WO2008007702A1 - Biosensor chip and process for manufacturing the same - Google Patents

Biosensor chip and process for manufacturing the same Download PDF

Info

Publication number
WO2008007702A1
WO2008007702A1 PCT/JP2007/063817 JP2007063817W WO2008007702A1 WO 2008007702 A1 WO2008007702 A1 WO 2008007702A1 JP 2007063817 W JP2007063817 W JP 2007063817W WO 2008007702 A1 WO2008007702 A1 WO 2008007702A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
hollow reaction
reaction part
biosensor chip
conduction path
Prior art date
Application number
PCT/JP2007/063817
Other languages
French (fr)
Japanese (ja)
Inventor
Shingo Kaimori
Takahiko Kitamura
Akira Harada
Toshifumi Hosoya
Isao Karube
Masao Gotoh
Hideaki Nakamura
Tsuyoshi Fujimura
Toshihisa Osaki
Tomoko Ishikawa
Original Assignee
Sumitomo Electric Industries, Ltd.
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd., National Institute Of Advanced Industrial Science And Technology filed Critical Sumitomo Electric Industries, Ltd.
Publication of WO2008007702A1 publication Critical patent/WO2008007702A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Definitions

  • the present invention relates to a biosensor chip and a method for manufacturing the same, for example, a biosensor chip capable of measuring and analyzing a chemical substance by collecting a sample from the tip of the biosensor chip and a method for manufacturing the same. is there.
  • the biosensor chip 100 described in Patent Document 1 includes a first insulating substrate 101 and a second insulating substrate 102 laminated, and a pair of conductive substrates between the two insulating substrates 101 and 102. Sex trajectories 103 and 104 are provided. A notch 102 a is provided at one end of the second insulating substrate 102, and both conductive tracks 103 and 104 are exposed at one end of the biosensor chip 100.
  • concave portions 105 and 106 are provided in the side edge portions on the other end side of both insulating substrates 101 and 102, respectively, and an opening portion 107 is provided in the concave portion 106 of the second insulating substrate 102. Yes.
  • the opening 107 is provided with a reagent 108, and a lid member 112 having a recess 111 similar to the recess 106 is attached to the opening 107 via a hydrophilic coating 109! / .
  • the sample is guided to the reagent 108 in the opening 107, and measurement is performed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-279433 (Fig. 1)
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to collect samples.
  • An object of the present invention is to provide a biosensor chip and a method of manufacturing the same that can prevent failure and reduce the burden on the user by reducing the amount of sample collected for measurement. Means for solving the problem
  • a biosensor chip as a first feature is a biosensor chip for measuring a substance contained in a sample, and is a hollow for measuring a sample.
  • the reaction unit has an air conduction path that communicates with the sample collection port and communicates with the hollow reaction unit and an air hole opening on a side surface of the chip, and has an interface between the hollow reaction unit and the inner wall of the sample collection port. It is characterized in that an activator is applied and a surfactant is applied at least near the entrance of the air conduction path.
  • a surfactant is applied to the sample collection port and the wall surface of the hollow reaction part! /. Can be easily introduced into the hollow reaction part from the sampling port. At this time, since the surfactant is not applied near the entrance of the air conduction path, the sample is difficult to enter the air conduction path, and the amount of sample collected increases as the sample enters the air conduction path. It is possible to reduce the burden on the user.
  • the biosensor chip which is the second feature of the present invention, is a biosensor chip that measures a substance contained in a sample, and the hollow reaction part that measures the sample is configured to collect the sample.
  • An air conduction path that communicates with the mouth and communicates with the hollow reaction portion and the air hole opening on the side surface of the chip, and a surfactant is applied to the inner wall of the hollow reaction portion and the sampling port. And a surfactant is applied at least in the vicinity of the opening of the air hole in the air conduction path! /, ! /.
  • a surfactant is applied to the sample collection port and the wall surface of the hollow reaction part! /. Can be easily introduced into the hollow reaction part from the sampling port. In addition, by not applying a surfactant in the vicinity of the opening of the air hole, even if the user tries to inject blood into the air hole by mistake, it is not injected and erroneous measurement can be prevented.
  • the biosensor chip which is the third feature of the present invention, is a biosensor chip for measuring a substance contained in a sample, and the hollow reaction part for measuring the sample is used for sampling. It has an air conduction path that communicates with the intake port and communicates with the hollow reaction part and the air hole opening on the side surface of the chip, and has a step between the hollow reaction part and the air conduction path.
  • the step is provided between the hollow reaction portion and the air conduction path, the intrusion of the sample at the step portion is prevented. Force It is difficult to enter the air conduction path, preventing the sample from entering the air conduction path and increasing the amount of sample collected, reducing the burden on the user.
  • the biosensor chip that is the fourth feature of the present invention has a step between the hollow reaction portion and the air conduction path in the first or second feature of the present invention. It is characterized by this.
  • a surfactant is applied to the sample collection port and the wall surface of the hollow reaction part, so that the sample is collected by the action of the surfactant that is compatible with the sample. It can be easily introduced into the hollow reaction part from the mouth.
  • the surfactant since the surfactant is not applied near the entrance of the air passage, the sample enters the air conduction path, and the amount of sample collected increases when the sample enters the air conduction path. It is possible to reduce the burden on the user.
  • the sample since there is a step between the hollow reaction part and the air conduction path, the sample can be prevented from entering at the step part, so that the sample entering the hollow reaction part is difficult to enter the air conduction path.
  • the biosensor chip manufacturing method which is a fifth feature of the present invention, is characterized in that a detection electrode is formed in a predetermined shape on one surface of a single electrically insulating flat substrate.
  • the insulating layer and the adhesive layer and the spacer layer are formed in a predetermined shape, and the upper and lower substrates are formed by bending at the folding line of the flat substrate, and the bioconductive layer has an air conduction path communicating with the outside.
  • a method of manufacturing a sensor chip characterized in that a surfactant is not applied at least near the entrance of the air conduction path.
  • a biosensor chip is manufactured by folding a planar substrate on which a sensing electrode spacer layer is formed so that the surfaces of the adhesive layer are in contact with each other. At this time, by not applying a surfactant in the vicinity of the entrance of the air conduction path previously provided in the hollow reaction part in the flat substrate, the sample enters the air conduction path and the amount of sample collected increases. It is possible to manufacture a biosensor chip that can prevent and reduce the burden on the user.
  • the biosensor chip manufacturing method which is the sixth feature of the present invention, is characterized in that a detection electrode is formed in a predetermined shape on one surface of a single electrically insulating flat substrate.
  • the insulating layer and the adhesive layer and the spacer layer are formed in a predetermined shape, and the upper and lower substrates are formed by bending at the folding line of the flat substrate, and the bioconductive layer has an air conduction path communicating with the outside.
  • a method for manufacturing a sensor chip characterized in that a surfactant is not applied at least in the vicinity of the air hole opening of the air conduction path.
  • a biosensor chip is manufactured by folding a planar substrate on which a sensing electrode spacer layer is formed so that the surfaces of the adhesive layer are in contact with each other. At this time, by not applying a surfactant in the vicinity of the opening of the air hole, a biosensor chip is manufactured that prevents erroneous measurement by preventing the user from injecting blood into the air hole by mistake. Is possible.
  • the biosensor chip manufacturing method which is the seventh feature of the present invention, is characterized in that a detection electrode is formed in a predetermined shape on one surface of a single electrically insulating flat substrate.
  • a biosensor chip having an air conduction path communicating with the outside is formed by forming an insulating layer, an adhesive layer, and a spacer layer in a predetermined shape, and bending the flat substrate to form upper and lower substrates. It is a manufacturing method, Comprising: A level
  • a biosensor chip is manufactured by folding back a flat substrate on which a sensing electrode spacer layer is formed so that the surfaces of the adhesive layer are in contact with each other. .
  • a sample is prevented from entering the step portion by providing a step between the hollow reaction portion and the air passage in advance on the flat substrate, the sample enters the air conduction path and the amount of sample collected is reduced. It is possible to prevent the increase and reduce the burden on the user.
  • the surfactant and the reagent can be applied without protruding from the hollow reaction part because there is this step when the surfactant is applied to the hollow reaction part or the reagent is applied.
  • the sample is collected from the tip of the biosensor chip, it is possible to prevent failure when collecting the sample, and a surfactant is applied in the vicinity of the entrance of the air conduction path. Therefore, it is difficult for the sample to enter the air conduction path, preventing the sample from entering the air conduction path and increasing the amount of sample collected, and reducing the burden on the user. Is obtained.
  • a surfactant in the vicinity of the air hole opening, even if the user tries to accidentally put blood into the air hole, it is not injected and erroneous measurement can be prevented.
  • it is possible to prevent an increase in the amount of sample collected by providing a step in the sample at the entrance of the air conduction path in the inner wall of the hollow reaction part.
  • FIG. 1 (A) is a plan view showing a biosensor chip according to a first embodiment of the present invention.
  • (B) is a side view seen from the B direction in FIG. 1 (A).
  • (C) is an end view as seen from the direction C in FIG.
  • FIG. 2 (A) is a perspective view of a hollow reaction part and an air conduction path.
  • (B) is a cross-sectional view taken along the line BB in FIG. 2 (A).
  • (C) is a cross-sectional view taken along the line CC in FIG. 2 (A).
  • FIG. 3 is a plan view showing a planar substrate showing a step of providing a detection electrode in the biosensor chip manufacturing method according to the first embodiment.
  • FIG. 5 is a plan view showing a planar substrate showing a process of providing an adhesive layer in the biosensor chip manufacturing method according to the first embodiment.
  • (A) is a plan view showing a biosensor chip according to a second embodiment of the present invention.
  • (B) is a side view seen from the B direction in FIG. 6 (A).
  • (C) is an end view as seen from the direction C in FIG.
  • (A) is a perspective view of the hollow reaction part and the air conduction path.
  • (B) is a cross-sectional view of position BB in FIG. 7 (A).
  • (C) is a cross-sectional view taken along the line CC in FIG. 7 (A).
  • FIG. 8 is a plan view showing a planar substrate showing a step of providing a detection electrode in the biosensor chip manufacturing method according to the second embodiment.
  • FIG. 9 is a plan view showing a planar substrate showing the process of providing an insulating layer in the biosensor chip manufacturing method according to the second embodiment.
  • FIG. 10 is a plan view showing a planar substrate showing a process of providing an adhesive layer in the method of manufacturing a biosensor chip according to the second embodiment.
  • Fig. 1 (A) is a plan view showing the biosensor chip according to the first embodiment of the present invention
  • Fig. 1 (B) is a side view of Fig. 1 (A) viewed from the B direction
  • Fig. 1 (C) is a diagram.
  • Fig. 2 (A) is a perspective view of the hollow reaction part and the air conduction path
  • Fig. 2 (B) is a cross-sectional view at the BB position in Fig. 2 (A)
  • Fig. 2 (C) Fig. 2 is a cross-sectional view at the CC position in Fig. 2 (A).
  • the biosensor chip 10A according to the first embodiment of the present invention has a sample collection port 1 la opened at the tip. It is preferable that the sample collection port is provided at the tip of the biosensor chip because the sample can be collected easily.
  • the biosensor chip 10A according to the first embodiment of the present invention has a hollow reaction part 11 having a detection electrode 12 and a reagent 13 continuously in the sample collection port 11a, and further has a hollow reaction part. 11 has an air passage 14 that communicates with the outside. As shown in FIG. 2, a surfactant 16 is applied to the sample collection port 11a and the inner wall 15 of the hollow reaction part 11.
  • the sample collected from the sample collection port 11 a flows into the hollow reaction unit 11 due to the presence of the air conduction path 14 and reacts with the reagent 13.
  • the surfactant 16 also facilitates the introduction of the sample into the hollow reaction part 11.
  • the biosensor chip 10A has a laminated structure in which a spacer layer 26 is sandwiched between a lower substrate 21 and an upper substrate 22.
  • Biosensor chip 1 The front end of the OA is formed in a narrow shape, the spacer layer 26 is notched inside to form a hollow reaction part 11, and the tip of the hollow reaction part 11 is the sample The sampling port is 11a.
  • Lower substrate A pair of detection electrodes 12a and 12b are provided on the upper surface of 21 and bend toward the side closer to each other at the tip of the biosensor chip 10A and face each other at a predetermined interval in the hollow reaction part 11.
  • a reagent 13 that reacts with the sample is provided between or in the vicinity of the detection electrodes 12a and 12b facing each other in the hollow reaction part 11. Further, at the rear end portion of the biosensor chip 10A, the lower substrate 21 protrudes from the upper substrate 22 and the spacer layer 26. On the upper surface of the lower substrate 21, the rear end portions of the detection electrodes 12a and 12b are the upper surface. Is exposed.
  • the spacer layer includes an insulating layer and an adhesive layer.
  • an air conducting path 14 communicating the hollow reaction section 11 and the outside is provided at the rear end of the hollow reaction section 11 (the left end in FIGS. 1 (A) and 1 (B)). Is provided.
  • the air conduction path 14 is provided so that the shape of the combination of the air conduction path 14 and the hollow reaction portion 11 is T-shaped so as to penetrate the biosensor chip 10A from side to side. Is desirable.
  • the air hole opening 18 of the air conduction path is provided on the side surface of the biosensor chip.
  • a surfactant 16 is applied to the inner wall 15 of the hollow reaction part 11.
  • the inner wall 15 is applied not only to the bottom surface 15a of the hollow reaction part 11 (the upper surface of the lower substrate 21, see FIG. 2 (B)) but also to the side surface 15b (see FIG. 2 (C)) and the upper surface. Therefore, it is desirable that there is no need to consider the directionality when using the biosensor chip 10A.
  • the surfactant 16 is applied to the inner wall 15 of the hollow reaction part 11, the sample can be easily introduced into the hollow reaction part 11 from the sample sampling port 11a at the tip. Since the surfactant 16 is not applied in the vicinity of the inlet 14a of the force / air conduction path 14, the sample is difficult to enter the air conduction path 14. For this reason, it is possible to prevent the sample from being collected by entering the air conduction path 14, and to reduce the burden on the user.
  • the surfactant 16 is applied to the inner wall 15 of the hollow reaction portion 11, the sample can be easily removed from the sampling port 11a at the tip by the action of the surfactant that is compatible with the sample.
  • the surfactant 16 is not applied in the vicinity of the air hole opening 18 of the air conduction path 14, the user accidentally tries to put blood into the air hole. Is not injected, and erroneous measurement can be prevented.
  • the ratio L1 / L2 is set to 1.8 or less. Yes.
  • the amount of sample collected can be reduced to a small amount of 0.31 or less, and the measurement accuracy can be increased with a shorter depth dimension.
  • FIG. 3 is a plan view showing a planar substrate showing a process of providing detection electrodes in the biosensor chip manufacturing method according to the first embodiment
  • FIG. 4 shows an insulating layer in the biosensor chip manufacturing method according to the first embodiment
  • FIG. 5 is a plan view showing a flat substrate showing a step of providing an adhesive layer in the biosensor chip manufacturing method according to the first embodiment.
  • a plurality of biosensor chips 10A can be formed at one time by using a single electrically insulating flat substrate 20.
  • the planar substrate 20 can be made of, for example, polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • a folding line 24 is provided on the left and right at the center of the flat substrate 20, and a lower substrate 21 is disposed below the folding line 24 (on the lower side in FIG. 3) with the tip portion facing upward.
  • the upper substrate 22 is arranged with the tip portion down.
  • the length of the lower substrate 21 is longer than the length of the upper substrate 22, and when the flat substrate 20 is folded back at the folding line 24 and overlapped, as described above in FIG.
  • the upper surface is exposed from the rear end of the upper substrate 22.
  • Detection electrodes 12a and 12b are formed in a predetermined shape (see FIG. 1A) on the upper surface of the lower substrate 21 on one surface 20a of the planar substrate 20.
  • the detection electrodes 12a and 12b can be formed, for example, by printing a carbon in a predetermined shape.
  • an insulating layer 23 is provided on the planar substrate 20 on which the detection electrodes 12a and 12b are provided.
  • the insulating layer 23 includes a narrow portion 24a along the folding line 24, a portion 23a corresponding to the hollow reaction portion 11, a 23b corresponding to the air conduction path 14, and a rear end of the lower substrate 21 exposed from the upper substrate 22. It is formed on the entire surface except for the portion 21a.
  • a surfactant 16 is applied to the part corresponding to the hollow reaction part 11 (see FIG. 2).
  • an adhesive layer 25 is formed on the insulating layer 23.
  • the adhesive layer 25 is for folding the flat substrate 20 along the folding line 24 and integrating the upper and lower substrates 21 and 22 via the insulating layer 23, and an adhesive can be used.
  • the flat substrate 20 is folded along the folding line 24 and overlapped so that the insulating layer 23 and the adhesive layer 25 are spaced apart.
  • the hollow reaction portion 11 is formed by the portion 23a where the spacer layer is not provided, and the air conduction path 14 is formed by the portion 23b where the spacer layer such as the insulating layer 23 and the adhesive layer 25 is not provided. become.
  • the spacer layer such as the insulating layer 23 and the adhesive layer 25 is not provided in the hollow reaction part 11 and the air conduction path 14, the spacer layer such as the two insulating layers 23 and the two adhesive layers 25 is provided. A space with a total height of all the thicknesses is formed.
  • the surfactant 16 applied after the formation of the insulating layer 23 can also be applied after the formation of the adhesive layer 25.
  • the planar substrate 20 is bent along the folding line 24, and unnecessary portions are cut to cut out each biosensor chip 10A to form a biosensor chip.
  • the biosensor chip 10A can also be formed by cutting first while leaving a portion along the folding line 24, then bending along the folding line 24, and then cutting along the folding line.
  • the surfactant 16 is applied to the wall surface 15 of the hollow reaction part 11, so that it is provided at the tip of the hollow reaction part 11! / Therefore, it is possible to easily introduce the sample collected from the sample collection port 1 la into the hollow reaction part 11.
  • the surfactant 16 since the surfactant 16 is not applied in the vicinity of the inlet 14a of the air conduction path 14, the sample is prevented from reaching the air conduction path 14 and is difficult to enter the air conduction path 14. For this reason, it is possible to prevent the sample from entering the air conduction path 14 and to increase the amount of sample collected, and to reduce the burden on the user.
  • FIG. 6 (A) is a plan view showing a biosensor chip according to the second embodiment of the present invention
  • FIG. 6 (B) is a side view seen from the direction B in FIG. 6 (A)
  • FIG. Fig. 7 (A) is a perspective view of the hollow reaction part and the air conduction path
  • Fig. 7 (B) is B in Fig. 7 (A).
  • FIG. 7C is a cross-sectional view at position B
  • FIG. 7C is a cross-sectional view at position CC in FIG. 7A.
  • parts that are the same as the parts described above are given the same reference numerals, and redundant descriptions are omitted.
  • the biosensor chip 10B As shown in Fig. 6, the biosensor chip 10B according to the second embodiment of the present invention has a sample sampling port 11a opened at the tip, and a detection electrode continuously connected to the sample sampling port 11a. 12 and a hollow reaction part 11 having a reagent 13, and further an air conduction path 14 communicating the hollow reaction part 11 and the outside. Then, as shown in FIG. 7, a step 17 was provided at the inlet 14a of the air conduction path 14 in the inner wall 15 of the hollow reaction part 11.
  • the air conducting path 14 is provided in the hollow reaction part 11, and the step 17 is provided in the inlet 14a of the air conducting path 14, the intrusion of the sample is prevented at the step part, and the sample is air It is difficult to enter the conduction path 14. For this reason, it is possible to prevent an increase in the amount of sample collected due to the sample entering the air conduction path 14, thereby reducing the burden on the user.
  • the surfactant and the reagent can be applied without protruding from the hollow reaction part because there is this step when the surfactant is applied to the hollow reaction part or the reagent is applied.
  • the depth dimension which is the longitudinal direction in which the sample of the hollow reaction part 11 communicating with the sample collection port 11a flows
  • the width dimension is L2
  • the ratio L1 / L2 is set to 1.8 or less.
  • FIG. 8 is a plan view showing a planar substrate showing a process of providing detection electrodes in the method for manufacturing a biosensor chip according to the second embodiment
  • FIG. 9 shows an insulating layer in the method for manufacturing the biosensor chip according to the second embodiment
  • FIG. 10 is a plan view showing a planar substrate showing a process of providing an adhesive layer in the biosensor chip manufacturing method according to the second embodiment. Note that the manufacturing method of the biosensor chip 10B is mostly the same as the manufacturing method of the biosensor chip 10A according to the first embodiment, and therefore, it is attached to common processes.
  • the central portion of the flat substrate 20 has a horizontal direction (left and right in FIG. 8).
  • a lower substrate 21 is disposed on the lower side of the folding line 24 provided with the front end portion facing up, and an upper substrate 22 is disposed on the upper side of the folding line 24 with the front end portion facing down.
  • the length of the lower substrate 21 is longer than the length of the upper substrate 22.
  • the detection electrodes 12a and 12b are formed in a predetermined shape (see FIG. 6 (A)) on the upper surface of the lower substrate 21 on one surface 20a of the flat substrate 20.
  • an insulating layer 23 is provided on the planar substrate 20 on which the detection electrodes 12a and 12b are provided. At this time, the insulating layer 23 is provided except for the part corresponding to the hollow reaction part 11. As a result, as shown in FIG. 7 (C), the portion corresponding to the hollow reaction portion 11 is lower than the other portions by the thickness of the insulating layer 23, so that the hollow reaction portion 11 and the hollow reaction portion 11 A step 17 is formed between the inlet 14a of the air conduction path 14 provided continuously at the rear end of the air passage.
  • an adhesive layer 25 is formed on the insulating layer 23.
  • the adhesive layer 25 is not provided on the insulating layer 23b in the portion corresponding to the air reaction portion 11 and the portion corresponding to the air conduction path.
  • the flat substrate 20 is bent along the folding line 24 and the adhesive layer 25 is bonded. Then, unnecessary portions are cut to manufacture the biosensor chip 10B.
  • the thickness of the sensor chip 10B is the sum of the thicknesses of the spacer layers such as the two substrates 21, 22, the two insulating layers 23, and the two adhesive layers 25 as a whole.
  • the spacer layer 11 such as the insulating layer 23 and the adhesive layer 25 is not provided in the space reaction portion 11, the thickness of the spacer layer such as the two insulating layers 23 and the two adhesive layers 25 is determined. A space with the total height is formed.
  • the adhesive layer 25 is not provided in the air conduction path 14, a space having a height equal to the thickness of the two adhesive layers 25 is formed.
  • a step 17 corresponding to the thickness of the insulating layer 23 is formed at the boundary between the hollow reaction portion 11 and the air conduction path 14.
  • the step 17 between the hollow reaction part 11 and the air conduction path 14 is, as shown in FIG.
  • the insulating layer 23 in the portion corresponding to the passage 14, it can be easily provided, and the step 17 is the same as the case of the biosensor chip 10A according to the first embodiment described above.
  • biosensor chip and the manufacturing method thereof according to the present invention are not limited to the above-described embodiments, and can be appropriately modified and improved.
  • the range in which the surfactant 16 is applied in the first embodiment described above and the position where the step 17 is provided in the second embodiment are not limited to those described above. It suffices if it can be prevented from entering the conduction path 14.
  • a substance other than the surfactant is also used as appropriate.
  • the second embodiment it is also possible to adopt a structure in which a sample is collected from the side surface that is not from the tip of the biosensor chip.
  • the surfactant is not applied in the vicinity of the entrance of the air conduction path, the sample does not easily enter the air conduction path. Therefore, the sample can be prevented from increasing in volume by entering the air conduction path, and the burden on the user can be reduced. Or, since the surfactant is not applied at least near the air hole opening of the air passage, even if the user tries to put blood into the air hole by mistake, it will not be injected and erroneous measurement can be prevented. .
  • the sample is It is difficult to enter the air conduction path, and it is possible to reduce the burden on the user by preventing the sample from entering the air conduction path and increasing the amount of sample collected. Therefore, it is useful as a biosensor chip that can collect a sample from the tip of the biosensor chip and perform chemical substance measurement and analysis, and a manufacturing method thereof.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A biosensor chip that reduces the collection amount of sample needed for measurement, thereby lessening the burden on user; and a process for manufacturing the same. Hollow reaction part (11) is provided with air guide passage (14), and the air guide passage (14) on its wall surface (15) is coated with surfactant (16), so that a sample can be easily led from sampling orifice (11a) provided at the distal end thereof into the hollow reaction part (11). In this instance, at least the vicinity of entrance (14a) of the air guide passage (14) may not be coated with the surfactant (16), so that entry of the sample into the air guide passage (14) would be hampered to thereby prevent any increase of the collection amount of sample by entry of the sample into the air guide passage (14) and accordingly lessen the burden on user. Further, specifically, at least the vicinity of air duct opening (18) of the air guide passage (14) may not be coated with the surfactant (16), so that even when the user by mistake intends to introduce blood in the air duct, introduction would be inhibited to thereby enable prevention of mismeasurement. Still further, specifically, a level difference may be provided between the entrance of the air guide passage (14) and the hollow reaction part (11), so that intrusion of the sample into the air guide passage would be prevented to thereby prevent any increase of the collection amount of sample and accordingly lessen the burden on user.

Description

明 細 書  Specification
バイオセンサチップおよびその製造方法  Biosensor chip and manufacturing method thereof
技術分野  Technical field
[0001] 本発明はバイオセンサチップおよびその製造方法に係り、例えばバイオセンサチッ プの先端から試料を採取して化学物質の測定や分析を行うことができるバイオセンサ チップおよびその製造方法に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a biosensor chip and a method for manufacturing the same, for example, a biosensor chip capable of measuring and analyzing a chemical substance by collecting a sample from the tip of the biosensor chip and a method for manufacturing the same. is there.
背景技術  Background art
[0002] 従来より、試料を採取して化学物質の測定や分析を行うバイオセンサチップが知ら れてレ、る(例えば特許文献 1参照)。  Conventionally, a biosensor chip that collects a sample and measures and analyzes a chemical substance is known (see, for example, Patent Document 1).
図 11に示すように、特許文献 1に記載のバイオセンサチップ 100は、第 1の絶縁 基板 101と第 2の絶縁基板 102を積層しており、両絶縁基板 101、 102の間に一対 の導電性軌道 103、 104が設けられている。第 2の絶縁基板 102の一端には切欠き 102aが設けられており、両導電性軌道 103、 104はバイオセンサチップ 100の一端 において露出している。また、両絶縁基板 101、 102の他端側の側縁部には各々凹 部 105、 106が設けられており、さらに第 2の絶縁基板 102の凹部 106には開口部 1 07が設けられている。この開口部 107には試薬 108が設けられており、開口部 107 の上には親水性のコーティング 109を介して、凹部 106と同様の凹部 111を有する 蓋部材 112が取り付けられて!/、る。  As shown in FIG. 11, the biosensor chip 100 described in Patent Document 1 includes a first insulating substrate 101 and a second insulating substrate 102 laminated, and a pair of conductive substrates between the two insulating substrates 101 and 102. Sex trajectories 103 and 104 are provided. A notch 102 a is provided at one end of the second insulating substrate 102, and both conductive tracks 103 and 104 are exposed at one end of the biosensor chip 100. In addition, concave portions 105 and 106 are provided in the side edge portions on the other end side of both insulating substrates 101 and 102, respectively, and an opening portion 107 is provided in the concave portion 106 of the second insulating substrate 102. Yes. The opening 107 is provided with a reagent 108, and a lid member 112 having a recess 111 similar to the recess 106 is attached to the opening 107 via a hydrophilic coating 109! / .
従って、凹部 105、 106、 111を穿刺された指等に押し付けることにより、試料を開 口部 107内の試薬 108に導いて測定を行う。  Therefore, by pressing the concave portions 105, 106, 111 against the punctured finger or the like, the sample is guided to the reagent 108 in the opening 107, and measurement is performed.
特許文献 1 :特開 2004— 279433号公報(図 1)  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-279433 (Fig. 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところで、例えば糖尿病患者のように、 1日に何度も測定しなければならない者にと つては、試料である採血量が多くなると負担が大きくなるので、測定に必要な試料の 採取量を少なくするのが望まし!/、。 [0003] By the way, for people who have to measure many times a day, for example, diabetic patients, the burden increases when the amount of blood sample is increased. I want to reduce the amount! /
[0004] 本発明は、前述した問題点に鑑みてなされたものであり、その目的は、試料採取の 失敗を防ぐと共に、測定に必要な試料の採取量を少なくして、使用者の負担を軽減 することができるバイオセンサチップおよびその製造方法を提供することにある。 課題を解決するための手段 [0004] The present invention has been made in view of the above-mentioned problems, and its purpose is to collect samples. An object of the present invention is to provide a biosensor chip and a method of manufacturing the same that can prevent failure and reduce the burden on the user by reducing the amount of sample collected for measurement. Means for solving the problem
[0005] 前述した目的を達成するために、本発明にかかる第 1の特徴であるバイオセンサチ ップは、試料に含まれる物質を測定するバイオセンサチップであって、試料を測定す る中空反応部は、試料採取口に連通し、前記中空反応部と、チップ側面にある空気 孔開口部とを連通する空気導通路を有し、前記中空反応部と前記試料採取口の内 壁に界面活性剤が塗布されており、かつ空気導通路の、少なくとも入り口付近には 界面活性剤が塗布されてレ、な!/、ことを特徴とする。  [0005] In order to achieve the above-described object, a biosensor chip as a first feature according to the present invention is a biosensor chip for measuring a substance contained in a sample, and is a hollow for measuring a sample. The reaction unit has an air conduction path that communicates with the sample collection port and communicates with the hollow reaction unit and an air hole opening on a side surface of the chip, and has an interface between the hollow reaction unit and the inner wall of the sample collection port. It is characterized in that an activator is applied and a surfactant is applied at least near the entrance of the air conduction path.
[0006] このように構成されたバイオセンサチップにおいては、試料採取口と中空反応部の 壁面には界面活性剤を塗布して!/、るので、試料と馴染む界面活性剤の働きで、試料 を試料採取口から中空反応部に容易に導入することができる。このとき、空気導通路 の入り口付近には界面活性剤を塗布していないので、試料は空気導通路に入りにく くなつており、試料が空気導通路に入り込むことにより試料の採取量が多くなるのを 防止して、使用者の負担を軽減することができる。  [0006] In the biosensor chip configured as described above, a surfactant is applied to the sample collection port and the wall surface of the hollow reaction part! /. Can be easily introduced into the hollow reaction part from the sampling port. At this time, since the surfactant is not applied near the entrance of the air conduction path, the sample is difficult to enter the air conduction path, and the amount of sample collected increases as the sample enters the air conduction path. It is possible to reduce the burden on the user.
[0007] また、本発明に力、かる第 2の特徴であるバイオセンサチップは、試料に含まれる物 質を測定するバイオセンサチップであって、試料を測定する中空反応部は、試料採 取口に連通し、前記中空反応部と、チップ側面にある空気孔開口部とを連通する空 気導通路を有し、前記中空反応部と前記試料採取口の内壁に界面活性剤が塗布さ れており、かつ空気導通路の、少なくとも空気孔開口部付近には界面活性剤が塗ら れて!/、な!/、ことを特徴とする。  [0007] In addition, the biosensor chip, which is the second feature of the present invention, is a biosensor chip that measures a substance contained in a sample, and the hollow reaction part that measures the sample is configured to collect the sample. An air conduction path that communicates with the mouth and communicates with the hollow reaction portion and the air hole opening on the side surface of the chip, and a surfactant is applied to the inner wall of the hollow reaction portion and the sampling port. And a surfactant is applied at least in the vicinity of the opening of the air hole in the air conduction path! /, !! /.
[0008] このように構成されたバイオセンサチップにおいては、試料採取口と中空反応部の 壁面には界面活性剤を塗布して!/、るので、試料と馴染む界面活性剤の働きで、試料 を試料採取口から中空反応部に容易に導入することができる。また、空気孔開口部 の付近には界面活性剤を塗布しないことにより、使用者が誤って空気孔に血液を入 れようとしても注入されず、誤測定を防ぐことができる。  [0008] In the biosensor chip configured as described above, a surfactant is applied to the sample collection port and the wall surface of the hollow reaction part! /. Can be easily introduced into the hollow reaction part from the sampling port. In addition, by not applying a surfactant in the vicinity of the opening of the air hole, even if the user tries to inject blood into the air hole by mistake, it is not injected and erroneous measurement can be prevented.
[0009] また、本発明に力、かる第 3の特徴であるバイオセンサチップは、試料に含まれる物 質を測定するバイオセンサチップであって、試料を測定する中空反応部は、試料採 取口に連通し、前記中空反応部と、チップ側面にある空気孔開口部とを連通する空 気導通路を有し、前記中空反応部と前記空気導通路の間に段差を有することを特徴 とする。 [0009] The biosensor chip, which is the third feature of the present invention, is a biosensor chip for measuring a substance contained in a sample, and the hollow reaction part for measuring the sample is used for sampling. It has an air conduction path that communicates with the intake port and communicates with the hollow reaction part and the air hole opening on the side surface of the chip, and has a step between the hollow reaction part and the air conduction path. And
[0010] このように構成されたバイオセンサチップにおいては、中空反応部と空気導通路の 間に段差を有することにより、段差部分で試料の侵入が防がれるため、中空反応部 に入った試料力 空気導通路に入りにくくなつており、試料が空気導通路に入り込む ことにより試料の採取量が多くなるのを防止して、使用者の負担を軽減することができ  [0010] In the biosensor chip configured as described above, since the step is provided between the hollow reaction portion and the air conduction path, the intrusion of the sample at the step portion is prevented. Force It is difficult to enter the air conduction path, preventing the sample from entering the air conduction path and increasing the amount of sample collected, reducing the burden on the user.
[0011] また、本発明に力、かる第 4の特徴であるバイオセンサチップは、本発明の第一また は第二の特徴において、前記中空反応部と前記空気導通路の間に段差を有するこ とを特徴とする。 [0011] In addition, the biosensor chip that is the fourth feature of the present invention has a step between the hollow reaction portion and the air conduction path in the first or second feature of the present invention. It is characterized by this.
[0012] このように構成されたバイオセンサチップにおいては、試料採取口と中空反応部の 壁面には界面活性剤を塗布しているので、試料と馴染む界面活性剤の働きにより、 試料を試料採取口から中空反応部に容易に導入することができる。このとき、空気導 通路の入り口付近には界面活性剤を塗布していないので、試料は空気導通路に入り に《なっており、試料が空気導通路に入り込むことにより試料の採取量が多くなるの を防止して、使用者の負担を軽減することができる。さらに、中空反応部と空気導通 路の間に段差を有することにより、段差部分で試料の侵入が防がれるため、中空反 応部に入った試料が、空気導通路に入りにくくなつており、試料が空気導通路に入り 込むことにより試料の採取量が多くなるのを防止して、使用者の負担を軽減すること 力できる。さらに、中空反応部に界面活性剤を塗布したり、試薬を塗布する際、この 段差があるため、中空反応部から界面活性剤や試薬をはみ出すことなく塗布できると いうメリットもある。  [0012] In the biosensor chip configured as described above, a surfactant is applied to the sample collection port and the wall surface of the hollow reaction part, so that the sample is collected by the action of the surfactant that is compatible with the sample. It can be easily introduced into the hollow reaction part from the mouth. At this time, since the surfactant is not applied near the entrance of the air passage, the sample enters the air conduction path, and the amount of sample collected increases when the sample enters the air conduction path. It is possible to reduce the burden on the user. In addition, since there is a step between the hollow reaction part and the air conduction path, the sample can be prevented from entering at the step part, so that the sample entering the hollow reaction part is difficult to enter the air conduction path. It is possible to prevent the sample from entering the air passage and increase the amount of sample collected, thereby reducing the burden on the user. Furthermore, since there is this step when applying a surfactant or a reagent to the hollow reaction part, there is also an advantage that the surfactant or reagent can be applied without protruding from the hollow reaction part.
[0013] または、空気孔開口部の付近には界面活性剤を塗布しないことにより、使用者が誤 つて空気孔に血液を入れようとしても注入されず、誤測定を防ぐことができる。さらに、 中空反応部と空気導通路の間に段差を有することにより、段差部分で試料の侵入が 防がれるため、中空反応部に入った試料力 空気導通路に入りにくくなつており、試 料が空気導通路に入り込むことにより試料の採取量が多くなるのを防止して、使用者 の負担を軽減することができる。さらに、中空反応部に界面活性剤を塗布したり、試 薬を塗布する際、この段差があるため、中空反応部から界面活性剤や試薬をはみ出 すことなく塗布できるというメリットもある。 [0013] Alternatively, by not applying a surfactant in the vicinity of the opening of the air hole, even if a user mistakenly tries to put blood into the air hole, it is not injected and erroneous measurement can be prevented. Furthermore, since there is a step between the hollow reaction part and the air conduction path, the sample is prevented from entering at the step part, so it is difficult to enter the sample force air conduction path that entered the hollow reaction part. Prevents the amount of sample collected from entering the air conduction path, Can be reduced. Furthermore, since there is this step when applying a surfactant or applying a reagent to the hollow reaction part, there is also an advantage that the surfactant or reagent can be applied without protruding from the hollow reaction part.
[0014] また、本発明に力、かる第 5の特徴であるバイオセンサチップの製造方法は、一枚の 電気絶縁性の平面基板の一方の表面に検知用電極を所定の形状で形成するととも に絶縁層および粘着層と!/、つたスぺーサ層を所定の形状で形成し、前記平面基板 の折曲線において折り曲げて上下基板を形成し、外部と連通する空気導通路を有す るバイオセンサチップの製造方法であって、空気導通路の、少なくとも入り口付近に は界面活性剤を塗布しないことを特徴とする。  [0014] In addition, the biosensor chip manufacturing method, which is a fifth feature of the present invention, is characterized in that a detection electrode is formed in a predetermined shape on one surface of a single electrically insulating flat substrate. The insulating layer and the adhesive layer and the spacer layer are formed in a predetermined shape, and the upper and lower substrates are formed by bending at the folding line of the flat substrate, and the bioconductive layer has an air conduction path communicating with the outside. A method of manufacturing a sensor chip, characterized in that a surfactant is not applied at least near the entrance of the air conduction path.
[0015] このように構成されたバイオセンサチップの製造方法においては、検知用電極ゃス ぺーサ層を形成した平面基板を、粘着層の表面同士が接触するように折り返してバ ィォセンサチップを製造する。この際、予め平面基板において中空反応部に設けら れている空気導通路の入り口の近傍に界面活性剤を塗布しないことにより、試料が 空気導通路に入り込んで試料の採取量が多くなるのを防止して、使用者の負担を軽 減することができるバイオセンサチップを製造可能である。  [0015] In the biosensor chip manufacturing method configured as described above, a biosensor chip is manufactured by folding a planar substrate on which a sensing electrode spacer layer is formed so that the surfaces of the adhesive layer are in contact with each other. . At this time, by not applying a surfactant in the vicinity of the entrance of the air conduction path previously provided in the hollow reaction part in the flat substrate, the sample enters the air conduction path and the amount of sample collected increases. It is possible to manufacture a biosensor chip that can prevent and reduce the burden on the user.
[0016] また、本発明に力、かる第 6の特徴であるバイオセンサチップの製造方法は、一枚の 電気絶縁性の平面基板の一方の表面に検知用電極を所定の形状で形成するととも に絶縁層および粘着層と!/、つたスぺーサ層を所定の形状で形成し、前記平面基板 の折曲線において折り曲げて上下基板を形成し、外部と連通する空気導通路を有す るバイオセンサチップの製造方法であって、空気導通路の、少なくとも空気孔開口部 付近には界面活性剤を塗布しないことを特徴とする。  [0016] In addition, the biosensor chip manufacturing method, which is the sixth feature of the present invention, is characterized in that a detection electrode is formed in a predetermined shape on one surface of a single electrically insulating flat substrate. The insulating layer and the adhesive layer and the spacer layer are formed in a predetermined shape, and the upper and lower substrates are formed by bending at the folding line of the flat substrate, and the bioconductive layer has an air conduction path communicating with the outside. A method for manufacturing a sensor chip, characterized in that a surfactant is not applied at least in the vicinity of the air hole opening of the air conduction path.
[0017] このように構成されたバイオセンサチップの製造方法においては、検知用電極ゃス ぺーサ層を形成した平面基板を、粘着層の表面同士が接触するように折り返してバ ィォセンサチップを製造する。この際、空気孔開口部付近には界面活性剤を塗布し ないことにより、使用者が誤って空気孔に血液を入れようとしても注入されず、誤測定 を防ぐことができるバイオセンサチップを製造可能である。  In the biosensor chip manufacturing method configured as described above, a biosensor chip is manufactured by folding a planar substrate on which a sensing electrode spacer layer is formed so that the surfaces of the adhesive layer are in contact with each other. . At this time, by not applying a surfactant in the vicinity of the opening of the air hole, a biosensor chip is manufactured that prevents erroneous measurement by preventing the user from injecting blood into the air hole by mistake. Is possible.
[0018] また、本発明に力、かる第 7の特徴であるバイオセンサチップの製造方法は、一枚の 電気絶縁性の平面基板の一方の表面に検知用電極を所定の形状で形成するととも に絶縁層や粘着層と!/、つたスぺーサ層を所定の形状で形成し、前記平面基板の折 曲線で折り曲げて上下基板を形成し、外部と連通する空気導通路を有するバイオセ ンサチップの製造方法であって、前記中空反応部と前記空気導通路の間に段差を 設けることを特徴とする。 [0018] Further, the biosensor chip manufacturing method, which is the seventh feature of the present invention, is characterized in that a detection electrode is formed in a predetermined shape on one surface of a single electrically insulating flat substrate. A biosensor chip having an air conduction path communicating with the outside is formed by forming an insulating layer, an adhesive layer, and a spacer layer in a predetermined shape, and bending the flat substrate to form upper and lower substrates. It is a manufacturing method, Comprising: A level | step difference is provided between the said hollow reaction part and the said air conduction path, It is characterized by the above-mentioned.
[0019] このように構成されたバイオセンサチップの製造方法においては、検知用電極ゃス ぺーサ層を形成した平面基板を、粘着層の表面同士が接触するように折り返してバ ィォセンサチップを製造する。この際、予め平面基板において中空反応部と空気導 通路の間に段差を設けておくことにより段差部分で試料の侵入が防がれるため、試 料が空気導通路に入り込んで試料の採取量が多くなるのを防止して、使用者の負担 を軽減すること力 Sできる。また、中空反応部に界面活性剤を塗布したり、試薬を塗布 する際、この段差があるため、中空反応部から界面活性剤や試薬をはみ出すことなく 塗布できるというメリットあある。 [0019] In the biosensor chip manufacturing method configured as described above, a biosensor chip is manufactured by folding back a flat substrate on which a sensing electrode spacer layer is formed so that the surfaces of the adhesive layer are in contact with each other. . At this time, since a sample is prevented from entering the step portion by providing a step between the hollow reaction portion and the air passage in advance on the flat substrate, the sample enters the air conduction path and the amount of sample collected is reduced. It is possible to prevent the increase and reduce the burden on the user. In addition, there is an advantage that the surfactant and the reagent can be applied without protruding from the hollow reaction part because there is this step when the surfactant is applied to the hollow reaction part or the reagent is applied.
発明の効果  The invention's effect
[0020] 本発明によれば、バイオセンサチップの先端から試料を採取するため、試料を採取 する際に失敗することを防ぐと共に、空気導通路の入り口近傍には界面活性剤を塗 布していないので、試料は空気導通路に入りにくくなつており、試料が空気導通路に 入り込むことにより試料の採取量が多くなるのを防止して、使用者の負担を軽減する こと力 Sできるという効果が得られる。あるいは、空気孔開口部の付近には界面活性剤 を塗布しないことにより、使用者が誤って空気孔に血液を入れようとしても注入されず 、誤測定を防ぐことができる。あるいは、中空反応部の内壁における空気導通路入り 口に試料の段差を設けることにより、試料の採取量が多くなるのを防止することが可 能である。  [0020] According to the present invention, since the sample is collected from the tip of the biosensor chip, it is possible to prevent failure when collecting the sample, and a surfactant is applied in the vicinity of the entrance of the air conduction path. Therefore, it is difficult for the sample to enter the air conduction path, preventing the sample from entering the air conduction path and increasing the amount of sample collected, and reducing the burden on the user. Is obtained. Alternatively, by not applying a surfactant in the vicinity of the air hole opening, even if the user tries to accidentally put blood into the air hole, it is not injected and erroneous measurement can be prevented. Alternatively, it is possible to prevent an increase in the amount of sample collected by providing a step in the sample at the entrance of the air conduction path in the inner wall of the hollow reaction part.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1] (A)は本発明の第 1実施形態に係るバイオセンサチップを示す平面図である。  FIG. 1 (A) is a plan view showing a biosensor chip according to a first embodiment of the present invention.
(B)は図 1 (A)において B方向から見た側面図である。 (C)は図 1において C方向か ら見た端面図である。  (B) is a side view seen from the B direction in FIG. 1 (A). (C) is an end view as seen from the direction C in FIG.
[図 2] (A)は中空反応部および空気導通路の斜視図である。 (B)は図 2 (A)中 B— B 位置の断面図である。 (C)は図 2 (A)中 C— C位置の断面図である。 [図 3]第 1実施形態に係るバイオセンサチップの製造方法における検知用電極を設 ける工程を示す平面基板を示す平面図である。 FIG. 2 (A) is a perspective view of a hollow reaction part and an air conduction path. (B) is a cross-sectional view taken along the line BB in FIG. 2 (A). (C) is a cross-sectional view taken along the line CC in FIG. 2 (A). FIG. 3 is a plan view showing a planar substrate showing a step of providing a detection electrode in the biosensor chip manufacturing method according to the first embodiment.
園 4]第 1実施形態に係るバイオセンサチップの製造方法における絶縁層を設けるェ 程を示す平面基板を示す平面図である。 4] A plan view showing a planar substrate showing a process of providing an insulating layer in the method of manufacturing a biosensor chip according to the first embodiment.
[図 5]第 1実施形態に係るバイオセンサチップの製造方法における粘着層を設けるェ 程を示す平面基板を示す平面図である。  FIG. 5 is a plan view showing a planar substrate showing a process of providing an adhesive layer in the biosensor chip manufacturing method according to the first embodiment.
園 6] (A)は本発明の第 2実施形態に係るバイオセンサチップを示す平面図である。 (B)は図 6 (A)において B方向から見た側面図である。 (C)は図 6において C方向か ら見た端面図である。 6] (A) is a plan view showing a biosensor chip according to a second embodiment of the present invention. (B) is a side view seen from the B direction in FIG. 6 (A). (C) is an end view as seen from the direction C in FIG.
園 7] (A)は中空反応部および空気導通路の斜視図である。 (B)は図 7 (A)中 B— B 位置の断面図である。 (C)は図 7 (A)中 C— C位置の断面図である。 Garden 7] (A) is a perspective view of the hollow reaction part and the air conduction path. (B) is a cross-sectional view of position BB in FIG. 7 (A). (C) is a cross-sectional view taken along the line CC in FIG. 7 (A).
[図 8]第 2実施形態に係るバイオセンサチップの製造方法における検知用電極を設 ける工程を示す平面基板を示す平面図である。 FIG. 8 is a plan view showing a planar substrate showing a step of providing a detection electrode in the biosensor chip manufacturing method according to the second embodiment.
園 9]第 2実施形態に係るバイオセンサチップの製造方法における絶縁層を設けるェ 程を示す平面基板を示す平面図である。 9] FIG. 9 is a plan view showing a planar substrate showing the process of providing an insulating layer in the biosensor chip manufacturing method according to the second embodiment.
園 10]第 2実施形態に係るバイオセンサチップの製造方法における粘着層を設ける 工程を示す平面基板を示す平面図である。 [10] FIG. 10 is a plan view showing a planar substrate showing a process of providing an adhesive layer in the method of manufacturing a biosensor chip according to the second embodiment.
園 11]従来のバイオセンサチップを示す分解斜視図である。 11] An exploded perspective view showing a conventional biosensor chip.
符号の説明 Explanation of symbols
10A, 10B バイオセンサチップ  10A, 10B biosensor chip
11 中空反応部  11 Hollow reaction part
11a 試料採取口  11a Sampling port
12a, 12b 検知用電極  12a, 12b detection electrode
13 試薬  13 Reagents
14 空気導通路  14 Air conduction path
14a 入り口  14a entrance
15 内壁  15 inner wall
16 界面活性剤 18 空気孔開口部 16 Surfactant 18 Air hole opening
20 平面基板  20 Planar substrate
20a 一方の表面  20a one surface
23 絶縁層  23 Insulation layer
24 折曲線  24 Folded curve
25 粘着層  25 Adhesive layer
26 スぺーサ層  26 Spacer layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明に係る実施形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
図 1 (A)は本発明の第 1実施形態に係るバイオセンサチップを示す平面図、図 1 (B )は図 1 (A)において B方向から見た側面図、図 1 (C)は図 1において C方向から見た 端面図、図 2 (A)は中空反応部および空気導通路の斜視図、図 2 (B)は図 2 (A)中 B B位置の断面図、図 2 (C)は図 2 (A)中 C C位置の断面図である。  Fig. 1 (A) is a plan view showing the biosensor chip according to the first embodiment of the present invention, Fig. 1 (B) is a side view of Fig. 1 (A) viewed from the B direction, and Fig. 1 (C) is a diagram. Fig. 2 (A) is a perspective view of the hollow reaction part and the air conduction path, Fig. 2 (B) is a cross-sectional view at the BB position in Fig. 2 (A), and Fig. 2 (C). Fig. 2 is a cross-sectional view at the CC position in Fig. 2 (A).
[0024] 図 1に示すように、本発明の第 1実施形態であるバイオセンサチップ 10Aは、試料 採取口 1 laを先端に開口して有する。試料採取口はバイオセンサチップの先端に設 けられていると試料を採取しやすいので、好ましい。また、本発明の第 1実施形態で あるバイオセンサチップ 10Aは、この試料採取口 11aに連続して検知用電極 12およ び試薬 13を有する中空反応部 11を有し、さらに、中空反応部 11と外部とを連通する 空気導通路 14を有している。そして、図 2に示すように、試料採取口 11aおよび中空 反応部 11の内壁 15に界面活性剤 16を塗布してある。  As shown in FIG. 1, the biosensor chip 10A according to the first embodiment of the present invention has a sample collection port 1 la opened at the tip. It is preferable that the sample collection port is provided at the tip of the biosensor chip because the sample can be collected easily. The biosensor chip 10A according to the first embodiment of the present invention has a hollow reaction part 11 having a detection electrode 12 and a reagent 13 continuously in the sample collection port 11a, and further has a hollow reaction part. 11 has an air passage 14 that communicates with the outside. As shown in FIG. 2, a surfactant 16 is applied to the sample collection port 11a and the inner wall 15 of the hollow reaction part 11.
[0025] 試料採取口 11aから採取された試料は、空気導通路 14の存在によって、中空反応 部 11に流れ込み、試薬 13と反応する。また、界面活性剤 16も中空反応部 11への試 料の導入を容易にしている。  The sample collected from the sample collection port 11 a flows into the hollow reaction unit 11 due to the presence of the air conduction path 14 and reacts with the reagent 13. The surfactant 16 also facilitates the introduction of the sample into the hollow reaction part 11.
[0026] 図 1 (A)〜(C)に示すように、バイオセンサチップ 10Aは、下基板 21と上基板 22と の間にスぺーサ層 26を挟装した積層構造をしている。バイオセンサチップ 1 OAの先 端部は幅細状に形成されており、内部にはスぺーサ層 26を切り欠いて中空反応部 1 1が形成されていて、中空反応部 11の先端が試料採取口 11aとなっている。下基板 21の上面には、一対の検知用電極 12a、 12bが設けられており、バイオセンサチップ 10Aの先端部において互いに接近する側へ屈曲して、中空反応部 11において所定 間隔で対向している。そして、中空反応部 11において対向している検知用電極 12a 、 12bの間あるいは近傍には、試料と反応する試薬 13が設けられている。また、バイ ォセンサチップ 10Aの後端部においては、上基板 22およびスぺーサ層 26から下基 板 21が突出しており、下基板 21の上面には検知用電極 12a、 12bの後端部が上面 に露出している。本発明において、スぺーサ層とは、絶縁層と粘着層から成る。 As shown in FIGS. 1A to 1C, the biosensor chip 10A has a laminated structure in which a spacer layer 26 is sandwiched between a lower substrate 21 and an upper substrate 22. Biosensor chip 1 The front end of the OA is formed in a narrow shape, the spacer layer 26 is notched inside to form a hollow reaction part 11, and the tip of the hollow reaction part 11 is the sample The sampling port is 11a. Lower substrate A pair of detection electrodes 12a and 12b are provided on the upper surface of 21 and bend toward the side closer to each other at the tip of the biosensor chip 10A and face each other at a predetermined interval in the hollow reaction part 11. A reagent 13 that reacts with the sample is provided between or in the vicinity of the detection electrodes 12a and 12b facing each other in the hollow reaction part 11. Further, at the rear end portion of the biosensor chip 10A, the lower substrate 21 protrudes from the upper substrate 22 and the spacer layer 26. On the upper surface of the lower substrate 21, the rear end portions of the detection electrodes 12a and 12b are the upper surface. Is exposed. In the present invention, the spacer layer includes an insulating layer and an adhesive layer.
[0027] 図 1に示すように、中空反応部 11の後端部(図 1 (A)、(B)において左側端部)に は、中空反応部 11と外部とを連通する空気導通路 14が設けられている。図 2に示す ように、空気導通路 14は、バイオセンサチップ 10Aを左右に横切って貫通するように 、空気導通路 14と中空反応部 11を合わせた形状が、 T字状になるように設けるのが 望ましい。空気導通路の空気孔開口部 18は、バイオセンサチップの側面に設けられ ている。中空反応部 11の内壁 15には、界面活性剤 16が塗布されている。ここで、内 壁 15とは、中空反応部 11の底面 15a (下基板 21の上面、図 2 (B)参照)のみならず 、側面 15b (図 2 (C)参照)および上面にも塗布して、バイオセンサチップ 10Aの使用 時における方向性を考慮する必要性がないようにするのが望ましい。  [0027] As shown in FIG. 1, an air conducting path 14 communicating the hollow reaction section 11 and the outside is provided at the rear end of the hollow reaction section 11 (the left end in FIGS. 1 (A) and 1 (B)). Is provided. As shown in FIG. 2, the air conduction path 14 is provided so that the shape of the combination of the air conduction path 14 and the hollow reaction portion 11 is T-shaped so as to penetrate the biosensor chip 10A from side to side. Is desirable. The air hole opening 18 of the air conduction path is provided on the side surface of the biosensor chip. A surfactant 16 is applied to the inner wall 15 of the hollow reaction part 11. Here, the inner wall 15 is applied not only to the bottom surface 15a of the hollow reaction part 11 (the upper surface of the lower substrate 21, see FIG. 2 (B)) but also to the side surface 15b (see FIG. 2 (C)) and the upper surface. Therefore, it is desirable that there is no need to consider the directionality when using the biosensor chip 10A.
[0028] このように、中空反応部 11の内壁 15には、界面活性剤 16を塗布しているので、試 料を先端の試料採取口 11aから容易に中空反応部 11に導入することができる力 空 気導通路 14の入り口 14a近傍には界面活性剤 16を塗布していないので、試料は空 気導通路 14に入りにくくなる。このため、試料が空気導通路 14に入り込むことにより 試料の採取量が多くなるのを防止して、使用者の負担を軽減することができる。  [0028] Thus, since the surfactant 16 is applied to the inner wall 15 of the hollow reaction part 11, the sample can be easily introduced into the hollow reaction part 11 from the sample sampling port 11a at the tip. Since the surfactant 16 is not applied in the vicinity of the inlet 14a of the force / air conduction path 14, the sample is difficult to enter the air conduction path 14. For this reason, it is possible to prevent the sample from being collected by entering the air conduction path 14, and to reduce the burden on the user.
[0029] あるいは、このように、中空反応部 11の内壁 15には、界面活性剤 16を塗布してい るので、試料と馴染む界面活性剤の働きにより、試料を先端の試料採取口 11aから 容易に中空反応部 11に導入することができるが、空気導通路 14の空気孔開口部 18 近傍には界面活性剤 16が塗布されていないので、使用者が誤って空気孔に血液を 入れようとしても注入されず、誤測定を防ぐことができる。  [0029] Alternatively, since the surfactant 16 is applied to the inner wall 15 of the hollow reaction portion 11, the sample can be easily removed from the sampling port 11a at the tip by the action of the surfactant that is compatible with the sample. However, since the surfactant 16 is not applied in the vicinity of the air hole opening 18 of the air conduction path 14, the user accidentally tries to put blood into the air hole. Is not injected, and erroneous measurement can be prevented.
また、試料採取口 11aに連通する中空反応部 11の試料が流れる縦長方向である 奥行き寸法を L1と幅寸法を L2とすると、その比 L1/L2が、 1. 8以下に設定されて いる。そのため、試料の採取量を、 0. 3 1以下の少量にすることができるとともに、奥 行き寸法が短くなつて測定精度を高感度にすることができる。 Also, if the depth dimension L1 and the width dimension L2 in the longitudinal direction where the sample of the hollow reaction part 11 communicating with the sampling port 11a flows, the ratio L1 / L2 is set to 1.8 or less. Yes. As a result, the amount of sample collected can be reduced to a small amount of 0.31 or less, and the measurement accuracy can be increased with a shorter depth dimension.
[0030] 次に、前述したバイオセンサチップ 10Aの製造方法について説明する。  [0030] Next, a manufacturing method of the above-described biosensor chip 10A will be described.
図 3は第 1実施形態に係るバイオセンサチップの製造方法における検知用電極を 設ける工程を示す平面基板を示す平面図、図 4は第 1実施形態に係るバイオセンサ チップの製造方法における絶縁層を設ける工程を示す平面基板を示す平面図、図 5 は第 1実施形態に係るバイオセンサチップの製造方法における粘着層を設ける工程 を示す平面基板を示す平面図である。  FIG. 3 is a plan view showing a planar substrate showing a process of providing detection electrodes in the biosensor chip manufacturing method according to the first embodiment, and FIG. 4 shows an insulating layer in the biosensor chip manufacturing method according to the first embodiment. FIG. 5 is a plan view showing a flat substrate showing a step of providing an adhesive layer in the biosensor chip manufacturing method according to the first embodiment.
[0031] まず、図 3に示すように、一枚の電気絶縁性の平面基板 20によって一度に複数個 のバイオセンサチップ 10Aを作成することができるようになつている。平面基板 20は、 例えば、ポリエチレンテレフタレート(PET)で作成することができる。平面基板 20の 中央部には折曲線 24が左右に設けられており、この折曲線 24の下側(図 3において 下側)には、下基板 21が先端部を上にして配置され、折曲線 24の上側には、上基板 22が先端部を下にして配置されている。下基板 21の長さは上基板 22の長さよりも長 くなつており、平面基板 20を折曲線 24で折り返して重ねたときに、図 1 (A)において 前述したように、下基板 21の上面が上基板 22の後端から露出するようになっている。 平面基板 20の一方の表面 20aにおける下基板 21の上面に、検知用電極 12a、 12b を所定の形状(図 1 (A)参照)で形成する。検知用電極 12a、 12bは、例えば、カーボ ンを所定形状で印刷等することにより形成することができる。  First, as shown in FIG. 3, a plurality of biosensor chips 10A can be formed at one time by using a single electrically insulating flat substrate 20. The planar substrate 20 can be made of, for example, polyethylene terephthalate (PET). A folding line 24 is provided on the left and right at the center of the flat substrate 20, and a lower substrate 21 is disposed below the folding line 24 (on the lower side in FIG. 3) with the tip portion facing upward. On the upper side of the curve 24, the upper substrate 22 is arranged with the tip portion down. The length of the lower substrate 21 is longer than the length of the upper substrate 22, and when the flat substrate 20 is folded back at the folding line 24 and overlapped, as described above in FIG. The upper surface is exposed from the rear end of the upper substrate 22. Detection electrodes 12a and 12b are formed in a predetermined shape (see FIG. 1A) on the upper surface of the lower substrate 21 on one surface 20a of the planar substrate 20. The detection electrodes 12a and 12b can be formed, for example, by printing a carbon in a predetermined shape.
[0032] 続いて、図 4に示すように、検知用電極 12a、 12bが設けられた平面基板 20の上に 、絶縁層 23を設ける。絶縁層 23は、折曲線 24に沿った幅細の部分 24a、中空反応 部 11に対応する部分 23a、空気導通路 14に対応する 23b、および上基板 22から露 出する下基板 21の後端部 21aを除いて全面に形成する。そして、中空反応部 11に 対応する部分に界面活性剤 16を塗布する(図 2参照)。  Subsequently, as shown in FIG. 4, an insulating layer 23 is provided on the planar substrate 20 on which the detection electrodes 12a and 12b are provided. The insulating layer 23 includes a narrow portion 24a along the folding line 24, a portion 23a corresponding to the hollow reaction portion 11, a 23b corresponding to the air conduction path 14, and a rear end of the lower substrate 21 exposed from the upper substrate 22. It is formed on the entire surface except for the portion 21a. Then, a surfactant 16 is applied to the part corresponding to the hollow reaction part 11 (see FIG. 2).
[0033] 続いて、図 5に示すように、絶縁層 23の上から粘着層 25を形成する。粘着層 25は 、平面基板 20を折曲線 24に沿って折り曲げ、絶縁層 23を介して上下の基板 21、 22 を一体化するためのものであり、接着剤を用いることができる。平面基板 20を折曲線 24に沿って折り曲げ、重ねることにより、絶縁層 23および粘着層 25といったスぺー サ層が設けられていない部分 23aによって中空反応部 11が形成されるとともに、絶 縁層 23および粘着層 25といったスぺーサ層が設けられていない部分 23bによって 空気導通路 14が形成されることになる。すなわち、中空反応部 11および空気導通路 14では、絶縁層 23および粘着層 25といったスぺーサ層が設けられていないので、 2 層の絶縁層 23と 2層の粘着層 25といったスぺーサ層の厚さを合計した高さの空間が 形成されることになる。なお、絶縁層 23の形成後に塗布するようにした界面活性剤 1 6は、粘着層 25の形成後に塗布するようにすることもできる。 Subsequently, as shown in FIG. 5, an adhesive layer 25 is formed on the insulating layer 23. The adhesive layer 25 is for folding the flat substrate 20 along the folding line 24 and integrating the upper and lower substrates 21 and 22 via the insulating layer 23, and an adhesive can be used. The flat substrate 20 is folded along the folding line 24 and overlapped so that the insulating layer 23 and the adhesive layer 25 are spaced apart. The hollow reaction portion 11 is formed by the portion 23a where the spacer layer is not provided, and the air conduction path 14 is formed by the portion 23b where the spacer layer such as the insulating layer 23 and the adhesive layer 25 is not provided. become. That is, since the spacer layer such as the insulating layer 23 and the adhesive layer 25 is not provided in the hollow reaction part 11 and the air conduction path 14, the spacer layer such as the two insulating layers 23 and the two adhesive layers 25 is provided. A space with a total height of all the thicknesses is formed. The surfactant 16 applied after the formation of the insulating layer 23 can also be applied after the formation of the adhesive layer 25.
[0034] その後、平面基板 20を折曲線 24に沿って折り曲げ、不要部分を切断して各バイオ センサチップ 10Aを切り出して、バイオセンサチップを形成する。あるいは、折曲線 2 4に沿った部分を残して先に切断した後、折曲線 24に沿って折り曲げた後に折曲線 に沿って切断して、バイオセンサチップ 10Aを形成することもできる。  [0034] Thereafter, the planar substrate 20 is bent along the folding line 24, and unnecessary portions are cut to cut out each biosensor chip 10A to form a biosensor chip. Alternatively, the biosensor chip 10A can also be formed by cutting first while leaving a portion along the folding line 24, then bending along the folding line 24, and then cutting along the folding line.
[0035] 図 4に示すように、空気導通路 14と中空反応部 11を合わせた形状が T字上になる ように設けることにより、何枚かのバイオセンサチップを一度に製造する場合に、隣り 合うバイオセンサチップ同士の空気導通路 14を一度に設けることが可能であり、高い 製造効率でバイオセンサチップを製造することが可能である。  [0035] As shown in FIG. 4, when several biosensor chips are manufactured at a time by providing a shape in which the air conduction path 14 and the hollow reaction part 11 are combined in a T shape, It is possible to provide an air conduction path 14 between adjacent biosensor chips at a time, and it is possible to manufacture a biosensor chip with high manufacturing efficiency.
[0036] 以上、説明したバイオセンサチップ 10Aおよびその製造方法によれば、中空反応 部 11の壁面 15に界面活性剤 16を塗布しているので、中空反応部 11の先端に設け られて!/、る試料採取口 1 laから採取された試料を、容易に中空反応部 11に導入す ること力 Sできる。このとき、空気導通路 14の入り口 14aの近傍には界面活性剤 16を塗 布していないので、試料は空気導通路 14に達するのを阻止されて空気導通路 14に 入りにくくなつている。このため、試料が空気導通路 14に入り込むことにより試料の採 取量が多くなるのを防止して、使用者の負担を軽減することができるようになつている 。あるいは、空気孔開口部 18の付近には界面活性剤を塗布しないことにより、使用 者が誤って空気孔に血液を入れようとしても注入されず、誤測定を防ぐことができる。  [0036] According to the biosensor chip 10A and the manufacturing method thereof described above, the surfactant 16 is applied to the wall surface 15 of the hollow reaction part 11, so that it is provided at the tip of the hollow reaction part 11! / Therefore, it is possible to easily introduce the sample collected from the sample collection port 1 la into the hollow reaction part 11. At this time, since the surfactant 16 is not applied in the vicinity of the inlet 14a of the air conduction path 14, the sample is prevented from reaching the air conduction path 14 and is difficult to enter the air conduction path 14. For this reason, it is possible to prevent the sample from entering the air conduction path 14 and to increase the amount of sample collected, and to reduce the burden on the user. Alternatively, by not applying a surfactant in the vicinity of the air hole opening 18, even if the user tries to accidentally put blood into the air hole, it is not injected and erroneous measurement can be prevented.
[0037] 次に、本発明に係る第 2実施形態を図面に基づいて詳細に説明する。  [0037] Next, a second embodiment according to the present invention will be described in detail with reference to the drawings.
図 6 (A)は本発明の第 2実施形態に係るバイオセンサチップを示す平面図、図 6 (B )は図 6 (A)において B方向から見た側面図、図 6 (C)は図 1において C方向から見た 端面図、図 7 (A)は中空反応部および空気導通路の斜視図、図 7 (B)は図 7 (A)中 B B位置の断面図、図 7 (C)は図 7 (A)中 C C位置の断面図である。なお、第 1実 施形態において前述した部位と共通する部位には同じ符号を付して、重複する説明 を省略することとする。 FIG. 6 (A) is a plan view showing a biosensor chip according to the second embodiment of the present invention, FIG. 6 (B) is a side view seen from the direction B in FIG. 6 (A), and FIG. Fig. 7 (A) is a perspective view of the hollow reaction part and the air conduction path, and Fig. 7 (B) is B in Fig. 7 (A). FIG. 7C is a cross-sectional view at position B, and FIG. 7C is a cross-sectional view at position CC in FIG. 7A. In the first embodiment, parts that are the same as the parts described above are given the same reference numerals, and redundant descriptions are omitted.
[0038] 図 6に示すように、本発明の第 2実施形態であるバイオセンサチップ 10Bは、試料 採取口 11aを先端に開口して有するとともに、この試料採取口 11aに連続して検知用 電極 12および試薬 13を有する中空反応部 11を有し、さらに、中空反応部 11と外部 とを連通する空気導通路 14を有している。そして、図 7に示すように、中空反応部 11 の内壁 15における空気導通路 14の入り口 14aに段差 17を設けた。  [0038] As shown in Fig. 6, the biosensor chip 10B according to the second embodiment of the present invention has a sample sampling port 11a opened at the tip, and a detection electrode continuously connected to the sample sampling port 11a. 12 and a hollow reaction part 11 having a reagent 13, and further an air conduction path 14 communicating the hollow reaction part 11 and the outside. Then, as shown in FIG. 7, a step 17 was provided at the inlet 14a of the air conduction path 14 in the inner wall 15 of the hollow reaction part 11.
[0039] このように、中空反応部 11に空気導通路 14を設けるとともに、空気導通路 14の入 り口 14aに段差 17を設けたので、段差部分で試料の侵入が防止され、試料は空気 導通路 14に入りにくくなつている。このため、試料が空気導通路 14に入り込むことに より試料の採取量が多くなるのを防止して、使用者の負担を軽減することができる。さ らに、中空反応部に界面活性剤を塗布したり、試薬を塗布する際、この段差があるた め、中空反応部から界面活性剤や試薬をはみ出すことなく塗布できるというメリットも ある。  [0039] As described above, since the air conducting path 14 is provided in the hollow reaction part 11, and the step 17 is provided in the inlet 14a of the air conducting path 14, the intrusion of the sample is prevented at the step part, and the sample is air It is difficult to enter the conduction path 14. For this reason, it is possible to prevent an increase in the amount of sample collected due to the sample entering the air conduction path 14, thereby reducing the burden on the user. In addition, there is an advantage that the surfactant and the reagent can be applied without protruding from the hollow reaction part because there is this step when the surfactant is applied to the hollow reaction part or the reagent is applied.
また、試料採取口 11aに連通する中空反応部 11の試料が流れる縦長方向である 奥行き寸法を L1と幅寸法を L2とすると、その比 L1/L2が、 1. 8以下に設定されて いる。そのため、試料の採取量を、 0. 3 1以下の少量にすることができるとともに、奥 行き寸法が短くなつて測定精度を高感度にすることができる。  Further, if the depth dimension, which is the longitudinal direction in which the sample of the hollow reaction part 11 communicating with the sample collection port 11a flows, is L1, and the width dimension is L2, the ratio L1 / L2 is set to 1.8 or less. As a result, the amount of sample collected can be reduced to a small amount of 0.31 or less, and the measurement accuracy can be increased with a shorter depth dimension.
[0040] 次に、前述したバイオセンサチップ 10Bの製造方法について説明する。  [0040] Next, a manufacturing method of the above-described biosensor chip 10B will be described.
図 8は第 2実施形態に係るバイオセンサチップの製造方法における検知用電極を 設ける工程を示す平面基板を示す平面図、図 9は第 2実施形態に係るバイオセンサ チップの製造方法における絶縁層を設ける工程を示す平面基板を示す平面図、図 1 0は第 2実施形態に係るバイオセンサチップの製造方法における粘着層を設けるェ 程を示す平面基板を示す平面図である。なお、バイオセンサチップ 10Bの製造方法 は、大部分が第 1実施形態に係るバイオセンサチップ 10Aの製造方法と同様なので 、共通な工程に付!/、ては概略を説明することとする。  FIG. 8 is a plan view showing a planar substrate showing a process of providing detection electrodes in the method for manufacturing a biosensor chip according to the second embodiment, and FIG. 9 shows an insulating layer in the method for manufacturing the biosensor chip according to the second embodiment. FIG. 10 is a plan view showing a planar substrate showing a process of providing an adhesive layer in the biosensor chip manufacturing method according to the second embodiment. Note that the manufacturing method of the biosensor chip 10B is mostly the same as the manufacturing method of the biosensor chip 10A according to the first embodiment, and therefore, it is attached to common processes.
[0041] まず、図 8に示すように、平面基板 20の中央部に左右方向(図 8において左右)に 設けられている折曲線 24の下側には、下基板 21が先端部を上にして配置され、折 曲線 24の上側には、上基板 22が先端部を下にして配置されている。下基板 21の長 さは上基板 22の長さよりも長くなつている。平面基板 20の一方の表面 20aにおける 下基板 21の上面に、検知用電極 12a、 12bを所定の形状(図 6 (A)参照)で形成す First, as shown in FIG. 8, the central portion of the flat substrate 20 has a horizontal direction (left and right in FIG. 8). A lower substrate 21 is disposed on the lower side of the folding line 24 provided with the front end portion facing up, and an upper substrate 22 is disposed on the upper side of the folding line 24 with the front end portion facing down. The length of the lower substrate 21 is longer than the length of the upper substrate 22. The detection electrodes 12a and 12b are formed in a predetermined shape (see FIG. 6 (A)) on the upper surface of the lower substrate 21 on one surface 20a of the flat substrate 20.
[0042] 続いて、図 9に示すように、検知用電極 12a、 12bが設けられた平面基板 20の上に 、絶縁層 23を設ける。この際、中空反応部 11に該当する部分を除いて絶縁層 23を 設ける。これにより、図 7 (C)に示すように、中空反応部 11に対応する部分は、他の 部分よりも絶縁層 23の厚さ分だけ低くなるので、中空反応部 11と、中空反応部 11の 後端に連続して設けられている空気導通路 14の入り口 14aとの間には段差 17が形 成されることになる。 Subsequently, as shown in FIG. 9, an insulating layer 23 is provided on the planar substrate 20 on which the detection electrodes 12a and 12b are provided. At this time, the insulating layer 23 is provided except for the part corresponding to the hollow reaction part 11. As a result, as shown in FIG. 7 (C), the portion corresponding to the hollow reaction portion 11 is lower than the other portions by the thickness of the insulating layer 23, so that the hollow reaction portion 11 and the hollow reaction portion 11 A step 17 is formed between the inlet 14a of the air conduction path 14 provided continuously at the rear end of the air passage.
[0043] 続いて、図 10に示すように、絶縁層 23の上から粘着層 25を形成する。この際、中 空反応部 11に該当する部分および空気導通路 14に該当する部分の絶縁層 23bの 上には、粘着層 25を設けないようにする。そして、平面基板 20を折曲線 24に沿って 折り曲げて粘着層 25を接着する。そして、不要部分を切断してバイオセンサチップ 1 0Bを製造する。  Subsequently, as shown in FIG. 10, an adhesive layer 25 is formed on the insulating layer 23. At this time, the adhesive layer 25 is not provided on the insulating layer 23b in the portion corresponding to the air reaction portion 11 and the portion corresponding to the air conduction path. Then, the flat substrate 20 is bent along the folding line 24 and the adhesive layer 25 is bonded. Then, unnecessary portions are cut to manufacture the biosensor chip 10B.
これにより、センサチップ 10Bの厚さは、全体で 2枚の基板 21、 22、 2層の絶縁層 2 3および 2層の粘着層 25といったスぺーサ層の厚さを合計したものとなる。そして、中 空反応部 11では、絶縁層 23および粘着層 25といったスぺーサ層が設けられていな いので、 2層の絶縁層 23と 2層の粘着層 25といったスぺーサ層の厚さを合計した高 さの空間が形成されることになる。さらに、空気導通路 14においては、粘着層 25のみ 設けられていないので、 2層の粘着層 25の厚さに等しい高さの空間が形成されること になる。これに伴い、中空反応部 11と、空気導通路 14との境界には、絶縁層 23の厚 さに対応した段差 17が形成されることになる。  Thus, the thickness of the sensor chip 10B is the sum of the thicknesses of the spacer layers such as the two substrates 21, 22, the two insulating layers 23, and the two adhesive layers 25 as a whole. In addition, since the spacer layer 11 such as the insulating layer 23 and the adhesive layer 25 is not provided in the space reaction portion 11, the thickness of the spacer layer such as the two insulating layers 23 and the two adhesive layers 25 is determined. A space with the total height is formed. Furthermore, since only the adhesive layer 25 is not provided in the air conduction path 14, a space having a height equal to the thickness of the two adhesive layers 25 is formed. As a result, a step 17 corresponding to the thickness of the insulating layer 23 is formed at the boundary between the hollow reaction portion 11 and the air conduction path 14.
[0044] 以上、説明した第 2実施形態に係るバイオセンサチップ 10Bおよびその製造方法 によれば、中空反応部 11と空気導通路 14との段差 17は、図 9に示したように、空気 導通路 14に対応する部分に絶縁層 23を設けることにより、容易に設けることができ、 段差 17によって、前述した第 1実施形態に係るバイオセンサチップ 10Aの場合と同 様に、試料が空気導通路 14に入り込むことにより試料の採取量が多くなるのを防止 して、使用者の負担を軽減することができる。 As described above, according to the biosensor chip 10B and the manufacturing method thereof according to the second embodiment described above, the step 17 between the hollow reaction part 11 and the air conduction path 14 is, as shown in FIG. By providing the insulating layer 23 in the portion corresponding to the passage 14, it can be easily provided, and the step 17 is the same as the case of the biosensor chip 10A according to the first embodiment described above. Similarly, it is possible to prevent the sample from entering the air conduction path 14 and increase the amount of sample collected, thereby reducing the burden on the user.
[0045] 図 9に示すように、空気導通路 14と中空反応部 11を合わせた形状力 字上になる ように設けることにより、何枚かのバイオセンサチップを一度に製造する場合に、隣り 合うバイオセンサチップ同士の空気導通路 14を一度に設けることが可能であり、高い 製造効率でバイオセンサチップを製造することが可能である。 [0045] As shown in FIG. 9, by providing the air conduction path 14 and the hollow reaction portion 11 so as to be on the shape force, adjacent to each other when several biosensor chips are manufactured at one time. It is possible to provide an air conduction path 14 between matching biosensor chips at a time, and it is possible to manufacture a biosensor chip with high manufacturing efficiency.
[0046] なお、本発明のバイオセンサチップおよびその製造方法は、前述した各実施形態 に限定されるものでなぐ適宜な変形,改良等が可能である。 Note that the biosensor chip and the manufacturing method thereof according to the present invention are not limited to the above-described embodiments, and can be appropriately modified and improved.
例えば、前述した第 1実施形態において界面活性剤 16を塗布した範囲や、第 2実 施形態において段差 17を設けた位置等に付いては前述したものに限らず、ともに採 取した試料が空気導通路 14に侵入するのを防止することができれば良い。また、中 空反応部の内壁の前記空気導通路入り口近傍以外の壁面に塗る試薬としては、界 面活性剤以外の物も適宜用いられる。  For example, the range in which the surfactant 16 is applied in the first embodiment described above and the position where the step 17 is provided in the second embodiment are not limited to those described above. It suffices if it can be prevented from entering the conduction path 14. In addition, as a reagent to be applied to the wall surface of the inner wall of the hollow reaction portion other than the vicinity of the entrance of the air conduction path, a substance other than the surfactant is also used as appropriate.
また、第 2実施形態においては、バイオセンサチップの先端からではなぐ側面から 試料を採取する構造とすることも可能である。  In the second embodiment, it is also possible to adopt a structure in which a sample is collected from the side surface that is not from the tip of the biosensor chip.
[0047] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら 力、である。 [0047] Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. It is.
本出願は、 2006年 7月 14日出願の日本特許出願(特願 2006— 193886)に基づくも のであり、その内容はここに参照として取り込まれる。  This application is based on a Japanese patent application filed on July 14, 2006 (Japanese Patent Application No. 2006-193886), the contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0048] 以上のように、本発明に係るバイオセンサチップおよびその製造方法は、空気導通 路の入り口近傍には界面活性剤を塗布していないので、試料は空気導通路に入りに くくなつており、試料が空気導通路に入り込むことにより試料の採取量が多くなるのを 防止して、使用者の負担を軽減することができるという効果を有する。または、空気導 通路の、少なくとも空気孔開口部付近には界面活性剤が塗られていないので、使用 者が誤って空気孔に血液を入れようとしても注入されず、誤測定を防ぐことができる。 または、前記中空反応部と前記空気導通路の間に段差を有することにより、試料は 空気導通路に入りにくくなつており、試料が空気導通路に入り込むことにより試料の 採取量が多くなるのを防止して、使用者の負担を軽減することができるとレ、う効果を 有する。したがって、バイオセンサチップの先端から試料を採取して化学物質の測定 や分析を行うことができるバイオセンサチップおよびその製造方法等として有用であ [0048] As described above, in the biosensor chip and the manufacturing method thereof according to the present invention, since the surfactant is not applied in the vicinity of the entrance of the air conduction path, the sample does not easily enter the air conduction path. Therefore, the sample can be prevented from increasing in volume by entering the air conduction path, and the burden on the user can be reduced. Or, since the surfactant is not applied at least near the air hole opening of the air passage, even if the user tries to put blood into the air hole by mistake, it will not be injected and erroneous measurement can be prevented. . Alternatively, by having a step between the hollow reaction part and the air conduction path, the sample is It is difficult to enter the air conduction path, and it is possible to reduce the burden on the user by preventing the sample from entering the air conduction path and increasing the amount of sample collected. Therefore, it is useful as a biosensor chip that can collect a sample from the tip of the biosensor chip and perform chemical substance measurement and analysis, and a manufacturing method thereof.

Claims

請求の範囲 The scope of the claims
[1] 試料に含まれる物質を測定するバイオセンサチップであって、  [1] A biosensor chip for measuring a substance contained in a sample,
試料を測定する中空反応部は、試料採取口に連通し、  The hollow reaction part for measuring the sample communicates with the sample collection port,
前記中空反応部と、チップ側面にある空気孔開口部とを連通する空気導通路を有 し、  An air conduction path that communicates the hollow reaction part and the air hole opening on the side surface of the chip;
前記中空反応部と前記試料採取口の内壁に界面活性剤が塗布されており、かつ 空気導通路の、少なくとも入り口付近には界面活性剤が塗布されていないことを特徴 とするバイオセンサチップ。  A biosensor chip, wherein a surfactant is applied to the hollow reaction part and an inner wall of the sampling port, and a surfactant is not applied at least near the entrance of the air conduction path.
[2] 試料に含まれる物質を測定するバイオセンサチップであって、  [2] A biosensor chip for measuring a substance contained in a sample,
試料を測定する中空反応部は、試料採取口に連通し、  The hollow reaction part for measuring the sample communicates with the sample collection port,
前記中空反応部と、チップ側面にある空気孔開口部とを連通する空気導通路を有 し、  An air conduction path that communicates the hollow reaction part and the air hole opening on the side surface of the chip;
前記中空反応部と前記試料採取口の内壁に界面活性剤が塗布されており、かつ 空気導通路の、少なくとも空気孔開口部付近には界面活性剤が塗られていないこと を特徴とするバイオセンサチップ。  A biosensor characterized in that a surfactant is applied to the hollow reaction part and the inner wall of the sampling port, and no surfactant is applied at least in the vicinity of the air hole opening of the air conduction path. Chip.
[3] 試料に含まれる物質を測定するバイオセンサチップであって、 [3] A biosensor chip for measuring a substance contained in a sample,
試料を測定する中空反応部は、試料採取口に連通し、  The hollow reaction part for measuring the sample communicates with the sample collection port,
前記中空反応部と、チップ側面にある空気孔開口部とを連通する空気導通路を有 し、  An air conduction path that communicates the hollow reaction part and the air hole opening on the side surface of the chip;
前記中空反応部と前記空気導通路の間に段差を有することを特徴とするバイオセ ンサチップ。  A biosensor chip comprising a step between the hollow reaction part and the air conduction path.
[4] 前記中空反応部と前記空気導通路の間に段差を有することを特徴とする請求項 1 または 2に記載のバイオセンサチップ。  [4] The biosensor chip according to [1] or [2], wherein there is a step between the hollow reaction part and the air conduction path.
[5] 一枚の平面基板の一方の表面に検知用電極を所定の形状で形成するとともにスぺ 一サ層を所定の形状で形成し、前記平面基板の折曲線において折り曲げて上下基 板を形成し、中空反応部および外部と連通する空気導通路を有するバイオセンサチ ップの製造方法であって、 [5] A detection electrode is formed in a predetermined shape on one surface of a single flat substrate, and a spacer layer is formed in a predetermined shape, and the upper and lower substrates are bent at a folding line of the flat substrate. A method of manufacturing a biosensor chip having an air conducting path formed and communicated with a hollow reaction part and the outside,
前記空気導通路の、少なくとも入り口付近には界面活性剤を塗布しないことを特徴 とするバイオセンサチップの製造方法。 A surfactant is not applied at least near the entrance of the air conduction path. A method for producing a biosensor chip.
[6] 一枚の平面基板の一方の表面に検知用電極を所定の形状で形成するとともにスぺ 一サ層を所定の形状で形成し、前記平面基板の折曲線において折り曲げて上下基 板を形成し、中空反応部および外部と連通する空気導通路を有するバイオセンサチ ップの製造方法であって、 [6] A detection electrode is formed in a predetermined shape on one surface of a flat substrate, a spacer layer is formed in a predetermined shape, and the upper and lower substrates are bent at a folding line of the flat substrate. A method of manufacturing a biosensor chip having an air conducting path formed and communicated with a hollow reaction part and the outside,
前記空気導通路の、少なくとも空気孔開口部付近には界面活性剤を塗布しないこ とを特徴とするバイオセンサチップの製造方法。  A biosensor chip manufacturing method, wherein a surfactant is not applied at least in the vicinity of an air hole opening of the air conduction path.
[7] 一枚の平面基板の一方の表面に検知用電極を所定の形状で形成するとともにスぺ 一サ層を所定の形状で形成し、前記平面基板の折曲線において折り曲げて上下基 板を形成し、中空反応部および外部と連通する空気導通路を有するバイオセンサチ ップの製造方法であって、 [7] A detection electrode is formed in a predetermined shape on one surface of a single flat substrate, and a spacer layer is formed in a predetermined shape, and the upper and lower substrates are bent at a folding line of the flat substrate. A method of manufacturing a biosensor chip having an air conducting path formed and communicated with a hollow reaction part and the outside,
前記中空反応部と前記空気導通路の間に段差を設けることを特徴とするバイオセ ンサチップの製造方法。  A method for producing a biosensor chip, comprising providing a step between the hollow reaction part and the air conduction path.
PCT/JP2007/063817 2006-07-14 2007-07-11 Biosensor chip and process for manufacturing the same WO2008007702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-193886 2006-07-14
JP2006193886A JP2008020391A (en) 2006-07-14 2006-07-14 Biosensor chip and method of producing the same

Publications (1)

Publication Number Publication Date
WO2008007702A1 true WO2008007702A1 (en) 2008-01-17

Family

ID=38923258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063817 WO2008007702A1 (en) 2006-07-14 2007-07-11 Biosensor chip and process for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2008020391A (en)
WO (1) WO2008007702A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568873B2 (en) * 2009-03-09 2014-08-13 住友ベークライト株式会社 Biochip manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164226A (en) * 1997-08-18 1999-03-05 Casio Comput Co Ltd Bio-sensor
JP2005069952A (en) * 2003-08-27 2005-03-17 National Institute Of Advanced Industrial & Technology Biosensor having adhesive and separable protective film
JP2005233917A (en) * 2003-07-25 2005-09-02 National Institute Of Advanced Industrial & Technology Biosensor and method for manufacturing the same
JP2005308720A (en) * 2004-03-23 2005-11-04 National Institute Of Advanced Industrial & Technology Biosensor
JP2005331503A (en) * 2004-04-23 2005-12-02 National Institute Of Advanced Industrial & Technology Biosensor for multichannel simultaneous measurement and usage of it
JP2006047287A (en) * 2004-06-22 2006-02-16 Sumitomo Electric Ind Ltd Sensor chip and production method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3989129B2 (en) * 1999-05-06 2007-10-10 グンゼ株式会社 Sensor packaging and method of using the same
JP2003072861A (en) * 2001-08-29 2003-03-12 Matsushita Electric Ind Co Ltd Bio-sensor packaging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164226A (en) * 1997-08-18 1999-03-05 Casio Comput Co Ltd Bio-sensor
JP2005233917A (en) * 2003-07-25 2005-09-02 National Institute Of Advanced Industrial & Technology Biosensor and method for manufacturing the same
JP2005069952A (en) * 2003-08-27 2005-03-17 National Institute Of Advanced Industrial & Technology Biosensor having adhesive and separable protective film
JP2005308720A (en) * 2004-03-23 2005-11-04 National Institute Of Advanced Industrial & Technology Biosensor
JP2005331503A (en) * 2004-04-23 2005-12-02 National Institute Of Advanced Industrial & Technology Biosensor for multichannel simultaneous measurement and usage of it
JP2006047287A (en) * 2004-06-22 2006-02-16 Sumitomo Electric Ind Ltd Sensor chip and production method therefor

Also Published As

Publication number Publication date
JP2008020391A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
US8038859B2 (en) Electrochemical sensor and method for analyzing liquid sample
US9869653B2 (en) Electrochemical sensors with carrier field
CA2437441C (en) Fluid collecting and monitoring device
US9927388B2 (en) Systems, devices, and methods for measuring whole blood hematocrit based on initial fill velocity
EP2407775B1 (en) Biosensor manufacturing method
TW200844435A (en) Analyte sensors and methods of use
EP2324345B1 (en) Biosensor provided with code electrode, method for manufacturing the same, and method for obtaining sensor information from the same
US20190170678A1 (en) Disposable test sensor with improved sampling entrance
WO2022100617A1 (en) Biosensor
WO2008007702A1 (en) Biosensor chip and process for manufacturing the same
US20190017956A1 (en) Disposable test sensor
TW200838477A (en) Electrochemical test sensor with light guide
US10386323B2 (en) Test sensor with multiple sampling routes
JP2012529041A (en) Biosensor for measuring biological materials
JP4138512B2 (en) Body fluid collection tool
JP2009198467A (en) Sensor element using nano structure, analytical chip, analytical apparatus, and method for manufacturing sensor element
KR101359750B1 (en) Method for fabricating bio sensor strip using a paper and structure of the same
EP2402759B1 (en) Testing strip for detecting a fluidic sample
WO2011161926A1 (en) Biosensor, cartridge storing biosensor, measurement device using biosensor
TWI589875B (en) Electrochemical biosensor test strip
JP2008003066A (en) Biosensor cartridge
JP2013530409A (en) Test strip for body fluid sample detection
US20060180467A1 (en) Electrochemical biosensor strip
JP2008125755A (en) Manufacturing method of biosensor cartridge
JP2008167942A (en) Biosensor cartridge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790621

Country of ref document: EP

Kind code of ref document: A1