WO2008009717A1 - Radialspaltmessung an turbinen - Google Patents

Radialspaltmessung an turbinen Download PDF

Info

Publication number
WO2008009717A1
WO2008009717A1 PCT/EP2007/057465 EP2007057465W WO2008009717A1 WO 2008009717 A1 WO2008009717 A1 WO 2008009717A1 EP 2007057465 W EP2007057465 W EP 2007057465W WO 2008009717 A1 WO2008009717 A1 WO 2008009717A1
Authority
WO
WIPO (PCT)
Prior art keywords
radial gap
turbine
radar sensor
turbines
zero crossing
Prior art date
Application number
PCT/EP2007/057465
Other languages
English (en)
French (fr)
Inventor
Daniel Evers
Andreas Ziroff
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US12/309,328 priority Critical patent/US7889119B2/en
Priority to EP07787723A priority patent/EP2041513A1/de
Publication of WO2008009717A1 publication Critical patent/WO2008009717A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics

Definitions

  • the invention relates to the inspection of the radial gap in turbines, the fine between the outer ends of the Turbmenschau- and the housing is present.
  • the radar sensor is now widely used in process automation and monitoring. With radar technology, the speed, position and presence of a microwave reflecting material can be measured directly.
  • Em associated disadvantage is the use of a underworfe wear ⁇ NEN component and the inherent need to employ mechanical elements.
  • Em fundamentally different measurement principle based on a capaci ⁇ tive proximity sensor which eliminates some of the disadvantages of the aforementioned systems. For measuring errors occur, which also depend on the blade geometry. In addition, the possible measurement accuracy is very limited.
  • the object underlying the invention is to provide a ⁇ be possible rhackungsloses test method for measuring the radial gap on turbines which avoids disadvantages of the prior art.
  • the solution of this object is achieved by the combination of features according to claim 1.
  • Prior ⁇ some embodiments may be the subclaims entnom ⁇ men.
  • the invention first uses a microwave-based measurement method for determining the radial gap.
  • a Doppler method is used for the evaluation. Which depends on the radial gap instantaneous relative speed al ⁇ so the speed between, for example, a Schau- enemies relative to the radar sensor is evaluated at various stages of passing or the passage of the turbine blade at the radar sensor, which is stationary located in the turbine wall.
  • the evaluation of the characteristic ristic time-dependent value of the instantaneous speed This history is recorded several times over time, and evaluated with the corresponding radar sensor being ⁇ sent to scattering centers, such as the extreme end of a turbine blade, the reflected radar microwaves ⁇ rays on the sensor receives and these are BEYOND alsower ⁇ tet. Because of these speeds of relative velocity evaluated at different moments, it is possible to determine the position of a single target at a particular time.
  • FIG. 1 shows the time profile of the Doppler shift in turbines
  • FIG. 2 shows a section through a turbine with an indicated turbine housing and the approximate relative positions between the radial gap and the radar sensor
  • FIGS. 3 and 4 each show the relative speeds in FIG.
  • the present invention uses a microwave measurement, a Doppler method and combines the resulting In ⁇ formationen to determine the radial gap on a turbine.
  • the dependent on the radial gap torque In ⁇ speed at various stages of passing of the turbine blade to the turbine mounted in the wall of the sensor is evaluated. It is essential that the evaluation of characteristic time-dependent relative velocities in the range around the passage of a turbine blade at the sensor repeatedly been taken ⁇ is.
  • the radar sensor transmits microwaves and receives reflected waves at scattering centers. Due to rela ⁇ tive speed gradients, it is possible to distinguish several goals from each other. As the main method ⁇ example, however, the determination of the position of a single target is valid at a particular time, for example, the position of the outermost end of a turbine blade relative to the transmitter.
  • Figure 1 shows the time course of a Doppler shift ⁇ environment for turbines. With increasing or larger radial gap shift the corresponding vibrations shown according to the arrows from left to right.
  • the depicting ⁇ development shows an evaluation of Doppler effects and it is ei ⁇ ne strong dependence of the radial gap to detect.
  • a measurement accuracy of 9.2 mm, for example, is feasible.
  • a microwave measurement can be carried out, for example, with a sensor which preferably operates at 77 GHz.
  • An essential determinant for the accuracy of a Dopp ⁇ Lersensors or a sensor that is evaluated by a Doppler method is the operating frequency.
  • a radar sensor to be used for the radial gap measurement according to the invention emits a microwave signal which, of course, "illuminates" a detection volume, which as a rule is predetermined.
  • provides, you will need an extremely wide beam antenna to sen a sufficiently large section of the path of an extreme end of a turbine blade to erfas-. Parts of the radar signal are reflected at one of these targets re ⁇ and are recorded again by the sensor. Here then sensor and received signal are mixed together. The mixed signal encoding the relative Phasenver ⁇ shift between the transmitted and received signal. This phase difference depends on the transit time of the signal from the sensor to the target and back again.
  • the sensor and the received signal for example, in phase, a usual place ⁇ cher mixer provides a relatively large amplitude of the mixing Signal.
  • the mixer provides a relative minimum of the output amplitude.
  • FIG. 2 shows the conditions in a turbine.
  • the current in a turbine housing 4 turbine blades rotate according to the arrow shown in the figure in Time ⁇ gerraum.
  • a radar sensor 2 is installed in the housing wall in a through hole. The object is to measure a radial gap 3 at the point at which the sensor 2 is built in ⁇ . In this case only the outermost ends of a turbine blade 1 as a target to be examined and measured out ⁇ substantially.
  • the sensor 2 is radial, that is aligned with the center of the turbine, but does not terminate with the inner surface of the housing 4. Rather, the measuring window 6 is tightly closed by a closure that does not hinder microwave propagation.
  • This can advantageously be a polytetrafluoroethylene or a ceramic j ⁇ ULTRASONIC material.
  • the sensor itself is relatively wide abstrah- lend on or is associated with an antenna having a broad Abstrahlcha ⁇ rakteriding.
  • FIGS. 3 and 4 respectively show the course of the Doppierverschiebung and the relative speed for different radial gap sizes. This changes during the passage of a turbine blade tip, for example from plus to minus. If the speed at the zero crossing changes its sign very abruptly, there is a smaller radial gap size. This is shown schematically in FIG.
  • the likewise schematic representation according to FIG. 4 likewise shows the Doppler shift 5 in the same time window, but with larger radial gaps the zero gear of this Doppierverschiebung or the relative speed with a much flatter slope happens.
  • Advantages of the invention are based primarily on the non-contact measurement of the radial gap with high accuracy.
  • for additional measuring ⁇ sizes using this technique capture subjects that are important for example for the Maschinendia ⁇ Gnosticism.
  • a major advantage of the method consists in particular in the detection of targets in absolute close range that alone can not be performed with Doppler-based procedural ⁇ ren.
  • a significant advantage of a method described lies in the fact that in addition to the turbine blades with the smallest radial gap and turbine blades with a larger radial gap can be measured and thus are even detectable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Radialspaltmessung an Turbinen mittels eines Mikrowellen- Messverfahrens und einer Auswertung eines Dopplereffektes, der mit der Größe des Radialspaltes variiert, wobei mindestens ein als Sende- und Empfangseinheit ausgeführter Radarsensor (2) in der Wand eines Turbinengehäuses (4), der radial zum Turbinenmittelpunkt ausgerichtet ist, vorhanden ist, eine von der Größe des Radialspaltes (3) abhängige Relativgeschwindigkeit eines äußeren Endes (1) einer Turbinenschaufel relativ zum Radarsensor (2) während der Passage an diesem mehrfach ausgewertet wird und der Verlauf der Relativgeschwindigkeit über die Zeit am Nulldurchgang mittels des Verhältnisses aus dem absoluten Wert der Relativgeschwindigkeit und deren Steigung im Nulldurchgang ein Maß für den Radialspalt ist.

Description

Radialspaltmessung an Turbinen
Die Erfindung betrifft die Überprüfung des Radialspaltes bei Turbinen, der zwischen den äußeren Enden der Turbmenschau- fein und dem Gehäuse vorhanden ist.
Die Radarsensoπk ist in der Prozessautomatisierung und - Überwachung inzwischen sehr verbreitet. Mit Radartechnik sind Geschwindigkeit, Position und Anwesenheit eines Mikrowellen reflektierenden Materials unmittelbar messbar.
Im Kraftwerksbereich besteht die Anforderung, dass der Radi- alspalt an Turbinen optimal dimensioniert ist. Dazu ist eine Überwachung des Radialspaltes notwendig. Die Definition "Ra- dialspalt" wird durch den Zwischenraum zwischen dem äußeren Ende von Turbinenschaufeln und dem Turbinengehäuse ausge¬ drückt. Ist dieser Spalt während des Betriebes der Turbine groß, so kann ein Teil des Arbeitsgases, dessen Energie ei¬ gentlich von den Turbinenschaufeln aufgenommen werden soll, als Sekundärstrom und damit als Verluststrom durch diesen
Spalt hindurch strömen und den Wirkungsgrad der Turbine ver¬ ringern. Besonders bei großen Turbinen schlagen sich solche Weise Wirkungsgradverschlechterungen, auch von nur wenigen Zehntel Prozent, deutlich in den Brennstoffkosten nieder.
Deshalb ist es von wirtschaftlichem und technischem Interesse, den Radialspalt von Turbinen im Betrieb mit hoher Genau¬ igkeit bestimmen zu können. Es wurden in der Vergangenheit meist berührende Messverfahren angewandt. Derartige Messver- fahren weisen heutzutage bereits einen hohen Entwicklungs¬ stand auf. Gleichzeitig bestehen jedoch inhärente Nachteile bei diesen Verfahren, die mittlerweile beseitigt werden soll¬ ten. Es besteht ein natürliches Interesse an berührungsfreien Messverfahren in diesem Gebiet.
Unter den bekannten Verfahren sind im Wesentlichen drei verschiedene Systeme zu nennen, die die Ermittlung des Gasturbi- nen-Radialspaltes im Betrieb behandeln. Die älteste Methode bedient sich eines AnschleifStiftes aus einem weichen Material, der bis zum Kontakt mit einzelnen Turbinenschaufeln in das Turbinegehäuse eingeführt wird. Die- ses mechanische Verfahren hat den Nachteil des hohen Ver¬ schleißes und der unzureichenden Messmöglichkeit. Hierbei wird lediglich die am weitesten nach außen überstehende Schaufel, also die mit minimalem Radialspalt erfasst.
In einer Weiterentwicklung gibt es das vorgenannte System mit elektromechanischem Aktuator. Em damit verbundener Nachteil besteht in der Verwendung eines einem Verschleiß unterworfe¬ nen Bauteils und der inhärenten Notwendigkeit, mechanische Elemente einzusetzen.
Em grundlegend anderes Messprinzip basiert auf einem kapazi¬ tiven Näherungssensor, der einige der Nachteile der zuvor genannten Systeme eliminiert. Dafür treten Messfehler auf, die auch von der Schaufelgeometrie abhängen. Darüber hinaus ist die mögliche Messgenauigkeit sehr begrenzt.
Der Erfindung liegt die Aufgabe zugrunde, ein möglichst be¬ rührungsloses Messverfahren zur Messung des Radialspaltes an Turbinen bereitzustellen, welches Nachteile aus dem Stand der Technik vermeidet. Die Lösung dieser Aufgabe geschieht durch die Kombination der Merkmale entsprechend Anspruch 1. Vor¬ teilhafte Ausgestaltungen können den Unteransprüchen entnom¬ men werden.
Die Erfindung nutzt zunächst ein Mikrowellen basiertes Mess¬ verfahren zur Bestimmung des Radialspaltes. Zusätzlich wird zur Auswertung ein Dopplerverfahren angewandt. Die vom Radialspalt abhängige augenblickliche Relativgeschwindigkeit, al¬ so die Geschwindigkeit zwischen beispielsweise einem Schau- feinde relativ zum Radarsensor, wird in verschiedenen Phasen des Vorbeilaufens bzw. der Passage der Turbinenschaufel am Radarsensor, der stationär in der Turbinenwand untergebracht ist, ausgewertet. Wesentlich ist die Auswertung des charakte- ristischen zeitabhängigen Wertes der Momentangeschwindigkeit. Dieser Verlauf wird über die Zeit mehrfach aufgenommen und ausgewertet, wobei der entsprechende Radarsensor die ausge¬ sandten an Streuzentren, beispielsweise dem äußersten Ende einer Turbinenschaufel, reflektierten Radar-Mikrowellen¬ strahlen am Sensor empfängt und diese weiterführend ausgewer¬ tet werden. Aufgrund dieser zu verschiedenen Augenblicken ausgewerteten Geschwindigkeiten der Relativgeschwindigkeit ist es möglich, die Position eines einzelnen Ziels zu einem bestimmten Zeitpunkt zu bestimmen.
Dabei kann in vorteilhafter Weise eine Unterscheidung mehrerer Ziele voneinander vorgenommen werden.
Im Folgenden werden anhand von begleitenden schematischen, die Erfindung nicht einschränkenden, Figuren Ausführungsbeispiele beschrieben.
Figur 1 zeigt den zeitlichen Verlauf der Dopplerver- Schiebung bei Turbinen,
Figur 2 zeigt einen Schnitt durch eine Turbine mit angedeutetem Turbinengehäuse und den ungefähren Relativpositionen zwischen Radialspalt und Radarsensor,
Figur 3 und 4 zeigen jeweils die Relativgeschwindigkeiten in
Abhängigkeit von der Zeit.
Die vorliegende Erfindung nutzt eine Mikrowellenmessung, ein Dopplerverfahren und kombiniert die daraus resultierenden In¬ formationen zur Feststellung des Radialspaltes an einer Turbine. Dabei wird die vom Radialspalt abhängige Momentange¬ schwindigkeit in verschiedenen Phasen des Vorbeilaufens der Turbinenschaufel am in der Turbinenwand angebrachten Sensor ausgewertet . Es ist wesentlich, dass die Auswertung charakteristischer zeitabhängiger Relativgeschwindigkeiten im Bereich um die Passage einer Turbinenschaufel an dem Sensor mehrfach aufge¬ nommen wird. Dabei sendet der Radarsensor Mikrowellen und empfängt an Streuzentren reflektierte Wellen. Aufgrund rela¬ tiver Geschwindigkeitsverläufe ist es möglich, mehrere Ziele voneinander zu unterscheiden. Als hauptsächliche Verfahrens¬ weise gilt jedoch die Ermittlung der Position eines einzelnen Zieles zu einem bestimmten Zeitpunkt, beispielsweise die Po- sition des äußersten Endes einer Turbinenschaufel relativ zum Sender.
Zu den Einzelheiten der Verfahrensweise zur Radialspaltmes- sung ist anzumerken, dass während des Vorbeilaufens der Schaufel an einem wenige Millimeter entfernten in der Wand der Turbine befindlichen Sensor die Relativgeschwmdigkeit , die die Schaufel, bzw. eine Schaufelspitze, zu diesem Sensor an dem Punkt der größten Annäherung zu Null wird. Diese plau¬ sible Erscheinung wird nun dahingehend ausgewertet, dass der genaue Verlauf der Geschwindigkeit in Abhängigkeit von der
Zeit ausgewertet wird. Ist der Radialspalt sehr klein oder im Grenzfall gleich Null, so wird sich die Relativgeschwindig¬ keit im Punkt der größten Annäherung der Turbinenschaufel- spitze an den Radarsensor sehr schnell ändern und gleichsam sprungartig ihr Vorzeichen wechseln. Passiert die Spitze der Turbinenschaufel bzw. deren äußerstes Ende in einigem Abstand zum Sensor, so ändert sich die Relativgeschwindigkeit stetig mit endlicher Steigung am Nulldurchgang bzw. beim Wechsel des Vorzeichens der Relativgeschwindigkeit. Der Absolutwert der Geschwindigkeit, welcher über die Doppierverschiebung ermittelbar ist, wird danach ins Verhältnis gesetzt zu der Stei¬ gung der Relativgeschwindigkeit im Nulldurchgang. Daraus re¬ sultiert ein Maß für den Minimalabstand und somit für den Ra- dialspalt .
Figur 1 zeigt den zeitlichen Verlauf einer Dopplerverschie¬ bung bei Turbinen. Mit steigendem bzw. größerem Radialspalt verlagern sich die entsprechend dargestellten Schwingungen entsprechend der Pfeile von links nach rechts. Die Darstel¬ lung zeigt eine Auswertung von Dopplereffekten und es ist ei¬ ne starke Abhängigkeit von dem Radialspalt zu erkennen. Eine Messgenauigkeit von beispielsweise 9,2 mm ist realisierbar. Eine Mikrowellenmessung kann beispielsweise mit einem Sensor durchgeführt werden, der vorzugsweise bei 77 GHz arbeitet. Eine wesentliche Determinante für die Genauigkeit eines Dopp¬ lersensors bzw. eines Sensors, der mit einem Dopplerverfahren ausgewertet wird, ist die Betriebsfrequenz. Und je höher die Betriebsfrequenz ist, umso schneller läuft die Phase des Emp¬ fangssignals bei einer gegebenen Geschwindigkeit des Zielob¬ jektes durch. Je höher die Betriebsfrequenz, desto geringer kann deshalb die Messdauer oder die Geschwindigkeitsauflösung des Ziels sein. Aus diesem Grund ist es für die vorgestellte Anwendung aus technischen Gründen angezeigt, vor allem auch auf Lösungen bei 77 GHz zu setzen. Dies stellt jedoch keinerlei Einschränkungen für ein zu verwendendes Mikrowellen- Sende- und Empfangssystem dar, sondern es können auch anderer Radarfrequenzen verwendet werden.
Allgemein ist anzumerken, dass ein für die Radialspalt- Messung entsprechend der Erfindung einzusetzender Radarsensor ein Mikrowellensignal aussendet, welches selbstverständlich ein Erfassungsvolumen "beleuchtet", welches in der Regel vor- gegeben ist. Da die hier exemplarisch beschriebene Anwendung unter Radargesichtspunkten eine Messung im Nahbereich dar¬ stellt, wird man hierzu eine sehr breit strahlende Antenne benötigen, um einen ausreichend großen Ausschnitt aus der Bahn eines äußersten Endes einer Turbinenschaufel zu erfas- sen. Teile des Radarsignals werden an einem dieser Ziele re¬ flektiert und werden wieder vom Sensor aufgenommen. Hierbei werden anschließend Sensor- und Empfangssignal miteinander gemischt. Das Mischsignal codiert die relative Phasenver¬ schiebung zwischen gesendetem und empfangenem Signal. Diese Phasendifferenz ist von der Laufzeit des Signals vom Sensor zum Ziel und wieder zurück abhängig. Sind nun Sensor und Empfangssignal beispielsweise in Phase, so liefert ein gewöhnli¬ cher Mischer eine vergleichsweise große Amplitude des Misch- Signals. Bei gegenphasigen Signalen liefert der Mischer ein relatives Minimum der Ausgangsamplitude. Wird nun die Phase des Empfangssignals kontinuierlich durchgestimmt, wie dies etwa durch eine relative Bewegung des Ziels erreicht werden kann, so wechseln sich Maxima und Minima zeitlich ab und es entsteht ein Mischsignal mit periodischem Anteil, dessen Fre¬ quenz proportional zur Geschwindigkeit der Relativbewegung zwischen Sensor und Ziel ist.
Figur 2 zeigt die Verhältnisse in einer Turbine. Die in einem Turbinengehäuse 4 laufenden Turbinenschaufeln drehen sich entsprechend dem in der Figur dargestellten Pfeil in Uhrzei¬ gerrichtung. Ein Radarsensor 2 ist in der Gehäusewand in einer Durchgangsbohrung eingebaut. Die Aufgabe besteht darin, einen Radialspalt 3 an der Stelle, an der der Sensor 2 einge¬ baut ist, zu messen. Dabei werden im Wesentlichen lediglich die äußersten Enden 1 einer Turbinenschaufel als Ziel ausge¬ sucht und vermessen. Der Sensor 2 ist radial, d. h. auf den Mittelpunkt der Turbine hin ausgerichtet, schließt jedoch nicht mit der inneren Oberfläche des Gehäuses 4 ab. Vielmehr ist das Messfenster 6 durch einen die Mikrowellenausbreitung nicht behindernden Verschluss dicht abgeschlossen. Dies kann vorteilhaft ein Polytetrafluorethylen sein oder ein kerami¬ sches Material. Der Sensor selbst ist relativ breit abstrah- lend bzw. er ist mit einer Antenne mit breiter Abstrahlcha¬ rakteristik verbunden.
Die Figuren 3 und 4 stellen jeweils für unterschiedliche Ra- dialspaltgrößen den Verlauf der Doppierverschiebung bzw. der Relativgeschwindigkeit dar. Diese wechselt beim Vorbeilauf einer Turbinenschaufelspitze, beispielsweise von Plus nach Minus. Wechselt nun die Geschwindigkeit am Nulldurchgang ihr Vorzeichen sehr abrupt, liegt eine geringere Radialspaltgröße vor. Dies ist schematisch in Figur 3 dargestellt. Die eben- falls schematische Darstellung entsprechend Figur 4 zeigt e- benfalls die Dopplerverschiebung 5 im gleichen Zeitfenster, wobei jedoch bei größeren Radialspalten der Nullgang dieser Doppierverschiebung bzw. der Relativgeschwindigkeit mit einer sehr viel flacheren Steigung geschieht.
Vorteile der Erfindung beruhen in erster Linie auf der berüh- rungsfreien Messung des Radialspaltes mit hoher Genauigkeit. Darüber hinaus lassen sich mit dieser Technik weitere Mess¬ größen aufnehmen, die beispielsweise für die Maschinendia¬ gnostik wichtig sind. Ein wesentlicher Vorteil der Verfahrensweise besteht insbesondere in der Detektion von Zielen im absoluten Nahbereich, die sich mit Doppler basierten Verfah¬ ren alleine nicht durchführen lassen.
Ein wesentlicher Vorteil eines beschriebenen Verfahrens liegt darin, dass neben den Turbinenschaufeln mit dem geringsten Radialspalt auch Turbinenschaufeln mit größerem Radialspalt gemessen werden können und somit überhaupt detektierbar sind.

Claims

Patentansprüche
1. Radialspaltmessung an Turbinen mittels eines Mikrowellen- Messverfahrens und einer Auswertung eines Dopplereffektes, der mit der Größe des Radialspaltes variiert, wobei mindestens ein als Sende- und Empfangseinheit ausge¬ führter Radarsensor (2), der radial zum Turbmenmittelpunkt ausgerichtet ist, in der Wand eines Turbinengehäuses (4) , vorhanden ist, eine von der Größe des Radialspaltes (3) abhängige Relativge- schwindigkeit eines äußeren Endes (1) einer Turbinenschaufel relativ zum Radarsensor (2) während der Passage an diesem mehrfach aufgenommen wird und der Verlauf der Relativge- schwindigkeit über die Zeit am Nulldurchgang mittels des Ver- hältnisses aus dem absoluten Wert der Relativgeschwindigkeit und deren Steigung im Nulldurchgang ein Maß für den Radial- spalt ist.
2. Radialspaltmessung nach Anspruch 1, bei der mehrere Ziele voneinander unterschieden werden können.
3. Radialspaltmessung nach Anspruch 1 oder 2, bei der die Be¬ triebsfunktion des Radarsensors im Bereich von ca. 77GHz liegt.
4. Radialspaltmessung nach einem der Ansprüche 1 bis 3, bei der das Messfenster zur Turbinen-Innenseite hm mit Polytet- rafluorkohlenwasserstoff (PTFE) oder mit einem Keramikmateπ- al abgedichtet ist.
PCT/EP2007/057465 2006-07-19 2007-07-19 Radialspaltmessung an turbinen WO2008009717A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/309,328 US7889119B2 (en) 2006-07-19 2007-07-19 Radial gap measurement on turbines
EP07787723A EP2041513A1 (de) 2006-07-19 2007-07-19 Radialspaltmessung an turbinen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006033461.2 2006-07-19
DE102006033461A DE102006033461A1 (de) 2006-07-19 2006-07-19 Radialspaltmessung an Turbinen

Publications (1)

Publication Number Publication Date
WO2008009717A1 true WO2008009717A1 (de) 2008-01-24

Family

ID=38654773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/057465 WO2008009717A1 (de) 2006-07-19 2007-07-19 Radialspaltmessung an turbinen

Country Status (4)

Country Link
US (1) US7889119B2 (de)
EP (1) EP2041513A1 (de)
DE (1) DE102006033461A1 (de)
WO (1) WO2008009717A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120032837A1 (en) * 2009-04-02 2012-02-09 Florian Poprawa Network analyzer with an n-port network having at least two ports for measuring the wave parameters of a measurement object
US8137058B2 (en) 2008-03-10 2012-03-20 General Electric Company Method and apparatus for determining clearance between moving and static members in a machine

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003347B4 (de) 2009-05-20 2021-08-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen einer oder mehrerer Drehzahlen einer Aufladeeinrichtung, insbesondere für einen Verbrennungsmotor
US9041594B2 (en) * 2010-05-24 2015-05-26 Honeywell International Inc. RF based tracker for rotating objects
US8120522B2 (en) * 2010-11-30 2012-02-21 General Electric Company System and method for inspecting a wind turbine blade
CN103748473B (zh) * 2011-03-23 2016-06-29 梅吉特有限公司 带叶片的转子的测量
US8864446B2 (en) * 2011-05-23 2014-10-21 Siemens Energy, Inc. Wear pin gap closure detection system for gas turbine engine
US9188477B2 (en) * 2011-08-18 2015-11-17 Linear Technology Corporation Radar system and method for providing information on movements of object's surface
US9400171B2 (en) 2012-04-05 2016-07-26 Siemens Energy, Inc. Optical wear monitoring
US20140007591A1 (en) * 2012-07-03 2014-01-09 Alexander I. Khibnik Advanced tip-timing measurement blade mode identification
US9453500B2 (en) 2013-03-15 2016-09-27 Digital Wind Systems, Inc. Method and apparatus for remote feature measurement in distorted images
US9194843B2 (en) 2013-03-15 2015-11-24 Digital Wind Systems, Inc. Method and apparatus for monitoring wind turbine blades during operation
US9330449B2 (en) 2013-03-15 2016-05-03 Digital Wind Systems, Inc. System and method for ground based inspection of wind turbine blades
US9395337B2 (en) 2013-03-15 2016-07-19 Digital Wind Systems, Inc. Nondestructive acoustic doppler testing of wind turbine blades from the ground during operation
GB201401437D0 (en) 2014-01-28 2014-03-12 Third Dimension Software Ltd Positioning device for an optical triangulation sensor
GB2528882A (en) * 2014-08-01 2016-02-10 Bae Systems Plc Turbine blade monitoring
GB2531258A (en) 2014-10-13 2016-04-20 Skf Ab Method and data processing device for detecting a load distribution in a roller bearing
GB2531259A (en) * 2014-10-13 2016-04-20 Skf Ab Method and data processing device for determining a spacing of rolling elements
US20180340475A1 (en) * 2017-05-26 2018-11-29 Hamilton Sundstrand Corporation Bowed rotor motoring control
EP3483568A1 (de) * 2017-11-13 2019-05-15 Siemens Aktiengesellschaft Winkelsensor mit erfassung der drehstellung mit radartechnik
US10705198B2 (en) * 2018-03-27 2020-07-07 Infineon Technologies Ag System and method of monitoring an air flow using a millimeter-wave radar sensor
EP3719306A1 (de) * 2019-04-01 2020-10-07 Siemens Gamesa Renewable Energy A/S Windturbine mit turmauslenkungsdetektion
CN115585774A (zh) * 2022-12-12 2023-01-10 煤炭科学技术研究院有限公司 隔爆结合面间隙测量方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065410A (en) * 1979-12-11 1981-06-24 Smiths Industries Ltd Proximity sensing
DE10119669A1 (de) * 2001-04-20 2002-10-31 Micas Ag Verfahren und Vorrichtung zum Prüfen und/oder Erkennen von Prüfobjekten, insbesondere solchen mit Gewinde
WO2006005690A1 (de) * 2004-07-12 2006-01-19 Siemens Aktiengesellschaft Bestimmung des spaltmasses eines radialspaltes

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3199103A (en) * 1959-08-12 1965-08-03 Bendix Corp Displacement detector
US3551199A (en) * 1967-11-20 1970-12-29 Exxon Research Engineering Co Wire coating composition and microwave heating curing process
FR1569046A (de) * 1968-03-29 1969-05-30
US3544923A (en) * 1969-10-30 1970-12-01 Varian Associates Microwave waveguide water load employing a quarter wave window of reduced characteristic impedance
US4131889A (en) * 1977-02-08 1978-12-26 National Research Development Corporation Miniature doppler radar systems and microwave receivers suitable therefor
US4326804A (en) * 1980-02-11 1982-04-27 General Electric Company Apparatus and method for optical clearance determination
US4384849A (en) * 1980-07-07 1983-05-24 Sergio Marchetti Apparatus for temporarily immersing articles in a hot-water bath
US4413519A (en) * 1981-07-29 1983-11-08 Westinghouse Electric Corp. Turbine blade vibration detection apparatus
US4507658A (en) * 1982-07-30 1985-03-26 Westinghouse Electric Corp. Narrow beam radar installation for turbine monitoring
US4644270A (en) * 1982-08-31 1987-02-17 Westinghouse Electric Corp. Apparatus for monitoring housed turbine blading to obtain blading-to-housing distance
FR2541626B1 (fr) 1983-02-25 1985-10-11 Meo Robert Di Procede de fabrication d'un profile moule en particules ou fibres minerales, vegetales ou synthetiques et dispositif pour la mise en oeuvre de ce procede
US4700127A (en) * 1984-05-02 1987-10-13 Nippon Soken, Inc. Microwave probe and rotary body detecting apparatus using the same
US5479826A (en) * 1994-06-17 1996-01-02 Westinghouse Electric Corporation Microwave system for monitoring turbine blade vibration
US5818242A (en) * 1996-05-08 1998-10-06 United Technologies Corporation Microwave recess distance and air-path clearance sensor
US6489917B2 (en) * 2000-11-30 2002-12-03 Georgia Tech Research Corporation Phase-based sensing system
US6445995B1 (en) * 2001-01-26 2002-09-03 General Electric Company Vibration sensing in gas turbine engine
GB2374670B (en) * 2001-04-17 2004-11-10 Rolls Royce Plc Analysing vibration of rotating blades
US6487491B1 (en) * 2001-11-21 2002-11-26 United Technologies Corporation System and method of controlling clearance between turbine engine blades and case based on engine components thermal growth model
US7246991B2 (en) * 2002-09-23 2007-07-24 John Vanden Bosche Wind turbine blade deflection control system
AU2003294323A1 (en) * 2002-11-19 2004-06-15 Radatec, Inc. Method and system for calibration of a phase-based sensing system
DE10359930A1 (de) * 2003-01-23 2004-08-05 Siemens Ag Verfahren zum Ermitteln der Beanspruchung von Schaufeln einer Strömungsmaschine während des Betriebs sowie entsprechende Vorrichtung zur Durchführung des Verfahrens
US7486248B2 (en) * 2003-07-14 2009-02-03 Integrity Development, Inc. Microwave demulsification of hydrocarbon emulsion
US7554324B2 (en) * 2003-10-28 2009-06-30 Honeywell International Inc. Turbine blade proximity sensor and control system
US7095221B2 (en) * 2004-05-27 2006-08-22 Siemens Aktiengesellschaft Doppler radar sensing system for monitoring turbine generator components
US7424823B2 (en) * 2004-10-19 2008-09-16 Techno-Sciences, Inc. Method of determining the operating status of a turbine engine utilizing an analytic representation of sensor data
US7455495B2 (en) * 2005-08-16 2008-11-25 United Technologies Corporation Systems and methods for monitoring thermal growth and controlling clearances, and maintaining health of turbo machinery applications
WO2008036136A2 (en) * 2006-06-01 2008-03-27 Radatec, Inc. Peak detection and clutter reduction for a microwave sensor
DE102006027204B3 (de) * 2006-06-12 2007-11-22 Siemens Ag Verfahren zur Überwachung eines Brennvorganges in einer Brennkraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065410A (en) * 1979-12-11 1981-06-24 Smiths Industries Ltd Proximity sensing
DE10119669A1 (de) * 2001-04-20 2002-10-31 Micas Ag Verfahren und Vorrichtung zum Prüfen und/oder Erkennen von Prüfobjekten, insbesondere solchen mit Gewinde
WO2006005690A1 (de) * 2004-07-12 2006-01-19 Siemens Aktiengesellschaft Bestimmung des spaltmasses eines radialspaltes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137058B2 (en) 2008-03-10 2012-03-20 General Electric Company Method and apparatus for determining clearance between moving and static members in a machine
US20120032837A1 (en) * 2009-04-02 2012-02-09 Florian Poprawa Network analyzer with an n-port network having at least two ports for measuring the wave parameters of a measurement object
US8648746B2 (en) * 2009-04-02 2014-02-11 Siemens Aktiengesellschaft Network analyzer with an n-port network having at least two ports for measuring the wave parameters of a measurement object

Also Published As

Publication number Publication date
EP2041513A1 (de) 2009-04-01
US20090289832A1 (en) 2009-11-26
US7889119B2 (en) 2011-02-15
DE102006033461A1 (de) 2008-01-31

Similar Documents

Publication Publication Date Title
WO2008009717A1 (de) Radialspaltmessung an turbinen
DE4332071C2 (de) Verfahren zur Füllstandsmessung nach dem Radarprinzip
EP3577427B1 (de) Ultraschallzähler und verfahren zur erfassung einer durchflussgrösse
EP1701142B1 (de) Verfahren zur Messung des Füllstands eines in einem Behälter vorgesehenen Mediums auf der Grundlage des Radar-Prinzips
DE102017130728A1 (de) Messgerät zur Dielektrizitätswert-Bestimmung
EP2519751B1 (de) Verfahren und vorrichtung zur ermittlung der position eines kolbens eines kolbenzylinders mit mikrowellen
DE102013213340A1 (de) Bestimmung einer Distanz und einer Fließgeschwindigkeit eines Mediums
WO2008006656A1 (de) Winkelauflösender radarsensor
EP2440888B1 (de) Verfahren zum messen einer messgrösse
EP3575816B1 (de) Verfahren zur messung der fliessgeschwindigkeit eines mediums
DE4419462C2 (de) Berührungsloser Füllstandsmesser
EP2687830B1 (de) Verfahren zur Zustandsüberwachung eines nach dem Radar-Prinzip arbeitenden Füllstandmessgeräts und entsprechendes Füllstandmessgerät
EP2756745A1 (de) Verfahren zur Ermittlung der Verteilung eines Gutstroms mittels Mikrowellen, Sensoranordnung und entsprechende Vorrichtung
DE10164107C1 (de) Mikrowellen-Messeinrichtung zur Bestimmung der Beladung einer Zweiphasenströmung
DE102014119589B4 (de) Zweistufiges Glättungsverfahren für Echokurven und Füllstandsmessgerät
EP3940346B1 (de) Durchflussmessgerät und verfahren zur messung des durchflusses eines fluids
EP1763653A1 (de) Verfahren und vorrichtung zur materialstärkenbestimmung auf hochfrequenzbasis
DE10016315B4 (de) Vorrichtung zur Messung von Schichtdicken
DE102017110736A1 (de) Messeinrichtung
EP1617174A1 (de) Bestimmung des Spaltmasses eines Radialspaltes
EP0138017B1 (de) Verfahren zur Ultraschall-Durchflussmessung nach dem Dopplerprinzip mit verbesserter Ortsauflösung
EP1899690B1 (de) Verfahren zur ermittlung des füllstands eines mediums in einem behälter nach der laufzeitmessmethode
EP2310811A2 (de) Verfahren und vorrichtung zur bestimmung einer durchflussmenge eines fluids
WO2003048802A2 (de) Radarsystem
DE202020104105U1 (de) Durchflussmessgerät zur Messung des Durchflusses eines Fluids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07787723

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007787723

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12309328

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU