WO2008004305A1 - Method of constructing hydroelectric power generation facility - Google Patents
Method of constructing hydroelectric power generation facility Download PDFInfo
- Publication number
- WO2008004305A1 WO2008004305A1 PCT/JP2006/313582 JP2006313582W WO2008004305A1 WO 2008004305 A1 WO2008004305 A1 WO 2008004305A1 JP 2006313582 W JP2006313582 W JP 2006313582W WO 2008004305 A1 WO2008004305 A1 WO 2008004305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- pipe
- water
- recess
- seawater
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/005—Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B9/00—Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
- E02B9/02—Water-ways
- E02B9/06—Pressure galleries or pressure conduits; Galleries specially adapted to house pressure conduits; Means specially adapted for use therewith, e.g. housings, valves, gates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Definitions
- the present invention relates to a method for constructing a hydroelectric power generation facility, and in particular, a method for applying a hydroelectric power generation facility having a pumping function for generating power by dropping seawater into an underground power generation room and returning the used water to the sea. About.
- hydroelectric power generation equipment has been proposed that combines the function of pumping seawater into an underground power generation room to perform power generation, and returning used water to the sea (see, for example, Patent Document 1).
- the hydroelectric power generation facility described in Patent Document 1 includes a hydro turbine housed in an underground power generation room, a water intake port disposed below the sea surface, a drain port disposed near the hydro turbine, and a tapered water conduit.
- the inlet is connected to the power generation room, the outlet is located in the sea, and it consists of a tapered pumping pipe and a pumping pump installed in the pumping pipe to return the seawater after power generation to the sea.
- a reservoir for storing seawater pumped by a pumping pipe is provided, and the peripheral wall of the reservoir has a height that prevents seawater from flowing into the reservoir space at high tide.
- a drainage pipe that also exposes the sea surface force at the time of tide is communicated, and an open / close valve is provided in the drainage pipe.
- the downstream part of the pumping pipe protrudes upward from the sea level of the reservoir, and then goes down until the outlet reaches this sea level.
- the seawater after power generation rises from the underground power generation room to the reservoir, and the pumped seawater is temporarily stored in the reservoir, and the seawater in the reservoir opens the on-off valve at low tide, so that the drain pipe It is configured to drain into the sea through.
- Patent Document 1 Japanese Patent No. 3687790
- an object of the present invention is to provide a hydroelectric power generation facility that can generate power continuously by drawing seawater into the basement and pumping the seawater after power generation by pumping means. It is to provide a construction method.
- Another object of the present invention is to provide a method for constructing a hydroelectric power generation facility that is safe and has high work efficiency without requiring work on the ocean.
- the above-described problem is that the hydroelectric power is generated by the hydroelectric generator by dropping seawater into the underground power generation room, and the seawater after power generation is returned to the sea by the pumping means.
- a recess excavation process in which a recess is excavated so that the bottom is located below the sea surface at a predetermined distance from the coast edge, and a power generation chamber is excavated at a predetermined depth on the predetermined distance from the land.
- the problem is solved by providing a reservoir formation process for forming a reservoir for storing seawater pumped up by a pipe and a seawater intake process for allowing seawater to flow
- the concave excavation process is performed in which the concave portion is excavated so that the bottom portion is located below the sea surface on the land side a predetermined distance from the coast end. No excavation work on the ocean is required.
- the power generation room is also excavated on land because it is carried out by a power generation room excavation process that excavates the power generation room to a predetermined depth on the land side for a predetermined distance.
- the onshore force will also be carried out in the inclined pipe excavation process for the conduit pipe, and further, any of the pump pipe inclined shaft excavation process, the hydroelectric generator installation process, the pipe installation process, and the pumping means installation process.
- the present invention does not require purging, crane work boats, earth and sand carrier vessels, etc., which are performed on the ocean, and it is possible to construct hydroelectric power generation facilities in substantially the same process as on land. .
- the water outlet of the water conduit is disposed in the vicinity of the hydroelectric generator.
- the peripheral wall of the water reservoir is formed at a height at which seawater does not flow into the water storage space at high tide.
- a seawater intrusion prevention wall is formed on the recessed sea side by excavating the recessed part on the side of a predetermined distance from the coast end. It is possible to provide a construction method for hydroelectric power generation facilities that can perform the installation work of the power generation room, the water conduit, and the pumping pipe on land where seawater does not enter, and that is safe and efficient.
- FIG. 1 is an explanatory diagram of a hydroelectric power generation facility according to an embodiment of the present invention. 2] It is explanatory drawing of a recessed part excavation process.
- FIG. 5 An explanatory diagram of a conduit pit excavation process and an excavation process for excavating a shaft pit.
- FIG. 7 is an explanatory diagram of a transport device forming process for forming a transport device for installing a hydroelectric generator.
- Fig. 1 relates to an embodiment of the present invention.
- Fig. 1 is an explanatory diagram of a hydroelectric power generation facility
- Fig. 2 is an explanatory diagram of a recess excavation process
- Fig. 3 is an explanatory diagram of a power generation chamber excavation process
- Fig. 4 is for a communication pipe.
- Fig. 5 is an explanatory diagram of the drilling process for excavating the inclined pipe shaft and pump shaft
- Fig. 6 is an explanatory diagram of the water reservoir formation process
- Fig. 7 is for installing the hydroelectric generator.
- Fig. 8 is an explanatory diagram of the hydroelectric generator installation process
- Fig. 9 is an explanatory diagram of the completion of the process excluding the drainage pipe installation of the water reservoir
- Fig. 9 is an explanatory diagram of the completion of the process excluding the drainage pipe installation of the water reservoir
- FIG. 10 is a water storage reservoir.
- Fig. 11 is an explanatory diagram showing another example of the installation of the hydroelectric generator
- Fig. 12 is an explanatory diagram showing still another example of the installation of the hydroelectric generator
- Fig. 13 FIG. 14 is an explanatory diagram showing another example of the power generation chamber excavation process
- FIG. 14 is a construction process diagram of the hydroelectric power generation facility.
- the method for constructing a hydroelectric power generation facility according to the present invention continuously generates power by drawing seawater into the basement to drive a hydroelectric generator, pumping the seawater after power generation by a pumping means and draining it into the sea. This is the construction method of hydroelectric power generation facilities that can be used.
- a hydroelectric power generation facility targeted by the present invention will be described.
- a power generation chamber 100 is provided in the basement, and a hydro turbine (hydroelectric generator) 110 is disposed in the power generation chamber 100.
- a water intake 120 is formed at the bottom 11 of the recess 12, and a water discharge port 130 for discharging sea water taken from the water intake 120 to the hydraulic turbine 110 side is formed in the vicinity of the hydro turbine 110.
- an inlet 140 is formed in the power generation chamber 100 through a communication pipe 160 in order to return seawater discharged from the drain 130 to the sea surface side.
- a water conduit D that is gradually tapered toward the downstream side is disposed.
- an open / close door 121 for opening and closing the inside of the water conduit D by an unillustrated electric motor is provided.
- the seawater from which the drainage 130 has also been discharged drives the hydro turbine 110 to generate power, and the generated seawater flows into the inlet 140 through the communication pipe 160.
- the inflow port 140 communicates with the outflow port 150 on the sea surface side.
- the outlet 150 has a curved portion 151 that once protrudes upward from the sea surface and then curves downward until reaching a predetermined position below the sea surface.
- a pumping pipe Y that is gradually tapered toward the outlet 150 is disposed.
- a pumping pump (pumping means) 170 for returning the seawater after power generation to the sea is provided at a predetermined position of the pumping pipe Y between the inlet 140 and the outlet 150.
- the pump (pumping means) 170 includes an electric motor 171 and a screw 172.
- reference numeral 180 is an elevator for work and inspection
- reference 190 is a substation
- symbol W is the sea level at high tide
- symbol L is the sea level at low tide.
- the recess excavation process 10 As shown in the construction process diagram of the hydroelectric power generation facility shown in FIG. 14, the recess excavation process 10, the power generation room excavation process 20, the conduit dip drilling process 30, and the pumped pipe dip drilling process 40
- the hydroelectric generator installation process 50, the pipe installation process 60, the pumping means arrangement process 70, the reservoir formation process 80, and the seawater intake process 90 are provided.
- the recess excavation process 10 in this example is to excavate the recess 12 so that the bottom 11 is located below the sea surface W on the land side by a predetermined distance from the coast end.
- the land is excavated by an unillustrated excavator.
- the recess 12 is excavated so that the bottom 11 is located several meters below the sea level W on the land side a predetermined distance from the edge of the coast.
- a method of excavation of the recess 12 a method of excavating a shaft using a horizontal shaft excavator after excavating a vertical shaft, a method of excavating using a shaft excavator capable of excavating a large-diameter shaft is adopted.
- the power generation chamber excavation process 20 in this example is for excavating the power generation chamber 100 to a predetermined depth on the land side for a predetermined distance.
- FIG. FIG. 4 is an explanatory diagram when the power generation chamber 100 is formed by excavating the slag.
- the power generation chamber 100 is formed at a position several hundred meters below the land 12 a predetermined distance from the recess 12.
- the power generation chamber excavation method includes a method of excavating the vertical shaft 21 and then excavating the horizontal shaft 22 using a horizontal shaft excavator, a method of excavating using a vertical shaft excavator capable of excavating large diameter shafts, etc. Adopted. It should be noted that the recess excavation step 10 and the power generation chamber excavation step 20 may be performed either first or simultaneously.
- a vertical excavator capable of excavating a large-diameter shaft is used to form the vertical shaft 21 with a width that forms the power generation chamber 100 as it is. You can also. Compared with the case where the shaft 22 is excavated from the lower part of the shaft 21 after excavating the large shaft 21 and excavating the power shaft 21 that can be divided into the power generation chamber 100 by dividing the lower part of the shaft 21 in this way. , The amount of excavation increases.
- the power generation chamber 100 can also be formed by using an excavator capable of continuously excavating the vertical shaft 21 and the horizontal shaft 22 from the lower portion of the vertical shaft 21 with one unit.
- An excavator according to the soil quality is used.
- the casing method should be used when excavating soft ground.
- the collapse of the pit wall is prevented by press-fitting the casing.
- a casing method for example, a drilling blade is provided at the bottom of the cylindrical casing, and the high-concentration muddy water is discharged to the outer peripheral side of the cylindrical casing while the cylindrical casing is swung or rotated and press-fitted. It is possible to use an excavator that performs excavation while forming a thin film and reducing frictional resistance.
- the present invention is not limited to this, as long as the shaft can be excavated so that the collapse of the well wall is prevented.
- rock cutting bits are attached to a peripheral surface of an inverted conical rock excavator in a spiral or stepped manner at predetermined intervals. Rotate while pressing the rock cutting bit at the drilling position to end the rock
- An excavator that excavates by crushing and propelling can be used.
- the present invention is not limited to this, and any method capable of excavating the rock layer such as a method of excavating the ground while rotating a pipe-shaped drill casing equipped with excavating blades together with the excavating blades may be used.
- the vertical shaft 21 After excavating the vertical shaft 21, when excavating the horizontal shaft 22 from the lower portion of the vertical shaft 21, the vertical shaft 21 is excavated to a predetermined depth by the vertical shaft excavator as described above, and then the horizontal shaft excavator from the vertical shaft 21 And excavate the side pit 22.
- a shield excavator can be used as the horizontal excavator.
- an earth pressure shield machine When excavating the horizontal shaft 22 on soft ground, an earth pressure shield machine, a muddy shield machine, or the like may be used.
- earth pressure type shields for example, a cutter attached to the front part of a cylindrical excavator body, a propulsion jack for advancing the excavator body, and collected in the space between the excavator body and the excavation wall where the cutter excavated
- a propulsion jack for advancing the excavator body, and collected in the space between the excavator body and the excavation wall where the cutter excavated
- an excavation method in which a face is excavated with a cutter bit can be used.
- the excavated earth and sand are agitated in the excavation chamber just behind the cutter head defined by the bulkhead.
- mud-making material is injected as needed to promote plastic fluidization of excavated soil, and the plastic fluidized soil is discharged to the back of the shield body by a soil removal device such as a screw conveyor. Discharge.
- a tunnel boring machine When excavating the rock layer, a tunnel boring machine may be used. When excavating hard rock, it is difficult to excavate with this normal cutter bit, so a roller that rotatably supports a cutting roller that cuts the face on a shaft body that is connected to the cutter head at both ends in the axial direction. Often uses bits.
- the soil discharged to the rear of the shield body is discharged to the ground through the shaft 21 by means of discharge such as a bucket conveyor or pressure feed.
- the power generation chamber 100 is formed by excavating the horizontal shaft using the excavator according to the soil quality and simultaneously performing the segment assembly.
- the shaft 21 excavated for the power generation chamber excavation is a work and inspection elevator 180 (after completion) for carrying in members such as the hydro turbine 110 and moving workers. Is used as a shaft for maintenance).
- FIGS. 1 and 4 In the vicinity of the center of the bottom of the power generation chamber 100, drainage from which the seawater after power generation is discharged from the hydro turbine 110 (not shown in FIG. 4) housed in the power generation chamber 100.
- a communicating pipe shaft 111 is drilled that vertically communicates the inlet (not shown) and the inlet 140 (not shown in FIG. 4) of the pumping pipe Y.
- the excavation method described above is used for the excavation method.
- the segment assembling and wrapping methods are preferably performed on the communication pipe shaft 111, as in the case of the conduit pipe shaft and the pump shaft inclined shaft. For assembling the segment, it is preferable to assemble the segment so that the segment protrudes several meters above the bottom of the power generation chamber 100 in order to dispose the hydro turbine 110, thereby forming the communication pipe 160.
- the inclined pipe excavation process 30 of the present example communicates the bottom 11 of the recess 12 formed by the recess excavation process 10 and the power generation chamber 100 formed by the power generation chamber excavation process 20. It is intended to excavate the inclined shaft for the conduit.
- the inclined pipe excavation process 40 of the present example is for a pumping pipe that connects the bottom 11 of the recess 12 and the central pipe 111 for excavating the bottom central force of the power generation chamber 100 to a predetermined depth. It is intended to excavate the tilt shaft.
- the inclined pipe shaft 31 is a downwardly tapered inclined shaft communicating with the bottom 11 of the recess 12 and the power generation chamber 100, and the inclined shaft 41 for the pumped pipe is connected to the bottom 11 of the recessed portion 12. It is an inclined taper with an upward taper shape that communicates with the vertical pipe shaft 111.
- the shape of the inclined shaft 31 for the water conduit and the inclined shaft 41 for the pumping pipe in this example is tapered, it is not limited to this and may be the same diameter.
- the inclined pipe excavation process 30 and the inclined pipe excavation process 40 may be performed first or at the same time.
- a tilt shaft excavator that can be excavated by rotating the cutting edge of a bit or the like is installed in the recess 12 and excavated at a fixed distance. After cutting, excavate again by exchanging the cutting edge with one having a different diameter. By repeating this several times, it is possible to excavate the taper shaft 31 and the pump shaft 41. It is also possible to carry out excavation by bringing a shield excavator capable of excavation into the power generation chamber 100 that has already been excavated and starting the excavator from the power generation chamber 100 toward the bottom 11 of the recess 12.
- the lapping method for the segment it is possible to cope with high water pressure and to suppress the deterioration of the segment due to salt damage.
- the outer periphery of the segment can be covered with a waterproof sheet with excellent water-stopping and durability, and can be used as the water conduit D, power generation chamber 100, and pump-up pipe Y as they are.
- pipes made of FRP or the like may be arranged on the inclined pipe shaft 31 and the inclined pipe pipe 41.
- the water guide pipe D and the water pump pipe Y are arranged in parallel in a state of being separated by a certain distance. Therefore, a communication pipe 160 is provided at the lower part of the power generation chamber 100 so that the drain (not shown) of the hydro turbine 110 and the inlet 140 of the pumping pipe Y communicate vertically!
- the hydroelectric generator installation step 50 in this example is to install a hydroelectric generator (hydraulic turbine 110) in the power generation chamber 100.
- the upper part of the communication pipe 160 to which the hydro turbine 110 is connected is formed to protrude several meters from the bottom of the power generation chamber 100.
- the counter 21 is provided with an elevator 180 for carrying in and inspecting a member such as the hydraulic turbine 110 and moving a worker.
- the member of the hydraulic turbine 110 is carried into the power generation chamber 100 and connected to the communication pipe 160. Assemble and arrange to connect.
- the hydro turbine 110 is a water turbine having a moving blade row that is rotatable about a rotation axis, and its shape and size are not limited. In this example, a Pelton turbine having a moving blade row rotatable around a rotation axis This is not limited to this, and Francis turbines, propeller turbines, etc. can be used.
- the lower tapered water conduit D and the upper tapered water pump Y are disposed on the water conduit inclined shaft 31 and the water pump inclined shaft 41.
- the outer periphery of the segment is covered with a waterproof sheet with excellent water-stopping and durability.
- the water guide / drain section 131 of the water guide pipe D is disposed so that the drain port 130 is positioned in the vicinity of the hydro turbine 110.
- the water guide / drain section 131 is connected to the water guide pipe D, but is introduced from the power generation chamber 100 side or carried from the top of the water guide pipe D.
- a curved portion 151 is disposed on the upper portion of the pumping pipe Y.
- the curved portion 151 has a substantially downward U-shape that protrudes upward from the sea surface of the recess 12 and then the outlet 150 is curved toward the lower portion of the water storage PO. It may be arranged so as to be supported by the boundary wall 85.
- the conduit pipe D, pump pipe Y, conduit drainage section 131, and curved section 151 can be made by using a metal pipe whose surface is coated with a corrosion-resistant paint or film, a resin pipe reinforced with glass fiber, etc. ⁇ ⁇ .
- an opening / closing door 121 for opening and closing the water conduit D with an electric motor is disposed in the vicinity of the water intake 120 of the water conduit D.
- an electric motor By opening the open / close door 121, seawater flows into the water conduit D from the water intake 120, and power is generated by the flow pressure of the seawater that has dropped onto the hydro turbine 110.
- filters may be provided at the intake 120 and the conduit D.
- the conduit D is a throttle pipe with a diameter 120a of the intake 120 located near the sea floor of 5.2m, a diameter b of the outlet 130 of 3m, and a length of 300m.
- Inlet 120 Is located at a depth of 5 to LOm from the sea level, so that the intake 120 is maintained below the sea level even at low tide.
- the inclination angle ⁇ of the water conduit D when buried in the soil is 25 °.
- the pumping pipe Y has a pipe diameter c of the inlet 140 communicating with the communication pipe 160 of 5.
- a throttle pipe with a pipe diameter d of 3 m is used for the outlet 150, which is 2 m above the intake 120 and several meters above the intake 120.
- the inclination angle ⁇ of the pumping pipe Y in the soil buried condition in this example is 25, the same as the pipe D. It is said.
- the inlet diameter 120, drain outlet 130, inlet 140, outlet 150, outlet length 150, pipe length (full length), and inclination angle in the buried state are limited to the above values. Is not to be done.
- hydroelectric generator installation step 50 and the pipe arrangement step 60 may be performed first or simultaneously.
- the pumping means disposing step 70 of this example is to arrange pumping means for returning seawater after power generation to the sea inside the pumping pipe Y, and inside the pumping pipe Y, A pump 170 is installed to return seawater to the sea.
- the pumping pump 170 in this example is a force using an axial pump that rotates the screw 172 by the electric motor 171, but is not limited to this, and a spiral pump, an axial pump, a reciprocating pump, or the like can also be used.
- the mounting position of the power pump 170 provided with the pump 170 in the substantially central portion of the pump pipe Y is not limited to this. However, the range from the upstream part to the central part of the pumping pipe Y is preferable.
- the water conduit D is disposed such that the intake 120 is located at the bottom 11 of the recess 12 and the drain 130 is located in the vicinity of the hydroelectric generator (hydraulic turbine 110).
- the pump pipe Y has a support part (boundary wall 85) supporting a substantially downward U-shaped curved part 151 curved so that the inlet 140 communicates with the power generation chamber 100 and the outlet 150 is several meters below the sea level. It is arranged as follows.
- the reservoir formation step 80 of this example forms a reservoir PO that stores seawater pumped by the pumping pipe Y. From the recess 12 formed by the recess excavation step 10 also form a reservoir PO on the sea side. Reservoir PO excavates reservoir 82 so that bottom 81 is located below the sea level. At this time, the seawater intrusion prevention wall 83 is formed on the most sea side, and the concave A boundary wall 85 is formed at the boundary with the part 12.
- the boundary wall 85 and the seawater intrusion prevention wall 83 in this example are formed after the pumping pipe inclined shaft excavation process 40, but not limited to this, the concave excavation process 10, the power generation chamber excavation process 20, and the water conduit Any one jet may be used at the same time as the inclined shaft excavation process 30, the pumped pipe inclined shaft excavation process 40, the hydroelectric generator installation process 50, the pipe installation process 60, the pumping means arrangement process 70, etc.
- a part of the boundary wall 85 is excavated to form a support portion that supports the curved portion 151 of the pumping pipe Y.
- the boundary wall 85 is a hard ground such as rock
- the boundary wall 85 can be used as a support portion.
- the boundary wall 85 (support) may be formed from concrete. Then, after protruding upward from the sea level of the recess 12 to the upper part of the pumping pipe Y, the curved part 151 of the substantially downward U-shaped pumping pipe Y curved so that the outlet 150 is several meters below the sea level. It arrange
- the seawater intrusion prevention wall 83 described above is formed by excavating the water storage recess 82 and forming the seawater ingress prevention wall 83 on the outer side (sea side).
- a drain pipe 84 that is exposed from the sea surface at the time of tide is disposed directly below the sea surface line L at the time of the tide.
- This drain pipe 84 is for draining seawater discharged to the water storage PO after power generation into the sea, and is provided with an open / close valve 84a. If this operation is performed at low tide, it can be performed without seawater entering.
- the seawater intrusion prevention wall 83 is hard ground such as a rock
- the seawater ingress prevention wall 83 can be used as it is. In the case of soft ground, it may be molded from concrete.
- the size of the water storage PO in this example is such that it can store the seawater used for power generation for about one day, but is not limited to this, and can be formed to have a size of more than one day. it can.
- seawater is caused to flow into the recess 12 by communicating the recess 12 with the sea.
- the method of flowing seawater into the recess 12 and the method of forming the water reservoir PO are not limited to those described above.
- the water reservoir PO may be formed near the coast by a concrete block or the like.
- a substation is located on the ground directly above the power plant. In the control room of the substation, the operation operation of the hydro turbine 110 and the pumping pump 170, the opening / closing operation of the door 121, etc. are performed.
- a plurality of hydro turbines 110 may be provided in preparation for a case where power generation efficiency or the hydro turbine 110 fails.
- the hydro turbines 110A and B are provided in the power generation chambers 100A and B, respectively.
- the lower part of the water guide pipe D is bifurcated, and a water channel switching valve DB for switching the water channel is disposed at the branched portion.
- the water channel switching valve DB can be switched to flow sea water into the hydro turbine 110B, and power generation can be continued.
- the hydro turbine 110A can be inspected and repaired.
- the water channel switching valve DB any known one can be used as long as the water channel can be switched.
- the power generation chambers 100A and 100B are each provided with a communication pipe 160 so that the inlet 140 to the pumping pipe Y communicates vertically. It is configured to join at.
- a water channel switching valve YB is provided in the middle of the pumping pipe Y to provide a seawater pipe that flows from each communication pipe 160 to the pumping pipe Y.
- the power generation chamber 100B is provided below the power generation chamber 100A and substantially on the extension line of the water conduit D, and the seawater discharged by the hydro turbine 110A flows into the hydro turbine 11OB.
- the hydro turbine 110A does not move due to a failure or the like, the seawater into which the water guiding pipe D force has flowed passes through the power generation chamber 100A and flows into the water bottle 110B. As a result, even when the hydraulic turbine 110A does not move, power can be generated by the hydraulic turbine 110B.
- the door 121 is opened according to a command from the substation 190, and seawater is poured from the intake 120 into the conduit D.
- seawater passes through the conduit D and is dropped into the underground power generation room 100.
- the flow rate of seawater is increased by the throttle pipe structure while passing through the water guide pipe D which is not only the potential energy generated by the height difference between the intake 120 and the drain 130.
- the seawater dropped at a high speed causes the hydro turbine 110 in the power generation chamber 100 to rotate at almost the maximum rotational speed, thereby generating high output power.
- the outlet 150 of the pump pipe Y is located several meters below the sea surface on the D conduit D side, and further, the seawater of the reservoir PO is drained into the sea at the time of tide.
- the sea level of the station PO can be made lower than the sea level on the 120 side of the intake pipe intake, enabling continuous power generation.
- the inlet 120 has a pipe diameter a of 5.2 m
- the drain outlet 130 has a pipe diameter b of 3 m, a length of 300 m, and an inclination angle ⁇ of 25 °.
- high-speed seawater can be sprayed from the drain 130 to the hydro turbine 110, and the water from the drain D 130 of the conduit pipe D is discharged at a speed of 180 to 190kmZh.
- 700,000 kw power generation can be expected.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
[PROBLEMS] A method of constructing a hydroelectric power generation facility that generates electric power by introducing sea water underground and continuously generates power by pumping the sea water, used for the power generation, by sea water pumping means. [MEANS FOR SOLVING PROBLEMS] The method of constructing a hydroelectric power generation facility has a recess excavation process (10) for excavating a recess (12) at a position a predetermined distance to the land side from a coast end section, a power- generation-room excavation process (20) for excavating a space for a power generation room (100), an inclined-passage excavation process (30) for excavating an inclined passage (31) for a water introduction tube for interconnecting the recess (12) and the power generation room (100), an inclined-passage excavation process (40) for excavating an inclined passage (41) for a water pumping tube for interconnecting the recess (12) and a vertical passage (111) for a communication tube which vertical passage is excavated from the bottom of the power generation room (100), a hydroelectric-generator installation process (50) for installing a hydroelectric generator (110) in the power generation room (100), a tube installation process (60) for installing the water introduction tube (D) and the water pumping tube (Y), a water-pumping-means installation process (70) for installing water pumping means (170) inside the water pumping tube (Y), a water-storage forming process (80) for forming a water storage (PO), and a sea-water introduction process (90) for allowing sea water to flow into the recess (12).
Description
明 細 書 Specification
水力発電設備の施工方法 Construction method of hydroelectric power generation equipment
技術分野 Technical field
[0001] 本発明は水力発電設備の施工方法に係り、特に海水を地下の発電室に落とし込 んで発電を行い、使用後の水を海に戻す揚水機能を兼ね備えた水力発電設備の施 ェ方法に関する。 [0001] The present invention relates to a method for constructing a hydroelectric power generation facility, and in particular, a method for applying a hydroelectric power generation facility having a pumping function for generating power by dropping seawater into an underground power generation room and returning the used water to the sea. About.
背景技術 Background art
[0002] 従来、海水を地下の発電室に落とし込んで発電を行!、、使用後の水を海に戻す揚 水機能を兼ね備えた水力発電設備が提案されている (例えば、特許文献 1参照)。 特許文献 1に記載の水力発電設備は、地下の発電室に収納された水力タービンと 、海面下に取水口が配置され、排水口が水力タービンの近傍に配置され、先細りィ匕 した導水管と、 流入口が発電室に連通され、流出口が海に配置され、先細り化した 揚水管と、揚水管に設けられ、発電後の海水を海に戻す揚水ポンプとから構成され ている。 [0002] Conventionally, hydroelectric power generation equipment has been proposed that combines the function of pumping seawater into an underground power generation room to perform power generation, and returning used water to the sea (see, for example, Patent Document 1). . The hydroelectric power generation facility described in Patent Document 1 includes a hydro turbine housed in an underground power generation room, a water intake port disposed below the sea surface, a drain port disposed near the hydro turbine, and a tapered water conduit. The inlet is connected to the power generation room, the outlet is located in the sea, and it consists of a tapered pumping pipe and a pumping pump installed in the pumping pipe to return the seawater after power generation to the sea.
[0003] この水力発電設備では、揚水管により揚水された海水を溜める貯水場を設け、貯 水場の周壁は、満潮時に海水が貯水空間に流れ込まない高さを有し、その底部には 、引き潮時に海面力も露出する排水管が連通され、排水管には開閉弁が設けられ、 揚水管の下流部は、貯水場の海面から上方に突出した後、流出口がこの海面下に 達するまで下方に湾曲し、発電後の海水を地下の発電室から貯水場まで上昇させ、 汲み上げられた海水は、いったん貯水場に貯水され、貯水場の海水は、引き潮時に 開閉弁を開くことで、排水管を通して海に排水されるように構成されている。 [0003] In this hydroelectric power generation facility, a reservoir for storing seawater pumped by a pumping pipe is provided, and the peripheral wall of the reservoir has a height that prevents seawater from flowing into the reservoir space at high tide. A drainage pipe that also exposes the sea surface force at the time of tide is communicated, and an open / close valve is provided in the drainage pipe. The downstream part of the pumping pipe protrudes upward from the sea level of the reservoir, and then goes down until the outlet reaches this sea level. The seawater after power generation rises from the underground power generation room to the reservoir, and the pumped seawater is temporarily stored in the reservoir, and the seawater in the reservoir opens the on-off valve at low tide, so that the drain pipe It is configured to drain into the sea through.
[0004] 特許文献 1:特許第 3687790号公報 [0004] Patent Document 1: Japanese Patent No. 3687790
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] しカゝしながら、特許文献 1に記載の水力発電設備では、海底から斜坑を形成し、こ の斜坑に導水管を配管しているため、海洋上での作業が必要となるという問題があつ た。また、如何なる手段によって、地下の発電室を形成しているのか、如何なる手段
によって先細り化した導水管を配設しているのかなど、その施工方法が不明であると いう問題があった。このため、どのようにして水力発電設備を構築するか、その解決 方法が不明であるという不都合があった。 [0005] However, in the hydroelectric power generation facility described in Patent Document 1, a tilt shaft is formed from the bottom of the sea, and a conduit pipe is connected to the tilt shaft, which requires work on the ocean. There was a problem. Also, what means is used to form the underground power generation room, and what means There was a problem that the construction method was unclear, such as whether the water conduit pipe tapered by the For this reason, there was an inconvenience that it was unclear how to build a hydropower facility.
[0006] 本発明の目的は、上記課題に鑑み、海水を地下に引き込んで発電を行い、発電後 の海水を揚水手段により揚水することによって継続的に発電を行うことが可能な水力 発電設備の施工方法を提供することにある。 [0006] In view of the above problems, an object of the present invention is to provide a hydroelectric power generation facility that can generate power continuously by drawing seawater into the basement and pumping the seawater after power generation by pumping means. It is to provide a construction method.
また本発明の他の目的は、海洋上での作業を不要とした安全且つ作業効率の良い 水力発電設備の施工方法を提供することにある。 Another object of the present invention is to provide a method for constructing a hydroelectric power generation facility that is safe and has high work efficiency without requiring work on the ocean.
課題を解決するための手段 Means for solving the problem
[0007] 前記課題は、本発明の水力発電設備の施工方法によれば、海水を地下の発電室 に落とし込むことで水力発電機による発電を行い、揚水手段により発電後の海水を 海に戻す水力発電設備の施工方法において、海岸端部より所定距離陸地側に、底 部が海面より下位に位置するように凹部を掘削する凹部掘削工程と、所定距離陸地 側の所定深さに発電室を掘削する発電室掘削工程と、凹部掘削工程により形成した 凹部底部と発電室掘削工程により形成した発電室を連通させる導水管用斜坑を掘 削する導水管用斜坑掘削工程と、凹部底部と発電室底部中央力 所定深さ掘削し た立坑とを連通させる揚水管用斜坑を掘削する揚水管用斜坑掘削工程と、発電室 に水力発電機を配設する水力発電機配設工程と、導水管用斜坑及び揚水管用斜 坑に下方先細り形状の導水管及び上方先細り形状の揚水管を配設する管配設工程 と、揚水管内部に発電後の海水を海に戻すための揚水手段を配設する揚水手段配 設工程と、揚水管により揚水された海水を溜める貯水場を形成する貯水場形成工程 と、凹部と海とを連通させて凹部内に海水を流入させる海水取入れ工程と、を備えた こと、により解決される。 [0007] According to the construction method of the hydroelectric power generation facility of the present invention, the above-described problem is that the hydroelectric power is generated by the hydroelectric generator by dropping seawater into the underground power generation room, and the seawater after power generation is returned to the sea by the pumping means. In the construction method of power generation equipment, a recess excavation process in which a recess is excavated so that the bottom is located below the sea surface at a predetermined distance from the coast edge, and a power generation chamber is excavated at a predetermined depth on the predetermined distance from the land. A power generation chamber excavation process, a water conveyance pipe inclined shaft excavation process for excavating a water conveyance pipe inclined shaft that communicates the bottom of the recess formed by the recess excavation process and the power generation chamber formed by the power generation chamber excavation process, and the central force of the recess bottom and the power generation chamber bottom Shaft excavation process for pumping pipes that excavate a tilt pipe for pumping pipes that communicate with a vertical shaft that has been excavated to a predetermined depth, an installation process for hydroelectric generators that install a hydroelectric generator in the power generation room, an inclined shaft for water pipes and an inclined shaft for pumping pipes Below A pipe disposing process for disposing a tapered water conduit and an upwardly tapered pumping pipe; a pumping means disposing process for disposing a pumping means for returning seawater after power generation to the sea inside the pumping pipe; The problem is solved by providing a reservoir formation process for forming a reservoir for storing seawater pumped up by a pipe and a seawater intake process for allowing seawater to flow into the recess by communicating the recess with the sea.
[0008] このように本発明の水力発電設備の施工方法では、海岸端部より所定距離陸地側 に、底部が海面より下位に位置するように凹部を掘削する凹部掘削工程を行なって いるため、海洋上での掘削作業が不要である。また発電室についても、所定距離陸 地側の所定深さに発電室を掘削する発電室掘削工程によって行っているため、陸上 での掘削作業となる。
[0009] また、導水管用斜坑掘削工程についても陸上力も行なわれることになり、さらに揚 水管斜坑掘削工程、水力発電機配設工程、管配設工程、揚水手段配設工程のいず れもが、海洋上では行なわれないように構成している。このため、本発明では、海洋 上で行なわれるようなパージ、クレーン作業船、土砂運搬船などが不要であり、水力 発電設備の施工が陸上で行なうのと略同じ工程で施工することが可能となる。 [0008] As described above, in the construction method of the hydroelectric power generation facility according to the present invention, the concave excavation process is performed in which the concave portion is excavated so that the bottom portion is located below the sea surface on the land side a predetermined distance from the coast end. No excavation work on the ocean is required. The power generation room is also excavated on land because it is carried out by a power generation room excavation process that excavates the power generation room to a predetermined depth on the land side for a predetermined distance. [0009] In addition, the onshore force will also be carried out in the inclined pipe excavation process for the conduit pipe, and further, any of the pump pipe inclined shaft excavation process, the hydroelectric generator installation process, the pipe installation process, and the pumping means installation process. It is configured not to be performed on the ocean. For this reason, the present invention does not require purging, crane work boats, earth and sand carrier vessels, etc., which are performed on the ocean, and it is possible to construct hydroelectric power generation facilities in substantially the same process as on land. .
このような構成により、海洋上での作業を不要とした安全且つ作業効率の良い水力 発電設備の施工方法とすることができる。 With such a configuration, it is possible to provide a safe and efficient working method for hydroelectric power generation that eliminates the need for work on the ocean.
[0010] また、管配設工程において、揚水管の下流部を海面から上方に突出した後、流出 口が貯水場の海面下に達するまで下方に湾曲した略下向き u字形状とし、貯水場形 成工程において、貯水場の周壁下部に、開閉弁を備え引き潮時に海面力も露出す る排水管を連通させることとしている。このようにして、揚水管の近傍に貯水場を設け 、揚水管の下流部を、いったん海面上に突出させた後、流出口が海面下となるように 貯水場に収納させ、貯水場の海水を引き潮時に海に戻すので、継続的な発電を行う ことができる水力発電設備とすることができる。 [0010] In addition, in the pipe installation process, after the downstream part of the pumping pipe protrudes upward from the sea surface, it is formed into a substantially downward u-shape that is curved downward until the outflow port reaches the sea level of the water reservoir. In the construction process, a drain pipe that is equipped with an open / close valve and that also exposes the sea surface force during tides is connected to the lower part of the peripheral wall of the reservoir. In this way, a reservoir is provided in the vicinity of the pumping pipe, and the downstream part of the pumping pipe is once protruded above the sea surface, and then stored in the reservoir so that the outlet is below the sea level. Is returned to the sea at the time of tide, so it can be a hydroelectric power generation facility capable of continuous power generation.
[0011] また、管配設工程において、導水管の排水口が水力発電機の近傍に配置されると 好適である。このように構成すると、海面上からの海水の落下力のロスを抑えて、直 接水力発電機に導入して、効率的な発電を行なうことができる。 [0011] Further, in the pipe disposing step, it is preferable that the water outlet of the water conduit is disposed in the vicinity of the hydroelectric generator. With this configuration, it is possible to suppress the loss of seawater dropping force from the sea surface and introduce it directly into a hydroelectric generator to perform efficient power generation.
[0012] また、貯水場形成工程において、貯水場の周壁は、満潮時に海水が貯水空間に流 れ込まない高さに形成すると好適である。このように構成すると、満潮時においても、 貯水場の海面が、取水口における海面より低くなり、海面差を充分利用することがで きる。 [0012] In addition, in the water reservoir formation process, it is preferable that the peripheral wall of the water reservoir is formed at a height at which seawater does not flow into the water storage space at high tide. With this configuration, even at high tide, the sea level of the reservoir is lower than the sea level at the intake and the sea level difference can be fully utilized.
発明の効果 The invention's effect
[0013] 以上のように、本発明の水力発電設備の施工方法によれば、海岸端部より所定距 離陸地側に凹部を掘削することにより、凹部海側に海水浸入防止壁が形成され、発 電室、導水管、揚水管の配設作業を海水が浸入しない陸地で行うことができ、安全 且つ作業効率の良い水力発電設備の施工方法を提供することが可能である。 [0013] As described above, according to the construction method of the hydroelectric power generation facility of the present invention, a seawater intrusion prevention wall is formed on the recessed sea side by excavating the recessed part on the side of a predetermined distance from the coast end. It is possible to provide a construction method for hydroelectric power generation facilities that can perform the installation work of the power generation room, the water conduit, and the pumping pipe on land where seawater does not enter, and that is safe and efficient.
図面の簡単な説明 Brief Description of Drawings
[0014] [図 1]本発明の一実施形態に係る水力発電設備の説明図である。
圆 2]凹部掘削工程の説明図である。 FIG. 1 is an explanatory diagram of a hydroelectric power generation facility according to an embodiment of the present invention. 2] It is explanatory drawing of a recessed part excavation process.
圆 3]発電室掘削工程の説明図である。 圆 3] It is explanatory drawing of a power generation chamber excavation process.
圆 4]連通管用立抗掘削工程の説明図である。 4] It is explanatory drawing of the resisting excavation process for communicating pipes.
[図 5]導水管用斜坑掘削工程及び揚水管用斜坑を掘削する掘削工程の説明図であ る。 [FIG. 5] An explanatory diagram of a conduit pit excavation process and an excavation process for excavating a shaft pit.
圆 6]貯水場形成工程の説明図である。 6) It is explanatory drawing of a water reservoir formation process.
[図 7]水力発電機配設を行なうための運搬装置を形成する運搬装置形成工程の説明 図である。 FIG. 7 is an explanatory diagram of a transport device forming process for forming a transport device for installing a hydroelectric generator.
圆 8]水力発電機配設工程の説明図である。 圆 8] It is explanatory drawing of a hydroelectric generator arrangement | positioning process.
圆 9]貯水場の排水管配設を除く工程が完了した説明図である。 圆 9] It is an explanatory diagram when the process of drainage pipe installation in the reservoir is completed.
圆 10]貯水場の排水管の施工工程の説明図である。 圆 10] It is an explanatory diagram of the construction process of the drainage pipe of the water reservoir.
圆 11]水力発電機配設の他の例を示す説明図である。 圆 11] It is explanatory drawing which shows the other example of hydroelectric generator arrangement | positioning.
圆 12]水力発電機配設の更に他の例を示す説明図である。 圆 12] It is explanatory drawing which shows the further another example of arrangement | positioning of a hydroelectric generator.
圆 13]発電室掘削工程の他の例を示す説明図である。 圆 13] It is explanatory drawing which shows the other example of a power generation chamber excavation process.
圆 14]水力発電設備の施工工程図である。 圆 14] It is a construction process diagram of hydroelectric power generation equipment.
符号の説明 Explanation of symbols
10 凹部掘削工程 10 Concave excavation process
11 底部 11 Bottom
12 凹部 12 Recess
20 発電室掘削工程 20 Power generation room drilling process
21 立抗 21 Resistance
22 横抗 22
30 導水管用斜坑掘削工程 30 Shaft excavation process for water conduit
31 導水管用斜坑 31 Diversion shaft for water conduit
40 揚水管用斜坑掘削工程 40 Shaft excavation process for pumping pipe
41 揚水管用斜坑 41 Shaft for pumping pipe
50 水力発電機配設工程 50 Hydropower generator installation process
60 管配設工程
70 揚水手段配設工程 60 Tube installation process 70 Pumping means installation process
80 貯水場形成工程 80 Reservoir formation process
81 底部 81 Bottom
82 貯水凹部 82 Reservoir recess
83 海水浸入防止壁 83 Seawater ingress prevention wall
84 排水管 84 Drain pipe
84a 開閉弁 84a Open / close valve
85 境界壁 85 Boundary wall
90 海水取入れ工程 90 Seawater intake process
100 (100A, 100B) 発電室 100 (100A, 100B) Power generation room
110 (110A, 11 OB) 水力タービン(水力 110 (110A, 11 OB) Hydro Turbine (Hydraulic)
111 連通管用立坑 111 Communal pipe shaft
120 取水口 120 water intake
121 開閉扉 121 Door
130 排水口 130 Drain port
131 導水排水部 131 Water transfer / drainage section
140 流入口 140 Inlet
150 流出口 150 outlet
151 湾曲部 151 Curved section
160 連通管 160 communication pipe
170 揚水ポンプ (揚水手段) 170 Pumping pump (pumping means)
171 電動モータ 171 Electric motor
172 スクリュー 172 screw
180 作業兼点検用エレベータ 180 Elevator for work and inspection
190 変電所 190 Substation
D 導水管 D water conduit
PO 貯水場 PO water reservoir
Y 揚水管
s 水力タービン水力発電設備 Y pumping pipe s Hydro Turbine Hydroelectric Power Generation Equipment
w 満潮時の海面 w Sea level at high tide
L 干潮時の海面 L Sea level at low tide
DB, YB 水路切替弁 DB, YB waterway selector valve
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の実施態様を図面に基づいて説明する。なお、以下に説明する部材 ,配置等は本発明を限定するものでなぐ本発明の趣旨の範囲内で種々改変するこ とがでさるちのである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the members, arrangements, and the like described below can be variously modified within the scope of the present invention, which does not limit the present invention.
図は本発明の実施態様に係るものであり、図 1は水力発電設備の説明図、図 2は凹 部掘削工程の説明図、図 3は発電室掘削工程の説明図、図 4は連通管用立抗掘削 工程の説明図、図 5は導水管用斜坑及び揚水管用斜坑を掘削する掘削工程の説明 図、図 6は貯水場形成工程の説明図、図 7は水力発電機配設を行なうための運搬装 置を形成する運搬装置形成工程の説明図、図 8は水力発電機配設工程の説明図、 図 9は貯水場の排水管配設を除く工程が完了した説明図、図 10は貯水場の排水管 の施工工程の説明図、図 11は水力発電機配設の他の例を示す説明図、図 12は水 力発電機配設の更に他の例を示す説明図、図 13は発電室掘削工程の他の例を示 す説明図、図 14は水力発電設備の施工工程図である。 Fig. 1 relates to an embodiment of the present invention. Fig. 1 is an explanatory diagram of a hydroelectric power generation facility, Fig. 2 is an explanatory diagram of a recess excavation process, Fig. 3 is an explanatory diagram of a power generation chamber excavation process, and Fig. 4 is for a communication pipe. Fig. 5 is an explanatory diagram of the drilling process for excavating the inclined pipe shaft and pump shaft, Fig. 6 is an explanatory diagram of the water reservoir formation process, and Fig. 7 is for installing the hydroelectric generator. Fig. 8 is an explanatory diagram of the hydroelectric generator installation process, Fig. 9 is an explanatory diagram of the completion of the process excluding the drainage pipe installation of the water reservoir, and Fig. 10 is a water storage reservoir. Fig. 11 is an explanatory diagram showing another example of the installation of the hydroelectric generator, Fig. 12 is an explanatory diagram showing still another example of the installation of the hydroelectric generator, and Fig. 13 FIG. 14 is an explanatory diagram showing another example of the power generation chamber excavation process, and FIG. 14 is a construction process diagram of the hydroelectric power generation facility.
[0017] 本発明による水力発電設備の施工方法は、海水を地下に引き込んで水力発電機 を駆動し、発電後の海水を揚水手段により揚水して海に排水することにより継続的に 発電を行うことが可能な水力発電設備の施工方法である。 [0017] The method for constructing a hydroelectric power generation facility according to the present invention continuously generates power by drawing seawater into the basement to drive a hydroelectric generator, pumping the seawater after power generation by a pumping means and draining it into the sea. This is the construction method of hydroelectric power generation facilities that can be used.
[0018] 先ず、本発明の対象とする水力発電設備について説明する。図 1に示すように、こ の水力タービン水力発電設備 Sは、発電室 100が地下に設けられ、この発電室 100 に水力タービン (水力発電機) 110が配設されている。 [0018] First, a hydroelectric power generation facility targeted by the present invention will be described. As shown in FIG. 1, in this hydro turbine hydroelectric power generation facility S, a power generation chamber 100 is provided in the basement, and a hydro turbine (hydroelectric generator) 110 is disposed in the power generation chamber 100.
そして、凹部 12の底部 11には取水口 120が形成され、取水口 120から取水した海 水を水力タービン 110側へ排出する排水口 130が水力タービン 110の近傍に形成さ れている。 A water intake 120 is formed at the bottom 11 of the recess 12, and a water discharge port 130 for discharging sea water taken from the water intake 120 to the hydraulic turbine 110 side is formed in the vicinity of the hydro turbine 110.
また発電室 100には、排水口 130から排出された海水を、海面側へ戻すために、 連通管 160を介して流入口 140が形成されている。
[0019] さらに、取水口 120から排水口 130までは、下流側に向力つて徐々に先細り化した 導水管 Dが配設されている。導水管 Dの取水口 120付近には、不図示の電動モータ により導水管 D内を開閉操作する開閉扉 121が内設されている。そして、排水口 130 力も排出された海水が水力タービン 110を駆動して発電を行 、、発電後の海水が連 通管 160を介して流入口 140に流れ込む。なお、この流入口 140は、海面側の流出 口 150へ連通している。 In addition, an inlet 140 is formed in the power generation chamber 100 through a communication pipe 160 in order to return seawater discharged from the drain 130 to the sea surface side. [0019] Further, from the intake 120 to the drain 130, a water conduit D that is gradually tapered toward the downstream side is disposed. In the vicinity of the intake 120 of the water conduit D, an open / close door 121 for opening and closing the inside of the water conduit D by an unillustrated electric motor is provided. Then, the seawater from which the drainage 130 has also been discharged drives the hydro turbine 110 to generate power, and the generated seawater flows into the inlet 140 through the communication pipe 160. The inflow port 140 communicates with the outflow port 150 on the sea surface side.
[0020] この流出口 150は、海面からいったん上方に突出した後、海面下の所定位置に達 するまで下方に湾曲した湾曲部 151を有している。流入口 140から流出口 150へは 、流出口 150側に向かって徐々に先細りした揚水管 Yが配設されている。この流入口 140から流出口 150の間の揚水管 Yの所定位置には、発電後の海水を海に戻す揚 水ポンプ (揚水手段) 170が設けられている。揚水ポンプ (揚水手段) 170は電動モ ータ 171とスクリュー 172を備えている。 [0020] The outlet 150 has a curved portion 151 that once protrudes upward from the sea surface and then curves downward until reaching a predetermined position below the sea surface. From the inlet 140 to the outlet 150, a pumping pipe Y that is gradually tapered toward the outlet 150 is disposed. A pumping pump (pumping means) 170 for returning the seawater after power generation to the sea is provided at a predetermined position of the pumping pipe Y between the inlet 140 and the outlet 150. The pump (pumping means) 170 includes an electric motor 171 and a screw 172.
[0021] なお、図 1中、符号 180は作業兼点検用エレベータ、符号 190は変電所、記号 W は満潮時の海面、記号 Lは干潮時の海面である。 In FIG. 1, reference numeral 180 is an elevator for work and inspection, reference 190 is a substation, symbol W is the sea level at high tide, and symbol L is the sea level at low tide.
[0022] 本例では、図 14で示す水力発電設備の施工工程図のように、凹部掘削工程 10と、 発電室掘削工程 20と、導水管用斜坑掘削工程 30と、揚水管用斜坑掘削工程 40と、 水力発電機配設工程 50と、管配設工程 60と、揚水手段配設工程 70と、貯水場形成 工程 80と、海水取入れ工程 90と、を備えている。 [0022] In this example, as shown in the construction process diagram of the hydroelectric power generation facility shown in FIG. 14, the recess excavation process 10, the power generation room excavation process 20, the conduit dip drilling process 30, and the pumped pipe dip drilling process 40 The hydroelectric generator installation process 50, the pipe installation process 60, the pumping means arrangement process 70, the reservoir formation process 80, and the seawater intake process 90 are provided.
[0023] 本例の凹部掘削工程 10は、海岸端部より所定距離陸地側に、底部 11が海面 Wよ り下位に位置するように凹部 12を掘削するものであり、まず、図 2に示すように、図示 しない掘削機によって陸地の掘削を行う。海岸の端部より所定距離陸地側に、底部 1 1が海面 Wより数 m下位に位置するように凹部 12を掘削する。凹部 12の掘削工法に ついては、立坑を掘削した後に横坑掘削機を用いて掘削する工法、大径立坑掘削 可能な立坑掘削機を用いて掘削する工法等が採用される。なお、これらの掘削工法 については、後述する発電室 100の掘削工法と同様であり、詳細は発電室掘削工法 において述べることとする。 [0023] The recess excavation process 10 in this example is to excavate the recess 12 so that the bottom 11 is located below the sea surface W on the land side by a predetermined distance from the coast end. First, as shown in FIG. In this way, the land is excavated by an unillustrated excavator. The recess 12 is excavated so that the bottom 11 is located several meters below the sea level W on the land side a predetermined distance from the edge of the coast. As for the method of excavation of the recess 12, a method of excavating a shaft using a horizontal shaft excavator after excavating a vertical shaft, a method of excavating using a shaft excavator capable of excavating a large-diameter shaft is adopted. These excavation methods are the same as the excavation method for the power generation chamber 100 described later, and the details will be described in the power generation chamber excavation method.
[0024] このように凹部 12を掘削することにより、凹部 12と海との間に高さが海面よりも高い 陸地が一部残り、この部分を、後述する境界壁 85と貯水凹部 82と海水浸入防止壁 8
3 (貯水場周壁)とすることができる。このように海岸端部より所定距離陸地側に凹部 1 2を掘削するので、凹部 12内には海水が浸入してこない。 [0024] By excavating the recess 12 in this way, a part of the land whose height is higher than the sea surface remains between the recess 12 and the sea, and this portion is separated from a boundary wall 85, a water storage recess 82, and seawater described later. Intrusion prevention wall 8 3 (reservoir surrounding wall). As described above, since the concave portion 12 is excavated from the coast end portion to the land side by a predetermined distance, seawater does not enter the concave portion 12.
[0025] 本例の発電室掘削工程 20は、所定距離陸地側の所定深さに発電室 100を掘削す るもので、図 3は立坑 21を掘削した後に、立坑 21の下部力も横坑 22を掘削して発電 室 100を形成する場合の説明図である。発電室掘削工程 20では、凹部 12より所定 距離陸地側の地下数百 mの位置に発電室 100を形成するものである。 [0025] The power generation chamber excavation process 20 in this example is for excavating the power generation chamber 100 to a predetermined depth on the land side for a predetermined distance. FIG. FIG. 4 is an explanatory diagram when the power generation chamber 100 is formed by excavating the slag. In the power generation chamber excavation process 20, the power generation chamber 100 is formed at a position several hundred meters below the land 12 a predetermined distance from the recess 12.
発電室掘削工法は、凹部掘削工法と同様、立坑 21を掘削した後に横坑掘削機を 用いて横坑 22を掘削する工法、大径立坑掘削可能な立坑掘削機を用いて掘削する 工法等が採用される。なお、上記凹部掘削工程 10と発電室掘削工程 20は、どちら の工程を先に行なってもよぐまた同時に行なっても良い。 As with the recessed excavation method, the power generation chamber excavation method includes a method of excavating the vertical shaft 21 and then excavating the horizontal shaft 22 using a horizontal shaft excavator, a method of excavating using a vertical shaft excavator capable of excavating large diameter shafts, etc. Adopted. It should be noted that the recess excavation step 10 and the power generation chamber excavation step 20 may be performed either first or simultaneously.
[0026] また、作業工程及び掘削費用は必要となるが、図 13のように、大径立坑掘削可能 な立坑掘削機を用いて、立抗 21をそのまま発電室 100を形成する幅で形成すること もできる。このように大径の立坑 21を掘削し、その下部を仕切って発電室 100とする ことも可能である力 立坑 21を掘削した後に、立坑 21の下部から横坑 22を掘削する 場合と比較すると、掘削を行う量が力なり多くなる。また、図示はしないが、一台で立 坑 21とこの立坑 21の下部から横坑 22を連続的に掘削できる掘削機を用いて発電室 100の形成を行うことも可能である。 [0026] Although the work process and excavation cost are required, as shown in FIG. 13, a vertical excavator capable of excavating a large-diameter shaft is used to form the vertical shaft 21 with a width that forms the power generation chamber 100 as it is. You can also. Compared with the case where the shaft 22 is excavated from the lower part of the shaft 21 after excavating the large shaft 21 and excavating the power shaft 21 that can be divided into the power generation chamber 100 by dividing the lower part of the shaft 21 in this way. , The amount of excavation increases. Although not shown, the power generation chamber 100 can also be formed by using an excavator capable of continuously excavating the vertical shaft 21 and the horizontal shaft 22 from the lower portion of the vertical shaft 21 with one unit.
[0027] 掘削機は土質に応じたものが用いられる。立坑 21を掘削する場合において、軟弱 地盤を掘削する場合には、ケーシング工法を用いるとよい。ケーシング工法によれば 、ケーシングを圧入することにより坑壁の崩壊が防止される。ケーシング工法として、 例えば、筒状ケーシングの最下部に掘削刃を設け、筒状ケーシングを揺動または回 転させ、圧入させながら、筒状ケーシングの外周側に高濃度泥水を吐出し、高濃度 泥水の膜を形成して摩擦抵抗を低減させながら掘削を行うような掘削機を用いること ができる。なお、これに限らず、坑壁の崩壊が防止されるように立坑の掘削を行えるも のであればよい。 [0027] An excavator according to the soil quality is used. When excavating the vertical shaft 21, the casing method should be used when excavating soft ground. According to the casing method, the collapse of the pit wall is prevented by press-fitting the casing. As a casing method, for example, a drilling blade is provided at the bottom of the cylindrical casing, and the high-concentration muddy water is discharged to the outer peripheral side of the cylindrical casing while the cylindrical casing is swung or rotated and press-fitted. It is possible to use an excavator that performs excavation while forming a thin film and reducing frictional resistance. However, the present invention is not limited to this, as long as the shaft can be excavated so that the collapse of the well wall is prevented.
[0028] また、岩盤層を掘削する場合には、例えば、逆円錐形の岩盤掘削機の周面に、岩 盤切削ビットが所定の間隔で螺旋状または階段状に配置して取り付けられ、立坑を 掘削する位置に岩盤切削ビットを上力 押し付けつつ回転させることで岩盤を端面
破砕し、推進させることで掘削を行うような掘削機を用いることができる。なお、これに 限らず、掘削翼を装着したパイプ状のドリルケ一シングを掘削翼と共に回転させなが ら地盤を掘削する方法等、岩盤層を掘削できるものであればよい。 [0028] When excavating a rock layer, for example, rock cutting bits are attached to a peripheral surface of an inverted conical rock excavator in a spiral or stepped manner at predetermined intervals. Rotate while pressing the rock cutting bit at the drilling position to end the rock An excavator that excavates by crushing and propelling can be used. However, the present invention is not limited to this, and any method capable of excavating the rock layer such as a method of excavating the ground while rotating a pipe-shaped drill casing equipped with excavating blades together with the excavating blades may be used.
[0029] 立坑 21を掘削した後、立坑 21の下部から横坑 22を掘削する場合、上述のような立 坑掘削機によって所定深さまで立坑 21を掘削し、その後、立坑 21から横坑掘削機を 搬入して横坑 22を掘削する。なお、横坑掘削機としてはシールド掘進機を用いること ができる。 [0029] After excavating the vertical shaft 21, when excavating the horizontal shaft 22 from the lower portion of the vertical shaft 21, the vertical shaft 21 is excavated to a predetermined depth by the vertical shaft excavator as described above, and then the horizontal shaft excavator from the vertical shaft 21 And excavate the side pit 22. A shield excavator can be used as the horizontal excavator.
[0030] 軟弱地盤にぉ 、て横坑 22を掘削する場合には、土圧式シールド掘進機、泥水式 シールド掘進機等を用いるとよい。土圧式シールドとして、例えば、筒形状をなす掘 削機本体の前部に装着されたカツタ、掘削機本体を前進させる推進ジャッキ、掘削 機本体とカツタが掘削した掘削壁面との空間部に溜まった水を外部に排出する排出 手段を備えた掘進機のカツタヘッドを回転させることにより、カツタビットで切羽の掘削 を行う掘削工法などを用いることができる。なお、掘削された土砂は、隔壁により画成 されたカツタヘッドのすぐ後方にある掘削室内で撹拌される。土圧式シールド掘進機 では、必要に応じて掘削土砂の塑性流動化を促進するための作泥材が注入され、塑 性流動化した土砂を、スクリューコンベア等の排土装置によってシールド本体の後方 へ排出する。 [0030] When excavating the horizontal shaft 22 on soft ground, an earth pressure shield machine, a muddy shield machine, or the like may be used. As earth pressure type shields, for example, a cutter attached to the front part of a cylindrical excavator body, a propulsion jack for advancing the excavator body, and collected in the space between the excavator body and the excavation wall where the cutter excavated By rotating the cutter head of an excavator equipped with a discharge means for discharging water to the outside, an excavation method in which a face is excavated with a cutter bit can be used. The excavated earth and sand are agitated in the excavation chamber just behind the cutter head defined by the bulkhead. In the earth pressure type shield machine, mud-making material is injected as needed to promote plastic fluidization of excavated soil, and the plastic fluidized soil is discharged to the back of the shield body by a soil removal device such as a screw conveyor. Discharge.
[0031] また、水分が非常に多い軟弱地盤を掘削する場合には、掘削室内に送水管等の 注水手段を用いて注水を行い、掘削土砂を泥水の状態として排泥管等の排泥手段 により排出する!、わゆる泥水式シールド掘削機を用いてもよ!、。泥水式シールド掘進 機では、掘削室内に送水管等の注水手段を用いて注水を行い、掘削土砂を泥水の 状態として排泥管等の排泥手段によりシールド本体の後方へ排出する。 [0031] Further, when excavating soft ground with a very high water content, water is injected into the excavation chamber using a water injection means such as a water pipe, and the excavated earth and sand is in a muddy state to discharge the mud. You can use a sludge-type shield excavator! In the muddy water type shield digging machine, water is injected into the excavation chamber using water injection means such as water pipes, and the excavated sediment is put in the muddy state and discharged to the rear of the shield body by means of mud discharge such as mud pipes.
[0032] また、岩盤層を掘削する場合には、トンネルボーリングマシンを用いるとよい。硬岩 の掘削を行うときには、この通常のカツタビットで掘削を行うのは困難であるため、軸 方向両端部がカツタヘッドに接続された軸体に、切羽を切削する切削ローラを回転 自在に支持したローラビットを用いることが多 、。 [0032] When excavating the rock layer, a tunnel boring machine may be used. When excavating hard rock, it is difficult to excavate with this normal cutter bit, so a roller that rotatably supports a cutting roller that cuts the face on a shaft body that is connected to the cutter head at both ends in the axial direction. Often uses bits.
なお、シールド本体の後方へ排出された排土は、バケツトコンベア、圧送等の排出 手段によって立坑 21を通して地上へ排出されるようにする。
このように、土質に応じた掘削機を用いて横坑掘削を行うと同時に、セグメント組立 を行うことで発電室 100が形成される。 The soil discharged to the rear of the shield body is discharged to the ground through the shaft 21 by means of discharge such as a bucket conveyor or pressure feed. In this way, the power generation chamber 100 is formed by excavating the horizontal shaft using the excavator according to the soil quality and simultaneously performing the segment assembly.
[0033] なお、図 1に示すように、発電室掘削のために掘削された立坑 21は、水力タービン 110等の部材の搬入、作業者移動のための作業兼点検用エレベータ 180 (完成後 には保守用)の立坑として利用される。 [0033] As shown in Fig. 1, the shaft 21 excavated for the power generation chamber excavation is a work and inspection elevator 180 (after completion) for carrying in members such as the hydro turbine 110 and moving workers. Is used as a shaft for maintenance).
[0034] 図 1及び図 4に示すように、発電室 100の底部中央近傍には、発電室 100に収納さ れる水力タービン 110 (図 4では不図示)から発電後の海水を排出される排水口(不 図示)と、揚水管 Yの流入口 140 (図 4では不図示)とを垂直に連通する連通管用立 坑 111を掘削する。掘削工法については、上述した掘削工法を用いる。なお、連通 管用立坑 111には、後述するように導水管用斜坑及び揚水管用斜坑と同様、セグメ ント組立て及びラッピング工法が行われるとよい。なお、セグメント組立てについては 、水力タービン 110を配設するために、セグメントを発電室 100の底部より数 m上に 突出するように組立て、連通管 160を形成するとよい。 [0034] As shown in FIGS. 1 and 4, in the vicinity of the center of the bottom of the power generation chamber 100, drainage from which the seawater after power generation is discharged from the hydro turbine 110 (not shown in FIG. 4) housed in the power generation chamber 100. A communicating pipe shaft 111 is drilled that vertically communicates the inlet (not shown) and the inlet 140 (not shown in FIG. 4) of the pumping pipe Y. The excavation method described above is used for the excavation method. As will be described later, the segment assembling and wrapping methods are preferably performed on the communication pipe shaft 111, as in the case of the conduit pipe shaft and the pump shaft inclined shaft. For assembling the segment, it is preferable to assemble the segment so that the segment protrudes several meters above the bottom of the power generation chamber 100 in order to dispose the hydro turbine 110, thereby forming the communication pipe 160.
[0035] 本例の導水管用斜坑掘削工程 30は、図 5で示すように、凹部掘削工程 10により形 成した凹部 12の底部 11と、発電室掘削工程 20により形成した発電室 100を連通さ せる導水管用の斜坑を掘削するものである。 [0035] As shown in FIG. 5, the inclined pipe excavation process 30 of the present example communicates the bottom 11 of the recess 12 formed by the recess excavation process 10 and the power generation chamber 100 formed by the power generation chamber excavation process 20. It is intended to excavate the inclined shaft for the conduit.
[0036] また、本例の揚水管用斜坑掘削工程 40は、図 5で示すように、凹部 12の底部 11と 発電室 100の底部中央力も所定深さ掘削した連通管用立坑 111を連通させる揚水 管用の斜坑を掘削するものである。 [0036] In addition, as shown in Fig. 5, the inclined pipe excavation process 40 of the present example is for a pumping pipe that connects the bottom 11 of the recess 12 and the central pipe 111 for excavating the bottom central force of the power generation chamber 100 to a predetermined depth. It is intended to excavate the tilt shaft.
[0037] 図 5に示すように、本例では、導水管用斜坑 31は凹部 12の底部 11と発電室 100を 連通する下方先細り形状の斜坑であり、揚水管用斜坑 41は凹部 12の底部 11と連通 管用立坑 111とを連通する上方先細り形状の斜坑としている。なお、本例における導 水管用斜坑 31及び揚水管用斜坑 41の形状は先細り形状としているが、これに限る ものではなく、同径形状のものとしてもよい。また、これら導水管用斜坑掘削工程 30と 揚水管用斜坑掘削工程 40は、どちらの工程を先に行なってもよぐまた同時に行な つても良い。 [0037] As shown in FIG. 5, in this example, the inclined pipe shaft 31 is a downwardly tapered inclined shaft communicating with the bottom 11 of the recess 12 and the power generation chamber 100, and the inclined shaft 41 for the pumped pipe is connected to the bottom 11 of the recessed portion 12. It is an inclined taper with an upward taper shape that communicates with the vertical pipe shaft 111. In addition, although the shape of the inclined shaft 31 for the water conduit and the inclined shaft 41 for the pumping pipe in this example is tapered, it is not limited to this and may be the same diameter. In addition, the inclined pipe excavation process 30 and the inclined pipe excavation process 40 may be performed first or at the same time.
[0038] 導水管用斜坑 31及び揚水管用斜坑 41の掘削工法については、ビット等の掘削刃 先を回転させることによって掘削可能な斜坑掘削機を凹部 12に設置し、一定距離掘
削した後、掘削刃先を径の異なるものと交換して再度掘削する。これを数回繰り返す ことによって先細り形状の導水管用斜坑 31、揚水管用斜坑 41を掘削することができ る。また、既に掘削済みである発電室 100に斜坑掘削可能なシールド掘削機を搬入 して発電室 100から凹部 12の底部 11に向けて掘削機を発進させて掘削することも 可能である。この場合には、連続可変拡幅シールド工法等を用いることにより先細り の斜坑を掘削することが可能となる。なお、出発地点と到着地点が同径となる同径形 状の導水管用斜坑 31及び揚水管用斜坑 41を掘削する場合には、掘削刃先を交換 する必要がないため手間を掛けずに掘削することが可能である。 [0038] Regarding the excavation method for the conduit pipe shaft 31 and the pump shaft inclined shaft 41, a tilt shaft excavator that can be excavated by rotating the cutting edge of a bit or the like is installed in the recess 12 and excavated at a fixed distance. After cutting, excavate again by exchanging the cutting edge with one having a different diameter. By repeating this several times, it is possible to excavate the taper shaft 31 and the pump shaft 41. It is also possible to carry out excavation by bringing a shield excavator capable of excavation into the power generation chamber 100 that has already been excavated and starting the excavator from the power generation chamber 100 toward the bottom 11 of the recess 12. In this case, it is possible to excavate a tapered inclined shaft by using a continuously variable widening shield method. In addition, when excavating the inclined pipe conduit 31 and pump shaft 41 with the same diameter at the starting point and the arrival point, excavation is not required because the excavation blade tip need not be replaced. Is possible.
[0039] なお、掘削と同時にセグメント組立を行うと、ェ期ゃコストの面において好適である。 [0039] It is preferable to perform segment assembly simultaneously with excavation in terms of cost.
さらに、セグメントに対してラッピング工法を用いることにより、高水圧に対応可能で塩 害等におけるセグメントの劣化を抑止することが可能である。ラッピング工法を行うこと により、セグメントの外周を止水性と耐久性に優れた防水シートで覆うことができ、そ のまま導水管 D、発電室 100、揚水管 Yとして使用することが可能となる。また、掘削 後に、導水管用斜坑 31、揚水管用斜坑 41に FRP製等の管を配設する方法としても よい。 Furthermore, by using the lapping method for the segment, it is possible to cope with high water pressure and to suppress the deterioration of the segment due to salt damage. By using the lapping method, the outer periphery of the segment can be covered with a waterproof sheet with excellent water-stopping and durability, and can be used as the water conduit D, power generation chamber 100, and pump-up pipe Y as they are. In addition, after excavation, pipes made of FRP or the like may be arranged on the inclined pipe shaft 31 and the inclined pipe pipe 41.
[0040] 導水管 Dと揚水管 Yとは、一定距離だけ離間した状態で平行配置されて 、る。した がって、発電室 100の下部には、水力タービン 110の排水口(不図示)と、揚水管 Y の流入口 140とが垂直に連通するように連通管 160が設けられて!/、る。 [0040] The water guide pipe D and the water pump pipe Y are arranged in parallel in a state of being separated by a certain distance. Therefore, a communication pipe 160 is provided at the lower part of the power generation chamber 100 so that the drain (not shown) of the hydro turbine 110 and the inlet 140 of the pumping pipe Y communicate vertically! The
[0041] 本例の水力発電機配設工程 50は、発電室 100に水力発電機 (水力タービン 110) を配設するものである。 The hydroelectric generator installation step 50 in this example is to install a hydroelectric generator (hydraulic turbine 110) in the power generation chamber 100.
図 7, 8に示すように、水力タービン 110が接続される連通管 160の上部は、発電室 100の底部より数 m突出するように形成される。形成方法については、上述したように 、掘削と同時にセグメント組立てによって形成してもよいし、掘削作業終了後に形成 してもよい。そして、立抗 21には、水力タービン 110等の部材の搬入、作業員移動の ための作業兼点検用エレベータ 180が設けられ、発電室 100に水力タービン 110の 部材を搬入し、連通管 160に接続するように組立てて配設する。水力タービン 110は 、回転軸を中心にして回転自在な動翼列を有した水車で、その形状、大きさは限定 されない。本例では、回転軸を中心にして回転自在な動翼列を有するペルトン水車
が採用されている力 これに限らずフランシス水車、プロペラ水車などを用いることも 可能である。 As shown in FIGS. 7 and 8, the upper part of the communication pipe 160 to which the hydro turbine 110 is connected is formed to protrude several meters from the bottom of the power generation chamber 100. As for the forming method, as described above, it may be formed by segment assembly simultaneously with excavation, or may be formed after the excavation work is completed. The counter 21 is provided with an elevator 180 for carrying in and inspecting a member such as the hydraulic turbine 110 and moving a worker. The member of the hydraulic turbine 110 is carried into the power generation chamber 100 and connected to the communication pipe 160. Assemble and arrange to connect. The hydro turbine 110 is a water turbine having a moving blade row that is rotatable about a rotation axis, and its shape and size are not limited. In this example, a Pelton turbine having a moving blade row rotatable around a rotation axis This is not limited to this, and Francis turbines, propeller turbines, etc. can be used.
[0042] 図 9に示すように、本例の管配設工程 60は、導水管用斜坑 31及び揚水管用斜坑 4 1に下方先細り形状の導水管 D及び上方先細り形状の揚水管 Yを配設する。なお、 導水管用斜坑 31及び揚水管用斜坑 41の掘削と同時にセグメント組立、ラッピングェ 法を行った場合には、セグメントの外周が止水性と耐久性に優れた防水シートで覆わ れているため、そのまま導水管 D及び揚水管 Yとして使用することができる。 [0042] As shown in FIG. 9, in the pipe disposing step 60 of the present example, the lower tapered water conduit D and the upper tapered water pump Y are disposed on the water conduit inclined shaft 31 and the water pump inclined shaft 41. . In addition, when the segment assembly and lapping method are performed at the same time as excavation of the conduit pipe tilt shaft 31 and the pump shaft tilt shaft 41, the outer periphery of the segment is covered with a waterproof sheet with excellent water-stopping and durability. Can be used as a conduit pipe D and a pump pipe Y.
[0043] また、排水口 130が水力タービン 110の近傍に位置するように導水管 Dの導水排 水部 131を配設する。導水排水部 131は導水管 Dに接続されるが、発電室 100側か ら導入されたり、或いは導水管 Dの上部から搬入される。 [0043] Further, the water guide / drain section 131 of the water guide pipe D is disposed so that the drain port 130 is positioned in the vicinity of the hydro turbine 110. The water guide / drain section 131 is connected to the water guide pipe D, but is introduced from the power generation chamber 100 side or carried from the top of the water guide pipe D.
[0044] また、揚水管 Yの上部には、湾曲部 151を配設する。湾曲部 151は、凹部 12の海 面から上方に突出した後、流出口 150が貯水場 POの下部に向けて湾曲した略下向 き U字形状とされており、後述する境界壁 85形成後に、境界壁 85に支持させるよう に配設するとよい。なお、導水管 D、揚水管 Y、導水排水部 131、湾曲部 151は、表 面を耐食性塗料やフィルムでコーティングした金属製管、ガラスファイバーなどで補 強された榭脂管等を使用すればょ ヽ。 In addition, a curved portion 151 is disposed on the upper portion of the pumping pipe Y. The curved portion 151 has a substantially downward U-shape that protrudes upward from the sea surface of the recess 12 and then the outlet 150 is curved toward the lower portion of the water storage PO. It may be arranged so as to be supported by the boundary wall 85. Note that the conduit pipe D, pump pipe Y, conduit drainage section 131, and curved section 151 can be made by using a metal pipe whose surface is coated with a corrosion-resistant paint or film, a resin pipe reinforced with glass fiber, etc.ヽ ヽ.
また、導水管用斜坑 31及び揚水管用斜坑 41を先細り形状ではなく同径形状に掘 肖 IJした場合は、導水管用斜坑 31、揚水管用斜坑 41に下方先細り形状の導水管 D、 上方先細り形状の揚水管 Yを配設すると導水管 D、揚水管 Yの周りに隙間ができる。 この場合には、掘削時に排土された土やコンクリート等を注入して隙間を埋め、導水 管 D、揚水管 Yを固定する。 In addition, when the inclined pipe shaft 31 and pump shaft 41 are drilled to the same diameter instead of the tapered shape, the lower tapered water pipe D and the upper tapered pumping water are connected to the horizontal pipe shaft 31 and the vertical pipe shaft 41. If pipe Y is installed, there will be a gap around the conduit D and pump pipe Y. In this case, soil or concrete discharged during excavation is injected to fill the gap, and the conduit D and pump pipe Y are fixed.
[0045] また、導水管 Dの取水口 120の付近には、導水管 Dを電動モータにより開閉操作 する開閉扉 121を配設している。この開閉扉 121を開くことによって、取水口 120から 導水管 Dに海水が流れ込み、水力タービン 110に落下した海水の流圧によって発電 が行われる。なお、異物による水力タービン 110の損傷を低減させるため、取水口 12 0や導水管 Dにフィルタを設けてもょ 、。 In addition, an opening / closing door 121 for opening and closing the water conduit D with an electric motor is disposed in the vicinity of the water intake 120 of the water conduit D. By opening the open / close door 121, seawater flows into the water conduit D from the water intake 120, and power is generated by the flow pressure of the seawater that has dropped onto the hydro turbine 110. In order to reduce damage to the hydro turbine 110 due to foreign matter, filters may be provided at the intake 120 and the conduit D.
[0046] 本例において、導水管 Dは、海底付近に配置された取水口 120の管径 aが 5. 2m、 排水口 130の管径 bが 3m、長さが 300mの絞り管を用いている。また、取水口 120
が海面から 5〜: LOmの深さに配置されていることにより、引き潮時でも取水口 120は 海面下に位置するように維持される。本例においては、土中埋設状態での導水管 D の傾斜角度 Θは 25°としている。 [0046] In this example, the conduit D is a throttle pipe with a diameter 120a of the intake 120 located near the sea floor of 5.2m, a diameter b of the outlet 130 of 3m, and a length of 300m. Yes. Inlet 120 Is located at a depth of 5 to LOm from the sea level, so that the intake 120 is maintained below the sea level even at low tide. In this example, the inclination angle Θ of the water conduit D when buried in the soil is 25 °.
[0047] また、本例において、揚水管 Yは、連通管 160と連通した流入口 140の管径 cが 5. [0047] In this example, the pumping pipe Y has a pipe diameter c of the inlet 140 communicating with the communication pipe 160 of 5.
2m、取水口 120より数 m上方に配置される流出口 150の管径 dが 3mの絞り管を用 いている。本例の土中埋設状態での揚水管 Yの傾斜角度 Θは、導水管 Dと同じく 25 。としている。なお、導水管 D及び揚水管 Yの取水口 120、排水口 130、流入口 140 、流出口 150の管径、管の長さ (全長)、埋設状態での傾斜角度は、上記数値に限 定されるものではない。 A throttle pipe with a pipe diameter d of 3 m is used for the outlet 150, which is 2 m above the intake 120 and several meters above the intake 120. The inclination angle Θ of the pumping pipe Y in the soil buried condition in this example is 25, the same as the pipe D. It is said. The inlet diameter 120, drain outlet 130, inlet 140, outlet 150, outlet length 150, pipe length (full length), and inclination angle in the buried state are limited to the above values. Is not to be done.
なお、これら水力発電機配設工程 50、管配設工程 60は、どちらの工程を先に行な つてもよく、また同時に行なっても良い。 It should be noted that either of the hydroelectric generator installation step 50 and the pipe arrangement step 60 may be performed first or simultaneously.
[0048] 本例の揚水手段配設工程 70は、揚水管 Yの内部に発電後の海水を海に戻すため の揚水手段を配設するものであり、揚水管 Yの内部に、発電後の海水を海に戻すた めの揚水ポンプ 170を配設している。本例の揚水ポンプ 170としては、電動モータ 17 1によりスクリュー 172を回転させる軸流ポンプを用いている力 これに限らず、渦巻き ポンプ、軸流ポンプ、往復ポンプなどを用いることも可能である。また、本例のおいて は、揚水ポンプ 170を揚水管 Yの略中央部に設けている力 揚水ポンプ 170の取り 付け位置はこれに限るものではない。ただし、揚水管 Yの上流部から中央部の範囲 が好ましい。 [0048] The pumping means disposing step 70 of this example is to arrange pumping means for returning seawater after power generation to the sea inside the pumping pipe Y, and inside the pumping pipe Y, A pump 170 is installed to return seawater to the sea. The pumping pump 170 in this example is a force using an axial pump that rotates the screw 172 by the electric motor 171, but is not limited to this, and a spiral pump, an axial pump, a reciprocating pump, or the like can also be used. Further, in this example, the mounting position of the power pump 170 provided with the pump 170 in the substantially central portion of the pump pipe Y is not limited to this. However, the range from the upstream part to the central part of the pumping pipe Y is preferable.
[0049] このように、本例では、導水管 Dは取水口 120が凹部 12の底部 11に位置し、排水 口 130が水力発電機 (水力タービン 110)の近傍に位置するように配設され、揚水管 Yは流入口 140が発電室 100に連通し、流出口 150が海面下数 mとなるように湾曲 した略下向き U字形状の湾曲部 151を支持部 (境界壁 85)に支持させるように配設さ れる。 Thus, in this example, the water conduit D is disposed such that the intake 120 is located at the bottom 11 of the recess 12 and the drain 130 is located in the vicinity of the hydroelectric generator (hydraulic turbine 110). The pump pipe Y has a support part (boundary wall 85) supporting a substantially downward U-shaped curved part 151 curved so that the inlet 140 communicates with the power generation chamber 100 and the outlet 150 is several meters below the sea level. It is arranged as follows.
[0050] 本例の貯水場形成工程 80は、図 6に示すように、揚水管 Yにより揚水された海水を 溜める貯水場 POを形成するものであり、凹部掘削工程 10により形成した凹部 12より も海側に貯水場 POを形成する。貯水場 POは、底部 81が海面より下位に位置するよ うに貯水凹部 82を掘削する。このとき、最も海側に海水浸入防止壁 83を形成し、凹
部 12との境界に境界壁 85を形成する。なお、本例の境界壁 85と海水浸入防止壁 8 3の形成は、揚水管斜坑掘削工程 40の後に行っているが、これに限らず、凹部掘削 工程 10、発電室掘削工程 20、導水管用斜坑掘削工程 30、揚水管斜坑掘削工程 40 、水力発電機配設工程 50、管配設工程 60、揚水手段配設工程 70、などと同時に行 なってもよぐその 1噴序は問わない。 [0050] As shown in FIG. 6, the reservoir formation step 80 of this example forms a reservoir PO that stores seawater pumped by the pumping pipe Y. From the recess 12 formed by the recess excavation step 10 Also form a reservoir PO on the sea side. Reservoir PO excavates reservoir 82 so that bottom 81 is located below the sea level. At this time, the seawater intrusion prevention wall 83 is formed on the most sea side, and the concave A boundary wall 85 is formed at the boundary with the part 12. The boundary wall 85 and the seawater intrusion prevention wall 83 in this example are formed after the pumping pipe inclined shaft excavation process 40, but not limited to this, the concave excavation process 10, the power generation chamber excavation process 20, and the water conduit Any one jet may be used at the same time as the inclined shaft excavation process 30, the pumped pipe inclined shaft excavation process 40, the hydroelectric generator installation process 50, the pipe installation process 60, the pumping means arrangement process 70, etc.
[0051] 本例では、境界壁 85の一部を掘削して揚水管 Yの湾曲部 151を支持する支持部 を形成している。境界壁 85が岩盤等の硬質地盤の場合は、境界壁 85を支持部とす ることができる。軟質地盤の場合には、コンクリートによって境界壁 85 (支持部)を形 成すればよい。そして、揚水管 Yの上部に凹部 12の海面からいったん上方に突出し た後、流出口 150が海面下数 mとなるように湾曲した略下向き U字形状の揚水管 Y の湾曲部 151を境界壁 85からなる支持部に支持させるように配設する。 [0051] In this example, a part of the boundary wall 85 is excavated to form a support portion that supports the curved portion 151 of the pumping pipe Y. When the boundary wall 85 is a hard ground such as rock, the boundary wall 85 can be used as a support portion. In the case of soft ground, the boundary wall 85 (support) may be formed from concrete. Then, after protruding upward from the sea level of the recess 12 to the upper part of the pumping pipe Y, the curved part 151 of the substantially downward U-shaped pumping pipe Y curved so that the outlet 150 is several meters below the sea level. It arrange | positions so that it may be supported by the support part which consists of 85.
[0052] また前記した海水浸入防止壁 83は、図 7に示すように、貯水凹部 82を掘削して、 外側 (海側)を海水浸入防止壁 83としている。そして、図 10に示すように、この海水 浸入防止壁 83の下部には、引き潮時の海面ライン Lの真上で、引き潮時に海面から 露出する排水管 84を配設する。 In addition, as shown in FIG. 7, the seawater intrusion prevention wall 83 described above is formed by excavating the water storage recess 82 and forming the seawater ingress prevention wall 83 on the outer side (sea side). As shown in FIG. 10, a drain pipe 84 that is exposed from the sea surface at the time of tide is disposed directly below the sea surface line L at the time of the tide.
[0053] この排水管 84は、発電後、貯水場 POに排出された海水を海に排水するためのも のであり、開閉弁 84aが設けられている。この作業は、引き潮時に行われると、海水が 浸入することなく行えて好適である。なお、この、海水浸入防止壁 83が岩盤等の硬質 地盤の場合には、海水浸入防止壁 83をそのまま使用することができる。軟質地盤の 場合には、コンクリートによって成型すればよい。本例の貯水場 POの大きさは、略 1 日の発電に使用される海水を貯留可能な大きさとしているが、これに限定されるもの ではなく複数日以上の大きさに形成することもできる。 [0053] This drain pipe 84 is for draining seawater discharged to the water storage PO after power generation into the sea, and is provided with an open / close valve 84a. If this operation is performed at low tide, it can be performed without seawater entering. When the seawater intrusion prevention wall 83 is hard ground such as a rock, the seawater ingress prevention wall 83 can be used as it is. In the case of soft ground, it may be molded from concrete. The size of the water storage PO in this example is such that it can store the seawater used for power generation for about one day, but is not limited to this, and can be formed to have a size of more than one day. it can.
[0054] 海水取入れ工程 90は、凹部 12と海とを連通させて凹部 12内に海水を流入させる。 In the seawater intake step 90, seawater is caused to flow into the recess 12 by communicating the recess 12 with the sea.
つまり、凹部 12の一部と海とを海岸の掘削等により連通させ、凹部 12内に海水を 流入させる。これにより、図 1のように導水管 Dの取水口 120から海水を取入れ、発電 を行うことができる。なお、海水を凹部 12内へ流入させる方法や貯水場 POの形成方 法については上述したものに限らず、例えば、貯水場 POはコンクリートブロック等に よって海岸付近に形成されて ヽればよ ヽ。
なお、発電所の真上の地上には変電所が配置されている。変電所の制御室では、 水力タービン 110、揚水ポンプ 170の運転操作、開閉扉 121の開閉操作等が行われ る。 That is, a part of the recess 12 and the sea are communicated by excavation of the coast, and the seawater flows into the recess 12. As a result, seawater can be taken from the intake 120 of the conduit D as shown in Fig. 1 to generate electricity. In addition, the method of flowing seawater into the recess 12 and the method of forming the water reservoir PO are not limited to those described above. For example, the water reservoir PO may be formed near the coast by a concrete block or the like. . A substation is located on the ground directly above the power plant. In the control room of the substation, the operation operation of the hydro turbine 110 and the pumping pump 170, the opening / closing operation of the door 121, etc. are performed.
[0055] なお、発電効率や水力タービン 110が故障した場合等に備え、水力タービン 110 は複数台設けられるとよい。図 11は水力タービン 110を二台設けたものであり、発電 室 100A、 Bに水力タービン 110A、 Bを設けている。導水管 Dの下方が二股に分岐 しており、その分岐部分には水路を切替えるための水路切替弁 DBが配設されてい る。このように構成することで、水力タービン 110Aが故障した場合には、水路切替弁 DBを切替えて水力タービン 110Bに海水を流し込むことができ、継続して発電を行う ことができる。また、この間に水力タービン 110Aの点検、修理を行うことが可能である 。なお、水路切替弁 DBは水路を切替えられるものであればよぐ公知のものを用いる ことができる。 [0055] It should be noted that a plurality of hydro turbines 110 may be provided in preparation for a case where power generation efficiency or the hydro turbine 110 fails. In FIG. 11, two hydro turbines 110 are provided. The hydro turbines 110A and B are provided in the power generation chambers 100A and B, respectively. The lower part of the water guide pipe D is bifurcated, and a water channel switching valve DB for switching the water channel is disposed at the branched portion. With this configuration, when the hydro turbine 110A fails, the water channel switching valve DB can be switched to flow sea water into the hydro turbine 110B, and power generation can be continued. During this time, the hydro turbine 110A can be inspected and repaired. As the water channel switching valve DB, any known one can be used as long as the water channel can be switched.
[0056] また発電室 100A、 Bには、前記実施態様と同様に、揚水管 Yへの流入口 140が垂 直に連通するように連通管 160がそれぞれ設けられており、途中の揚水管 Yで合流 するように構成されている。そして、揚水管 Yの途中に水路切替弁 YBを配設して、そ れぞれの連通管 160から揚水管 Yに流れる海水の管路としている。 [0056] Similarly to the above-described embodiment, the power generation chambers 100A and 100B are each provided with a communication pipe 160 so that the inlet 140 to the pumping pipe Y communicates vertically. It is configured to join at. In addition, a water channel switching valve YB is provided in the middle of the pumping pipe Y to provide a seawater pipe that flows from each communication pipe 160 to the pumping pipe Y.
[0057] また、図 12に示すように、発電室 100Bが発電室 100Aの下方で、かつ導水管 Dの 略延長線上に設けられ、水力タービン 110A力 排出される海水が水力タービン 11 OBに流れ込むように構成してもよい。このように構成すると、水力タービン 110Aが正 常に可動する場合には、水力タービン 110Aでの発電後の海水が水力タービン 110 Bに流れ込み、水力タービン 110Aから排出された海水の余勢で水力タービン 110B においても多少の発電が行われる。また、水力タービン 110Aが故障等により可動し ない場合には、導水管 D力も流れ込んできた海水が発電室 100Aを通過し、水カタ 一ビン 110Bに流れ込んでくる。これにより、水力タービン 110Aが可動しない場合に も水力タービン 110Bによって発電を行うことができる。 [0057] Further, as shown in FIG. 12, the power generation chamber 100B is provided below the power generation chamber 100A and substantially on the extension line of the water conduit D, and the seawater discharged by the hydro turbine 110A flows into the hydro turbine 11OB. You may comprise as follows. With this configuration, when the hydro turbine 110A moves normally, the sea water after the power generation by the hydro turbine 110A flows into the hydro turbine 110B, and the surplus seawater discharged from the hydro turbine 110A is used in the hydro turbine 110B. Some power is also generated. In addition, when the hydro turbine 110A does not move due to a failure or the like, the seawater into which the water guiding pipe D force has flowed passes through the power generation chamber 100A and flows into the water bottle 110B. As a result, even when the hydraulic turbine 110A does not move, power can be generated by the hydraulic turbine 110B.
[0058] 次に、この発明に係る水力発電設備を利用した発電方法を説明する。まず、変電 所 190からの指令により開閉扉 121を開けて取水口 120から導水管 Dに海水を流し 込む。これにより、海水は導水管 Dを通過して地下の発電室 100に落とし込まれる。
その際、海水は、取水口 120と排水口 130との高低差力も生じた位置エネルギーだ けでなぐ導水管 Dを通過中、その絞り管構造によってもその流速が高められる。高 速で落とし込まれた海水により、発電室 100内の水力タービン 110がほぼ最大回転 数で回転し、高出力の発電を行うことができる。 Next, a power generation method using the hydroelectric power generation facility according to the present invention will be described. First, the door 121 is opened according to a command from the substation 190, and seawater is poured from the intake 120 into the conduit D. As a result, seawater passes through the conduit D and is dropped into the underground power generation room 100. At that time, the flow rate of seawater is increased by the throttle pipe structure while passing through the water guide pipe D which is not only the potential energy generated by the height difference between the intake 120 and the drain 130. The seawater dropped at a high speed causes the hydro turbine 110 in the power generation chamber 100 to rotate at almost the maximum rotational speed, thereby generating high output power.
[0059] 発電後の海水は、発電室 100から連通管 160内を垂直に落下し、その後、方向転 換して揚水管 Yに流れ込む。このとき、揚水ポンプ 170による揚水力と、揚水管 Yの 絞り管構造による流速の増大化の作用により、海水は揚水管 Y内を上昇して貯水場 PO〖こ排水される。このように、揚水管 Y内に流れ込んだ海水は、その流速が、揚水 ポンプ 170による揚水の作用により補足され、かつ絞り管構造により高まりながら押し 上げられる。その結果、揚水ポンプ 170に使われる動力だけで、連続的に発電を行う ことができる。 [0059] Seawater after power generation falls vertically in the communication pipe 160 from the power generation chamber 100, and then changes direction and flows into the pumping pipe Y. At this time, seawater ascends in the pumping pipe Y and drains in the storage tank PO due to the pumping power by the pumping pump 170 and the increase in flow velocity by the throttle pipe structure of the pumping pipe Y. In this way, the seawater that has flowed into the pumping pipe Y is supplemented by the action of pumping by the pumping pump 170 and pushed up while being increased by the throttle pipe structure. As a result, it is possible to generate power continuously using only the power used for the pump 170.
[0060] なお、本例においては、揚水管 Yの流出口 150が導水管 D側海面の数 m下に位置 すること、さらに、貯水場 POの海水を引き潮時に海に排水することにより、貯水場 PO の海面を導水管取水口 120側の海面よりも低くすることができ、継続的な発電を行う ことが可能となっている。 [0060] In this example, the outlet 150 of the pump pipe Y is located several meters below the sea surface on the D conduit D side, and further, the seawater of the reservoir PO is drained into the sea at the time of tide. The sea level of the station PO can be made lower than the sea level on the 120 side of the intake pipe intake, enabling continuous power generation.
[0061] 本例では、導水管 Dとして、取水口 120の管径 aが 5. 2m、排水口 130の管径 bが 3 m、長さが 300m、傾斜角度 Θを 25°のものを採用することにより、排水口 130から高 速の海水を水力タービン 110に吹き付けることができ、これにより、導水管 Dの排水口 130力ら 180〜190kmZhの速度で、 80〜: LOOtZsecの海水が排出される。その結 果、 70万 kwの発電を期待することができる。
[0061] In this example, as the conduit D, the inlet 120 has a pipe diameter a of 5.2 m, the drain outlet 130 has a pipe diameter b of 3 m, a length of 300 m, and an inclination angle Θ of 25 °. As a result, high-speed seawater can be sprayed from the drain 130 to the hydro turbine 110, and the water from the drain D 130 of the conduit pipe D is discharged at a speed of 180 to 190kmZh. The As a result, 700,000 kw power generation can be expected.
Claims
[1] 海水を地下の発電室に落とし込むことで水力発電機による発電を行い、揚水手段 により発電後の海水を海に戻す水力発電設備の施工方法において、 [1] In the construction method of hydroelectric power generation equipment that generates power by a hydroelectric generator by dropping seawater into the underground power generation room and returns the seawater after power generation to the sea by pumping means,
海岸端部より所定距離陸地側に、底部が海面より下位に位置するように凹部を掘 削する凹部掘削工程と、 A recess excavation process for excavating the recess so that the bottom is located below the sea level on the land side a predetermined distance from the coast edge;
所定距離陸地側の所定深さに発電室を掘削する発電室掘削工程と、 A power generation chamber excavation step of excavating the power generation chamber to a predetermined depth on a predetermined distance land side;
前記凹部掘削工程により形成した凹部底部と前記発電室掘削工程により形成した 前記発電室を連通させる導水管用斜坑を掘削する導水管用斜坑掘削工程と、 前記凹部底部と前記発電室底部中央から所定深さ掘削した立坑とを連通させる揚 水管用斜坑を掘削する揚水管用斜坑掘削工程と、 A conduit pipe excavation step for excavating a conduit conduit for connecting the recess bottom formed by the recess excavation step and the power generation chamber formed by the power generation chamber excavation step; and a predetermined depth from the recess bottom and the center of the power generation chamber bottom A shaft digging process for a pumping pipe for digging a shaft pit for communicating with a drilled shaft,
前記発電室に水力発電機を配設する水力発電機配設工程と、 A hydroelectric generator disposing step of disposing a hydroelectric generator in the power generation chamber;
前記導水管用斜坑及び前記揚水管用斜坑に下方先細り形状の導水管及び上方 先細り形状の揚水管を配設する管配設工程と、 A pipe disposing step of disposing a tapered pipe having a lower taper and an upper tapered pipe in the inclined pipe for the water pipe and the inclined pipe for the water pump;
前記揚水管内部に発電後の海水を海に戻すための揚水手段を配設する揚水手段 配設工程と、 A pumping means arranging step for arranging a pumping means for returning seawater after power generation to the sea inside the pumping pipe;
前記揚水管により揚水された海水を溜める貯水場を形成する貯水場形成工程と、 前記凹部と海とを連通させて前記凹部内に海水を流入させる海水取入れ工程と、 を備え、たことを特徴とする水力発電設備の施工方法。 A reservoir formation step for forming a reservoir for storing seawater pumped by the pumping pipe; and a seawater intake step for allowing seawater to flow into the recess by communicating the recess with the sea. The construction method of hydroelectric power facilities.
[2] 前記管配設工程において、前記揚水管の下流部を海面から上方に突出した後、流 出口が前記貯水場の海面下に達するまで下方に湾曲した略下向き U字形状とし、 前記貯水場形成工程において、前記貯水場の周壁下部に、開閉弁を備え引き潮 時に海面から露出する排水管を連通させることを特徴とする請求項 1記載の水力発 電設備の施工方法。 [2] In the pipe disposing step, after projecting the downstream portion of the pumping pipe upward from the sea surface, the pipe has a substantially downward U-shape curved downward until the outlet reaches below the sea surface of the water reservoir. 2. The construction method of a hydroelectric power generation facility according to claim 1, wherein, in the site formation step, a drain pipe that is provided with an open / close valve and is exposed from the sea surface at the time of tide is communicated with a lower peripheral wall of the reservoir.
[3] 前記管配設工程にお!、て、前記導水管の排水口が前記水力発電機の近傍に配置 されることを特徴とした請求項 1に記載の水力発電設備の施工方法。 [3] The method for constructing a hydroelectric power plant according to claim 1, wherein the drainage port of the water conduit is disposed in the vicinity of the hydroelectric generator in the pipe arranging step.
[4] 前記貯水場形成工程にお!ヽて、前記貯水場の周壁は、満潮時に海水が貯水空間 に流れ込まな!/ヽ高さに形成することを特徴とする請求項 1に記載の水力発電設備の 施工方法。
[4] In the water reservoir formation process, seawater does not flow into the water storage space at the time of high tide! 2. The method for constructing a hydroelectric power generation facility according to claim 1, wherein the hydroelectric power generation facility is formed to have a height of ヽ.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/313582 WO2008004305A1 (en) | 2006-07-07 | 2006-07-07 | Method of constructing hydroelectric power generation facility |
TW095133185A TW200804679A (en) | 2006-07-07 | 2006-09-08 | Method of constructing hydroelectric power generation facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/313582 WO2008004305A1 (en) | 2006-07-07 | 2006-07-07 | Method of constructing hydroelectric power generation facility |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008004305A1 true WO2008004305A1 (en) | 2008-01-10 |
Family
ID=38894283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/313582 WO2008004305A1 (en) | 2006-07-07 | 2006-07-07 | Method of constructing hydroelectric power generation facility |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200804679A (en) |
WO (1) | WO2008004305A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013053612A (en) * | 2011-08-31 | 2013-03-21 | Haruhito Hotta | Marine underground power plant |
DE102011119623A1 (en) * | 2011-11-29 | 2013-05-29 | Rwe Technology Gmbh | Run-of-river power plant and method of utilizing the potential energy between two streams |
WO2020111947A1 (en) * | 2018-11-27 | 2020-06-04 | Hans Gude Gudesen | Underground energy production and storage system |
RU2742850C1 (en) * | 2020-04-13 | 2021-02-11 | Александр Геннадьевич Арзамасцев | Hydropower station for the production of electrical energy by shallow rivers |
FR3117552A1 (en) * | 2020-12-16 | 2022-06-17 | Philippe GAVELLE | Pendulum hydraulic motor and associated method of operation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180072A (en) * | 1983-03-25 | 1984-10-12 | クワン・シイ・キム | Hydroelectric generator |
JP3687790B2 (en) * | 2004-02-02 | 2005-08-24 | 株式会社極東電巧 | Hydroelectric power generation equipment |
-
2006
- 2006-07-07 WO PCT/JP2006/313582 patent/WO2008004305A1/en active Application Filing
- 2006-09-08 TW TW095133185A patent/TW200804679A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180072A (en) * | 1983-03-25 | 1984-10-12 | クワン・シイ・キム | Hydroelectric generator |
JP3687790B2 (en) * | 2004-02-02 | 2005-08-24 | 株式会社極東電巧 | Hydroelectric power generation equipment |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013053612A (en) * | 2011-08-31 | 2013-03-21 | Haruhito Hotta | Marine underground power plant |
DE102011119623A1 (en) * | 2011-11-29 | 2013-05-29 | Rwe Technology Gmbh | Run-of-river power plant and method of utilizing the potential energy between two streams |
WO2020111947A1 (en) * | 2018-11-27 | 2020-06-04 | Hans Gude Gudesen | Underground energy production and storage system |
RU2742850C1 (en) * | 2020-04-13 | 2021-02-11 | Александр Геннадьевич Арзамасцев | Hydropower station for the production of electrical energy by shallow rivers |
FR3117552A1 (en) * | 2020-12-16 | 2022-06-17 | Philippe GAVELLE | Pendulum hydraulic motor and associated method of operation |
WO2022129783A1 (en) * | 2020-12-16 | 2022-06-23 | Gavelle Philippe | Rocker-type hydraulic motor and associated operating method |
Also Published As
Publication number | Publication date |
---|---|
TW200804679A (en) | 2008-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102121449B (en) | A kind of hydrodynamic machine and its application method | |
CN102418358B (en) | Power positioning jet-flow spraying type ditcher | |
CN101542113A (en) | Device and method for maintaining utilization of water flow energy | |
CN103321264B (en) | Spiral force-borrowing silt-breaking sand-blowing dredging device for river channel | |
US11041280B2 (en) | Device for a sediment transfer in waters, and also a method for a transfer of sediment in waters | |
WO2008004305A1 (en) | Method of constructing hydroelectric power generation facility | |
JP4856134B2 (en) | Hydroelectric generator | |
CN110512675B (en) | Environment-friendly dredging dredger and use method thereof | |
CN202247995U (en) | Power-positioning jet-flow jetting type trench excavator and intelligent trenching device thereof | |
US20180106233A1 (en) | Floating powerhouse | |
JP2009281142A (en) | Hydroelectric power generation facility | |
JP3687790B2 (en) | Hydroelectric power generation equipment | |
MX2011001763A (en) | Hydroelectric power generation system. | |
CN103469839B (en) | A kind of voluntarily raft formula channel cleanout device | |
CN111075635B (en) | Tidal power generation device | |
CN1869435A (en) | Non-axle hydroturbine and its using method and speed regulating and energy reglating device | |
JP2013068196A (en) | Hydraulic power generation apparatus | |
JP2007024021A (en) | Circulating hydraulic power generation machine and method of combining and assembling the machine | |
KR20150090794A (en) | Non dam hydroelectric power | |
ABDALLA et al. | Seawater Pumped Hydro Energy Storage in Libya Part I: Location, Design and Calculations | |
WO2018067076A1 (en) | Water diversion with multiple pipes and rotationally symmetric hydro turbine with multiple inlets | |
CN106498998A (en) | A kind of hydraulic turbine drives punching to penetrate formula ditching device and its trench digging method under water | |
JP2001172948A (en) | Pumped storage power plant | |
CN108798967A (en) | A kind of artesian water electricity-generating method | |
JP6785490B1 (en) | The structure of a water-sealed ventilation pipe in hydroelectric power generation, and a routine maintenance method for a siphon-type water pipe that forcibly discharges air bubbles and air masses in the siphon-type water pipe. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06767992 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC, EPO FORM 1205A, DATED 12.06.09. |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06767992 Country of ref document: EP Kind code of ref document: A1 |