)
J I S K 72 1 0にしたがい、 付属書 A表 1の Dの条件 (1 90°C、 2 1. 2 N [2. 1 6 k g f ] ) にて測定した。  In accordance with J I S K 72 10, the measurement was performed under the conditions of D in Table 1 of Appendix A (1 90 ° C, 2 1.2 N [2. 16 kgf]).
[0061] (4) 総合評価 [0061] (4) Overall evaluation
透明性が良好でかつ耐熱性を有する樹脂組成物を良好 (〇) 、 透明性ある いは耐熱性の少なくともどちらかを満たさない場合には不良 (X) とした。  A resin composition having good transparency and heat resistance was evaluated as good (◯), and when it did not satisfy at least one of transparency and heat resistance, it was judged as defective (X).
[0062] [原料] [0062] [Raw material]
下記の実施例、 比較例において用いた各種原料を示す。  Various raw materials used in the following examples and comparative examples are shown.
[0063] ( 1 ) 生分解性樹脂 [0063] (1) Biodegradable resin
樹脂 A :ポリ乳酸 (カーギルダウ社製、 N a t u r eW0 r k S、 重量平 均分子量 (MW) = 1 90000、 融点 = 1 70°C、 D体含有率 = 1. 3モ ル0 /o、 M F R=2. 5 g/ 1 0 m i n ) Resin A: Polylactic acid (manufactured by Cargilldau, Nature W 0 rk S , weight average molecular weight (MW) = 1 90000, melting point = 1 70 ° C, D-form content = 1.3 mol 0 / o , MFR = 2. 5 g / 10 min)
(2) 層状珪酸塩  (2) Layered silicate
層状珪酸塩 B :層間イオンがジォクタデシルジメチルアンモニゥムイオン で置換されたモンモリロナイ ト (ホージユン社製、 エスベン W)  Layered silicate B: Montmorillonite with interstitial ions substituted with dioctadecyldimethylammonium ions (Hojoyun, Sven W)
層状珪酸塩 C :層間イオンがジヒドロキシェチルメチルドデシルアンモニ ゥムイオンで置換された膨潤性合成フッ素雲母 (コープケミカル社製、 ソマ シフ ME E、 平均粒径 6. 2 m)  Layered silicate C: Swelling synthetic fluorinated mica in which interlayer ions are replaced with dihydroxyethylmethyldodecyl ammonium ion (Coop Chemical Co., Somash ME E, average particle size 6.2 m)
層状珪酸塩 D :層間イオンがメチルトリオクチルアンモニゥムイオンで置 換された膨潤性合成フッ素雲母 (コープケミカル社製、 ソマシフ MT E) (3) 糖アルコールの脱水縮合物と脂肪酸とからなるエステル Layered silicate D: Swellable synthetic fluorinated mica in which interlayer ions are replaced with methyltrioctylammonium ions (Somacif MT E, manufactured by Corp Chemical) (3) Esters consisting of sugar alcohol dehydration condensate and fatty acids
E : ソルビタンステアレート (理研ビタミン社製、 ポエム S— 300W) F : ソルビタントリステアレート (理研ビタミン社製、 ポエム S— 65V E: Sorbitan stearate (Riken Vitamin, Poem S—300W) F: Sorbitan tristearate (Riken Vitamin, Poem S—65V)
) )
G :ポリオキシエチレンソルビタンモノォレート (東邦化学工業社製、 ソ ルボン T— 80)  G: Polyoxyethylene sorbitan monooleate (Toho Chemical Industries, Solbon T-80)
H :ポリオキシエチレンソルビタントリオレート (東邦化学工業社製、 ソ ルボン T— 85)  H: Polyoxyethylene sorbitan trioleate (Toho Chemical Industries, Solbon T-85)
(4) その他の脂肪酸エステル  (4) Other fatty acid esters
I : プロピレングリコールモノべへネート (理研ビタミン社製、 PB— 1 00)  I: Propylene glycol monobehenate (Riken Vitamin, PB-100)
J : ァセチルクェン酸トリブチル (田岡化学社製、 ATBC)  J: Tributyl acetyl chloride (Taoka Chemical Co., Ltd., ATBC)
[樹脂の製造]  [Manufacture of resin]
溶融混練には、 池貝社製 P CM— 30型二軸押出機を用いた。 スクリュー 径は 3 Omm0、 平均溝深さは 2. 5mmであった。  For melt-kneading, a PCM-30 type twin screw extruder manufactured by Ikekai Co., Ltd. was used. The screw diameter was 3 Omm0 and the average groove depth was 2.5 mm.
[0064] 実施例 1  [0064] Example 1
1 00質量部の樹脂 Aと、 2. 5質量部の層状珪酸塩 Bと、 1質量部の脂 肪酸エステル Fとをドライブレンドし、 上記の押出機を用いて、 1 90°C、 スクリュ一回転数 200 r pm (=3. 3 r p s) 、 滞留時間 1. 6分で溶 融混練を行い、 押出し、 ペレット状に加工し、 乾燥して、 樹脂組成物を得た 。 得られた組成物をプレスシートに成形して、 透明性の評価、 すなわちへ一 ズの評価と外観評価とを行った。  100 parts by mass of resin A, 2.5 parts by mass of layered silicate B, and 1 part by mass of fatty acid ester F were dry-blended. Using the above-mentioned extruder, 1 90 ° C, screw Melt kneading was performed at a rotation speed of 200 rpm (= 3.3 rps) and a residence time of 1.6 minutes, and the mixture was extruded, processed into pellets, and dried to obtain a resin composition. The obtained composition was molded into a press sheet, and the transparency was evaluated, that is, the eye and the appearance were evaluated.
[0065] 次いで、 射出ブロー成形機 (日精 A S B機械社製 「AS B_50 TH」 、 ホットパリソン法) を用いて、 樹脂組成物をシリンダ設定温度 200°Cで溶 融して 1 0°Cの金型に充填し、 1 0秒間冷却して 5 mm厚の予備成形体 (有 底パリソン) を得た。 これを 1 20°Cのヒータ一で加熱した後、 1 20°Cに 設定された高温金型に入れ、 圧力空気 3. 5MP aの条件下でブロー成形し 、 内容積 1 30ミリリツトル、 厚み 1. 1 mmのポトル容器を作製し、 成形 時の状況を確認した。 [0065] Next, using an injection blow molding machine ("AS B_50 TH" manufactured by Nissei ASB Machinery Co., Ltd., hot parison method), the resin composition was melted at a cylinder set temperature of 200 ° C, and gold at 10 ° C was obtained. The mold was filled and cooled for 10 seconds to obtain a 5 mm-thick preform (bottom parison). After heating this with a heater at 1 20 ° C, place it in a high temperature mold set at 1 20 ° C and blow-molded under conditions of pressurized air 3.5MPa, internal volume 1 30 milliliters, thickness 1 Fabricate and mold 1 mm pottle container I checked the situation at the time.
[0066] その結果を表 1に示す c [0066] The results are shown in Table 1 c
[0067] [表 1] [0067] [Table 1]
Figure imgf000020_0001
ポリ繊
Figure imgf000020_0001
Poly fiber
B: Xペン W B: X pen W
C:ソマ'ンフ ME E  C: Soma'n Mee
D :■ソマ フ MT£  D: ■ Somaf MT £
く «7ルコ t««7)^物と腿酸とからなる スチル >  «7 Luco t« «7) ^ Still consisting of things and thigh acid>
E:ソル:ビタンステァレート (S研ビタミン社製、 ffiXAS-SOOW) E: Sol: Vitan stearate (S-ken Vitamin Co., ffiXAS-SOOW)
: ルピタントリステアレ一ト ビタミン «« # AS- 65V:)  : Lupitan Tristearate Vitamin «« # AS- 65V :)
G:ポリオキシェチレンソルビタ: ォレート:(«¾<Ι^ ¾¾¾ ソル # Τ一 80) G: Polyoxyethylene sorbita: oleate: («¾ <Ι ^ ¾¾¾ sol # Τ 一 80)
Η:ポリ才キシエチレンソルピタントリオレ ト
Figure imgf000020_0002
ソルボン T -BS) くそ エステル >
Η: Poly-xoxyethylene sorbitan trioleate
Figure imgf000020_0002
Sorbon T-BS) Fuck Ester>
! :プ ピレンダリコ一ルモノぺへネート (編ビタミン製 ¾ B-100) ! : Polypropylene alcohol monopehenate (hen-vitamin ¾ B-100)
J :ァ ¾¾½'ェ #トリプチル ·(·田劂^ ATBC)  J: A ¾¾½ '# Triptyle (· Tanayu ^ ATBC)
[0068] 実施例 2〜 1 2 [0068] Examples 2 to 1 2
実施例 1に比べて、 樹脂組成物の組成を表 1に示すように変更した。 それ 以外は実施例 1 と同様として、 各種評価を行った。 その結果を表 1に示す。 [0069] 比較例 1 Compared to Example 1, the composition of the resin composition was changed as shown in Table 1. Other than that, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. [0069] Comparative Example 1
層状珪酸塩と、 糖アルコールの脱水縮合物と脂肪酸とからなる脂肪酸エス テルとを添加せずに、 生分解性ポリエステル樹脂のみを用い、 成形体を得て 評価を行った。 その結果を表 1に示す。  Without adding a layered silicate, a fatty acid ester composed of a sugar alcohol dehydration condensate and a fatty acid, only a biodegradable polyester resin was used to obtain a molded body for evaluation. The results are shown in Table 1.
[0070] 比較例 2 [0070] Comparative Example 2
層状珪酸塩を添加せずに、 生分解性ポリエステル樹脂に糖アルコールの脱 水縮合物と脂肪酸とからなる脂肪酸エステルを添加したのみで同様の混練を 行い、 成形体を得て評価を行った。 その結果を表 1に示す。  The same kneading was carried out by adding a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid to a biodegradable polyester resin without adding a layered silicate, and a molded body was obtained for evaluation. The results are shown in Table 1.
[0071 ] 比較例 3 [0071] Comparative Example 3
実施例 1に比べ、 糖アルコールの脱水縮合物と脂肪酸とからなる脂肪酸ェ ステルを添加せずに、 生分解性ポリエステル樹脂に層状珪酸塩を添加したの みで同様の混練を行い、 成形体を得て評価を行った。 その結果を表 1に示す  Compared to Example 1, without adding a fatty acid ester composed of a sugar alcohol dehydration condensate and a fatty acid, the same kneading was performed only by adding a layered silicate to a biodegradable polyester resin, and a molded product was obtained. Obtained and evaluated. The results are shown in Table 1
[0072] 比較例 4、 比較例 7〜8 [0072] Comparative Example 4, Comparative Examples 7-8
実施例 2に比べ、 糖アルコールの脱水縮合物と脂肪酸とからなる脂肪酸ェ ステルを添加せずに、 生分解性ポリエステル樹脂に層状珪酸塩を添加したの みで同様の混練を行い、 成形体を得て評価を行った。 その結果を表 1に示す  Compared to Example 2, the same kneading was performed only by adding a layered silicate to a biodegradable polyester resin without adding a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid. Obtained and evaluated. The results are shown in Table 1
[0073] 比較例 5〜 6 [0073] Comparative Examples 5 to 6
実施例 2に比べ、 糖アルコールの脱水縮合物と脂肪酸とからなる脂肪酸ェ ステルの代わりに、 他の脂肪酸エステルを添加して、 同様の混練を行い、 成 形体を得て評価を行った。 その結果を表 1に示す。  Compared to Example 2, instead of a fatty acid ester comprising a dehydration condensate of a sugar alcohol and a fatty acid, another fatty acid ester was added and kneaded in the same manner to obtain a molded product for evaluation. The results are shown in Table 1.
[0074] 実施例 1〜 1 2の樹脂組成物は、 凝集物が少なく良好な外観を示しており[0074] The resin compositions of Examples 1 and 12 had a good appearance with few aggregates.
、 すなわち透明性が良好であり、 さらに高温金型でのブロー成形が可能で、 透明性と耐熱性を併せ持つていた。 That is, transparency was good, and blow molding with a high-temperature mold was possible, which had both transparency and heat resistance.
[0075] それに対し比較例 1〜 8の樹脂組成物は、 透明性、 耐熱性を併せ持つもの はなかった。 [0075] On the other hand, none of the resin compositions of Comparative Examples 1 to 8 had both transparency and heat resistance.

Claims

請求の範囲 The scope of the claims
[1 ] ひ一および/または; S—ヒドロキシカルボン酸単位と ω—ヒドロキシアル カノエート単位とのいずれかを主成分とする生分解性ポリエステル樹脂と、 層状珪酸塩と、 糖アルコールの脱水縮合物と脂肪酸とからなる脂肪酸エステ ルとを含有することを特徴とする生分解性樹脂組成物。  [1] Hiichi and / or; biodegradable polyester resin mainly composed of either S-hydroxycarboxylic acid unit or ω-hydroxyalkanoate unit, layered silicate, dehydration condensate of sugar alcohol, A biodegradable resin composition comprising a fatty acid ester comprising a fatty acid.
[2] 生分解性ポリエステル樹脂がポリ乳酸を 5 0質量%以上含有したものであ ることを特徴とする請求項 1記載の生分解性樹脂組成物。  [2] The biodegradable resin composition according to [1], wherein the biodegradable polyester resin contains 50% by mass or more of polylactic acid.
[3] 生分解性ポリエステル樹脂 1 0 0質量部あたり、 層状珪酸塩が 0 . 5〜 1 0質量部含有されていることを特徴とする請求項 1記載の生分解性樹脂組成 物。  [3] The biodegradable resin composition according to claim 1, wherein 0.5 to 10 parts by mass of a layered silicate is contained per 100 parts by mass of the biodegradable polyester resin.
[4] 糖アルコールが、 エリ トリ トール、 ァラビトール、 リビトール、 キシリ ト —ル、 ソルビ! ル、 ズルシ I ル、 マンニ! ルのうちの少なくとも 1種 であることを特徴とする請求項 1記載の生分解性樹脂組成物。  [4] Sugar alcohol is erythritol, arabitol, ribitol, xylitol, sorb! Le, Zulci I Le, Manni! 2. The biodegradable resin composition according to claim 1, wherein the biodegradable resin composition is at least one of the above.
[5] 生分解性ポリエステル樹脂 1 0 0質量部あたり、 糖アルコールの脱水縮合 物と脂肪酸とからなる脂肪酸エステルが 0 . 1〜 1 5質量部含有されている ことを特徴とする請求項 1記載の生分解性樹脂組成物。  [5] The fatty acid ester comprising a dehydration condensation product of a sugar alcohol and a fatty acid is contained in an amount of 0.1 to 15 parts by mass per 100 parts by mass of the biodegradable polyester resin. Biodegradable resin composition.
[6] 層状珪酸塩の層間に、 1級〜 4級アンモニゥムイオン、 ピリジニゥムィォ ン、 イミダゾリゥムイオン、 またはホスホニゥムイオンが結合していること を特徴とする請求項 1記載の生分解性樹脂組成物。  [6] The biodegradable resin composition according to claim 1, wherein primary to quaternary ammonium ions, pyridinium ions, imidazolium ions, or phosphonium ions are bonded between the layers of the layered silicate. object.
[7] 厚み 1 m mの成形体としたときのヘーズが 6 0 %以下であることを特徴と する請求項 1記載の生分解性樹脂組成物。  [7] The biodegradable resin composition according to [1], wherein the haze is 60% or less when the molded product has a thickness of 1 mm.
[8] 請求項 1から 7までのいずれか 1項に記載の生分解性樹脂組成物を製造す るに際して、 溶融混練時または成形時に、 生分解性ポリエステル樹脂を含有 する樹脂に、 層状珪酸塩と、 糖アルコールの脱水縮合物と脂肪酸とからなる 脂肪酸エステルとを添加することを特徴とする生分解性樹脂組成物の製造方 法。  [8] In producing the biodegradable resin composition according to any one of claims 1 to 7, a layered silicate is added to the resin containing the biodegradable polyester resin at the time of melt-kneading or molding. And a method of producing a biodegradable resin composition, comprising adding a dehydration condensate of a sugar alcohol and a fatty acid ester comprising a fatty acid.
[9] 請求項 1から 7までのいずれか 1項に記載の生分解性樹脂組成物からなる ことを特徴とする成形体。  [9] A molded article comprising the biodegradable resin composition according to any one of claims 1 to 7.
PCT/JP2007/000769 2006-07-18 2007-07-18 Biodegradable resin composition, method for producing the same, and molded body using the same WO2008010318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008525787A JP5489460B2 (en) 2006-07-18 2007-07-18 Biodegradable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006195011 2006-07-18
JP2006-195011 2006-07-18

Publications (1)

Publication Number Publication Date
WO2008010318A1 true WO2008010318A1 (en) 2008-01-24

Family

ID=38956653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000769 WO2008010318A1 (en) 2006-07-18 2007-07-18 Biodegradable resin composition, method for producing the same, and molded body using the same

Country Status (2)

Country Link
JP (1) JP5489460B2 (en)
WO (1) WO2008010318A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2604653A1 (en) 2011-12-12 2013-06-19 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
EP2604649A1 (en) 2011-12-12 2013-06-19 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
EP2604654A2 (en) 2011-12-12 2013-06-19 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
US20140171559A1 (en) * 2012-12-14 2014-06-19 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
JP2016211005A (en) * 2016-09-16 2016-12-15 第一工業製薬株式会社 Manufacturing method of polylactic resin molded article
CN113025014A (en) * 2020-11-13 2021-06-25 北京工商大学 Nucleating agent for polylactic acid and application method thereof
WO2022158228A1 (en) * 2021-01-19 2022-07-28 株式会社カネカ Method for producing molded body containing poly-3-hydroxybutyrate-based resin, and use of same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278998A (en) * 1996-04-17 1997-10-28 Mitsui Toatsu Chem Inc Lactic acid-based polymer film
JP2001089646A (en) * 1999-09-24 2001-04-03 Toyota Central Res & Dev Lab Inc Biodegradable resin composition
JP2003231820A (en) * 2002-02-08 2003-08-19 Achilles Corp Biodegradable resin sheet
JP2005320389A (en) * 2004-05-07 2005-11-17 C I Kasei Co Ltd Polylactic acid film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1803774B1 (en) * 2004-09-16 2011-06-01 Asahi Kasei Life & Living Corporation Aliphatic polyester resin composition having excellent heat resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278998A (en) * 1996-04-17 1997-10-28 Mitsui Toatsu Chem Inc Lactic acid-based polymer film
JP2001089646A (en) * 1999-09-24 2001-04-03 Toyota Central Res & Dev Lab Inc Biodegradable resin composition
JP2003231820A (en) * 2002-02-08 2003-08-19 Achilles Corp Biodegradable resin sheet
JP2005320389A (en) * 2004-05-07 2005-11-17 C I Kasei Co Ltd Polylactic acid film

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101378646B1 (en) 2011-12-12 2014-03-26 다이이치 고교 세이야쿠 가부시키가이샤 Polylactic acid resin compositon and resin molded article thereof
CN103160086A (en) * 2011-12-12 2013-06-19 第一工业制药株式会社 Polylactic acid resin composition and resin molded article thereof
US9376546B2 (en) 2011-12-12 2016-06-28 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
EP2604654A2 (en) 2011-12-12 2013-06-19 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
KR101378710B1 (en) 2011-12-12 2014-03-27 다이이치 고교 세이야쿠 가부시키가이샤 Polylactic acid resin compositon and resin molded article thereof
CN103160084A (en) * 2011-12-12 2013-06-19 第一工业制药株式会社 Polylactic acid resin composition and resin molded article thereof
JP2013144772A (en) * 2011-12-12 2013-07-25 Dai Ichi Kogyo Seiyaku Co Ltd Polylactic acid resin composition and resin molded article thereof
US9518168B2 (en) 2011-12-12 2016-12-13 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
EP2604649A1 (en) 2011-12-12 2013-06-19 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
CN103160085A (en) * 2011-12-12 2013-06-19 第一工业制药株式会社 Polylactic acid resin composition and resin molded article thereof
EP2604654A3 (en) * 2011-12-12 2014-01-01 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
US9518169B2 (en) 2011-12-12 2016-12-13 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
EP2604653A1 (en) 2011-12-12 2013-06-19 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
TWI466940B (en) * 2011-12-12 2015-01-01 Dai Ichi Kogyo Seiyaku Co Ltd Polylactic acid resin composition and resin molded article thereof
TWI466942B (en) * 2011-12-12 2015-01-01 Dai Ichi Kogyo Seiyaku Co Ltd Polylactic acid resin composition and resin molded article thereof
TWI466943B (en) * 2011-12-12 2015-01-01 Dai Ichi Kogyo Seiyaku Co Ltd Polylactic acid resin composition and resin molded article thereof
CN103160086B (en) * 2011-12-12 2015-03-11 第一工业制药株式会社 Polylactic acid resin composition and resin molded article thereof
JP2014118452A (en) * 2012-12-14 2014-06-30 Dai Ichi Kogyo Seiyaku Co Ltd Polylactic acid resin composition and its resin molded article
KR20150095631A (en) 2012-12-14 2015-08-21 다이이치 고교 세이야쿠 가부시키가이샤 Polylactic acid resin composition and resin molded article thereof
CN104797656A (en) * 2012-12-14 2015-07-22 第一工业制药株式会社 Polylactic acid resin composition and resin molded article thereof
WO2014091853A1 (en) 2012-12-14 2014-06-19 第一工業製薬株式会社 Polylactic acid resin composition and resin molded article thereof
US20140171559A1 (en) * 2012-12-14 2014-06-19 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
US9593229B2 (en) 2012-12-14 2017-03-14 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polylactic acid resin composition and resin molded article thereof
KR102084706B1 (en) * 2012-12-14 2020-03-04 다이이치 고교 세이야쿠 가부시키가이샤 Polylactic acid resin composition and resin molded article thereof
JP2016211005A (en) * 2016-09-16 2016-12-15 第一工業製薬株式会社 Manufacturing method of polylactic resin molded article
CN113025014A (en) * 2020-11-13 2021-06-25 北京工商大学 Nucleating agent for polylactic acid and application method thereof
WO2022158228A1 (en) * 2021-01-19 2022-07-28 株式会社カネカ Method for producing molded body containing poly-3-hydroxybutyrate-based resin, and use of same

Also Published As

Publication number Publication date
JPWO2008010318A1 (en) 2009-12-17
JP5489460B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5292614B2 (en) Biodegradable resin composition, method for producing the same, and molded article using the same
JP4334345B2 (en) Biodegradable resin composition for molded body and molded body formed by molding the same
JP5305590B2 (en) Polylactic acid-containing resin composition and molded product obtained therefrom
KR100935130B1 (en) Biodegradable polyester resin composition, process for producing the same and foamed article and molded article using the same
WO2008010318A1 (en) Biodegradable resin composition, method for producing the same, and molded body using the same
JP2020531672A (en) Liquid compositions containing biological entities and their use
JP5818891B2 (en) Polymer nanocomposites containing polylactic acid reinforced with modified phyllosilicates
CN103339195A (en) Polyester resin composition
JPWO2006118096A1 (en) Biodegradable resin composition, molded article comprising this composition, and method for producing this composition
JP4358603B2 (en) Polylactic acid resin composition, method for producing the same, and molded article
JP2009079124A (en) Biodegradable polyester resin composition and molded body formed of it
KR101183260B1 (en) Biodegradable gas barrier vessel and process for producing the same
JPWO2006030859A1 (en) Aliphatic polyester resin composition with excellent heat resistance
JP5143374B2 (en) Biodegradable resin composition
JP4470550B2 (en) Polylactic acid resin composition, molded article obtained therefrom, and method for producing the same
US20110178211A1 (en) Biodegradable polyester resin composition and molded body composed of the same
JP3945264B2 (en) Polylactic acid composite material and molded body
JP3831278B2 (en) Biodegradable resin composition and molded body having improved heat resistance
CN109757105A (en) Polymer nanocomposites including poly- (ethylene glycol terephthalate) that is enhanced with intercalation phyllosilicate
JP2012188657A (en) Polylactic acid resin composition
JP2004204143A (en) Biodegradable resin composition having transparency and manufacturing method thereof
JP2008308561A (en) Biodegradable polyester resin composition, method for producing the same, and molded body using the same
JP2008308562A (en) Biodegradable polyester resin composition, method for producing the same, and molded body using the same
JP2014047234A (en) Polylactic acid resin composition
JP2005054115A (en) Aliphatic polyester composite material and molded product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008525787

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790265

Country of ref document: EP

Kind code of ref document: A1