WO2008007740A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2008007740A1
WO2008007740A1 PCT/JP2007/063912 JP2007063912W WO2008007740A1 WO 2008007740 A1 WO2008007740 A1 WO 2008007740A1 JP 2007063912 W JP2007063912 W JP 2007063912W WO 2008007740 A1 WO2008007740 A1 WO 2008007740A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
oxidant gas
fuel cell
chemical filter
amount
Prior art date
Application number
PCT/JP2007/063912
Other languages
French (fr)
Japanese (ja)
Inventor
Toyokazu Baika
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008007740A1 publication Critical patent/WO2008007740A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • the chemical filter is composed of activated carbon, etc., and adsorbs and removes impurity components.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-116353
  • various sensors such as a pressure sensor and a temperature sensor provided to adjust the supply amount of the oxidant gas to the fuel cell and the temperature thereof are provided on the supply path of the oxidant gas.
  • a sensor such as a pressure sensor or a temperature sensor is disposed upstream of the chemical filter, which is not the case where a chemical filter is disposed in consideration of the relationship with various sensors disposed in the oxidant gas supply path. There was.
  • the sensor force disposed on the upstream side of the chemical filter is exposed to impurity components (for example, SO and H 2 S) contained in the oxidant gas for a long time, and the impurities adhere to the sensor, and the sensor
  • the moisture contained in the oxidant gas may act on impurities attached to the sensor to generate acid, which may corrode the sensor.
  • An object of the present invention is to provide a fuel cell system capable of suppressing the detection accuracy of a sensor disposed on an oxidant gas flow path from being deteriorated due to the influence of impurities or the sensor from being deteriorated. Is to provide.
  • the present invention adopts the following configuration in order to solve the above-described problems.
  • the present invention provides an oxidant gas flow path for introducing an oxidant gas into a force sword electrode of a fuel cell and discharging exhaust gas from the force sword electrode,
  • a plurality of sensors provided on the oxidant gas flow path
  • An adsorber including a chemical filter that is disposed upstream of the plurality of sensors in the oxidant gas flow path and adsorbs impurities contained in the oxidant gas.
  • a fuel cell system including
  • the impurities are removed by the chemical filter, it is possible to suppress the action of the impurities on each of the plurality of sensors arranged on the downstream side, thereby maintaining the accuracy of the sensor and preventing the corrosion of the sensor. Can be achieved.
  • the fuel cell system according to the present invention further includes a dust filter disposed on the upstream side of the chemical filter in the oxidant gas flow path.
  • the influence of the particulate matter on the sensor can be reduced. Further, when the oxidant gas passes through the dust filter, the moisture in the oxidant gas that reaches the chemical filter can be reduced, and the influence of moisture on the chemical filter can be suppressed.
  • the fuel cell system according to the present invention comprises a measuring means for measuring the amount of oxidant gas that has passed through the adsorber,
  • a concentration sensor that detects the concentration of the impurities contained in the oxidant gas that has passed through the adsorber
  • Estimating means for estimating the amount of the impurity adsorbed on the chemical filter based on the measured amount of the oxidant gas, the detected concentration, and a ratio obtained from the adsorption efficiency of the chemical filter;
  • Output control means for outputting a signal when a cumulative value of the amount of impurities exceeds a predetermined value
  • a signal is output when the amount of impurities adsorbed on the chemical filter reaches a predetermined value, for example, to inform the outside that the chemical filter has reached the end of its life. can do.
  • the fuel cell system according to the present invention can be configured such that the adsorber is provided upstream of all sensors provided on the oxidant gas flow path.
  • a fuel cell system capable of suppressing the detection accuracy of a sensor arranged on the flow path of an oxidant gas from being lowered due to the influence of impurities or the sensor from being deteriorated. Can be provided.
  • FIG. 1 is a diagram showing a configuration example of a fuel cell system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of chemical filter life determination processing by the ECU.
  • FIG. 1 is a diagram showing a configuration example of a fuel cell system in an embodiment of the present invention.
  • This fuel cell system is mounted on a moving body (for example, a vehicle).
  • a polymer electrolyte fuel cell (PEFC) is applied as the fuel cell 1 in FIG. 1, a polymer electrolyte fuel cell (PEFC) is applied.
  • the fuel cell 1 is composed of a cell stack formed by stacking a plurality of cells (however, FIG. 1 schematically shows the configuration of a single cell in the fuel cell 1).
  • the cell includes a solid polymer electrolyte membrane 2, a fuel electrode (anode) 3 and an air electrode (oxidizer electrode: force sword electrode) 4 that sandwich the solid polymer electrolyte membrane 2 on both sides, and a fuel electrode 3. And a fuel electrode side separator 5 and an air electrode side separator 6 sandwiching the air electrode 4.
  • the fuel electrode 3 has a diffusion layer and a catalyst layer.
  • a fuel (fuel gas) containing hydrogen such as hydrogen gas or hydrogen rich gas is supplied to the fuel electrode 3 by a fuel supply system.
  • the fuel gas supplied to the fuel electrode 3 is diffused in the diffusion layer and reaches the catalyst layer.
  • hydrogen in the fuel gas is separated into protons (hydrogen ions) and electrons. Hydrogen ions move to the air electrode 4 through the solid polymer electrolyte membrane 2, and electrons move to the air electrode 4 through an external circuit (not shown).
  • the air electrode 4 has a diffusion layer and a catalyst layer.
  • An oxidant gas such as air is supplied to the air electrode 4 by an oxidant supply system.
  • the oxidant gas supplied to the air electrode 4 is diffused in the diffusion layer and reaches the catalyst layer.
  • oxidant gas and solid polymer electrolyte membrane 2 are Water is generated through a reaction between hydrogen ions that have passed through the air electrode 4 and electrons that have reached the air electrode 4 through an external circuit.
  • Electrons passing through an external circuit during the reaction in the fuel electrode 3 and the air electrode 4 as described above are used as electric power for a load connected between both terminals of the fuel cell 1.
  • FIG. 1 shows an oxidant gas flow path that passes through the air electrode 4 of the fuel cell 1.
  • the oxidizing agent gas flow path includes an air electrode 4 of the fuel cell 1, an oxidant supply system provided upstream of the air electrode 4, and an oxidant discharge system provided downstream of the air electrode 4. Consists of
  • the oxidant supply system includes a dust filter 12 into which outside air (air) taken in from the air intake pipe 11 is introduced, and a chemical filter 13 disposed on the downstream side of the dust filter 12. I have.
  • the inlet of the air intake pipe 11 is arranged so as to open toward the outside air inlet provided in the vehicle.
  • impurity components sulfur compounds (eg, SO and H 2 S), nitrogen compounds, etc.)
  • the dust filter 12 removes particulate matter in the air.
  • the chemical filter 13 is made of activated carbon or the like, and contains impurity components (sulfur compounds (eg, SO and H 2 S), nitrogen compounds) contained in the air.
  • Etc. is removed by adsorbing it to itself.
  • the dust filter 12 and the chemical filter 13 are configured as one unit having both.
  • the dust filter 12 and the chemical filter 13 are stored in the storage container 13A joined so that the air intake pipe 11 and the pipe 14 communicate with each other inside, and are received from the air intake pipe 11.
  • the air introduced into the container 13A passes through the dust filter 12 and then passes through the chemical filter 13 and is sent out into the pipe 14.
  • the storage container 13A functions as an adsorber that stores a chemical filter.
  • the dust filter 12 and the chemical filter 13 may be disposed in contact with each other, or may be disposed with a distance therebetween. Further, the dust filter 12 and the chemical filter 13 may be arranged in different storage containers. In this case, the two storage containers may be integrally formed, and the internal space of each storage container may be communicated. The internal space of each storage container communicates with the internal space of the pipe. It may be configured as follows.
  • the air that has passed through the chemical filter 13 is sucked into the air flow meter 15 connected to the pipe 14 via the pipe 14.
  • the pipe 14 is provided with a pressure sensor 16 for detecting the pressure (air pressure) in the pipe 14 and a temperature sensor 17 for detecting the temperature in the pipe 14. Further, the pipe 14 is provided with a concentration sensor 18 for detecting the concentration of a specific impurity component contained in the air that has passed through the chemical filter 13.
  • the air flow meter 15 measures the amount of intake air (the amount of air passing through itself).
  • the air that has passed through the air flow meter 15 is introduced into an air pump (air conditioner) 20 connected via a pipe 19.
  • the air pump 20 operates by driving the motor 21 and sends air to the fuel cell 1 side.
  • the air pump 20 is connected to the intercooler 23 through the pipe 22, and the air sent out from the air pump 20 is introduced into the intercooler 23 through the pipe 22.
  • the pipe 22 is provided with a temperature sensor 24 that detects the temperature in the pipe 22 (the temperature of the air flowing through the pipe 22).
  • the intercooler 23 cools the air introduced therein and discharges it to the pipe 25.
  • the pipe 25 is connected to the oxidant gas inlet of the fuel cell 1.
  • the pipe 25 is provided with a temperature sensor 26 that detects the temperature in the pipe 25 (the temperature of the air discharged from the intercooler 23).
  • the air introduced into the oxidant gas inlet diffuses to the air electrode 4 through the flow path provided in the air electrode side separator 6.
  • the air that has passed through the air electrode 4 is discharged as an exhaust gas from the oxidant gas outlet of the fuel cell 1 to the outside.
  • the oxidant discharge system is configured as follows.
  • a pipe 27 is connected to the oxidant gas outlet of the fuel cell 1, and the pipe 27 is connected to a regulator (back pressure adjusting valve) 28.
  • the pipe 27 is provided with a pressure sensor 29 that detects the pressure in the pipe 27.
  • the regulator 28 adjusts the back pressure of the air pump 20 by changing the opening of the valve.
  • a muffler 31 is connected to the regulator 28 via a pipe 30, and the air that has passed through the muffler 31 is discharged into the outside air.
  • the fuel cell system includes an ECU (Electronic Control Unit: computer) 32 as a control system (control means) for controlling the oxidant supply system and the oxidant discharge system described above.
  • the ECU 32 is implemented by a processor such as a CPU (Central Processing Unit).
  • An input / output interface ( ⁇ ) and the like between a program to be executed and a memory (storage device) that stores data used when the program is executed, a sensor, and the like are also configured.
  • the ECU 32 receives output signals from the air flow meter 15, pressure sensor 16, temperature sensor 17, concentration sensor 18, temperature sensor 24, temperature sensor 26, and pressure sensor 29 described above.
  • the ECU 32 executes the program stored in the CPU power memory, and based on the output signals from the air flow meter 15 and each sensor, the operation of the air pump 20, the air cooling capacity by the intercooler 23, and the opening of the regulator 28 Control the degree.
  • the ECU 32 measures the amount of oxidant gas (air) supplied to the fuel cell using the output signal from the air flow meter 15 and the sensor output signals from the pressure sensor 16 and the temperature sensor 17. That is, the air flow meter 15 provides an electric signal corresponding to the intake air amount to the ECU 32 as an output signal. The electric signal given at this time indicates the amount of air under atmospheric pressure and temperature conditions as predetermined standards. In contrast, air density depends on pressure and temperature. Therefore, the ECU 32 corrects the amount of air obtained from the air flow meter 15 with the pressure and temperature received from the pressure sensor 16 and the temperature sensor 17. In this way, the ECU 32 measures an accurate air amount. The measured air amount is used, for example, for controlling the amount of air supplied to the fuel cell 1 by the air pump 20.
  • the ECU 32 controls the operation of the air pump 20 using an output signal from the temperature sensor 24 (temperature in the pipe 22). That is, the ECU 32 monitors the temperature of the air discharged (discharged) from the air pump 20 using the output signal from the temperature sensor 24. If the temperature of the exhaust air becomes a predetermined value or more, it means that an excessive load is applied to the air pump 20, and if such a state continues, the air pump 20 may break down. For this reason, when the temperature reaches a predetermined value or more, the ECU 32 gives a control signal to the motor 21 to reduce the rotation amount of the air pump 20 or stop the operation of the air pump 20.
  • the ECU 32 controls the cooling capacity of the intercooler 23 using an output signal from the temperature sensor 26 (temperature in the pipe 25).
  • the operating temperature of the fuel cell 1 suitable for power generation is determined, and if the fuel cell 1 is heated more than necessary by the air supplied to the fuel cell 1, there is a possibility that proper power generation of the fuel cell 1 may be hindered.
  • the ECU 32 gives a control signal to the intercooler 23 when the temperature of the air from which the intercooler 23 power is also discharged exceeds a predetermined value.
  • the cooling capacity of the intercooler 23 is increased so that air below a predetermined value is supplied to the fuel cell 1.
  • the rotation amount of the fan included in the intercooler 23 is increased by a control signal, the flow rate of cooling air by the fan is increased, and the air (oxidant gas) passing through the intercooler 23 is increased. Ensure that heat dissipation is promoted.
  • the ECU 32 controls the opening degree (back pressure) of the regulator 28 using the output signal from the pressure sensor 29 (pressure in the pipe 27). For example, the ECU 32 monitors the pressure in the pipe 27 received from the pressure sensor 29, and if the pressure (back pressure) exceeds a predetermined value (upper limit value), it gives a control signal to the regulator 28 to determine its opening degree. Increase the back pressure. Alternatively, when the pressure falls below a predetermined value (lower limit value), the ECU 32 gives a control signal to the regulator 28 to reduce its opening and increase the back pressure. The ECU 32 performs the back pressure control as described above according to the power generation amount of the fuel cell 1 so that proper operation is performed.
  • the fuel cell system shown in FIG. 1 has a configuration that detects the life of the chemical filter 13 and outputs an alarm (corresponding to “signal” of the present invention). That is, the ECU 32 determines the amount of air obtained from the output signal force of the air flow meter 15, the pressure sensor 16 and the temperature sensor 17, the concentration of impurity components in the air in the pipe 14 obtained by the concentration sensor 18, and the chemical filter 13. Based on the ratio obtained from the trap efficiency (adsorption efficiency), the accumulated amount (accumulated amount) of the impurity component adsorbed on the chemical filter 13 is estimated (calculated), and when this accumulated amount exceeds the predetermined value, An alarm is output as the chemical filter 13 has reached the end of its service life (replacement time).
  • FIG. 2 is a flowchart showing a life determination process of the chemical filter 13 realized by executing a program in the ECU 32.
  • the process shown in FIG. 2 can be started when, for example, the operation of the air pump 20 is turned on.
  • the air amount, pressure, temperature, and concentration based on the output signals from the air flow meter 15 and the sensors 16, 17 and 18 are the air amount data, pressure data, Temperature data and concentration data are recorded (stored) in memory as needed.
  • the ECU 32 reads out necessary data from the memory, and calculates Q1, Tl, PI, and G1, which will be described later, with temporal synchronization. That is, there is a time lag between the measurement and recording of air volume, temperature, pressure, and concentration and the calculations described in the following steps.
  • the ECU 32 takes in an output signal (air flow meter signal: air amount data) of the air flow meter 15, and obtains an intake air amount Q1 per unit time (step Sl).
  • the intake air amount Q1 is stored in a work area of a memory included in the ECU 32.
  • the ECU 32 takes in an output signal (air temperature signal: temperature data) from the temperature sensor 17, and obtains an air temperature T1 of the air amount Q1 obtained in step S1 (step S2).
  • the air temperature T1 is stored in the work area of the memory included in the ECU 32.
  • the ECU 32 takes an output signal (air pressure signal: pressure data) from the pressure sensor 16 and obtains the air pressure (air pressure) P1 of the air amount Q1 obtained in step S1 (step 1 S 3).
  • the air pressure P1 is stored in a work area of a memory included in the ECU 32.
  • the ECU 32 takes in an output signal (concentration signal: concentration data) from the concentration sensor 18, and a certain type of impurity contained in the air of the air amount Q1 obtained in step S1 (Obtain the concentration G1 of impurity X (step S4).
  • concentration Gl is stored in the memory area of the memory included in the ECU 32.
  • the ECU 32 performs air flow rate correction calculation (step S5). That is, the ECU 32 calculates the intake air amount Q2 (air flow rate: correction value) Q2 obtained by correcting the intake air amount Q1 stored in the work area with the air temperature T1 and air pressure P1 stored in the work area, and the work area To store.
  • the intake air amount Q2 air flow rate: correction value
  • the ECU 32 calculates a passing impurity amount (step S6). That is, the ECU 32 multiplies the intake air amount Q2 and the concentration G1 stored in the work area, thereby passing through the chemical filter 13 and passing through the chemical filter 13 into the pipe 14. The amount of impurity X that has arrived is calculated as passing impurity amount G2, and stored in the work area.
  • the ECU 32 calculates a cumulative amount of passing impurities (step S7). That is, the ECU 32 reads the value of the accumulated amount of passing impurities G3 stored in the nonvolatile memory (storage means) included in the ECU 32, and calculates the amount of passing impurities G2 stored in the work area to the value of G3. Then, a new accumulated amount of passing impurities G3 is calculated, and the new accumulated amount of passing impurities G3 is stored in the nonvolatile memory (overwriting the value of G3) and stored in the work area.
  • the accumulated amount of passing impurities G3 stored in the non-volatile memory is configured to be set to zero when an unused chemical filter 13 is newly set. Each time step 7 is executed, the amount of passing impurities G2 is added to the value of G3. As described above, the accumulated amount of impurities G3 indicates the accumulated amount of impurities X that have passed through the storage container 13A (adsorber) while the same chemical filter 13 is being used.
  • the ECU 32 calculates the trap impurity accumulation amount (step S8).
  • the trap efficiency with respect to the impurity X by the chemical filter 13, that is, the ratio at which the chemical filter 13 is adsorbed when a certain amount of the impurity X passes through the storage container 13 A is determined in advance by an experiment or the like. It has been demanded. From this trapping efficiency, the amount of impurity X adsorbed (trapped) by the chemical filter 13 when a certain amount of impurity X passes through the container 13A (referred to as M) and the container 13A without being trapped.
  • M the amount of impurity X adsorbed (trapped) by the chemical filter 13 when a certain amount of impurity X passes through the container 13A
  • M the container 13A without being trapped.
  • the ratio (M: N) to the amount of impurities X passing through (assuming N) is obtained.
  • the value of M when the value of N is 1 is stored in advance.
  • the ECU 32 reads the value of M from the non-volatile memory and multiplies the accumulated amount of passing impurities G3 (calculates the ratio) so that the accumulated amount of trapped impurities G4 to the accumulated amount of trapped impurities G3 (adsorbed by the chemical filter 13).
  • the amount of impurities X) is calculated and stored in the work area.
  • the trap impurity accumulation amount G4 is determined based on the trap efficiency.
  • the ECU 32 performs filter life determination (step S9). That is, the ECU 32 determines whether or not the trap impurity accumulation amount G4 stored in the work area is equal to or less than a predetermined value (determination value GO) stored in advance in the nonvolatile memory.
  • the judgment value GO indicates the cumulative amount of trapped impurities that can be judged to have reached the end of the life of the chemical filter 13 specified through experiments and the like.
  • step S10 When the trapped impurity accumulation amount G4 is equal to or smaller than the determination value GO (S9; YES), the process proceeds to step S11. On the other hand, when the trap impurity accumulated amount G4 exceeds the determination value GO (S9; NO), the ECU 32 performs an alarm output process (step S10).
  • a warning lamp 33 is connected to the ECU 32.
  • the warning lamp 33 is turned off when the trapped impurity accumulation amount G4 is not more than the judgment value GO.
  • the E CU 32 gives a warning signal to the warning lamp 33 and turns on the warning lamp 33. In this way, when the ECU 32 outputs an alarm, the fuel filter system user (vehicle user) has reached the end of the life of the chemical filter 13 (it is time to replace it). Can be notified.
  • step S10 When the warning lamp 33 is turned on, the lighting state is maintained unless a special operation such as a light-off switch operation by the user is performed (except for the power-off state).
  • step S10 ends, the process returns to step S1.
  • step S11 the ECU 32 determines whether or not the air pump 20 is turned off.
  • the air pump 20 is on (Sl 1; NO)
  • the process returns to step S1, and when it is off (S11; YES), the life determination process ends.
  • the chemical filter 13 includes a plurality of sensors (pressure sensor 16) (which are arranged in the oxidant gas flow path) that constitute an oxidant supply system and an oxidant discharge system. , Temperature sensor 17, concentration sensor 18, temperature sensor 24, temperature sensor 26, and pressure sensor 29) are arranged upstream of all of them. Thereby, since the impurity component contained in the air is removed by the chemical filter 13, it is prevented that the impurity component is attached to each sensor and affects the measurement accuracy. Further, since the chemical filter 13 is provided on the upstream side of the air flow meter 15! /, It is possible to suppress the impurity component from affecting the intake air amount detection of the air flow meter 15.
  • a dust filter 12 is provided on the upstream side of the chemical filter 13. Since particulate matter in the air is removed by the dust filter 12, it is possible to prevent the particulate matter from affecting the measurement accuracy of each sensor flow meter 15. Further, since the dust filter 12 is arranged upstream of the chemical filter 13, moisture in the air stays in the dust filter 12, so that the chemical filter 13 is connected directly to the air intake pipe 11. In addition, the amount of moisture introduced into the chemical filter 13 is reduced. Thereby, it is possible to suppress moisture from affecting the adsorption function of the chemical filter 13.
  • the moisture in the air acts on impurities attached to the sensor and the air flow meter 15 to generate an acid, and this acid is generated in the sensor air flow.
  • One meter 15 can be prevented from corroding.
  • the air flow meter 15 functions as a measurement unit
  • the concentration sensor 18 functions as a detection unit
  • the ECU 32 functions as an estimation unit and an output control unit. The amount of adsorption is accurately estimated and the key is Rahm can be put out.
  • the order of steps S1, S2, S3, and S4 is arbitrary.
  • the concentration sensor 18 is prepared for each type of impurity for which the cumulative amount is to be calculated.
  • the concentration of the plurality of types of impurities is detected by a single concentration sensor.
  • the processing shown in Fig. 2 can be configured to be executed in parallel for each type of impurity.
  • a display device may be prepared so that the display device indicates that the life (replacement time) has come. Also, instead of or in addition to the warning light 33 and the display device, the ECU 32 may output a sound (alarm sound) to a warning buzzer or the like!
  • a heating unit such as a heater is provided around the chemical filter 13, and the ECU 32 controls the operation of the heating unit, so that the chemical filter 13 The heat regeneration process may be performed.
  • the fuel cell system according to the present invention can be applied not only to mounting on a vehicle but also to a fuel cell fixedly mounted.
  • the type of fuel cell is not limited to PEFC.

Abstract

A fuel cell system having an oxidant gas flow path running via an air electrode of a fuel cell, sensors provided in the oxidant gas flow path, and a chemical filter placed in the oxidant gas flow path, on the upstream side of the sensors, and adsorbing impurities contained in the oxidant gas. Since the impurities are removed by the chemical filter, the influence of the impurities to each of the sensors arranged on the downstream side of the chemical filter can be suppressed to maintain the accuracy of the sensors.

Description

明 細 書  Specification
燃料電池システム  Fuel cell system
技術分野  Technical field
[0001] 本発明は、燃料電池システムに関する。  [0001] The present invention relates to a fuel cell system.
背景技術  Background art
[0002] 燃料電池の空気極に酸化剤ガスとして供給される空気から硫黄化合物 (例えば SO  [0002] Sulfur compounds (for example, SO) from air supplied as an oxidant gas to the air electrode of a fuel cell
2 や H S)や窒素酸ィ匕物 (NOx)のような燃料電池に対して有害な不純物成分を除去す 2 and H S) and nitrogen oxides (NOx) to remove impurities that are harmful to fuel cells.
2 2
るため、燃料電池に対する酸化剤ガスの供給路上にケミカルフィルタが配置されたも のがある (例えば、特許文献 1)。ケミカルフィルタは、活性炭等から構成され、不純物 成分を自身に吸着させて除去する。  Therefore, there is a chemical filter arranged on the supply path of the oxidant gas to the fuel cell (for example, Patent Document 1). The chemical filter is composed of activated carbon, etc., and adsorbs and removes impurity components.
特許文献 1:特開 2005— 116353号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-116353
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 一般に、酸化剤ガスの供給路上には、燃料電池に対する酸化剤ガスの供給量や、 その温度を調整するために設けられる圧力センサや温度センサのような各種のセン サが設けられる。 [0003] Generally, various sensors such as a pressure sensor and a temperature sensor provided to adjust the supply amount of the oxidant gas to the fuel cell and the temperature thereof are provided on the supply path of the oxidant gas.
[0004] 従来、酸化剤ガス供給路に配置される各種センサとの関係を考慮してケミカルフィ ルタを配置する例はなぐケミカルフィルタの上流側に圧力センサや温度センサのよう なセンサが配置されることがあった。  [0004] Conventionally, a sensor such as a pressure sensor or a temperature sensor is disposed upstream of the chemical filter, which is not the case where a chemical filter is disposed in consideration of the relationship with various sensors disposed in the oxidant gas supply path. There was.
[0005] この場合、ケミカルフィルタの上流側に配置されたセンサ力 酸化剤ガスに含まれる 不純物成分 (例えば SOや H S)に長時間さらされ、不純物がセンサに付着し、センサ  [0005] In this case, the sensor force disposed on the upstream side of the chemical filter is exposed to impurity components (for example, SO and H 2 S) contained in the oxidant gas for a long time, and the impurities adhere to the sensor, and the sensor
2 2  twenty two
の検知精度を低下させるおそれがあった。また、酸化剤ガスに含まれる水分がセンサ に付着した不純物に作用して酸が生成され、センサを腐食するおそれがあった。  There was a risk of lowering the detection accuracy. In addition, the moisture contained in the oxidant gas may act on impurities attached to the sensor to generate acid, which may corrode the sensor.
[0006] 本発明の目的は、酸化剤ガスの流路上に配置されたセンサの検出精度が不純物 の影響により低下したり、センサが劣化したりすることを抑制することが可能な燃料電 池システムを提供することである。 [0006] An object of the present invention is to provide a fuel cell system capable of suppressing the detection accuracy of a sensor disposed on an oxidant gas flow path from being deteriorated due to the influence of impurities or the sensor from being deteriorated. Is to provide.
課題を解決するための手段 [0007] 本発明は、上述した課題を解決するために以下の構成を採用する。 Means for solving the problem The present invention adopts the following configuration in order to solve the above-described problems.
[0008] 即ち、本発明は、燃料電池の力ソード極に酸化剤ガスを導入するとともに力ソード極 カゝら排出ガスを排出する酸化剤ガス流路と、 That is, the present invention provides an oxidant gas flow path for introducing an oxidant gas into a force sword electrode of a fuel cell and discharging exhaust gas from the force sword electrode,
前記酸化剤ガス流路上に設けられた複数のセンサと、  A plurality of sensors provided on the oxidant gas flow path;
前記酸化剤ガス流路にお 、て前記複数のセンサの上流側に配置され、酸化剤ガス に含まれる不純物を自身に吸着させるケミカルフィルタを含む吸着器と  An adsorber including a chemical filter that is disposed upstream of the plurality of sensors in the oxidant gas flow path and adsorbs impurities contained in the oxidant gas.
を含む燃料電池システムである。  A fuel cell system including
[0009] 本発明によれば、ケミカルフィルタで不純物が除去されるため、その下流側に配置 された複数のセンサのそれぞれに対する不純物の作用を抑えることができ、センサの 精度維持,センサの腐食防止を図ることができる。 According to the present invention, since the impurities are removed by the chemical filter, it is possible to suppress the action of the impurities on each of the plurality of sensors arranged on the downstream side, thereby maintaining the accuracy of the sensor and preventing the corrosion of the sensor. Can be achieved.
[0010] 好ましくは、本発明に係る燃料電池システムは、前記酸化剤ガス流路において、前 記ケミカルフィルタの上流側に配置されたダストフィルタをさらに含む。 [0010] Preferably, the fuel cell system according to the present invention further includes a dust filter disposed on the upstream side of the chemical filter in the oxidant gas flow path.
[0011] この場合には、ダストフィルタで酸化剤ガスに含まれる粒状物を除去できるので、粒 状物がセンサに与える影響を低減することができる。また、酸化剤ガスがダストフィル タを通過することで、ケミカルフィルタに到達する酸化剤ガス中の水分を低減すること ができ、水分がケミカルフィルタに影響を与えることを抑えることができる。  [0011] In this case, since the particulate matter contained in the oxidant gas can be removed by the dust filter, the influence of the particulate matter on the sensor can be reduced. Further, when the oxidant gas passes through the dust filter, the moisture in the oxidant gas that reaches the chemical filter can be reduced, and the influence of moisture on the chemical filter can be suppressed.
[0012] 好ましくは、本発明に係る燃料電池システムは、前記吸着器を経た酸化剤ガスの量 を測定する測定手段と、  [0012] Preferably, the fuel cell system according to the present invention comprises a measuring means for measuring the amount of oxidant gas that has passed through the adsorber,
前記吸着器を経た酸化剤ガス中に含まれる前記不純物の濃度を検知する濃度セ ンサと、  A concentration sensor that detects the concentration of the impurities contained in the oxidant gas that has passed through the adsorber;
前記測定された酸化剤ガスの量と、前記検知された濃度と、前記ケミカルフィルタの 吸着効率から求まる比とに基づいて前記ケミカルフィルタに吸着した前記不純物の 量を推定する推定手段と、  Estimating means for estimating the amount of the impurity adsorbed on the chemical filter based on the measured amount of the oxidant gas, the detected concentration, and a ratio obtained from the adsorption efficiency of the chemical filter;
前記不純物の量の累積値が所定値を上回る場合に、信号を出力させる出力制御 手段と  Output control means for outputting a signal when a cumulative value of the amount of impurities exceeds a predetermined value;
をさらに含む。  Further included.
[0013] このようにすれば、ケミカルフィルタに吸着した不純物量が所定値に達した場合に 信号が出力されることで、例えば、ケミカルフィルタが寿命に達したことを外部に報知 することができる。 [0013] By doing so, a signal is output when the amount of impurities adsorbed on the chemical filter reaches a predetermined value, for example, to inform the outside that the chemical filter has reached the end of its life. can do.
[0014] また、本発明に係る燃料電池システムは、前記吸着器が前記酸化剤ガス流路上に 設けられたすべてのセンサの上流側に設けられているように構成することができる。  [0014] Further, the fuel cell system according to the present invention can be configured such that the adsorber is provided upstream of all sensors provided on the oxidant gas flow path.
[0015] このようにすれば、酸化剤ガス中に含まれる不純物がケミカルフィルタで除去される ので、すべてのセンサに対し、不純物が付着してその計測精度に影響を与えることが 防止される。  [0015] With this configuration, impurities contained in the oxidant gas are removed by the chemical filter, so that it is possible to prevent impurities from adhering to all sensors and affecting their measurement accuracy.
発明の効果  The invention's effect
[0016] 本発明によれば、酸化剤ガスの流路上に配置されたセンサの検出精度が不純物の 影響により低下したり、センサが劣化したりすることを抑制することが可能な燃料電池 システムを提供することができる。  [0016] According to the present invention, there is provided a fuel cell system capable of suppressing the detection accuracy of a sensor arranged on the flow path of an oxidant gas from being lowered due to the influence of impurities or the sensor from being deteriorated. Can be provided.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は、本発明の実施形態に係る燃料電池システムの構成例を示す図である。  FIG. 1 is a diagram showing a configuration example of a fuel cell system according to an embodiment of the present invention.
[図 2]図 2は、 ECUによるケミカルフィルタの寿命判定処理の例を示すフローチャート である。  FIG. 2 is a flowchart showing an example of chemical filter life determination processing by the ECU.
符号の説明  Explanation of symbols
1·· •燃料電池  1 ... Fuel cell
2" •固体高分子電解質膜  2 "• Solid polymer electrolyte membrane
3·· '燃料極  3.'Fuel electrode
4·· •空気極  4 •• Air electrode
5·· '燃料極側セパレータ  5 ... 'Fuel electrode side separator
6·· '空気極側セパレータ  6 ... 'Air electrode side separator
11· ··空気取り込み管  11 ... Air intake pipe
12· ··ダストフィルタ  12 ... Dust filter
13· ··ケミカルフィルタ  13 Chemical filter
14, 19, 22, 25, 27, 30…配管  14, 19, 22, 25, 27, 30… Piping
15· ··エアフローメータ  15 ... Air flow meter
16, 29···圧力センサ  16, 29 ... Pressure sensor
17, 24, 26···温度センサ 18 · '濃度センサ 17, 24, 26 ... Temperature sensor 18 'Concentration sensor
20 · 'エアポンプ  20 'air pump
21 · •モータ  21 · Motor
23 · •インタクーラ  23 · Intercooler
28 · ,レギユレータ  28 ·, Regulator
31 · 'マフラ  31 'Muffler
32 · •ECU  32ECU
33 · •警告灯  33 • Warning light
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、図面を参照して本発明の実施形態を説明する。実施形態の構成は例示であ り、本発明は実施形態の構成に限定されない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. The configuration of the embodiment is an exemplification, and the present invention is not limited to the configuration of the embodiment.
[0020] 図 1は、本発明の実施形態における燃料電池システムの構成例を示す図である。こ の燃料電池システムは、移動体 (例えば車両)に搭載される。図 1における燃料電池 1 として、固体高分子型燃料電池 (PEFC)が適用されている。燃料電池 1は、複数のセ ルを積層してなるセルスタックで構成されている (但し、図 1では、燃料電池 1における 単セルの構成を模式的に示す)。  FIG. 1 is a diagram showing a configuration example of a fuel cell system in an embodiment of the present invention. This fuel cell system is mounted on a moving body (for example, a vehicle). As the fuel cell 1 in FIG. 1, a polymer electrolyte fuel cell (PEFC) is applied. The fuel cell 1 is composed of a cell stack formed by stacking a plurality of cells (however, FIG. 1 schematically shows the configuration of a single cell in the fuel cell 1).
[0021] セルは、固体高分子電解質膜 2と、固体高分子電解質膜 2を両側カゝら挟む燃料極 ( アノード) 3及び空気極 (酸化剤極:力ソード極) 4と、燃料極 3及び空気極 4を挟む燃料 極側セパレータ 5及び空気極側セパレータ 6とからなる。  The cell includes a solid polymer electrolyte membrane 2, a fuel electrode (anode) 3 and an air electrode (oxidizer electrode: force sword electrode) 4 that sandwich the solid polymer electrolyte membrane 2 on both sides, and a fuel electrode 3. And a fuel electrode side separator 5 and an air electrode side separator 6 sandwiching the air electrode 4.
[0022] 燃料極 3は、拡散層と触媒層とを有している。燃料極 3には、水素ガスや水素リッチ ガスなどの水素を含む燃料 (燃料ガス)が燃料供給系により供給される。燃料極 3に供 給された燃料ガスは、拡散層で拡散され触媒層に到達する。触媒層では、燃料ガス 中の水素がプロトン (水素イオン)と電子とに分離される。水素イオンは固体高分子電 解質膜 2を通って空気極 4に移動し、電子は外部回路 (図示せず)を通って空気極 4 に移動する。  The fuel electrode 3 has a diffusion layer and a catalyst layer. A fuel (fuel gas) containing hydrogen such as hydrogen gas or hydrogen rich gas is supplied to the fuel electrode 3 by a fuel supply system. The fuel gas supplied to the fuel electrode 3 is diffused in the diffusion layer and reaches the catalyst layer. In the catalyst layer, hydrogen in the fuel gas is separated into protons (hydrogen ions) and electrons. Hydrogen ions move to the air electrode 4 through the solid polymer electrolyte membrane 2, and electrons move to the air electrode 4 through an external circuit (not shown).
[0023] 一方、空気極 4は、拡散層と触媒層とを有する。空気極 4には、空気等の酸化剤ガ スが酸化剤供給系により供給される。空気極 4に供給された酸化剤ガスは、拡散層で 拡散され触媒層に到達する。触媒層では、酸化剤ガスと、固体高分子電解質膜 2を 通って空気極 4に到達した水素イオンと、外部回路を通って空気極 4に到達した電子 とによる反応を通じて水が生成される。 On the other hand, the air electrode 4 has a diffusion layer and a catalyst layer. An oxidant gas such as air is supplied to the air electrode 4 by an oxidant supply system. The oxidant gas supplied to the air electrode 4 is diffused in the diffusion layer and reaches the catalyst layer. In the catalyst layer, oxidant gas and solid polymer electrolyte membrane 2 are Water is generated through a reaction between hydrogen ions that have passed through the air electrode 4 and electrons that have reached the air electrode 4 through an external circuit.
[0024] これらのような燃料極 3及び空気極 4における反応の際に外部回路を通る電子が、 燃料電池 1の両端子間に接続される負荷に対する電力として使用される。  [0024] Electrons passing through an external circuit during the reaction in the fuel electrode 3 and the air electrode 4 as described above are used as electric power for a load connected between both terminals of the fuel cell 1.
[0025] 図 1には、燃料電池 1の空気極 4を経由する酸化剤ガス流路が示されている。酸ィ匕 剤ガス流路は、燃料電池 1の空気極 4と、空気極 4の上流側に設けられた酸化剤供 給系と、空気極 4の下流側に設けられた酸化剤排出系とから構成される。  FIG. 1 shows an oxidant gas flow path that passes through the air electrode 4 of the fuel cell 1. The oxidizing agent gas flow path includes an air electrode 4 of the fuel cell 1, an oxidant supply system provided upstream of the air electrode 4, and an oxidant discharge system provided downstream of the air electrode 4. Consists of
[0026] 図 1において、酸化剤供給系は、空気取り込み管 11から取り入れられた外気 (空気) が導入されるダストフィルタ 12と、ダストフィルタ 12の下流側に配置されたケミカルフィ ルタ 13とを備えている。空気取り込み管 11の入口は、車両に設けられた外気取り入 れ口に向かって開口するように配置されて 、る。空気取り込み管 11に導入される空 気中には、不純物成分 (硫黄ィ匕合物 (例えば SOや H S),窒素化合物等)が、気体 (ガ  In FIG. 1, the oxidant supply system includes a dust filter 12 into which outside air (air) taken in from the air intake pipe 11 is introduced, and a chemical filter 13 disposed on the downstream side of the dust filter 12. I have. The inlet of the air intake pipe 11 is arranged so as to open toward the outside air inlet provided in the vehicle. In the air introduced into the air intake pipe 11, impurity components (sulfur compounds (eg, SO and H 2 S), nitrogen compounds, etc.)
2 2  twenty two
ス状),液体,固体 (粒状、粉状)の状態で含まれている。  ), Liquid, solid (granular, powdery).
[0027] ダストフィルタ 12は、空気中の粒状物を除去する。ケミカルフィルタ 13は、活性炭等 からなり、空気に含まれる不純物成分 (硫黄化合物 (例えば SOや H S),窒素化合物 [0027] The dust filter 12 removes particulate matter in the air. The chemical filter 13 is made of activated carbon or the like, and contains impurity components (sulfur compounds (eg, SO and H 2 S), nitrogen compounds) contained in the air.
2 2  twenty two
等)を自身に吸着させることでこれを除去する。  Etc.) is removed by adsorbing it to itself.
[0028] ダストフィルタ 12及びケミカルフィルタ 13は、両者を有する一つのユニットとして構 成されている。図 1に示す例では、ダストフィルタ 12及びケミカルフィルタ 13は、空気 取り込み管 11及び配管 14が内部で連通するように接合された収容容器 13A内に収 容されており、空気取り込み管 11から収容容器 13A内に導入された空気は、ダスト フィルタ 12を通過した後にケミカルフィルタ 13を通過し、配管 14内に送り出されるよう に構成されている。収容容器 13Aは、ケミカルフィルタを収容した吸着器として機能 する。 [0028] The dust filter 12 and the chemical filter 13 are configured as one unit having both. In the example shown in FIG. 1, the dust filter 12 and the chemical filter 13 are stored in the storage container 13A joined so that the air intake pipe 11 and the pipe 14 communicate with each other inside, and are received from the air intake pipe 11. The air introduced into the container 13A passes through the dust filter 12 and then passes through the chemical filter 13 and is sent out into the pipe 14. The storage container 13A functions as an adsorber that stores a chemical filter.
[0029] 収容容器 13A内において、ダストフィルタ 12とケミカルフィルタ 13とは両者が接触 する状態で配置されても良ぐ両者間に距離を空けて配置されても良い。また、ダスト フィルタ 12及びケミカルフィルタ 13は、異なる収容容器内に配置されるようにしても 良い。この場合、二つの収容容器が一体に形成され、各収容容器の内部空間が連 通するように構成しても良ぐ各収容容器の内部空間が配管の内部空間で連通する ように構成されても良い。 [0029] In the container 13A, the dust filter 12 and the chemical filter 13 may be disposed in contact with each other, or may be disposed with a distance therebetween. Further, the dust filter 12 and the chemical filter 13 may be arranged in different storage containers. In this case, the two storage containers may be integrally formed, and the internal space of each storage container may be communicated. The internal space of each storage container communicates with the internal space of the pipe. It may be configured as follows.
[0030] ケミカルフィルタ 13を通過した空気は、配管 14を介して、配管 14に接続されたエア フローメータ 15に吸入される。配管 14には、配管 14内の圧力 (空気圧)を検知する圧 力センサ 16と、配管 14内の温度を検知する温度センサ 17とが設けられている。さら に、配管 14には、ケミカルフィルタ 13を通過した空気中に含まれる特定の不純物成 分の濃度を検知する濃度センサ 18が設けられている。  The air that has passed through the chemical filter 13 is sucked into the air flow meter 15 connected to the pipe 14 via the pipe 14. The pipe 14 is provided with a pressure sensor 16 for detecting the pressure (air pressure) in the pipe 14 and a temperature sensor 17 for detecting the temperature in the pipe 14. Further, the pipe 14 is provided with a concentration sensor 18 for detecting the concentration of a specific impurity component contained in the air that has passed through the chemical filter 13.
[0031] エアフローメータ 15は、吸入空気量 (自身を通過する空気量)を測定する。ェアフロ 一メータ 15を通過した空気は、配管 19を介して接続されたエアポンプ (エアコンプレ ッサ) 20に導入される。エアポンプ 20は、モータ 21の駆動によって作動し、空気を燃 料電池 1側へ送出する。エアポンプ 20は、配管 22を介してインタクーラ 23に接続さ れており、エアポンプ 20から送り出された空気は配管 22を通ってインタクーラ 23に導 入される。配管 22には、配管 22内の温度 (配管 22を流れる空気の温度)を検知する 温度センサ 24が設けられて!/、る。  [0031] The air flow meter 15 measures the amount of intake air (the amount of air passing through itself). The air that has passed through the air flow meter 15 is introduced into an air pump (air conditioner) 20 connected via a pipe 19. The air pump 20 operates by driving the motor 21 and sends air to the fuel cell 1 side. The air pump 20 is connected to the intercooler 23 through the pipe 22, and the air sent out from the air pump 20 is introduced into the intercooler 23 through the pipe 22. The pipe 22 is provided with a temperature sensor 24 that detects the temperature in the pipe 22 (the temperature of the air flowing through the pipe 22).
[0032] インタクーラ 23は、自身に導入された空気を冷却し、配管 25に排出する。配管 25 は、燃料電池 1の酸化剤ガス入口に接続されている。配管 25には、配管 25内の温度 (インタクーラ 23から排出される空気の温度)を検知する温度センサ 26が設けられて いる。酸化剤ガス入口に導入された空気は、空気極側セパレータ 6に設けられた流 路を介して空気極 4へ拡散する。空気極 4を通過した空気は、排出ガスとして、燃料 電池 1の酸化剤ガス出口カゝら外部へ排出される。  The intercooler 23 cools the air introduced therein and discharges it to the pipe 25. The pipe 25 is connected to the oxidant gas inlet of the fuel cell 1. The pipe 25 is provided with a temperature sensor 26 that detects the temperature in the pipe 25 (the temperature of the air discharged from the intercooler 23). The air introduced into the oxidant gas inlet diffuses to the air electrode 4 through the flow path provided in the air electrode side separator 6. The air that has passed through the air electrode 4 is discharged as an exhaust gas from the oxidant gas outlet of the fuel cell 1 to the outside.
[0033] 図 1において、酸化剤排出系は、次のように構成されている。燃料電池 1の酸化剤 ガス出口には、配管 27が接続されており、配管 27は、レギユレータ (背圧調整弁) 28 に接続されている。配管 27には、配管 27内の圧力を検知する圧力センサ 29が設け られている。レギユレータ 28は、弁の開度を変えることで、エアポンプ 20の背圧を調 整する。レギユレータ 28には、配管 30を介してマフラ 31が接続されており、マフラ 31 を通過した空気は外気中に排出される。  In FIG. 1, the oxidant discharge system is configured as follows. A pipe 27 is connected to the oxidant gas outlet of the fuel cell 1, and the pipe 27 is connected to a regulator (back pressure adjusting valve) 28. The pipe 27 is provided with a pressure sensor 29 that detects the pressure in the pipe 27. The regulator 28 adjusts the back pressure of the air pump 20 by changing the opening of the valve. A muffler 31 is connected to the regulator 28 via a pipe 30, and the air that has passed through the muffler 31 is discharged into the outside air.
[0034] 燃料電池システムは、上述した酸化剤供給系及び酸化剤排出系を制御するための 制御系 (制御手段)として、 ECU(Electronic Control Unit:コンピュータ) 32を備えてい る。 ECU32は、 CPU(Central Processing Unit)等のプロセッサ,プロセッサにより実 行されるプログラムやプログラムの実行に際して使用されるデータを記憶したメモリ( 記憶装置)、センサ等との間の入出力インタフェース αζο)等力も構成されている。 [0034] The fuel cell system includes an ECU (Electronic Control Unit: computer) 32 as a control system (control means) for controlling the oxidant supply system and the oxidant discharge system described above. The ECU 32 is implemented by a processor such as a CPU (Central Processing Unit). An input / output interface (αζο) and the like between a program to be executed and a memory (storage device) that stores data used when the program is executed, a sensor, and the like are also configured.
[0035] ECU32は、上述したエアフローメータ 15,圧力センサ 16,温度センサ 17,濃度セ ンサ 18,温度センサ 24,温度センサ 26,及び圧力センサ 29からの出力信号を受け 取る。 ECU32は、 CPU力メモリに格納されたプログラムを実行することによって、ェ アフロ一メータ 15や各センサからの出力信号に基づき、エアポンプ 20の動作,インタ クーラ 23による空気の冷却能力,レギユレータ 28の開度を制御する。  The ECU 32 receives output signals from the air flow meter 15, pressure sensor 16, temperature sensor 17, concentration sensor 18, temperature sensor 24, temperature sensor 26, and pressure sensor 29 described above. The ECU 32 executes the program stored in the CPU power memory, and based on the output signals from the air flow meter 15 and each sensor, the operation of the air pump 20, the air cooling capacity by the intercooler 23, and the opening of the regulator 28 Control the degree.
[0036] ECU32は、エアフローメータ 15からの出力信号,並びに、圧力センサ 16及び温度 センサ 17からのセンサ出力信号を用いて、燃料電池に供給される酸化剤ガス (空気) の量を測定する。即ち、エアフローメータ 15は、吸入空気量に応じた電気信号を出 力信号として ECU32に与える。このとき与えられる電気信号は、予め定められた標 準としての気圧及び温度条件における空気量を示す。これに対し、空気の密度は、 圧力及び温度に依存する。このため、 ECU32は、エアフローメータ 15から得られる 空気量を圧力センサ 16及び温度センサ 17から受け取る圧力及び温度で補正する。 このようにして、 ECU32は、正確な空気量を測定する。測定された空気量は、例え ば、エアポンプ 20による燃料電池 1への空気の供給量制御に使用される。  The ECU 32 measures the amount of oxidant gas (air) supplied to the fuel cell using the output signal from the air flow meter 15 and the sensor output signals from the pressure sensor 16 and the temperature sensor 17. That is, the air flow meter 15 provides an electric signal corresponding to the intake air amount to the ECU 32 as an output signal. The electric signal given at this time indicates the amount of air under atmospheric pressure and temperature conditions as predetermined standards. In contrast, air density depends on pressure and temperature. Therefore, the ECU 32 corrects the amount of air obtained from the air flow meter 15 with the pressure and temperature received from the pressure sensor 16 and the temperature sensor 17. In this way, the ECU 32 measures an accurate air amount. The measured air amount is used, for example, for controlling the amount of air supplied to the fuel cell 1 by the air pump 20.
[0037] また、 ECU32は、温度センサ 24からの出力信号 (配管 22内の温度)を用いて、エア ポンプ 20の動作を制御する。即ち、 ECU32は、温度センサ 24からの出力信号を用 いて、エアポンプ 20から排出 (吐出)される空気の温度を監視する。排出空気の温度 が所定値以上になることは、エアポンプ 20に過剰な負荷が力かっていることを意味し 、そのような状態が継続されるとエアポンプ 20が故障する虞がある。このため、 ECU 32は、温度が所定値以上になると、モータ 21に制御信号を与えて、エアポンプ 20の 回転量を低減したり、エアポンプ 20の動作を停止したりする。  Further, the ECU 32 controls the operation of the air pump 20 using an output signal from the temperature sensor 24 (temperature in the pipe 22). That is, the ECU 32 monitors the temperature of the air discharged (discharged) from the air pump 20 using the output signal from the temperature sensor 24. If the temperature of the exhaust air becomes a predetermined value or more, it means that an excessive load is applied to the air pump 20, and if such a state continues, the air pump 20 may break down. For this reason, when the temperature reaches a predetermined value or more, the ECU 32 gives a control signal to the motor 21 to reduce the rotation amount of the air pump 20 or stop the operation of the air pump 20.
[0038] また、 ECU32は、温度センサ 26からの出力信号 (配管 25内の温度)を用いて、イン タクーラ 23の冷却能力を制御する。発電に適した燃料電池 1の運転温度は決まって おり、燃料電池 1に供給される空気によって燃料電池 1が必要以上に温められると、 燃料電池 1の適正な発電を阻害する虞がある。 ECU32は、例えば、インタクーラ 23 力も排出される空気の温度が所定値を上回ると、インタクーラ 23に制御信号を与えて インタクーラ 23の冷却能力を高め、所定値以下の空気が燃料電池 1に供給されるよ うにする。例えば、インタクーラ 23が空冷であれば、インタクーラ 23が備えるファンの 回転量を制御信号により増加させて、ファンによる冷却用空気の流量を増加させ、ィ ンタクーラ 23を通過する空気 (酸化剤ガス)の放熱が促進されるようにする。 Further, the ECU 32 controls the cooling capacity of the intercooler 23 using an output signal from the temperature sensor 26 (temperature in the pipe 25). The operating temperature of the fuel cell 1 suitable for power generation is determined, and if the fuel cell 1 is heated more than necessary by the air supplied to the fuel cell 1, there is a possibility that proper power generation of the fuel cell 1 may be hindered. The ECU 32, for example, gives a control signal to the intercooler 23 when the temperature of the air from which the intercooler 23 power is also discharged exceeds a predetermined value. The cooling capacity of the intercooler 23 is increased so that air below a predetermined value is supplied to the fuel cell 1. For example, if the intercooler 23 is air-cooled, the rotation amount of the fan included in the intercooler 23 is increased by a control signal, the flow rate of cooling air by the fan is increased, and the air (oxidant gas) passing through the intercooler 23 is increased. Ensure that heat dissipation is promoted.
[0039] さらに、 ECU32は、圧力センサ 29からの出力信号 (配管 27内の圧力)を用いて、レ ギユレータ 28の開度 (背圧)を制御する。例えば、 ECU32は、圧力センサ 29から受け 取る配管 27内の圧力を監視し、圧力 (背圧)が所定値 (上限値)を上回ると、レギユレ一 タ 28に制御信号を与えてその開度を大きくし、背圧を下げる。或いは、 ECU32は、 圧力が所定値 (下限値)を下回ると、レギユレータ 28に制御信号を与えてその開度を 小さくし、背圧を上げる。 ECU32は、燃料電池 1の発電量に応じて、上記したような 背圧制御を行 、、適正な運転が行われるようにする。  Further, the ECU 32 controls the opening degree (back pressure) of the regulator 28 using the output signal from the pressure sensor 29 (pressure in the pipe 27). For example, the ECU 32 monitors the pressure in the pipe 27 received from the pressure sensor 29, and if the pressure (back pressure) exceeds a predetermined value (upper limit value), it gives a control signal to the regulator 28 to determine its opening degree. Increase the back pressure. Alternatively, when the pressure falls below a predetermined value (lower limit value), the ECU 32 gives a control signal to the regulator 28 to reduce its opening and increase the back pressure. The ECU 32 performs the back pressure control as described above according to the power generation amount of the fuel cell 1 so that proper operation is performed.
[0040] さらに、図 1に示す燃料電池システムは、ケミカルフィルタ 13の寿命を検知し、ァラ ーム (本発明の「信号」に相当)を出力する構成を備えている。即ち、 ECU32は、エア フローメータ 15,圧力センサ 16及び温度センサ 17の出力信号力 得られる空気量と 、濃度センサ 18によって得られる配管 14内の空気中の不純物成分の濃度と、ケミカ ルフィルタ 13のトラップ効率 (吸着効率)から求まる比とに基づいて、ケミカルフィルタ 1 3に吸着された不純物成分の蓄積量 (累積量)を推定 (算出)し、この累積量が所定値 を超えたときに、ケミカルフィルタ 13の寿命 (交換時期)が来たものとして、アラームを 出力する。  Further, the fuel cell system shown in FIG. 1 has a configuration that detects the life of the chemical filter 13 and outputs an alarm (corresponding to “signal” of the present invention). That is, the ECU 32 determines the amount of air obtained from the output signal force of the air flow meter 15, the pressure sensor 16 and the temperature sensor 17, the concentration of impurity components in the air in the pipe 14 obtained by the concentration sensor 18, and the chemical filter 13. Based on the ratio obtained from the trap efficiency (adsorption efficiency), the accumulated amount (accumulated amount) of the impurity component adsorbed on the chemical filter 13 is estimated (calculated), and when this accumulated amount exceeds the predetermined value, An alarm is output as the chemical filter 13 has reached the end of its service life (replacement time).
[0041] 図 2は、 ECU32におけるプログラムの実行により実現される、ケミカルフィルタ 13の 寿命判定処理を示すフローチャートである。図 2に示す処理は、例えば、エアポンプ 20の動作がオンにされたことを契機として開始することができる。  FIG. 2 is a flowchart showing a life determination process of the chemical filter 13 realized by executing a program in the ECU 32. The process shown in FIG. 2 can be started when, for example, the operation of the air pump 20 is turned on.
[0042] なお、下記の処理における前提条件として、エアフローメータ 15及び各センサ 16,1 7, 18からの出力信号に基づく空気量,圧力,温度,及び濃度は、空気量データ,圧 力データ,温度データ,及び濃度データとしてメモリに随時記録 (蓄積)される。 ECU 32は、下記のステップにおいて、メモリから必要なデータを読み出し、後述する Q1, Tl, PI, G1を、時間的な同期をとつて算出する。即ち、空気量,温度,圧力,濃度 の測定及び記録と、以下のステップで述べる計算とはタイムラグがある。 [0043] 処理が開始されると、 ECU32は、エアフローメータ 15の出力信号 (エアフローメー タ信号:空気量データ)を取り込み、単位時間あたりの吸入空気量 Q1を得る (ステップ Sl)。吸入空気量 Q1は、 ECU32に含まれるメモリのワークエリアに格納される。 [0042] As preconditions for the following processing, the air amount, pressure, temperature, and concentration based on the output signals from the air flow meter 15 and the sensors 16, 17 and 18 are the air amount data, pressure data, Temperature data and concentration data are recorded (stored) in memory as needed. In the following steps, the ECU 32 reads out necessary data from the memory, and calculates Q1, Tl, PI, and G1, which will be described later, with temporal synchronization. That is, there is a time lag between the measurement and recording of air volume, temperature, pressure, and concentration and the calculations described in the following steps. [0043] When the processing is started, the ECU 32 takes in an output signal (air flow meter signal: air amount data) of the air flow meter 15, and obtains an intake air amount Q1 per unit time (step Sl). The intake air amount Q1 is stored in a work area of a memory included in the ECU 32.
[0044] 次に、 ECU32は、温度センサ 17からの出力信号 (エア温度信号:温度データ)を取 り込み、ステップ S1で得られた空気量 Q1の空気の温度 T1を得る (ステップ S2)。空気 温度 T1は、 ECU32に含まれるメモリのワークエリアに格納される。  [0044] Next, the ECU 32 takes in an output signal (air temperature signal: temperature data) from the temperature sensor 17, and obtains an air temperature T1 of the air amount Q1 obtained in step S1 (step S2). The air temperature T1 is stored in the work area of the memory included in the ECU 32.
[0045] 次に、 ECU32は、圧力センサ 16からの出力信号 (エア圧力信号:圧力データ)を取 り込み、ステップ S1で得られた空気量 Q1の空気の圧力 (空気圧) P1を得る (ステップ S 3)。空気圧 P1は、 ECU32に含まれるメモリのワークエリアに格納される。  Next, the ECU 32 takes an output signal (air pressure signal: pressure data) from the pressure sensor 16 and obtains the air pressure (air pressure) P1 of the air amount Q1 obtained in step S1 (step 1 S 3). The air pressure P1 is stored in a work area of a memory included in the ECU 32.
[0046] 次に、 ECU32は、濃度センサ 18からの出力信号 (濃度信号:濃度データ)を取り込 み、ステップ S1にて得られた空気量 Q1の空気に含まれる或る特定種の不純物 (不純 物 Xとする)の濃度 G1を得る (ステップ S4)。濃度 Glは、 ECU32に含まれるメモリのヮ ークエリアに格納される。  [0046] Next, the ECU 32 takes in an output signal (concentration signal: concentration data) from the concentration sensor 18, and a certain type of impurity contained in the air of the air amount Q1 obtained in step S1 ( Obtain the concentration G1 of impurity X (step S4). The concentration Gl is stored in the memory area of the memory included in the ECU 32.
[0047] 次に、 ECU32は、エア流量補正計算を行う (ステップ S5)。即ち、 ECU32は、ヮー クエリアに格納された吸入空気量 Q1を、ワークエリアに格納された空気温度 T1及び 空気圧 P1で補正した吸入空気量 (エア流量:補正値) Q2を算出し、当該ワークエリア に格納する。  Next, the ECU 32 performs air flow rate correction calculation (step S5). That is, the ECU 32 calculates the intake air amount Q2 (air flow rate: correction value) Q2 obtained by correcting the intake air amount Q1 stored in the work area with the air temperature T1 and air pressure P1 stored in the work area, and the work area To store.
[0048] 次に、 ECU32は、通過不純物量計算を行う (ステップ S6)。即ち、 ECU32は、ヮー クエリアに格納された吸入空気量 Q2と濃度 G1とを乗じることによって、配管 14内の 空気中に含まれる不純物 Xの量、即ち、ケミカルフィルタ 13を通過して配管 14に到 達した不純物 Xの量を通過不純物量 G2として算出し、ワークエリアに格納する。  Next, the ECU 32 calculates a passing impurity amount (step S6). That is, the ECU 32 multiplies the intake air amount Q2 and the concentration G1 stored in the work area, thereby passing through the chemical filter 13 and passing through the chemical filter 13 into the pipe 14. The amount of impurity X that has arrived is calculated as passing impurity amount G2, and stored in the work area.
[0049] 次に、 ECU32は、通過不純物累積量計算を行う (ステップ S7)。即ち、 ECU32は、 ECU32に含まれる不揮発性メモリ (記憶手段)に格納されている通過不純物累積量 G3の値を読み出し、この G3の値にワークエリアに格納された通過不純物量 G2をカロ 算して、新たな通過不純物累積量 G3を算出し、この新たな通過不純物累積量 G3を 不揮発性メモリに格納 (G3の値を上書き)するとともに、ワークエリアに格納する。  Next, the ECU 32 calculates a cumulative amount of passing impurities (step S7). That is, the ECU 32 reads the value of the accumulated amount of passing impurities G3 stored in the nonvolatile memory (storage means) included in the ECU 32, and calculates the amount of passing impurities G2 stored in the work area to the value of G3. Then, a new accumulated amount of passing impurities G3 is calculated, and the new accumulated amount of passing impurities G3 is stored in the nonvolatile memory (overwriting the value of G3) and stored in the work area.
[0050] 不揮発性メモリに格納される通過不純物累積量 G3の値は、未使用のケミカルフィ ルタ 13が新たにセットされた場合に零が設定されるように構成されており、ステップ S 7の処理が実行される毎に、当該 G3の値に通過不純物量 G2が加算される。このよう に、通過不純物累積量 G3は、同一のケミカルフィルタ 13が使用されている間におけ る、収容容器 13A (吸着器)を通過した不純物 Xの累積量を示す。 [0050] The accumulated amount of passing impurities G3 stored in the non-volatile memory is configured to be set to zero when an unused chemical filter 13 is newly set. Each time step 7 is executed, the amount of passing impurities G2 is added to the value of G3. As described above, the accumulated amount of impurities G3 indicates the accumulated amount of impurities X that have passed through the storage container 13A (adsorber) while the same chemical filter 13 is being used.
[0051] 次に、 ECU32は、トラップ不純物累積量計算を行う (ステップ S8)。ここに、ケミカル フィルタ 13による、不純物 Xに対するトラップ効率、すなわち、或る量の不純物 Xが収 容容器 13 Aを通過するときにケミカルフィルタ 13で吸着される比率は、実験等によつ て予め求められている。このトラップ効率から、或る量の不純物 Xが収容容器 13Aを 通過するときにケミカルフィルタ 13で吸着 (トラップ)される不純物 Xの量 (Mとする)と、ト ラップされることなく収容容器 13Aを通過する不純物 Xの量 (Nとする)との比 (M: N)が 求 3;る。 [0051] Next, the ECU 32 calculates the trap impurity accumulation amount (step S8). Here, the trap efficiency with respect to the impurity X by the chemical filter 13, that is, the ratio at which the chemical filter 13 is adsorbed when a certain amount of the impurity X passes through the storage container 13 A is determined in advance by an experiment or the like. It has been demanded. From this trapping efficiency, the amount of impurity X adsorbed (trapped) by the chemical filter 13 when a certain amount of impurity X passes through the container 13A (referred to as M) and the container 13A without being trapped. The ratio (M: N) to the amount of impurities X passing through (assuming N) is obtained.
[0052] ECU32に含まれる不揮発性メモリ (記憶手段)上には、例えば、 Nの値を 1とした時 の Mの値が予め格納されている。 ECU32は、不揮発性メモリから Mの値を読み出し 、通過不純物累積量 G3に乗じる (比の計算を行う)ことで、通過不純物累積量 G3に 対するトラップ不純物累積量 G4(ケミカルフィルタ 13に吸着されて 、る不純物 Xの量) を算出し、ワークエリアに格納する。このように、トラップ効率に基づいてトラップ不純 物累積量 G4が求められる。  [0052] On the non-volatile memory (storage means) included in the ECU 32, for example, the value of M when the value of N is 1 is stored in advance. The ECU 32 reads the value of M from the non-volatile memory and multiplies the accumulated amount of passing impurities G3 (calculates the ratio) so that the accumulated amount of trapped impurities G4 to the accumulated amount of trapped impurities G3 (adsorbed by the chemical filter 13). The amount of impurities X) is calculated and stored in the work area. Thus, the trap impurity accumulation amount G4 is determined based on the trap efficiency.
[0053] 次に、 ECU32は、フィルタ寿命判定を行う (ステップ S9)。即ち、 ECU32は、ワーク エリアに格納されたトラップ不純物累積量 G4が、不揮発性メモリに予め格納されてい る所定値 (判定値 GO)以下か否かを判定する。判定値 GOは、実験等を通じて規定さ れたケミカルフィルタ 13の寿命が尽きたと判定できるトラップ不純物累積量を示す。  Next, the ECU 32 performs filter life determination (step S9). That is, the ECU 32 determines whether or not the trap impurity accumulation amount G4 stored in the work area is equal to or less than a predetermined value (determination value GO) stored in advance in the nonvolatile memory. The judgment value GO indicates the cumulative amount of trapped impurities that can be judged to have reached the end of the life of the chemical filter 13 specified through experiments and the like.
[0054] トラップ不純物累積量 G4が判定値 GO以下である場合 (S9 ; YES)には、処理がステ ップ S 11に進む。これに対し、トラップ不純物累積量 G4が判定値 GOを超える場合 (S 9 ;NO)には、 ECU32は、アラーム出力処理を行う (ステップ S10)。  [0054] When the trapped impurity accumulation amount G4 is equal to or smaller than the determination value GO (S9; YES), the process proceeds to step S11. On the other hand, when the trap impurity accumulated amount G4 exceeds the determination value GO (S9; NO), the ECU 32 performs an alarm output process (step S10).
[0055] 例えば、図 1に示すように、 ECU32には、警告灯 33が接続されている。警告灯 33 は、トラップ不純物累積量 G4が判定値 GO以下である場合には、消灯状態である。 E CU32は、ステップ S10において、警告灯 33に点灯信号を与え警告灯 33を点灯さ せる。このように、 ECU32がアラームを出力させることによって、燃料電池システムの ユーザ (車両ユーザ)に対して、ケミカルフィルタ 13に寿命が来た (交換時期である)こ とを報知することがでさる。 For example, as shown in FIG. 1, a warning lamp 33 is connected to the ECU 32. The warning lamp 33 is turned off when the trapped impurity accumulation amount G4 is not more than the judgment value GO. In step S10, the E CU 32 gives a warning signal to the warning lamp 33 and turns on the warning lamp 33. In this way, when the ECU 32 outputs an alarm, the fuel filter system user (vehicle user) has reached the end of the life of the chemical filter 13 (it is time to replace it). Can be notified.
[0056] なお、警告灯 33は、ー且点灯すると、例えばユーザによる消灯スィッチ操作のよう な特別な操作が行われない限り、点灯状態を維持する (電源停止状態を除く)。ステツ プ S 10が終了すると、処理はステップ S1に戻される。  [0056] When the warning lamp 33 is turned on, the lighting state is maintained unless a special operation such as a light-off switch operation by the user is performed (except for the power-off state). When step S10 ends, the process returns to step S1.
[0057] 一方、ステップ S11に処理が進んだ場合には、 ECU32は、エアポンプ 20がオフと なっているか否かを判定する。エアポンプ 20がオンの場合 (Sl l ;NO)、処理がステツ プ S1に戻り、オフの場合 (S11 ;YES)、当該寿命判定処理が終了する。  On the other hand, when the process proceeds to step S11, the ECU 32 determines whether or not the air pump 20 is turned off. When the air pump 20 is on (Sl 1; NO), the process returns to step S1, and when it is off (S11; YES), the life determination process ends.
[0058] 本実施形態による燃料電池システムでは、ケミカルフィルタ 13は、酸化剤供給系及 び酸化剤排出系を構成する (酸化剤ガス流路内に配置された)複数のセンサ (圧力セ ンサ 16,温度センサ 17,濃度センサ 18,温度センサ 24,温度センサ 26,及び圧力 センサ 29)の総てに対して上流側に配置されている。これによつて、空気中に含まれ る不純物成分は、ケミカルフィルタ 13で除去されるので、各センサに不純物成分が付 着してその計測精度に影響を与えることが防止される。また、ケミカルフィルタ 13は、 エアフローメータ 15の上流側に設けられて!/、るので、不純物成分がエアフローメータ 15の吸入空気量検知に影響を与えるのを抑えることができる。  [0058] In the fuel cell system according to the present embodiment, the chemical filter 13 includes a plurality of sensors (pressure sensor 16) (which are arranged in the oxidant gas flow path) that constitute an oxidant supply system and an oxidant discharge system. , Temperature sensor 17, concentration sensor 18, temperature sensor 24, temperature sensor 26, and pressure sensor 29) are arranged upstream of all of them. Thereby, since the impurity component contained in the air is removed by the chemical filter 13, it is prevented that the impurity component is attached to each sensor and affects the measurement accuracy. Further, since the chemical filter 13 is provided on the upstream side of the air flow meter 15! /, It is possible to suppress the impurity component from affecting the intake air amount detection of the air flow meter 15.
[0059] また、ケミカルフィルタ 13の上流側にはダストフィルタ 12が設けられている。ダストフ ィルタ 12によって空気中の粒状物が除去されるので、粒状物が各センサゃェアフロ 一メータ 15の計測精度に影響を与えることが抑えられる。また、ダストフィルタ 12がケ ミカルフィルタ 13の上流側に配置されることで、空気中の水分がダストフィルタ 12でと どまるので、ケミカルフィルタ 13が空気取り入れ管 11に直接接続される場合よりも、ケ ミカルフィルタ 13に導入される水分量が低減される。これによつて、水分がケミカルフ ィルタ 13の吸着機能に影響を与えるのを抑えることができる。また、ケミカルフィルタ 1 3の下流側に排出される水分量が低減されるので、空気中の水分がセンサやエアフ ローメータ 15に付着した不純物に作用して酸が生成され、この酸がセンサゃェアフロ 一メータ 15を腐食させるのを抑えることができる。  In addition, a dust filter 12 is provided on the upstream side of the chemical filter 13. Since particulate matter in the air is removed by the dust filter 12, it is possible to prevent the particulate matter from affecting the measurement accuracy of each sensor flow meter 15. Further, since the dust filter 12 is arranged upstream of the chemical filter 13, moisture in the air stays in the dust filter 12, so that the chemical filter 13 is connected directly to the air intake pipe 11. In addition, the amount of moisture introduced into the chemical filter 13 is reduced. Thereby, it is possible to suppress moisture from affecting the adsorption function of the chemical filter 13. In addition, since the amount of water discharged downstream of the chemical filter 13 is reduced, the moisture in the air acts on impurities attached to the sensor and the air flow meter 15 to generate an acid, and this acid is generated in the sensor air flow. One meter 15 can be prevented from corroding.
[0060] さらに、本実施形態によれば、エアフローメータ 15が測定手段として機能し、濃度 センサ 18が検知手段として機能し、 ECU32が推定手段及び出力制御手段として機 能するので、ケミカルフィルタ 13の吸着量が精度よく推定され、適切なタイミングでァ ラームを出すことができる。 Furthermore, according to the present embodiment, the air flow meter 15 functions as a measurement unit, the concentration sensor 18 functions as a detection unit, and the ECU 32 functions as an estimation unit and an output control unit. The amount of adsorption is accurately estimated and the key is Rahm can be put out.
[0061] なお、図 2に示した処理において、ステップ S1,S2,S3,S4の順序は任意である。ま た、濃度センサ 18は、累積量の算出対象となる不純物の種類毎に用意される。但し 、複数種類の不純物を一つの濃度センサで兼用できる場合には、一つの濃度センサ で複数種類の不純物の濃度が検知されるように構成される。図 2に示した処理は、不 純物の種類毎に、並列に実行されるように構成可能である。  In the process shown in FIG. 2, the order of steps S1, S2, S3, and S4 is arbitrary. Further, the concentration sensor 18 is prepared for each type of impurity for which the cumulative amount is to be calculated. However, when a plurality of types of impurities can be shared by a single concentration sensor, the concentration of the plurality of types of impurities is detected by a single concentration sensor. The processing shown in Fig. 2 can be configured to be executed in parallel for each type of impurity.
[0062] また、警告灯 33の代わりに、ディスプレイ装置が用意され、ディスプレイ装置に寿命 (交換時期)が来た旨が表示されるようにしても良い。また、警告灯 33やディスプレイ 装置の代わりに、又はこれらに加えて、 ECU32が警告ブザー等に音声 (アラーム音) を出力させるようにしても良!、。  [0062] Further, instead of the warning lamp 33, a display device may be prepared so that the display device indicates that the life (replacement time) has come. Also, instead of or in addition to the warning light 33 and the display device, the ECU 32 may output a sound (alarm sound) to a warning buzzer or the like!
[0063] 或いは、ケミカルフィルタ 13を寿命に応じて交換する構成に代えて、ケミカルフィル タ 13の周囲にヒータのような加熱手段を設け、 ECU32が加熱手段の動作を制御し て、ケミカルフィルタ 13の加熱再生処理を行うようにしても良い。  [0063] Alternatively, instead of a configuration in which the chemical filter 13 is replaced according to its life, a heating unit such as a heater is provided around the chemical filter 13, and the ECU 32 controls the operation of the heating unit, so that the chemical filter 13 The heat regeneration process may be performed.
[0064] また、本発明による燃料電池システムは、車両搭載用のみならず固定載置される燃 料電池に対しても適用可能である。また、燃料電池の種類は PEFCに限られない。  [0064] Further, the fuel cell system according to the present invention can be applied not only to mounting on a vehicle but also to a fuel cell fixedly mounted. The type of fuel cell is not limited to PEFC.

Claims

請求の範囲 The scope of the claims
[1] 燃料電池の力ソード極に酸化剤ガスを導入するとともに力ソード極力ゝら排出ガスを 排出する酸化剤ガス流路と、  [1] An oxidant gas flow path for introducing an oxidant gas into the power sword pole of the fuel cell and discharging exhaust gas as much as possible;
前記酸化剤ガス流路上に設けられた複数のセンサと、  A plurality of sensors provided on the oxidant gas flow path;
前記酸化剤ガス流路にお 、て前記複数のセンサの上流側に配置され、酸化剤ガス に含まれる不純物を自身に吸着させるケミカルフィルタを含む吸着器と  An adsorber including a chemical filter that is disposed upstream of the plurality of sensors in the oxidant gas flow path and adsorbs impurities contained in the oxidant gas.
を含む燃料電池システム。  Including fuel cell system.
[2] 前記酸化剤ガス流路にお 、て前記ケミカルフィルタの上流側に配置されたダストフ ィルタをさらに含む  [2] The oxidant gas flow path further includes a dust filter disposed upstream of the chemical filter.
請求項 1記載の燃料電池システム。  The fuel cell system according to claim 1.
[3] 前記吸着器を経た酸化剤ガスの量を測定する測定手段と、 [3] Measuring means for measuring the amount of oxidant gas that has passed through the adsorber;
前記吸着器を経た酸化剤ガス中に含まれる前記不純物の濃度を検知する濃度セ ンサと、  A concentration sensor that detects the concentration of the impurities contained in the oxidant gas that has passed through the adsorber;
前記測定された酸化剤ガスの量と、前記検知された濃度と、前記ケミカルフィルタの 吸着効率から求まる比とに基づいて前記ケミカルフィルタに吸着した前記不純物の 量を推定する推定手段と、  Estimating means for estimating the amount of the impurity adsorbed on the chemical filter based on the measured amount of the oxidant gas, the detected concentration, and a ratio obtained from the adsorption efficiency of the chemical filter;
前記不純物の量の累積値が所定値を上回る場合に、信号を出力させる出力制御 手段と  Output control means for outputting a signal when a cumulative value of the amount of impurities exceeds a predetermined value;
をさらに含む請求項 1又は 2記載の燃料電池システム。  The fuel cell system according to claim 1, further comprising:
[4] 前記吸着器は、前記酸化剤ガス流路上に設けられたすべてのセンサの上流側に 設けられている [4] The adsorber is provided on the upstream side of all sensors provided on the oxidant gas flow path.
請求項 1乃至 3のいずれか 1項に記載の燃料電池システム。  The fuel cell system according to any one of claims 1 to 3.
PCT/JP2007/063912 2006-07-12 2007-07-12 Fuel cell system WO2008007740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-191558 2006-07-12
JP2006191558A JP2008021500A (en) 2006-07-12 2006-07-12 Fuel cell system

Publications (1)

Publication Number Publication Date
WO2008007740A1 true WO2008007740A1 (en) 2008-01-17

Family

ID=38923296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063912 WO2008007740A1 (en) 2006-07-12 2007-07-12 Fuel cell system

Country Status (2)

Country Link
JP (1) JP2008021500A (en)
WO (1) WO2008007740A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141040A1 (en) * 2012-03-21 2013-09-26 スズキ株式会社 Air intake device for fuel cell vehicle
KR101427924B1 (en) 2012-11-21 2014-08-11 현대자동차 주식회사 Cooling device of compressed air in fuel cell system
KR102547799B1 (en) * 2015-05-19 2023-06-27 삼성전자주식회사 Metal air battery having air purification module, electrochemical cell having air purification module and operation method of the metal air battery

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181859U (en) * 1987-05-12 1988-11-24
JPH07260740A (en) * 1994-03-23 1995-10-13 Ngk Insulators Ltd Oxygen detector
JP2001149921A (en) * 1999-11-25 2001-06-05 Japan Organo Co Ltd Water treating device
JP2003103264A (en) * 2001-09-28 2003-04-08 Hoshizaki Electric Co Ltd Electrolytic water making apparatus
JP2004095376A (en) * 2002-08-30 2004-03-25 Yamaha Motor Co Ltd Direct-reforming fuel cell system
JP2004526277A (en) * 2000-12-29 2004-08-26 シーメンス アクチエンゲゼルシヤフト Operation method of fuel cell equipment usable for vehicle and attached fuel cell equipment
JP2005063712A (en) * 2003-08-08 2005-03-10 Toyota Motor Corp Fuel cell system and operation method of same
JP2005100722A (en) * 2003-09-24 2005-04-14 Hitachi Ltd Fuel cell package
JP2005116353A (en) * 2003-10-08 2005-04-28 Nissan Motor Co Ltd Air supply device for fuel cell
JP2006059673A (en) * 2004-08-20 2006-03-02 Victor Co Of Japan Ltd Fuel cell driving device
JP2006107942A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Fuel cell device
JP2006153595A (en) * 2004-11-26 2006-06-15 Honda Motor Co Ltd Gas detector and gas detecting method
JP2006179332A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Filter system of fuel cell

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181859U (en) * 1987-05-12 1988-11-24
JPH07260740A (en) * 1994-03-23 1995-10-13 Ngk Insulators Ltd Oxygen detector
JP2001149921A (en) * 1999-11-25 2001-06-05 Japan Organo Co Ltd Water treating device
JP2004526277A (en) * 2000-12-29 2004-08-26 シーメンス アクチエンゲゼルシヤフト Operation method of fuel cell equipment usable for vehicle and attached fuel cell equipment
JP2003103264A (en) * 2001-09-28 2003-04-08 Hoshizaki Electric Co Ltd Electrolytic water making apparatus
JP2004095376A (en) * 2002-08-30 2004-03-25 Yamaha Motor Co Ltd Direct-reforming fuel cell system
JP2005063712A (en) * 2003-08-08 2005-03-10 Toyota Motor Corp Fuel cell system and operation method of same
JP2005100722A (en) * 2003-09-24 2005-04-14 Hitachi Ltd Fuel cell package
JP2005116353A (en) * 2003-10-08 2005-04-28 Nissan Motor Co Ltd Air supply device for fuel cell
JP2006059673A (en) * 2004-08-20 2006-03-02 Victor Co Of Japan Ltd Fuel cell driving device
JP2006107942A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Fuel cell device
JP2006153595A (en) * 2004-11-26 2006-06-15 Honda Motor Co Ltd Gas detector and gas detecting method
JP2006179332A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Filter system of fuel cell

Also Published As

Publication number Publication date
JP2008021500A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP5245219B2 (en) Fuel cell system
CA2663739C (en) Fuel cell system
US7820949B2 (en) Method of starting, stopping and operating gas sensor with built-in heater
CA2641188C (en) Fuel cell system with regeneration of electrode activity during start or stop
JP4598751B2 (en) Fuel cell system
US8173316B2 (en) Fuel cell system
JP6149475B2 (en) Fuel cell system
JP2007052936A (en) Fuel cell system
JP2003243005A (en) Fuel cell system
WO2014103101A1 (en) Fuel cell system and method for restoring electric power generation performance of fuel cells in fuel cell system
WO2008007740A1 (en) Fuel cell system
JP2009140677A (en) Operation method of fuel cell system
JP5304863B2 (en) Fuel cell system
JP4982977B2 (en) Fuel cell system
JP2010244778A (en) Fuel cell system
JP5077723B2 (en) Fuel cell deterioration diagnosis device
JP5091903B2 (en) Fuel cell system
JP4582390B2 (en) Fuel cell deterioration diagnosis device
JP2010251103A (en) Fuel cell system
JP4681537B2 (en) Fuel cell system
JP2006093028A (en) Fuel cell system and film drying state estimation method of fuel cell
JP5217123B2 (en) Fuel cell system
JP2004020331A (en) Protecting device for gas sensor, and fuel cell system equipped with protecting device for gas sensor
JP2013196905A (en) Fuel cell system
JP2008288147A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790706

Country of ref document: EP

Kind code of ref document: A1