WO2008004386A1 - Highly functional composite material and method for producing the same - Google Patents

Highly functional composite material and method for producing the same Download PDF

Info

Publication number
WO2008004386A1
WO2008004386A1 PCT/JP2007/060962 JP2007060962W WO2008004386A1 WO 2008004386 A1 WO2008004386 A1 WO 2008004386A1 JP 2007060962 W JP2007060962 W JP 2007060962W WO 2008004386 A1 WO2008004386 A1 WO 2008004386A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
composite material
magnesia
carbon nanotubes
mass
Prior art date
Application number
PCT/JP2007/060962
Other languages
French (fr)
Japanese (ja)
Inventor
Mamoru Omori
Toshiyuki Hashida
Hisamichi Kimura
Akira Okubo
Akihisa Inoue
Original Assignee
Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University filed Critical Tohoku University
Priority to JP2008523622A priority Critical patent/JP5366193B2/en
Publication of WO2008004386A1 publication Critical patent/WO2008004386A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates

Definitions

  • the present invention is a composite material composed of alumina magnesia ceramics composed of alumina and magnesia, which are important as practical ceramics, and carbon nanotubes. By combining carbon nanotubes with ceramics, The present invention relates to a high-performance composite material that improves the performance of conventional ceramics and has a new function, and a method for producing the same.
  • Ceramics made from alumina magnesia are used in a wide range of industries because of their low price. These ceramics are superior in heat resistance and oxidation resistance compared to metals. In addition, since it is insulative and does not conduct electricity, it is dielectric, so that it can absorb electromagnetic waves with a small amount. Alumina magnesia and its compounds have excellent corrosion resistance. These ceramics lack reliability as materials with lower toughness than metals, and are easily destroyed by the application of stress. Therefore, if the toughness can be increased, the range of application will be greatly expanded, and if a composite material imparted with electrical conductivity such as metal or a composite material with excellent electromagnetic wave absorption performance is developed, conventional ceramics will be developed. Use beyond the scope of use of tus.
  • Carbon nanotubes are a material discovered in 1991 (see, for example, Non-Patent Document 1). This material is a nanofiber having a fine tube structure with a large aspect ratio. The chemical properties are almost similar to graphite materials. Carbon nanotubes have much higher strength and elastic modulus than other materials. Multi-walled carbon nanotubes have an elastic modulus of 18 OOGPa (see Non-Patent Document 2, for example), and single-walled carbon nanotubes have a strength of 45 GPa. It is reported that there is (for example, non-patent document 3)!
  • the thermal expansion coefficient of the metal or ceramics carbon nanotubes and Ru is complexed is, 4x10- 6 / K ⁇ 20 ⁇ 10- 6 / ⁇ and the carbon nanotube fairly large instrument other Me A between these materials A large residual stress is generated. Unless a material with a small residual stress is made, it cannot be applied to practical industrial materials. In addition, acicular carbon nanotubes are more difficult to disperse uniformly in the matrix than fine particles, especially when the proportion of carbon nanotubes increases, this uniform dispersion becomes difficult! Excellent composite material is manufactured! / ,!
  • the synthesis of a composite material of a carbon nanotube and an alumina-magnesia ceramic has been performed for an alumina single body and a magnesia single body.
  • the main method is to mix carbon nanotubes and alumina powder and sinter them using them as raw materials.
  • the particle size of the alumina powder used as the starting material in this method is 200 nanometers or more, and usually becomes larger than 1000 nanometers after sintering.
  • Carbon nanotubes are dispersed within the alumina crystal grains or at the grain boundaries.
  • thermal expansion coefficient of alumina is 8x10- 6 / K
  • the thermal expansion coefficient of the magnesia is 13x10- 6 / ⁇ .
  • the carbon nanotubes are present in the alumina magnesia ceramic polycrystal, which has a larger coefficient of thermal expansion than that of the carbon nanotubes, the alumina-magnesia ceramic shrinks during the cooling from the sintering temperature to room temperature, and the carbon Nanotubes do not shrink, generating large residual stresses, reducing the toughness and strength of the composite material, making it difficult to apply as a practical material.
  • carbon nanotubes that exist at the grain boundaries of alumina magnesia ceramics have a small function to prevent the development of fracture cracks. As seen in the nanotube-alumina composite report, toughness and strength have not increased.
  • Non-Patent Document 1 S. Iijima, "Helical Microtubules of Graphite Carbon", Nature, 1991, 3 54, p.56-58
  • Non-Patent Document 2 MMJ Treacy and TW Ebbesen, "Exceptionally High Young's Modulus Observed for Individual Carbon Nanobtubes, Nature, 1996, 381, p.678-680
  • Non-Patent Document 3 DA Walters, M. Ericso, J Casavant, J. Liu, DT Colbert,. A. Smith and RE Smalley, "Elastic Strain of Freely Suspended Single-Walled Arbon Nanotube Ropes", Appl. Phy. Lett., 1999, 74, 25, p.3803- 3805
  • Non-Patent Document 4 Y. Maniwa, R. Fujiwara, H. Kira, H. Tou, H. Kataura, S. Suzuki, Y. A chiba, E. Nishibori, M. Takata, M. Sakata, A. Fujiwara and H. Suematsu, Thermal Expansion of single-Walled Carbon Nanotube (SWNT) Bundles: X-ray Diffraction Studies ", Phys. Rev. B, 2001, 64, p.241402-1-3
  • Non-Patent Document 5 G. -D. Zhan, JD untz, J. Wan and A.. Mukherjee, "Single-Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocompo sites", Nature Mater., 2003, 2, p.38-42
  • Non-Patent Document 6 X. Wang, NP Padture and H. Tanaka, "Contact-Damage-Resistanc e Ceramic / Single-Wall Carbon Nanotubes and Ceramic / Graphite Composites, Nature Mater., 2004, 3, p.539-544
  • Non-Patent Document 7 RW Siegel, S.. Chang, BJ Ash, J. Stone, PM Ajayan, RW Doremus and LS Schadler, Mechanical Behavior of Polymer and Ceramics Matrix Nanocomposites ", Scripta Mater., 2001, 44, p.2061 -2064
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-244273
  • Non-Patent Document 8 CB Mo, SI Cha,. T. Kim,. ⁇ . Lee and SH Hong, "Fabricat ion of Carbon Nanotube Reinforced Alumina Matrix Nanocomposite by Sol-Gel Proc ess ", Mater. Sci. Eng., 2005, A 395, p.124-128
  • Patent Document 2 Japanese Translation of Special Publication 2004 507434
  • Patent Document 3 Japanese Patent Publication No. 2004-256382
  • the present invention has been made paying attention to such problems, and provides a novel high-functional composite material excellent in mechanical performance, electrical conductivity and electromagnetic wave absorption, and a method for producing the same. It is aimed.
  • a highly functional composite material according to the present invention includes a ceramic polycrystalline body composed of a plurality of first alumina-magnesia ceramic crystals, a plurality of carbon nanotubes, and a plurality of second nanotubes.
  • the present inventors have intensively studied the effect of carbon nanotubes on the crystal growth of alumina magnesia ceramics and their dispersibility. As a result, they discovered a method by which carbon nanotubes can prevent the crystal nuclei of alumina-magnesia ceramics from growing into large crystals and greatly improve their dispersibility. In other words, when precursors (aluminum hydroxide and magnesium hydroxide) that produce alumina magnesia ceramic crystals are used as the starting material, dispersion in the composite material of carbon nanotubes is improved, and only carbon nanotubes exist as lumps.
  • the crystal growth of the second alumina magnesia-based ceramics can be suppressed to a nano size of 200 nanometers or less.
  • an intertwined nanocomposite structure is formed, in which a plurality of nanoalumina-magnesia ceramic crystals are bonded in a form that bridges carbon nanotubes.
  • the nanoceramic crystal in the nanocomposite shrinks, the carbon nanotubes that are intertwined with the crystal can be deformed, so that the residual stress generated in the composite material is reduced, and the toughness and strength of the entire composite material are reduced. It can be improved.
  • the ceramic crystal grows larger than 20 micrometers and the strength of the composite material is significantly reduced. Since the ceramic phase of the alumina-magnesia ceramic composite is not a single phase, the crystal phase of the ceramic phase is prevented by the influence of the mixed spinel phase, and does not grow larger than 20 micrometers. Even below a few micrometers.
  • the high-functional composite material according to the present invention has a structure in which an alumina magnesia-based ceramic crystal is reinforced with a single bon nanotube. For this reason, a nanocomposite having a structure in which a plurality of carbon nanotubes and a plurality of second alumina magnesia-based ceramic crystals are intertwined forms a composite material having high toughness and strength. Since this nanocomposite force is dispersed inside a ceramic polycrystal composed of a plurality of first alumina-magnesia ceramic crystals, it has excellent mechanical performance with greater toughness and strength.
  • the highly functional composite material according to the present invention is excellent in wear resistance due to the characteristics of carbon nanotubes as graphite, and has a small coefficient of friction.
  • carbon nanotubes are formed by converting insulating alumina magnesia ceramics into conductive composite materials, the electrical resistance varies widely and is excellent in electrical conductivity and electromagnetic wave absorption. .
  • High-performance composite materials according to the present invention it is preferable coefficient of friction from 0.07 to 0.35, the electric resistance is 10 _ 2 ⁇ 10 7 ⁇ 'cm . Since inexpensive alumina magnesia ceramics is used as a raw material, it can be manufactured at low cost.
  • Carbon nanotube is a general term for single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, amorphous carbon nanotubes, and carbon nanorods.
  • the second alumina magnesia-based ceramics The crystal preferably has a grain size that is an order of magnitude smaller than the drain size of the first alumina magnesia ceramic crystal.
  • the second alumina-magnesia ceramic crystal preferably has a grain size smaller than 200 nm.
  • the nanocomposite is larger than the grain size of the first alumina-magnesia ceramic crystal.
  • the carbon nanotubes preferably have an average length longer than lOOOnm and an average thickness thinner than lOOnm.
  • the grain size of the second alumina-magnesia ceramic crystal is smaller than 200 nm, a nanocomposite in which carbon nanotubes longer than lOOOnm are bonded in a form that bridges a plurality of second alumina-magnesia ceramic crystals is formed.
  • the second alumina magnesia-based ceramic crystal in this nanocomposite is cooled and contracted, the entangled carbon nanotubes can be deformed, so that the residual stress generated is smaller compared to the case where the carbon nanotubes cannot be deformed. Toughness and strength can be improved.
  • the high-functional composite material according to the present invention preferably contains 4 to 85 mass% of carbon nanotubes, 0.2 to 95 mass% of alumina, and 1 to 27 mass% of magnesia. In this case, it has particularly excellent electrical conductivity and electromagnetic wave absorption.
  • the carbon nanotube is one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, an amorphous carbon nanotube, and a carbon nanorod. It is preferable to consist of a mixture of In this case, even if one or a mixture of two or more of these is used, the effect on improving mechanical performance, electrical conductivity and electromagnetic wave absorption is not changed! /.
  • the high-functional composite material according to the present invention comprises a sintered body containing carbon nanotubes 0.1 to 90 mass% and alumina magnesia ceramics 99.9 to 10 mass%, and the alumina-magnesia ceramics is alumina 99.8 to 0.5 masss. % And magnesia 0.2 to 99.5 mass%, and the carbon nanotube and the alumina magnesia ceramic nanocrystals may be intertwined as a constituent element. Also in this case, it has particularly excellent mechanical performance, electrical conductivity, and electromagnetic wave absorption.
  • sintering is performed in a non-oxidizing atmosphere at a temperature range of 1050 ° C. to 1800 ° C. for 5 minutes to 5 hours. .
  • the highly functional composite material according to the present invention having excellent mechanical performance, electrical conductivity, and electromagnetic wave absorption can be produced.
  • a rotation / revolution supermixer capable of uniform mixing without destroying the carbon nanotubes.
  • the method for producing a high-performance composite material according to the present invention comprises adding 0.3 to 70 ma SS % of carbon nanotubes and 99.7 to 30 mass% of alumina magnesia ceramic in water or an alcohol solvent to form a slurry. After mixing for 5 minutes and removing the solvent from the mixture, the mixture may be sintered in a non-oxidizing atmosphere at a temperature range of 1050 ° C. to 1800 ° C. for 5 minutes to 5 hours.
  • the alumina magnesia-based ceramics comprises 99.8 to 0.5 mass% aluminum hydroxide (Al (OH)) in terms of alumina and 0.2 to 0.2 in terms of magnesia. It preferably contains 99.5 mass% magnesium hydroxide (Mg (OH) 3). In these cases, a highly functional composite material having particularly excellent mechanical performance, electrical conductivity, and electromagnetic wave absorption can be produced.
  • the solvent is removed from the mixture and then in a non-oxidizing atmosphere at 300 ° C to 900 ° C. It is preferable to perform calcining for 5 to 60 minutes in the temperature range of C for dehydration. In this case, the temperature can be raised quickly during sintering, and moisture can be prevented from adhering to the sintering furnace.
  • the sintering is preferably performed by a pressureless sintering method, a hot press method, or a discharge plasma sintering method.
  • the force S which is basically possible with the pressureless sintering method, when the amount of carbon nanotubes is larger than the amount of alumina-magnesia ceramics, use a pressure sintering machine. Densification becomes easy.
  • a pressure sintering machine a hot press (HP) or a spark plasma sintering machine (SP S) can be used as a pressure sintering machine.
  • HP hot press
  • SP S spark plasma sintering machine
  • the highly functional composite material according to the embodiment of the present invention is manufactured by the method for manufacturing a highly functional composite material according to the embodiment of the present invention.
  • Alumina is industrially produced by the buyer method. That is, when the raw material bauxite is heat-treated with a sodium hydroxide solution to form a sodium aluminate solution, which is diluted and then added with aluminum hydroxide seed crystals, aluminum hydroxide is precipitated. This aluminum hydroxide is calcined at 1200 ° C or higher to produce alumina powder. Thus, aluminum hydroxide is a precursor for alumina and is less expensive than alumina. This aluminum hydroxide begins to decompose at 276 ° C and ends at 375 ° C, producing nuclei of alumina crystals. This nucleus crystal growth becomes prominent above 1000 ° C.
  • Magnesium hydroxide used in the method for producing a highly functional composite material according to the embodiment of the present invention is the starting material for most of magnesia's industrial raw materials in Japan.
  • Ca (OH) OH
  • it can be obtained by precipitating magnesium hydroxide, and if the magnesium hydroxide is calcined at 900 ° C., magnesia can be generated.
  • This magnesium hydroxide can decompose at about 490 ° C to generate nuclei of magnesia crystals.
  • the alumina-magnesia ceramics of the high-functional composite material and the manufacturing method thereof according to the embodiment of the present invention do not include alumina alone and magnesia alone.
  • a composite material is synthesized from aluminum hydroxide and carbon nanotubes, the alumina grows to a particle size of 20 micrometers or more during sintering.
  • carbon nanotubes aggregate and aggregate to form a lump, resulting in poor dispersibility, and the mechanical and electrical performance of the resulting composite material is significantly reduced.
  • the growth of this crystal grain is the same for magnesia alone, and in a composite material using magnesium hydroxide alone, magnesia crystals grow to 20 micrometers or more.
  • Carbon nanotubes used in the high-performance composite material and the manufacturing method thereof according to the embodiment of the present invention are mainly made by an arc discharge method, a laser evaporation method, a plasma synthesis method, and a hydrocarbon catalyst decomposition method.
  • Carbon nanotubes produced by these methods include single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, amorphous carbon nanotubes, and carbon nanotubes called carbon nanorods with small or little hollow portions.
  • aluminum hydroxide that is a precursor of alumina and magnesium hydroxide that is also a magnesia precursor are used.
  • Aluminum hydroxide decomposes at 400 ° C or lower to produce alumina crystal nuclei, and grows as the heating temperature is increased, and becomes a powder that is commercially available as alumina powder by treatment at 1200 ° C or higher.
  • Magnesium hydroxide decomposes below 500 ° C to produce magnesia crystal nuclei and is fired at 900 ° C for use as magnesia.
  • the alumina and magnesia crystals of the composite materials grow to a size of 20 m or more.
  • carbon nanotubes, magnesia, and alumina coexist, growth of alumina, magnesia, and spinel crystal nuclei is suppressed, and even when heated above the sintering temperature of the composite material, alumina, spinel, and magnesia crystals It does not grow as large as 200 nanometers and remains in the nanocrystalline state. Since carbon nanotubes have a length of 1000 nanometers or more, they form a structure in an intertwined state by bridging multiple nano alumina crystals, nano magnesia crystals, and nano spinel crystals.
  • nano-alumina magnesia-based ceramics and carbon nanotubes is a nanocomposite, and the present inventors have discovered it for the first time. If the carbon nanotubes are small relative to the amount of alumina-magnesia ceramics, the nanocomposite forms a structure dispersed in islands in a polycrystalline matrix of alumina-magnesia ceramics. Since the alumina-magnesia ceramic used as the matrix is not pure alumina or magnesia, it does not grow larger than 20 micrometers, but at most several micrometers.
  • the strength and toughness of the composite material depend on the magnitude of the residual stress. In general, as residual stress increases, strength and toughness decrease. The reason is that the residual stress can be relaxed by the occurrence of cracks. In general ceramic polycrystals, when the residual stress is relatively low, the grain boundary strength is weakened mainly, and the effect of improving toughness by deflection of cracks can be expected, and the possibility of improving strength and toughness is also possible. is there.
  • the difference in thermal expansion between carbon nanotubes and alumina magnesia ceramics is large. When carbon nanotubes are uniformly dispersed, large compressive stress acts on the carbon nanotubes from the matrix alumina magnesia ceramics. Even if there is little, large residual stress is generated in the composite material. As a result, as the added amount of carbon nanotubes increases, cracks are likely to occur in the composite material, and when the amount of carbon nanotubes increases, the composite material cannot be manufactured due to the occurrence of cracks.
  • the nanocomposite is a structure in which the nanocomposite is dispersed in the alumina-magnesia ceramic, even when the proportion of the carbon nanotube is small, and the carbon nanotube is a matrix. It is not in a state of being uniformly dispersed.
  • the carbon nanotubes 2 in the nanocomposite 1 are not confined in the nanocrystals of the alumina magnesia ceramic 3, but are intertwined with the nanocrystals of the alumina magnesia ceramic 3. Yes.
  • Nanoalumina-magnesia ceramics 3 particles are 200 nanometers or less, and are entangled with carbon nanotubes 2 that are much longer than their diameter. The possibility of a strong chemical bond between the two intertwined is linked by a weak force similar to the van der Waals force. In this nanocomposite 1, carbon nanotube 2 and alumina If the bonding strength with the magnesia-based ceramics 3 is strong, the residual stress due to the difference between these two thermal expansions cannot be relaxed, and as the amount of multi-walled carbon nanotubes 2 increases, the residual stress becomes complex. Until the material is destroyed. However, the fact that a composite material that is dense and does not crack indicates that the residual stress has been relaxed.
  • the multi-walled carbon nanotube 2 is in a deformable state due to the weak binding.
  • the nanocrystals of the alumina-magnesia ceramics 3 shrink, the multi-walled carbon nanotubes 2 can bend in the length direction, thereby reducing the residual stress. Relieving the residual stress does not reduce the toughness and strength of the composite material.
  • the carbon nanotubes 2 are pulled out in the nanocomposite 1, which leads to increased toughness and strength.
  • the proportion of carbon nanotubes 2 increases, the force that increases the proportion of nanocomposites 1 is generated. Residual stress is alleviated, so the strength of the composite material will never decrease!
  • the carbon nanotube is broken by the ball.
  • the slurry is mixed using a rotation / revolution supermixer in order to prevent this destruction and to perform uniform mixing in a short time.
  • This device rotates a container containing slurry and revolves the main body that supports it in the opposite direction to perform mixing. It is suitable for mixing highly viscous materials. In this way By rotating and revolving, a shearing stress is applied to the slurry to give a force to break up the agglomerated part.
  • This method enables uniform mixing in a relatively short time. When making this slurry, adding a surfactant or dispersant to improve dispersion can shorten the time for uniform mixing.
  • the high-functional composite material according to the embodiment of the present invention can be basically sintered under no pressure. However, if the mixing ratio force of alumina magnesia ceramics becomes smaller than the amount of carbon nanotubes, the sintering performance will be inferior, so the pressureless sintering method can produce a dense and strong sintered body. It becomes difficult. If the sintering method under pressure is used, a dense composite material can be easily produced in the entire mixing range. High industrial use value! /, Pressure sintering method is hot press method (HP) and spark plasma sintering method (SPS)
  • the hot press method while pressurizing a graphite mold containing a sample, the temperature is raised to a sintering temperature by an external heating method, usually in a non-oxidizing atmosphere, and kept at that temperature for a certain period of time. It is a method of manufacturing a product. In this method, since the effect of promoting densification by pressurization can be expected, it is possible to easily densify high-functional composite materials whose alumina magnesia-based ceramics are 60 mass% or less and have poor sinterability. it can.
  • the spark plasma sintering machine is called plasma activated sintering machine (PAS), discharge plasma system (SPS), pulsed current sintering machine, etc., and has been developed to sinter metals and ceramics.
  • PAS plasma activated sintering machine
  • SPS discharge plasma system
  • pulsed current sintering machine etc.
  • the structure is characterized in that a sample is packed in a conductive mold and heated directly by passing a pulse direct current. As a result, a no-less electric field acts on the sample in the mold, the diffusion of the material is promoted, and plastic deformation is likely to occur. Furthermore, in powders with high electrical resistance, a slight current flows on the sample surface, which accelerates the movement of molecules on the crystal surface and promotes crystal growth.
  • the high-functional composite material of the embodiment of the present invention is composed of a sintered body containing carbon nanotubes 0.1 to 90 mass% and alumina magnesia-based ceramics 99.9 to 10 mass%, It has a nanocomposite in which carbon nanotubes and alumina magnesia ceramic nanocrystals are intertwined with each other.
  • This nanocomposite itself is a composite material with high toughness and strength, and when it is dispersed in an alumina-magnesia ceramic, it produces a highly functional composite material with high toughness and strength. If the mixing ratio of carbon nanotubes is less than 0.1 mass%, the friction coefficient, which is part of the wear resistance, cannot be reduced compared to that of alumina. When the proportion of carbon nanotubes is increased to 90 mass% or more, the strength of the composite material remains the same as that obtained by solidifying only carbon nanotubes.
  • the ceramic portion of the high-functional composite material according to the embodiment of the present invention is alumina 99.
  • the raw material aluminum hydroxide and magnesium hydroxide each are mixed and sintered with carbon nanotubes, the resulting composite material crystal grows to a particle size of alumina and magnesia of 20 micrometers or more, toughness and strength Will drop and become unusable.
  • This crystal growth can be prevented by using a mixed composition of alumina and magnesia.
  • the mixing power of magnesia is 0.2 mass% or more, the crystal growth of alumina is completely suppressed, and a highly functional composite material with high toughness and strength can be produced.
  • magnesia grain growth is suppressed, and strength reduction and non-uniform dispersion of carbon nanotubes can be prevented.
  • Single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, amorphous carbon nanotubes, and carbon nanorods can all be used for the production of high-performance composite materials. Furthermore, a mixture of two or more of these can also be used.
  • a raw material for alumina-magnesia ceramics a mixed raw material of aluminum hydroxide, which is an alumina precursor, and magnesium hydroxide, which is a magnesia precursor, is used as a raw material for alumina-magnesia ceramics.
  • the calcination time is suitably 5 to 60 minutes. In other words, if the time is shorter than 5 minutes, the decomposition is not enough. Even if it decomposes for more than 60 minutes, the decomposition is already completed, so there is no effect.
  • alumina magnesia-based ceramic composite material In order to produce an alumina magnesia-based ceramic composite material by a pressureless sintering method, it is necessary to form it into a necessary shape prior to sintering.
  • This molding involves injection molding, embossing. It can be carried out by using conventional techniques such as a molding method and a slip casting method.
  • the pressureless sintering temperature ranges from 1300 ° C to 1800 ° C. At 1300 ° C or lower, sintering under no pressure does not proceed sufficiently, and even if the sintering temperature is increased to 1800 ° C or higher, sintering is completed, so the effect on sintering remains unchanged! / ,.
  • the pressureless sintering time is suitably in the range of 0.2 to 5 hours.
  • sintering is not sufficient. Sintering for 5 hours or more has almost no densification effect.
  • This pressureless sintering can be performed even using an electromagnetic wave sintering machine.
  • Graphite materials are used as dielectric electromagnetic wave absorbers mixed with polymers and concrete.
  • alumina magnesia ceramics are dielectric electromagnetic wave absorbers. After molding the mixed raw material for pressureless sintering, heat it to 1300 ° C ⁇ 1800 ° C by the heat generated by electromagnetic wave absorption using an electromagnetic sintering machine, and hold it at the final temperature for 0.1 ⁇ 3 hours Thus, by completing the sintering, it is possible to obtain the high-performance composite material according to the embodiment of the present invention. If the sintering time is 0.1 hour or less, the effect on sintering will not change even if the time is increased to 3 hours or longer, which is not sufficient.
  • the pressure sintering method is advantageous when the ratio of carbon nanotubes is high and mixed raw materials are used.
  • a pressure sintering machine a dense sintered body can be obtained by using a hot press and SPS.
  • hot pressing the mixed raw materials packed in the mold are heated by external heat and sintered under pressure.
  • SPS a pulsed direct current is passed through a mold containing mixed raw materials, heated directly and sintered under pressure.
  • the sintering temperature is in the range of 1050 ° C to 1600 ° C, the sintering time is 5 minutes to 2 hours, and the applied pressure is 2 to 200 MPa.
  • the sintering temperature is related to the applied pressure, and it is necessary to increase the applied pressure to lower the sintering temperature.
  • the pressure is determined by the pressure resistance of the mold.
  • the dense graphite mold can be used up to a temperature of 2400 ° C up to 200MPa. If the sintering temperature is set to 1050 ° C or lower, the composite material cannot be sintered densely even if the applied pressure is increased to 200 MPa. Therefore, it is essential to set the sintering temperature to 1050 ° C or higher. . Even if the temperature is higher than 1600 ° C, it is already sintered at a lower temperature! /, So there is no effect on densification. If the sintering time is shorter than 5 minutes, the sintering has already been completed for 2 hours or more, which is not sufficient, so that no further densification effect can be expected.
  • the toughness and strength of the alumina sintered body are small, and the friction coefficient and electrical resistance are considerably large.
  • the strength is remarkably reduced due to the growth of alumina crystals.
  • MWNT significantly reduces the friction coefficient and electrical resistance.
  • the effect of adding carbon nanotubes of lmass% or less is not so great, but the effect of adding a few percent is significant.
  • Heat generation due to electromagnetic wave absorption (“Heat generation in microwave oven” in Table 1) is measured by examining the heat generation status due to electromagnetic wave absorption of the composite material using the microwave oven, and the X mark in Table 1 indicates that no heat is generated. The ⁇ mark indicates a slight fever, and the ⁇ mark indicates a considerable fever! The addition of lmass% MWNT did not generate heat! /, but the addition of 2 mass% produced a little heat, and the addition of more than that showed a large exothermic phenomenon.
  • SWNT single-walled carbon nanotubes
  • spinel (MgAl 0) is produced from the mixing ratio of aluminum hydroxide and magnesium hydroxide. Mix these ingredients with water to make a slurry
  • triethanolamine was added as a dispersant to about 3 ⁇ 5 ⁇ 1% as a dispersant, and the mixture was mixed for 1.2 hours using a rotation / revolution supermixer. After drying this mixed raw material, it is heated to 240 ° C in air to decompose the dispersant, and further heated to 600 ° C in 1.5 hours while flowing nitrogen gas using an atmospheric furnace, and the temperature is raised to that temperature for 30 minutes.
  • the raw material aluminum hydroxide and magnesium hydroxide were decomposed. This decomposed and dehydrated raw material was molded, heated to 1700 ° C in a nitrogen atmosphere for 1.5 hours using an electric furnace with graphite heating, and held at that temperature for 2 hours to complete the sintering.
  • the strength of the single magnesia sintered body is small due to grain growth, and it can be seen that the strength increases when alumina is added thereto.
  • the amount of carbon nanotubes added exceeds S40ma SS %, it becomes difficult to synthesize dense high-performance composite materials by sintering under no pressure, but it is shown in Table 3 by using a hot press.
  • This high-performance composite material has sufficient strength S, toughness, and strength that are almost composed of nanocomposites, and is a value that can be practically used as a product.
  • Heat generation due to electromagnetic wave absorption (“Heat generation in microwave oven” in Table 3) is measured by examining the heat generation status due to electromagnetic wave absorption of the composite material using the microwave oven, and the X mark in Table 3 does not generate heat. ⁇ mark shows a little fever and ⁇ mark shows a considerable amount of heat. Due to the high carbon nanotube content in the high-performance composite material, a large exotherm was observed. The sintered body containing no carbon nanotubes did not generate heat.
  • This decomposed raw material is packed in a graphite mold, set in a spark plasma sintering machine (SPS), heated to 1500 ° C in 1 hour under a pressure of 80 MPa in vacuum, and the temperature is reached. Hold for 20 minutes to complete the sintering.
  • SPS spark plasma sintering machine
  • the highly functional composite material including the carbon nanotube of the present invention and the alumina-magnesia ceramic has improved the toughness of the conventional alumina-magnesia ceramics and has a high strength. Has also been improved.
  • the friction coefficient shows a greatly improved wear resistance.
  • the electrical resistance decreases with respect to the amount of carbon nanotubes added, and a high-functional composite material with a small amount of alumina-magnesia ceramics is close to a graphite material and has an electrical resistance!
  • the high-performance composite material according to the present invention can be used in fields where conventional alumina-magnesia ceramics are used !, and also in new fields utilizing the characteristics of carbon nanotubes.
  • the electronic material of the high-functional composite material according to the present invention reflects the function of a chiral type that is one of the structures of carbon nanotubes, and absorbs 300 MHz to 300 GHz band microwave and millimeter wave electromagnetic wave absorbers, It can be applied to electromagnetic wave reflectors, couplers, modulators, electromagnetic wave switches, antennas, micromechanical elements, microsensors, energy conversion elements, radar protection dome, noise absorbers, and electromagnetic wave absorption heating elements.
  • FIG. 1 is a schematic diagram showing an alumina-magnesia nanocomposite of a high-functional composite material according to an embodiment of the present invention.

Abstract

Disclosed is a novel highly functional composite material which is excellent in mechanical performance, electrical conductivity and electromagnetic wave absorption. Also disclosed is a method for producing such a highly functional composite material. Specifically disclosed is a highly functional composite material comprising a ceramic polycrystalline body composed of a plurality of first alumina-magnesia ceramic crystals, and a nanocomposite body (1) having a structure wherein a plurality of carbon nanotubes (2) and a plurality of crystals of a second alumina-magnesia ceramic (3) are intertwined with each other. The nanocomposite body (1) is dispersed in the ceramic polycrystalline body. The total composition of the highly functional composite material containing the ceramic polycrystalline body and the nanocomposite body (1) is composed of 0.1-90 mass% of the carbon nanotubes and 99.9-10 mass% of the alumina-magnesia ceramics. The alumina-magnesia ceramics are composed of 99.8-0.5 mass% of alumina and 0.2-99.5 mass% of magnesia.

Description

明 細 書  Specification
高機能複合材料およびその製造方法  High performance composite material and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、実用的なセラミックスとして重要なアルミナとマグネシアとからなるアルミ ナーマグネシア系セラミックスと、カーボンナノチューブとからなる複合材料であり、セ ラミックスにカーボンナノチューブを複合化させることにより、従来のセラミックスの性 能を改善し、さらに新規な機能を持たせた高機能複合材料およびその製造方法に関 するものである。  [0001] The present invention is a composite material composed of alumina magnesia ceramics composed of alumina and magnesia, which are important as practical ceramics, and carbon nanotubes. By combining carbon nanotubes with ceramics, The present invention relates to a high-performance composite material that improves the performance of conventional ceramics and has a new function, and a method for producing the same.
背景技術  Background art
[0002] アルミナ マグネシアを原料とするセラミックスは、その価格が安いため、工業的に 広い範囲で利用されている。これらのセラミックスは、金属に比べて耐熱性および耐 酸化性に優れている。また、電気を流さない絶縁性であり、誘電性であるため、少な いながら電磁波の吸収は可能である。アルミナ マグネシアおよびその化合物は、 耐食性にも優れている。これらのセラミックスは、金属に比べて靭性が小さぐ材料と しての信頼性に欠け、応力の付加により簡単に破壊する。このため、靭性を大きくで きれば適用範囲が格段に広がり、さらに金属のような電気伝導性が付与された複合 材料、あるいは電磁波の吸収性能に優れた複合材料が開発されれば、従来のセラミ ッタスの使用範囲を超えた利用が可能になる。  [0002] Ceramics made from alumina magnesia are used in a wide range of industries because of their low price. These ceramics are superior in heat resistance and oxidation resistance compared to metals. In addition, since it is insulative and does not conduct electricity, it is dielectric, so that it can absorb electromagnetic waves with a small amount. Alumina magnesia and its compounds have excellent corrosion resistance. These ceramics lack reliability as materials with lower toughness than metals, and are easily destroyed by the application of stress. Therefore, if the toughness can be increased, the range of application will be greatly expanded, and if a composite material imparted with electrical conductivity such as metal or a composite material with excellent electromagnetic wave absorption performance is developed, conventional ceramics will be developed. Use beyond the scope of use of tus.
[0003] カーボンナノチューブは、 1991年に発見された材料である(例えば、非特許文献 1 参照)。この材料は、アスペクト比の大きい微細なチューブ構造のナノ繊維である。化 学的性質は、ほぼ黒鉛材料に類似している。カーボンナノチューブは、他の材料に 比べて強度および弾性率が非常に大きぐ多層カーボンナノチューブの弾性率は 18 OOGPaであり(例えば、非特許文献 2参照)、単層カーボンナノチューブの強度は 45G Paである(例えば、非特許文献 3参照)と報告されて!/、る。  [0003] Carbon nanotubes are a material discovered in 1991 (see, for example, Non-Patent Document 1). This material is a nanofiber having a fine tube structure with a large aspect ratio. The chemical properties are almost similar to graphite materials. Carbon nanotubes have much higher strength and elastic modulus than other materials. Multi-walled carbon nanotubes have an elastic modulus of 18 OOGPa (see Non-Patent Document 2, for example), and single-walled carbon nanotubes have a strength of 45 GPa. It is reported that there is (for example, non-patent document 3)!
[0004] このカーボンナノチューブの機械的強度特性を利用した材料の開発の一つとして、 カーボンナノチューブを使った複合材料、あるいはそれを固化した材料の開発が盛 んに行われている。これらの複合材料において、その合成が室温あるいはそれに近 い温度で行われる場合、すなわち高分子を使ってカーボンナノチューブ力 複合材 料を合成する時には、大きな問題は生じない。しかし、金属あるいはセラミックスを使 う場合には、高温で合成が行われるため、二つの材料の間の熱膨張差によって生じ る残留応力が問題になる。カーボンナノチューブは、温度を上げてもほとんど膨張し ない (例えば、非特許文献 4参照)。これに対し、カーボンナノチューブと複合化させ る金属やセラミックスの熱膨張係数は、 4x10— 6/K〜20χ10— 6/Κとかなり大きぐそのた めにカーボンナノチューブとこれらの物質との間には、大きな残留応力が発生する。 残留応力の小さな材料を作らないと、実用的な工業材料への応用は不可能である。 さらに、針状のカーボンナノチューブは、微粒子に比べてマトリックス中に均一に分散 するのが困難であり、特にカーボンナノチューブの割合が多くなると、この均一分散 は!/、つそう困難になり、これまでに優れた複合材料は製造されて!/、な!/、。 [0004] As one of the development of materials utilizing the mechanical strength characteristics of carbon nanotubes, development of composite materials using carbon nanotubes or materials obtained by solidifying them has been actively conducted. In these composite materials, the synthesis is at or near room temperature. When it is carried out at a high temperature, that is, when a carbon nanotube force composite material is synthesized using a polymer, no major problem occurs. However, when using metals or ceramics, the synthesis is performed at high temperatures, so the residual stress caused by the difference in thermal expansion between the two materials becomes a problem. Carbon nanotubes hardly expand even when the temperature is raised (see Non-Patent Document 4, for example). In contrast, the thermal expansion coefficient of the metal or ceramics carbon nanotubes and Ru is complexed is, 4x10- 6 / K~20χ10- 6 / Κ and the carbon nanotube fairly large instrument other Me A between these materials A large residual stress is generated. Unless a material with a small residual stress is made, it cannot be applied to practical industrial materials. In addition, acicular carbon nanotubes are more difficult to disperse uniformly in the matrix than fine particles, especially when the proportion of carbon nanotubes increases, this uniform dispersion becomes difficult! Excellent composite material is manufactured! / ,!
[0005] カーボンナノチューブとアルミナ一マグネシア系セラミックスとの複合材料の合成は 、アルミナ単身とマグネシア単身とについて行われてきた。主には、カーボンナノチュ ーブとアルミナ粉とを混合し、それを原料にして焼結する方法である。この方法での 出発原料となるアルミナ粉の粒径は、 200ナノメートル以上であり、焼結後には通常 10 00ナノメートル以上に大きくなる。カーボンナノチューブは、アルミナ結晶の粒内か、 その粒界に分散されている。このような分散状態でも、アルミナ—単層カーボンナノ チューブ複合材料の靭性値は、単層カーボンナノチューブを 10vol%添加した時、ァ ノレミナ単身に比べて 3倍大きくなつたと報告されている(例えば、非特許文献 5参照) 。し力、し、その後の研究で、この靭性の改善は誤りで、このアルミナ 単層カーボンナ ノチューブ複合材料の靭性は、アルミナ単身とほとんど変わらないことが証明されて いる(例えば、非特許文献 6参照)。機械的性質が改善された例として、アルミナの微 粉と、 10vol%の多層カーボンナノチューブとを混合して得られた複合材料の靭性値は 、アルミナ単身のそれに比べて 24%増加しているとの報告がある(例えば、非特許文 献 7参照)。 [0005] The synthesis of a composite material of a carbon nanotube and an alumina-magnesia ceramic has been performed for an alumina single body and a magnesia single body. The main method is to mix carbon nanotubes and alumina powder and sinter them using them as raw materials. The particle size of the alumina powder used as the starting material in this method is 200 nanometers or more, and usually becomes larger than 1000 nanometers after sintering. Carbon nanotubes are dispersed within the alumina crystal grains or at the grain boundaries. Even in such a dispersed state, it has been reported that the toughness value of alumina-single-walled carbon nanotube composites increased by a factor of 3 compared to the single-walled carbon nanotube when 10 vol% of single-walled carbon nanotubes were added (for example, Non-patent document 5). In subsequent studies, it has been proved that this improvement in toughness is wrong, and the toughness of this alumina single-walled carbon nanotube composite is almost the same as that of alumina alone (for example, Non-Patent Document 6). reference). As an example of improved mechanical properties, the toughness value of a composite material obtained by mixing alumina fine powder and 10 vol% multi-walled carbon nanotubes is 24% higher than that of alumina alone. (For example, see Non-Patent Document 7).
[0006] アルミナ粉末を用いる同じ手法で、アルミナの電気抵抗値の低減を目的にした材料 開発がある(例えば、特許文献 1参照)。ここでは、 0· 1νο1%のカーボンナノチューブの 添加で、電気抵抗は 1013から 106 ( Ω ' cm)のオーダーまで減少している。アルミナ粉と は異なる原料として、アルミナの前駆体にブトキシアルミニウム (A1(C H ) )を使い、そ [0006] With the same technique using alumina powder, there is a material development aimed at reducing the electrical resistance value of alumina (see, for example, Patent Document 1). Here, with the addition of 0 · 1νο1% carbon nanotubes, the electrical resistance decreases to the order of 10 13 to 10 6 (Ω 'cm). With alumina powder As a different raw material, butoxy aluminum (A1 (CH)) is used as the precursor of alumina,
4 9 3  4 9 3
れをアルコールに溶解し、多層カーボンナノチューブを加えて混合し、水を添加して ブトキシアルミニウムを加水分解し、乾燥してから非酸化性雰囲気で 1250°Cに仮焼し てカーボンナノチューブとアルミナとの混合粉体を作製し、それを焼結している。得ら れた混合粉体のアルミナの粒径は、 500ナノメートル以上に成長しており、それを焼 結して得られた複合材料中のアルミナの粒径は、 1000ナノメートル以上と大きくなり、 カーボンナノチューブは、アルミナの粒内に分散すると同時に、塊となって粒界に存 在している。この複合材料の靭性は、カーボンナノチューブを 1.5vol%添加したもので 最大になり、アルミナ単身のそれより 1.1倍大きくなつているにすぎない(例えば、非特 許文献 8参照)。  This is dissolved in alcohol, mixed with multi-walled carbon nanotubes, water is added to hydrolyze butoxyaluminum, dried, and calcined at 1250 ° C in a non-oxidizing atmosphere. The mixed powder is made and sintered. The particle size of alumina in the obtained mixed powder has grown to 500 nanometers or more, and the particle size of alumina in the composite material obtained by sintering it has increased to 1000 nanometers or more. The carbon nanotubes are dispersed in the alumina grains and, at the same time, lump together and exist at the grain boundaries. The toughness of this composite material is maximized with the addition of 1.5 vol% carbon nanotubes, and is only 1.1 times greater than that of alumina alone (see Non-Patent Document 8, for example).
[0007] 以上述べた方法では、出発原料である粉体の結晶径は大きぐ複合材料中のアル ミナの結晶を 500ナノメートル以下に制御するのは困難である。アルミナとマグネシア とからそれぞれの単身のナノ複合材料の製造についても報告がされている(例えば、 特許文献 2参照)。そこでは、原料にはアルミナとマグネシア粉とがそれぞれ単身で 使われている。この方法により結晶成長させないでナノ複合材料を製造するために は、製造条件を厳密に制御する必要があり、それによる製造コストの上昇は避けられ ない。アルミナ粉以外の原料の使用に関し、水酸化アルミニウムについての言及も見 られる。 (例えば、特許文献 3参照)。しかし、純粋の水酸化アルミニウムから得られる 複合材料にぉレ、ては、アルミナの結晶径が 20マイクロメートル以上に大きく成長し、 強度が大きく低下し、高性能の複合材料を製造するのは困難である。  [0007] In the method described above, it is difficult to control the alumina crystals in the composite material having a large crystal diameter of the powder as the starting material to 500 nanometers or less. The production of single nanocomposites from alumina and magnesia has also been reported (see, for example, Patent Document 2). There, alumina and magnesia powder are used alone as raw materials. In order to manufacture a nanocomposite material without crystal growth by this method, it is necessary to strictly control the manufacturing conditions, and the increase in manufacturing cost is inevitable. There are references to aluminum hydroxide regarding the use of raw materials other than alumina powder. (For example, see Patent Document 3). However, it is difficult to manufacture high-performance composite materials because the crystal diameter of alumina grows larger than 20 micrometers and the strength is greatly reduced due to the composite materials obtained from pure aluminum hydroxide. It is.
[0008] アルミナの熱膨張係数は 8x10— 6/K、スピネル (A1 0 .MgO)の熱膨張係数は 11χ10_6 [0008] thermal expansion coefficient of alumina is 8x10- 6 / K, the thermal expansion coefficient of the spinel (A1 0 .MgO) 11χ10_ 6
2 3  twenty three
/K、マグネシアの熱膨張係数は 13x10— 6/Κである。これらの熱膨張係数は、カーボン ナノチューブのそれと比べて大きぐアルミナ マグネシア系セラミックス多結晶体中 にカーボンナノチューブが存在すると、焼結温度から室温への冷却中にアルミナ一 マグネシア系セラミックスは収縮し、カーボンナノチューブは収縮しないため、大きな 残留応力が発生し、複合材料の靭性と強度とが小さくなり、実用材料としての応用が 困難になる。また、アルミナ マグネシア系セラミックスの粒界に存在するカーボンナ ノチューブは、破壊のクラックの進展を阻止する機能が小さぐ先に述べたカーボン ナノチューブ アルミナ複合材料の報告に見られるように、靭性と強度とは大きくなつ ていない。その原因は、複合材料の製造のために、セラミックス粉とカーボンナノチュ 一ブとをスラリー状態で混合すると、カーボンナノチューブが凝縮し、カーボンナノチ ユーブの凝縮体中にセラミックス粉体の原料が進入しにくいため、生成した複合材料 中ではカーボンナノチューブが塊で存在するようになるためである。 / K, the thermal expansion coefficient of the magnesia is 13x10- 6 / Κ. When the carbon nanotubes are present in the alumina magnesia ceramic polycrystal, which has a larger coefficient of thermal expansion than that of the carbon nanotubes, the alumina-magnesia ceramic shrinks during the cooling from the sintering temperature to room temperature, and the carbon Nanotubes do not shrink, generating large residual stresses, reducing the toughness and strength of the composite material, making it difficult to apply as a practical material. In addition, carbon nanotubes that exist at the grain boundaries of alumina magnesia ceramics have a small function to prevent the development of fracture cracks. As seen in the nanotube-alumina composite report, toughness and strength have not increased. The reason for this is that when ceramic powder and carbon nanotubes are mixed in a slurry state to produce a composite material, the carbon nanotubes condense and the ceramic powder raw material enters the carbon nanotube condensate. This is because carbon nanotubes are present in a lump in the resulting composite material.
非特許文献 1 : S. Iijima, "Helical Microtubules of Graphite Carbon", Nature, 1991, 3 54, p.56-58 Non-Patent Document 1: S. Iijima, "Helical Microtubules of Graphite Carbon", Nature, 1991, 3 54, p.56-58
非特許文献 2 : M. M. J. Treacy and T. W. Ebbesen, "Exceptionally High Young' s M odulus Observed for Individual Carbon Nanobtubes , Nature, 1996, 381, p.678-680 非特許文献 3 : D. A. Walters,し M. Ericso, J. Casavant, J. Liu, D. T. Colbert, . A . Smith and R. E. Smalley, "Elastic Strain of Freely Suspended Single-Wallし arbon Nanotube Ropes", Appl. Phy. Lett. , 1999, 74, 25, p.3803-3805 Non-Patent Document 2: MMJ Treacy and TW Ebbesen, "Exceptionally High Young's Modulus Observed for Individual Carbon Nanobtubes, Nature, 1996, 381, p.678-680 Non-Patent Document 3: DA Walters, M. Ericso, J Casavant, J. Liu, DT Colbert,. A. Smith and RE Smalley, "Elastic Strain of Freely Suspended Single-Walled Arbon Nanotube Ropes", Appl. Phy. Lett., 1999, 74, 25, p.3803- 3805
非特許文献 4 : Y. Maniwa, R. Fujiwara, H. Kira, H. Tou, H. Kataura, S. Suzuki, Y. A chiba, E. Nishibori, M. Takata, M. Sakata, A. Fujiwara and H. Suematsu, Thermal Expansion of single-Walled Carbon Nanotube (SWNT) Bundles: X-ray Diffraction St udies", Phys. Rev. B, 2001, 64, p.241402-1-3 Non-Patent Document 4: Y. Maniwa, R. Fujiwara, H. Kira, H. Tou, H. Kataura, S. Suzuki, Y. A chiba, E. Nishibori, M. Takata, M. Sakata, A. Fujiwara and H. Suematsu, Thermal Expansion of single-Walled Carbon Nanotube (SWNT) Bundles: X-ray Diffraction Studies ", Phys. Rev. B, 2001, 64, p.241402-1-3
非特許文献 5 : G. -D. Zhan, J. D. untz, J. Wan and A. . Mukherjee, "Single-Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocompo sites", Nature Mater., 2003, 2, p.38-42 Non-Patent Document 5: G. -D. Zhan, JD untz, J. Wan and A.. Mukherjee, "Single-Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocompo sites", Nature Mater., 2003, 2, p.38-42
非特許文献 6 : X. Wang, N. P. Padture and H. Tanaka, "Contact-Damage-Resistanc e Ceramic/ Single-Wall Carbon Nanotubes and Ceramic/ Graphite Composites , Nat ure Mater., 2004, 3, p.539-544 Non-Patent Document 6: X. Wang, NP Padture and H. Tanaka, "Contact-Damage-Resistanc e Ceramic / Single-Wall Carbon Nanotubes and Ceramic / Graphite Composites, Nature Mater., 2004, 3, p.539-544
非特許文献 7 : R. W. Siegel, S. . Chang, B. J. Ash, J. Stone, P. M. Ajayan, R. W. Doremus and L. S. Schadler, Mechanical Behavior of Polymer and Ceramics Matrix Nanocomposites", Scripta Mater., 2001, 44, p.2061-2064 Non-Patent Document 7: RW Siegel, S.. Chang, BJ Ash, J. Stone, PM Ajayan, RW Doremus and LS Schadler, Mechanical Behavior of Polymer and Ceramics Matrix Nanocomposites ", Scripta Mater., 2001, 44, p.2061 -2064
特許文献 1 :特開 2004— 244273号公報 Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-244273
非特許文献 8 : C. B. Mo, S. I. Cha, . T. Kim, . Η. Lee and S. H. Hong, "Fabricat ion of Carbon Nanotube Reinforced Alumina Matrix Nanocomposite by Sol-Gel Proc ess", Mater. Sci. Eng., 2005, A 395, p.124- 128 Non-Patent Document 8: CB Mo, SI Cha,. T. Kim,. Η. Lee and SH Hong, "Fabricat ion of Carbon Nanotube Reinforced Alumina Matrix Nanocomposite by Sol-Gel Proc ess ", Mater. Sci. Eng., 2005, A 395, p.124-128
特許文献 2:特表 2004 507434号公報  Patent Document 2: Japanese Translation of Special Publication 2004 507434
特許文献 3:特開 2004— 256382号公幸  Patent Document 3: Japanese Patent Publication No. 2004-256382
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 上記のような従来の技術では、セラミックスにカーボンナノチューブを添加して優れ た機械的特性、電気的特性を発揮するような高機能複合材料を製造することは不可 能であるとレ、う課題があった。 [0010] With the conventional techniques as described above, it is impossible to produce a high-performance composite material that exhibits excellent mechanical and electrical characteristics by adding carbon nanotubes to ceramics. There was a problem.
[0011] 本発明は、このような課題に着目してなされたもので、機械的性能、電気伝導性お よび電磁波吸収性に優れた新規な高機能複合材料およびその製造方法を提供する ことを目的としている。 The present invention has been made paying attention to such problems, and provides a novel high-functional composite material excellent in mechanical performance, electrical conductivity and electromagnetic wave absorption, and a method for producing the same. It is aimed.
課題を解決するための手段  Means for solving the problem
[0012] 上記目的を達成するために、本発明に係る高機能複合材料は、複数の第 1のアル ミナ マグネシア系セラミックス結晶から成るセラミックス多結晶体と、複数のカーボン ナノチューブと複数の第 2のアルミナ マグネシア系セラミックス結晶とが絡み合った 構造のナノ複合体とを有し、前記ナノ複合体は前記セラミックス多結晶体の内部に分 散されていることを、特徴とする。  [0012] In order to achieve the above object, a highly functional composite material according to the present invention includes a ceramic polycrystalline body composed of a plurality of first alumina-magnesia ceramic crystals, a plurality of carbon nanotubes, and a plurality of second nanotubes. A nanocomposite having a structure in which alumina magnesia-based ceramic crystals are intertwined, and the nanocomposite is dispersed inside the ceramic polycrystal.
[0013] 本発明者らは、カーボンナノチューブがアルミナ マグネシア系セラミックスの結晶 成長に及ぼす効果と、その分散性について鋭意研究してきた。その結果、カーボン ナノチューブが、アルミナ—マグネシア系セラミックスの結晶核が大きな結晶に成長 するのを抑制し、その分散性を大きく改善できる方法を発見した。すなわち、出発原 料にアルミナ マグネシア系セラミックス結晶を生成する前駆体(水酸化アルミニウム および水酸化マグネシウム)を用いると、カーボンナノチューブの複合材料中での分 散が良くなり、カーボンナノチューブのみが塊として存在することがなくなり、第 2のァ ルミナーマグネシア系セラミックスの結晶成長が 200ナノメートル以下のナノサイズに 抑えられる。そのため、複数のナノアルミナ一マグネシア系セラミックス結晶を、カー ボンナノチューブが橋渡す形で結合する、絡み合ったナノ複合体組織が形成される [0013] The present inventors have intensively studied the effect of carbon nanotubes on the crystal growth of alumina magnesia ceramics and their dispersibility. As a result, they discovered a method by which carbon nanotubes can prevent the crystal nuclei of alumina-magnesia ceramics from growing into large crystals and greatly improve their dispersibility. In other words, when precursors (aluminum hydroxide and magnesium hydroxide) that produce alumina magnesia ceramic crystals are used as the starting material, dispersion in the composite material of carbon nanotubes is improved, and only carbon nanotubes exist as lumps. As a result, the crystal growth of the second alumina magnesia-based ceramics can be suppressed to a nano size of 200 nanometers or less. As a result, an intertwined nanocomposite structure is formed, in which a plurality of nanoalumina-magnesia ceramic crystals are bonded in a form that bridges carbon nanotubes.
〇 [0014] このナノ複合体中のナノセラミックス結晶が収縮すると、それと絡み合つているカー ボンナノチューブは変形できるため、複合材料中に発生する残留応力が少なくなり、 複合材料全体の靭性と強度とを向上できる。一方、水酸化アルミニウム単身と水酸化 マグネシウム単身から得られた複合材料では、セラミックスの結晶が 20マイクロメート ル以上に大きく結晶成長し、複合材料の強度は著しく低下する。アルミナ マグネシ ァ系セラミックス複合材料のセラミックス相は、単相でないため、混在しているスピネ ル相の影響によりセラミックス相の結晶成長が阻止され、 20マイクロメートル以上に大 きく成長することはなく、大きくても数マイクロメートル以下である。そのため、分散性 が良くなり、少ない量のカーボンナノチューブの添加により機械的特性、電気伝導性 、電磁波吸収の改善がなされることを見いだし、高機能複合材料およびその製造方 法に関する本発明を完成するに至った。 Yes [0014] When the nanoceramic crystal in the nanocomposite shrinks, the carbon nanotubes that are intertwined with the crystal can be deformed, so that the residual stress generated in the composite material is reduced, and the toughness and strength of the entire composite material are reduced. It can be improved. On the other hand, in a composite material obtained from a single aluminum hydroxide and a single magnesium hydroxide, the ceramic crystal grows larger than 20 micrometers and the strength of the composite material is significantly reduced. Since the ceramic phase of the alumina-magnesia ceramic composite is not a single phase, the crystal phase of the ceramic phase is prevented by the influence of the mixed spinel phase, and does not grow larger than 20 micrometers. Even below a few micrometers. Therefore, the dispersibility is improved, and the addition of a small amount of carbon nanotubes has been found to improve mechanical properties, electrical conductivity, and electromagnetic wave absorption, and the present invention relating to a highly functional composite material and a method for producing the same is completed. It came to.
[0015] 本発明に係る高機能複合材料では、アルミナ マグネシア系セラミックス結晶を力 一ボンナノチューブで補強する構造を成している。このため、複数のカーボンナノチ ユーブと複数の第 2のアルミナ マグネシア系セラミックス結晶とが絡み合った構造の ナノ複合体自体が、靭性および強度の大きい複合材料を形成している。このナノ複 合体力 複数の第 1のアルミナ マグネシア系セラミックス結晶から成るセラミックス多 結晶体の内部に分散されているため、さらに靭性および強度が大きぐ優れた機械 的性能を有している。  [0015] The high-functional composite material according to the present invention has a structure in which an alumina magnesia-based ceramic crystal is reinforced with a single bon nanotube. For this reason, a nanocomposite having a structure in which a plurality of carbon nanotubes and a plurality of second alumina magnesia-based ceramic crystals are intertwined forms a composite material having high toughness and strength. Since this nanocomposite force is dispersed inside a ceramic polycrystal composed of a plurality of first alumina-magnesia ceramic crystals, it has excellent mechanical performance with greater toughness and strength.
[0016] 本発明に係る高機能複合材料は、カーボンナノチューブの黒鉛としての特性により 、耐摩耗特性に優れており、摩擦係数が小さい。また、カーボンナノチューブにより、 絶縁性のアルミナ マグネシア系セラミックスを、導電性の複合材料に転換して形成 されているため、電気抵抗が広範に変化し、電気伝導性および電磁波吸収性に優 れている。本発明に係る高機能複合材料は、摩擦係数が 0.07〜0.35、電気抵抗が 10 _2〜107 Ω ' cmであることが好ましい。原料として安価なアルミナ マグネシア系セラミ ックスを使用するため、安価に製造すること力できる。なお、カーボンナノチューブと は、単層カーボンナノチューブ、 2層カーボンナノチューブ、多層カーボンナノチュー ブ、非晶質カーボンナノチューブおよびカーボンナノロッドの総称である。 [0016] The highly functional composite material according to the present invention is excellent in wear resistance due to the characteristics of carbon nanotubes as graphite, and has a small coefficient of friction. In addition, because carbon nanotubes are formed by converting insulating alumina magnesia ceramics into conductive composite materials, the electrical resistance varies widely and is excellent in electrical conductivity and electromagnetic wave absorption. . High-performance composite materials according to the present invention, it is preferable coefficient of friction from 0.07 to 0.35, the electric resistance is 10 _ 2 ~10 7 Ω 'cm . Since inexpensive alumina magnesia ceramics is used as a raw material, it can be manufactured at low cost. Carbon nanotube is a general term for single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, amorphous carbon nanotubes, and carbon nanorods.
[0017] 本発明に係る高機能複合材料で、前記第 2のアルミナ マグネシア系セラミックス 結晶は、グレインサイズが前記第 1のアルミナ マグネシア系セラミックス結晶のダレ インサイズより一桁以上小さいことが好ましい。特に、前記第 2のアルミナ—マグネシ ァ系セラミックス結晶は、グレインサイズが 200nmより小さいことが好ましい。さらに、 前記ナノ複合体は前記第 1のアルミナ—マグネシア系セラミックス結晶のグレインサイ ズより大きいこと力好ましい。前記カーボンナノチューブは、平均長さが lOOOnmより 長ぐ平均太さが lOOnmより細いことが好ましい。 [0017] The high-functional composite material according to the present invention, the second alumina magnesia-based ceramics The crystal preferably has a grain size that is an order of magnitude smaller than the drain size of the first alumina magnesia ceramic crystal. In particular, the second alumina-magnesia ceramic crystal preferably has a grain size smaller than 200 nm. Furthermore, it is preferable that the nanocomposite is larger than the grain size of the first alumina-magnesia ceramic crystal. The carbon nanotubes preferably have an average length longer than lOOOnm and an average thickness thinner than lOOnm.
[0018] これらの場合、特に優れた機械的性能、電気伝導性および電磁波吸収性を有する 。特に、第 2のアルミナ マグネシア系セラミックス結晶のグレインサイズが 200nmよ り小さいとき、 lOOOnmより長いカーボンナノチューブが、複数の第 2のアルミナーマ グネシァ系セラミックス結晶を橋渡す形で結合したナノ複合体が形成される。このナノ 複合体中の第 2のアルミナ マグネシア系セラミックス結晶が冷却されて収縮すると、 それと絡み合ったカーボンナノチューブが変形できるため、カーボンナノチューブが 変形できない場合と比べて、発生する残留応力が小さくなり、全体の靭性および強度 を向上させることができる。  In these cases, particularly excellent mechanical performance, electrical conductivity, and electromagnetic wave absorption are provided. In particular, when the grain size of the second alumina-magnesia ceramic crystal is smaller than 200 nm, a nanocomposite in which carbon nanotubes longer than lOOOnm are bonded in a form that bridges a plurality of second alumina-magnesia ceramic crystals is formed. The When the second alumina magnesia-based ceramic crystal in this nanocomposite is cooled and contracted, the entangled carbon nanotubes can be deformed, so that the residual stress generated is smaller compared to the case where the carbon nanotubes cannot be deformed. Toughness and strength can be improved.
[0019] 本発明に係る高機能複合材料で、カーボンナノチューブを 4〜85mass%、アルミナ を 0.2〜95mass%、マグネシアを l〜27mass%含むことが好ましい。この場合、特に優れ た電気伝導性および電磁波吸収性を有する。  [0019] The high-functional composite material according to the present invention preferably contains 4 to 85 mass% of carbon nanotubes, 0.2 to 95 mass% of alumina, and 1 to 27 mass% of magnesia. In this case, it has particularly excellent electrical conductivity and electromagnetic wave absorption.
[0020] 本発明に係る高機能複合材料で、前記カーボンナノチューブは、単層カーボンナ ノチューブ、 2層カーボンナノチューブ、多層カーボンナノチューブ、非晶質カーボン ナノチューブおよびカーボンナノロッドのうちの 1種または 2種以上の混合物から成る ことが好ましい。この場合、これらの 1種または 2種以上の混合物を用いても、機械的 性能、電気伝導性および電磁波吸収性の向上に対する効果は変わらな!/、。  [0020] In the high-functional composite material according to the present invention, the carbon nanotube is one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, an amorphous carbon nanotube, and a carbon nanorod. It is preferable to consist of a mixture of In this case, even if one or a mixture of two or more of these is used, the effect on improving mechanical performance, electrical conductivity and electromagnetic wave absorption is not changed! /.
[0021] 本発明に係る高機能複合材料は、カーボンナノチューブ 0.1〜90mass%とアルミナ マグネシア系セラミックスが 99.9〜10mass%とを含む焼結体から成り、前記アルミナ —マグネシア系セラミックスはアルミナ 99.8〜0.5mass%とマグネシア 0.2〜99.5mass%と を含み、前記カーボンナノチューブと前記アルミナ マグネシア系セラミックスのナノ 結晶とが互いに絡み合ったナノ複合体を構成要素として有していてもよい。この場合 にも、特に優れた機械的性能、電気伝導性および電磁波吸収性を有する。 [0022] 本発明に係る高機能複合材料の製造方法は、カーボンナノチューブ 0. l〜90maSS% とアルミナ マグネシア系セラミックス 99.9〜10mass%とを水あるいはアルコール類の 溶媒に入れ、スラリー状にして 3〜180分間混合し、この混合物から前記溶媒を除去し た後、非酸化性雰囲気中において 1050°C〜1800°Cの温度範囲で 5分から 5時間か けて焼結することを、特徴とする。 [0021] The high-functional composite material according to the present invention comprises a sintered body containing carbon nanotubes 0.1 to 90 mass% and alumina magnesia ceramics 99.9 to 10 mass%, and the alumina-magnesia ceramics is alumina 99.8 to 0.5 masss. % And magnesia 0.2 to 99.5 mass%, and the carbon nanotube and the alumina magnesia ceramic nanocrystals may be intertwined as a constituent element. Also in this case, it has particularly excellent mechanical performance, electrical conductivity, and electromagnetic wave absorption. [0022] The method for producing high-performance composite material according to the present invention, placed in a carbon nanotube 0. l~90ma SS% and alumina magnesia-based ceramics 99.9~10Mass% solvent water or an alcohol, in the slurry 3 After mixing for ˜180 minutes and removing the solvent from this mixture, sintering is performed in a non-oxidizing atmosphere at a temperature range of 1050 ° C. to 1800 ° C. for 5 minutes to 5 hours. .
[0023] 本発明に係る高機能複合材料の製造方法によれば、機械的性能、電気伝導性お よび電磁波吸収性に優れた、本発明に係る高機能複合材料を製造することができる 。なお、スラリーの混合には、カーボンナノチューブを破壊することなく均一混合が可 能な自転 ·公転方式スーパーミキサーを用いるのが好ましい。  [0023] According to the method for producing a highly functional composite material according to the present invention, the highly functional composite material according to the present invention having excellent mechanical performance, electrical conductivity, and electromagnetic wave absorption can be produced. For mixing the slurry, it is preferable to use a rotation / revolution supermixer capable of uniform mixing without destroying the carbon nanotubes.
[0024] 本発明に係る高機能複合材料の製造方法は、カーボンナノチューブ 0.3〜70maSS% とアルミナ マグネシア系セラミックス 99.7〜30mass%とを水あるいはアルコール類の 溶媒に入れ、スラリー状にして 3〜180分間混合し、この混合物から溶媒を除去した後 、非酸化性雰囲気中において 1050°C〜1800°Cの温度範囲で 5分から 5時間かけて 焼結してもよい。また、本発明に係る高機能複合材料の製造方法で、前記アルミナ マグネシア系セラミックスは、アルミナ相当量で 99.8〜0.5mass%の水酸化アルミユウ ム (Al(OH) )と、マグネシア相当量で 0.2〜99.5mass%の水酸化マグネシウム (Mg(OH) ) とを含むことが好ましい。これらの場合、特に優れた機械的性能、電気伝導性および 電磁波吸収性を有する高機能複合材料を製造することができる。 [0024] The method for producing a high-performance composite material according to the present invention comprises adding 0.3 to 70 ma SS % of carbon nanotubes and 99.7 to 30 mass% of alumina magnesia ceramic in water or an alcohol solvent to form a slurry. After mixing for 5 minutes and removing the solvent from the mixture, the mixture may be sintered in a non-oxidizing atmosphere at a temperature range of 1050 ° C. to 1800 ° C. for 5 minutes to 5 hours. Further, in the method for producing a high-performance composite material according to the present invention, the alumina magnesia-based ceramics comprises 99.8 to 0.5 mass% aluminum hydroxide (Al (OH)) in terms of alumina and 0.2 to 0.2 in terms of magnesia. It preferably contains 99.5 mass% magnesium hydroxide (Mg (OH) 3). In these cases, a highly functional composite material having particularly excellent mechanical performance, electrical conductivity, and electromagnetic wave absorption can be produced.
[0025] 本発明に係る高機能複合材料の製造方法は、前記焼結を行うための前処理として 、前記混合物から前記溶媒を除去した後、非酸化性雰囲気中おいて 300°C〜900°C の温度範囲で 5〜60分間仮焼して分解脱水することが好ましい。この場合、焼結時の 昇温を早く行うことができ、焼結炉に水分が付着するのを防ぐことができる。  [0025] In the method for producing a highly functional composite material according to the present invention, as a pretreatment for performing the sintering, the solvent is removed from the mixture and then in a non-oxidizing atmosphere at 300 ° C to 900 ° C. It is preferable to perform calcining for 5 to 60 minutes in the temperature range of C for dehydration. In this case, the temperature can be raised quickly during sintering, and moisture can be prevented from adhering to the sintering furnace.
[0026] 本発明に係る高機能複合材料の製造方法は、無加圧焼結法、ホットプレス法また は放電プラズマ焼結法により前記焼結を行うことが好ましい。焼結に関しては、基本 的には無加圧焼結法で可能である力 S、アルミナ マグネシア系セラミックスの量に対 しカーボンナノチューブの量が多くなつたときには、加圧焼結機を用いることにより緻 密化が容易になる。加圧焼結機としては、ホットプレス (HP)や放電プラズマ焼結機 (SP S)を用いること力 Sできる。 発明の効果 [0026] In the method for producing a highly functional composite material according to the present invention, the sintering is preferably performed by a pressureless sintering method, a hot press method, or a discharge plasma sintering method. For sintering, the force S, which is basically possible with the pressureless sintering method, when the amount of carbon nanotubes is larger than the amount of alumina-magnesia ceramics, use a pressure sintering machine. Densification becomes easy. As a pressure sintering machine, a hot press (HP) or a spark plasma sintering machine (SP S) can be used. The invention's effect
[0027] 本発明によれば、機械的性能、電気伝導性および電磁波吸収性に優れた新規な高 機能複合材料およびその製造方法を提供することができる。  [0027] According to the present invention, it is possible to provide a novel high-performance composite material excellent in mechanical performance, electrical conductivity, and electromagnetic wave absorption, and a method for producing the same.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、本発明を実施するための最良の形態について、詳細に説明する。なお、本 発明の実施の形態の高機能複合材料は、本発明の実施の形態の高機能複合材料 の製造方法により製造される。  Hereinafter, the best mode for carrying out the present invention will be described in detail. The highly functional composite material according to the embodiment of the present invention is manufactured by the method for manufacturing a highly functional composite material according to the embodiment of the present invention.
アルミナは、工業的にはバイヤー法で製造されている。すなわち、原料のボーキサ イトを水酸化ナトリウム溶液と加熱処理してアルミン酸ナトリウム溶液とし、これを希釈 してから水酸化アルミニウムの種結晶を加えると、水酸化アルミニウムが析出する。こ の水酸化アルミニウムを 1200°C以上で焼成して、アルミナ粉を製造している。従って、 水酸化アルミニウムは、アルミナの前駆体であり、価格はアルミナより低い。この水酸 化アルミニウムは、 276°Cから分解が始まり、 375°Cでそれが終了し、アルミナ結晶の 核を生成する。この核の結晶成長は、 1000°C以上で顕著になる。  Alumina is industrially produced by the buyer method. That is, when the raw material bauxite is heat-treated with a sodium hydroxide solution to form a sodium aluminate solution, which is diluted and then added with aluminum hydroxide seed crystals, aluminum hydroxide is precipitated. This aluminum hydroxide is calcined at 1200 ° C or higher to produce alumina powder. Thus, aluminum hydroxide is a precursor for alumina and is less expensive than alumina. This aluminum hydroxide begins to decompose at 276 ° C and ends at 375 ° C, producing nuclei of alumina crystals. This nucleus crystal growth becomes prominent above 1000 ° C.
[0029] 本発明の実施の形態の高機能複合材料の製造方法で使用される水酸化マグネシ ゥムは、 日本においては、マグネシアの工業原料のほとんどの出発原料となっている 。海水に Ca(OH)を加えることにより、水酸化マグネシウムを沈殿させて得ることができ 、その水酸化マグネシウムを 900°Cで焼成すれば、マグネシアを生成することができる 。この水酸化マグネシウムは、約 490°Cで分解して、マグネシア結晶の核を生成するこ と力 Sできる。  [0029] Magnesium hydroxide used in the method for producing a highly functional composite material according to the embodiment of the present invention is the starting material for most of magnesia's industrial raw materials in Japan. By adding Ca (OH) to seawater, it can be obtained by precipitating magnesium hydroxide, and if the magnesium hydroxide is calcined at 900 ° C., magnesia can be generated. This magnesium hydroxide can decompose at about 490 ° C to generate nuclei of magnesia crystals.
[0030] 本発明の実施の形態の高機能複合材料およびその製造方法のアルミナ マグネ シァ系セラミックスには、アルミナ単身とマグネシア単身とは含まれていない。水酸化 アルミニウムとカーボンナノチューブとから複合材料を合成すると、焼結中、アルミナ は 20マイクロメートル以上に粒成長する。その粒成長の過程で、カーボンナノチュー ブが集まり凝集して塊になって分散性が悪くなるため、得られる複合材料の機械的性 能および電気的性能は著しく低下する。この結晶粒の成長は、マグネシア単身につ いても同じで、水酸化マグネシウム単身を使った複合材料では、マグネシアの結晶は 20マイクロメートル以上に粒成長する。 [0031] 本発明の実施の形態の高機能複合材料およびその製造方法に用いられるカーボ ンナノチューブは、アーク放電法、レーザー蒸発法、プラズマ合成法、炭化水素触媒 分解法によって主に作られている。これらの方法によって製造されるカーボンナノチ ユーブには、単層カーボンナノチューブ、 2層カーボンナノチューブ、多層カーボン ナノチューブ、非晶質カーボンナノチューブ、さらに中空部分が小さいか、あるいは ほとんどないカーボンナノロッドと呼ばれるカーボンナノチューブも存在する。触媒と して、 Fe,Co,Ni,Ceなどの金属を使うと合成が容易になるため、多くのカーボンナノチ ユーブ製品にはこれらの金属が共存している。しかし、これら金属触媒は、酸による 洗浄で除去できるので、使用上の問題はない。これら金属不純物以外に、非晶質炭 素やフラーレンなどの不純物炭素が混入してくることが多い。しかし、これら不純物が 混在したものでも、その割合が 50重量%以下であれば、原料として使っても、純粋な カーボンナノチューブを使った時に比べて、複合材料の性能が著しく低下することは ない。しかし、ナノ複合体の生成のためには、カーボンナノチューブの割合が多い方 が有利である。機械的性質は、この 5種類のカーボンナノチューブについて大きな差 はなぐそれぞれを単独あるいは混合して使っても効果には変わりがない。 [0030] The alumina-magnesia ceramics of the high-functional composite material and the manufacturing method thereof according to the embodiment of the present invention do not include alumina alone and magnesia alone. When a composite material is synthesized from aluminum hydroxide and carbon nanotubes, the alumina grows to a particle size of 20 micrometers or more during sintering. In the course of the grain growth, carbon nanotubes aggregate and aggregate to form a lump, resulting in poor dispersibility, and the mechanical and electrical performance of the resulting composite material is significantly reduced. The growth of this crystal grain is the same for magnesia alone, and in a composite material using magnesium hydroxide alone, magnesia crystals grow to 20 micrometers or more. [0031] Carbon nanotubes used in the high-performance composite material and the manufacturing method thereof according to the embodiment of the present invention are mainly made by an arc discharge method, a laser evaporation method, a plasma synthesis method, and a hydrocarbon catalyst decomposition method. . Carbon nanotubes produced by these methods include single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, amorphous carbon nanotubes, and carbon nanotubes called carbon nanorods with small or little hollow portions. Exists. Because the synthesis is easier when metals such as Fe, Co, Ni, and Ce are used as catalysts, these metals coexist in many carbon nanotube products. However, since these metal catalysts can be removed by washing with an acid, there is no problem in use. In addition to these metal impurities, impurity carbon such as amorphous carbon and fullerene is often mixed. However, even if these impurities are mixed, if the ratio is 50% by weight or less, the performance of the composite material will not be significantly reduced even if it is used as a raw material compared to when pure carbon nanotubes are used. However, for the production of nanocomposites, it is advantageous that the proportion of carbon nanotubes is large. The mechanical properties of these five types of carbon nanotubes do not change even if they are used alone or in combination.
[0032] 本発明の実施の形態の高機能複合材料の製造方法においては、アルミナの前駆 体である水酸化アルミニウムと、同様にマグネシアの前駆体である水酸化マグネシゥ ムを使用している。水酸化アルミニウムは、 400°C以下で分解してアルミナ結晶核を生 成し、加熱温度を高くしていくと結晶成長し、 1200°C以上の処理でアルミナ粉として 市販されている粉体になる。水酸化マグネシウムは、 500°C以下で分解してマグネシ ァ結晶の核を生成し、 900°Cで焼成してマグネシアとして使われている。これらの単身 から複合材料を製造すると、複合材料のアルミナおよびマグネシア結晶は、 20マイク 口メートル以上の大きさに成長する。し力、し、カーボンナノチューブ、マグネシア、アル ミナが共存すると、アルミナ、マグネシア、スピネル結晶核の成長が抑制され、複合材 料の焼結温度以上に加熱しても、アルミナ、スピネル、マグネシア結晶は、 200ナノメ 一トル以上に大きく成長しないで、ナノ結晶状態で止まっている。カーボンナノチュー ブの長さは 1000ナノメートル以上あるため、複数のナノアルミナ結晶、ナノマグネシア 結晶、ナノスピネル結晶を橋渡しする形で、絡み合った状態で組織を作る。このような ナノアルミナ マグネシア系セラミックスとカーボンナノチューブとの組織はナノ複合 体であり、これまでにその報告はなぐ本発明者らが初めて発見したものである。カー ボンナノチューブがアルミナ マグネシア系セラミックスの量に対して少ないと、この ナノ複合体は、アルミナ一マグネシア系セラミックスの多結晶マトリックス中に島状に 分散された組織を形づくる。このマトリックスとなっているアルミナ一マグネシア系セラ ミックスは、純粋なアルミナあるいはマグネシアではないため、 20マイクロメートル以上 に大きく成長することはなぐ大きくても数マイクロメートル以下である。 [0032] In the method for producing a highly functional composite material according to the embodiment of the present invention, aluminum hydroxide that is a precursor of alumina and magnesium hydroxide that is also a magnesia precursor are used. Aluminum hydroxide decomposes at 400 ° C or lower to produce alumina crystal nuclei, and grows as the heating temperature is increased, and becomes a powder that is commercially available as alumina powder by treatment at 1200 ° C or higher. Become. Magnesium hydroxide decomposes below 500 ° C to produce magnesia crystal nuclei and is fired at 900 ° C for use as magnesia. When composite materials are manufactured from these single bodies, the alumina and magnesia crystals of the composite materials grow to a size of 20 m or more. When carbon nanotubes, magnesia, and alumina coexist, growth of alumina, magnesia, and spinel crystal nuclei is suppressed, and even when heated above the sintering temperature of the composite material, alumina, spinel, and magnesia crystals It does not grow as large as 200 nanometers and remains in the nanocrystalline state. Since carbon nanotubes have a length of 1000 nanometers or more, they form a structure in an intertwined state by bridging multiple nano alumina crystals, nano magnesia crystals, and nano spinel crystals. like this The structure of nano-alumina magnesia-based ceramics and carbon nanotubes is a nanocomposite, and the present inventors have discovered it for the first time. If the carbon nanotubes are small relative to the amount of alumina-magnesia ceramics, the nanocomposite forms a structure dispersed in islands in a polycrystalline matrix of alumina-magnesia ceramics. Since the alumina-magnesia ceramic used as the matrix is not pure alumina or magnesia, it does not grow larger than 20 micrometers, but at most several micrometers.
[0033] 複合材料の強度および靭性は、残留応力の大きさに依存する。一般的には、残留 応力が多くなると、強度および靭性は下がる。その理由は、クラックの発生によって残 留応力が緩和できるようになるためである。一般的なセラミックス多結晶体において、 残留応力が比較的少ないときには、主に粒界の強度が弱くなり、クラックの偏向によ る靭性向上の効果が期待でき、強度および靭性の向上の可能性もある。カーボンナ ノチューブと、アルミナ マグネシア系セラミックスとの間の熱膨張差は大きぐカーボ ンナノチューブの均一分散では、カーボンナノチューブに対し、マトリックスのアルミ ナ—マグネシア系セラミックスから大きな圧縮応力が作用し、添加量が少なくても複 合材料中に大きな残留応力が発生する。この結果、カーボンナノチューブの添加量 の増大に伴って、複合材料にはクラックが発生し易くなり、カーボンナノチューブの量 が多くなると、ひび割れの発生により複合材料の製造が不可能になる。 [0033] The strength and toughness of the composite material depend on the magnitude of the residual stress. In general, as residual stress increases, strength and toughness decrease. The reason is that the residual stress can be relaxed by the occurrence of cracks. In general ceramic polycrystals, when the residual stress is relatively low, the grain boundary strength is weakened mainly, and the effect of improving toughness by deflection of cracks can be expected, and the possibility of improving strength and toughness is also possible. is there. The difference in thermal expansion between carbon nanotubes and alumina magnesia ceramics is large. When carbon nanotubes are uniformly dispersed, large compressive stress acts on the carbon nanotubes from the matrix alumina magnesia ceramics. Even if there is little, large residual stress is generated in the composite material. As a result, as the added amount of carbon nanotubes increases, cracks are likely to occur in the composite material, and when the amount of carbon nanotubes increases, the composite material cannot be manufactured due to the occurrence of cracks.
[0034] しかし、本発明の実施の形態の高機能複合材料においては、カーボンナノチュー ブの割合が少ない状態でも、ナノ複合体がアルミナ マグネシア系セラミックス中に 分散した組織であり、カーボンナノチューブがマトリックス中に均一分散している状態 にはなっていない。図 1に示すように、このナノ複合体 1中のカーボンナノチューブ 2 は、アルミナ マグネシア系セラミックス 3のナノ結晶中に閉じ込められていないで、 アルミナ マグネシア系セラミックス 3のナノ結晶と絡み合った状態になっている。ナ ノアルミナーマグネシア系セラミックス 3の粒子は、 200ナノメートル以下であり、その直 径よりはるかに長いカーボンナノチューブ 2と絡み合つている。絡み合った二つの間 に強力な化学結合が出来る可能性はなぐファンデルワールス力に似た弱い力によ つて結合されている。このナノ複合体 1において、カーボンナノチューブ 2とアルミナ マグネシア系セラミックス 3との間の結合力が強いと、これらの二つの熱膨張差によ る残留応力が緩和できなくなり、多層カーボンナノチューブ 2の添加量の増大に伴つ て、その残留応力は複合材料を破壊するまでになる。しかし、緻密で割れない複合 材料が得られていることは、残留応力の緩和が行われていることを示している。すな わち、ナノ複合体 1内では、弱い力による結合のために、多層カーボンナノチューブ 2 は変形できる状態になっている。アルミナ マグネシア系セラミックス 3のナノ結晶が 収縮するに従って、多層カーボンナノチューブ 2は長さ方向で曲がることが可能で、 これによつて残留応力が緩和されるようになる。残留応力が緩和されることで複合材 料の靭性および強度が小さくなることはない。複合材料中でクラックが進展すると、ナ ノ複合体 1中ではカーボンナノチューブ 2の引き抜きが起き、これによつて靭性および 強度の増大がもたらされる。カーボンナノチューブ 2の割合が多くなると、生成するナ ノ複合体 1の割合が多くなる力 残留応力の緩和がよくされているため、複合材料の 強度が低下することは全くな!/、。 [0034] However, in the high-performance composite material according to the embodiment of the present invention, the nanocomposite is a structure in which the nanocomposite is dispersed in the alumina-magnesia ceramic, even when the proportion of the carbon nanotube is small, and the carbon nanotube is a matrix. It is not in a state of being uniformly dispersed. As shown in FIG. 1, the carbon nanotubes 2 in the nanocomposite 1 are not confined in the nanocrystals of the alumina magnesia ceramic 3, but are intertwined with the nanocrystals of the alumina magnesia ceramic 3. Yes. Nanoalumina-magnesia ceramics 3 particles are 200 nanometers or less, and are entangled with carbon nanotubes 2 that are much longer than their diameter. The possibility of a strong chemical bond between the two intertwined is linked by a weak force similar to the van der Waals force. In this nanocomposite 1, carbon nanotube 2 and alumina If the bonding strength with the magnesia-based ceramics 3 is strong, the residual stress due to the difference between these two thermal expansions cannot be relaxed, and as the amount of multi-walled carbon nanotubes 2 increases, the residual stress becomes complex. Until the material is destroyed. However, the fact that a composite material that is dense and does not crack indicates that the residual stress has been relaxed. That is, in the nanocomposite 1, the multi-walled carbon nanotube 2 is in a deformable state due to the weak binding. As the nanocrystals of the alumina-magnesia ceramics 3 shrink, the multi-walled carbon nanotubes 2 can bend in the length direction, thereby reducing the residual stress. Relieving the residual stress does not reduce the toughness and strength of the composite material. When cracks develop in the composite material, the carbon nanotubes 2 are pulled out in the nanocomposite 1, which leads to increased toughness and strength. When the proportion of carbon nanotubes 2 increases, the force that increases the proportion of nanocomposites 1 is generated. Residual stress is alleviated, so the strength of the composite material will never decrease!
[0035] 本発明の実施の形態の高機能複合材料を製造するためには、微細で異方性の大 きいカーボンナノチューブと、アルミナ マグネシア系セラミックスの原料である水酸 化アルミニウムと水酸化マグネシウムとを均一に混合する必要がある。混合技術とし て、これら三つの原料は溶液にできないので、粉末同士の混合方法を採用する必要 がある。粉体の混合方法には色々あるが、カーボンナノチューブは凝集する傾向が あるため、乾燥状態での均一混合は困難である。また、溶媒を使った湿式混合にお いて、溶媒の量が多いと比重差による沈殿速度の違いから分離が起き、均一混合を 達成するのが困難である。この分離沈殿を防ぐために、水やアルコールに粉体を入 れて粘性の大きなスラリーを作り、それをボールミルで長時間回転混合する方法が一 般的に行われている。 [0035] In order to produce the high-performance composite material according to the embodiment of the present invention, fine and highly anisotropic carbon nanotubes, aluminum hydroxide and magnesium hydroxide, which are raw materials for alumina-magnesia ceramics, Must be mixed uniformly. As a mixing technique, these three raw materials cannot be made into a solution, so it is necessary to adopt a method of mixing powders. There are various powder mixing methods, but since carbon nanotubes tend to aggregate, uniform mixing in a dry state is difficult. In addition, in wet mixing using a solvent, if the amount of the solvent is large, separation occurs due to a difference in precipitation rate due to a difference in specific gravity, and it is difficult to achieve uniform mixing. In order to prevent this separation and precipitation, a method is generally used in which powder is put into water or alcohol to form a highly viscous slurry, which is rotated and mixed with a ball mill for a long time.
[0036] し力、し、この方法ではボールによってカーボンナノチューブが破壊される。本発明の 実施の形態の高機能複合材料の製造方法では、この破壊を防ぎ、短時間で均一混 合を行うために、スラリーの混合を自転 ·公転スーパーミキサーを使って行った。この 装置は、スラリーの入った容器を自転させ、それを支える本体を反対方向に公転させ て混合を行うもので、粘性の高いものの混合に適している。このように反対方向に自 転および公転をさせることにより、スラリーにせん断応力を作用させて、凝集した部分 を破壊する力を与えている。この方法により、比較的短時間での均一混合が可能に なる。このスラリーを作るに際し、分散をよくするために界面活性剤や分散剤を添カロ すると、均一混合の時間を短くできる。 In this method, the carbon nanotube is broken by the ball. In the method for producing a high-performance composite material according to the embodiment of the present invention, the slurry is mixed using a rotation / revolution supermixer in order to prevent this destruction and to perform uniform mixing in a short time. This device rotates a container containing slurry and revolves the main body that supports it in the opposite direction to perform mixing. It is suitable for mixing highly viscous materials. In this way By rotating and revolving, a shearing stress is applied to the slurry to give a force to break up the agglomerated part. This method enables uniform mixing in a relatively short time. When making this slurry, adding a surfactant or dispersant to improve dispersion can shorten the time for uniform mixing.
[0037] 本発明の実施の形態の高機能複合材料の焼結を、基本的には無加圧下で行うこと が出来る。しかし、アルミナ マグネシア系セラミックスの混合割合力 カーボンナノ チューブの量に比べて少なくなると、焼結性能が劣るようになるため、無加圧焼結法 では緻密で強度の大きい焼結体を作ることが困難になる。加圧下での焼結法を用い ると、全ての混合範囲で容易に緻密な複合材料を作ることが出来る。工業的利用価 値の高!/、加圧焼結法は、ホットプレス法 (HP)および放電プラズマ焼結法 (SPS)である [0037] The high-functional composite material according to the embodiment of the present invention can be basically sintered under no pressure. However, if the mixing ratio force of alumina magnesia ceramics becomes smaller than the amount of carbon nanotubes, the sintering performance will be inferior, so the pressureless sintering method can produce a dense and strong sintered body. It becomes difficult. If the sintering method under pressure is used, a dense composite material can be easily produced in the entire mixing range. High industrial use value! /, Pressure sintering method is hot press method (HP) and spark plasma sintering method (SPS)
[0038] ホットプレス法は、試料の入った黒鉛型を加圧しながら、通常は非酸化性の雰囲気 中で、外熱加熱法により焼結温度まで昇温し、その温度に一定時間保持して製品を 製造する方法である。この方法では、加圧による緻密化促進の効果が期待できるた めに、アルミナ マグネシア系セラミックスが 60mass%以下になって焼結性が悪くなつ た高機能複合材料の緻密化も容易に行うことができる。 [0038] In the hot press method, while pressurizing a graphite mold containing a sample, the temperature is raised to a sintering temperature by an external heating method, usually in a non-oxidizing atmosphere, and kept at that temperature for a certain period of time. It is a method of manufacturing a product. In this method, since the effect of promoting densification by pressurization can be expected, it is possible to easily densify high-functional composite materials whose alumina magnesia-based ceramics are 60 mass% or less and have poor sinterability. it can.
[0039] 放電プラズマ焼結機 (SPS)は、プラズマ活性化焼結機 (PAS)、放電プラズマシステム ( SPS)、パルス通電焼結機などと呼ばれ、金属やセラミックスを焼結するために開発さ れた装置である。その構成の特徴は、伝導性の型に試料を詰め、そこへ直接、パル ス直流電流を流して加熱するところにある。その結果、型内の試料にノ^レスの電場が 作用し、物質の拡散が促進され、塑性変形し易くなる。さらに、電気抵抗の大きな粉 末においては、試料表面にわずかな電流が流れ、これが結晶表面での分子の移動 を加速し、結晶成長を促進する。固相反応においても、分子の移動が促進されるた め、従来よりも低温で反応できるようになる。このような SPSの効果を使うことにより、従 来は不可能であった WCのみからなる焼結体や、 A1Nある!/、は SiCのみからなる焼結 体の製造が可能になっている。  [0039] The spark plasma sintering machine (SPS) is called plasma activated sintering machine (PAS), discharge plasma system (SPS), pulsed current sintering machine, etc., and has been developed to sinter metals and ceramics. Device. The structure is characterized in that a sample is packed in a conductive mold and heated directly by passing a pulse direct current. As a result, a no-less electric field acts on the sample in the mold, the diffusion of the material is promoted, and plastic deformation is likely to occur. Furthermore, in powders with high electrical resistance, a slight current flows on the sample surface, which accelerates the movement of molecules on the crystal surface and promotes crystal growth. In the solid-phase reaction, since the movement of molecules is promoted, the reaction can be performed at a lower temperature than before. By using such SPS effects, it has become possible to produce sintered bodies consisting of WC, which was not possible before, and A1N! /, Sintered bodies consisting of SiC only.
[0040] 本発明の実施の形態の高機能複合材料は、カーボンナノチューブ 0.1〜90mass%と アルミナ マグネシア系セラミックス 99.9〜 10mass%とを含む焼結体から成っており、 カーボンナノチューブとアルミナ マグネシア系セラミックスのナノ結晶とが互いに絡 み合ったナノ複合体を構成要素として有している。このナノ複合体それ自体が、靭性 および強度が大きい複合材料であり、これがアルミナ マグネシア系セラミックス中に 分散することで靭性および強度が大きレ、高機能複合材料を生成して!/、る。カーボン ナノチューブの混合割合が 0.1mass%より少ないと、耐摩耗性能の一部である摩擦係 数を、アルミナのそれに比べて小さくすることが出来ない。 90mass%以上にカーボンナ ノチューブの割合を多くすると、複合材料の強度が、カーボンナノチューブのみを固 化したものと変わらなくなる。 [0040] The high-functional composite material of the embodiment of the present invention is composed of a sintered body containing carbon nanotubes 0.1 to 90 mass% and alumina magnesia-based ceramics 99.9 to 10 mass%, It has a nanocomposite in which carbon nanotubes and alumina magnesia ceramic nanocrystals are intertwined with each other. This nanocomposite itself is a composite material with high toughness and strength, and when it is dispersed in an alumina-magnesia ceramic, it produces a highly functional composite material with high toughness and strength. If the mixing ratio of carbon nanotubes is less than 0.1 mass%, the friction coefficient, which is part of the wear resistance, cannot be reduced compared to that of alumina. When the proportion of carbon nanotubes is increased to 90 mass% or more, the strength of the composite material remains the same as that obtained by solidifying only carbon nanotubes.
[0041] さらに、本発明の実施の形態の高機能複合材料のセラミックス部分は、アルミナ 99.  [0041] Further, the ceramic portion of the high-functional composite material according to the embodiment of the present invention is alumina 99.
8〜0.5mass%とマグネシア 0.2〜99.5mass%とからなるアルミナ マグネシア系セラミツ タスである。原料の水酸化アルミニウムおよび水酸化マグネシウムのそれぞれ単身と 、カーボンナノチューブとを混合して焼結すると、得られた複合材料のアルミナおよび マグネシアの粒径が 20マイクロメートル以上に結晶成長し、靭性および強度が著しく 低下して使用できなくなる。この結晶成長は、アルミナとマグネシアとの混合組成にす ることで防ぐこと力できる。マグネシアの混合量力 0.2mass%以上でアルミナの結晶成 長は完全に抑制され、靭性および強度の大きな高機能複合材料を製造できる。同様 に、アルミナ 0.5mass%以上をマグネシアに添加すると、マグネシアの粒成長が抑制さ れ、強度の低下やカーボンナノチューブの不均一分散を防ぐことができる。  This is an alumina magnesia-based ceramics consisting of 8 to 0.5 mass% and magnesia 0.2 to 99.5 mass%. When the raw material aluminum hydroxide and magnesium hydroxide each are mixed and sintered with carbon nanotubes, the resulting composite material crystal grows to a particle size of alumina and magnesia of 20 micrometers or more, toughness and strength Will drop and become unusable. This crystal growth can be prevented by using a mixed composition of alumina and magnesia. When the mixing power of magnesia is 0.2 mass% or more, the crystal growth of alumina is completely suppressed, and a highly functional composite material with high toughness and strength can be produced. Similarly, when 0.5 mass% or more of alumina is added to magnesia, magnesia grain growth is suppressed, and strength reduction and non-uniform dispersion of carbon nanotubes can be prevented.
[0042] 次に、本発明の実施の形態の高機能複合材料の製造方法について説明する。高 機能複合材料の製造には、単層カーボンナノチューブ、 2層カーボンナノチューブ、 多層カーボンナノチューブ、非晶質カーボンナノチューブおよびカーボンナノロッド のすベてを使用することができる。さらに、これらの 2種以上の混合物を使用すること もできる。一方、アルミナ—マグネシア系セラミックスの原料としては、アルミナの前駆 体である水酸化アルミニウムと、マグネシアの前駆体である水酸化マグネシウムとの 混合原料を使用する。  [0042] Next, a method for producing a highly functional composite material according to an embodiment of the present invention will be described. Single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, amorphous carbon nanotubes, and carbon nanorods can all be used for the production of high-performance composite materials. Furthermore, a mixture of two or more of these can also be used. On the other hand, as a raw material for alumina-magnesia ceramics, a mixed raw material of aluminum hydroxide, which is an alumina precursor, and magnesium hydroxide, which is a magnesia precursor, is used.
[0043] 水酸化アルミニウムと水酸化マグネシウムとカーボンナノチューブとの混合では、ま ず、カーボンナノチューブの規定量を秤量し、それを容器に入れて、水または蒸留水 、あるいはメタノール、エタノール等のアルコールを加えてスラリーを作る。スラリー中 でのカーボンナノチューブの分散を良くするために、界面活性剤あるいは分散剤を 添加すると、混合時間が短縮できる。なお、この添加剤は、スラリーの粘性を調節す る役割をも担っている。界面活性剤や分散剤には多くの種類がある力 これらの中で アルカリあるいはアルカリ土類に属する元素を含まないものを使用する必要がある。 これらの元素が含まれていると、複合材料中にそれらが残るためである。その添加す る量の目安は、溶媒に対して 0.1〜10vol%である。 0.1vol%以下では添加効果が小さく 、 10vol%以上添加しても効果には変化がなくなる。 [0043] In mixing aluminum hydroxide, magnesium hydroxide, and carbon nanotubes, first, a prescribed amount of carbon nanotubes is weighed and placed in a container, and water or distilled water or alcohol such as methanol or ethanol is added. In addition, make a slurry. In slurry The mixing time can be shortened by adding a surfactant or a dispersing agent in order to improve the dispersion of the carbon nanotubes. This additive also plays a role in adjusting the viscosity of the slurry. There are many types of surfactants and dispersants. Among these, it is necessary to use those that do not contain alkali or alkaline earth elements. This is because if these elements are contained, they remain in the composite material. The standard of the amount to be added is 0.1 to 10 vol% with respect to the solvent. The effect of addition is small at 0.1 vol% or less, and there is no change in effect even when 10 vol% or more is added.
[0044] このスラリーに、水酸化アルミニウム、水酸化マグネシウム粉を入れて、 3〜180分間 混合する。この混合に、自転'公転スーパーミキサーを使うと、均一混合を効率的に 行うこと力 S出来る。混合時間が 3分以下では混合が均一に行われず、 180分以上混合 しても混合の状態は変わらない。この混合したスラリーから水分を除き、さらにホットプ レートあるいは乾燥機を用いて 150〜250°Cで乾燥し、同時に、添加した界面活性剤 あるいは分散剤を分解し、焼結用の混合原料とする。  [0044] To this slurry, aluminum hydroxide and magnesium hydroxide powder are added and mixed for 3 to 180 minutes. For this mixing, the use of a rotating / revolving supermixer can achieve efficient uniform mixing. If the mixing time is 3 minutes or less, the mixing is not performed uniformly, and the mixing state does not change even if the mixing time is 180 minutes or more. Water is removed from the mixed slurry and further dried at 150 to 250 ° C. using a hot plate or a dryer. At the same time, the added surfactant or dispersant is decomposed to obtain a mixed raw material for sintering.
[0045] この混合原料をそのまま使っても、アルミ マグネシア系セラミックス複合材料を得 るための焼結を行うことが出来る。しかし、大きな形状の製品の製造のため、あるいは 昇温を速く行うためには、混合原料の水酸化アルミニウムと水酸化マグネシウムとを 仮焼分解して水分を除去した方が、焼結中の収縮率を抑制でき、製品にクラックが入 るのを防ぐことができ、かつ焼結に用いる雰囲気炉が水分で汚染されるのを防ぐこと が出来る。この仮焼は、非酸化性の雰囲気で行う必要がある。酸化性の雰囲気では カーボンナノチューブが酸化されて無くなってしまう。仮焼の温度は、 300°C〜900°C の範囲が適当である。 300°Cより温度が低いと水酸化アルミニウムあるいは水酸化マ グネシゥムの分解が十分に行われず、 900°C以上ではアルミナ結晶、スピネル結晶、 マグネシア結晶が大きくなり、カーボンナノチューブのナノ複合体を生成させることが 出来なくなる。また、仮焼の時間は、 5分から 60分が適当である。すなわち、 5分より時 間が短いと分解が十分でなぐ 60分以上分解しても分解がすでに完了しているので 効果はない。  [0045] Even if this mixed raw material is used as it is, sintering for obtaining an aluminum magnesia-based ceramic composite material can be performed. However, in order to produce large-sized products or to increase the temperature quickly, it is better to remove the moisture by calcining the mixed raw materials aluminum hydroxide and magnesium hydroxide during the sintering process. The rate can be suppressed, the product can be prevented from cracking, and the atmosphere furnace used for sintering can be prevented from being contaminated with moisture. This calcination needs to be performed in a non-oxidizing atmosphere. In an oxidizing atmosphere, carbon nanotubes are oxidized and lost. The calcination temperature is suitably in the range of 300 ° C to 900 ° C. When the temperature is lower than 300 ° C, aluminum hydroxide or magnesium hydroxide is not sufficiently decomposed, and above 900 ° C, alumina crystals, spinel crystals, and magnesia crystals become large, forming a nanocomposite of carbon nanotubes. I can't do that. In addition, the calcination time is suitably 5 to 60 minutes. In other words, if the time is shorter than 5 minutes, the decomposition is not enough. Even if it decomposes for more than 60 minutes, the decomposition is already completed, so there is no effect.
[0046] アルミナ マグネシア系セラミックス複合材料を無加圧焼結法で製造するためには 、焼結に先立って必要な形に成形する必要がある。この成形は、射出成形法、型押 し成形法、スリップキャスト法などの従来技術を使って行うことが出来る。無加圧焼結 の温度は、 1300°C〜1800°Cの温度範囲である。 1300°C以下では無加圧下での焼結 が十分に進行しないし、 1800°C以上に焼結温度を高くしても焼結が完了しているの で焼結に対する効果は変わらな!/、。無加圧の焼結時間は、 0.2時間から 5時間の範 囲が適当である。 0.2時間より時間が短いと焼結が十分ではなぐ 5時間以上焼結して も緻密化の効果はほとんどない。この無加圧焼結は、電磁波焼結装置を用いても行 うこと力 Sできる。黒鉛材料は、誘電性電磁波吸収体として高分子やコンクリートに混合 して使われている。同様に、アルミナ マグネシア系セラミックスも誘電性電磁波吸収 体である。無加圧焼結用の混合原料を成型した後、電磁波焼結装置を用いて電磁 波吸収による発熱によって、 1300°C〜1800°Cの温度に加熱し、最終到達温度に 0.1 〜3時間保持して焼結を完了することにより、本発明の実施の形態の高機能複合材 料を得ること力 Sできる。なお、焼結時間が 0.1時間以下では焼結が十分ではなぐ 3時 間以上に時間を長くしても焼結に対する効果は変わらない。 [0046] In order to produce an alumina magnesia-based ceramic composite material by a pressureless sintering method, it is necessary to form it into a necessary shape prior to sintering. This molding involves injection molding, embossing. It can be carried out by using conventional techniques such as a molding method and a slip casting method. The pressureless sintering temperature ranges from 1300 ° C to 1800 ° C. At 1300 ° C or lower, sintering under no pressure does not proceed sufficiently, and even if the sintering temperature is increased to 1800 ° C or higher, sintering is completed, so the effect on sintering remains unchanged! / ,. The pressureless sintering time is suitably in the range of 0.2 to 5 hours. If the time is shorter than 0.2 hours, sintering is not sufficient. Sintering for 5 hours or more has almost no densification effect. This pressureless sintering can be performed even using an electromagnetic wave sintering machine. Graphite materials are used as dielectric electromagnetic wave absorbers mixed with polymers and concrete. Similarly, alumina magnesia ceramics are dielectric electromagnetic wave absorbers. After molding the mixed raw material for pressureless sintering, heat it to 1300 ° C ~ 1800 ° C by the heat generated by electromagnetic wave absorption using an electromagnetic sintering machine, and hold it at the final temperature for 0.1 ~ 3 hours Thus, by completing the sintering, it is possible to obtain the high-performance composite material according to the embodiment of the present invention. If the sintering time is 0.1 hour or less, the effect on sintering will not change even if the time is increased to 3 hours or longer, which is not sufficient.
加圧焼結法は、カーボンナノチューブの割合が多!/、混合原料を使う場合に有利で ある。加圧焼結機としては、ホットプレスと SPSとを使うことで緻密な焼結体を得ることが できる。ホットプレスにおいては、型に詰めた混合原料を外熱加熱によって温度を上 げ、加圧下で焼結する。一方、 SPSにおいては、混合原料の入った型にパルス直流 を流し、直接加熱して加圧下で焼結する。焼結温度は 1050°C〜1600°Cの範囲で、焼 結時間は 5分から 2時間であり、加圧力は 2〜200MPaである。焼結温度は加圧力と関 連し、焼結温度を下げるためには加圧力を大きくする必要がある。加圧力は、型の耐 圧性能で決まる。緻密な黒鉛型は、 2400°Cの温度まで、最大 200MPaまで使用するこ とができる。焼結温度を 1050°C以下にすると、加圧力を 200MPaと大きくしても、複合 材料を緻密に焼結することはできないため、焼結温度を 1050°C以上とすることが不可 欠である。温度を 1600°C以上にしてもそれ以下の温度ですでに焼結して!/、るので緻 密化に対する効果はない。焼結の時間は、 5分より短いと焼結が十分ではなぐ 2時 間以上かけても焼結はすでに完了しているのでそれよりの緻密化の効果は期待でき ない。加圧力を 200MPa以上に高くすると、耐圧性能に優れた緻密な黒鉛型でも破壊 するため、この加圧力以下で複合材料の焼結を行う必要があり、 2MPa以下に加圧力 を下げると加圧焼結の効果がなくなる。 The pressure sintering method is advantageous when the ratio of carbon nanotubes is high and mixed raw materials are used. As a pressure sintering machine, a dense sintered body can be obtained by using a hot press and SPS. In hot pressing, the mixed raw materials packed in the mold are heated by external heat and sintered under pressure. On the other hand, in SPS, a pulsed direct current is passed through a mold containing mixed raw materials, heated directly and sintered under pressure. The sintering temperature is in the range of 1050 ° C to 1600 ° C, the sintering time is 5 minutes to 2 hours, and the applied pressure is 2 to 200 MPa. The sintering temperature is related to the applied pressure, and it is necessary to increase the applied pressure to lower the sintering temperature. The pressure is determined by the pressure resistance of the mold. The dense graphite mold can be used up to a temperature of 2400 ° C up to 200MPa. If the sintering temperature is set to 1050 ° C or lower, the composite material cannot be sintered densely even if the applied pressure is increased to 200 MPa. Therefore, it is essential to set the sintering temperature to 1050 ° C or higher. . Even if the temperature is higher than 1600 ° C, it is already sintered at a lower temperature! /, So there is no effect on densification. If the sintering time is shorter than 5 minutes, the sintering has already been completed for 2 hours or more, which is not sufficient, so that no further densification effect can be expected. If the pressurizing force is increased to 200 MPa or more, even a dense graphite mold with excellent pressure resistance performance will break, so it is necessary to sinter the composite material below this pressurizing force. If the value is lowered, the effect of pressure sintering is lost.
[0048] なお、仮焼と焼結とを酸化雰囲気中で行うと、カーボンナノチューブが酸化されるた め、非酸化性である真空や、アルゴンガス、窒素ガス、ヘリウムガスその他の非酸化 性のガス雰囲気にすることが必要である。 [0048] Since carbon nanotubes are oxidized when calcination and sintering are performed in an oxidizing atmosphere, non-oxidizing vacuum, argon gas, nitrogen gas, helium gas and other non-oxidizing materials are used. A gas atmosphere is required.
実施例 1  Example 1
[0049] 多層カーボンナノチューブ (MWNT)を使い、水酸化アルミニウムおよび水酸化マグ ネシゥムを、表 1に示す A1 0および MgO相当量に秤量した。これらの原料を水と混合 してスラリーを作り、そこへ分散剤として水の約 5vol%になるようにアラビア糊を添加し、 自転'公転スーパーミキサーを使って 1時間混合した。この混合原料を乾燥後、空気 中で約 200°Cに加熱して分散剤を分解し、さらに雰囲炉を使い窒素ガスを流しながら 、 500°Cまで 1時間で昇温し、その温度に 15分間保持して原料の水酸化アルミニウム と水酸化マグネシウムとを分解した。この分解された原料をモールド成型し、黒鉛発 熱の電気炉を用いて、窒素雰囲気中で 1700°Cまで 2時間かけて昇温し、その温度に 3時間保持して焼結を完了した。  [0049] Using multi-walled carbon nanotubes (MWNT), aluminum hydroxide and magnesium hydroxide were weighed in the amounts corresponding to A10 and MgO shown in Table 1. These raw materials were mixed with water to form a slurry, to which Arabic glue was added to make about 5 vol% of water as a dispersing agent, and mixed for 1 hour using a rotation and revolution super mixer. After drying this mixed raw material, it is heated to about 200 ° C in air to decompose the dispersant, and further heated to 500 ° C in 1 hour while flowing nitrogen gas using an atmospheric furnace. The aluminum hydroxide and magnesium hydroxide as raw materials were decomposed by holding for a minute. The decomposed raw material was molded, heated to 1700 ° C over 2 hours in a nitrogen atmosphere using a graphite heating electric furnace, and held at that temperature for 3 hours to complete the sintering.
[0050] 得られた高機能複合材料の MWNTの混合割合に対する、力、さ密度、曲げ強度、靭 性、摩擦係数、電気抵抗および電磁波吸収による発熱を測定し、その結果を表 1に 示す。比較のために、 MWNTを添加しない純粋のアルミナ焼結体、および lmass%の MgOを添加したアルミナ焼結体を同じ方法で合成し、その結果も表 1に示す。  [0050] The force, bulk density, bending strength, toughness, coefficient of friction, electrical resistance, and heat generation due to electromagnetic wave absorption with respect to the mixing ratio of MWNT of the obtained high-performance composite material were measured, and the results are shown in Table 1. For comparison, a pure alumina sintered body to which MWNT was not added and an alumina sintered body to which lmass% MgO was added were synthesized by the same method. The results are also shown in Table 1.
[0051] [表 1]  [0051] [Table 1]
無加 )七:焼結によつて得られたアルミナーマグネシァ系セラミックス複合材料  7): Alumina-magnesia ceramic composite material obtained by sintering
MWNT AI2O3 MgO 嵩密度 曲げ強度 m 性 摩 擦 電' 5¾抵饥 電子レンシ' i.mass%) (mass% (mass%) (g/cm3) (MPa) (MPa m1'2) 係 数 (Q'cmノ で発熱MWNT AI2O3 MgO Bulk Density Bending Strength m Property Abrasion '5¾ Resistance Electron Lever' i.mass%) (mass% (mass%) (g / cm 3 ) (MPa) (MPa m 1 ' 2 ) Coefficient ( Fever at Q'cm
0.3 98.8 0.7 3.81 410 3.5 0.63 3.7 X 1010 X0.3 98.8 0.7 3.81 410 3.5 0.63 3.7 X 10 10 X
1 98.0 1.0 3.71 461 3.9 0.51 6.3 X 108 X1 98.0 1.0 3.71 461 3.9 0.51 6.3 X 10 8 X
2 97.0 1.0 3.67 515 4.2 0.46 4.1 X 10' 〇2 97.0 1.0 3.67 515 4.2 0.46 4.1 X 10 '○
4 95.0 1.0 3.51 585 6.1 0.27 3.9 X 106 oo4 95.0 1.0 3.51 585 6.1 0.27 3.9 X 106 oo
10 88.5 1.5 3.11 541 5.9 0.21 1.1 X 103 oo10 88.5 1.5 3.11 541 5.9 0.21 1.1 X 103 oo
20 78.5 1.5 2.79 525 5.5 0.17 1.7 X 10 〇〇20 78.5 1.5 2.79 525 5.5 0.17 1.7 X 10
30 68.0 2.0 2.61 518 5.3 0.15 9.6 oo30 68.0 2.0 2.61 518 5.3 0.15 9.6 oo
40 58.0 2.0 2.42 457 4.9 0.11 8.1 oo40 58.0 2.0 2.42 457 4.9 0.11 8.1 oo
0 99.0 1.0 3.89 395 3.4 0.77 7.6 X 101 1 X0 99.0 1.0 3.89 395 3.4 0.77 7.6 X 10 1 1 X
0 100 0 3.94 190 3.3 0.80 1.2 X 1013 X [0052] 表 1に示すように、アルミナ焼結体の靭性と強度とは小さぐ摩擦係数と電気抵抗と はかなり大きい。特に、 MgOを添加していないアルミナ焼結体では、アルミナ結晶の 成長により強度は著しく低下している。しかし、 MWNTをわずかに添加することにより 、摩擦係数および電気抵抗の低下が著しくなつている。靭性と強度との改善に対して は、 lmass%以下のカーボンナノチューブ添加では効果がさほど大きくないが、数%の 添加で大きな効果が得られている。 MWNTの添加量が多くなると、ナノ複合体の割合 が多くなりアルミナとの複合材料というよりは、ナノ複合体のそのものの性質となり、摩 擦係数と電気抵抗とは大きく低下する。靭性と強度とは、アルミナ焼結体のそれより 力、なり大きい。電磁波吸収による発熱 (表 1中の「電子レンジで発熱」)は、電子レンジ を使った複合材料の電磁波吸収による発熱の状況を調べることにより測定し、表 1中 の X印は発熱しないことを示し、〇印は少し発熱し、〇〇印はかなり発熱することを示 して!/、る。 lmass%の MWNTの添加では発熱しな!/、が、 2mass%の添加で少し発熱し、 それ以上の添加では大きな発熱現象が観察された。 0 100 0 3.94 190 3.3 0.80 1.2 X 10 13 X [0052] As shown in Table 1, the toughness and strength of the alumina sintered body are small, and the friction coefficient and electrical resistance are considerably large. In particular, in the alumina sintered body to which MgO is not added, the strength is remarkably reduced due to the growth of alumina crystals. However, a slight addition of MWNT significantly reduces the friction coefficient and electrical resistance. To improve toughness and strength, the effect of adding carbon nanotubes of lmass% or less is not so great, but the effect of adding a few percent is significant. As the amount of MWNT added increases, the proportion of the nanocomposite increases and becomes a property of the nanocomposite rather than a composite material with alumina, and the friction coefficient and electrical resistance are greatly reduced. Toughness and strength are stronger than that of sintered alumina. Heat generation due to electromagnetic wave absorption (“Heat generation in microwave oven” in Table 1) is measured by examining the heat generation status due to electromagnetic wave absorption of the composite material using the microwave oven, and the X mark in Table 1 indicates that no heat is generated. The 〇 mark indicates a slight fever, and the 〇 mark indicates a considerable fever! The addition of lmass% MWNT did not generate heat! /, but the addition of 2 mass% produced a little heat, and the addition of more than that showed a large exothermic phenomenon.
実施例 2  Example 2
[0053] 単層カーボンナノチューブ (SWNT)を使い、水酸化アルミニウムおよび水酸化マグ ネシゥムを、表 2に示す A1 0および MgOの相当量になるように秤量した。このすベて  [0053] Using single-walled carbon nanotubes (SWNT), aluminum hydroxide and magnesium hydroxide were weighed so as to correspond to the amounts of A10 and MgO shown in Table 2. All this
2 3  twenty three
の合成にお!/、ては、水酸化アルミニウムおよび水酸化マグネシウムの混合割合から 生成するのはスピネル (MgAl 0 )である。これらの原料を水と混合してスラリーを作り  In this synthesis, spinel (MgAl 0) is produced from the mixing ratio of aluminum hydroxide and magnesium hydroxide. Mix these ingredients with water to make a slurry
2 4  twenty four
、そこへ分散剤として水の約 3·5νο1%になるようにトリエタノールアミンを添加し、 自転' 公転スーパーミキサーを使って 1.2時間混合した。この混合原料を乾燥後、空気中で 240°Cに加熱して分散剤を分解し、さらに雰囲炉を使い窒素ガスを流しながら、 600°C まで 1.5時間で昇温し、その温度に 30分間保持して原料の水酸化アルミニウムと水酸 化マグネシウムとを分解した。この分解脱水した原料をモールド成型し、黒鉛発熱の 電気炉を用いて、窒素雰囲気中で 1700°Cまで 1.5時間かけて昇温し、その温度に 2 時間保持して焼結を完了した。  Then, triethanolamine was added as a dispersant to about 3 · 5νο1% as a dispersant, and the mixture was mixed for 1.2 hours using a rotation / revolution supermixer. After drying this mixed raw material, it is heated to 240 ° C in air to decompose the dispersant, and further heated to 600 ° C in 1.5 hours while flowing nitrogen gas using an atmospheric furnace, and the temperature is raised to that temperature for 30 minutes. The raw material aluminum hydroxide and magnesium hydroxide were decomposed. This decomposed and dehydrated raw material was molded, heated to 1700 ° C in a nitrogen atmosphere for 1.5 hours using an electric furnace with graphite heating, and held at that temperature for 2 hours to complete the sintering.
[0054] 得られた高機能複合材料のカーボンナノチューブ (SWNT)の混合割合に対する、か さ密度、曲げ強度、靭性、摩擦係数、電気抵抗、電磁波吸収による発熱を測定し、そ の結果を表 2に示す。表 2の高機能複合材料は、 SWNTとスピネルとからなつている。 比較のために、 SWNTを添加しないで、同じ条件で合成したスピネル焼結体の結果も 示している。 [0054] Bulk density, bending strength, toughness, coefficient of friction, electrical resistance, and heat generation due to electromagnetic wave absorption with respect to the mixing ratio of carbon nanotubes (SWNT) in the obtained high-performance composite material were measured, and the results are shown in Table 2. Shown in The high-performance composite materials in Table 2 consist of SWNT and spinel. For comparison, the results of a spinel sintered body synthesized under the same conditions without adding SWNT are also shown.
[0055] [表 2] [0055] [Table 2]
無加圧焼結によつて得られたスピネル系複合材料  Spinel composites obtained by pressureless sintering.
Figure imgf000021_0001
Figure imgf000021_0001
[0056] 表 2に示すように、スピネルに SWNTを加えナノ複合体を生成させることにより、強度 と靭性とを大きくすることが出来る。摩擦係数と電気抵抗とは、 SWNTを少量添加する ことで急激に低下し、カーボンナノチューブの添加効果の大きいことが分かる。電磁 波吸収による発熱 (表 2中の「電子レンジで発熱」 )は、電子レンジを使った複合材料 の電磁波吸収による発熱の状況を調べることにより測定し、表 2中の X印は発熱しな いことを示し、〇印は少し発熱し、〇〇印はかなり発熱することを示している。 SWNT の lmass%の添加では発熱は観察されなかった力 3mass%添加では少し発熱し、それ 以上の添加ではかなり発熱することが分かった。  [0056] As shown in Table 2, strength and toughness can be increased by adding SWNT to spinel to form a nanocomposite. It can be seen that the coefficient of friction and electrical resistance drop sharply with the addition of a small amount of SWNT, and the effect of adding carbon nanotubes is significant. Heat generation due to electromagnetic wave absorption (“Heat generation in microwave oven” in Table 2) was measured by examining the heat generation status due to electromagnetic wave absorption in the composite material using the microwave oven, and the X mark in Table 2 did not generate heat. 〇 mark shows a little fever and 〇 mark shows a considerable amount of heat. The addition of SWNT to lmass% showed no exotherm. It was found that the addition of 3 mass% produced a little heat, and the addition of more than that caused a considerable exotherm.
実施例 3  Example 3
[0057] 多層カーボンナノチューブ (MWNT)を使い、水酸化アルミニウムおよび水酸化マグ ネシゥムを、表 3に示す A1 0および MgO相当量になるように秤量した。これらの原料  [0057] Using multi-walled carbon nanotubes (MWNT), aluminum hydroxide and magnesium hydroxide were weighed so as to correspond to A10 and MgO shown in Table 3. These raw materials
2 3  twenty three
をエタノールと混合してスラリーを作り、そこへ分散剤としてエタノールの約 3vol%にな るようにブチルヒドロキシトルエンを添加し、自転'公転スーパーミキサーを使って 1時 間混合した。この混合原料を乾燥後、ホットプレートで空気中において 200°Cに加熱 し、さらに雰囲炉を使い窒素ガスを流しながら、 500°Cまで 2時間で昇温し、その温度 に 30分間保持して原料の水酸化アルミニウムと水酸化マグネシウムとを分解した。こ の原料を黒鉛型に詰め、ホットプレス機を用い、アルゴンガス中で 20MPaの加圧下に おいて、 1550°Cまで 1時間で昇温し、この温度に 1時間保持して焼結を完了した。 Was mixed with ethanol to make a slurry, and butylhydroxytoluene was added as a dispersant to about 3 vol% of ethanol, and mixed for 1 hour using a rotation / revolution supermixer. After drying this mixed raw material, it is heated to 200 ° C in the air on a hot plate, further heated to 500 ° C in 2 hours while flowing nitrogen gas using an atmospheric furnace, and kept at that temperature for 30 minutes. Raw material aluminum hydroxide and magnesium hydroxide were decomposed. This raw material is packed in a graphite mold and is heated under a pressure of 20 MPa in argon gas using a hot press machine. Then, the temperature was raised to 1550 ° C in 1 hour, and this temperature was maintained for 1 hour to complete the sintering.
[0058] 得られた高機能複合材料の MWNTの混合割合に対する、力、さ密度、曲げ強度、靭 性、摩擦係数、電気抵抗および電磁波吸収による発熱を測定し、その結果を表 3に 示す。比較のために、マグネシアにアルミナを lmass%添加したマグネシア焼結体と、 マグネシア単身の焼結体とを同じ条件で合成し、その結果も表 3に示す。 [0058] The force, bulk density, bending strength, toughness, coefficient of friction, electrical resistance, and heat generation due to electromagnetic wave absorption with respect to the mixing ratio of MWNT of the obtained high-performance composite material were measured. For comparison, a magnesia sintered body obtained by adding lmass% of alumina to magnesia and a single magnesia sintered body were synthesized under the same conditions, and the results are also shown in Table 3.
[0059] [表 3] [0059] [Table 3]
ホットプレス焼結によって得られたアルミナ一マグネシア系セラミックス複合材料  Alumina-magnesia ceramic composites obtained by hot press sintering
Figure imgf000022_0001
Figure imgf000022_0001
[0060] 表 3に示すように、マグネシア単身の焼結体の強度は粒成長のため小さぐこれに アルミナを添加すると強度が増大することが分かる。カーボンナノチューブの添加量 力 S40maSS%より多くなると、無加圧下での焼結によって緻密な高機能複合材料を合成 するのが困難になってくるが、ホットプレスを使うことで、表 3に示されるように強度と靭 性との大きな緻密な高機能複合材料の作製が可能である。この高機能複合材料は、 ほとんどナノ複合体よりなっている力 S、靭性と強度とは十分製品として実用化できる値 である。電磁波吸収による発熱 (表 3中の「電子レンジで発熱」)は、電子レンジを使つ た複合材料の電磁波吸収による発熱の状況を調べることにより測定し、表 3中の X印 は発熱しないことを示し、〇印は少し発熱し、〇〇印はかなり発熱することを示してい る。高機能複合材料は、カーボンナノチューブの含有量が多いため、大きな発熱が 観察された。カーボンナノチューブを含まない焼結体では、発熱は見られなかった。 実施例 4 [0060] As shown in Table 3, the strength of the single magnesia sintered body is small due to grain growth, and it can be seen that the strength increases when alumina is added thereto. When the amount of carbon nanotubes added exceeds S40ma SS %, it becomes difficult to synthesize dense high-performance composite materials by sintering under no pressure, but it is shown in Table 3 by using a hot press. As described above, it is possible to produce a dense and highly functional composite material having large strength and toughness. This high-performance composite material has sufficient strength S, toughness, and strength that are almost composed of nanocomposites, and is a value that can be practically used as a product. Heat generation due to electromagnetic wave absorption (“Heat generation in microwave oven” in Table 3) is measured by examining the heat generation status due to electromagnetic wave absorption of the composite material using the microwave oven, and the X mark in Table 3 does not generate heat. 〇 mark shows a little fever and 〇 mark shows a considerable amount of heat. Due to the high carbon nanotube content in the high-performance composite material, a large exotherm was observed. The sintered body containing no carbon nanotubes did not generate heat. Example 4
[0061] 多層カーボンナノチューブ (MWNT)を使い、水酸化アルミニウムおよび水酸化マグ ネシゥムを、表 4に示す A1 0および MgO相当量になるように秤量した。これらの原料 を水と混合してスラリーを作り、そこへ分散剤として水の約 2vol%になるようにプロピレ ングリコールを添加し、 自転'公転スーパーミキサーを使って 1.5時間混合した。この 混合原料を乾燥後、空気中で 220°Cに加熱し、さらに雰囲炉を使い窒素ガスを流しな がら、 150°Cまで 1時間かけて昇温し、それから 700°Cまで 1.5時間で昇温し、その温度 に 5分間保持して原料の水酸化アルミニウムと水酸化マグネシウムとを分解した。この 分解された原料を黒鉛型に詰め、放電プラズマ焼結機 (SPS)にセットし、真空中で 80 MPaの加圧下のもとで、 1500°Cまで 1時間で昇温し、その温度に 20分間保持して焼 結を完了した。 [0061] Using multi-walled carbon nanotubes (MWNT), aluminum hydroxide and magnesium hydroxide were weighed so as to correspond to A10 and MgO shown in Table 4. These raw materials Was mixed with water to make a slurry, and propylene glycol was added to the slurry so that the volume of water was about 2 vol%, and the mixture was mixed for 1.5 hours using a rotation / revolution supermixer. After drying this mixed raw material, it is heated to 220 ° C in air, and further heated to 150 ° C over 1 hour while flowing nitrogen gas in an atmosphere furnace, and then raised to 700 ° C in 1.5 hours. The mixture was kept at that temperature for 5 minutes to decompose the aluminum hydroxide and magnesium hydroxide as raw materials. This decomposed raw material is packed in a graphite mold, set in a spark plasma sintering machine (SPS), heated to 1500 ° C in 1 hour under a pressure of 80 MPa in vacuum, and the temperature is reached. Hold for 20 minutes to complete the sintering.
[0062] 得られた高機能複合材料の MWNTの混合割合に対する、力、さ密度、曲げ強度、靭 性、摩擦係数、電気抵抗および電磁波吸収による発熱を測定し、その結果を表 4に 示す。比較のために、 MWNTのみの焼結体を同じ方法で合成し、その結果も表 4に 示す。  [0062] The force, bulk density, bending strength, toughness, coefficient of friction, electrical resistance, and heat generation due to electromagnetic wave absorption were measured with respect to the MWNT mixing ratio of the obtained high-performance composite material, and the results are shown in Table 4. For comparison, a sintered body containing only MWNT was synthesized by the same method, and the results are also shown in Table 4.
[0063] [表 4]  [0063] [Table 4]
放電プラズマ焼結によって得られたアルミナ一マグネシア系セラミックス  Alumina-magnesia ceramics obtained by spark plasma sintering
Figure imgf000023_0001
Figure imgf000023_0001
表 4に示すように、 MWNTを 60mass%以上添加しても、 SPSを使うことで緻密な高機 能複合材料の合成が可能である。電気抵抗は、 MWNTの添加が 85mass%になると、 炭素のそれに近くなり、摩擦係数の低下も著しい。電磁波吸収による発熱 (表 4中の「 電子レンジで発熱」)は、電子レンジを使った複合材料の電磁波吸収による発熱の状 況を調べることにより測定し、表 4中の X印は発熱しないことを示し、〇印は少し発熱 し、〇〇印はかなり発熱することを示している。いずれの試料も多くの MWNTを含む ため、かなり大きな発熱が観察された。 産業上の利用可能性 As shown in Table 4, even if 60 mass% or more of MWNT is added, it is possible to synthesize dense high-functional composite materials by using SPS. When the addition of MWNT reaches 85 mass%, the electrical resistance approaches that of carbon, and the friction coefficient decreases significantly. Heat generation due to electromagnetic wave absorption ("Heat generation in microwave oven" in Table 4) is measured by examining the heat generation status due to electromagnetic wave absorption of composite materials using a microwave oven, and X in Table 4 does not generate heat. 〇 mark shows a little fever and 〇 mark shows a considerable amount of heat. Since both samples contained a lot of MWNT, a fairly large exotherm was observed. Industrial applicability
[0065] 以上、詳細に説明したように、本発明のカーボンナノチューブとアルミナ一マグネシ ァ系セラミックスとを含む高機能複合材料は、従来のアルミナ マグネシア系セラミツ タスの靭性を改善しており、かつ強度も改善されている。さらに、耐摩耗性能が大きく 改善された摩擦係数を示している。電気抵抗は、カーボンナノチューブの添加量に 対して小さくなり、アルミナ マグネシア系セラミックスの量が少ない高機能複合材料 では、黒鉛材料に近!、電気抵抗となって!/、る。  [0065] As described above in detail, the highly functional composite material including the carbon nanotube of the present invention and the alumina-magnesia ceramic has improved the toughness of the conventional alumina-magnesia ceramics and has a high strength. Has also been improved. In addition, the friction coefficient shows a greatly improved wear resistance. The electrical resistance decreases with respect to the amount of carbon nanotubes added, and a high-functional composite material with a small amount of alumina-magnesia ceramics is close to a graphite material and has an electrical resistance!
[0066] 本発明に係る高機能複合材料は、従来のアルミナ—マグネシア系セラミックスが使 われて!/、た分野で、さらにはカーボンナノチューブの特性を利用した新分野での利 用が可能である。すなわち、コンデンサー型二次電池、電子ビーム描画装置用部材 、 IC製造用部材、フエルール、包丁などの各種切断刃、人工骨、人工関節、人工股 関節のカップ (インサート)材、粉砕機装置用部材 (ボール、粉砕機パーツ、内張材等 )、成型機械用部材(ノズル、シリンダー、成型用型)、加工機用部材 (シャフト、軸受 け、ポンプ等)、工具用部材 (切削バイト、スナップゲージ、軸受け、定盤、ボールべ ァリング、溶接冶具等)、摺動部品(メカニカルシール、チルティングパット、伸線機用 ロール、プーリー、糸道、釣具、磁器ヘッドスライダー、抄紙機用滑板等)、化学装置 用部材 (バブル、ストッパー、流量計、噴射ノズル、攪拌機、シャフト等)、その他一般 的な機械用部材としてシャフト、ノズル、スプレイノズル、軸受け、メカニカルシールに 有用である。  [0066] The high-performance composite material according to the present invention can be used in fields where conventional alumina-magnesia ceramics are used !, and also in new fields utilizing the characteristics of carbon nanotubes. . Capacitor-type secondary batteries, members for electron beam drawing devices, IC manufacturing members, various cutting blades such as ferrules, knives, artificial bones, artificial joints, hip joint cups (inserts), and crusher device members (Balls, pulverizer parts, lining materials, etc.), molding machine parts (nozzles, cylinders, molds), processing machine parts (shafts, bearings, pumps, etc.), tool parts (cutting tools, snap gauges) , Bearings, surface plates, ball bearings, welding jigs, etc.), sliding parts (mechanical seals, tilting pads, rolls for wire drawing machines, pulleys, thread paths, fishing tools, porcelain head sliders, slip plates for paper machines), Chemical equipment components (bubbles, stoppers, flow meters, spray nozzles, agitators, shafts, etc.) and other general mechanical components such as shafts, nozzles, spray nozzles, bearings It is useful to mechanical seal.
[0067] 本発明に係る高機能複合材料の電子材料としては、カーボンナノチューブの構造 の一つであるキラル型の持つ機能を反映し、 300MHz〜300GHz帯のマイクロ波やミリ 波の電磁波吸収体、電磁波反射体、カプラー、変調機、電磁波スィッチ、アンテナ、 マイクロメカニカル素子、マイクロセンサー、エネルギー変換素子、レーダー保護用ド ーム、ノイズ吸収体、電磁波吸収発熱体に応用することができる。  [0067] The electronic material of the high-functional composite material according to the present invention reflects the function of a chiral type that is one of the structures of carbon nanotubes, and absorbs 300 MHz to 300 GHz band microwave and millimeter wave electromagnetic wave absorbers, It can be applied to electromagnetic wave reflectors, couplers, modulators, electromagnetic wave switches, antennas, micromechanical elements, microsensors, energy conversion elements, radar protection dome, noise absorbers, and electromagnetic wave absorption heating elements.
図面の簡単な説明  Brief Description of Drawings
[0068] [図 1]本発明の実施の形態の高機能複合材料のアルミナ マグネシア系ナノ複合体 を示す模式図である。  FIG. 1 is a schematic diagram showing an alumina-magnesia nanocomposite of a high-functional composite material according to an embodiment of the present invention.
符号の説明 ナノ複合体 カー アルミナ- Explanation of symbols Nanocomposite Car Alumina

Claims

請求の範囲 The scope of the claims
[1] 複数の第 1のアルミナ一マグネシア系セラミックス結晶から成るセラミックス多結晶体 と、  [1] a ceramic polycrystalline body comprising a plurality of first alumina-magnesia ceramic crystals;
複数のカーボンナノチューブと複数の第 2のアルミナ マグネシア系セラミックス結 晶とが絡み合った構造のナノ複合体とを有し、  A nanocomposite having a structure in which a plurality of carbon nanotubes and a plurality of second alumina magnesia-based ceramic crystals are intertwined,
前記ナノ複合体は前記セラミックス多結晶体の内部に分散されていることを、 特徴とする高機能複合材料。  The nanocomposite is dispersed in the ceramic polycrystalline body. A high-functional composite material, characterized in that:
[2] 前記第 2のアルミナ マグネシア系セラミックス結晶は、グレインサイズが前記第 1の アルミナ一マグネシア系セラミックス結晶のグレインサイズより一桁以上小さいことを、 特徴とする請求項 1記載の高機能複合材料。 [2] The high-functional composite material according to claim 1, wherein the second alumina-magnesia ceramic crystal has a grain size that is an order of magnitude or more smaller than the grain size of the first alumina-magnesia ceramic crystal. .
[3] 前記第 2のアルミナ マグネシア系セラミックス結晶は、グレインサイズが 200nmよ り小さいことを、特徴とする請求項 1または 2記載の高機能複合材料。 [3] The highly functional composite material according to claim 1 or 2, wherein the second alumina magnesia ceramic crystal has a grain size smaller than 200 nm.
[4] 前記ナノ複合体は前記第 1のアルミナ マグネシア系セラミックス結晶のグレインサ ィズより大きいことを、特徴とする請求項 1、 2または 3記載の高機能複合材料。 [4] The highly functional composite material according to [1], [2] or [3], wherein the nanocomposite is larger than the grain size of the first alumina magnesia ceramic crystal.
[5] 前記カーボンナノチューブは、平均長さが lOOOnmより長ぐ平均太さが lOOnmよ り細いことを、特徴とする請求項 1、 2、 3または 4記載の高機能複合材料。 5. The highly functional composite material according to claim 1, 2, 3 or 4, wherein the carbon nanotube has an average length longer than lOOOnm and an average thickness smaller than lOOnm.
[6] カーボンナノチューブを 4〜85mass%、アルミナを 0.2〜95mass%、マグネシアを;!〜 2[6] 4 to 85 mass% carbon nanotubes, 0.2 to 95 mass% alumina, magnesia;
7maSS%含むことを、特徴とする請求項 1、 2、 3、 4または 5記載の高機能複合材料。 The high-functional composite material according to claim 1, 2, 3, 4 or 5, characterized by containing 7% SS %.
[7] 前記カーボンナノチューブは、単層カーボンナノチューブ、 2層カーボンナノチュー ブ、多層カーボンナノチューブ、非晶質カーボンナノチューブおよびカーボンナノ口 ッドのうちの 1種または 2種以上の混合物から成ることを、特徴とする請求項 1、 2、 3、[7] The carbon nanotube is composed of one kind or a mixture of two or more kinds of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, amorphous carbon nanotubes, and carbon nanotubes. , Characterized in claims 1, 2, 3,
4、 5または 6記載の高機能複合材料。 4. High-performance composite material according to 4, 5 or 6.
[8] カーボンナノチューブ 0.1〜90mass%とアルミナ マグネシア系セラミックスが 99.9〜 [8] Carbon nanotubes 0.1-90 mass% and alumina magnesia ceramics 99.9-
10mass%とを含む焼結体から成り、  It consists of a sintered body containing 10 mass%,
前記アルミナ マグネシア系セラミックスはアルミナ 99.8〜0.5mass%とマグネシア 0.2 The alumina magnesia-based ceramic is 99.8-0.5 mass% alumina and magnesia 0.2
〜99.5mass%とを含み、 Including ~ 99.5mass%,
前記カーボンナノチューブと前記アルミナ マグネシア系セラミックスのナノ結晶と が互いに絡み合ったナノ複合体を構成要素として有して!/、ることを、 特徴とする高機能複合材料。 It has a nanocomposite in which the carbon nanotubes and the alumina magnesia ceramic nanocrystals are intertwined with each other as a constituent element. Characteristic high-performance composite material.
カーボンナノチューブ 0.1〜90mass%とアルミナ マグネシア系セラミックス 99·9〜10 mass%とを水あるいはアルコール類の溶媒に入れ、スラリー状にして 3〜180分間混合 し、この混合物から前記溶媒を除去した後、非酸化性雰囲気中において 1050°C〜18 00°Cの温度範囲で 5分から 5時間かけて焼結することを、特徴とする高機能複合材料 の製造方法。  Carbon nanotubes 0.1 to 90 mass% and alumina magnesia ceramics 99.9 to 10 mass% are placed in a solvent of water or alcohol, mixed in a slurry for 3 to 180 minutes, and after removing the solvent from this mixture, A method for producing a high-performance composite material, characterized by sintering in a non-oxidizing atmosphere at a temperature range of 1050 ° C to 1800 ° C for 5 minutes to 5 hours.
カーボンナノチューブ 0.3〜70mass%とアルミナ マグネシア系セラミックス 99.7〜30 mass%とを水あるいはアルコール類の溶媒に入れ、スラリー状にして 3〜180分間混合 し、この混合物から溶媒を除去した後、非酸化性雰囲気中において 1050°C〜1800°C の温度範囲で 5分から 5時間かけて焼結することを、特徴とする高機能複合材料の製 造方法。  Carbon nanotubes 0.3 to 70 mass% and alumina magnesia ceramics 99.7 to 30 mass% are placed in water or an alcohol solvent, mixed in a slurry for 3 to 180 minutes, and after removing the solvent from this mixture, non-oxidizing A method for producing a high-performance composite material characterized by sintering in an atmosphere at a temperature range of 1050 ° C to 1800 ° C for 5 minutes to 5 hours.
前記アルミナ マグネシア系セラミックスは、アルミナ相当量で 99.8〜0.5mass%の水 酸化アルミニウム (Al(OH) )と、マグネシア相当量で 0.2〜99.5mass%の水酸化マグネシ ゥム (Mg(OH) )とを含むことを、特徴とする請求項 9または 10記載の高機能複合材料 の製造方法。  The alumina-magnesia ceramic is composed of 99.8 to 0.5 mass% aluminum hydroxide (Al (OH)) in terms of alumina and 0.2-99.5 mass% magnesium hydroxide (Mg (OH)) in terms of magnesia. The method for producing a high-performance composite material according to claim 9 or 10, characterized by comprising:
前記焼結を行うための前処理として、前記混合物から前記溶媒を除去した後、非酸 化性雰囲気中おいて 300°C〜900°Cの温度範囲で 5〜60分間仮焼して分解脱水する ことを、特徴とする請求項 9、 10または 11記載の高機能複合材料の製造方法。  As a pretreatment for performing the sintering, after removing the solvent from the mixture, it is calcined in a non-oxidizing atmosphere at a temperature range of 300 ° C to 900 ° C for 5 to 60 minutes for decomposition and dehydration. The method for producing a high-performance composite material according to claim 9, 10 or 11, characterized in that:
無加圧焼結法、ホットプレス法または放電プラズマ焼結法により前記焼結を行うこと を、特徴とする請求項 9、 10、 11または 12記載の高機能複合材料の製造方法。  13. The method for producing a high-functional composite material according to claim 9, 10, 11 or 12, wherein the sintering is performed by a pressureless sintering method, a hot press method, or a discharge plasma sintering method.
PCT/JP2007/060962 2006-06-05 2007-05-30 Highly functional composite material and method for producing the same WO2008004386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008523622A JP5366193B2 (en) 2006-06-05 2007-05-30 High performance composite material and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-155736 2006-06-05
JP2006155736 2006-06-05

Publications (1)

Publication Number Publication Date
WO2008004386A1 true WO2008004386A1 (en) 2008-01-10

Family

ID=38894359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060962 WO2008004386A1 (en) 2006-06-05 2007-05-30 Highly functional composite material and method for producing the same

Country Status (2)

Country Link
JP (1) JP5366193B2 (en)
WO (1) WO2008004386A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054839A (en) * 2009-09-03 2011-03-17 Shinshu Univ Electromagnetic wave-absorbing material consisting of ceramics-coating nano structure carbon fiber, and method of manufacturing the same
JP2011108951A (en) * 2009-11-19 2011-06-02 Mitsubishi Chemicals Corp Method of preparing semiconductor solution, and photoelectric conversion element using the same
JP2013513204A (en) * 2009-12-04 2013-04-18 ルート ジェイジェイ カンパニー リミテッド Cathode active material precursor for lithium secondary battery containing nano hollow fiber type carbon, active material and method for producing the same
JP2013107807A (en) * 2011-11-24 2013-06-06 Tohoku Univ Nanocomposite material and method for producing the same
EP2514732A4 (en) * 2009-12-16 2015-06-03 Consejo Superior Investigacion Composite material of electroconductor having controlled coefficient of thermal expansion
CN111189080A (en) * 2018-11-15 2020-05-22 惠而浦有限公司 Hybrid nano-reinforced liner for microwave oven
CN115925399A (en) * 2022-11-01 2023-04-07 南充三环电子有限公司 Thermal shock resistant ceramic substrate and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040065A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
WO2007029588A1 (en) * 2005-09-07 2007-03-15 National University Corporation Tohoku University Highly functional composite material and process for producing the same
JP2007084399A (en) * 2005-09-26 2007-04-05 Shinshu Univ Carbon fiber composite spinel ceramic and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040065A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
WO2007029588A1 (en) * 2005-09-07 2007-03-15 National University Corporation Tohoku University Highly functional composite material and process for producing the same
JP2007084399A (en) * 2005-09-26 2007-04-05 Shinshu Univ Carbon fiber composite spinel ceramic and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054839A (en) * 2009-09-03 2011-03-17 Shinshu Univ Electromagnetic wave-absorbing material consisting of ceramics-coating nano structure carbon fiber, and method of manufacturing the same
JP2011108951A (en) * 2009-11-19 2011-06-02 Mitsubishi Chemicals Corp Method of preparing semiconductor solution, and photoelectric conversion element using the same
JP2013513204A (en) * 2009-12-04 2013-04-18 ルート ジェイジェイ カンパニー リミテッド Cathode active material precursor for lithium secondary battery containing nano hollow fiber type carbon, active material and method for producing the same
EP2514732A4 (en) * 2009-12-16 2015-06-03 Consejo Superior Investigacion Composite material of electroconductor having controlled coefficient of thermal expansion
JP2013107807A (en) * 2011-11-24 2013-06-06 Tohoku Univ Nanocomposite material and method for producing the same
CN111189080A (en) * 2018-11-15 2020-05-22 惠而浦有限公司 Hybrid nano-reinforced liner for microwave oven
CN111189080B (en) * 2018-11-15 2024-02-09 惠而浦有限公司 Hybrid nanoreinforced liner for microwave ovens
CN115925399A (en) * 2022-11-01 2023-04-07 南充三环电子有限公司 Thermal shock resistant ceramic substrate and preparation method thereof
CN115925399B (en) * 2022-11-01 2023-12-12 南充三环电子有限公司 Thermal shock resistant ceramic substrate and preparation method thereof

Also Published As

Publication number Publication date
JPWO2008004386A1 (en) 2009-12-03
JP5366193B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
WO2007029588A1 (en) Highly functional composite material and process for producing the same
JP6998879B2 (en) Chemical-free production of graphene-reinforced inorganic matrix composites
He et al. Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition
JP5366193B2 (en) High performance composite material and manufacturing method thereof
Han et al. A review on the processing technologies of carbon nanotube/silicon carbide composites
KR101537942B1 (en) Manufacturing method of graphene-ceramic composites with excellent fracture toughness
Nasibulina et al. Direct synthesis of carbon nanofibers on cement particles
Sarkar et al. Processing and properties of carbon nanotube/alumina nanocomposites: a review
Wei et al. In situ synthesis of ternary BaTiO 3/MWNT/PBO electromagnetic microwave absorption composites with excellent mechanical properties and thermostabilities
JP2004256382A (en) Ceramic-based nanocomposite powder strengthened by carbon nanotube and its producing method
Hu et al. Preparation and characterization of reduced graphene oxide-reinforced boron carbide ceramics by self-assembly polymerization and spark plasma sintering
Zaman et al. Carbon nanotube/boehmite-derived alumina ceramics obtained by hydrothermal synthesis and spark plasma sintering (SPS)
Morales-Florez et al. Mechanical properties of ceramics reinforced with allotropic forms of carbon
Inbaraj et al. Processing and properties of sol gel derived alumina–carbon nano tube composites
Lanfant et al. Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites
Hu et al. Electrostatic self-assembly preparation of reduced graphene oxide-encapsulated alumina nanoparticles with enhanced mechanical properties of alumina nanocomposites
Lin et al. Ultra-strong nanographite bulks based on a unique carbon nanotube linked graphite onions structure
Borrell et al. Surface coating on carbon nanofibers with alumina precursor by different synthesis routes
Arsecularatne et al. Carbon nanotube reinforced ceramic composites and their performance
JP2007320802A (en) SiC CERAMIC AND METHOD FOR PRODUCING THE SAME
Tian et al. Processing and mechanical properties of carbon nanotube–alumina hybrid reinforced high density polyethylene composites
KR101494626B1 (en) Manufacturing method of graphene-alumina-zirconia composites with excellent wear resistance
JP2006282489A (en) Composite material composed of carbon nanotube and hydroxyapatite, and method for producing the same
Zhang et al. Self-assembling of versatile Si3N4@ SiO2 nanofibre sponges by direct nitridation of photovoltaic silicon waste
JP2007254886A (en) Composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008523622

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07828122

Country of ref document: EP

Kind code of ref document: A1