WO2008004400A1 - Position detector, open/closure operation characteristic measuring device, and breaker - Google Patents

Position detector, open/closure operation characteristic measuring device, and breaker Download PDF

Info

Publication number
WO2008004400A1
WO2008004400A1 PCT/JP2007/061574 JP2007061574W WO2008004400A1 WO 2008004400 A1 WO2008004400 A1 WO 2008004400A1 JP 2007061574 W JP2007061574 W JP 2007061574W WO 2008004400 A1 WO2008004400 A1 WO 2008004400A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
reflector
position detection
lens
Prior art date
Application number
PCT/JP2007/061574
Other languages
French (fr)
Japanese (ja)
Inventor
Akihide Shiratsuki
Masahiro Shikai
Toshiro Nakashima
Kazuo Takashima
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Publication of WO2008004400A1 publication Critical patent/WO2008004400A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the present invention relates to a position detection device that measures the position of a main shaft of a circuit breaker that opens and closes a main circuit, and a switching operation characteristic measurement device and circuit breaker using the position detection device.
  • a circuit breaker that opens and closes a main circuit includes a fixed contact and a movable contact fixed to a linearly movable main shaft, and the fixed contact and the movable contact are in contact with each other by a linear movement of the main shaft.
  • the contact is closed and the contact is opened when the fixed contact and the movable contact are separated.
  • it is important to ensure the reliability of the circuit breaker that the position and moving speed of the movable contact are stably reproduced at and near the moment when the movable contact is opened and closed by the stroke operation.
  • the opening / closing operation characteristics which are the stroke operations of the movable contact, are measured.
  • a conventional position detection device for detecting the position of a main shaft is equipped with a mechanism for converting the amount of linear motion of the main shaft into a rotation amount on the main shaft to which a movable contact is fixed, and the rotation amount is detected by a rotary encoder. Then, the position of the movable contact was measured by determining the amount of linear motion of the spindle from the amount of rotation.
  • an open / close operation characteristic measuring device using this position detection device measures the spindle movement speed from the position data measured by this position detection device to measure the open / close operation characteristics! And Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-145217 (page 4, FIG. 1)
  • the conventional position detection device and the open / close operation characteristic measurement device using the same are configured as described above. Therefore, in order to install this on an existing circuit breaker, the main shaft that performs the piston motion is modified. It was necessary to disassemble a part of the circuit breaker. In addition, since the breaker is a high-voltage facility, it was necessary to consider the high voltage when placing the linear motion rotation conversion mechanism adjacent to the breaker body and the main shaft. Thus, with the prior art Since it is necessary to perform work for remodeling the spindle and to arrange it in consideration of high voltage, it is not easy to attach the conventional position detection device and switching operation characteristic measurement device to the existing circuit breaker. There was a problem!
  • the present invention has been made to solve the above-described problems.
  • a position detection device that can be easily attached to an existing circuit breaker, a switching operation characteristic measuring device using the position detection device, and a breaker.
  • the purpose is to provide a vessel.
  • a position detection device includes a reflector fixed to a main shaft and a light source that radiates light in a conical shape, and illuminates a linearly movable range of the reflector with the light from the light source.
  • An optical system a light receiving optical system that receives light from the light source reflected by the reflecting plate by a detection surface of an image sensor and outputs a detection signal based on the amount of received light, and the reflection based on the detection signal
  • a signal processing unit that outputs a position signal of the plate.
  • the monitoring unit measures the opening / closing operation characteristics based on time-series data of the position signal output from the position detection device. did.
  • the reflecting plate is fixed to the main shaft, and the linearly movable range of the reflecting plate is illuminated from a position distant by the illuminating optical system.
  • Receives the light reflected from the reflector from a position distant from the system measures the position of the spindle with the signal processing unit based on the amount of received light, and opens and closes with the monitoring unit based on the measured position data Since the operating characteristics are measured, the reflector is simply fixed to the spindle, and no other modifications to the spindle are required.
  • the position detector other than the reflector is a high-voltage device. Since it is possible to dispose it at a position away from the main body and main shaft of the breaker, there is no need to consider high voltage when placing the position detection device. The effect of being can be obtained.
  • FIG. 1 shows an implementation of an opening / closing operation characteristic measuring apparatus using the position detecting apparatus according to the present invention. It is a block diagram which shows the structure which attached Form 1 to the gas circuit breaker.
  • FIG. 2 is a detailed configuration diagram for explaining in detail the configuration of the first embodiment of the opening / closing operation characteristic measurement device using the position detection device according to the present invention.
  • FIG. 3 is a detection signal intensity distribution chart in which the intensity of the detection signal output from the image sensor is plotted with the horizontal axis as the pixel position.
  • Fig. 4 is a graph showing the position signal intensity as a function of time, plotted with the horizontal axis representing the peak position of the distribution waveform of the detected signal intensity when the gas circuit breaker performs the opening operation.
  • FIG. 5 is a structural cross-sectional view for explaining the structure of a bead element type retroreflector.
  • FIG. 6 shows an open / close operation characteristic measuring device using the position detecting device according to the present invention.
  • FIG. 6 is a detailed configuration diagram for explaining in detail the configuration of the second embodiment.
  • FIG. 7 is a detailed configuration diagram for explaining in detail another configuration of the second embodiment of the opening / closing operation characteristic measuring device using the position detection device according to the present invention.
  • FIG. 8 is a configuration diagram for explaining the configuration of the third embodiment of the switching operation characteristic measuring device using the position detecting device according to the present invention.
  • FIG. 9 is a configuration diagram for explaining the configuration of the embodiment 4 of the switching characteristic measurement apparatus according to the present invention.
  • FIG. 10 is a cross-sectional view for explaining the condensing function of the cylindrical lens.
  • FIG. 11 is a configuration diagram for explaining the configuration of the embodiment 5 of the opening / closing operation characteristic measuring device using the position detecting device according to the present invention.
  • FIG. 12 is a configuration diagram for explaining the configuration of the sixth embodiment of the opening / closing operation characteristic measuring device using the position detecting device according to the present invention.
  • FIG. 13 is a diagram for comparing and explaining the condensing characteristics of the cylindrical lens and the toroidal lens.
  • FIG. 14 is a configuration diagram for explaining the configuration of the seventh embodiment of the opening / closing operation characteristic measuring device using the position detecting device according to the present invention.
  • FIG. 15 is a configuration diagram for explaining the configuration of the eighth embodiment of the opening / closing operation characteristic measuring device using the position detecting device according to the present invention.
  • FIG. 16 is a configuration diagram for explaining the configuration of an embodiment 9 of the switching operation characteristic measuring apparatus using the position detecting device according to the present invention.
  • FIG. 17 is a configuration diagram for explaining a configuration in which a folding mirror is arranged between a half mirror and an image sensor in an open / close operation characteristic measuring device using the position detection device according to the present invention. It is.
  • a circuit breaker to which a switching operation characteristic measuring device using a position detection device according to an embodiment of the present invention is mounted opens and closes between a power source bus and a power transmission line for supplying power to the main circuit.
  • a case where the gas circuit breaker is used will be described as an example.
  • the circuit breaker is not limited to the gas insulation system, and for example, the switching operation characteristic measurement according to the present invention is possible even if the circuit breaker is of another insulation system such as vacuum insulation, oil insulation or air insulation.
  • the device is applicable.
  • the circuit breaker is not necessarily opened and closed between the bus and the transmission line. For example, it may be between the transmission line and the load.
  • FIG. 1 is a configuration diagram showing a configuration in which Embodiment 1 of an open / close operation characteristic measuring device using a position detection device according to the present invention is attached to a gas circuit breaker already provided in a power system facility or the like.
  • the gas circuit breaker opens and closes between the fixed contact 2 connected to the bus 1 and the fixed contact 4 connected to the power transmission line 3.
  • the child 5 performs a stroke operation and closes when it comes into contact with the fixed contact 2 and the fixed contact 4, so that the movable contact 5 opens when it moves away from the fixed contact 2 and the fixed contact 4. It has become.
  • the movable contact 5 In order for the movable contact 5 to perform a stroke operation, the movable contact 5 is fixed to one end of the main shaft 6, and the main shaft 5 is moved to the arrow 8 by the main shaft drive unit 7 provided at the other end of the main shaft 5. It is possible to move in both directions indicated by.
  • the fixed contact 2, the fixed contact 4, and the movable contact 5 are provided in a pressure vessel 9 that is a main body of the gas circuit breaker.
  • the pressure vessel 9 is insulated with sulfur hexafluoride or the like. Gas is sealed.
  • a shaft seal portion 10 is provided at a location where the main shaft 6 is introduced into the pressure vessel 9 so that the insulating gas does not leak from the pressure vessel 9 when the main shaft 6 moves linearly.
  • the main shaft 6 and the main shaft drive section 7 that drives the main shaft 6 are not sealed like the pressure vessel 9, but the gas circuit breaker itself is a high-voltage device, so it is necessary to secure a distance from the outside. It is provided in the housing 11.
  • a reflecting plate 13 is fixed to the spindle 6 that moves linearly in conjunction with the stroke operation of the movable contactor 5 when the gas circuit breaker is opened and closed, and corresponds to the stroke operation range of the movable contactor 5.
  • the range in which the reflector 13 can be linearly moved is determined. In FIG. 1, the range in which the reflector 13 can be linearly moved is the range indicated by the arrow 8.
  • the reflector position measurement unit 14 measures the position of the reflector 13 using light, and the position signal of the reflector 13 output from the reflector position measurement unit 14 is sent to the monitoring unit 15.
  • the switching circuit operating characteristics of the gas circuit breaker are measured by the monitoring unit 15.
  • the data on the switching operation characteristics of the gas circuit breaker obtained by the monitoring unit 15 is sent to the drive control unit 12, and the drive control unit 12 controls the spindle drive unit 7 based on this data. If there is an abnormality in the open / close operation characteristics, the drive control unit 12 assumes that a failure has occurred in the gas circuit breaker, and controls the drive control unit 12 to stop the open / close operation of the gas circuit breaker and generate a failure. I will inform you.
  • FIG. 2 shows an implementation of an opening / closing operation characteristic measurement device using the position detection device according to the present invention.
  • FIG. 2 is a detailed configuration diagram for explaining the configuration of Form 1 in detail, in which the main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflector 13 and the reflector position measurement in the switching operation characteristic measuring device shown in FIG. 1 are measured. Part 14 is extracted.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and the description thereof is omitted.
  • the diffuse reflector 13a corresponds to the reflector 13 shown in FIG. 1, and diffuses and reflects the illuminated light. Therefore, since the light reflected by the diffuse reflector 13a spreads and propagates over a wide range, the intensity of the light reflected significantly decreases as the distance from the diffuse reflector 13a increases.
  • the illumination optical system 16a that illuminates the diffuse reflector 13a includes a light source 17 such as a lamp, an LED, or a semiconductor laser that emits light in a conical shape. Illuminates the movable range of the diffuse reflector 13a.
  • the illumination optical system 16a illuminates the linearly movable range of the diffuse reflector 13a.
  • the light diffusely reflected by the diffuse reflector 13a is received by the light receiving optical system 18a.
  • the light receiving optical system 18a receives the light from the lens 19a, which is an imaging optical element that condenses the light diffused and reflected by the diffuse reflector 13a, and the condensed diffuse reflector 13a, and receives the received light amount.
  • an image pickup device 20 for outputting a detection signal based on the detection signal.
  • the lens 19a is arranged so that the light diffusely reflected by the diffuse reflector 13a forms an image on the detection surface of the image sensor 20.
  • the imaging optical element is a lens.
  • the imaging optical element is not limited to a lens as long as it has an imaging function.
  • a pinhole, a Fresnel zone plate or a concave surface is used. Needless to say, even a mirror is good.
  • the detection signal output from the image sensor 20 is sent to the signal processing unit 21, and the signal processing unit 21 performs signal processing to obtain a position signal of the diffuse reflector 13a based on the detection signal.
  • the position signal is sent to the monitoring unit 15 shown in FIG.
  • the reflector position measurement unit 14 shown in FIG. 1 includes the irradiation optical system 16a and the light receiving optical system shown in FIG. 18a and a signal processing unit 21.
  • the gas circuit breaker shown in FIG. 1 is closed when the movable contact 5 comes into contact with the fixed contact 2 and the fixed contact 4 by the stroke operation of the movable contact 5, and the movable contact 5 is fixed. 2 and fixed contact 4 and away from contact.
  • the opening / closing operation characteristics as the stroke operation of the movable contactor 5 are measured at the time of manufacturing the gas circuit breaker, at the periodic inspection, or in some cases during the operation at the normal operation.
  • the main shaft 6 that moves linearly in conjunction with the stroke operation of the contact 5 is driven by the main shaft driving unit 7 controlled by the drive control unit 12 and is fixed to the main shaft 6 as shown in FIG.
  • the reflecting plate 13a moves within the linearly movable range indicated by the width of the arrow 8.
  • the illumination optical system 16a including the light source 17 that emits light in a conical shape illuminates the linearly movable range indicated by the width of the arrow 8, and the diffuse reflector 13a moves within the linearly movable range.
  • the light from the light source 17 is always diffusely reflected.
  • the light diffusely reflected by the diffuse reflector 13a is received by the light receiving optical system 18a.
  • the lens 19a is arranged so as to form an image on the detection surface of the image pickup device 20 such as a one-dimensional or two-dimensional CCD or photodiode array, so that the detection is performed as the diffuse reflector 13a moves.
  • the image of the diffuse reflector 13a moves on the surface.
  • the signal processing unit 21 performs signal processing on the detection signal output from the image sensor 20 reflecting the movement of the image, thereby obtaining a position signal indicating the position of the diffuse reflector 13a.
  • FIG. 3 shows the intensity of the detection signal output from the image sensor 20, which is a one-dimensional CCD as an example. Is a detected signal intensity distribution diagram plotted with the horizontal axis as the pixel position.
  • the distribution waveform of the solid line that peaks at the position of the arrow 22 shows a state where the movable circuit 5 is in contact with the stationary contact 2 and the stationary contact 4 and the gas circuit breaker is closed.
  • the broken line distribution waveform that peaks at the position of the arrow 23 indicates that the gas circuit breaker is open!
  • the force S for obtaining the position of the diffuse reflector 13a from this peak position is divided.
  • Fig. 4 is a position signal intensity variation diagram with time plotted with the horizontal axis representing the peak position of the distribution waveform of the detected signal intensity when the gas circuit breaker performs the opening operation.
  • the intensity of the position signal corresponding to the position of the diffuse reflector 13a is indicated by the arrow 25 in the state where the gas circuit breaker is closed.
  • the position signal value corresponding to the position moves over time from the position signal value corresponding to the position of the arrow 26 in the state where the gas circuit breaker is open.
  • the position of the diffuse reflector 13a fixed to the main shaft 6 can be obtained from the intensity of the position signal output from the signal processing unit 21.
  • both the movable contact 5 and the diffuse reflector 13a are fixed to the main shaft 6, and the positions where the fixed contacts are different are the positions of the movable contact 5 and the diffuse reflector 13a.
  • the positions correspond one-to-one.
  • the position of the gas circuit breaker that is the stroke operation of the movable contact 5 is obtained from the position signal data output from the signal processing unit 21 and changing with time. Measure the open / close operating characteristics. In other words, the position of the movable contact 5 and the moving speed at that position are measured from the time-series data of the position signal.
  • Embodiment 1 of the opening / closing operation characteristic measuring apparatus using the position detection apparatus uses light for measuring the position of the spindle 6, and at the time of the opening / closing operation of the circuit breaker.
  • Movable contact A diffuse reflector 13a is fixed to the main shaft 6 that moves linearly in conjunction with the stroke movement of the 5
  • the illumination optical system 16a including the light source 17 that emits light in a conical shape illuminates a linearly movable range of the diffuse reflector 13a, and the light from the light source 17 reflected by the diffuse reflector 13a is received by the light receiving optical system 18a.
  • An image is formed on the detection surface of the image sensor 20 by an imaging optical element, for example, a lens 19a, and a detection signal is output from the image sensor 20 based on the amount of received light of the imaged light! . Further, the monitoring unit 15 measures the opening / closing operation characteristics based on the detection signal.
  • the diffusing reflector 13a is simply fixed to the main shaft 6 and the others. There is no need to modify the main shaft 6 of the switch, and the main body of the switching operation characteristic measuring device other than the diffuse reflector 13a can be placed away from the main body of the gas circuit breaker, which is a high-voltage device, and the main shaft 6. Since it is possible, there is no need to consider high voltage when installing the switching operation characteristic measuring device, and it is very easy to install on existing gas circuit breakers.
  • the switch operating characteristic measuring device is attached to an existing gas circuit breaker.
  • the switch operating characteristic is also applied to a gas circuit breaker newly installed in a power system facility. Since there is no need to consider high voltage when placing the measuring device, it is easy to install and as a result, the design of the gas circuit breaker itself is facilitated.
  • the diffuse reflector 13a is used as the reflector fixed to the main shaft 6.
  • the light diffusely reflected by the diffuse reflector 13a spreads and propagates.
  • the intensity of the detection signal is remarkably lowered.
  • the intensity distribution of the detection signal with respect to the pixel position output from the image sensor 20 is extremely broad to obtain the peak position. It becomes difficult. Therefore, it is necessary to form an image on the detection surface of the image sensor 20 using, for example, the lens 19a which is an imaging optical element that collects the spread light.
  • the diffuse reflector 13a fixed to the main shaft 6 is used.
  • the distance from the light receiving optical system 18a constituting the reflection position measuring unit 14 is increased, the light that is reflected by the diffusing reflector 13a and spreads and propagates is condensed by the lens 19a that is an imaging optical element.
  • the detection signal output from the image sensor 20 is significantly reduced. Therefore, it becomes difficult to measure the switching characteristics of the gas circuit breaker.
  • the intensity of the detection signal output from the image sensor 20 does not significantly decrease even if the retroreflector and the detection surface of the image sensor 20 are separated. Further, since the intensity distribution of the detection signal with respect to the pixel position does not become significantly broad, it is not always necessary to use the imaging optical element, and the distance between the spindle 6 and the reflector position measurement unit 14 is greatly increased. Even if there is a need to place it, the intensity of the detection signal does not drop significantly, so it is possible to accurately measure the switching operation characteristics.
  • FIG. 5 is a structural cross-sectional view for explaining the structure of a bead element type retroreflector which is an example of a retroreflector.
  • the bead element type retroreflector shown in FIG. 5 has a structure in which beads 27 formed of an optically transparent material such as glass are two-dimensionally arranged on a substrate 28 such as a resin film. It is. A reflection layer 29 is provided on half of the spherical surface of the bead 27, and light is reflected by the reflection layer 29. The entire surface of the bead 27 opposite to the reflective layer 29 is covered with a protective layer 30 so that the bead 27 is not damaged.
  • incident light 31 which is a plane wave
  • the incident light 31 passes through the protective layer 30, enters the beads 27, and is reflected by the reflective layer 29. After being reflected by the reflective layer 29, the light exits from the beads 27 and passes through the protective layer 30 to be emitted.
  • the outgoing angle of the outgoing light 32 emitted from the bead element type retroreflector is the same as the incident angle when the incident light 31 enters the bead element type retroreflector. Is incident light 31 This is the opposite of the propagation direction.
  • the bead element type retroreflector has the characteristic that the reflected light 32 is specularly reflected in the same direction as the direction in which the incident light 31 is incident and in the opposite direction. Since it is not diffusely reflected like a reflector, the reflected light 32 spreads straight and does not propagate. Therefore, the reflected light 32 does not significantly decrease the intensity per unit area even when the distance from the bead element type retroreflector is large as compared with the case of the diffuse reflector.
  • FIG. 6 is a detailed configuration diagram for explaining in detail the configuration of the second embodiment of the opening / closing operation characteristic measuring device using the position detecting device according to the present invention using a retroreflecting plate as the reflecting plate.
  • the main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflecting plate 13 and the reflecting plate position measuring unit 14 in the switching operation characteristic measuring device shown in FIG. 1 are extracted. Further, the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts, and thus the description thereof is omitted.
  • the retroreflector 13b corresponds to the reflector 13 shown in FIG. 1, and more specifically, the bead element type retroreflector shown in FIG. As shown in FIG. 5, the retroreflector 13b is specularly reflected in the same direction as the incident direction and in the opposite direction, so that the reflected light 32 spreads and propagates straight without propagating. Have a special feature! /,
  • the illumination optical system 16 b includes a light source 17 that emits light in a conical shape and a half mirror 33, and the light from the light source 17 is reflected once by the half mirror 33 and recursively counteracted. Illuminate the direct-movable range of the firing plate 13b.
  • the illumination optical system 16b illuminates the linearly movable range of the retroreflector 13b, and the light specularly reflected by the retroreflector 13b is received by the light receiving optical system 18b.
  • the light receiving optical system 18b includes an image pickup device 20 that receives light that has been specularly reflected by the retroreflector 13b and travels straight.
  • the light that is specularly reflected by the retroreflector 13b goes straight without reaching the detection surface of the image sensor 20, so that the intensity of the detection signal output from the image sensor 20 is sufficiently large.
  • the intensity distribution of the detection signal with respect to the pixel position is not so broad that the peak position cannot be obtained.
  • the detection signal output from the image sensor 20 is sent to the signal processing unit 21, and the signal processing unit 21 obtains the position signal of the retroreflector 13b based on this detection signal.
  • the same signal processing is performed, and the obtained position signal is sent to the monitoring unit 15 shown in FIG. 1, and the switching operation characteristics of the gas circuit breaker are measured.
  • the present invention is not limited to the existing gas circuit breaker as in the first embodiment. Even if it has the effect that attachment is very easy.
  • Embodiment 2 of the opening / closing operation characteristic measuring apparatus using the position detecting device according to the present invention since the reflecting plate is the retroreflecting plate 13b, the reflected light travels straight without almost spreading. Therefore, even if the distance between the main shaft 6 and the reflector position measurement unit 14 needs to be greatly separated from the restriction on the attachment to the gas circuit breaker, it reaches the detection surface of the image sensor 20. There is an effect that the switching operation characteristics of the gas circuit breaker can be accurately measured without the detection signal output from the image sensor 20 being significantly lowered.
  • the retroreflector 13b is a reflector having a retroreflective function such as the trihedral corner cube element type described as a bead element type. Not too long.
  • the light receiving optical system 18b according to the second embodiment further includes an imaging optical element in order to reduce the background noise of the detection signal output from the force S including only the image sensor 20 and the image sensor 20 force. By doing so, the distance between the main shaft 6 and the reflector position measuring unit 14 can be further increased.
  • FIG. 8 shows a position detection device according to the present invention using a light receiving optical system 18c including an imaging element 20 and a pinhole 19b as an imaging optical element instead of the light receiving optical system 18b of the second embodiment.
  • Configuration diagram for explaining the configuration of the third embodiment of the open / close operation characteristic measuring apparatus using a device The main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflecting plate 13 and the reflecting plate position measuring unit 14 in the switching operation characteristic measuring device shown in FIG. 1 are extracted.
  • the same reference numerals as those in FIGS. 1 and 6 denote the same or corresponding parts, and thus the description thereof is omitted.
  • the pinhole 19b is provided at a position where the light radiated in a conical shape from the light source 17 of the illumination optical system 16b is reflected by the retroreflector 13b and condensed. Therefore, the light that is illuminated by the illumination optical system 16b, specularly reflected by the retroreflector 13b, and travels straight without spreading is passed through the pinhole 19b unobstructed and reaches the detection surface of the image sensor 20. You can reach.
  • the light receiving optical system 18c of Embodiment 3 includes a pinhole 19b.
  • the pinhole 19b has a conical shape from the light source 17 of the illumination optical system 16b.
  • the stray light that is diffused and reflected by the main shaft 6 and the inner wall of the housing 11 is spread extremely. Thus, only a part of the light can pass through the pinhole 19b and reach the detection surface of the image sensor 20, and most of the stray light is blocked by the pinhole 19b.
  • the third embodiment of the open / close operation characteristic measuring device using the position detection device according to the present invention it is possible to suppress the background noise of the detection signal caused by stray light. Compared to the case, the distance between the main shaft 6 and the reflector position measuring unit 14 can be further increased.
  • the pinhole 19b is used as the imaging optical element of the light receiving optical system 18c, but even if a lens is used instead of the pinhole 19b, it is caused by stray light. It is possible to suppress the background noise of the detection signal.
  • FIG. 9 shows a position detection device according to the present invention using a light receiving optical system 18d including an imaging element 20 and a lens 19c that is an imaging optical element instead of the light receiving optical system 18c of the third embodiment.
  • FIG. 7 is a configuration diagram for explaining the configuration of the embodiment 4 of the open / close operation characteristic measuring device used, and the same reference numerals as those in FIG.
  • the lens 19c is a position where light emitted in a conical shape from the light source 17 of the illumination optical system 16b is specularly reflected by the retroreflector 13b and condensed. It is installed in. Therefore, the light that is illuminated by the illumination optical system 16b, reflected by the retroreflector 13b, and travels straight without spreading is condensed at the position where the lens 19c is provided and passes through the lens 19c as it is. And go straight to reach the detection surface of the image sensor 20. In other words, the light trace of the mirror-reflected light by the retroreflector 13b is almost the same regardless of the presence of the lens 19c.
  • the focal length of the lens 19c is set so that the light diffusely reflected by the retroreflecting plate 13b is collected on the detection surface of the image sensor 20.
  • the real image of the retroreflector 13b is formed on the detection surface of the image sensor 20 by the lens 19c. Therefore, when the signal processing unit 21 obtains a position signal indicating the position of the retroreflector 13b from the detection signal output from the image sensor 20, the light received by the detection surface of the image sensor 20 is recursive. Reflecting the position of the retroreflector 13b because not only the light that has been specularly reflected by the reflector 13b but also the light diffused and reflected by the retroreflector 13b and imaged by the lens 19c is added. The intensity of the peak of the detection signal can be made larger than when the pinhole 19b is used as the imaging optical element of the third embodiment.
  • the light diffusely reflected by the main shaft 6 and the inner wall of the casing 11 1 returns to the reflector position measuring unit 14, and the force that becomes so-called stray light of the casing 11 1 Since the distance between the inner wall and the lens 19c and the distance between the retroreflector 13b and the lens 19c are greatly different, the light diffusely reflected by the inner wall of the housing 11 or the like depends on the lens 19c. Since it is not imaged on the detection surface, it is extremely broad with respect to the pixel position, and only increases the power without affecting the background noise of the detection signal.
  • the distance between the main axis 6 and the lens 19c and recursion The distance between the reflector 13b and the lens 19c is substantially the same, and a part of the light illuminated by the illumination optical system 16b and diffusely reflected by the main axis 6 is imaged on the detection surface of the image sensor 20 by the lens 19c.
  • the surface of the main shaft 6 has a diffuse reflectance that is sufficiently smaller than the diffuse reflectance of the retroreflector 13b, the light diffusely reflected by the main shaft 6 shows back-round noise of the detection signal. Only the power is increased.
  • the lens 19c as the imaging optical element, it is possible to suppress the influence of stray light caused by light diffusely reflected by the inner wall or the like of the housing, and the surface of the main axis is recursive. If it is sufficiently smaller than the diffuse reflectance of the reflective reflector! /, And has a diffuse reflectance! /, The stray light caused by the light diffusely reflected by the main axis can be regarded as sufficiently small.
  • the fourth embodiment of the opening / closing operation characteristic measuring apparatus using the position detecting device according to the present invention the background noise of the detection signal caused by stray light can be suppressed, compared with the case of the second embodiment.
  • the distance S between the main shaft 6 and the reflector position measuring unit 14 is further increased.
  • a force S using a light source 17 that emits light in a conical shape is used, and a cylindrical lens is provided so that light emitted from the light source 17 in a conical shape is temporarily
  • the intensity of the light illuminating the diffuse reflector 13a can be increased, and the inner wall of the housing 11, etc.
  • the stray light that is diffused and reflected by the light can be reduced, so that the distance between the spindle 6 and the reflector position measuring unit 14 can be further increased compared to the case of the first embodiment. .
  • FIG. 10 is a cross-sectional view for explaining the condensing function of the cylindrical lens 34.
  • FIG. 10 (a) is a cross-sectional view of the cylindrical lens 34 viewed from the longitudinal direction
  • FIG. FIG. 10 is a cross-sectional view as viewed from the side of (a).
  • the cylindrical lens 34 condenses the light emitted in a conical shape from the light source 17 only on the surface viewed from the longitudinal direction of the cylindrical lens 34, as is apparent from FIG. 9 (a).
  • the surface viewed from the side in Fig. 9 (a) has the characteristic of not condensing light, and the light emitted from the light source 17 in a conical shape has an elliptical cone shape.
  • FIG. 11 shows an opening / closing operation using the position detection device according to the present invention, in which an illumination optical system 16c including a light source 17 and a cylindrical lens 34 is used instead of the illumination optical system 16a of the first embodiment.
  • FIG. 11 shows an opening / closing operation using the position detection device according to the present invention, in which an illumination optical system 16c including a light source 17 and a cylindrical lens 34 is used instead of the illumination optical system 16a of the first embodiment.
  • FIG. 6 is a configuration diagram for explaining a configuration of a characteristic measurement device according to a fifth embodiment, in which the main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflector 13 and the reflection in the switching operation characteristic measurement device shown in FIG.
  • the plate position measuring unit 14 is extracted.
  • the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts, and the description thereof is omitted.
  • the cylindrical lens 34 is configured so that the light emitted conically from the light source 17 of the illumination optical system 16c is perpendicular to the linear movement direction of the main axis 6 and parallel to the surface of the diffuse reflector 13a.
  • the light emitted from the light source 17 in a conical shape is arranged in a condensing direction, and is formed into an elliptical cone shape by the cylindrical lens 34.
  • the intensity of light illuminated by the illumination optical system 16c can be increased, and stray light generated by diffuse reflection on the inner wall of the housing 11 can be reduced. Compared to the case, the distance S between the main shaft 6 and the reflector position measuring unit 14 is further increased.
  • the illumination optical system 16b of the second embodiment, the third embodiment, or the fourth embodiment is further provided with a cylindrical lens 34, so that light emitted in a conical shape from the light source 17 is once set in the linear motion direction of the main shaft 6. If light is condensed in a direction that is vertical and parallel to the surface of the retroreflector 13b, the intensity of the light that illuminates the retroreflector 13b can be increased, and the inner wall of the housing 11 can be increased. Since stray light generated by diffuse reflection can be reduced, the distance between the spindle 6 and the reflector position measurement unit 14 is further increased compared to the case of the second embodiment, the third embodiment, and the fourth embodiment. It is possible to place them apart.
  • FIG. 12 shows an opening / closing operation characteristic measurement device using the position detection device according to the present invention, which uses an illumination optical system 16c including a light source 17 and a cylindrical lens instead of the illumination optical system 16b of the fourth embodiment.
  • FIG. 6 is a configuration diagram for explaining the configuration of the sixth embodiment of the present invention, in which the main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflecting plate 13 and the reflecting plate in the switching operation characteristic measuring device shown in FIG. The position measuring unit 14 is extracted.
  • the same reference numerals as those in FIGS. 1 and 6 denote the same or corresponding parts, and the description thereof will be omitted.
  • FIG. 1 and 6 denote the same or corresponding parts, and the description thereof will be omitted.
  • the cylindrical lens 34 is configured so that the light emitted conically from the light source 17 of the illumination optical system 16c is perpendicular to the linear motion direction of the main axis 6 and parallel to the surface of the retroreflector 13b. It is arranged in the direction to collect light.
  • the intensity of light illuminated by the illumination optical system 16c can be increased, and stray light that is diffusely reflected by the inner wall of the housing 11 can be reduced, so that the fourth embodiment can be reduced.
  • the distance S between the main shaft 6 and the reflector position measuring unit 14 is further increased.
  • a cylindrical lens 34 is used to condense the emitted light from the light source 17 in a direction perpendicular to the linear motion direction of the main axis 6 and parallel to the surface of the diffuse reflector 13a. If the cylindrical lens 34 is replaced with a toroidal lens having a center of rotation in a plane perpendicular to the linear motion direction of the main shaft 6 and normal to the diffuse reflector 13a, The intensity of the light that illuminates the reflector 13a can be increased, and stray light that is diffusely reflected by the inner wall of the housing 11 can be reduced. The distance between 6 and the reflector position measurement unit 14 can be further increased.
  • FIG. 13 is a diagram for comparing and explaining the condensing characteristics of the cylindrical lens 34 and the toroidal lens 101.
  • FIG. 13 (a) is a perspective view showing the condensing characteristics of the cylindrical lens 34.
  • FIG. (b) is a cross-sectional view of the cylindrical lens 34 viewed from the direction of the cylindrical rotation axis and the direction perpendicular to the light traveling direction, and
  • FIG. 13 (c) is a diagram in which the cylindrical lens 34 in FIG.
  • FIG. 13D is a diagram in which the cylindrical lens 34 in FIG. 13A is replaced with a toroidal lens 101.
  • Fig. 13 (a) as in Fig.
  • the light emitted from the light source 17 is not condensed in the longitudinal direction of the cylindrical lens 34, but spreads and travels in the longitudinal direction.
  • the irradiation distribution is a light distribution condensed in the direction perpendicular to the longitudinal direction of the lens 34. Siri Light that travels in the direction toward the center of the cylindrical lens 34 is collected by the cylindrical lens 34 Light that travels to the periphery of the cylindrical lens 34 from the light source 17 is more cylindrical than light that travels to the center. Since the reach distance to the lens 34 becomes longer, the light collecting ability decreases.
  • the irradiation distribution 102 does not have an oval shape, but has a shape in which the width of the central portion where the light collection efficiency is high is away from the central portion where the width is narrow, and thus a wide shape. The power density of the light is reduced at the spots.
  • the toroidal lens 101 is a lens having a curved surface obtained by rotating the cylindrical side surface of the cylindrical lens 34 around a straight line perpendicular to the rotation axis of the cylindrical side surface.
  • the use of the toroidal lens 101 reduces the difference between the distance traveled by the light reaching the center of the toroidal lens 101 from the light source 17 and the distance traveled by the light reaching the periphery of the toroidal lens 101.
  • the light condensing properties of are almost equal. Therefore, when the toroidal lens 101 is used, the irradiation distribution 103 has an approximately oval shape, and it is possible to suppress the decrease in power density around the irradiation distribution 103.
  • FIG. 14 shows measurement of opening / closing operation characteristics using the position detection device according to the present invention, in which an illumination optical system 16d including a light source 17 and a toroidal lens 101 is used instead of the illumination optical system 16c of the fifth embodiment.
  • FIG. 7 is a configuration diagram for explaining the configuration of a device according to a seventh embodiment of the present invention, in which the main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflector 13 and the reflection in the switching operation characteristic measuring device shown in FIG. The plate position measuring unit 14 is extracted.
  • the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts, and the description thereof will be omitted.
  • a toroidal lens 101 collects light emitted conically from the light source 17 of the illumination optical system 16d in a direction perpendicular to the linear motion direction of the main axis 6 and parallel to the surface of the diffuse reflector 13a.
  • the light emitted from the light source 17 in a conical shape is formed into a rectangular shape by the toroidal lens 101.
  • the intensity of light illuminated by the illumination optical system 16d can be increased, and stray light generated by diffuse reflection on the inner wall of the housing 11 can be reduced.
  • the distance between the spindle 6 and the reflector position measurement unit 14 is further increased.
  • the power to do is S kurakura.
  • the illumination optical system 16b of the second embodiment, the third embodiment, and the fourth embodiment is further provided with a toroidal lens 101 so that light emitted in a conical shape from the light source 17 is once perpendicular to the linear motion direction of the main shaft 6.
  • the intensity of the light illuminating the retroreflector 13b can be increased, and the inner wall of the casing 11 etc. Therefore, the distance between the spindle 6 and the reflector position measurement unit 14 can be further increased compared to the case of the second embodiment, the third embodiment, and the fourth embodiment. It becomes possible to arrange
  • FIG. 15 is a diagram illustrating opening / closing operation characteristic measurement using the position detection device according to the present invention, in which an illumination optical system 16e including a light source 17 and a toroidal lens 101 is used instead of the illumination optical system 16b of the fourth embodiment.
  • FIG. 9 is a configuration diagram for explaining the configuration of Embodiment 8 of the device, including a main shaft 6 in the gas circuit breaker shown in FIG. 1 and a reflector 13 and a reflection in the switching operation characteristic measuring device shown in FIG. The plate position measuring unit 14 is extracted.
  • the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts, and the description thereof will be omitted.
  • the toroidal lens 101 has a direction in which the light emitted conically from the light source 17 of the illumination optical system 16e is perpendicular to the linear motion direction of the main axis 6 and parallel to the surface of the retroreflector 13b. It is arranged in the direction that condenses light.
  • the intensity of light illuminated by the illumination optical system 16e can be increased, and stray light that is diffusely reflected by the inner wall of the housing 11 can be reduced.
  • the distance S between the main shaft 6 and the reflector position measuring unit 14 is further increased.
  • the substrate manufacturing process can be reduced, the number of parts of the reflector position measurement unit 14 can be reduced, and the reflector position can be measured.
  • the production process of the fixed part 14 can be reduced and the effects can be obtained, and the cost of the reflector position measuring part 14 can be reduced.
  • the light source 17 and the image sensor 20 of the first embodiment are mounted on a substrate 104.
  • the light source 17 and the image pickup device 20 are individually arranged, and each substrate needs to be manufactured and mounted.
  • the substrate manufacturing and the process can be reduced, and the reflecting plate is reduced. It is possible to reduce the manufacturing cost of the position measurement unit 14.
  • a folding mirror 105 is provided between the half mirror 33 of Embodiment 2 shown in FIG. 7 and the image sensor 20, and the light source 17 and the image sensor 20 are placed on the same substrate 106. May be implemented.
  • the light source 17 and the image sensor 20 based on the configuration of the second embodiment shown in FIG. 7 and the force described on the method of mounting on the same substrate, the third, fourth, sixth, or eighth embodiment are also described.
  • a folding mirror 105 may be provided between the half mirror 33 and the image pickup device 20 so that the light source 17 and the image pickup device 20 are mounted on the same substrate.
  • the position detection device according to the present invention and the switching operation characteristic measurement device using the same are useful when applied to a circuit breaker that opens and closes a main circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A reflecting plate (13a) is secured to the main shaft (6) movable linearly along with the stroke of a movable contact (5) when a breaker opens or breaks. The linear movement area of the reflecting plate (13a) is illuminated by an illumination optical system having a light source emitting a cone beam of light. A part of light reflected from the reflecting plate is received by a light-receiving system. According to the intensity of light received, a detection signal is outputted. A signal processing section outputs a position signal of the reflecting plate (13a) according to the detection signal. A monitoring section (15) measures the open/closure operation characteristic according to the time-series data on the position signal. Thus, an open/closure operation characteristic measuring device using a position detector easily attachable to an existing breaker is provided.

Description

明 細 書  Specification
位置検出装置、これを用いた開閉動作特性計測装置及び遮断器 技術分野  Position detecting device, switching operation characteristic measuring device and circuit breaker using the same
[0001] この発明は、主回路を開閉する遮断器の主軸の位置を計測する位置検出装置と、 これを用いた開閉動作特性計測装置及び遮断器に関するものである。  The present invention relates to a position detection device that measures the position of a main shaft of a circuit breaker that opens and closes a main circuit, and a switching operation characteristic measurement device and circuit breaker using the position detection device.
背景技術  Background art
[0002] 主回路を開閉する遮断器は、固定接触子と直動可能な主軸に固着された可動接 触子とを備え、主軸の直動動作によって固定接触子と可動接触子が接触することで 閉極し、固定接触子と可動接触子が離れることで開極するようになっている。その際 、可動接触子のストローク動作による開閉が行われる瞬間とその近傍において、可動 接触子の位置と移動速度が安定して再現されることが遮断器の信頼性確保にとって 重要であり、製造時や定期点検時、場合によっては通常動作時の動作毎に、可動接 触子のストローク動作である開閉動作特性を計測することが行われる。  [0002] A circuit breaker that opens and closes a main circuit includes a fixed contact and a movable contact fixed to a linearly movable main shaft, and the fixed contact and the movable contact are in contact with each other by a linear movement of the main shaft. The contact is closed and the contact is opened when the fixed contact and the movable contact are separated. At that time, it is important to ensure the reliability of the circuit breaker that the position and moving speed of the movable contact are stably reproduced at and near the moment when the movable contact is opened and closed by the stroke operation. In addition, at the time of regular inspections, and in some cases during normal operations, the opening / closing operation characteristics, which are the stroke operations of the movable contact, are measured.
[0003] 従来の主軸の位置を検出する位置検出装置は、可動接触子が固着された主軸に 主軸の直動量を回転量に変換する機構を取り付け、その回転量をロータリーェンコ ーダで検出し、その回転量から主軸の直動量を求めることで、可動接触子の位置を 計測するようにしていた。また、この位置検出装置を用いた開閉動作特性計測装置 は、この位置検出装置が計測した位置データから主軸の移動速度を測定して開閉動 作特性を計測するようにして!/、た (例えば、特許文献 1参照)。  [0003] A conventional position detection device for detecting the position of a main shaft is equipped with a mechanism for converting the amount of linear motion of the main shaft into a rotation amount on the main shaft to which a movable contact is fixed, and the rotation amount is detected by a rotary encoder. Then, the position of the movable contact was measured by determining the amount of linear motion of the spindle from the amount of rotation. In addition, an open / close operation characteristic measuring device using this position detection device measures the spindle movement speed from the position data measured by this position detection device to measure the open / close operation characteristics! And Patent Document 1).
[0004] 特許文献 1 :特開 2001— 145217号公報(第 4頁、第 1図) Patent Document 1: Japanese Patent Laid-Open No. 2001-145217 (page 4, FIG. 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 従来の位置検出装置とこれを用いた開閉動作特性計測装置は上記のように構成さ れているので、これを既存の遮断器に取り付けるに当たり、ピストン運動を行う主軸に 改造を施すために遮断器の一部を分解することが必要となった。また、遮断器が高 電圧設備であることから、遮断器本体や主軸に隣接させて直動回動変換機構を配置 するに際し、高電圧に配慮して配置することが必要であった。このように、従来技術で は、主軸の改造のための作業や高電圧に配慮した配置を行う必要があることから、従 来の位置検出装置及び開閉動作特性計測装置を既存の遮断器に取り付けることが 容易では無レ、と!/、う問題があった。 [0005] The conventional position detection device and the open / close operation characteristic measurement device using the same are configured as described above. Therefore, in order to install this on an existing circuit breaker, the main shaft that performs the piston motion is modified. It was necessary to disassemble a part of the circuit breaker. In addition, since the breaker is a high-voltage facility, it was necessary to consider the high voltage when placing the linear motion rotation conversion mechanism adjacent to the breaker body and the main shaft. Thus, with the prior art Since it is necessary to perform work for remodeling the spindle and to arrange it in consideration of high voltage, it is not easy to attach the conventional position detection device and switching operation characteristic measurement device to the existing circuit breaker. There was a problem!
[0006] この発明は、上記のような課題を解決するために為されたもので、既存の遮断器に 対して容易に取り付け可能な位置検出装置とこれを用いた開閉動作特性計測装置 及び遮断器を提供することを目的とする。  [0006] The present invention has been made to solve the above-described problems. A position detection device that can be easily attached to an existing circuit breaker, a switching operation characteristic measuring device using the position detection device, and a breaker. The purpose is to provide a vessel.
課題を解決するための手段  Means for solving the problem
[0007] この発明に係る位置検出装置は、主軸に固着された反射板と、光を円錐状に放射 する光源を備え、前記光源からの光で前記反射板の直動可能範囲を照明する照明 光学系と、前記反射板によって反射された前記光源からの光を撮像素子の検出面に て受光し、受光量に基づいた検出信号を出力する受光光学系と、前記検出信号に 基づいて前記反射板の位置信号を出力する信号処理部とを備えることを特徴とする  [0007] A position detection device according to the present invention includes a reflector fixed to a main shaft and a light source that radiates light in a conical shape, and illuminates a linearly movable range of the reflector with the light from the light source. An optical system, a light receiving optical system that receives light from the light source reflected by the reflecting plate by a detection surface of an image sensor and outputs a detection signal based on the amount of received light, and the reflection based on the detection signal And a signal processing unit that outputs a position signal of the plate.
[0008] また、この発明に係る位置検出装置を用いた開閉動作特性計測装置は、前記位置 検出装置が出力する位置信号の時系列データに基づいてモニタリング部が開閉動 作特性を計測するようにした。 [0008] In the opening / closing operation characteristic measuring apparatus using the position detection device according to the present invention, the monitoring unit measures the opening / closing operation characteristics based on time-series data of the position signal output from the position detection device. did.
発明の効果  The invention's effect
[0009] この発明によれば、主軸の位置の計測に光を用い、主軸に反射板を固着して、照 明光学系で離れた位置から反射板の直動可能範囲を照明し、受光光学系で離れた 位置から反射板で反射された光を受光して、受光量に基づ!/、て信号処理部で主軸 の位置を計測し、計測された位置データに基づいてモニタリング部で開閉動作特性 を計測するようにしたので、主軸に単に反射板を固着するだけでそれ以外の主軸の 一切の改造は不要で、さらに、反射板以外の位置検出装置の本体は高電圧機器で ある遮断器の本体や主軸から離れた位置に配置することが可能なので、位置検出装 置を配置する上で高電圧に配慮する必要も無いことから、既存の遮断器に対しても 取り付けが極めて容易であるという効果を得ることができる。  [0009] According to the present invention, light is used for measuring the position of the main shaft, the reflecting plate is fixed to the main shaft, and the linearly movable range of the reflecting plate is illuminated from a position distant by the illuminating optical system. Receives the light reflected from the reflector from a position distant from the system, measures the position of the spindle with the signal processing unit based on the amount of received light, and opens and closes with the monitoring unit based on the measured position data Since the operating characteristics are measured, the reflector is simply fixed to the spindle, and no other modifications to the spindle are required. In addition, the position detector other than the reflector is a high-voltage device. Since it is possible to dispose it at a position away from the main body and main shaft of the breaker, there is no need to consider high voltage when placing the position detection device. The effect of being can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実施 の形態 1をガス遮断器に取り付けた構成を示す構成図である。 FIG. 1 shows an implementation of an opening / closing operation characteristic measuring apparatus using the position detecting apparatus according to the present invention. It is a block diagram which shows the structure which attached Form 1 to the gas circuit breaker.
[図 2]図 2は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実施 の形態 1の構成を詳細に説明するための詳細構成図である。  FIG. 2 is a detailed configuration diagram for explaining in detail the configuration of the first embodiment of the opening / closing operation characteristic measurement device using the position detection device according to the present invention.
[図 3]図 3は、撮像素子から出力された検出信号の強度を、横軸を画素位置として、 プロットした検出信号強度分布図である。  [FIG. 3] FIG. 3 is a detection signal intensity distribution chart in which the intensity of the detection signal output from the image sensor is plotted with the horizontal axis as the pixel position.
園 4]図 4は、ガス遮断器が開極動作を行った際の検出信号強度の分布波形のピー クの位置を、横軸を時間として、プロットした位置信号強度時間変化図である。 4] Fig. 4 is a graph showing the position signal intensity as a function of time, plotted with the horizontal axis representing the peak position of the distribution waveform of the detected signal intensity when the gas circuit breaker performs the opening operation.
[図 5]図 5は、ビーズ素子型再帰性反射板の構造を説明するための構造断面図であ 園 6]図 6は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実施 の形態 2の構成を詳細に説明するための詳細構成図である。  [FIG. 5] FIG. 5 is a structural cross-sectional view for explaining the structure of a bead element type retroreflector. 6] FIG. 6 shows an open / close operation characteristic measuring device using the position detecting device according to the present invention. FIG. 6 is a detailed configuration diagram for explaining in detail the configuration of the second embodiment.
[図 7]図 7は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実施 の形態 2の他の構成を詳細に説明するための詳細構成図である。  FIG. 7 is a detailed configuration diagram for explaining in detail another configuration of the second embodiment of the opening / closing operation characteristic measuring device using the position detection device according to the present invention.
園 8]図 8は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実施 の形態 3の構成を説明するための構成図である。 FIG. 8 is a configuration diagram for explaining the configuration of the third embodiment of the switching operation characteristic measuring device using the position detecting device according to the present invention.
園 9]図 9は、この発明に係る開閉動作特性計測装置の実施の形態 4の構成を説明 するための構成図である。 9] FIG. 9 is a configuration diagram for explaining the configuration of the embodiment 4 of the switching characteristic measurement apparatus according to the present invention.
園 10]図 10は、シリンドリカルレンズの集光機能を説明するための断面図である。 園 11]図 11は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実 施の形態 5の構成を説明するための構成図である。 FIG. 10 is a cross-sectional view for explaining the condensing function of the cylindrical lens. 11] FIG. 11 is a configuration diagram for explaining the configuration of the embodiment 5 of the opening / closing operation characteristic measuring device using the position detecting device according to the present invention.
園 12]図 12は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実 施の形態 6の構成を説明するための構成図である。 12] FIG. 12 is a configuration diagram for explaining the configuration of the sixth embodiment of the opening / closing operation characteristic measuring device using the position detecting device according to the present invention.
園 13]図 13は、シリンドリカルレンズとトロイダルレンズの集光特性を比較して説明す るための図である。 13] FIG. 13 is a diagram for comparing and explaining the condensing characteristics of the cylindrical lens and the toroidal lens.
園 14]図 14は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実 施の形態 7の構成を説明するための構成図である。 14] FIG. 14 is a configuration diagram for explaining the configuration of the seventh embodiment of the opening / closing operation characteristic measuring device using the position detecting device according to the present invention.
園 15]図 15は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実 施の形態 8の構成を説明するための構成図である。 [図 16]図 16は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実 施の形態 9の構成を説明するための構成図である。 15] FIG. 15 is a configuration diagram for explaining the configuration of the eighth embodiment of the opening / closing operation characteristic measuring device using the position detecting device according to the present invention. FIG. 16 is a configuration diagram for explaining the configuration of an embodiment 9 of the switching operation characteristic measuring apparatus using the position detecting device according to the present invention.
[図 17]図 17は、この発明に係る位置検出装置を用いた開閉動作特性計測装置にお レ、て、ハーフミラーと撮像素子の間に折返しミラーを配置した構成を説明するための 構成図である。  FIG. 17 is a configuration diagram for explaining a configuration in which a folding mirror is arranged between a half mirror and an image sensor in an open / close operation characteristic measuring device using the position detection device according to the present invention. It is.
符号の説明 Explanation of symbols
1 母線  1 bus
2 固定接触子  2 Fixed contact
3 送電線  3 Transmission line
4 固定接触子  4 Fixed contact
5 可動接触子  5 Movable contact
6 主軸  6 Spindle
13 反射板  13 Reflector
13a 拡散反射板  13a Diffuse reflector
13b 再帰性反射板  13b Retroreflector
15 モニタリング部  15 Monitoring Department
16a 照明光学系  16a Illumination optics
16b 照明光学系  16b Illumination optics
16c 照明光学系  16c Illumination optics
16d 照明光学系  16d illumination optics
16e 照明光学系  16e Illumination optics
17 光源  17 Light source
18a 受光光学系  18a Receiving optical system
18b 受光光学系  18b Receiving optical system
18c 受光光学系  18c Receiving optical system
18d 受光光学系  18d optical receiving system
19a レンズ  19a lens
19b ピンホーノレ 19c レンズ 19b Pinhonore 19c lens
20 撮像素子  20 Image sensor
21 信号処理部  21 Signal processor
33 ハーフミラー  33 half mirror
101 トロイダルレンズ 101 toroidal lens
104 基板  104 substrate
105 折り返しミラー  105 Folding mirror
106 基板  106 substrates
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下に、本発明にかかる位置検出装置、これを用いた開閉動作特性計測装置及 び遮断器の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態 によりこの発明が限定されるものではない。 Hereinafter, embodiments of a position detection device, an opening / closing operation characteristic measurement device and a circuit breaker using the same according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments.
[0013] 以下、この発明の実施の形態による位置検出装置を用いた開閉動作特性計測装 置を取り付ける遮断器が、電源の母線と主回路に電力を供給するための送電線との 間を開閉するガス遮断器である場合を例に説明する。 [0013] Hereinafter, a circuit breaker to which a switching operation characteristic measuring device using a position detection device according to an embodiment of the present invention is mounted opens and closes between a power source bus and a power transmission line for supplying power to the main circuit. A case where the gas circuit breaker is used will be described as an example.
[0014] なお、遮断器がガス絶縁方式に限られるわけでは無ぐ例えば、真空絶縁や油絶 縁や空気絶縁等の他の絶縁方式のものであってもこの発明に係る開閉動作特性計 測装置は適用可能である。また、遮断器が開閉するのが母線と送電線との間に限ら れるわけでは無ぐ例えば、送電線と負荷との間であっても良いのは言うまでも無い。 [0014] The circuit breaker is not limited to the gas insulation system, and for example, the switching operation characteristic measurement according to the present invention is possible even if the circuit breaker is of another insulation system such as vacuum insulation, oil insulation or air insulation. The device is applicable. In addition, the circuit breaker is not necessarily opened and closed between the bus and the transmission line. For example, it may be between the transmission line and the load.
[0015] 実施の形態 1. [0015] Embodiment 1.
図 1は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実施の 形態 1を電力系統設備等に既に設けられているガス遮断器に取り付けた構成を示す 構成図である。  FIG. 1 is a configuration diagram showing a configuration in which Embodiment 1 of an open / close operation characteristic measuring device using a position detection device according to the present invention is attached to a gas circuit breaker already provided in a power system facility or the like.
[0016] 図 1に示すように、ガス遮断器は、母線 1に接続された固定接触子 2と送電線 3に接 続された固定接触子 4との間を開閉するものであり、可動接触子 5がストローク動作を 行い、固定接触子 2及び固定接触子 4とに接触することで閉極し、可動接触子 5が固 定接触子 2及び固定接触子 4と離れることで開極するようになっている。 [0017] 可動接触子 5がストローク動作を行うために、可動接触子 5は主軸 6の一端に固定 されており、主軸 5の他端に設けられた主軸駆動部 7によって、主軸 5は矢印 8の示 す両方の向きに直動可能となっている。 As shown in FIG. 1, the gas circuit breaker opens and closes between the fixed contact 2 connected to the bus 1 and the fixed contact 4 connected to the power transmission line 3. The child 5 performs a stroke operation and closes when it comes into contact with the fixed contact 2 and the fixed contact 4, so that the movable contact 5 opens when it moves away from the fixed contact 2 and the fixed contact 4. It has become. [0017] In order for the movable contact 5 to perform a stroke operation, the movable contact 5 is fixed to one end of the main shaft 6, and the main shaft 5 is moved to the arrow 8 by the main shaft drive unit 7 provided at the other end of the main shaft 5. It is possible to move in both directions indicated by.
[0018] 固定接触子 2、固定接触子 4、及び可動接触子 5は、ガス遮断器の本体である圧力 容器 9内に設けられており、この圧力容器 9には六弗化硫黄等の絶縁ガスが封入さ れている。なお、主軸 6が圧力容器 9に導入される箇所には、主軸 6が直動する際に 圧力容器 9から絶縁ガスが漏れることが無いように、軸シール部 10が設けられている 。また、主軸 6や主軸 6を駆動する主軸駆動部 7は、圧力容器 9のように密閉はされて いないが、ガス遮断器自体が高電圧機器であることから、外部と距離を確保するため に筐体 11の中に設けられている。  [0018] The fixed contact 2, the fixed contact 4, and the movable contact 5 are provided in a pressure vessel 9 that is a main body of the gas circuit breaker. The pressure vessel 9 is insulated with sulfur hexafluoride or the like. Gas is sealed. A shaft seal portion 10 is provided at a location where the main shaft 6 is introduced into the pressure vessel 9 so that the insulating gas does not leak from the pressure vessel 9 when the main shaft 6 moves linearly. In addition, the main shaft 6 and the main shaft drive section 7 that drives the main shaft 6 are not sealed like the pressure vessel 9, but the gas circuit breaker itself is a high-voltage device, so it is necessary to secure a distance from the outside. It is provided in the housing 11.
[0019] なお、主軸 6をどのように駆動するかは、駆動制御部 12が主軸駆動部 7の動作を制 御することで行われる。  Note that how to drive the spindle 6 is performed by the drive control unit 12 controlling the operation of the spindle drive unit 7.
[0020] 次に、ガス遮断器に取り付けられたこの発明に係る開閉動作特性計測装置の実施 の形態 1につ!/、て、図 1を用いて構成を説明する。  [0020] Next, the configuration of the switching operation characteristic measuring apparatus according to the first embodiment of the present invention attached to a gas circuit breaker will be described with reference to FIG.
[0021] ガス遮断器の開閉動作時に可動接触子 5のストローク動作に連動して直動する主 軸 6には、反射板 13が固着されており、可動接触子 5のストローク動作範囲に対応し て、反射板 13の直動可能範囲が決まっている。図 1においては、反射板 13の直動可 能範囲は矢印 8の示す幅の範囲となっている。 [0021] A reflecting plate 13 is fixed to the spindle 6 that moves linearly in conjunction with the stroke operation of the movable contactor 5 when the gas circuit breaker is opened and closed, and corresponds to the stroke operation range of the movable contactor 5. Thus, the range in which the reflector 13 can be linearly moved is determined. In FIG. 1, the range in which the reflector 13 can be linearly moved is the range indicated by the arrow 8.
[0022] 反射板位置測定部 14は、光を用いて反射板 13の位置を測定するものであり、反射 板位置測定部 14から出力された反射板 13の位置信号はモニタリング部 15に送られThe reflector position measurement unit 14 measures the position of the reflector 13 using light, and the position signal of the reflector 13 output from the reflector position measurement unit 14 is sent to the monitoring unit 15.
、この位置信号の時系列データに基づいてガス遮断器の開閉動作特性がモニタリン グ部 15で計測される。 Based on the time-series data of this position signal, the switching circuit operating characteristics of the gas circuit breaker are measured by the monitoring unit 15.
[0023] モニタリング部 15で得られたガス遮断器の開閉動作特性のデータは、駆動制御部 12に送られ、駆動制御部 12はこのデータに基づいて主軸駆動部 7を制御する。もし 、開閉動作特性に異常があれば、駆動制御部 12はガス遮断器に故障が発生してい るとして、駆動制御部 12を制御してガス遮断器の開閉動作を中止し、故障発生を発 報する。  [0023] The data on the switching operation characteristics of the gas circuit breaker obtained by the monitoring unit 15 is sent to the drive control unit 12, and the drive control unit 12 controls the spindle drive unit 7 based on this data. If there is an abnormality in the open / close operation characteristics, the drive control unit 12 assumes that a failure has occurred in the gas circuit breaker, and controls the drive control unit 12 to stop the open / close operation of the gas circuit breaker and generate a failure. I will inform you.
[0024] 図 2は、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実施の 形態 1の構成を詳細に説明するための詳細構成図であり、図 1に示すガス遮断器の 内の主軸 6と図 1に示す開閉動作特性計測装置の内の反射板 13及び反射板位置 測定部 14を抜き出したものである。また、図 1と同一符号は同一又は相当部分を示 すのでその説明を省略する。 [0024] FIG. 2 shows an implementation of an opening / closing operation characteristic measurement device using the position detection device according to the present invention. FIG. 2 is a detailed configuration diagram for explaining the configuration of Form 1 in detail, in which the main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflector 13 and the reflector position measurement in the switching operation characteristic measuring device shown in FIG. 1 are measured. Part 14 is extracted. The same reference numerals as those in FIG. 1 denote the same or corresponding parts, and the description thereof is omitted.
[0025] 図 2において、図 1に記載の反射板 13に対応するのは拡散反射板 13aであり、照 明された光を拡散反射する。従って、拡散反射板 13aで反射された光は広い範囲に 広がって伝搬していくため、拡散反射板 13aから距離が離れると著しく反射された光 の強度が低下する。 In FIG. 2, the diffuse reflector 13a corresponds to the reflector 13 shown in FIG. 1, and diffuses and reflects the illuminated light. Therefore, since the light reflected by the diffuse reflector 13a spreads and propagates over a wide range, the intensity of the light reflected significantly decreases as the distance from the diffuse reflector 13a increases.
[0026] また、図 2において、主軸 6は矢印 8の両方の向きに直動するようになっており、この 主軸 6に固着された拡散反射板 13aの直動可能範囲は、図 1に記載の可動接触子 5 のストローク動作範囲に対応して、矢印 8の幅の示す範囲となっている。  Further, in FIG. 2, the main shaft 6 moves linearly in both directions of the arrow 8, and the linearly movable range of the diffuse reflector 13 a fixed to the main shaft 6 is described in FIG. Corresponding to the stroke operation range of the movable contact 5 of FIG.
[0027] また、拡散反射板 13aを照明する照明光学系 16aは、光を円錐状に放射する、例 えば、ランプ、 LED、または半導体レーザ等の光源 17を備えており、光源 17からの 光で拡散反射板 13aの直動可能範囲を照明している。  [0027] The illumination optical system 16a that illuminates the diffuse reflector 13a includes a light source 17 such as a lamp, an LED, or a semiconductor laser that emits light in a conical shape. Illuminates the movable range of the diffuse reflector 13a.
[0028] 照明光学系 16aによって拡散反射板 13aの直動可能範囲が照明される。拡散反射 板 13aで拡散反射された光は、受光光学系 18aで受光される。受光光学系 18aは、 拡散反射板 13aで拡散反射されて広がった光を集光する結像光学素子であるレンズ 19aと、集光された拡散反射板 13aからの光を受光して受光量に基づいた検出信号 を出力する撮像素子 20とを備えて!/、る。  [0028] The illumination optical system 16a illuminates the linearly movable range of the diffuse reflector 13a. The light diffusely reflected by the diffuse reflector 13a is received by the light receiving optical system 18a. The light receiving optical system 18a receives the light from the lens 19a, which is an imaging optical element that condenses the light diffused and reflected by the diffuse reflector 13a, and the condensed diffuse reflector 13a, and receives the received light amount. And an image pickup device 20 for outputting a detection signal based on the detection signal.
[0029] レンズ 19aは、拡散反射板 13aで拡散反射された光が撮像素子 20の検出面に結 像するように配置されている。  [0029] The lens 19a is arranged so that the light diffusely reflected by the diffuse reflector 13a forms an image on the detection surface of the image sensor 20.
[0030] なお、上記では、結像光学素子としては、レンズである場合を説明したが、結像機 能があればレンズに限られるわけではなぐ例えば、ピンホール、フレネルゾーンプレ ートゃ凹面ミラーであっても良レ、のは言うまでも無レ、。  In the above description, the imaging optical element is a lens. However, the imaging optical element is not limited to a lens as long as it has an imaging function. For example, a pinhole, a Fresnel zone plate or a concave surface is used. Needless to say, even a mirror is good.
[0031] 撮像素子 20から出力された検出信号は信号処理部 21に送られ、信号処理部 21 は、この検出信号に基づいて拡散反射板 13aの位置信号を得る信号処理を行い、 得られた位置信号は、図 1に記載のモニタリング部 15に送られる。  [0031] The detection signal output from the image sensor 20 is sent to the signal processing unit 21, and the signal processing unit 21 performs signal processing to obtain a position signal of the diffuse reflector 13a based on the detection signal. The position signal is sent to the monitoring unit 15 shown in FIG.
[0032] なお、図 1に記載の反射板位置測定部 14は、図 2の照射光学系 16aと受光光学系 18aと信号処理部 21から構成されている。 Note that the reflector position measurement unit 14 shown in FIG. 1 includes the irradiation optical system 16a and the light receiving optical system shown in FIG. 18a and a signal processing unit 21.
[0033] 次に、この開閉動作特性計測装置の動作について、以下に図 1と図 2を用いて詳 細に説明する。 Next, the operation of this open / close operation characteristic measuring apparatus will be described in detail with reference to FIGS. 1 and 2.
[0034] 図 1に示すガス遮断器は、可動接触子 5のストローク動作によって、可動接触子 5が 固定接触子 2及び固定接触子 4と接触すると閉極し、可動接触子 5が固定接触子 2 及び固定接触子 4と離れると開極する。  [0034] The gas circuit breaker shown in FIG. 1 is closed when the movable contact 5 comes into contact with the fixed contact 2 and the fixed contact 4 by the stroke operation of the movable contact 5, and the movable contact 5 is fixed. 2 and fixed contact 4 and away from contact.
[0035] その際、ガス遮断器の開閉が行われる瞬間とその近傍での可動接触子 5のストロー ク動作があらかじめ設定されたとおりに再現性良く行われることは、ガス遮断器の性 能と信頼性を確保する上で極めて重要であり、所定のストローク動作で開閉できなく なると、大きな開閉サージを引き起こしたり、ガス遮断器の故障を招く恐れがある。  [0035] At this time, the stroke operation of the movable contactor 5 at the moment when the gas circuit breaker is opened and closed and in the vicinity thereof is performed with high reproducibility as set in advance. This is extremely important for ensuring reliability. If the switch cannot be opened or closed with a specified stroke, it may cause a large switching surge or a gas circuit breaker.
[0036] そこで、可動接触子 5のストローク動作である開閉動作特性を、ガス遮断器の製造 時や定期点検時、場合によっては通常動作時の動作毎に計測することが行われる。  [0036] Therefore, the opening / closing operation characteristics as the stroke operation of the movable contactor 5 are measured at the time of manufacturing the gas circuit breaker, at the periodic inspection, or in some cases during the operation at the normal operation.
[0037] さて、例えば、ガス遮断器が閉極した状態にあり、送電線 3の点検を実施する必要 が生じた場合にはガス遮断器を開極させることとなる力 その場合、接触子 5を固定 接触子 2及び固定接触子 4から引き離すストローク動作が行われる。  [0037] Now, for example, when the gas circuit breaker is in a closed state and the transmission line 3 needs to be inspected, the force that will open the gas circuit breaker. Stroke operation is performed to separate the contact from the fixed contact 2 and fixed contact 4.
[0038] その際、接触子 5のストローク動作に連動して直動する主軸 6が駆動制御部 12で制 御された主軸駆動部 7によって駆動され、主軸 6に固着された図 2に示す拡散反射板 13aは矢印 8の幅が示す直動可能範囲で移動することとなる。  At this time, the main shaft 6 that moves linearly in conjunction with the stroke operation of the contact 5 is driven by the main shaft driving unit 7 controlled by the drive control unit 12 and is fixed to the main shaft 6 as shown in FIG. The reflecting plate 13a moves within the linearly movable range indicated by the width of the arrow 8.
[0039] 光を円錐状に放射する光源 17を備えた照明光学系 16aは矢印 8の幅が示す直動 可能範囲を照明しており、拡散反射板 13aは直動可能範囲内で移動するので、常に 光源 17からの光を拡散反射している。  [0039] The illumination optical system 16a including the light source 17 that emits light in a conical shape illuminates the linearly movable range indicated by the width of the arrow 8, and the diffuse reflector 13a moves within the linearly movable range. The light from the light source 17 is always diffusely reflected.
[0040] 拡散反射板 13aで拡散反射された光は、受光光学系 18aで受光される。その際、レ ンズ 19aは 1次元ないしは 2次元の CCDやフォトダイオードアレイ等の撮像素子 20の 検出面に結像するように配置されているので、拡散反射板 13aの移動に伴なつて、 検出面上を拡散反射板 13aの像が移動する。この像の移動を反映した撮像素子 20 から出力される検出信号を信号処理部 21で信号処理することにより、拡散反射板 13 aの位置を示す位置信号が得られる。  [0040] The light diffusely reflected by the diffuse reflector 13a is received by the light receiving optical system 18a. At that time, the lens 19a is arranged so as to form an image on the detection surface of the image pickup device 20 such as a one-dimensional or two-dimensional CCD or photodiode array, so that the detection is performed as the diffuse reflector 13a moves. The image of the diffuse reflector 13a moves on the surface. The signal processing unit 21 performs signal processing on the detection signal output from the image sensor 20 reflecting the movement of the image, thereby obtaining a position signal indicating the position of the diffuse reflector 13a.
[0041] 図 3は、一例として 1次元 CCDである撮像素子 20から出力された検出信号の強度 を、横軸を画素位置として、プロットした検出信号強度分布図である。 [0041] FIG. 3 shows the intensity of the detection signal output from the image sensor 20, which is a one-dimensional CCD as an example. Is a detected signal intensity distribution diagram plotted with the horizontal axis as the pixel position.
[0042] 図 3において、矢印 22の位置でピークとなっている実線の分布波形は可動接触子 5が固定接触子 2及び固定接触子 4と接触してガス遮断器が閉極している状態の場 合を示しており、矢印 23の位置でピークとなっている破線の分布波形はガス遮断器 が開極して!/、る状態の場合を示して!/、る。 [0042] In FIG. 3, the distribution waveform of the solid line that peaks at the position of the arrow 22 shows a state where the movable circuit 5 is in contact with the stationary contact 2 and the stationary contact 4 and the gas circuit breaker is closed. The broken line distribution waveform that peaks at the position of the arrow 23 indicates that the gas circuit breaker is open!
[0043] ガス遮断器が開極動作を行うと、閉極状態であった矢印 22の位置でピークとなって いる実線の分布波形力 S、拡散反射板 13aの移動に伴なつて矢印 24の示す向きに移 動し、矢印 23の位置に達して開極状態となる。ここで、分布波形のピークの位置と主 軸 6の位置とは一対一に対応しているので、このピーク位置から拡散反射板 13aの位 置を得ること力 Sでさる。 [0043] When the gas circuit breaker performs the opening operation, the distribution wave force S of the solid line that peaks at the position of the arrow 22 that was in the closed state, the arrow 24 along with the movement of the diffuse reflector 13a It moves in the direction shown, reaches the position of arrow 23 and enters the open state. Here, since the position of the peak of the distribution waveform and the position of the main axis 6 have a one-to-one correspondence, the force S for obtaining the position of the diffuse reflector 13a from this peak position is divided.
[0044] 図 4は、ガス遮断器が開極動作を行った際の検出信号強度の分布波形のピークの 位置を、横軸を時間として、プロットした位置信号強度時間変化図である。  [0044] Fig. 4 is a position signal intensity variation diagram with time plotted with the horizontal axis representing the peak position of the distribution waveform of the detected signal intensity when the gas circuit breaker performs the opening operation.
[0045] 図 4に示すように、ガス遮断器が開極動作を行うと、拡散反射板 13aの位置に対応 した位置信号の強度は、ガス遮断器が閉極している状態の矢印 25の位置に対応し た位置信号の値からガス遮断器が開極している状態の矢印 26の位置に対応した位 置信号の値に時間とともに移動している。  [0045] As shown in FIG. 4, when the gas circuit breaker performs the opening operation, the intensity of the position signal corresponding to the position of the diffuse reflector 13a is indicated by the arrow 25 in the state where the gas circuit breaker is closed. The position signal value corresponding to the position moves over time from the position signal value corresponding to the position of the arrow 26 in the state where the gas circuit breaker is open.
[0046] 以上のように、主軸 6に固着された拡散反射板 13aの位置が信号処理部 21から出 力される位置信号の強度から得ることができる。  As described above, the position of the diffuse reflector 13a fixed to the main shaft 6 can be obtained from the intensity of the position signal output from the signal processing unit 21.
[0047] ところで、可動接触子 5と拡散反射板 13aはいずれも主軸 6に固着されており、それ ぞれの固着されている位置は異なる力 可動接触子 5の位置と拡散反射板 13aの位 置は一対一に対応している。  [0047] By the way, both the movable contact 5 and the diffuse reflector 13a are fixed to the main shaft 6, and the positions where the fixed contacts are different are the positions of the movable contact 5 and the diffuse reflector 13a. The positions correspond one-to-one.
[0048] 従って、図 1に記載のモニタリング部 15において、信号処理部 21から出力され、時 間とともに刻々変化していく位置信号のデータから、可動接触子 5のストローク動作で あるガス遮断器の開閉動作特性を計測する。言い換えると、位置信号の時系列デー タから可動接触子 5の位置とその位置での移動速度が計測されることとなる。  Therefore, in the monitoring unit 15 shown in FIG. 1, the position of the gas circuit breaker that is the stroke operation of the movable contact 5 is obtained from the position signal data output from the signal processing unit 21 and changing with time. Measure the open / close operating characteristics. In other words, the position of the movable contact 5 and the moving speed at that position are measured from the time-series data of the position signal.
[0049] 以上のように、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実 施の形態 1は、主軸 6の位置の計測に光を用いており、遮断器の開閉動作時に可動 接触子 5のストローク動作に連動して直動する主軸 6に拡散反射板 13aを固着し、光 を円錐状に放射する光源 17を備える照明光学系 16aにより前記拡散反射板 13aの 直動可能範囲を照明し、受光光学系 18aで前記拡散反射板 13aによって反射された 前記光源 17からの光を撮像素子 20の検出面に結像光学素子である例えばレンズ 1 9aで結像させ、結像された光の受光量に基づ!/、て前記撮像素子 20から検出信号を 出力するようにした。さらに、前記検出信号に基づいてモニタリング部 15が開閉動作 特性を計測するようにした。 [0049] As described above, Embodiment 1 of the opening / closing operation characteristic measuring apparatus using the position detection apparatus according to the present invention uses light for measuring the position of the spindle 6, and at the time of the opening / closing operation of the circuit breaker. Movable contact A diffuse reflector 13a is fixed to the main shaft 6 that moves linearly in conjunction with the stroke movement of the 5 The illumination optical system 16a including the light source 17 that emits light in a conical shape illuminates a linearly movable range of the diffuse reflector 13a, and the light from the light source 17 reflected by the diffuse reflector 13a is received by the light receiving optical system 18a. An image is formed on the detection surface of the image sensor 20 by an imaging optical element, for example, a lens 19a, and a detection signal is output from the image sensor 20 based on the amount of received light of the imaged light! . Further, the monitoring unit 15 measures the opening / closing operation characteristics based on the detection signal.
[0050] この発明に係る位置検出装置を用いた開閉動作特性計測装置の実施の形態 1は 、以上のように構成されているので、主軸 6に単に拡散反射板 13aを固着するだけで それ以外の主軸 6の一切の改造は不要で、さらに、拡散反射板 13a以外の開閉動作 特性計測装置の本体は高電圧機器であるガス遮断器の本体や主軸 6から離れた位 置に配置することが可能であるので、開閉動作特性計測装置を配置する上で高電圧 に配慮する必要も無レ、ことから、既存のガス遮断器に対しても取り付けが極めて容易 であるという効果がある。  [0050] Since the first embodiment of the opening / closing operation characteristic measuring device using the position detecting device according to the present invention is configured as described above, the diffusing reflector 13a is simply fixed to the main shaft 6 and the others. There is no need to modify the main shaft 6 of the switch, and the main body of the switching operation characteristic measuring device other than the diffuse reflector 13a can be placed away from the main body of the gas circuit breaker, which is a high-voltage device, and the main shaft 6. Since it is possible, there is no need to consider high voltage when installing the switching operation characteristic measuring device, and it is very easy to install on existing gas circuit breakers.
[0051] なお、上記では既存のガス遮断器に対してこの開閉動作特性計測装置を取り付け ることを述べたが、電力系統設備等に新設するガス遮断器に取り付ける場合におい ても、開閉動作特性計測装置を配置する上で高電圧に配慮する必要が無いことから 、取り付けが容易で、その結果、ガス遮断器自体の設計が容易になるという効果があ  [0051] In the above description, the switch operating characteristic measuring device is attached to an existing gas circuit breaker. However, the switch operating characteristic is also applied to a gas circuit breaker newly installed in a power system facility. Since there is no need to consider high voltage when placing the measuring device, it is easy to install and as a result, the design of the gas circuit breaker itself is facilitated.
[0052] 実施の形態 2. [0052] Embodiment 2.
実施の形態 1の開閉動作特性計測装置では、主軸 6に固着する反射板として拡散 反射板 13aを用いたが、拡散反射板 13aで拡散反射された光は広がって伝搬してい くため、拡散反射板 13aから受光光学系までの距離が離れると検出信号の強度が著 しく低下すると同時に、撮像素子 20から出力される画素位置に対する検出信号の強 度分布は極めてブロードとなって、ピーク位置を得ることが困難となる。従って、広が つた光を集光する結像光学素子である例えばレンズ 19aを用いて撮像素子 20の検 出面に結像させることが必要である。  In the open / close operation characteristic measuring apparatus of the first embodiment, the diffuse reflector 13a is used as the reflector fixed to the main shaft 6. However, the light diffusely reflected by the diffuse reflector 13a spreads and propagates. When the distance from the plate 13a to the light receiving optical system is increased, the intensity of the detection signal is remarkably lowered. At the same time, the intensity distribution of the detection signal with respect to the pixel position output from the image sensor 20 is extremely broad to obtain the peak position. It becomes difficult. Therefore, it is necessary to form an image on the detection surface of the image sensor 20 using, for example, the lens 19a which is an imaging optical element that collects the spread light.
[0053] さらに、ガス遮断器への取り付け上の制約から主軸 6と反射板位置測定部 14との距 離を大きく離して配置する必要がある場合は、主軸 6に固着された拡散反射板 13aと 反射位置測定部 14を構成する受光光学系 18aとの距離が大きくなつて、たとえ、拡 散反射板 13aで反射されて広がって伝搬する光を結像光学素子であるレンズ 19aで 集光するにしても、レンズ 19aの仕様を選択するに当たって開口数、焦点距離、レン ズ口径等から決まる制約があり、集光できる能力に限度があるため、撮像素子 20から 出力される検出信号が著しく低下して、ガス遮断器の開閉動作特性の計測が困難と なる。 [0053] Furthermore, when it is necessary to dispose the main shaft 6 and the reflector position measuring unit 14 at a large distance due to restrictions on attachment to the gas circuit breaker, the diffuse reflector 13a fixed to the main shaft 6 is used. When If the distance from the light receiving optical system 18a constituting the reflection position measuring unit 14 is increased, the light that is reflected by the diffusing reflector 13a and spreads and propagates is condensed by the lens 19a that is an imaging optical element. However, when selecting the specifications of the lens 19a, there are restrictions determined by the numerical aperture, focal length, lens aperture, etc., and there is a limit to the ability to collect light, so the detection signal output from the image sensor 20 is significantly reduced. Therefore, it becomes difficult to measure the switching characteristics of the gas circuit breaker.
[0054] そこで、主軸 6に固着する反射板 13として拡散反射板 13aに代えて再帰性反射板 を用いると、再帰性反射板で鏡面反射された光は広がること無しに直進し、再帰性反 射板から受光光学系までの距離が離れても拡散反射板 13aの場合に比べると検出 信号の強度低下は大幅に少なレ、。  [0054] Therefore, when a retroreflector is used instead of the diffuse reflector 13a as the reflector 13 fixed to the main shaft 6, the light that is specularly reflected by the retroreflector travels straight without spreading and recursively reacts. Even if the distance from the launch plate to the light receiving optical system is increased, the intensity of the detection signal is greatly reduced compared to the case of the diffuse reflector 13a.
[0055] 従って、再帰性反射板を用いることで、再帰性反射板と撮像素子 20の検出面が離 れていても撮像素子 20から出力される検出信号の強度は著しく低下することは無ぐ さらに、画素位置に対する検出信号の強度分布も著しくブロードとなることは無いの で、結像光学素子を必ずしも用いる必要が無ぐさらに、主軸 6と反射板位置測定部 14との距離を大きく離して配置する必要がある場合にお!/、ても、検出信号の強度は 著しく低下することは無いので、開閉動作特性を正確に計測することが可能となる。  Therefore, by using the retroreflecting plate, the intensity of the detection signal output from the image sensor 20 does not significantly decrease even if the retroreflector and the detection surface of the image sensor 20 are separated. Further, since the intensity distribution of the detection signal with respect to the pixel position does not become significantly broad, it is not always necessary to use the imaging optical element, and the distance between the spindle 6 and the reflector position measurement unit 14 is greatly increased. Even if there is a need to place it, the intensity of the detection signal does not drop significantly, so it is possible to accurately measure the switching operation characteristics.
[0056] 図 5は、再帰性反射板の一例であるビーズ素子型再帰性反射板の構造を説明する ための構造断面図である。  FIG. 5 is a structural cross-sectional view for explaining the structure of a bead element type retroreflector which is an example of a retroreflector.
[0057] 図 5に示すビーズ素子型再帰性反射板は、ガラス等の光学的に透明な素材で形成 されたビーズ 27が樹脂フィルム等の基材 28上に 2次元状に配列された構造となって いる。ビーズ 27の球表面の半分には反射層 29が設けられており、光は反射層 29で 反射される。反射層 29と反対側のビーズ 27の表面にはビーズ 27が傷つかないよう に保護層 30で全面を覆われて!/、る。  [0057] The bead element type retroreflector shown in FIG. 5 has a structure in which beads 27 formed of an optically transparent material such as glass are two-dimensionally arranged on a substrate 28 such as a resin film. It is. A reflection layer 29 is provided on half of the spherical surface of the bead 27, and light is reflected by the reflection layer 29. The entire surface of the bead 27 opposite to the reflective layer 29 is covered with a protective layer 30 so that the bead 27 is not damaged.
[0058] 平面波である入射光 31がビーズ素子型再帰性反射板に入射すると、入射光 31は 、保護層 30を透過した後、ビーズ 27に入り、反射層 29で反射される。反射層 29で反 射された後は、ビーズ 27から出て、保護層 30を透過して出射される。この際、ビーズ 素子型再帰性反射板を出射した出射光 32の出射角は入射光 31がビーズ素子型再 帰性反射板に入射した際の入射角と等しぐ出射光 32の伝搬する向きは入射光 31 の伝搬する向きと逆となっている。 When incident light 31, which is a plane wave, enters the bead element type retroreflector, the incident light 31 passes through the protective layer 30, enters the beads 27, and is reflected by the reflective layer 29. After being reflected by the reflective layer 29, the light exits from the beads 27 and passes through the protective layer 30 to be emitted. At this time, the outgoing angle of the outgoing light 32 emitted from the bead element type retroreflector is the same as the incident angle when the incident light 31 enters the bead element type retroreflector. Is incident light 31 This is the opposite of the propagation direction.
[0059] 以上のように、ビーズ素子型再帰性反射板は、入射光 31が入射してきた方向と同 じ方向でかつ反対の向きに反射光 32を鏡面反射するという特徴を持っており、拡散 反射板のように拡散反射するわけではないので、反射光 32は広がって伝搬せずに 直進する。従って、反射光 32は、ビーズ素子型再帰性反射板からの距離が大きくな つても拡散反射板の場合に比べると単位面積当たりの強度が著しく低下するようなこ とが無レ、とレ、う特徴を持って!/、る。  [0059] As described above, the bead element type retroreflector has the characteristic that the reflected light 32 is specularly reflected in the same direction as the direction in which the incident light 31 is incident and in the opposite direction. Since it is not diffusely reflected like a reflector, the reflected light 32 spreads straight and does not propagate. Therefore, the reflected light 32 does not significantly decrease the intensity per unit area even when the distance from the bead element type retroreflector is large as compared with the case of the diffuse reflector. Has features!
[0060] 図 6は、反射板として再帰性反射板を用いた、この発明に係る位置検出装置を用い た開閉動作特性計測装置の実施の形態 2の構成を詳細に説明するための詳細構成 図であり、図 1に示すガス遮断器の内の主軸 6と図 1に示す開閉動作特性計測装置 の内の反射板 13及び反射板位置測定部 14を抜き出したものである。また、図 1及び 図 2と同一符号は同一又は相当部分を示すので説明を省略する。  FIG. 6 is a detailed configuration diagram for explaining in detail the configuration of the second embodiment of the opening / closing operation characteristic measuring device using the position detecting device according to the present invention using a retroreflecting plate as the reflecting plate. The main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflecting plate 13 and the reflecting plate position measuring unit 14 in the switching operation characteristic measuring device shown in FIG. 1 are extracted. Further, the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts, and thus the description thereof is omitted.
[0061] 図 6において、図 1に記載の反射板 13に対応するのは再帰性反射板 13bであり、 具体的には図 5に示したビーズ素子型再帰性反射板である。再帰性反射板 13bは、 図 5に示すように、入射光 31は入射してきた方向と同じ方向でかつ反対の向きに鏡 面反射されるので、反射光 32は広がって伝搬せずに直進するとレ、う特徴を持って!/、  In FIG. 6, the retroreflector 13b corresponds to the reflector 13 shown in FIG. 1, and more specifically, the bead element type retroreflector shown in FIG. As shown in FIG. 5, the retroreflector 13b is specularly reflected in the same direction as the incident direction and in the opposite direction, so that the reflected light 32 spreads and propagates straight without propagating. Have a special feature! /,
[0062] また、図 6において、照明光学系 16bは、光を円錐状に放射する光源 17とハーフミ ラー 33を備えており、光源 17からの光はハーフミラー 33で一旦反射されて再帰性反 射板 13bの直動可能範囲を照明する。 In FIG. 6, the illumination optical system 16 b includes a light source 17 that emits light in a conical shape and a half mirror 33, and the light from the light source 17 is reflected once by the half mirror 33 and recursively counteracted. Illuminate the direct-movable range of the firing plate 13b.
[0063] 照明光学系 16bで再帰性反射板 13bの直動可能範囲が照明され、再帰性反射板 13bで鏡面反射された光は、受光光学系 18bで受光される。受光光学系 18bは、再 帰性反射板 13bで鏡面反射されて直進してきた光を受光する撮像素子 20を備えて いる。  The illumination optical system 16b illuminates the linearly movable range of the retroreflector 13b, and the light specularly reflected by the retroreflector 13b is received by the light receiving optical system 18b. The light receiving optical system 18b includes an image pickup device 20 that receives light that has been specularly reflected by the retroreflector 13b and travels straight.
[0064] 再帰性反射板 13bで鏡面反射された光は広がること無しに直進して撮像素子 20の 検出面に達するので、撮像素子 20から出力される検出信号の強度は十分に大きぐ さらに、画素位置に対する検出信号の強度分布もピーク位置を得ることができないほ どプ'ロードとなることは無い。 [0065] 次に、撮像素子 20から出力された検出信号は信号処理部 21に送られ、信号処理 部 21は、この検出信号に基づいて再帰性反射板 13bの位置信号を得る実施の形態 1と同様の信号処理を行い、得られた位置信号は、図 1に記載のモニタリング部 1 5に 送られて、ガス遮断器の開閉動作特性が計測される。 [0064] The light that is specularly reflected by the retroreflector 13b goes straight without reaching the detection surface of the image sensor 20, so that the intensity of the detection signal output from the image sensor 20 is sufficiently large. The intensity distribution of the detection signal with respect to the pixel position is not so broad that the peak position cannot be obtained. Next, the detection signal output from the image sensor 20 is sent to the signal processing unit 21, and the signal processing unit 21 obtains the position signal of the retroreflector 13b based on this detection signal. The same signal processing is performed, and the obtained position signal is sent to the monitoring unit 15 shown in FIG. 1, and the switching operation characteristics of the gas circuit breaker are measured.
[0066] この発明に係る位置検出装置を用いた開閉動作特性計測装置の実施の形態 2は 、以上のように構成されているので、実施の形態 1と同様に、既存のガス遮断器に対 しても取り付けが極めて容易であるという効果がある。  [0066] Since the second embodiment of the switching operation characteristic measuring apparatus using the position detecting device according to the present invention is configured as described above, the present invention is not limited to the existing gas circuit breaker as in the first embodiment. Even if it has the effect that attachment is very easy.
[0067] さらに、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実施の形 態 2は、反射板が再帰性反射板 13bであるので反射された光がほとんど広がらずに 直進して撮像素子 20の検出面に到達することから、ガス遮断器への取り付け上の制 約から主軸 6と反射板位置測定部 14との距離を大きく離して配置する必要がある場 合においても、撮像素子 20から出力される検出信号が著しく低下することが無ぐガ ス遮断器の開閉動作特性を正確に計測することができるという効果がある。  [0067] Further, in Embodiment 2 of the opening / closing operation characteristic measuring apparatus using the position detecting device according to the present invention, since the reflecting plate is the retroreflecting plate 13b, the reflected light travels straight without almost spreading. Therefore, even if the distance between the main shaft 6 and the reflector position measurement unit 14 needs to be greatly separated from the restriction on the attachment to the gas circuit breaker, it reaches the detection surface of the image sensor 20. There is an effect that the switching operation characteristics of the gas circuit breaker can be accurately measured without the detection signal output from the image sensor 20 being significantly lowered.
[0068] なお、上記では、再帰性反射板 13bがビーズ素子型であるとして説明した力 例え ば 3面体コーナーキューブ素子型のような再帰性反射の機能を有する反射板であれ ば良いのは言うまでも無い。  [0068] Note that, in the above description, it is sufficient that the retroreflector 13b is a reflector having a retroreflective function such as the trihedral corner cube element type described as a bead element type. Not too long.
[0069] また、上記では、光源 17の放射光をノヽーフミラー 33で反射し、ハーフミラー 33を透 過した光を撮像素子 20で受光する構成について説明した力 S、図 7に示すように、光 源 17からの放射光はハーフミラー 33を透過させ、ハーフミラー 33で反射した光を撮 像素子 20で受光するように構成しても同様の効果が得られる。  [0069] Further, in the above, the force S described for the configuration in which the radiation light of the light source 17 is reflected by the noise mirror 33 and the light transmitted through the half mirror 33 is received by the image sensor 20, as shown in FIG. The same effect can be obtained even if the light emitted from the light source 17 is transmitted through the half mirror 33 and the image element 20 receives the light reflected by the half mirror 33.
[0070] 実施の形態 3.  [0070] Embodiment 3.
実施の形態 2の受光光学系 18bは撮像素子 20のみを備えている力 S、撮像素子 20 力、ら出力される検出信号のバックグラウンドノイズを低減するために、結像光学素子 をさらに備えるようにすれば、主軸 6と反射板位置測定部 14との距離をさらに大きく 離して配置することが可能となる。  The light receiving optical system 18b according to the second embodiment further includes an imaging optical element in order to reduce the background noise of the detection signal output from the force S including only the image sensor 20 and the image sensor 20 force. By doing so, the distance between the main shaft 6 and the reflector position measuring unit 14 can be further increased.
[0071] 図 8は、実施の形態 2の受光光学系 18bに代えて、撮像素子 20と結像光学素子で あるピンホール 19bを備える受光光学系 18cを用いた、この発明に係る位置検出装 置を用いた開閉動作特性計測装置の実施の形態 3の構成を説明するための構成図 であり、図 1に示すガス遮断器の内の主軸 6と図 1に示す開閉動作特性計測装置の 内の反射板 13及び反射板位置測定部 14を抜き出したものである。また、図 1及び図 6と同一符号は同一又は相当部分を示すので説明を省略する。 FIG. 8 shows a position detection device according to the present invention using a light receiving optical system 18c including an imaging element 20 and a pinhole 19b as an imaging optical element instead of the light receiving optical system 18b of the second embodiment. Configuration diagram for explaining the configuration of the third embodiment of the open / close operation characteristic measuring apparatus using a device The main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflecting plate 13 and the reflecting plate position measuring unit 14 in the switching operation characteristic measuring device shown in FIG. 1 are extracted. The same reference numerals as those in FIGS. 1 and 6 denote the same or corresponding parts, and thus the description thereof is omitted.
[0072] 図 8において、ピンホール 19bは、照明光学系 16bの光源 17から円錐状に放射さ れた光が再帰性反射板 13bで鏡面反射されて集光する位置に設けられている。従つ て、照明光学系 16bで照明され、再帰性反射板 13bで鏡面反射されて広がること無 しに直進する光は、ピンホール 19bを遮られること無く通過して撮像素子 20の検出面 に達することカできる。 In FIG. 8, the pinhole 19b is provided at a position where the light radiated in a conical shape from the light source 17 of the illumination optical system 16b is reflected by the retroreflector 13b and condensed. Therefore, the light that is illuminated by the illumination optical system 16b, specularly reflected by the retroreflector 13b, and travels straight without spreading is passed through the pinhole 19b unobstructed and reaches the detection surface of the image sensor 20. You can reach.
[0073] 一方、照明光学系 16bの光源 17から放射された光のうち、再帰性反射板 13bで鏡 面反射されなかった光は大部分が主軸 6や図 1に示す筐体 1 1の内壁等を照明する こととなり、主軸 6や筐体 1 1の内壁等で拡散反射された光の一部は反射板位置測定 部 14に戻ってくることとなって、いわゆる迷光が発生する。主軸 6や筐体 1 1の内壁等 の拡散反射率が高いと、このような迷光の一部は撮像素子 20の検出面に到達し、検 出信号のバックグラウンドノイズを増加させ、開閉動作特性計測装置の計測精度を低 下させる原因となる。  [0073] On the other hand, of the light emitted from the light source 17 of the illumination optical system 16b, most of the light that is not specularly reflected by the retroreflector 13b is mainly the main shaft 6 or the inner wall of the housing 11 shown in FIG. Etc., and a part of the light diffusely reflected by the main shaft 6 and the inner wall of the casing 11 returns to the reflector position measuring unit 14, and so-called stray light is generated. When the diffuse reflectance of the main shaft 6 and the inner wall of the housing 11 is high, a part of this stray light reaches the detection surface of the image sensor 20, increasing the background noise of the detection signal and opening / closing operation characteristics. This may cause the measurement accuracy of the measuring device to decrease.
[0074] このような迷光に対して、実施の形態 3の受光光学系 18cは、ピンホール 19bを備 え、上記に述べたように、ピンホール 19bは照明光学系 16bの光源 17から円錐状に 放射された光が再帰性反射板 13bで鏡面反射されて集光する位置に設けられてい るので、主軸 6や筐体 1 1の内壁等で拡散反射されて広がって伝搬する迷光は、極め て一部しかピンホール 19bを通過して撮像素子 20の検出面に到達することができず 、迷光の大部分はピンホール 19bで遮られることとなる。  [0074] With respect to such stray light, the light receiving optical system 18c of Embodiment 3 includes a pinhole 19b. As described above, the pinhole 19b has a conical shape from the light source 17 of the illumination optical system 16b. The stray light that is diffused and reflected by the main shaft 6 and the inner wall of the housing 11 is spread extremely. Thus, only a part of the light can pass through the pinhole 19b and reach the detection surface of the image sensor 20, and most of the stray light is blocked by the pinhole 19b.
[0075] 従って、この発明に係る位置検出装置を用いた開閉動作特性計測装置の実施の 形態 3においては、迷光に起因した検出信号のバックグラウンドノイズを抑制すること ができ、実施の形態 2の場合に比べて、主軸 6と反射板位置測定部 14との距離をさ らに大きく離して配置することが可能となる。  Therefore, in the third embodiment of the open / close operation characteristic measuring device using the position detection device according to the present invention, it is possible to suppress the background noise of the detection signal caused by stray light. Compared to the case, the distance between the main shaft 6 and the reflector position measuring unit 14 can be further increased.
[0076] 実施の形態 4.  Embodiment 4.
実施の形態 3では、受光光学系 18cの結像光学素子としてピンホール 19bを用い た場合を説明したが、ピンホール 19bの代わりにレンズを用いても、迷光に起因した 検出信号のバックグラウンドノイズを抑制することが可能である。 In the third embodiment, the case where the pinhole 19b is used as the imaging optical element of the light receiving optical system 18c has been described, but even if a lens is used instead of the pinhole 19b, it is caused by stray light. It is possible to suppress the background noise of the detection signal.
[0077] 図 9は、実施の形態 3の受光光学系 18cに代えて、撮像素子 20と結像光学素子で あるレンズ 19cを備える受光光学系 18dを用いた、この発明に係る位置検出装置を 用いた開閉動作特性計測装置の実施の形態 4の構成を説明するための構成図であ り、図 6と同一符号は同一又は相当部分を示すので説明を省略する。 FIG. 9 shows a position detection device according to the present invention using a light receiving optical system 18d including an imaging element 20 and a lens 19c that is an imaging optical element instead of the light receiving optical system 18c of the third embodiment. FIG. 7 is a configuration diagram for explaining the configuration of the embodiment 4 of the open / close operation characteristic measuring device used, and the same reference numerals as those in FIG.
[0078] 図 9において、レンズ 19cは、実施の形態 3と同様に、照明光学系 16bの光源 17か ら円錐状に放射された光が再帰性反射板 13bで鏡面反射されて集光する位置に設 けられている。従って、照明光学系 16bで照明され、再帰性反射板 13bで鏡面反射 されて広がること無しに直進する光は、レンズ 19cの設けられた位置に集光し、そのま ま、レンズ 19cを通過して直進し、撮像素子 20の検出面に到達する。言い換えれば、 再帰性反射板 13bで鏡面反射された光の光跡はレンズ 19cの有無に関わらず、略In FIG. 9, as in the third embodiment, the lens 19c is a position where light emitted in a conical shape from the light source 17 of the illumination optical system 16b is specularly reflected by the retroreflector 13b and condensed. It is installed in. Therefore, the light that is illuminated by the illumination optical system 16b, reflected by the retroreflector 13b, and travels straight without spreading is condensed at the position where the lens 19c is provided and passes through the lens 19c as it is. And go straight to reach the detection surface of the image sensor 20. In other words, the light trace of the mirror-reflected light by the retroreflector 13b is almost the same regardless of the presence of the lens 19c.
| BJしでめる。 | BJ
[0079] さらに、レンズ 19cは、再帰性反射板 13bで拡散反射された光が撮像素子 20の検 出面で集光するように焦点距離が設定されている。言い換えると、再帰性反射板 13b の実像がレンズ 19cによって撮像素子 20の検出面に結像するということである。従つ て、信号処理部 21において撮像素子 20から出力された検出信号から再帰性反射板 13bの位置を示す位置信号を得る際に、撮像素子 20の検出面で受光される光は再 帰性反射板 13bで鏡面反射されて到達した光だけでなく、再帰性反射板 13bで拡散 反射されレンズ 19cで結像された光も加わることとなるので、再帰性反射板 13bの位 置を反映する検出信号のピークの強度は、実施の形態 3の結像光学素子としてピン ホール 19bを用いた場合よりも大きくすることができる。  Furthermore, the focal length of the lens 19c is set so that the light diffusely reflected by the retroreflecting plate 13b is collected on the detection surface of the image sensor 20. In other words, the real image of the retroreflector 13b is formed on the detection surface of the image sensor 20 by the lens 19c. Therefore, when the signal processing unit 21 obtains a position signal indicating the position of the retroreflector 13b from the detection signal output from the image sensor 20, the light received by the detection surface of the image sensor 20 is recursive. Reflecting the position of the retroreflector 13b because not only the light that has been specularly reflected by the reflector 13b but also the light diffused and reflected by the retroreflector 13b and imaged by the lens 19c is added. The intensity of the peak of the detection signal can be made larger than when the pinhole 19b is used as the imaging optical element of the third embodiment.
[0080] 一方、主軸 6や筐体 1 1の内壁等で拡散反射された光の一部は反射板位置測定部 14に戻ってくることとなって、いわゆる迷光となる力 筐体 1 1の内壁等とレンズ 19cと の距離と再帰性反射板 13bとレンズ 19cとの距離は大きく異なっていることから、筐体 1 1の内壁等で拡散反射された光はレンズ 19cによっては撮像素子 20の検出面に結 像されることはないため、画素位置に対して極めてブロードとなり、検出信号のバック グラウンドノイズをわず力、しか増加させなレ、。  On the other hand, a part of the light diffusely reflected by the main shaft 6 and the inner wall of the casing 11 1 returns to the reflector position measuring unit 14, and the force that becomes so-called stray light of the casing 11 1 Since the distance between the inner wall and the lens 19c and the distance between the retroreflector 13b and the lens 19c are greatly different, the light diffusely reflected by the inner wall of the housing 11 or the like depends on the lens 19c. Since it is not imaged on the detection surface, it is extremely broad with respect to the pixel position, and only increases the power without affecting the background noise of the detection signal.
[0081] なお、主軸 6で拡散反射された光については、主軸 6とレンズ 19cとの距離と再帰性 反射板 13bとレンズ 19cとの距離は略同じであり、照明光学系 16bで照明され主軸 6 で拡散反射された光の一部はレンズ 19cで撮像素子 20の検出面に結像されることと なる。しかし、主軸 6の表面が再帰性反射板 13bの拡散反射率よりも十分に小さい拡 散反射率を有している場合は、主軸 6で拡散反射された光は、検出信号のバックダラ ゥンドノイズをわず力、しか増加させないこととなる。 [0081] Regarding the light diffusely reflected by the main axis 6, the distance between the main axis 6 and the lens 19c and recursion The distance between the reflector 13b and the lens 19c is substantially the same, and a part of the light illuminated by the illumination optical system 16b and diffusely reflected by the main axis 6 is imaged on the detection surface of the image sensor 20 by the lens 19c. Become. However, when the surface of the main shaft 6 has a diffuse reflectance that is sufficiently smaller than the diffuse reflectance of the retroreflector 13b, the light diffusely reflected by the main shaft 6 shows back-round noise of the detection signal. Only the power is increased.
[0082] 以上のように、結像光学素子としてレンズ 19cを用いることで、筐体の内壁等で拡散 反射した光に起因する迷光の影響を抑制することができ、また、主軸の表面が再帰 性反射板の拡散反射率よりも十分に小さ!/、拡散反射率を有して!/、れば、主軸で拡散 反射された光に起因する迷光を十分に小さいとみなすことができるので、この発明に 係る位置検出装置を用いた開閉動作特性計測装置の実施の形態 4においては、迷 光に起因した検出信号のバックグラウンドノイズを抑制することができ、実施の形態 2 の場合に比べて、主軸 6と反射板位置測定部 14との距離をさらに大きく離して配置 すること力 S可倉 となる。  [0082] As described above, by using the lens 19c as the imaging optical element, it is possible to suppress the influence of stray light caused by light diffusely reflected by the inner wall or the like of the housing, and the surface of the main axis is recursive. If it is sufficiently smaller than the diffuse reflectance of the reflective reflector! /, And has a diffuse reflectance! /, The stray light caused by the light diffusely reflected by the main axis can be regarded as sufficiently small. In the fourth embodiment of the opening / closing operation characteristic measuring apparatus using the position detecting device according to the present invention, the background noise of the detection signal caused by stray light can be suppressed, compared with the case of the second embodiment. The distance S between the main shaft 6 and the reflector position measuring unit 14 is further increased.
[0083] 実施の形態 5.  [0083] Embodiment 5.
実施の形態 1の照明光学系 16aにおいては、光を円錐状に放射する光源 17を用 いている力 S、シリンドリカルレンズを備えるようにして、光源 17から円錐状に放射する 光を一旦主軸 6の直動方向と垂直でかつ拡散反射板 13aの面と平行な方向に照射 するようにすれば、拡散反射板 13aを照明する光の強度を大きくすることができ、 つ、筐体 11の内壁等で拡散反射されて生ずる迷光を低減することができるので、実 施の形態 1の場合に比べて、主軸 6と反射板位置測定部 14との距離をさらに大きく 離して配置することが可能となる。  In the illumination optical system 16a of the first embodiment, a force S using a light source 17 that emits light in a conical shape is used, and a cylindrical lens is provided so that light emitted from the light source 17 in a conical shape is temporarily By irradiating in the direction perpendicular to the linear motion direction and parallel to the surface of the diffuse reflector 13a, the intensity of the light illuminating the diffuse reflector 13a can be increased, and the inner wall of the housing 11, etc. As a result, the stray light that is diffused and reflected by the light can be reduced, so that the distance between the spindle 6 and the reflector position measuring unit 14 can be further increased compared to the case of the first embodiment. .
[0084] 図 10は、シリンドリカルレンズ 34の集光機能を説明するための断面図で、図 10 (a) はシリンドリカルレンズ 34の長手方向から見た断面図であり、図 10 (b)は図 10 (a)の 側面側から見た断面図である。  FIG. 10 is a cross-sectional view for explaining the condensing function of the cylindrical lens 34. FIG. 10 (a) is a cross-sectional view of the cylindrical lens 34 viewed from the longitudinal direction, and FIG. FIG. 10 is a cross-sectional view as viewed from the side of (a).
[0085] シリンドリカルレンズ 34は、光源 17から円錐状に放射された光を、図 9 (a)から明ら かなようにシリンドリカルレンズ 34の長手方向から見た面においてのみ集光し、図 9 ( b)から明らかなように図 9 (a)の側面側から見た面においては集光しないという特徴 を持ち、光源 17から円錐状に放射された光は楕円錐状となる。 [0086] 図 11は、実施の形態 1の照明光学系 16aに代えて、光源 17とシリンドリカルレンズ 3 4を備える照明光学系 16cを用いた、この発明に係る位置検出装置を用いた開閉動 作特性計測装置の実施の形態 5の構成を説明するための構成図であり、図 1に示す ガス遮断器の内の主軸 6と図 1に示す開閉動作特性計測装置の内の反射板 13及び 反射板位置測定部 14を抜き出したものである。また、図 1及び図 2と同一符号は同一 又は相当部分を示すので説明を省略する。 The cylindrical lens 34 condenses the light emitted in a conical shape from the light source 17 only on the surface viewed from the longitudinal direction of the cylindrical lens 34, as is apparent from FIG. 9 (a). As is clear from b), the surface viewed from the side in Fig. 9 (a) has the characteristic of not condensing light, and the light emitted from the light source 17 in a conical shape has an elliptical cone shape. FIG. 11 shows an opening / closing operation using the position detection device according to the present invention, in which an illumination optical system 16c including a light source 17 and a cylindrical lens 34 is used instead of the illumination optical system 16a of the first embodiment. FIG. 6 is a configuration diagram for explaining a configuration of a characteristic measurement device according to a fifth embodiment, in which the main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflector 13 and the reflection in the switching operation characteristic measurement device shown in FIG. The plate position measuring unit 14 is extracted. The same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts, and the description thereof is omitted.
[0087] 図 11において、シリンドリカルレンズ 34は、照明光学系 16cの光源 17から円錐状 に放射された光が主軸 6の直動方向と垂直でかつ拡散反射板 13aの面と平行な方 向に集光する向きに配置されており、光源 17から円錐状に放射された光は、シリンド リカルレンズ 34で楕円錐状となる。  In FIG. 11, the cylindrical lens 34 is configured so that the light emitted conically from the light source 17 of the illumination optical system 16c is perpendicular to the linear movement direction of the main axis 6 and parallel to the surface of the diffuse reflector 13a. The light emitted from the light source 17 in a conical shape is arranged in a condensing direction, and is formed into an elliptical cone shape by the cylindrical lens 34.
[0088] 従って、照明光学系 16cで照明される光の強度を大きくすることができ、かつ、筐体 11の内壁等で拡散反射されて生ずる迷光を低減することができるので、実施の形態 1の場合に比べて、主軸 6と反射板位置測定部 14との距離をさらに大きく離して配置 すること力 S可倉 となる。  Therefore, the intensity of light illuminated by the illumination optical system 16c can be increased, and stray light generated by diffuse reflection on the inner wall of the housing 11 can be reduced. Compared to the case, the distance S between the main shaft 6 and the reflector position measuring unit 14 is further increased.
[0089] 実施の形態 6.  [0089] Embodiment 6.
実施の形態 2、実施の形態 3、あるいは実施の形態 4の照明光学系 16bに、さらに シリンドリカルレンズ 34を備えるようにして、光源 17から円錐状に放射する光を一旦 主軸 6の直動方向と垂直でかつ再帰性反射板 13bの面と平行な方向に集光するよう にすれば、再帰性反射板 13bを照明する光の強度を大きくすることができ、かつ、筐 体 11の内壁等で拡散反射されて生ずる迷光を低減することができるので、実施の形 態 2、実施の形態 3、実施の形態 4の場合に比べて、主軸 6と反射板位置測定部 14と の距離をさらに大きく離して配置することが可能となる。  The illumination optical system 16b of the second embodiment, the third embodiment, or the fourth embodiment is further provided with a cylindrical lens 34, so that light emitted in a conical shape from the light source 17 is once set in the linear motion direction of the main shaft 6. If light is condensed in a direction that is vertical and parallel to the surface of the retroreflector 13b, the intensity of the light that illuminates the retroreflector 13b can be increased, and the inner wall of the housing 11 can be increased. Since stray light generated by diffuse reflection can be reduced, the distance between the spindle 6 and the reflector position measurement unit 14 is further increased compared to the case of the second embodiment, the third embodiment, and the fourth embodiment. It is possible to place them apart.
[0090] 図 12は、実施の形態 4の照明光学系 16bに代えて、光源 17とシリンドリカルレンズ を備える照明光学系 16cを用いた、この発明に係る位置検出装置を用いた開閉動作 特性計測装置の実施の形態 6の構成を説明するための構成図であり、図 1に示すガ ス遮断器の内の主軸 6と図 1に示す開閉動作特性計測装置の内の反射板 13及び反 射板位置測定部 14を抜き出したものである。また、図 1及び図 6と同一符号は同一又 は相当部分を示すので説明を省略する。 [0091] 図 12において、シリンドリカルレンズ 34は、照明光学系 16cの光源 17から円錐状 に放射された光が主軸 6の直動方向と垂直でかつ再帰性反射板 13bの面と平行な 方向に集光する向きに配置されている。 FIG. 12 shows an opening / closing operation characteristic measurement device using the position detection device according to the present invention, which uses an illumination optical system 16c including a light source 17 and a cylindrical lens instead of the illumination optical system 16b of the fourth embodiment. FIG. 6 is a configuration diagram for explaining the configuration of the sixth embodiment of the present invention, in which the main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflecting plate 13 and the reflecting plate in the switching operation characteristic measuring device shown in FIG. The position measuring unit 14 is extracted. The same reference numerals as those in FIGS. 1 and 6 denote the same or corresponding parts, and the description thereof will be omitted. In FIG. 12, the cylindrical lens 34 is configured so that the light emitted conically from the light source 17 of the illumination optical system 16c is perpendicular to the linear motion direction of the main axis 6 and parallel to the surface of the retroreflector 13b. It is arranged in the direction to collect light.
[0092] 従って、照明光学系 16cで照明される光の強度を大きくすることができ、かつ、筐体 11の内壁等で拡散反射されて生ずる迷光を低減することができるので、実施の形態 4の場合に比べて、主軸 6と反射板位置測定部 14との距離をさらに大きく離して配置 すること力 S可倉 となる。  Therefore, the intensity of light illuminated by the illumination optical system 16c can be increased, and stray light that is diffusely reflected by the inner wall of the housing 11 can be reduced, so that the fourth embodiment can be reduced. Compared to the case, the distance S between the main shaft 6 and the reflector position measuring unit 14 is further increased.
[0093] なお、上記では実施の形態 4の照明光学系 16bを照明光学系 16cに代えた場合の みを説明したが、実施の形態 2、実施の形態 3の照明光学系 16bを照明光学系 16c に代えた場合においても、同様の効果が得られることは言うまでも無い。  [0093] Although only the case where the illumination optical system 16b of Embodiment 4 is replaced with the illumination optical system 16c has been described above, the illumination optical system 16b of Embodiments 2 and 3 is replaced with the illumination optical system. Needless to say, the same effect can be obtained even when 16c is used.
[0094] 実施の形態 7.  [0094] Embodiment 7.
実施の形態 5の照明光学系 16cにおいては、シリンドリカルレンズ 34を用いて光源 17からの放射光を主軸 6の直動方向と垂直で、かつ拡散反射板 13aの面と平行な方 向に集光する例を示した力 シリンドリカルレンズ 34を、主軸 6の直動方向に垂直で 拡散反射板 13aと平行な方向に法線を持つ面内に回転中心をもつトロイダルレンズ に置き換えるようにすれば、拡散反射板 13aを照明する光の強度を大きくすることが でき、かつ、筐体 11の内壁等で拡散反射されて生ずる迷光を低減することができる ので、実施の形態 5の場合に比べて、主軸 6と反射板位置測定部 14との距離をさら に大きく離して配置することが可能となる。  In the illumination optical system 16c of Embodiment 5, a cylindrical lens 34 is used to condense the emitted light from the light source 17 in a direction perpendicular to the linear motion direction of the main axis 6 and parallel to the surface of the diffuse reflector 13a. If the cylindrical lens 34 is replaced with a toroidal lens having a center of rotation in a plane perpendicular to the linear motion direction of the main shaft 6 and normal to the diffuse reflector 13a, The intensity of the light that illuminates the reflector 13a can be increased, and stray light that is diffusely reflected by the inner wall of the housing 11 can be reduced. The distance between 6 and the reflector position measurement unit 14 can be further increased.
[0095] 図 13は、シリンドリカルレンズ 34とトロイダルレンズ 101の集光特性を比較して説明 するための図で、図 13 (a)はシリンドリカルレンズ 34の集光特性を示した斜視図、図 13 (b)はシリンドリカルレンズ 34の円筒回転軸及び光の進行方向に垂直な方向から 見た断面図、図 13 (c)は図 13 (a)のシリンドリカルレンズ 34をトロイダルレンズ 101に 置き換えた図、図 13 (d)は図 13 (a)のシリンドリカルレンズ 34をトロイダルレンズ 101 に置き換えた図である。図 13 (a)では、図 10と同様、光源 17から放射した光はシリン ドリカルレンズ 34の長手方向には集光されず広がって進んでいく力 長手方向と垂 直な方向についてはレンズの屈折効果により集光され、照射分布 102に示すように レンズ 34の長手方向に垂直な方向に集光された照射分布となる。し力もながら、シリ ンドリカルレンズ 34の中心に向かった方向に進んだ光は、シリンドリカルレンズ 34に よって集光される力 シリンドリカルレンズ 34の周辺部に進んだ光は、中心に進んだ 光に比べ、光源 17からシリンドリカルレンズ 34までの到達距離が長くなるため、集光 能力が低下する。従って、照射分布 102は長円形状とならずに、集光効率の高い中 心部分の幅が狭ぐ中心部から離れた方向に向力、つて幅が広い形状となり、中心部 力、ら離れた箇所では光のパワー密度が低下する。 FIG. 13 is a diagram for comparing and explaining the condensing characteristics of the cylindrical lens 34 and the toroidal lens 101. FIG. 13 (a) is a perspective view showing the condensing characteristics of the cylindrical lens 34. FIG. (b) is a cross-sectional view of the cylindrical lens 34 viewed from the direction of the cylindrical rotation axis and the direction perpendicular to the light traveling direction, and FIG. 13 (c) is a diagram in which the cylindrical lens 34 in FIG. FIG. 13D is a diagram in which the cylindrical lens 34 in FIG. 13A is replaced with a toroidal lens 101. In Fig. 13 (a), as in Fig. 10, the light emitted from the light source 17 is not condensed in the longitudinal direction of the cylindrical lens 34, but spreads and travels in the longitudinal direction. As shown in the irradiation distribution 102, the irradiation distribution is a light distribution condensed in the direction perpendicular to the longitudinal direction of the lens 34. Siri Light that travels in the direction toward the center of the cylindrical lens 34 is collected by the cylindrical lens 34 Light that travels to the periphery of the cylindrical lens 34 from the light source 17 is more cylindrical than light that travels to the center. Since the reach distance to the lens 34 becomes longer, the light collecting ability decreases. Therefore, the irradiation distribution 102 does not have an oval shape, but has a shape in which the width of the central portion where the light collection efficiency is high is away from the central portion where the width is narrow, and thus a wide shape. The power density of the light is reduced at the spots.
01を用いることで長円形状の照射分布 103を得ることができる。トロイダルレンズ 101 はシリンドリカルレンズ 34の円筒側面を円筒側面の回転軸に垂直な方向の直線を軸 に回転させて得られる曲面を持つレンズである。トロイダルルレンズ 101を使用するこ とで、光源 17からトロイダルレンズ 101の中心へ到達する光が進む距離と、トロイダル レンズ 101の周辺へ到達する光が進む距離との差が小さくなり、両者の光の集光性 がほぼ等しくなる。従って、トロイダルルレンズ 101を用いた場合の照射分布 103は ほぼ長円形状となり、照射分布 103の周辺におけるパワー密度の低下を抑制するこ と力 Sできる。 By using 01, an elliptical irradiation distribution 103 can be obtained. The toroidal lens 101 is a lens having a curved surface obtained by rotating the cylindrical side surface of the cylindrical lens 34 around a straight line perpendicular to the rotation axis of the cylindrical side surface. The use of the toroidal lens 101 reduces the difference between the distance traveled by the light reaching the center of the toroidal lens 101 from the light source 17 and the distance traveled by the light reaching the periphery of the toroidal lens 101. The light condensing properties of are almost equal. Therefore, when the toroidal lens 101 is used, the irradiation distribution 103 has an approximately oval shape, and it is possible to suppress the decrease in power density around the irradiation distribution 103.
[0097] 図 14は、実施の形態 5の照明光学系 16cに代えて、光源 17とトロイダルレンズ 101 を備える照明光学系 16dを用いた、この発明に係る位置検出装置を用いた開閉動作 特性計測装置の実施の形態 7の構成を説明するための構成図であり、図 1に示すガ ス遮断器の内の主軸 6と図 1に示す開閉動作特性計測装置の内の反射板 13及び反 射板位置測定部 14を抜き出したものである。また、図 1及び図 2と同一符号は同一又 は相当部分を示すので説明を省略する。  FIG. 14 shows measurement of opening / closing operation characteristics using the position detection device according to the present invention, in which an illumination optical system 16d including a light source 17 and a toroidal lens 101 is used instead of the illumination optical system 16c of the fifth embodiment. FIG. 7 is a configuration diagram for explaining the configuration of a device according to a seventh embodiment of the present invention, in which the main shaft 6 in the gas circuit breaker shown in FIG. 1 and the reflector 13 and the reflection in the switching operation characteristic measuring device shown in FIG. The plate position measuring unit 14 is extracted. The same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts, and the description thereof will be omitted.
[0098] 図 14において、トロイダルレンズ 101は、照明光学系 16dの光源 17から円錐状に 放射された光が主軸 6の直動方向と垂直でかつ拡散反射板 13aの面と平行な方向 に集光する向きに配置されており、光源 17から円錐状に放射された光は、トロイダル レンズ 101で長方円形状となる。  In FIG. 14, a toroidal lens 101 collects light emitted conically from the light source 17 of the illumination optical system 16d in a direction perpendicular to the linear motion direction of the main axis 6 and parallel to the surface of the diffuse reflector 13a. The light emitted from the light source 17 in a conical shape is formed into a rectangular shape by the toroidal lens 101.
[0099] 従って、照明光学系 16dで照明される光の強度を大きくすることができ、かつ、筐体 11の内壁等で拡散反射されて生ずる迷光を低減することができるので、実施の形態 5の場合に比べて、主軸 6と反射板位置測定部 14との距離をさらに大きく離して配置 すること力 S可倉 となる。 Accordingly, the intensity of light illuminated by the illumination optical system 16d can be increased, and stray light generated by diffuse reflection on the inner wall of the housing 11 can be reduced. Compared to the case of, the distance between the spindle 6 and the reflector position measurement unit 14 is further increased. The power to do is S kurakura.
[0100] 実施の形態 8.  [0100] Embodiment 8.
実施の形態 2、実施の形態 3、実施の形態 4の照明光学系 16bに、さらにトロイダル レンズ 101を備えるようにして、光源 17から円錐状に放射する光を一旦主軸 6の直動 方向と垂直でかつ再帰性反射板 13bの面と平行な方向に集光するようにすれば、再 帰性反射板 13bを照明する光の強度を大きくすることができ、かつ、筐体 1 1の内壁 等で拡散反射されて生ずる迷光を低減することができるので、実施の形態 2、実施の 形態 3、実施の形態 4の場合に比べて、主軸 6と反射板位置測定部 14との距離をさら に大きく離して配置することが可能となる。  The illumination optical system 16b of the second embodiment, the third embodiment, and the fourth embodiment is further provided with a toroidal lens 101 so that light emitted in a conical shape from the light source 17 is once perpendicular to the linear motion direction of the main shaft 6. In addition, if the light is condensed in a direction parallel to the surface of the retroreflector 13b, the intensity of the light illuminating the retroreflector 13b can be increased, and the inner wall of the casing 11 etc. Therefore, the distance between the spindle 6 and the reflector position measurement unit 14 can be further increased compared to the case of the second embodiment, the third embodiment, and the fourth embodiment. It becomes possible to arrange | position largely apart.
[0101] 図 15は、実施の形態 4の照明光学系 16bに代えて、光源 17とトロイダルレンズ 101 を備える照明光学系 16eを用いた、この発明に係る位置検出装置を用いた開閉動作 特性計測装置の実施の形態 8の構成を説明するための構成図であり、図 1に示すガ ス遮断器の内の主軸 6と図 1に示す開閉動作特性計測装置の内の反射板 13及び反 射板位置測定部 14を抜き出したものである。また、図 1及び図 2と同一符号は同一又 は相当部分を示すので説明を省略する。  [0101] FIG. 15 is a diagram illustrating opening / closing operation characteristic measurement using the position detection device according to the present invention, in which an illumination optical system 16e including a light source 17 and a toroidal lens 101 is used instead of the illumination optical system 16b of the fourth embodiment. FIG. 9 is a configuration diagram for explaining the configuration of Embodiment 8 of the device, including a main shaft 6 in the gas circuit breaker shown in FIG. 1 and a reflector 13 and a reflection in the switching operation characteristic measuring device shown in FIG. The plate position measuring unit 14 is extracted. The same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts, and the description thereof will be omitted.
[0102] 図 15において、トロイダルレンズ 101は、照明光学系 16eの光源 17から円錐状に 放射された光が主軸 6の直動方向と垂直でかつ再帰性反射板 13bの面と平行な方 向に集光する向きに配置されている。  [0102] In Fig. 15, the toroidal lens 101 has a direction in which the light emitted conically from the light source 17 of the illumination optical system 16e is perpendicular to the linear motion direction of the main axis 6 and parallel to the surface of the retroreflector 13b. It is arranged in the direction that condenses light.
[0103] 従って、照明光学系 16eで照明される光の強度を大きくすることができ、かつ、筐体 1 1の内壁等で拡散反射されて生ずる迷光を低減することができるので、実施の形態 4の場合に比べて、主軸 6と反射板位置測定部 14との距離をさらに大きく離して配置 すること力 S可倉 となる。  Accordingly, the intensity of light illuminated by the illumination optical system 16e can be increased, and stray light that is diffusely reflected by the inner wall of the housing 11 can be reduced. Compared with the case of 4, the distance S between the main shaft 6 and the reflector position measuring unit 14 is further increased.
[0104] なお、上記では実施の形態 4の照明光学系 16bを照明光学系 16eに代えた場合の みを説明したが、実施の形態 2、実施の形態 3の照明光学系 16bを照明光学系 16e に代えた場合においても、同様の効果が得られる。  [0104] Although only the case where the illumination optical system 16b of Embodiment 4 is replaced with the illumination optical system 16e has been described above, the illumination optical system 16b of Embodiments 2 and 3 is replaced with the illumination optical system. The same effect can be obtained even when 16e is used.
[0105] 実施の形態 9.  [0105] Embodiment 9.
実施の形態 1〜8の光源 17及び撮像素子 20を同一基板に実装するようにすれば、 基板の作製行程の削減、反射板位置測定部 14の部品点数の削減、反射板位置測 定部 14の作製行程の削減と!/、つた効果が得られ、反射板位置測定部 14のコスト削 減を実現することが可能となる。 If the light source 17 and the image sensor 20 of Embodiments 1 to 8 are mounted on the same substrate, the substrate manufacturing process can be reduced, the number of parts of the reflector position measurement unit 14 can be reduced, and the reflector position can be measured. The production process of the fixed part 14 can be reduced and the effects can be obtained, and the cost of the reflector position measuring part 14 can be reduced.
[0106] 図 16においては、実施の形態 1の光源 17及び撮像素子 20を基板 104上に実装し ている。実施の形態 1では、光源 17及び撮像素子 20は個別に配置され、それぞれ の基板作製、実装行程が必要であるが、同一の基板上に実装することで基板作製、 行程を削減し、反射板位置測定部 14の作製コストの削減を実現することが可能であ In FIG. 16, the light source 17 and the image sensor 20 of the first embodiment are mounted on a substrate 104. In the first embodiment, the light source 17 and the image pickup device 20 are individually arranged, and each substrate needs to be manufactured and mounted. However, by mounting on the same substrate, the substrate manufacturing and the process can be reduced, and the reflecting plate is reduced. It is possible to reduce the manufacturing cost of the position measurement unit 14.
[0107] なお、上記では実施の形態 1の光源 17及び撮像素子 20について述べた力 実施 の形態 2〜8の光源 17及び撮像素子 20を同一基板上に実装しても、同様の効果が 得られる。 [0107] Note that, in the above, the force described for the light source 17 and the image sensor 20 of the first embodiment. Even if the light source 17 and the image sensor 20 of the second to eighth embodiments are mounted on the same substrate, the same effect can be obtained. It is done.
[0108] さらに、図 17に示すように、図 7に示した実施の形態 2のハーフミラー 33と撮像素子 20の間に折り返しミラー 105を設け、光源 17及び撮像素子 20を同一基板 106上に 実装してもよい。ここでは、図 7に示した実施の形態 2の構成を元に光源 17及び撮像 素子 20同一基板上に実装する方法について述べた力、実施の形態 3、 4、 6、あるい は 8についても、ハーフミラー 33と撮像素子 20の間に折り返しミラー 105を設け、光 源 17及び撮像素子 20同一基板上に実装するようにしてもよい。  Furthermore, as shown in FIG. 17, a folding mirror 105 is provided between the half mirror 33 of Embodiment 2 shown in FIG. 7 and the image sensor 20, and the light source 17 and the image sensor 20 are placed on the same substrate 106. May be implemented. Here, the light source 17 and the image sensor 20 based on the configuration of the second embodiment shown in FIG. 7 and the force described on the method of mounting on the same substrate, the third, fourth, sixth, or eighth embodiment are also described. Alternatively, a folding mirror 105 may be provided between the half mirror 33 and the image pickup device 20 so that the light source 17 and the image pickup device 20 are mounted on the same substrate.
産業上の利用可能性  Industrial applicability
[0109] 以上のように、本発明にかかる位置検出装置とこれを用いた開閉動作特性計測装 置は、主回路を開閉する遮断器に適用して有用である。 As described above, the position detection device according to the present invention and the switching operation characteristic measurement device using the same are useful when applied to a circuit breaker that opens and closes a main circuit.

Claims

請求の範囲 The scope of the claims
[1] 主軸に固着された反射板と、  [1] a reflector fixed to the main shaft;
光を円錐状に放射する光源を備え、前記光源からの光で前記反射板の直動可能 範囲を照明する照明光学系と、  An illumination optical system that includes a light source that emits light in a conical shape, and that illuminates a linearly movable range of the reflector with the light from the light source;
前記反射板によって反射された前記光源からの光を撮像素子の検出面にて受光し 、受光量に基づいた検出信号を出力する受光光学系と、  A light receiving optical system that receives light from the light source reflected by the reflecting plate on a detection surface of an image sensor and outputs a detection signal based on the amount of light received;
前記検出信号に基づいて前記反射板の位置信号を出力する信号処理部と、 を備えることを特徴とする位置検出装置。  And a signal processing unit that outputs a position signal of the reflecting plate based on the detection signal.
[2] 反射板が拡散反射板であり、  [2] The reflector is a diffuse reflector,
受光光学系が前記拡散反射板によって拡散反射された光を撮像素子の検出面に 結像する結像光学素子を備えることを特徴とする請求項 1に記載の位置検出装置。  2. The position detection device according to claim 1, wherein the light receiving optical system includes an imaging optical element that forms an image of light diffusely reflected by the diffusive reflecting plate on a detection surface of the imaging element.
[3] 照射光学系がシリンドリカルレンズを備え、前記シリンドリカルレンズが光源力も円 錐状に放射された光を主軸の直動方向と垂直でかつ拡散反射板の面と平行な方向 に集光することを特徴とする請求項 2に記載の位置検出装置。 [3] The irradiation optical system includes a cylindrical lens, and the cylindrical lens condenses light emitted in a cone shape in a direction perpendicular to the linear motion direction of the main axis and parallel to the surface of the diffuse reflector. The position detection device according to claim 2.
[4] 照射光学系カ^ロイダルレンズを備え、前記トロイダルレンズが光源から円錐状に放 射された光を主軸の直動方向と垂直でかつ拡散反射板の面と平行な方向に集光す ることを特徴とする請求項 3に記載の位置検出装置。 [4] An irradiating optical system with a colloidal lens is provided, and the toroidal lens condenses the light emitted conically from the light source in a direction perpendicular to the linear movement direction of the main axis and parallel to the surface of the diffuse reflector. The position detection device according to claim 3, wherein
[5] 結像光学素子が、ピンホール又はレンズのいずれかであることを特徴とする請求項5. The imaging optical element is any one of a pinhole and a lens.
2〜4のいずれか一つに記載の位置検出装置。 The position detection device according to any one of 2 to 4.
[6] 反射板が再帰性反射板であり、 [6] The reflector is a retroreflector,
照明光学系が光を一旦反射させて前記再帰性反射板の直動可能範囲を照明する ハーフミラーを備え、  The illumination optical system includes a half mirror that reflects light once and illuminates a linearly movable range of the retroreflector.
受光光学系が前記再帰性反射板によって鏡面反射された後、前記ハーフミラーを 透過した光を受光することを特徴とする請求項 1に記載の位置検出装置。  2. The position detection apparatus according to claim 1, wherein the light receiving optical system receives light transmitted through the half mirror after being specularly reflected by the retroreflecting plate.
[7] 反射板が再帰性反射板であり、 [7] The reflector is a retroreflector,
照明光学系が光を一旦透過させて前記再帰性反射板の直動可能範囲を照明する ハーフミラーを備え、  The illumination optical system includes a half mirror that transmits light once and illuminates the linearly movable range of the retroreflector,
受光光学系が前記再帰性反射板によって鏡面反射された後、前記ハーフミラーを 反射した光を受光することを特徴とする請求項 1に記載の位置検出装置。 After the light receiving optical system is specularly reflected by the retroreflecting plate, the half mirror is The position detecting device according to claim 1, wherein the reflected light is received.
[8] 照射光学系がシリンドリカルレンズを備え、前記シリンドリカルレンズが光源力も放 射された円錐状の光を主軸の直動方向と垂直でかつ再帰性反射板の面と平行な方 向に集光することを特徴とする請求項 6または 7に記載の位置検出装置。 [8] The irradiation optical system includes a cylindrical lens, and the cylindrical lens collects the conical light emitted from the light source force in a direction perpendicular to the linear motion direction of the main axis and parallel to the surface of the retroreflector. The position detection device according to claim 6 or 7, wherein:
[9] 照射光学系カ^ロイダルレンズを備え、前記トロイダルレンズが光源から円錐状に放 射された光を主軸の直動方向と垂直でかつ拡散反射板の面と平行な方向に集光す ることを特徴とする請求項 6または 7に記載の位置検出装置。 [9] An irradiating optical system colloidal lens is provided, and the toroidal lens condenses the light emitted in a conical shape from the light source in a direction perpendicular to the linear movement direction of the main axis and parallel to the surface of the diffuse reflector. The position detection device according to claim 6 or 7, wherein:
[10] 受光光学系が結像光学素子を備え、前記結像光学素子が光源から円錐状に放射 された光が再帰性反射板で鏡面反射されて集光する位置に設けられることを特徴と する請求項 6に記載の位置検出装置。 [10] The light receiving optical system includes an imaging optical element, and the imaging optical element is provided at a position where the light emitted in a conical shape from the light source is specularly reflected by the retroreflector and condensed. The position detection device according to claim 6.
[11] 結像光学素子が、ピンホールであることを特徴とする請求項 10に記載の位置検出 装置。 11. The position detection device according to claim 10, wherein the imaging optical element is a pinhole.
[12] 結像光学素子が、再帰性反射板の実像を撮像素子の検出面に結像するレンズで あることを特徴とする請求項 10に記載の位置検出装置。  12. The position detection device according to claim 10, wherein the imaging optical element is a lens that forms a real image of the retroreflecting plate on a detection surface of the imaging element.
[13] 光源と、撮像素子が同一基板上にあることを特徴とする請求項 1に記載の位置検出 装置。 13. The position detection apparatus according to claim 1, wherein the light source and the image sensor are on the same substrate.
[14] ハーフミラーと撮像素子の間にミラーを配置し、  [14] Place a mirror between the half mirror and the image sensor,
ミラーを介して再帰性反射板の実像を撮像素子上に結像することを特徴とする請求 項 6に記載の位置検出装置。  7. The position detection apparatus according to claim 6, wherein a real image of the retroreflecting plate is formed on the image sensor via a mirror.
[15] 請求項;!〜 14の何れか一つの位置検出装置と、 [15] The position detection device according to any one of claims;! To 14, and
位置検出装置の位置信号の時系列データに基づいて開閉動作特性を計測するモ ユタリング部と、  A monitoring unit that measures the opening and closing operation characteristics based on time-series data of the position signal of the position detection device;
を備えることを特徴とする開閉動作特性計測装置。  An opening / closing operation characteristic measuring device comprising:
[16] 請求項 15に記載の開閉動作特性計測装置を備えることを特徴とする遮断器。 [16] A circuit breaker comprising the switching operation characteristic measuring device according to claim 15.
PCT/JP2007/061574 2006-06-09 2007-06-07 Position detector, open/closure operation characteristic measuring device, and breaker WO2008004400A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-161070 2006-06-09
JP2006161070A JP2009198178A (en) 2006-06-09 2006-06-09 Position detecting device, and opening/closing motion characteristic measuring device and breaker using this

Publications (1)

Publication Number Publication Date
WO2008004400A1 true WO2008004400A1 (en) 2008-01-10

Family

ID=38894373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061574 WO2008004400A1 (en) 2006-06-09 2007-06-07 Position detector, open/closure operation characteristic measuring device, and breaker

Country Status (2)

Country Link
JP (1) JP2009198178A (en)
WO (1) WO2008004400A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101466030B1 (en) * 2011-06-22 2014-12-01 엘에스산전 주식회사 Position detecting apparatus for pull-out pype circuit breaker
JP2015169491A (en) * 2014-03-06 2015-09-28 株式会社ミツトヨ Displacement detector and displacement detection method
JP6782466B2 (en) * 2016-06-14 2020-11-11 パナソニックIpマネジメント株式会社 Visualization elements, measurement systems, and measurement methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213203A (en) * 1982-06-07 1983-12-12 Fuji Electric Corp Res & Dev Ltd Position detecting device of moving body
JPH0259417U (en) * 1988-10-21 1990-05-01
JPH06221853A (en) * 1993-01-25 1994-08-12 Agency Of Ind Science & Technol Position detector
JP2001142643A (en) * 1999-11-18 2001-05-25 Ricoh Co Ltd Device for inputting/detecting coordinates
JP2001145217A (en) * 1999-11-17 2001-05-25 Nissin Electric Co Ltd Method and device of diagnosing switching operation characteristics of switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213203A (en) * 1982-06-07 1983-12-12 Fuji Electric Corp Res & Dev Ltd Position detecting device of moving body
JPH0259417U (en) * 1988-10-21 1990-05-01
JPH06221853A (en) * 1993-01-25 1994-08-12 Agency Of Ind Science & Technol Position detector
JP2001145217A (en) * 1999-11-17 2001-05-25 Nissin Electric Co Ltd Method and device of diagnosing switching operation characteristics of switch
JP2001142643A (en) * 1999-11-18 2001-05-25 Ricoh Co Ltd Device for inputting/detecting coordinates

Also Published As

Publication number Publication date
JP2009198178A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
KR101518968B1 (en) Real time Measurement Device in the Exhaust gas of the Motor Vehicle on the Move
JP2010249812A (en) Optical sensor operating on transit time principle
DE602007012651D1 (en) Optical window pollution detection device for an optical device
US20120062871A1 (en) Method and system for the measurement/detection of chemical spillage
KR20180099567A (en) Flat-panel granularity detection device
CN103940341A (en) Displacement and inclination angle integrated test instrument
WO2008004400A1 (en) Position detector, open/closure operation characteristic measuring device, and breaker
KR20080111962A (en) Surface measurement apparatus
KR100878425B1 (en) Surface measurement apparatus
AU744111B2 (en) Method and apparatus to detect the presence of water on a surface
JP2017138304A (en) Optical sensor
JP2020165852A (en) Optical analyzer
CN112782175A (en) Detection equipment and detection method
JP2020016567A (en) Overhead wire inspection device
JP7254422B2 (en) SURFACE PROFILE MEASURING METHOD USING SURFACE PROFILE MEASURING SYSTEM AND SURFACE PROFILE MEASUREMENT
CN220156600U (en) Contact image sensor
KR102208064B1 (en) Improved real-time measurement device for vehicle exhaust gas
KR101018151B1 (en) Surface measurement apparatus and method of surface measurement
KR101185076B1 (en) Reflective type optical sensor for reflector
GB2334097A (en) System to detect the presence of water on a surface
KR101185075B1 (en) apparatus for detecting flaws in reflector
JPH0989422A (en) Method and apparatus for monitoring leakage of liquid enclosed in sealed circulating system
JPH10170240A (en) Method and device for inspection of pattern flaw
JP5742771B2 (en) Oil film detector
HU213122B (en) Cleanness testing device for detection of impurity in bottles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP