WO2008003908A2 - Brûleur à flamme à direction et/ou ouverture variable et procédé de mise en oeuvre - Google Patents

Brûleur à flamme à direction et/ou ouverture variable et procédé de mise en oeuvre Download PDF

Info

Publication number
WO2008003908A2
WO2008003908A2 PCT/FR2007/051598 FR2007051598W WO2008003908A2 WO 2008003908 A2 WO2008003908 A2 WO 2008003908A2 FR 2007051598 W FR2007051598 W FR 2007051598W WO 2008003908 A2 WO2008003908 A2 WO 2008003908A2
Authority
WO
WIPO (PCT)
Prior art keywords
jet
flame
primary
axis
opening
Prior art date
Application number
PCT/FR2007/051598
Other languages
English (en)
Other versions
WO2008003908A3 (fr
Inventor
Bernard Zamuner
Nicolas Docquier
Bernard Labegorre
Thomas Lederlin
Thierry Poinsot
Vincent Faivre
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude, Centre National De La Recherche Scientifique (Cnrs) filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to US12/307,737 priority Critical patent/US20100068666A1/en
Priority to ES07823552.0T priority patent/ES2604078T3/es
Priority to EP07823552.0A priority patent/EP2041492B1/fr
Priority to BRPI0714153-0A priority patent/BRPI0714153A2/pt
Priority to CN2007800256482A priority patent/CN101484752B/zh
Priority to JP2009517362A priority patent/JP5221532B2/ja
Publication of WO2008003908A2 publication Critical patent/WO2008003908A2/fr
Publication of WO2008003908A3 publication Critical patent/WO2008003908A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/84Flame spreading or otherwise shaping

Definitions

  • the present invention relates to a burner for varying the direction and / or the opening of the flame, said burner comprising at least one injection channel of at least one main or primary jet and at least one injection channel. an actuator or secondary jet.
  • the primary jet is typically a jet of oxidant and / or fuel and / or a comburent-fuel premix.
  • the majority of industrial furnaces or boilers use burners that operate in non-premixed combustion mode, ie in which the oxidant and the fuel arrive separately to the combustion site.
  • the mixture of the fuel and the oxidant is then carried out, in part (attachment of the flame in a quarry block or a prechamber) or in whole, inside the combustion chamber.
  • This mixture is controlled by the design and operating parameters of the burner, and determines the performance of the burner (operating range, heat transfer to the load to be heated, emission of pollutants, etc.).
  • the burner design determines the interaction conditions of the different jets or flows of oxidant and fuel used by the burner. Once the burner is completed, only the operating conditions can be modified.
  • Some combustion technologies allow discrete modes and in very limited number of operation. This is for example the case of so-called "double pulse" burners that use two different injection systems depending on whether one wants to operate the burner at low or high impulse. These two modes of operation make it possible to increase the range of operation or use of the burner or to modify for a given operating point the length of the flame.
  • the modifications of the point and / or the mode of operation are most often insufficient to optimize under all conditions the performance of the burners or processes using these burners.
  • the cyclic introduction into a solid-temperature melting furnace at ambient temperature will cause the operator (or the control system) to increase the heating power so as to obtain the fastest possible melting (with a view to 'increase productivity', but without degrading the melt load (product quality) or overheating the oven (equipment life).
  • This compromise between productivity and quality and / or life depends in particular on the ability of the system to transfer energy to the load, avoiding local overheating thereof or furnace refractories.
  • the maximum deflection of the flame is in practice limited to about 15 ° from the median position to the extreme position (not more than 30 °), not allowing the incident flame to scan a large surface of a charge and the construction of the corresponding burner is relatively heavy since it requires a plurality of orifices for the primary oxidant jets and a plurality of orifices for the secondary oxidant jets.
  • the properties of the flame change according to its position since the properties of the mixture vary with the angle of incidence ("external" mixture to the burner block), which induces a variation of the polluting emissions, the quality of the radiative transfer (flame brightness) and flame length (heat release peak position).
  • the invention relates to a burner allowing a large variation in the direction and / or the opening of the flame and this without having to interrupt the operation of the burner or oven.
  • the invention also aims to allow such variation with an optimized robust burner.
  • the invention proposes to control the direction and / or the opening of a flame by the interaction of a jet of fluid (called primary jet or main jet) with at least one other jet of fluid (called secondary jet or jet actuator), the interaction between the jets occurring inside the means delivering this main jet (tube, aperture, etc.) before said main jet emerges from said means.
  • the burner according to the invention comprises a passage for bringing a primary jet towards a main outlet opening.
  • the primary jet is typically a jet containing fuel, oxidant or a fuel-oxidant premix.
  • the burner also has at least one secondary pipe for the injection of a secondary jet.
  • the fluid injected by the secondary jet may or may not belong to the same category as the fluid of the primary jet.
  • the fluid injected by the secondary jet may or may not be different from the fluid of the primary jet.
  • the secondary jet may especially be an inert jet such as water vapor or combustion products, such as recycled fumes.
  • the at least one secondary pipe opens on the passage of the primary jet through a secondary opening located upstream of the main outlet opening.
  • the secondary pipe is positioned relative to the passage so that at the point of interaction (center of inertia of the imaginary surface common to the two flows) between the secondary jet from this secondary pipe (hereinafter called: jet corresponding secondary jet) and the primary jet, the angle ⁇ between the axis of the corresponding secondary jet and the plane perpendicular to the axis of the primary jet is greater than or equal to 0 ° and less than 90 °, preferably from 0 ° to 80 °, more preferably from 0 ° to 45 °.
  • the axis of the corresponding secondary jet is located in a plane perpendicular to the axis of the primary jet.
  • the at least one secondary opening is spaced from the main opening by a distance L less than or equal to ten times the square root of the section s of the main outlet opening, preferably L ⁇ 5 * Vs, preferably L ⁇ 3 * Vs.
  • the burner is provided with means for controlling the pulse of the at least one secondary jet.
  • the means for controlling the pulse of the at least one secondary jet are means for controlling the ratio between the pulse of the secondary jet and the pulse of the primary jet.
  • the invention thus makes it possible to achieve a large variation in the direction and / or opening of a flame without resorting to mechanical means, potential sources of malfunction, especially in hostile environments, such as high temperature fireplaces and / or polluted or corrosive atmosphere.
  • the control means allow in particular an active or dynamic control of the pulse of the at least one secondary jet, that is to say, they allow to vary the pulse or pulses without interrupting the burner operation / without interruption of the flame.
  • the apparatus according to the invention thus allows an equally dynamic variation of the direction and / or the opening of the flame.
  • the number of secondary jets interacting with the primary jet to obtain the desired effect on the flame will be minimized so as to limit the complexity and the cost of manufacturing the burner but also the complexity and the cost of the feed system and fluid flow control if piloting the secondary jets independently. For example, a one-way effect can be achieved with a single secondary jet.
  • the direction of a jet / flame is defined as a unit vector normal to the fluid / flame passage section and oriented in the direction of flow, i.e. upstream to downstream.
  • the "thickness e" means the dimension of the secondary pipe in the direction of flow of the primary jet (according to the arrow in figure 1). In the particular case of this FIG. 1, e therefore represents the diameter of the secondary pipe 21 at the secondary opening 31 since this secondary pipe 21 is cylindrical in this example.
  • the "opening" of a jet / flame designates, for a jet / flame emerging from a cylindrical passage such as 10 in FIG. 1, the angle between the longitudinal axis of the passage and the generator. on the surface of the jet / flame leaving the passage.
  • the generatrix In the absence of interaction with a secondary jet the generatrix is inclined by about 10 to 15 ° with respect to this axis, this inclination being able to reach 70 ° and more according to the invention (see FIG. 9A).
  • the term “opening” will refer to the angle between the direction of flow in the passage, when it has no circular section, and the generator.
  • Figure 1 schematic diagram of a burner (premix) according to the invention for the control of a flame by interaction of jets.
  • FIGS. 3A and B burner for controlling the direction of the flame, FIG. 3A being a cross-section and FIG. 3B a longitudinal section of a burner comprising four secondary jets disposed respectively at 90 ° from each other and coming into perpendicular to the direction of the primary jet.
  • 3C, D and E use of a pellet for converting a nozzle with primary and secondary jets parallel to a burner according to the invention.
  • Figures 4A and B longitudinal and transverse section of a burner for controlling the opening of a resulting jet.
  • Figure 8 density of heat flux of the flame as a function of the distance to the injection point, under different incidences.
  • Figures 9A and B alternative embodiments of the control of the opening of the flame.
  • Figure 12 an example of application of the system of the invention to the heating of a load with change of incidence of the flame.
  • Figure 13 Use of the invention to heat a load by moving the flame laterally.
  • Figure 14 application of the variable opening of a flame to drive the gases of an oven.
  • Figure 16 Protection of the end of the burner by a quarl.
  • Figure 17 protection of the end of the burner by a sleeve.
  • Figure 1 is shown a schematic diagram of the method of controlling a flame in a burner according to the invention.
  • the burner comprises a passage 10 which makes it possible to bring the primary jet towards a main outlet opening 11.
  • the primary jet is led through the passage 10 and comes to interact with the secondary jet coming from the secondary pipe 21 so as to create downstream of the outlet opening 11 a flame 1 direction and / or opening different from the direction and / or the opening of the flame in the absence of secondary jet.
  • At least one secondary pipe 21 for injecting a secondary jet opens onto the passage 10 through a secondary opening 31.
  • the distance L makes it possible to influence the impact of the secondary jets on the primary jet with identical respective pulses. For example, to maximize the directional effect, we will try to minimize this distance.
  • the length L is less than or equal to 20 cm, more preferably less than or equal to 10 cm.
  • the burner has means for controlling the pulse of the secondary jets.
  • These means can advantageously be chosen from mass flow control devices, pressure drop control, passage section control, but also temperature control devices, control of the chemical composition of the fluid or pressure control.
  • These means are preferably means for controlling the ratio between the pulse of the secondary jet and the pulse of the primary jet.
  • the control means enable to activate and deactivate one or more secondary jets (flow or no flow of the secondary jet concerned) so as to dynamically vary the direction and / or the opening of the flame.
  • the control means preferably also dynamically increase and decrease the pulse (non-zero) of one or more jets or increase and decrease the ratio between the pulse of a secondary jet and the pulse of the primary jet.
  • the burner can be fed with fuel and with oxidant by an oxidant injection channel and at least one fuel injection channel, arranged concentrically, or by an oxidant injection channel and at least one injection channel fuel separated from each other and preferably parallel to each other.
  • the burner advantageously comprises a block of material 5, such as a block of refractory material, in which at least a portion of the passage 10 is located, the main outlet opening 11 being located on one of the faces or surfaces of the block. : front face 6.
  • the secondary jet preferably emerging substantially perpendicular to the primary jet.
  • the interaction between the primary jet and the secondary jet takes place at a distance L from the front face 6 of the block from which the passage 10 of the primary jet opens, this distance L being able to vary as indicated above.
  • the burner comprises at least one secondary pipe 321, 322, 323 and 324 which is positioned relative to the passage 310 of the primary jet of such at the level of the corresponding secondary opening 331, 332, 333 and 334 (that is to say the secondary opening through which the secondary pipe in question leads to the passage), the axis of the primary jet and the axis of the corresponding secondary jet are secant or quasi-secant.
  • Such an arrangement between the passage and the secondary pipe makes it possible to vary the angle between the axis of the flame and the axis of the primary jet upstream of the secondary opening by changing the pulse of at least one secondary jet corresponding.
  • the burner preferably comprises at least two secondary lines which are positioned relative to the passage 310 so that, on the one hand, the two corresponding secondary openings are situated on the same cross section of the passage 310 and that, on the other hand, on the other hand, at these two secondary openings, the axes of the corresponding secondary jets are intersecting or quasi-intersecting with the axis of the primary jet.
  • the two corresponding secondary openings may, in a useful manner, be located on either side of the axis of the primary jet (right and left for the openings 331 and 333, at the bottom and at the top for the openings 332 and 334), the two secondary openings and the axis of the primary jet being preferably located in a single plane (horizontal for the openings 331 and 333, vertical for the openings 332 and 334).
  • the plane defined by the axis of the primary jet and one of the two corresponding secondary openings is perpendicular to the plane defined by the axis of the primary jet and the other of two corresponding openings.
  • the horizontal plane defined by the axis of the passage 310 and the secondary opening 331 is perpendicular to the vertical plane defined by this axis and the secondary opening 332.
  • the burner comprises at least four secondary lines 321, 322, 323 and 324 which are positioned relative to the passage 310 in such a way that: (1) the four corresponding secondary openings 331, 332, 333, 334 are located on the same cross section of the passage 310, and (2) two of these corresponding secondary openings 331 and 333 define a first plane with the axis of the primary jet and are located on either side of this axis, the other two secondary openings 332 and
  • the first plane being preferably perpendicular to the second plane.
  • This arrangement makes it possible to vary the direction of the flame according to the first and the second plane (for example in the horizontal plane and in the vertical plane) and to choose one or the other of the two secondary openings located in each plan (for example, to the left and to the right in the horizontal plane, and upwards and downwards in the vertical plane) and, as explained above, to any intermediate direction.
  • the axes of the four corresponding secondary jets are preferably located in the same plane perpendicular to the axis of the primary jet 310.
  • the invention also allows an interaction between the primary jet and one or more secondary jets so as to generate, maintain or enhance a rotation of the fluid jet resulting from this interaction and therefore the flame around its axis. Such an interaction makes it possible to vary the opening of the flame.
  • the burner may be provided with at least one secondary pipe 421 to 424 which is positioned relative to the passage 410 of the primary jet in such a way that at the corresponding secondary opening 431 to 434, the axis of the corresponding secondary jet 421 to 424 is not coplanar or substantially coplanar with the axis of the primary jet 410, this at least one secondary pipe 421 to 424 opening preferably tangentially on the passage 410 of the primary jet. In this way, the interaction between the primary jet and the secondary jet gives the primary jet a rotational pulse.
  • the burner may, in a useful manner, comprise two secondary lines 421 and 422 positioned relative to the passage 410 of the primary jet such that at the two corresponding secondary openings 431, 432, the axes of the two corresponding secondary jets 421 and 422 are not coplanar with the axis of the primary jet 410, the two secondary jets being oriented in the same direction of rotation about the axis of the primary jet.
  • the two secondary jets thus contribute to the rotational pulse imparted to the flame.
  • the two secondary openings are advantageously located on the same cross section of the passage 410 / in the same plane perpendicular to the axis of the primary jet.
  • They can be located on either side of the axis of the primary jet (openings 431 and 433 or 432 and 434). They may also be located in such a way that the plane defined by the axis of the primary jet and one of the two secondary openings 431 is perpendicular to the plane defined by the axis of the primary jet and the other of the two secondary openings 432 .
  • the burner comprises at least four secondary lines 421 to 424 which are positioned relative to the passage 410 of the primary jet so that at the corresponding secondary openings 431 to 434, the axes of the secondary jets corresponding are not substantially coplanar with the axis of the primary jet.
  • Two of the corresponding secondary openings 431 and 433 are substantially coplanar with the axis of the primary jet 410 in a first plane and located on either side of the axis of the primary jet.
  • the two other corresponding secondary openings 432 and 434 are substantially coplanar with the axis of the primary jet 410 in a second plane and also located on either side of the primary axis, the four corresponding secondary jets being oriented in the same direction of rotation around the axis of the primary jet.
  • the first and the second plane may in particular be perpendicular to each other. It is also preferable that the four corresponding secondary openings are on the same cross section of the passage 410.
  • the axis of the secondary jet belongs to the plane perpendicular at this location to the axis of the primary jet, and secondly, the angle between the axis of the secondary jet and the tangent to the secondary opening (or more exactly at the imaginary surface of the passage of the primary jet at the level of the secondary opening) in this plane is between 0 and 90 °, preferably between 0 and 45 °.
  • Figures 4a and b show an exemplary embodiment for controlling the opening of a flame.
  • the primary jet (which flows from the left to the right in the passage 410 in Figure 4a) meets the secondary jets from the secondary lines 421, 422, 423 and 424 (shown in Figure 4b which is a cross section on plan AA of figure 4a).
  • These secondary jets impact the primary jet tangentially to the passage 410, thus allowing, according to the pulses of these different jets, "to open” more or less the flame.
  • This opening effect is essentially due to the fact that the secondary jets and the primary jet have axes that do not intersect, although the jets have physical interaction with each other. This causes a rotation of the resulting jet and therefore the flame on its axis.
  • the burner may comprise at least one secondary pipe 21 positioned relative to the passage 10 of the primary jet so that at the corresponding secondary opening 31, this pipe has a thickness e and a height I , such that I ⁇ 0.5xe and preferably: 0.5xe ⁇ I ⁇ 5.0xe (see Figure 1).
  • a minimum height greater than or equal to 0.5xe makes it possible to achieve an optimized interaction between the corresponding secondary jet and the primary jet.
  • the secondary pipe has a direction substantially perpendicular to the axis of the primary jet over a length I which will preferably be between 0.5 and 5 times the thickness e (dimension in the direction of the flow of the main fluid) e of said pipe (e is the diameter of the pipe when it is cylindrical).
  • this length I is greater than 5e, but this does not bring any additional effect of significant impact of the secondary jet on the primary jet.
  • the burner may comprise a quarney or a prechamber combustion (for example ceramic) disposed at the end of the passage, at least one secondary pipe being at least partially disposed within the quarl / pre-chamber.
  • the passage of the primary jet may consist, in whole or for at least part of it, in a primary pipe for the injection of the primary jet. This primary channel leads to a primary opening. This primary opening may coincide with the main outlet opening of the passage.
  • FIGS. 3c, d and e and in FIG. 6 the primary line 308, 608 ends before the main outlet opening 311, 611, the primary opening 309, 609 is positioned upstream of the main opening. main opening 311, 611.
  • at least one secondary opening 334, 632, 634 may be located between the primary opening 309, 609 of the primary pipe 308, 608 and the main opening 311, 611 of the passage.
  • Figure 6 shows more particularly an embodiment of the invention in a tube-tube burner having a prechamber attached to the burner inside a ceramic opening in which the flame is stabilized (as for example described in patent applications No.
  • the starter block 605 has a cavity 671 (or prechamber) into which the bi-tube opens.
  • the passage 610 of the primary jet thus consists of a primary channel 608 opening through a primary opening 609 on the cavity 671, cavity which opens through the main outlet opening 611 located on the front face of the opening downstream of the opening primary 609.
  • the bi-tube itself is schematically constituted of a central fuel injection tube (preferably), surrounded by a concentric tube wherein the oxidant is injected, the two fluids mixing in the cavity 671.
  • a mixture of oxidants and fuels (and possibly combustion products) injected coaxially by the tubes.
  • the direction and / or the opening of the flame are then regulated by the action, and more particularly by the controlled pulse, of at least one actuator jet 622, 624.
  • the passage of the primary jet will have at the level of the at least one secondary opening a fluid passage unobstructed or at least substantially unobstructed in the extension of the at least one secondary pipe corresponding, in order to allow effective interaction between the at least one corresponding secondary jet and the primary jet.
  • the cross section of the passage of the primary jet will define an unobstructed or at least substantially unobstructed fluid passage at the at least one secondary opening. This is illustrated in Figure 6 where the central tube bringing the fuel ends at the primary opening and therefore well before the secondary openings.
  • FIGS 3c, d and e show another embodiment of the burner, in which the primary pipe 308 terminates before the main outlet opening 311.
  • FIG. 3c represents an alternative embodiment similar to FIG. 3B, with however an embodiment in which two parallel channels (primary duct 308 and secondary duct 324) are arranged in a nozzle 345, the two ducts 308 and 324 opening on the front face of the nozzle.
  • a pellet 342 which directs the secondary jet of the secondary pipe 324 to the primary jet leaving the primary pipe 308, and more particularly perpendicular or substantially perpendicular to the primary jet. In this way, the flame can be deflected, for example in the direction indicated by arrow 344 in FIG. 3c.
  • FIG. 3d is an exploded view of the nozzle 345 on which the pellet 342 is fixed (by means not shown in this figure), in the form here of a hollow lateral cylindrical portion 350 which will come to rest on the end of the nozzle 345, while the opening 346 in the pellet is positioned where opens the primary pipe 308.
  • Figure 3e shows the bottom (inside) of the pellet 342 whose inner face 349 has a cavity 347 in which the secondary jet coming from the secondary pipe 324 will be distributed then come to meet substantially perpendicularly the primary jet from the primary pipe 308 through the slot 348 above the main outlet opening 346.
  • the flame 344 ( Figure 3c) resulting from this opening 346 will thus be deflected downwards (with respect to FIGS. 3c, d and e).
  • the possibility of using a pellet to give the desired orientation to one or more secondary jets before their respective interaction points with the primary jet is not limited to the secondary jets oriented so as to vary the direction of the flame, but also applies to the secondary jets described above to vary the opening of the flame.
  • the invention also relates to a method for dynamically or actively controlling the performance of a combustion system or burner with the aid of one or more secondary jets, impinging on a primary jet in order to modify the flow. of the jet and to produce a flame whose direction and / or the opening can be modified according to the characteristics (in particular direction and momentum) of the primary and / or secondary jets.
  • This method can be used to regulate the closed loop or open loop performance of a combustion system implementing injections of fluid jets (liquid, gas or solid dispersion).
  • FIG. 2 represents a method of regulating the performance of a burner according to the invention 210, mounted on a hearth 212.
  • the sensors 214, 216 and 217 respectively measure quantities characterizing the products of combustion, the operating conditions of the combustion or combustion chamber and the operation of the burner. These measurements are transmitted using the lines 218, 219 and 220 to the controller 215. The latter, according to instructions given for these characteristic quantities, determines the operating parameters of the secondary jets so as to maintain the characteristic quantities at their values. setpoint and transmits using the line 221 these parameters to the control members 211 of the burner.
  • the burner according to the invention advantageously comprises means for controlling the pulses of the primary and / or secondary jets, or means for controlling the ratio of the pulses of the primary jet and the secondary jet (s).
  • This ratio is a function of the ratio of the section of the primary jet passage and the sections of the secondary pipes, the ratio of the flows in the secondary pipes to the flow of the resulting jet supplying the flame and the ratio of the densities of the fluids of the primary jet and secondary jet (s). (In the following paragraphs, when considering the variation of one of these ratios, the other two are considered constant.)
  • a ratio of sections of between 5 and 50, more preferably between 15 and 30, will be chosen.
  • the ratio of the flow rate of the set of secondary jets to the total flow rate will typically vary between 0 (absence of secondary jets) and 0.5 and preferably between 0 and 0.3; more preferably between 0 and 0.15; knowing that the higher the flow ratio, the greater the deviation and / or the opening of the flame.
  • the ratio of the density of each fluid constituting the secondary jets to the density of the fluid of the primary jet makes it possible to control the impact of the secondary jets. The lower the value of this ratio, the greater the effect of the secondary jet on the primary jet, at constant flow. For practical reasons, the same fluid will often be used in the secondary jets and in the primary jet (ratio equal to unity).
  • a fluid of lower density will be used than that of the fluid in the primary jet.
  • the nature of the fluid in the secondary jets will be chosen according to the intended application. For example, to control the deflection of an air jet, it is possible to use a mixture of air and helium (of lower density) or to increase the entrainment of the products of combustion in a flame whose fuel is propane, control the main jet of fuel and / or oxidizer with a secondary jet of water vapor.
  • the ratio of densities (or densities) of the densest fluid to the least dense fluid can vary between 1 and 20, preferably between 1 and 10, more preferably between 1 and 5.
  • the injection section of the passage and / or secondary channels may be of various shapes and in particular circular, square, rectangular, triangular, oblong, multi-lobes, etc.
  • the geometry of these injection sections influences the development of the instabilities of the resulting jet / flame.
  • a jet output of a triangular shaped injector will be more unstable than that from a circular injector, this instability promoting the mixing of the resulting jet with the surrounding medium.
  • an oblong injector will favor in a field near the injector the non-symmetrical development of the jet unlike a circular or square injector.
  • the physicochemical properties of the fluid used to make the secondary streams may be chosen to control certain properties of the resulting flow. For example, the reactivity of a mixture of main jet fuel (eg natural gas), oxidant (eg air) by use of oxygen (or other oxidant), and / or hydrogen ( or other fuel).
  • main jet fuel eg natural gas
  • oxidant eg air
  • oxygen or other oxidant
  • hydrogen or other fuel
  • a nozzle comprising a convergent / divergent (also called a Laval nozzle in the literature)
  • a jet of primary fluid and a resulting jet for example an oxygen jet, supersonic which can then be of variable direction (possibly variable opening but generally losing its supersonic speed, which allows to alternate speeds subsonic and supersonic in some processes).
  • the Laval nozzle can also be disposed on the resulting jet before the main exit opening.
  • At least two secondary jets are used, so as to obtain a variation of the direction of the flame in a plane (for example, to the left and the right, or to the top and the bottom). It is also possible to use at least two secondary jets so as to obtain a variation of the direction of the flame in at least two secant planes.
  • These two variants alone or in combination, can scan at least a portion of a surface, such as the surface of a load.
  • a secondary jet whose axis is not secant or quasi-secant with the axis of the primary jet, the opening of the flame above the charge can be varied, alone or in combination with a scan.
  • Means for controlling the momentum of the primary jet and / or the at least one secondary jet are preferably provided.
  • the burner and the process have been illustrated above with reference to one form of implementation with a single primary jet that is made to interact with one or more secondary jets. It is obvious that the present invention also covers such a burner to create one or more flames whose opening and / or direction are variable from a multitude of primary jets which interact with one or more secondary jets.
  • FIG. 5 illustrates how the burner according to the invention makes it possible to produce a variable flame from two primary jets: a primary jet of fuel and a primary jet of oxidant. Each primary jet interacts with one or more secondary streams. The two resulting jets from the burner, and thus also the flame, having a direction and / or a variable opening through this interaction.
  • FIG. 5a schematically shows the resulting jet of fuel 61 surmounted by the resulting jet of oxidant 62, in the situation where none of these jets is controlled by an interaction with one or more secondary jets.
  • Figure 5b shows these same streams, but in a situation where they are controlled or deflected in opposition (jets convergent).
  • FIG. 5c shows the results in a situation where these jets are controlled or deflected in the same direction (upwards in the figure): the secondary jets 63 and 65 act from bottom to top respectively on the main jets 61 and 60, which generates resultant jets both directed upwards.
  • the flame 64 will be very wide in the median horizontal plane of the two jets, while the flame 67 will be sharply deflected upwards.
  • the axis of the secondary jet makes with the plane perpendicular to the axis of the primary jet an angle which is less than 90 °, and preferably equal to at 0 °.
  • the channels feeding these jets are most often substantially parallel.
  • injection pad whose function is to transform the direction of the secondary jet initially parallel to the primary jet, a secondary jet impinging the primary jet, the axis of said secondary jet being preferably located in a plane perpendicular to the axis of the primary jet.
  • T> 1000 ° C. very high temperature processes
  • the first solution (FIG. 16) consists in placing the burner 500 in a refractory part 501 whose geometry and the relative position burner / aperture will protect the first one from a too much radiation.
  • the position or the removal of the burner in the quarl must be sufficient to protect it from the radiation but must not limit the directional amplitude of the flame.
  • the ratio ⁇ A will be in the range 0.3 to 3, while
  • the angle ⁇ will belong to the interval [0 °, 60 °].
  • the second solution is to bring a refractory sleeve-type directly on the nose of the burner (where is the main outlet opening) as shown in Figure 17.
  • This solution eliminates the presence of a quarry to complex geometry.
  • the dimensions of the sleeve are such that it does not limit the directional amplitude of the injector. This means in particular that the thickness f of the sleeve is small (less than the diameter of the main jet) or that the material used to make this sleeve with a very low thermal conductivity. For example, alumina will be chosen.
  • the invention also relates to a method for heating a load using a burner, wherein the direction (and / or opening) of the flame relative to the load is varied.
  • the invention makes it possible in particular to use one or at least two secondary jets, so as to obtain a variation of the direction of the flame in a plane (for example, to the left and the right, or up and down). It is also possible to use at least two secondary jets so as to obtain a variation of the direction of the flame in at least two secant planes.
  • These two variants alone or in combination, can scan at least a portion of the surface of the load.
  • the heating of the charge is such that, in a first phase, the flame is directed towards the charge and that, in a second phase, the flame is directed substantially parallel to the charge.
  • the injection angle of the flame can be between about 90 ° and 5 °, typically between about 90 ° and 10 °.
  • the injection angle of the flame is typically between about 5 ° and 0 °.
  • the injection angle of the flame during the first phase is between 5 ° and 75 °, more preferably 25 ° to 45 °.
  • Figure 8 shows three heat flux profiles transferred by a flame to a charge according to the angle of incidence of the flame on the charge as a function of the injection point distance of the flame reactants.
  • a very large increase in the heat flux transferred to the load is observed with the increase in the incidence of the flame.
  • FIGS. 9A and B represent the opening angle of the flame as a function of the ratio of the flow rate of the secondary jets (actuators) to the flow rate of the primary jet (main jet).
  • the curves C1 and C2 respectively represent the opening angle as a function of the ratio of the actuator / main jet flows.
  • C1 relates to a CONF1 configuration in which the actuators are perpendicular to the main jet and open at a distance h from the main exit opening and C2 corresponds to a configuration identical to CONF1, but with a distance of 2xh instead of h between the secondary openings and the main exit opening.
  • FIG. 9 represents the deflection angle (in degrees) as a function of the ratio of the flow of the actuator jets and the flow rate of the main jet, expressed as a percentage.
  • FIG. 10A shows four curves, all other things being equal, for which the flow rate of the main jet is respectively 200 ⁇ / min, 150 ⁇ / min, 100 ⁇ / min and 50 ⁇ / min. Note that these four curves are almost identical, which shows that the deflection of the flame is not a function of the flow of the main jet.
  • FIG. 10B shows the transfer of heat to a load: heat flow delivered by a burner according to the invention, in which the ratio of the flow rate of the actuator jets to the flow rate of the main jet is varied (represented here also as a percentage of the flow rate of the main jet), both for the fuel jet and for the oxidant jet (separate injection burner).
  • Each jet initially injected parallel to the load is progressively deflected towards the load, which increases the heat transfer to the load.
  • Figure 11 shows a curve of the opening angle of the flame according to the jet pulse ratio. This curve reports all the experimental data obtained for the control of the opening. The measured aperture angle is plotted against the physical parameter J which is the ratio of the specific pulses of the actuator jets and the main jet.
  • This ratio is written as the product of the ratio of the densities (fluid on the main fluid) and the ratio of the square of the speed of the actuator jets and the square of the speed of the main jet).
  • the main fluid is the same for all the experiments, while different fluids have been used for the actuators. These fluids differ mainly in their density (from the density of the largest to the lowest: CO2, Air, Air Helium mixture). It is observed that all the experimental points (whatever the flow rates and the fluids used) are aligned on a line. This shows that the physical parameter that controls the opening is the ratio of the specific pulses defined above.
  • FIG 7 an example of a burner with separate injections of different fluids is shown in more detail.
  • the burner with separate injections 101 has a top row of oxygen injectors 112 in the form of jets and natural gas injectors.
  • (fuel) 125 in the form of jets, the set of injectors being in the refractory mass 121 (FIG. 7C).
  • the usually metallic portion 102 of the burner 101 is situated on the right-hand part of FIG. 7A and is extended by the oxygen gas injection tubes 107 and 109, on the one hand, and natural gas injection tubes 207 and 209, on the other hand. on the left of Figure 7A.
  • tubes 107 and 109 is arranged a channel 127 extending the flow channel 110 of the actuator jet.
  • the wall 109 is extended by the walls 113, inclined upwards, 114, horizontal and vertical 115 (in the figure), while a central volume 126 delimits a channel 127 first inclined upwards, horizontal then vertical (that is to say 90 ° relative to the gaseous flow channel 108 and opening therein through the opening 120).
  • the vertical portion of the channel 127 has a height L, defined above, to ensure the orthogonality of the jets 110 and 108 at 120 (of course, if we choose an angle of intersection of the jets different from 90 °, the channel 127 will have the desired inclination and its length L remaining within the limits provided above).
  • the metal part of the burner ends with a wall 123, vertical in this case, bordering the channel 127, metal part exposed to the heat radiation of the fireplace in use.
  • a protective element for example alumina, resistant to high temperatures, coming, for example, to fit on this metal end to protect it and having a opening equal to the opening 112 ( Figure 7C).
  • the fuel supply system 204, 206, 203, 205 is similar to the oxidizer feed system described above with a main channel 207, an actuator channel 209 defining main fuel jets 208 and fuel actuators 210, all housed in a cylindrical opening 222 of the opening 221 (similar to 122 for the oxidant).
  • the ends 124 and 125 are similar to 123 and 112.
  • the same fuel actuator jet injection system is provided at the end of 207 and 209 as shown in FIG. 7B, sized according to the characteristics of the fuel.
  • the highest pulse jet (or row of jets) will generally be disposed above the lower impulse jet, so that without the action of the jet actuator on the jet of highest impulse, the burner delivers a directed flame generally horizontally, whereas when the jet actuator (coming to act up and down on the main jet of higher momentum) acts on the main jet, it is directed, as explained above, downwards (progressively, according to the ratio of the pulses) and carries with it the second lower pulse jet (here the fuel) forming a flame which can thus pass from a horizontal position to an inclined position towards the load to be heated, under the burner flame.
  • the highest pulse jet or row of jets
  • the actuator jet makes with the main jet an angle which is greater than zero.
  • the two channels leading these jets are usually fed by a co-axial feed system (parallel channels - see Figure 7).
  • the invention will hereinafter be illustrated in the case of a burner useful for heating any load which may be a metal charge or any other charge which must be melted and / or brought to a high temperature and then maintained at that temperature.
  • a load which may be a metal charge or any other charge which must be melted and / or brought to a high temperature and then maintained at that temperature.
  • ci for example a charge of ferrous or non-ferrous metal, solid materials for the production of glass, for that of cement or on the contrary a charge which must be dried from a liquid bath.
  • this type of tool generally comprises a flame (usually subsonic) which makes it possible to heat the metal, melt it, especially at the beginning of a merger.
  • This flame may be of variable direction by equipping each main jet (oxidizer, fuel, premix) or at least one main jet of a jet actuator which varies its direction and / or its opening, so as to move this flame on the load without requiring heavy mechanical means that change the direction of the burner body.
  • These tools are often also equipped with injection sprays of pulverized coal, usually injected with carrier gas in a lance.
  • the following examples relate to the control of the heat transfer by a burner according to the invention to a load, for example metallic, in a process for melting a filler.
  • An aluminum smelting furnace is generally equipped with one or more burners on one or more of the side walls surrounding the furnace smelter, disposed above the waterline when the metal is fully melted (liquid ).
  • the axis of the flame, when it is horizontal, is located at a height of 10 and 100 cm from this waterline, preferably between 40 and 80 cm.
  • Burners according to the invention are used so that the flame incidence is variable.
  • Incidence is defined as the angle of the flame to the horizontal). When the incidence is zero, the flame is horizontal. When the incidence is non-zero, the flame is inclined below the horizontal and directed towards the bottom of the melting basin of the furnace.
  • the burners inject each jet of fluid into the furnace chamber, but this type of injector can be used only for the higher impulse fluid (oxidant or fuel) when it can interact with the one of the least impulse. to obtain the desired deviation of the flame, typically, the oxidant in the case of an air burner / gaseous fuel, or oxygen / gaseous fuel.
  • the direction of the flame is adjusted so that the latter has a non-zero incidence (axis of the flame between 5 ° and 75 °, preferably between 25 ° and 45 °). This adjustment considerably improves the thermal transfer of the burner and thus reduces the duration of the melting (as explained using Figure 10).
  • the direction of the flame is adjusted to have a zero angle of incidence. The flame is therefore parallel to the waterline of the liquid metal. This setting makes it possible to continue transferring energy to the charge and to complete the melting of the metal or to refine it by limiting the heating of the already molten metal and consequently its oxidation by the flame or the products of combustion.
  • Figure 12a is a top view of an aluminum melting furnace equipped with two burners according to the invention producing two flames positioned above the metal bath.
  • the chimney of the oven allows the evacuation of the fumes produced by the flames.
  • Figures 12b and 12c show a side view of the same furnace, at the flame.
  • the oven operator can vary the incidence between 0 ° to 45 ° and then return to 0 °.
  • the burner will be controlled with a control unit making it possible to periodically modulate the burner control ratio, that is to say the ratio of the pulses of the main and actuator jets and consequently the incidence of the flame on the bath.
  • the control signal of the control box may be sinusoidal, triangular, square, etc. with a variable frequency of 0.05 Hz to 100 Hz, preferably triangular at a frequency of 0.1 to 10 Hz.
  • Burners according to the invention are used so that the orientation of the flame in a horizontal plane can be modified on demand according to the control ratio of each burner as illustrated in FIG. 13.
  • Each jet of fluid is injected into the furnace chamber by means of a burner according to the invention, but for jets located in the same horizontal plane or horizontal planes closely spaced from each other (from one to two jet diameters), we can only use these injectors for the peripheral jets when they can interact with the other jets to deviate.
  • the variation of the horizontal orientation can be done in both the left and right directions either by equipping each main jet with two lateral actuator jets, or by equipping each main main jet with a single jet actuator, capable of actuating the main jet. in the horizontal direction but in opposite directions to each other.
  • control ratio used above is defined as the ratio of the flows of the actuator jet and the main jet, knowing that the pulse of a jet of fluid can be controlled simply by the variation of the opening of the jet. a valve, increasing the opening of a valve being proportional to the increase in the flow of the jet, all things being equal).
  • each burner can cover a larger portion of the charge favoring the homogeneity of the heat transfer and making it possible to limit the possible formation of hot spots if refractory materials are in the bath (for example residues based on alumina, recycled or in course of formation by oxidation of the metal being melted), and to promote overall heat transfer to accelerate the constant power melting process, or reduce energy consumption constant melting time.
  • Example 3 flame with variable incidence on the load and which sweeps the load laterally.
  • This exemplary embodiment of the invention makes it possible to control the movement of the flame both horizontally and vertically, as a function, for example, of various operating parameters of the furnace, given by various types of sensors installed on the furnace, and in particular sensors of flow of heat, temperature, or possibly chemical composition (for example laser diode TDL type).
  • a regulation loop whose sensor is a measurement device making it possible to obtain an image of the heat transfer to the charge or of the oxidation of the aluminum bath, this information making it possible to reduce or increase the transfer to the charge by acting on the flow of the actuator jet, as explained above.
  • the bath temperature is less than a Tc value, between 650 and 750 ° C., for example for aluminum
  • the flame must remain in non-zero incidence on the bath to maximize the heat transfer.
  • the flame is progressively raised away from the bath, especially as the target value is reached, in order to limit the risk of oxidation of the load.
  • the incidence of the flame is then controlled to maintain the temperature at its target value.
  • a loop for regulating the position of the flame based on the measurement of the heat flow can possibly be evaluated by means of a temperature difference read between two thermocouples immersed in the bath at two different depths but on a same generator perpendicular to the hearth of the oven.
  • the heat flow can also be deduced from the heat transfer calculated through the oven floor, always by measuring the temperature difference within it. Given the greater resistivity of the hearth, made of refractory materials, it is easier to obtain a significant temperature gradient.
  • the heat flow can also be monitored by means of a flow meter disposed for example in the vault of the melting chamber. Indeed, all things being equal, any decrease in the flow perceived by the vault and observed by the flow meter, will at least partially correspond to an increase in the heat flow transmitted to the load. (We are less interested in the absolute value of the heat flux transmitted to the load (or losses at the walls) than in the temporal evolution of the corresponding signal).
  • the melting of the charge will start with a flame with a clear incidence on the charge, this incidence being maintained as long as the flux transmitted to the load will remain high.
  • this flow decreases, indicating an increase in the temperature of the charge and the reduction of its heat absorption capacity, the flame is progressively raised away from the bath, in order to limit the risks of oxidation. or overheating the load.
  • a regulation loop of the position of the flame based on the measurement of the composition of the smoke at the exit of the oven or inside the oven, for example before the collector of the fumes of the oven, above the bath, between the flame in incidence and the aluminum bath, etc. for the detection of one or more species indicative of oxidation of the aluminum bath such as CO: a.
  • the composition of the fumes can be measured in a manner known per se by extraction and analysis (conventional analyzers, TDL or other) or in-situ by absorption (laser diode or other) or electrochemical probe.
  • TDL extraction and analysis
  • laser diode laser diode
  • electrochemical probe electrochemical probe.
  • the fusion starts with a flame with a clear incidence on the charge, and this incidence is preserved as long as the tracer of the oxidation of the charge is stable and in small quantity.
  • the flame is progressively raised to remove it from the bath, in order to limit the concentration of the tracer (s), and thus the oxidation of the charge, by acting on the main jet via the jet actuator as explained above.
  • the position of the flame can be set to reach a setpoint and then maintain a precise setpoint concentration oxidation tracer. It is indeed possible to set a concentration threshold that must not be exceeded and to adjust the flame incidence continuously to achieve this.
  • Example 5 Emissions control: All primary techniques for reducing nitrogen oxide emissions from burners or industrial fireplaces use the local properties of fluid or flame flows to limit their formation. In particular they aim to reduce the temperature or the concentrations of the reagents (fuel, oxygen) or the residence time of the reactants in the flame and / or in the products of combustion.
  • One of these techniques involves driving enough flue gas into the reagents or into the flame to lower the temperatures, the concentration of reagents or reduce the residence time.
  • the burner is dimensioned so as to obtain fuel jets and / or oxidant at high speed (high pulse) and sufficiently distant to obtain the maximum rate of entrainment or recirculation of flue gas compatible with good stabilization of the flame.
  • the stabilization limit is detected at the occurrence of unburned in combustion products such as carbon monoxide for hydrocarbons. Under certain conditions it is possible to obtain a "flameless" combustion regime that is particularly favorable to the reduction of emissions.
  • the invention makes it possible to adapt in operation the properties of the flames and in particular the rate of recirculation of burnt gases, which makes it possible to minimize in all circumstances emissions of pollutants and ultimately optimize the performance of burners.
  • Example 6 premix burner consisting of an injector placed in a fireplace.
  • Actuator jets as described above are used to modify in operation the opening angle of the main fluid jet (or several jets).
  • the main jet is a gaseous premix of fuel and oxidizer.
  • the opening of the jet measures the level of entrainment of the ambient environment by the latter, it can be measured by the angle between the axis of the jet and the line tangent to the boundary between the jet and the ambient environment. (This boundary can be defined as the place in the jet where the concentration of the injected fluid becomes zero).
  • the opening of the jet is controlled by the ratio between the flow of the jet actuator and the total flow of the resulting jet.
  • this control ratio is zero, a transmission level N1 is measured (FIG. 15).
  • This control ratio is actually the ratio of jet pulses as explained above.
  • the control parameter is then increased so as to increase the entrainment of burnt gases in the jet and thus dilute the injected fuel mixture. This dilution will lead to, on the one hand, reducing the temperature and, on the other hand, the concentration of the reagents in the flame. NOx emissions will therefore decrease to N2 ( Figure 15). If the value of the control parameter is further increased, the temperature and the concentrations of the reactants become too low to ensure a good stabilization of the flame: unburnt appear in the combustion products. Emissions of nitrogen oxides are then at an N3 level and unburnt emissions at a level 13 too high. The control parameter is then reduced until the optimal level of NO and IO emissions (intersection of the NOx and unbreated curves in Figure 15) is reached.
  • This optimum can be obtained manually (passive control) or preferably by a control device active.
  • This device integrates sensors for the measurement of emissions of nitrogen oxides and unburnt, an automat using the control logic explained above and the control devices of the flows of the main jet and the jet (s) actuator (s) at least one injector.
  • the controller will determine the value of the control parameter that minimizes emissions of nitrogen oxides and unburnt.
  • the active control becomes indispensable as soon as the number of parameters to be optimized is greater than or equal to two. For example one can at the same time want to minimize pollutant emissions by increasing the rate of dilution of the flame by the flue gases and maximize the transfer to the load by inclination of the flame to the load.
  • Example 6 burner in non-premixed combustion If the combustion technology is of non premixed type then the control can be exerted indifferently on the fuel, the oxidant or both in a similar way to the example 5.
  • the effects of opening (entrainment of the ambient environment) and deflection of the jets (divergent fuel and oxidant jet) will be combined, in particular to increase the impact of the dilution of the flame and to maximize the reduction of emissions.

Abstract

Brûleur comportant au moins un passage (10) pour l'injection d'au moins un jet primaire, tel qu'un jet de comburant et/ou de combustible et/ou d'un prémélange comburant et combustible, et des moyens d'injection (21) d'au moins un jet de fluide secondaire (2) débouchant dans ledit passage, l'interaction entre le jet primaire et le au moins un jet secondaire permettant de faire varier la direction et/ou l'ouverture de la flamme. Utilisation dudit brûleur pour chauffer une charge avec la flamme à direction et/ou ouverture variables.

Description

Brûleur à flamme à direction et/ou ouverture variable et procédé de mise en œuvre
La présente invention concerne un brûleur permettant de faire varier la direction et/ou l'ouverture de la flamme, ledit brûleur comportant au moins un canal d'injection d'au moins un jet principal ou primaire et au moins un canal d'injection d'un jet actionneur ou secondaire. Le jet primaire est typiquement un jet de comburant et/ou de combustible et/ou d'un prémélange comburant- combustible.
Elle concerne également l'utilisation dudit brûleur pour faire varier la direction et ou l'ouverture d'une flamme. Elle concerne également un procédé de chauffage d'une charge à l'aide de ce brûleur dans lequel on fait varier la direction et/ou l'ouverture de la flamme.
Contexte de l'invention
La majorité des fours ou des chaudières industrielles utilisent des brûleurs qui fonctionnent en régime de combustion non pré-mélangé, c'est à dire dans lequel le comburant et le combustible arrivent séparément jusqu'au lieu de combustion. Le mélange du combustible et du comburant est alors réalisé, en partie (accrochage de la flamme dans un bloc ouvreau ou d'une préchambre) ou en totalité, à l'intérieur de la chambre de combustion. Ce mélange est contrôlé par les paramètres de conception et de fonctionnement du brûleur, et détermine les performances du brûleur (domaine de fonctionnement, transfert de chaleur à la charge à chauffer, émission de polluants, etc.). En pratique on détermine à la conception du brûleur les conditions d'interaction des différents jets ou écoulements de comburant et de combustible mis en œuvre par le brûleur. Une fois le brûleur réalisé, seules les conditions de fonctionnement peuvent être modifiées. Ceci est également vrai pour les brûleurs dits à « prémélange » dans lesquels le mélange comburant/combustible est réalisé dans le brûleur en amont du foyer. Les réactifs sont alors injecté par un tube unique. Les conditions d'exploitation des procédés industriels de combustion peuvent évoluer dans le temps. C'est par nature le cas des procédés intermittents mais c'est aussi le cas des procédés continus pour lesquels les caractéristiques des charges à chauffer peuvent varier suivant les besoins de production. C'est plus généralement le cas de toute unité de production soumise au vieillissement ou sensible aux conditions variables de leur environnement. Pour adapter les performances des brûleurs à des conditions variables de fonctionnement, l'opérateur dispose le plus souvent que de deux paramètres : la puissance de fonctionnement du brûleur et le niveau d'excès d'oxydant (surstœchiométrie d'oxygène).
Certaines technologies de combustion permettent des modes discrets et en nombre très limité de fonctionnement. C'est par exemple le cas des brûleurs dits « à double impulsion » qui utilisent deux systèmes d'injection différents suivant que l'on veut opérer le brûleur à basse ou à haute impulsion. Ces deux modes de fonctionnement permettent d'augmenter le domaine de fonctionnement ou d'utilisation du brûleur ou de modifier pour un point de fonctionnement donné la longueur de la flamme.
Cependant, les modifications du point et/ou du mode de fonctionnement sont le plus souvent insuffisantes pour optimiser dans toutes les conditions les performances des brûleurs ou des procédés utilisant ces brûleurs. Par exemple, l'introduction cyclique dans un four de fusion de matière solide à température ambiante va conduire l'opérateur (ou le système de régulation) à augmenter la puissance de chauffe de manière à obtenir la fusion la plus rapide possible (en vue d'augmenter la productivité), mais sans dégrader pour autant la charge en fusion (qualité du produit) ni surchauffer le four (durée de vie des équipements). Ce compromis entre productivité et qualité et/ou durée de vie dépend notamment de la capacité du système à transférer l'énergie à la charge, en évitant des surchauffes locales de celle-ci ou des réfractaires du four. Ce compromis se traduit par un temps de fusion en deçà duquel tout gain de productivité sera contre-balancé par une dégradation de la qualité du produit ou par la réduction de la durée de vie du four. II est connu de WO-A-9744618 un brûleur comportant un jet central de combustible entouré d'abord d'une pluralité de jets de comburant primaires, puis d'une pluralité de jets de comburant secondaires. Il est ainsi possible en fonctionnement de modifier la position de la flamme. Cependant, la déflexion maximale de la flamme est en pratique limitée à environ 15° de la position médiane à la position extrême (30° au plus, au total), ne permettant pas à la flamme incidente de balayer une large surface d'une charge, et la construction du brûleur correspondant est relativement lourde car nécessitant une pluralité d'orifices pour les jets de comburant primaires et une pluralités d'orifices pour les jets de comburant secondaires.
De plus, les propriétés de la flamme changent en fonction de sa position puisque les propriétés du mélange varient avec l'angle d'incidence (mélange « externe » au bloc brûleur), ce qui induit une variation des émissions polluantes, de la qualité du transfert radiatif (luminosité de la flamme) et de la longueur de la flamme (position du pic de dégagement de chaleur).
Objet de l'invention
L'invention a pour objet un brûleur permettant une grande variation de la direction et/ou l'ouverture de la flamme et ceci sans avoir à interrompre le fonctionnement du brûleur ou du four. L'invention a également pour but de permettre une telle variation avec un brûleur robuste optimisé.
Brève description de l'invention
L'invention propose de contrôler la direction et/ou l'ouverture d'une flamme par l'interaction d'un jet de fluide (appelé jet primaire ou jet principal) avec au moins un autre jet de fluide (dit jet secondaire ou jet actionneur), l'interaction entre les jets se produisant à l'intérieur des moyens délivrant ce jet principal (tube, ouvreau, etc.) avant que ledit jet principal ne débouche desdits moyens. Le brûleur suivant l'invention comporte un passage pour amener un jet primaire vers une ouverture principale de sortie. Le jet primaire est typiquement un jet contenant du combustible, du comburant ou encore un prémélange combustible-comburant. Le brûleur comporte également au moins une canalisation secondaire pour l'injection d'un jet secondaire. Le fluide injecté par le jet secondaire peut ou non appartenir à la même catégorie que le fluide du jet primaire. Le fluide injecté par le jet secondaire peut ou non être différente du fluide du jet primaire. Le jet secondaire peut notamment être un jet inerte comme la vapeur d'eau ou des produits de combustion, tels que des fumées recyclées.
La au moins une canalisation secondaire débouche sur le passage du jet primaire par une ouverture secondaire située en amont de l'ouverture principale de sortie. La canalisation secondaire est positionnée par rapport au passage de manière à ce qu'au point d'interaction (centre d'inertie de la surface imaginaire commune aux deux écoulements) entre le jet secondaire issu de cette canalisation secondaire (appelé ci-après : jet secondaire correspondant) et le jet primaire, l'angle θ entre l'axe du jet secondaire correspondant et le plan perpendiculaire à l'axe du jet primaire est supérieure ou égale à 0° et inférieure à 90°, de préférence de 0° à 80°, encore de préférence de 0° à 45°. Quand l'angle θ = 0°, ce qui est préférable, l'axe du jet secondaire correspondant est situé dans un plan perpendiculaire à l'axe du jet primaire. La au moins une ouverture secondaire est espacée de l'ouverture principale d'une distance L inférieure ou égale à dix fois la racine carrée de la section s de l'ouverture principale de sortie, de préférence L < 5*Vs, encore de préférence L < 3*Vs.
Il est connu des « Proceedings of FEDSM'02 Joint US ASME-European Fluid Engineering Division Summer Meeting of JuIy 14-18, 2002 » et de l'article « Expérimental and numerical investigations of jet active control for combustion applications » de V. Faivre et Th. Poinsot, Journal of Turbulence, Volume 5, N° 1 , mars 2004, p. 25, d'utiliser une configuration spécifique de quatre jets secondaires autours d'un jet principal pour stabiliser une flamme grâce à l'interaction entre les jets secondaires et le jet primaire. Un angle de dispersion plus large est constaté. Selon l'invention, le brûleur est muni de moyens pour contrôler l'impulsion du au moins un jet secondaire. Comme expliqué plus en détail ci-après, l'invention permet ainsi de faire varier la direction et/ou l'ouverture de la flamme issue du brûleur en modifiant l'impulsion d'au moins un jet secondaire avec lesdits moyens. De préférence, les moyens pour contrôler l'impulsion du au moins un jet secondaire sont des moyens permettant de contrôler le rapport entre l'impulsion du jet secondaire et l'impulsion du jet primaire.
L'invention permet ainsi de réaliser une grande variation de direction et/ou ouverture d'une flamme sans faire appel à des moyens mécaniques, sources potentielles de dysfonctionnement, en particulier dans des environnements hostiles, tels que les foyers à température élevée et/ou atmosphère polluée ou corrosive.
Les moyens de contrôle permettent notamment un contrôle actif ou dynamique de l'impulsion du au moins un jet secondaire, c'est-à-dire, ils permettent de faire varier la ou les impulsions sans interruption du fonctionnement du brûleur/sans interruption de la flamme. L'appareil suivant l'invention permet ainsi une variation également dynamique de la direction et/ou l'ouverture de la flamme. De préférence, le nombre de jets secondaires interagissant avec le jet primaire pour obtenir l'effet désiré sur la flamme sera minimisé de manière à limiter la complexité et le coût de fabrication du brûleur mais également la complexité et le coût du système d'alimentation et de régulation des débits des fluides si on pilote les jets secondaires de façon indépendante. Par exemple, un effet monodirectionnel peut être obtenu avec un seul jet secondaire. Parmi les termes utilisés dans la présente description, certains méritent d'être plus précisément définis dans le cadre de l'invention afin de mieux délimiter leur portée :
• la direction d'un jet/d'une flamme est définie comme étant un vecteur unitaire normal à la section de passage du fluide/de la flamme et orienté dans le sens de l'écoulement, c'est-à-dire de l'amont vers l'aval.
• L'« épaisseur e » signifie la dimension de la canalisation secondaire dans la direction d'écoulement du jet primaire (selon la flèche sur la figure 1 ). Dans le cas particulier de cette figure 1 , e représente donc le diamètre de la canalisation secondaire 21 au niveau de l'ouverture secondaire 31 puisque cette canalisation secondaire 21 est cylindrique dans cet exemple.
• L'« ouverture » d'un jet/d'une flamme désigne, pour un jet/une flamme débouchant d'un passage cylindrique tel que 10 sur la figure 1 , l'angle entre l'axe longitudinal du passage et la génératrice à la surface du jet/de la flamme quittant le passage. En l'absence d'interaction avec un jet secondaire la génératrice est inclinée de 10 à 15° environ par rapport à cet axe, cette inclinaison pouvant atteindre 70° et plus suivant l'invention (voir figure 9A). Par extension, le terme ouverture désignera l'angle entre la direction d'écoulement dans le passage, lorsque celui-ci n'a pas de section circulaire, et la génératrice.
Description détaillée de l'invention
Les diverses caractéristiques des modes de réalisation du brûleur suivant l'invention et son utilisation apparaîtront plus clairement de la description détaillée suivante, référence étant faite aux figures qui représentent, de manière schématique, des exemples de réalisation, donnés à titre non limitatif, et plus particulièrement :
Figure 1 : schéma de principe d'un brûleur (de pré-mélange) selon l'invention pour le contrôle d'une flamme par interaction de jets.
Figure 2 : régulation d'un brûleur selon l'invention monté sur un foyer. Figures 3A et B : brûleur pour le contrôle de la direction de la flamme, la figure 3A étant une coupe transversale et la figure 3B une coupe longitudinale d'un brûleur comportant quatre jets secondaires disposés respectivement à 90° les uns des autres et venant en incidence perpendiculaire à la direction du jet primaire.
Figures 3C, D et E : utilisation d'une pastille pour transformer une buse à jets primaire et secondaire(s) parallèles en un brûleur selon l'invention. Figures 4A et B : coupe longitudinale et transversale d'un brûleur permettant le contrôle de l'ouverture d'un jet résultant.
- Figure 5 : utilisation d'un brûleur pour faire varier une flamme au moyen de deux jets (résultants), un jet de carburant et un jet d'oxydant. - Figure 6 : brûleur type « tube dans tube » muni d'un ouvreau.
- Figures 7A, B et C : brûleur à jets séparés.
Figure 8 : densité du flux de chaleur de la flamme en fonction de la distance au point d'injection, sous différentes incidences. - Figures 9A et B : variantes de réalisation du contrôle de l'ouverture de la flamme.
- Figures 1OA et B : impact d'un paramètre de contrôle sur la déviation de la flamme et le transfert de chaleur à une charge.
- Figure11 : angle d'ouverture de la flamme en fonction du rapport d'impulsions des jets.
Figure 12 : un exemple d'application du système de l'invention au chauffage d'une charge avec changement d'incidence de la flamme. Figure 13 : utilisation de l'invention pour chauffer une charge en déplaçant latéralement la flamme. - Figure 14 : application de l'ouverture variable d'une flamme à l'entraînement des gaz d'un four.
- Figure 15 : niveau d'émission d'une flamme en fonction d'un paramètre de contrôle.
Figure 16 : protection de l'extrémité du brûleur par un ouvreau. - Figure 17 : protection de l'extrémité du brûleur par un manchon.
Dans ce qui suit, les mêmes chiffres de référence sont utilisés, d'une part, pour désigner le jet primaire et le passage dans lequel il s'écoule et, d'autre part, pour désigner le jet secondaire ou actionneur et la canalisation secondaire correspondante dans lequel ce jet secondaire s'écoule.
Sur la Figure 1 est représenté un schéma de principe du procédé de contrôle d'une flamme dans un brûleur selon l'invention.
Le brûleur comprend un passage 10 qui permet d'amener le jet primaire vers une ouverture principale de sortie 11. Le jet primaire est amené par le passage 10 et vient interagir avec le jet secondaire issu de la canalisation secondaire 21 de manière à créer en aval de l'ouverture de sortie 11 une flamme 1 de direction et/ou d'ouverture différentes de la direction et/ou l'ouverture de la flamme en l'absence de jet secondaire. Au moins une canalisation secondaire 21 pour l'injection d'un jet secondaire débouche sur le passage 10 par une ouverture secondaire 31. Cette canalisation secondaire 21 est positionnée par rapport au passage 10 de telle manière qu'au point d'interaction entre le jet secondaire correspondant et le jet primaire, l'angle θ entre l'axe du jet secondaire 21 et le plan perpendiculaire à l'axe du jet primaire 10 est supérieur ou égal à 0° et inférieur à 90°. (θ = 0° sur la figure 1 ). L'ouverture secondaire 31 est espacée de l'ouverture principale 11 d'une distance L, L étant inférieure ou égale à 10 x Vs (s = section de l'ouverture principale 11 ). La distance L permet d'influencer l'impact des jets secondaires sur le jet primaire à impulsions respectives identiques. Par exemple, pour maximiser l'effet directionnel, on cherchera à minimiser cette distance. En règle générale pour les brûleurs à l'oxygène et des puissances développées de l'ordre du méga-Watt, la longueur L est inférieure ou égale à 20 cm, plus préférentiellement inférieure ou égale à 10 cm.
Le brûleur comporte des moyens pour contrôler l'impulsion des jets secondaires. Ces moyens peuvent de manière utile être choisis parmi les dispositifs de contrôle de débit massique, de contrôle de perte de charge, de contrôle de section de passage, mais également les dispositifs de contrôle de température, de contrôle de la composition chimique du fluide ou de contrôle de pression. Ces moyens sont de préférence des moyens permettant de contrôler le rapport entre l'impulsion du jet secondaire et l'impulsion du jet primaire.
Les moyens de contrôle permettent d'activer et de désactiver un ou des jets secondaires (écoulement ou absence d'écoulement du jet secondaire concerné) de manière à faire varier de manière dynamique la direction et/ou l'ouverture de la flamme. Les moyens de contrôle permettent de préférence également de manière dynamique d'augmenter et de diminuer l'impulsion (non-nulle) d'un ou des jets secondaires ou d'augmenter et de diminuer le rapport entre l'impulsion d'un jet secondaire et l'impulsion du jet primaire.
Le brûleur peut être alimenté en combustible et en comburant par un canal d'injection de comburant et au moins un canal d'injection de combustible, disposés concentriquement, ou encore par un canal d'injection de comburant et au moins un canal d'injection de combustible séparés l'un de l'autre et de préférence parallèles l'un à l'autre.
Le brûleur comporte avantageusement un bloc de matériau 5, tel qu'un bloc de matériau réfractaire, dans lequel au moins une partie du passage 10 est située, l'ouverture principale de sortie 11 étant située sur l'une des faces ou surfaces du bloc : face avant 6.
Sur la Figure 1 , le jet secondaire est véhiculé par une canalisation secondaire
21 qui traverse le bloc 5, ce jet secondaire débouchant de préférence sensiblement perpendiculairement au jet primaire. L'interaction entre le jet primaire et le jet secondaire a lieu à une distance L de la face avant 6 du bloc de laquelle débouche le passage 10 du jet primaire, cette distance L pouvant varier comme indiqué précédemment.
Suivant une forme de réalisation permettant de faire varier la direction de la flamme illustrée dans les figures 3A et 3B, le brûleur comprend au moins une canalisation secondaire 321 , 322, 323 et 324 qui est positionnée par rapport au passage 310 du jet primaire de telle manière qu'au niveau de l'ouverture secondaire correspondante 331 , 332, 333 et 334 (c'est-à-dire l'ouverture secondaire par laquelle la canalisation secondaire en question débouche sur le passage), l'axe du jet primaire et l'axe du jet secondaire correspondant sont sécants ou quasi-sécants.
Une telle disposition entre le passage et la canalisation secondaire permet de faire varier l'angle entre l'axe de la flamme et l'axe du jet primaire en amont de l'ouverture secondaire en changeant l'impulsion d'au moins un jet secondaire correspondant.
Si en l'absence de jet actionneur, la flamme issue de l'ouverture principale de sortie 311 est perpendiculaire au plan de la figure 3A, l'injection d'un jet par la canalisation secondaire 323, permet une déviation de la flamme vers la droite sur la figure 3A, c'est à dire dans le même sens que le sens d'écoulement du jet issu de 323. Si simultanément, il y a injection d'un jet secondaire par la canalisation secondaire 324, selon les quantités de mouvement relatives des jets issus de 323 et 324, on pourra obtenir une flamme déviée dans une direction (projetée dans le plan de la figure 3A) qui peut varier continûment entre les directions des jets issus de 323 et 324 (vers la droite et vers le bas sur la figure 3A). Le brûleur comprend de préférence au moins deux canalisations secondaires qui sont positionnées par rapport au passage 310 de manière à ce que, d'une part, les deux ouvertures secondaires correspondantes sont situées sur une même section transversale du passage 310 et que, d'autre part, au niveau de ces deux ouvertures secondaires, les axes des jets secondaires correspondants sont sécants ou quasi-sécants avec l'axe du jet primaire. Dans ce cas, les deux ouvertures secondaires correspondantes peuvent, de manière utile, être situées de part et d'autre de l'axe du jet primaire (à droit et à gauche pour les ouvertures 331 et 333; en bas et en haut pour les ouvertures 332 et 334), les deux ouvertures secondaires et l'axe du jet primaire étant de préférence situés dans un seul plan (horizontal pour les ouvertures 331 et 333; vertical pour les ouvertures 332 et 334).
Suivant une autre configuration utile, au niveau des deux ouvertures secondaires correspondantes, le plan défini par l'axe du jet primaire et l'une des deux ouvertures secondaires correspondantes est perpendiculaire au plan défini par l'axe du jet primaire et l'autre des deux ouvertures correspondantes. Par exemple, le plan horizontal défini par l'axe du passage 310 et l'ouverture secondaire 331 est perpendiculaire au plan vertical défini par cet axe et l'ouverture secondaire 332.
Il est également possible de combiner ces deux formes d'exécution. Dans ce cas, comme illustré dans les figures 3A et 3B, le brûleur comprend au moins quatre canalisations secondaires 321 , 322, 323 et 324 qui sont positionnées par rapport au passage 310 de telle manière que : (1 ) les quatre ouvertures secondaires correspondantes 331 , 332, 333, 334 se situent sur une même section transversale du passage 310, et (2) deux de ces ouvertures secondaires correspondantes 331 et 333 définissent un premier plan avec l'axe du jet primaire et sont situées de part et d'autre de cet axe, les deux autres ouvertures secondaires 332 et
334 définissant un deuxième plan avec l'axe du jet primaire, le premier plan étant de préférence perpendiculaire au deuxième plan. Cette disposition permet de faire varier la direction de la flamme selon le premier et selon le deuxième plan (par exemple selon le plan horizontal et selon le plan vertical) et au choix vers l'une ou l'autre des deux ouvertures secondaires situées dans chaque plan (par exemple, vers la gauche et vers la droite selon le plan horizontal, et vers le haut et vers le bas selon le plan vertical) et, comme expliqué ci-dessus, vers toute direction intermédiaire. Au niveau des quatre ouvertures secondaires correspondantes 331 à 334, les axes des quatre jets secondaires correspondants se trouvent de préférence, dans un même plan perpendiculaire à l'axe du jet primaire 310.
L'invention permet également de réaliser une interaction entre le jet primaire et un ou plusieurs jets secondaires de manière à engendrer, à maintenir ou à renforcer une rotation du jet de fluide résultant de cette interaction et donc de la flamme autour de son axe. Une telle interaction permet de faire varier l'ouverture de la flamme.
Comme illustré dans les figures 4A et 4B, le brûleur peut être muni d'au moins une canalisation secondaire 421 à 424 qui est positionnée par rapport au passage 410 du jet primaire de telle manière qu'au niveau de l'ouverture secondaire correspondante 431 à 434, l'axe du jet secondaire correspondant 421 à 424 n'est pas coplanaire ou en substance coplanaire avec l'axe du jet primaire 410, cette au moins une canalisation secondaire 421 à 424 débouchant de préférence de manière tangentielle sur le passage 410 du jet primaire. De cette manière, l'interaction entre le jet primaire et le jet secondaire confère au jet primaire une impulsion de rotation. Le brûleur peut, de manière utile, comprendre deux canalisations secondaires 421 et 422 positionnées par rapport au passage 410 du jet primaire de telle manière qu'au niveau des deux ouvertures secondaires correspondantes 431 , 432, les axes des deux jets secondaires correspondants 421 et 422 ne sont pas coplanaires avec l'axe du jet primaire 410, les deux jets secondaires étant orientés selon un même sens de rotation autour de l'axe du jet primaire. Les deux jets secondaires contribuent ainsi à l'impulsion de rotation conférée à la flamme. Les deux ouvertures secondaires sont avantageusement situées sur une même section transversale du passage 410 / dans un même plan perpendiculaire à l'axe du jet primaire. Elles peuvent être situées de part et autre de l'axe du jet primaire (ouvertures 431 et 433 ou 432 et 434). Elles peuvent également être situées de manière à ce que le plan défini par l'axe du jet primaire et l'une des deux ouvertures secondaires 431 est perpendiculaire au plan défini par l'axe du jet primaire et l'autre des deux ouvertures secondaires 432.
Suivant une forme d'exécution, le brûleur comprend au moins quatre canalisations secondaires 421 à 424 qui sont positionnées par rapport au passage 410 du jet primaire de manière à ce qu'au niveau des ouvertures secondaires correspondantes 431 à 434, les axes des jets secondaires correspondants ne sont pas en substance coplanaires avec l'axe du jet primaire. Deux des ouvertures secondaires correspondantes 431 et 433 sont en substance coplanaires avec l'axe du jet primaire 410 selon un premier plan et situées de part et d'autre de l'axe du jet primaire. Les deux autres ouvertures secondaires correspondantes 432 et 434 sont en substance coplanaires avec l'axe du jet primaire 410 selon un deuxième plan et également situées de part et autre de l'axe primaire, les quatre jets secondaires correspondants étant orientés selon un même sens de rotation autour de l'axe du jet primaire. Le premier et le deuxième plan peuvent notamment être perpendiculaire l'un par rapport à l'autre. Il est aussi préférable que les quatre ouvertures secondaires correspondantes se trouvent sur une même section transversale du passage 410. Pour conférer au jet primaire une impulsion de rotation, et ainsi changer l'ouverture de la flamme, on s'assurera de préférence qu'au niveau de l'ouverture secondaire où interagissent le jet primaire et le jet secondaire correspondant, d'une part, l'axe du jet secondaire appartient au plan perpendiculaire en cet endroit à l'axe du jet primaire, et d'autre part, l'angle entre l'axe du jet secondaire et la tangente à l'ouverture secondaire (ou plus exactement à la surface imaginaire du passage du jet primaire au niveau de l'ouverture secondaire) dans ce plan est compris entre 0 et 90°, de préférence entre 0 et 45°. Les figures 4a et b montrent un exemple de réalisation pour le contrôle de l'ouverture d'une flamme. Le jet primaire (qui s'écoule de la gauche vers la droite dans le passage 410 sur la figure 4a) rencontre les jets secondaires issus des canalisations secondaires 421 , 422, 423 et 424 (représentées sur la figure 4b qui est une coupe transversale selon le plan AA de la figure 4a). Ces jets secondaires viennent impacter le jet primaire de manière tangentielle au passage 410, permettant ainsi, selon les impulsions de ces différents jets, « d'ouvrir » plus ou moins la flamme. Cet effet d'ouverture est essentiellement dû au fait que les jets secondaires et le jet primaire ont des axes qui ne se coupent pas, bien que les jets aient une interaction physique entre eux. Ceci entraîne une rotation du jet résultant et donc de la flamme sur son axe.
Il est également possible de combiner dans un seul brûleur la forme de réalisation permettant de faire varier la direction de la flamme suivant l'un quelconque des modes de mise en œuvre décrits ci-dessus avec l'une quelconques des formes de réalisation décrites ci-dessus permettant d'engendrer, maintenir ou renforcer une rotation du jet résultant et ainsi de faire varier l'ouverture de la flamme.
Pour obtenir à la fois un effet directionnel et rotationnel, on combinera donc l'enseignement des paragraphes précédents. Pour obtenir une variation dynamique des effets directionnel et rotationnel, on pourra par exemple prévoir plusieurs systèmes d'injection de jets secondaires.
En prévoyant des canalisations secondaires séparées avec des moyens de régulation de l'impulsion du jet secondaires, tels que des vannes d'alimentation, on peut ainsi changer, de manière continue ou discontinue, la forme et la direction du jet résultant par simple actionnement desdits moyens de régulation (vannes).
Pour permettre au jet secondaire d'agir le plus efficacement possible sur le jet primaire, il convient d'injecter le jet actionneur sensiblement perpendiculairement à la direction du jet principal.
Pour un fonctionnement optimisé, le brûleur peut comprendre au moins une canalisation secondaire 21 positionnée par rapport au passage 10 du jet primaire de manière à ce qu'au niveau de l'ouverture secondaire correspondante 31 , cette canalisation présente une épaisseur e et une hauteur I, tel que I ≥ 0,5xe et de préférence : 0,5xe ≤ I ≤ 5,0xe (voir figure 1 ). Une hauteur minimale supérieure ou égale à 0,5xe, permet de réaliser une interaction optimisée entre le jet secondaire correspondant et le jet primaire. Par exemple, afin de réaliser en pratique un jet secondaire tel qu'au point d'interaction entre ce jet secondaire et le jet primaire, l'angle θ entre l'axe du jet secondaire et le plan perpendiculaire à l'axe du jet primaire soit 0°, on préférera qu'avant l'ouverture secondaire correspondante, la canalisation secondaire ait une direction sensiblement perpendiculaire à l'axe du jet primaire sur une longueur I qui sera de préférence comprise entre 0,5 et 5 fois l'épaisseur e (dimension dans la direction de l'écoulement du fluide principal) e de ladite conduite (e est le diamètre de la conduite lorsque celle-ci est cylindrique). Bien sûr, il est également possible que cette longueur I soit supérieure à 5e, mais cela n'apporte pas alors d'effet supplémentaire d'impact significatif du jet secondaire sur le jet primaire. Par exemple, pour un brûleur avec une injection d'hydrocarbures gazeux dans les conditions ambiantes et une injection d'oxygène, on obtient au minimum I = 5 mm pour un brûleur de 100 KW et I = 50 mm pour un brûleur de 10MW.
Le brûleur peut comporter un ouvreau ou une préchambre de combustion (par exemple en céramique) disposé à l'extrémité du passage, au moins une canalisation secondaire étant au moins partiellement disposé à l'intérieur de l'ouvreau/de la préchambre. Le passage du jet primaire peut consister, en totalité ou pour au moins une partie, en une canalisation primaire pour l'injection du jet primaire. Cette canalisation primaire débouche sur une ouverture primaire. Cette ouverture primaire peut coïncider avec l'ouverture principale de sortie du passage.
Quand, comme illustré dans les figures 3c, d et e et dans la figure 6, la canalisation primaire 308, 608 se termine avant l'ouverture principale de sortie 311 , 611 , l'ouverture primaire 309, 609 est positionnée en amont de l'ouverture principale 311 , 611. Dans ce cas, au moins une ouverture secondaire 334, 632, 634 peut être située entre l'ouverture primaire 309, 609 de la canalisation primaire 308, 608 et l'ouverture principale 311 , 611 du passage. La Figure 6 représente plus particulièrement un exemple de réalisation de l'invention dans un brûleur de type tube dans tube ayant une préchambre attachée au brûleur à l'intérieur d'un ouvreau céramique dans laquelle on stabilise la flamme (tel que par exemple décrit dans les demandes de brevets n°US-A-5772427 et US-A-5620316 au nom de la Demanderesse et commercialisée par la Demanderesse) sous la dénomination commerciale ALGLASS. Sur la figure, le bloc ouvreau 605 comporte une cavité 671 (ou préchambre) dans laquelle débouche le bi-tube. Le passage 610 du jet primaire consiste ainsi en une canalisation primaire 608 débouchant par une ouverture primaire 609 sur la cavité 671 , cavité qui débouche par l'ouverture principale de sortie 611 située sur la face avant de l'ouvreau en aval de l'ouverture primaire 609. Dans l'ouvreau (bloc) 605 du brûleur sont percées une pluralité de canalisations secondaires 622, 624 débouchant sensiblement perpendiculaires à l'axe de symétrie X - X du brûleur sur le passage 610, et plus particulièrement sur la cavité, respectivement par les ouvertures secondaires 632 et 634 situées à une distance L de l'ouverture principale de sortie 611. Le bi-tube proprement dit est constitué schématiquement d'un tube central d'injection de combustible (de préférence), entouré par un tube concentrique dans lequel on injecte le comburant, les deux fluides se mélangeant dans la cavité 671. Dans cet exemple de réalisation, on a, en amont des ouvertures secondaires 632, 634, un mélange des comburants et combustibles (et éventuellement de produits de combustion) injectés co-axialement par les tubes. La direction et/ou l'ouverture de la flamme sont ensuite régulées par l'action, et plus particulièrement par l'impulsion contrôlée, d'au moins un jet actionneur 622, 624.
Pour le fonctionnement optimal du brûleur suivant l'invention, le passage du jet primaire présentera au niveau de la au moins une ouverture secondaire un passage fluidique non-obstrué ou au moins en substance non-obstrué dans le prolongement de la au moins une canalisation secondaire correspondante, afin de permettre une interaction efficace entre le au moins un jet secondaire correspondant et le jet primaire. Typiquement, la section transversale du passage du jet primaire définira un passage fluidique non-obstrué ou au moins en substance non-obstrué au niveau de la au moins une ouverture secondaire. Ceci est illustré dans la figure 6 où le tube central amenant le combustible se termine au niveau de l'ouverture primaire et donc bien avant les ouvertures secondaires.
Les figures 3c, d et e montrent une autre forme d'exécution du brûleur, dans laquelle la canalisation primaire 308 se termine avant l'ouverture principale de sortie 311.
La Figure 3c représente une variante de réalisation similaire à la figure 3B avec cependant une réalisation dans laquelle on dispose deux canaux parallèles (canalisation primaire 308 et canalisation secondaire 324) dans une buse 345, les deux canaux 308 et 324 débouchant sur la face avant de la buse. Sur cette face avant, on vient rapporter une pastille 342 qui permet d'orienter le jet secondaire de la canalisation secondaire 324 vers le jet primaire sortant de la canalisation primaire 308, et plus particulièrement perpendiculairement ou sensiblement perpendiculairement au jet primaire. De cette manière, on peut faire dévier la flamme, par exemple dans la direction indiquée par la flèche 344 sur la figure 3c. (La direction 344 de la flamme va dépendre du rapport des impulsions des jets primaire et secondaire.) On peut ainsi, en faisant varier l'impulsion du jet secondaire à l'aide des moyens de contrôle, obtenir une direction de flamme variable permettant de balayer avec la flamme toute une surface, telle que la surface d'un bain liquide à chauffer. La figure 3d est une vue éclatée de la buse 345 sur laquelle vient se fixer la pastille 342 (par des moyens non représentés sur cette figure), sous forme ici d'une partie cylindrique latérale creuse 350 qui va venir s'appuyer sur l'extrémité de la buse 345, tandis que l'ouverture 346 dans la pastille vient se positionner là où débouche la canalisation primaire 308. La figure 3e représente le fond (intérieur) de cette pastille 342 dont la face intérieure 349 comporte une cavité 347 dans lequel le jet secondaire issu de la canalisation secondaire 324 va se répartir puis venir rencontrer sensiblement perpendiculairement le jet primaire issu de la canalisation primaire 308 par l'intermédiaire de la fente 348 au dessus de l'ouverture principale de sortie 346. La flamme 344 (figure 3c) issue de cette ouverture 346 va ainsi se trouver dévié vers le bas (par rapport aux figures 3c, d et e). II est à noter que la possibilité d'utiliser une pastille pour conférer l'orientation souhaitée à un ou plusieurs jets secondaires avant leurs points d'interaction respectifs avec le jet primaire, n'est pas limitée au jets secondaires orientés de manière à faire varier la direction de la flamme, mais s'applique également au jets secondaires décrits ci-dessus permettant de faire varier l'ouverture de la flamme.
L'invention concerne également un procédé pour contrôler de façon dynamique ou active les performances d'un système de combustion ou d'un brûleur à l'aide d'un ou plusieurs jets secondaires, venant impacter un jet primaire afin de modifier l'écoulement du jet et de produire une flamme dont la direction et/où l'ouverture peuvent être modifiées en fonction des caractéristiques (notamment direction et quantité de mouvement) des jets primaires et/ou secondaires. Ce procédé peut être utilisé pour réguler en boucle fermée ou en boucle ouverte les performances d'un système de combustion mettant en œuvre des injections de jets fluides (liquide, gazeux ou dispersion solide). La Figure 2 représente un procédé de régulation des performances d'un brûleur selon l'invention 210, monté sur un foyer 212. Les capteurs 214, 216 et 217 mesurent respectivement des grandeurs caractérisant les produits de combustion, les conditions du fonctionnement de la combustion ou du foyer et le fonctionnement du brûleur. Ces mesures sont transmises à l'aide des lignes 218, 219 et 220 au contrôleur 215. Ce dernier, en fonction de consignes données pour ces grandeurs caractéristiques, détermine les paramètres de fonctionnement des jets secondaires de manière à maintenir les grandeurs caractéristiques à leurs valeurs de consigne et transmet à l'aide de la ligne 221 ces paramètres aux organes de commande 211 du brûleur. Le brûleur suivant l'invention comprend avantageusement des moyens pour contrôler les impulsions des jets primaire et/ou secondaires, ou encore des moyens pour contrôler le rapport des impulsions du jet primaire et du ou des jet(s) secondaire(s). Ce rapport est une fonction du rapport de la section du passage du jet primaire et des sections des canalisations secondaires, du rapport des débits dans les canalisations secondaires sur le débit du jet résultant alimentant la flamme et du rapport des densités des fluides du jet primaire et du ou des jets secondaires. (Dans les paragraphes suivants, lorsqu'on considère la variation d'un de ces rapports, les deux autres sont considérés comme constants.) Plus la valeur du rapport de la section du passage et de la section d'une canalisation secondaire au niveau de l'ouverture secondaire correspondante augmente, plus (à débits respectifs constants) le jet secondaire correspondant a un impact important sur le jet primaire. On choisira de préférence un rapport de sections compris entre 5 et 50 plus préférentiellement entre 15 et 30. Le rapport du débit de l'ensemble des jets secondaires sur le débit total variera typiquement entre 0 (absence de jets secondaires) et 0,5 et de préférence entre 0 et 0,3 ; plus préférentiellement entre 0 et 0,15 ; sachant que plus ce rapport de débits est important, plus la déviation et/ou l'ouverture de la flamme sera importante. Le rapport de la densité de chaque fluide constituant les jets secondaires sur la densité du fluide du jet primaire permet de contrôler l'impact des jets secondaires. Plus la valeur de ce rapport est faible, plus l'effet du jet secondaire sur le jet primaire, à débit constant, sera important. Pour des raisons pratiques, on utilisera souvent le même fluide dans les jets secondaires et dans le jet primaire (rapport égal à l'unité). Pour augmenter (à débit massique constant) les effets des jets secondaires on utilisera un fluide de masse volumique plus faible que celle du fluide dans le jet primaire. La nature du fluide dans les jets secondaires sera choisie en fonction de l'application visée. On peut utiliser par exemple, pour contrôler la déviation d'un jet d'air, un mélange d'air et d'hélium (de densité inférieure) ou pour augmenter l'entraînement des produits de combustion dans une flamme dont le combustible est du propane, contrôler le jet principal de combustible et/ou de comburant avec un jet secondaire de vapeur d'eau. D'une manière générale, le rapport des densités (ou des masses volumiques) du fluide le plus dense sur le fluide le moins dense peut varier entre 1 et 20, de préférence entre 1 et 10, plus préférentiellement entre 1 et 5. La géométrie de la section d'injection du passage et/ou des canalisations secondaires, pourra être de formes diverses et notamment circulaire, carrée, rectangulaire, triangulaire, oblongue, multi-lobes, etc. La géométrie de ces sections d'injection influence le développement des instabilités du jet résultant/de la flamme. Par exemple, un jet en sortie d'un injecteur de forme triangulaire sera plus instable que celui issu d'un injecteur de forme circulaire, cette instabilité favorisant le mélange du jet résultant avec le milieu environnant. De même un injecteur de forme oblongue favorisera dans un champ proche de l'injecteur le développement non symétrique du jet à la différence d'un injecteur de forme circulaire ou carrée.
En ce qui concerne les propriétés physicochimiques du fluide utilisé pour réaliser les jets secondaires, elles peuvent être choisies pour contrôler certaines propriétés de l'écoulement résultant. Par exemple, on pourra modifier la réactivité d'un mélange de jets principaux combustible (par exemple, gaz naturel), comburant (par exemple l'air) par utilisation d'oxygène (ou autre comburant), et/ou d'hydrogène (ou autre combustible). Si l'on munit l'extrémité du passage du jet primaire, juste avant le point d'interaction des jets primaire et secondaire(s), d'une buse comportant un convergent/divergent (encore appelée tuyère de Laval dans la littérature), on pourra à la sortie du divergent obtenir (de manière connue en soi dans la littérature) un jet de fluide primaire et un jet résultant, par exemple un jet d'oxygène, supersonique qui pourra alors être de direction variable (éventuellement d'ouverture variable mais en perdant généralement sa vitesse supersonique, ce qui permet d'alterner les vitesses subsoniques et supersoniques dans certains procédés). La tuyère de Laval peut également être disposée sur le jet résultant avant l'ouverture principale de sortie. Selon une variante du procédé, on utilise au moins deux jets secondaires, de manière à obtenir une variation de la direction de la flamme dans un plan (par exemple, vers la gauche et la droite, ou vers le haut et le bas). Il est également possible d'utiliser au moins deux jets secondaires de manière à obtenir une variation de la direction de la flamme dans au moins deux plans sécants. Ces deux variantes, seule ou en combinaison permettent de balayer au moins une partie d'une surface, telle que la surface d'une charge. En utilisant un jet secondaire dont l'axe n'est pas sécant ou quasi-sécant avec l'axe du jet primaire, l'ouverture de la flamme au-dessus de la charge peut être variée, uniquement ou en combinaison avec un balayage. On prévoit de préférence des moyens pour contrôler la quantité de mouvement du jet primaire et/ou du au moins un jet secondaire.
II est à noter que, bien que dans ce qui précède, le brûleur et le procédé ont été illustrés ci-dessus en faisant référence à une forme de mise en œuvre avec un seul jet primaire qu'on fait interagir avec un ou plusieurs jets secondaires, il est évident que la présente invention couvre également un tel brûleur pour créer une ou plusieurs flammes dont l'ouverture et/ou la direction sont variables à partir d'une multitude de jets primaires qui interagissent avec un ou plusieurs jets secondaires.
La figure 5 illustre comment le brûleur suivant l'invention permet de réaliser une flamme variable à partir de deux jets primaires : un jet primaire de combustible et un jet primaire d'oxydant. Chaque jet primaire interagit avec un ou plusieurs jets secondaires. Les deux jets résultants issus du brûleur, et donc également la flamme, ayant une direction et/ou une ouverture variable grâce à cette interaction. La figure 5a montre schématiquement le jet résultant de combustible 61 surmonté du jet résultant d'oxydant 62, dans la situation où aucun de ces jets n'est contrôlé par une interaction avec un ou des jets secondaires. La figure 5b montre ces mêmes jets résultants, mais dans une situation où ceux-ci sont contrôlés ou déviés en opposition (jets convergents). Le jet 60 est dévié vers le bas par le jet secondaire 62 alors que le jet 61 est dévié vers le haut par le jet secondaire 63, dirigé de bas en haut (contrairement à 61). La figure 5c montre les résultants dans une situation où ces jets sont contrôlés ou déviés dans le même sens (vers le haut sur la figure) : les jets secondaires 63 et 65 agissent de bas en haut respectivement sur les jets principaux 61 et 60, ce qui engendre des jets résultants tous deux dirigés vers le haut. Ces trois exemples permettent d'obtenir des flammes de direction et de morphologie (longueur, aplatissement, etc.) très différentes. La flamme 64 sera très large dans le plan horizontal médian des deux jets, alors que la flamme 67 sera fortement déviée vers le haut.
Selon l'invention, au point d'interaction entre le jet secondaire et le jet primaire, l'axe du jet secondaire fait avec le plan perpendiculaire à l'axe du jet primaire un angle qui est inférieur à 90°, et de préférence égal à 0°. Toutefois, comme illustré dans les figures 3C et D, pour des raisons d'encombrement, les canaux alimentant ces jets sont le plus souvent en substance parallèles. Pour réorienter l'écoulement secondaire au niveau de la zone d'interaction des deux écoulements, on peut fixer au bout d'un brûleur à canaux parallèles, une pièce d'extrémité ci-après dénommée pastille d'injection dont la fonction est de transformer la direction du jet secondaire initialement parallèle au jet primaire, en un jet secondaire venant impacter le jet primaire, l'axe dudit jet secondaire étant de préférence situé dans un plan perpendiculaire à l'axe du jet primaire. Cependant, l'utilisation du brûleur pour des procédés à très haute température (T > 10000C) peut conduire à une surchauffe et une dégradation de la pastille d'injection.
Pour s'affranchir de ce type de problème, on cherchera dans le dimensionnement de la pastille d'injection à réduire la surface frontale du brûleur soumise au rayonnement dans l'enceinte à haute température. Pour cela, on cherchera à limiter le rapport 4/ .
On peut également utiliser une des deux solutions illustrées dans les figures 16 et 17. La première solution (figure 16) consiste à placer le brûleur 500 dans une pièce réfractaire 501 dont la géométrie et la position relative brûleur/ouvreau protégeront le premier d'un rayonnement trop important. La position ou le retrait du brûleur dans l'ouvreau doit être suffisant pour le protéger du rayonnement mais ne doit pas pour autant limiter l'amplitude directionnelle de la flamme.
Pour cela, on pourra modifier la géométrie de l'ouvreau en éliminant une partie de celui-ci selon la ligne 160 en pointillés sur la figure 16 selon l'angle α.
De préférence, le rapport ^A sera compris dans l'intervalle 0,3 à 3, tandis que
l'angle α appartiendra à l'intervalle [0°, 60°].
La seconde solution consiste à rapporter une pièce réfractaire de type manchon directement sur le nez du brûleur (où se situe l'ouverture principale de sortie) comme illustré sur la figure 17. Cette solution permet de s'affranchir de la présence d'un ouvreau à la géométrie complexe. Les dimensions du manchon sont telles qu'il ne limite pas l'amplitude directionnelle de l'injecteur. Ceci signifie en particulier que l'épaisseur f du manchon est faible (inférieure au diamètre du jet principal) ou encore que le matériau utilisé pour réaliser ce manchon à une très faible conductibilité thermique. On choisira par exemple de l'alumine.
L'invention concerne également un procédé pour chauffer une charge à l'aide d'un brûleur, dans lequel on fait varier la direction (et/ou l'ouverture) de la flamme par rapport à la charge. Comme déjà mentionné ci-dessus, l'invention permet notamment d'utiliser un ou au moins deux jets secondaires, de manière à obtenir une variation de la direction de la flamme dans un plan (par exemple, vers la gauche et la droite, ou vers le haut et le bas). Il est également possible d'utiliser au moins deux jets secondaires de manière à obtenir une variation de la direction de la flamme dans au moins deux plans sécants. Ces deux variantes, seule ou en combinaison permettent de balayer au moins une partie de la surface de la charge. Suivant une forme de réalisation, le chauffage de la charge est tel que, dans une première phase, on dirige la flamme en direction de la charge et en ce que, dans une deuxième phase, on dirige la flamme sensiblement parallèlement à la charge. En particulier, pendant la première phase, l'angle d'injection de la flamme peut être compris entre environ 90° et 5°, typiquement entre environ 90° et 10°. Pendant la deuxième phase l'angle d'injection de la flamme est typiquement compris entre environ 5° et 0°. De préférence, l'angle d'injection de la flamme pendant la première phase est compris entre 5° et 75°, plus préférentiellement de 25° à 45°.
La figure 8 montre trois profils de flux de chaleur transférée par une flamme à une charge selon l'angle d'incidence de la flamme sur la charge en fonction de la distance au point d'injection des réactifs de la flamme. On observe une très forte augmentation du flux de chaleur transféré à la charge avec l'augmentation de l'incidence de la flamme. Pour une incidence nulle (α = 0 - voir figure 12), le flux de chaleur est sensiblement constant sur toute la longueur de la flamme ; pour une incidence de 15°, le flux transféré augmente très vite, puis un peu moins vite à partir du point A, tandis que pour une incidence de flamme de 30°, le flux transféré augmente extrêmement rapidement jusqu'au point B, puis moins rapidement sensiblement jusqu'au point A, à partir duquel le transfert diminue.
Les figures 9A et B représentent l'angle d'ouverture de la flamme en fonction du rapport du débit des jets secondaires (actionneurs) sur le débit du jet primaire (jet principal). Sur la figure 9A, les courbes C1 et C2 représentent respectivement l'angle d'ouverture en fonction du rapport des débits actionneurs/jet principal. C1 concerne une configuration CONF1 dans laquelle les actionneurs sont perpendiculaires au jet principal et débouchent à une distance h de l'ouverture principale de sortie et C2 correspond à une configuration identique à CONF1 , mais avec une distance 2xh au lieu de h entre les ouvertures secondaires et l'ouverture principale de sortie. Ces deux courbes montrent que l'ouverture de la flamme est plus importante lorsque l'impact entre les actionneurs et le jet principal est plus proche de l'ouverture principale de sortie. La figure 9b illustre les variations de l'angle d'ouverture en fonction du rapport des débits des actionneurs et du jet principal : la courbe C3 correspond à la configuration CONF3 avec des actionneurs impactant le jet principal à 90° (c'est-à-dire suivant un plan perpendiculaire à l'axe du jet principal : θ=0°), à une distance 2xh de l'ouverture principale de sortie (similaire à CONF2), tandis que la courbe C4 correspond à la configuration CONF4 identique à CONF3, à l'exception de l'angle d'incidence α des actionneurs qui est de 45° par rapport à l'axe du jet principal (c'est-à-dire l'angle θ entre l'axe des actionneurs et le plan perpendiculaire à l'axe du jet principale = 90° - α =45°). On remarque que lorsque les jets actionneurs sont perpendiculaires au jet principal (CONF3 : θ=0°), on obtient, toutes choses égales par ailleurs, une ouverture de la flamme plus importante que lorsque l'angle d'incidence α des jets actionneurs est plus faible (ici 45°) (CONF4 : θ=45°).
La figure 9 représente l'angle de déviation (en degrés) en fonction du rapport du débit des jets actionneurs et du débit du jet principal, exprimé en pourcentage. Sur la figure 10A sont représentées quatre courbes, toutes choses égales par ailleurs, pour lesquelles le débit du jet principal est respectivement de 200 ϋ/min, 150 ϋ/min, 100 ϋ/min et 50 ϋ/min. On remarque que ces quatre courbes sont quasiment confondues, ce qui montre bien que la déviation de la flamme n'est pas fonction du débit du jet principal.
La figure 10B représente le transfert de chaleur à une charge : flux de chaleur délivré par un brûleur selon l'invention, dans lequel on fait varier le rapport du débit des jets actionneurs sur le débit du jet principal (représenté ici aussi en pourcentage du débit du jet principal), aussi bien pour le jet de combustible que pour le jet de comburant (brûleur à injection séparée). Chaque jet initialement injecté parallèlement au-dessus de la charge est progressivement dévié en direction de la charge, ce qui augmente le transfert de chaleur à la charge. La Figure 11 représente une courbe de l'angle d'ouverture de la flamme en fonction du rapport d'impulsion des jets. Cette courbe rapporte l'ensemble des données expérimentales obtenues pour le contrôle de l'ouverture. L'angle d'ouverture mesuré est reporté en fonction du paramètre physique J qui est le rapport des impulsions spécifiques des jets actionneurs et du jet principal. Ce rapport s'écrit comme le produit du rapport des masses volumiques (fluide actionneur sur fluide principal) et du rapport du carré de la vitesse des jets actionneurs et du carré de la vitesse du jet principal). Le fluide principal est le même pour toutes les expériences, tandis que différents fluides ont été utilisés pour les actionneurs. Ces fluides différent principalement par leur masse volumique (de la masse volumique de la plus grande à la plus faible : CO2, Air, mélange Air Hélium). On observe que tous les points expérimentaux (quels que soient les débits et les fluides utilisés) s'alignent sur une droite. Cela montre que le paramètre physique qui contrôle l'ouverture est bien le rapport des impulsions spécifiques défini ci-dessus.
Exemples
Les exemples suivants permettent de mieux comprendre l'invention et comment elle peut être utilisée.
Dans la figure 7 un exemple d'un brûleur à injections séparées de différents fluides est montré plus en détail. Le brûleur à injections séparées 101 , comporte une rangée supérieure d'injecteurs d'oxygène 112 sous forme de jets et d'injecteurs de gaz naturel
(combustible) 125 sous forme de jets, l'ensemble des injecteurs se trouvant dans la masse réfractaire 121 (figure 7C).
La partie habituellement métallique 102 du brûleur 101 est située sur la partie droite de la figure 7A et se prolonge par les tubes 107 et 109 d'injection de gaz oxygène, d'une part, 207 et 209 d'injection de gaz naturel, d'autre part sur la gauche de la figure 7A.
Sur cette figure, on a prévu deux alimentations indépendantes en oxygène (ou comburant quelconque) 104 et 106 alimentant respectivement les boites 103 et 105 respectivement reliées aux tubes 109 et 107, l'oxygène s'écoulant par les tubes 110 et 108.
L'extrémité 111 des tubes est agrandie sur la figure 7B, à l'aide de laquelle est expliquée l'interaction des jets principal 108 et actionneur 110. A l'extrémité des tubes 107 et 109 est disposé un canal 127 prolongeant le canal 110 d'écoulement du jet actionneur. La paroi 109 se prolonge par les parois 113, inclinées vers le haut, 114, horizontale et 115 verticale (sur la figure), tandis qu'un volume central 126 permet de délimiter un canal 127 tout d'abord incliné vers le haut, horizontal puis vertical (c'est à dire à 90° par rapport au canal d'écoulement gazeux 108 et débouchant dans celui-ci par l'ouverture 120). La partie verticale du canal 127 a une hauteur L, définie ci-avant, permettant de s'assurer de l'orthogonalité des jets 110 et 108 au niveau de 120 (bien entendu, si l'on choisit un angle d'intersection des jets différent de 90°, le canal 127 aura l'inclinaison voulue et sa longueur L restant dans les limites prévues ci-dessus). La partie métallique du brûleur se termine par une paroi 123, verticale dans le cas présent, bordant le canal 127, partie métallique exposée au rayonnement thermique du foyer en utilisation. Pour assurer la longévité de cette extrémité des tubes d'injection, on pourra prévoir un élément de protection, par exemple en alumine, résistant à des températures élevées, venant, par exemple, s'emboîter sur cette extrémité métallique pour la protéger et ayant une ouverture égale à l'ouverture 112 (figure 7C).
Le système d'alimentation en combustible 204, 206, 203, 205 est similaire au système d'alimentation en comburant décrit ci-dessus avec un canal principal 207, un canal actionneur 209 délimitant des jets principal de combustible 208 et actionneurs de combustible 210, le tout logé dans une ouverture cylindrique 222 de l'ouvreau 221 (similaire à 122 pour l'oxydant). Les extrémités 124 et 125 sont similaires à 123 et 112. On a prévu le même système d'injection de jet actionneur de combustible à l'extrémité de 207 et 209 comme représenté sur la figure 7B, dimensionné en fonction des caractéristiques du combustible.
En général, cependant, on préférera ne prévoir qu'un seul jet actionneur par injecteur sur le fluide ayant l'impulsion la plus élevée (en général le comburant dans le cas d'un brûleur), le jet ainsi dévié entraînant lui-même la déviation de l'autre jet à l'extérieur du brûleur. Dans un tel cas bien sûr, on disposera généralement le jet (ou la rangée de jets) d'impulsion la plus élevée au dessus du jet d'impulsion moins élevée, de telle sorte que, sans action du jet actionneur sur le jet d'impulsion la plus élevée, le brûleur délivre une flamme orientée généralement horizontalement, tandis que lorsque le jet actionneur (venant agir en haut et en bas sur le jet principal de quantité de mouvement plus élevée) vient agir sur le jet principal, celui-ci est dirigé, comme expliqué ci-avant, vers le bas (progressivement, selon le rapport des impulsions) et entraîne avec lui le second jet d'impulsion moins élevée (ici le combustible) formant une flamme qui peut ainsi passer d'une position horizontale à une position inclinée en direction de la charge à chauffer, située sous la flamme du brûleur. En ajoutant un jet actionneur de part et d'autre du jet principal à 90° (ou tout autre angle entre 0° et 180°) dudit jet actionneur illustré sur la figure 7a, (c'est à dire sur une horizontale au niveau de 123 sur la figure 7c, perpendiculairement à A-A) ceci permet alors de déplacer la flamme sur la charge à chauffer de gauche à droite ou de droite à gauche, couvrant ainsi substantiellement toute la surface à chauffer. Selon l'invention, le jet actionneur fait avec le jet principal un angle qui est supérieur à zéro. Pour des raisons d'encombrement, les deux canaux conduisant ces jets sont alimentés le plus souvent par un système d'alimentation co-axial (canaux parallèles - voir figure 7).
L'invention va être ci-après illustrée dans le cas d'un brûleur utile pour chauffer une charge quelconque qui peut être une charge métallique ou tout autre charge qui doit être fondue et/ou amenée à une température élevée, puis maintenue à celle-ci, par exemple une charge de métal ferreux ou non ferreux, de matériaux solides pour la production de verre, pour celle du ciment ou au contraire une charge qui doit être séchée à partir d'un bain liquide.
II notamment est possible d'utiliser l'invention sur un outil de traitement d'acier dans un four électrique à arc, par exemple de la façon suivante : ce type d'outil comporte généralement une flamme (habituellement subsonique) qui permet de chauffer le métal, le faire fondre, notamment au début d'une fusion. Cette flamme comme expliqué dans la présente demande, peut être de direction variable en équipant chaque jet principal (comburant, combustible, prémélange) ou au moins un jet principal d'un jet actionneur qui vient faire varier sa direction et/ou son ouverture, de manière à pouvoir déplacer cette flamme sur la charge sans nécessiter des moyens mécaniques lourds qui changent la direction du corps du brûleur. Ces outils sont souvent également munis de lances d'injection de charbon pulvérisé, généralement injecté à l'aide de gaz vecteur dans une lance. En munissant cette lance d'une canalisation d'injection d'un jet secondaire, par exemple un gaz identique au gaz « propulseur » du charbon pulvérisé, on pourra ainsi faire varier la direction (également l'ouverture du jet comme pour n'importe quel fluide) du jet de charbon pulvérisé (ou de fioul liquide pulvérisé) afin de favoriser une rencontre rapide du jet de combustible pulvérisé avec la flamme ou au contraire éloigner ce jet de la flamme.
Les exemples ci-après sont relatifs au contrôle du transfert de chaleur par un brûleur selon l'invention vers une charge, par exemple métallique, dans un procédé de fusion d'une charge.
Un four de fusion d'aluminium est généralement équipé d'un ou plusieurs brûleurs sur une ou plusieurs des parois latérales entourant le bassin de fusion du four, disposés au-dessus de la ligne de flottaison du métal lorsque ce dernier est complètement fondu (liquide). L'axe de la flamme, lorsque celle-ci est horizontale, est situé à une hauteur comprise 10 et 100 cm par rapport à cette ligne de flottaison, préférablement entre 40 et 80 cm.
• Exemple 1 : cas de matière solide dans le four :
On utilise des brûleurs selon l'invention pour que l'incidence de flamme soit variable. (On entend par incidence, l'angle de la flamme par rapport à l'horizontale). Lorsque l'incidence est nulle, la flamme est horizontale. Lorsque l'incidence est non nulle, la flamme est inclinée sous l'horizontale et dirigée vers la sole du bassin de fusion du four.
Les brûleurs injectent chaque jet de fluide dans la chambre du four, mais on peut n'utiliser ce type d'injecteur que pour le fluide (comburant ou combustible) de plus forte impulsion lorsque celui-ci peut interagir avec celui de moindre impulsion de manière à obtenir la déviation souhaitée de la flamme, typiquement, le comburant dans le cas d'un brûleur air/combustible gazeux, ou oxygène/combustible gazeux.
Dans la première partie du cycle de fusion de l'aluminium, lorsque le métal est majoritairement présent à l'état solide, on règle la direction de la flamme pour que celle-ci ait une incidence non nulle (axe de la flamme entre 5° et 75°, préférablement entre 25° et 45°). Ce réglage permet d'améliorer considérablement le transfert thermique du brûleur et donc de réduire la durée de la fusion (comme expliqué à l'aide de la figure 10). Lorsque la plupart des blocs de métal solide sont fondus, on règle la direction de la flamme de manière à avoir un angle d'incidence nulle. La flamme est donc parallèle à la ligne de flottaison du métal liquide. Ce réglage permet de continuer à transférer de l'énergie à la charge et d'achever la fusion du métal ou de l'affiner en limitant réchauffement du métal déjà fondu et par conséquent, son oxydation par la flamme ou les produits de combustion.
Entre les positions extrêmes de la flamme décrites ci-avant (incidence franche et incidence nulle), on peut également pendant la première partie du cycle adopter un réglage intermédiaire, statique, où l'incidence de la flamme est comprise entre 5° et 30°, préférablement entre 10° et 25°, pour obtenir un compromis entre couverture de la charge du four par la flamme (surface projetée de la flamme sur le bain) et intensité du transfert thermique. La figure 12 illustre les positions extrêmes de la flamme par rapport à la charge.
La figure 12a est une vue de dessus d'un four de fusion d'aluminium équipé de deux brûleurs selon l'invention produisant deux flammes positionnées au dessus du bain de métal.
La cheminée du four permet l'évacuation des fumées produites par les flammes.
Les figures 12b et 12c représentent une vue de côté du même four, au niveau de la flamme.
Sur la figure 12b, la flamme est inclinée d'un angle α par rapport à l'horizontale, de préférence lorsque du métal solide est encore présent sur le bain métallique, tandis que sur la figure 12c, la flamme est positionnée en incidence nulle (α = 0).
Entre les positions extrêmes de la flamme (incidence franche et incidence nulle), on peut également pendant la première partie du cycle faire varier de façon périodique l'angle d'incidence de la flamme. Par exemple, l'opérateur du four peut faire varier l'incidence entre 0° à 45° puis revenir à 0°. De préférence, on pilotera le brûleur avec un boîtier de commande permettant de moduler de façon périodique le rapport de contrôle du brûleur, c'est-à-dire le rapport des impulsions des jets principal et actionneur(s) et par conséquent l'incidence de la flamme sur le bain. Le signal de commande du boîtier de commande pourra être sinusoïdal, triangulaire, carré, etc. avec une fréquence variable de 0.05 Hz à 100 Hz, préférablement triangulaire à une fréquence 0.1 à 10 Hz. La variation périodique de la position de la flamme permet d'homogénéiser le transfert de chaleur à l'intérieur du four et ainsi de faire fondre plus rapidement les éléments solides.
• Exemple 2 : homogénéiser le transfert d'énergie à la charge :
On utilise des brûleurs selon l'invention pour que l'orientation de la flamme dans un plan horizontal puisse être modifiée à la demande en fonction du rapport de contrôle de chaque brûleur comme illustré sur la figure 13.
Chaque jet de fluide est injecté dans la chambre du four par le biais d'un brûleur selon l'invention, mais pour des jets situés dans un même plan horizontal ou des plans horizontaux peu espacés l'un de l'autre (de un à deux diamètres de jet), on peut se contenter de n'utiliser ces injecteurs que pour les jets périphériques lorsque ceux-ci peuvent interagir avec les autres jets à dévier. La variation de l'orientation horizontale peut se faire dans les deux sens gauche et droite soit en équipant chaque jet principal de deux jets actionneurs latéraux, soit en équipant chaque jet principal périphérique d'un seul jet actionneur, capable d'actionner le jet principal dans le sens horizontal mais de sens opposés l'un à l'autre. On peut également désaxer l'injecteur principal de sorte qu'à un rapport de contrôle nul, la flamme soit naturellement déviée (à droite ou à gauche) par rapport à l'axe X - X' du brûleur sur la figure 13, et faire alors varier l'orientation de la flamme en augmentant progressivement le rapport de contrôle du système de commande (c'est à dire obtenir un jet selon l'axe X - X' avec un rapport de contrôle non nul).
L'utilisation de un ou plusieurs brûleurs à orientation de flamme variable permet d'augmenter la couverture de la charge par déplacement de la flamme dans un plan horizontal.
(L'expression rapport de contrôle utilisée ci-avant est définie comme étant le rapport des débits du jet actionneur et du jet principal, sachant que l'impulsion d'un jet de fluide peut se contrôler simplement par la variation de l'ouverture d'une vanne, l'augmentation de l'ouverture d'une vanne étant proportionnelle à l'augmentation du débit du jet, toutes choses égales par ailleurs). Lorsque les rapports de contrôle du/des brûleur(s) sont nuls, l'orientation de la flamme est située dans l'axe naturel du brûleur et la flamme couvre une portion de la charge. Lorsque l'un des rapports de contrôle est non nul, la position de la flamme est déviée et la flamme couvre une autre portion de la charge.
La figure 13 illustre un exemple de déplacement horizontal d'une flamme au- dessus d'une charge ; chaque jet principal 130, 132 (comburant ou combustible) est muni d'un jet actionneur 131 , 133 ; sur la figure 13a, le rapport de contrôle CR du jet 130 est nul, c'est à dire qu'aucun fluide n'est injecté dans le canal 131 ; le rapport de contrôle CR du jet 132 est par contre positif, ce qui veut dire que du fait que 133 agit de bas en haut sur la figure 13a, le jet actionneur 133 dévie le jet principal 132 vers le haut sur la figure, c'est à dire vers la gauche par rapport à l'axe X - X' du brûleur. Sur la figure 13b, les rapports de contrôle des deux jets principaux 130 et 132 étant nuls, (CR = 0), il n'y a pas de jets actionneurs en action et la flamme se propage selon l'axe X - X'.
Sur la figure 13c, au contraire de la figure 13a, le rapport de contrôle CR du jet 130 et du jet est positif ce qui entraîne une dérivation de la flamme vers le bas sur la figure (vers la droite en vue de dessus), le jet principal 132 et le jet actionneur 133 ayant un rapport de contrôle nul (pas de jet 133). Ainsi, chaque brûleur peut couvrir une portion de charge plus grande favorisant l'homogénéité du transfert thermique et permettant de limiter la formation éventuelle de points chauds si des matériaux réfractaires se trouvent dans le bain (par exemple résidus à base d'alumine, recyclés ou en cours de formation par oxydation du métal en cours de fusion), et de favoriser globalement le transfert thermique permettant d'accélérer le processus de fusion à puissance constante, ou de réduire la consommation énergétique à temps de fusion constant.
• Exemple 3 : flamme à incidence variable sur la charge et qui balaie latéralement la charge.
• Exemple 4 : régulation en boucle fermée :
Cet exemple de réalisation de l'invention permettant de contrôler le déplacement à la fois horizontal et vertical de la flamme en fonction par exemple de différents paramètres de fonctionnement du four, donnés par différents types de capteurs installés sur le four, et notamment des capteurs de flux de chaleur, de température, ou éventuellement de composition chimique (par exemple diode laser de type TDL).
- Une boucle de régulation dont le capteur est un dispositif de mesure permettant d'obtenir une image du transfert thermique à la charge ou de l'oxydation du bain d'aluminium, cette information permettant de diminuer ou augmenter le transfert à la charge en agissant sur le débit du jet actionneur, comme explicité ci-avant.
- Une boucle de régulation de la position de flamme basée sur la mesure de la température du bain, lorsqu'une portion au moins du bain est présente à l'état liquide. Tant que la température de bain est inférieure à une valeur Tc, comprise entre 650 et 7500C par exemple pour l'aluminium, la flamme doit rester en incidence non nulle sur le bain pour maximiser le transfert de chaleur. Lorsqu'on se rapproche de la valeur Tc, on relève progressivement la flamme pour l'écarter du bain, d'autant plus que la valeur cible est atteinte, afin de limiter les risques d'oxydation de la charge. On régule ensuite l'incidence de la flamme pour maintenir la température à sa valeur cible. - Une boucle de régulation de la position de la flamme basée sur la mesure du flux thermique : Ce flux thermique peut éventuellement être évalué par le biais d'une différence de températures lue entre deux thermocouples plongés dans le bain à deux profondeurs différentes mais sur une même génératrice perpendiculaire à la sole du four.
Le flux thermique peut également être déduit des transferts thermiques calculés au travers de la sole du four, toujours par mesure de la différence de température en son sein. Etant donné la plus grande résistivité de la sole, constituée de matériaux réfractaires, il est plus facile d'obtenir un gradient de température significatif. Le flux thermique peut aussi être suivi grâce à un flux-mètre disposé par exemple en voûte de la chambre de fusion. En effet, toutes choses égales par ailleurs, toute diminution du flux perçu par la voûte et observé par le flux-mètre, correspondra au-moins partiellement à une augmentation du flux de chaleur transmis à la charge. (On s'intéresse moins à la valeur absolue du flux thermique transmis à la charge (ou des pertes aux parois) qu'à l'évolution temporelle du signal lui correspondant).
La fusion de la charge débutera avec une flamme en incidence franche sur la charge, cette incidence étant conservée tant que le flux transmis à la charge restera élevé. Dès lors que ce flux diminue, révélateur d'une augmentation de la température de la charge et de la diminution de sa capacité d'absorption thermique, on relève progressivement la flamme pour l'écarter du bain, afin de limiter les risques d'oxydation ou de surchauffe de la charge. - Une boucle de régulation de la position de la flamme basée sur la mesure de la composition des fumées à la sortie du four ou à l'intérieur du four, par exemple avant le collecteur des fumées du four, au-dessus du bain, entre la flamme en incidence et le bain d'aluminium, etc. pour la détection d'une ou plusieurs espèces révélatrices de l'oxydation du bain d'aluminium telles que Ie CO : a. La composition des fumées peut être mesurée de manière connue en soi par extraction puis analyse (analyseurs classiques, TDL ou autres) ou in-situ par absorption (diode laser ou autre) ou par sonde électrochimique. b. La fusion débute avec une flamme en incidence franche sur la charge, et cette incidence est conservée tant que le ou les traceurs de l'oxydation de la charge sont stables et en faible quantité. Dès lors que la concentration du ou des traceurs de l'oxydation augmente, on relève progressivement la flamme pour l'écarter du bain, afin de limiter la concentration du ou des traceurs, et donc l'oxydation de la charge, en agissant sur le jet principal par l'intermédiaire du jet actionneur comme expliqué ci- avant. c. En outre, la position de la flamme peut-être réglée pour atteindre une valeur de consigne puis maintenir une consigne précise de concentration en traceur d'oxydation. On peut en effet se fixer un seuil de concentration à ne pas dépasser et ajuster en permanence l'incidence de la flamme pour y arriver.
Il faut noter dans tous les cas que lorsque la charge est composée au moins en partie de solide froid, on peut orienter franchement la flamme en incidence sur la charge puisque tant que les températures restent modestes, par exemple inférieures à 6000C pour l'aluminium le taux d'oxydation reste faible. Lorsque la charge est devenue essentiellement liquide, la régulation utilisée devient importante pour éviter la montée en température du métal et l'oxydation de celui-ci. Pour une application de l'invention au chauffage d'un matériau autre que l'aluminium, par exemple pour chauffer un bain de verre, etc., les mêmes principes de régulation s'appliquent, pour des températures et des critères qui sont différents d'un matériau à l'autre, mais qui sont en eux-mêmes, bien connus de l'homme de métier.
• Exemple 5 : contrôle des émissions : Toutes les techniques primaires de réduction des émissions d'oxydes d'azote des brûleurs ou des foyers industriels utilisent les propriétés locales des écoulements des fluides ou de la flamme pour limiter leur formation. En particulier elles visent à réduire la température ou les concentrations des réactifs (combustible, oxygène) ou les temps de séjour des réactifs dans la flamme et/ou dans les produits de combustion. Une de ces techniques consiste à entraîner suffisamment de gaz brûlés dans les réactifs ou dans la flamme pour abaisser les températures, la concentration des réactifs ou réduire le temps de séjour. Pour cela on dimensionne le brûleur de manière à obtenir des jets de combustible et/ou de comburant à grande vitesse (forte impulsion) et suffisamment distants pour obtenir le taux maximal d'entraînement ou de recirculation de gaz brûlés compatible avec une bonne stabilisation de la flamme. La limite de stabilisation se détecte à l'apparition d'imbrûlés dans les produits de combustion comme le monoxyde de carbone pour les hydrocarbures. Dans certaines conditions on peut obtenir un régime de combustion « sans flamme » particulièrement favorable à la réduction des émissions.
La limitation de cette technique et des technologies de combustion qui l'utilisent est que le taux d'entraînement des gaz brûlés est fixé par les dimensions du brûleur et les conditions de fonctionnement. En conséquence les performances en terme d'émissions peuvent se dégrader très significativement dès que l'on s'écarte de ces conditions, mais également lorsque l'on change de combustible ou que les écoulements propres au four ou au foyer contribuent de façon significative aux propriétés des flammes.
L'invention permet d'adapter en fonctionnement les propriétés des flammes et en particulier le taux de recirculation de gaz brûlés, ce qui permet de minimiser en toutes circonstances les émissions de polluants et en définitive d'optimiser les performances des brûleurs.
• Exemple 6 : brûleur de pré-mélange constitué d'un injecteur placé dans un foyer.
On utilise des jets actionneurs tels que décrits ci-avant pour modifier en fonctionnement l'angle d'ouverture du jet de fluide principal (ou de plusieurs jets). Dans ce cas, le jet principal est un pré-mélange gazeux de combustible et de comburant. L'ouverture du jet mesure le niveau d'entraînement du milieu ambiant par ce dernier, elle peut se mesurer par l'angle entre l'axe du jet et la droite tangente à la frontière entre le jet et le milieu ambiant. (Cette frontière peut se définir comme le lieu dans le jet où la concentration du fluide injecté devient nulle).
L'ouverture du jet est contrôlée par le rapport entre le débit du jet actionneur et le débit total du jet résultant. Lorsque ce rapport de contrôle est nul on mesure un niveau d'émission N1 (figure 15). Ce rapport de contrôle est en fait le rapport des impulsions des jets comme expliqué ci-avant.
On augmente alors le paramètre de contrôle de manière à augmenter l'entraînement de gaz brûlés dans le jet et diluer ainsi le mélange combustible injecté. Cette dilution va conduire à d'une part réduire la température et d'autre part la concentration des réactifs dans la flamme. Les émissions de NOx vont donc diminuer jusqu'à atteindre un niveau N2 (figure 15). Si l'on augmente encore la valeur du paramètre de contrôle, la température et les concentrations des réactifs deviennent trop faibles pour assurer une bonne stabilisation de la flamme : on voit alors apparaître des imbrûlés dans les produits de combustion. Les émissions d'oxydes d'azote sont alors à un niveau N3 et les émissions d'imbrûlés à un niveau 13 trop élevé. On réduit alors le paramètre de contrôle jusqu'à obtenir le niveau optimal des émissions NO et IO (intersection des courbes NOx et imbrulés sur la figure 15). Cet optimum pourra être obtenu manuellement (contrôle passif) ou préférablement par un dispositif de contrôle actif. Ce dispositif intègre des capteurs pour la mesure des émissions des oxydes d'azote et des imbrûlés, un automate utilisant la logique de contrôle explicitée ci-dessus et les organes de commande des débits du jet principal et du (des) jet(s) actionneur(s) au moins un injecteur. L'automate déterminera la valeur du paramètre de contrôle qui minimise les émissions d'oxydes d'azote et d'imbrûlés. Le contrôle actif devient indispensable dès que le nombre des paramètres à optimiser est supérieur ou égal à deux. Par exemple on peut en même temps vouloir minimiser les émissions de polluants par augmentation du taux de dilution de la flamme par les gaz brûlés et maximiser le transfert à la charge par inclinaison de la flamme vers la charge.
• Exemple 6 : brûleur en combustion non pré-mélangée Si la technologie de combustion est de type non pré-mélangé alors le contrôle peut s'exercer indifféremment sur le combustible, le comburant ou bien les deux d'une façon analogue à l'exemple 5.
Si nécessaire, on combinera les effets d'ouverture (entraînement du milieu ambiant) et de déviation des jets (jet de combustible et de comburant divergents) et notamment pour augmenter l'impact de la dilution de la flamme et maximiser la réduction des émissions.

Claims

Revendications
1 - Brûleur comportant :
• un passage pour amener un jet primaire de comburant ou de combustible ou d'un prémélange comburant-combustible vers une ouverture principale de sortie,
• au moins une canalisation secondaire pour l'injection d'un jet secondaire, dans lequel :
• la au moins une canalisation secondaire débouche sur le passage par une ouverture secondaire située en amont de l'ouverture principale et est positionnée par rapport au passage de manière à ce qu'au point d'interaction entre le jet secondaire correspondant et le jet primaire, l'angle θ entre l'axe du jet secondaire correspondant et le plan perpendiculaire à l'axe du jet primaire est supérieure ou égale à 0° et inférieure à 90°, de préférence de 0° à 80°, encore de préférence de 0° à 45°et en ce que
• la au moins une ouverture secondaire est espacée de l'ouverture principale d'une distance L inférieure ou égale à dix fois la racine carrée de la section s de l'ouverture principale, de préférence L ≤ 5*Vs, encore de préférence L < 3*Vs, caractérisé en ce que :
• le brûleur comporte des moyens de régulation de l'impulsion de chaque jet secondaire correspondant, ledit brûleur permettant de faire varier la direction et/ou l'ouverture de la flamme en changeant l'impulsion d'au moins un jet secondaire correspondant.
2 - Brûleur selon la revendication 1 , dans lequel les moyens de régulation contrôle le rapport entre l'impulsion de chaque jet secondaire correspondant et l'impulsion du jet primaire.
3 - Brûleur selon l'une des revendications précédentes, comprenant au moins une canalisation secondaire positionnée par rapport au passage de telle manière qu'au niveau de l'ouverture secondaire correspondante, les axes du jet primaire et dudit jet secondaire sont sécants ou quasi-sécants afin de pouvoir faire varier l'angle de la flamme à la sortie du brûleur par rapport à l'axe du jet primaire en amont de l'ouverture secondaire correspondante.
4 - Brûleur selon la revendication 3, comprenant au moins deux canalisations secondaires positionnées par rapport au passage de telle manière que les deux ouvertures secondaires correspondantes sont situées dans un même plan perpendiculaire à l'axe du jet primaire et qu'au niveau de ces deux ouvertures secondaires correspondantes, les axes des jets secondaires correspondants sont sécants ou quasi-sécants avec l'axe du jet de fluide primaire.
5 - Brûleur selon la revendication 4, dans lequel les deux ouvertures secondaires correspondantes sont coplanaires avec l'axe du jet primaire au niveau des deux ouvertures secondaires et situées de part et d'autre de cet axe du jet primaire.
6 - Brûleur selon la revendication 4, dans lequel le plan défini par l'axe du jet primaire au niveau des deux ouvertures secondaires correspondantes et l'une des deux ouvertures secondaires correspondantes est perpendiculaire au plan défini par l'axe du jet primaire et l'autre des deux ouvertures secondaires correspondantes.
7 - Brûleur selon l'une des revendications 4 à 6, comprenant au moins quatre canalisations secondaires positionnées par rapport au passage de telle manière que les quatre ouvertures secondaires correspondantes se trouvent dans un même plan perpendiculaire à l'axe du jet primaire et qu'au niveau de ces quatre ouvertures secondaires les axes des jets secondaires correspondants sont sécants ou quasi-sécants avec l'axe du jet primaire, deux de ces ouvertures secondaires correspondantes étant coplanaires avec l'axe du jet primaire selon un premier plan et situées de part et d'autre de cet axe, les deux autres ouvertures secondaires correspondantes étant coplanaires avec l'axe du jet primaire selon un deuxième plan et situées de part et d'autre de cet axe. 8 - Brûleur selon l'une des revendications précédentes, dans lequel au moins une canalisation secondaire est positionnée par rapport au passage de telle manière qu'au niveau de l'ouverture secondaire correspondante l'axe du jet de fluide secondaire correspondant n'est pas en substance coplanaire avec l'axe du jet de fluide primaire afin de pouvoir engendrer, maintenir ou renforcer une rotation du jet de fluide résultant autour de son axe, et ainsi de faire varier l'ouverture de la flamme à la sortie du brûleur.
9 - Brûleur selon la revendication 8, comprenant au moins deux canalisations secondaires positionnées par rapport au passage de telle manière que les axes des jets secondaires correspondants ne sont pas en substance coplanaires avec l'axe du jet primaire et que les jets secondaires correspondants sont orientés selon un même sens de rotation autour de l'axe du jet primaire.
10 - Brûleur selon la revendication 9, dans lequel les deux ouvertures secondaires correspondantes sont situées de part et autre de l'axe du jet primaire.
11 - Brûleur selon l'une des revendications précédentes, dans lequel au moins une canalisation secondaire est positionnée par rapport au passage de manière à ce qu'au niveau de l'ouverture secondaire correspondante la canalisation secondaire présente une épaisseur e et une hauteur t, l'hauteur î étant supérieure ou égale à 0,5 fois l'épaisseur e, de préférence comprise entre 0,5 x e et 5 x e.
12 - Brûleur selon l'une des revendications précédentes, comportant des moyens pour contrôler le rapport des impulsions du jet de fluide principal et du jet de fluide secondaire. 13 - Brûleur selon l'une des revendications précédentes, comportant un bloc de matériau dans lequel au moins une partie du passage est situé, l'ouverture principale étant située sur l'une des faces ou surfaces du bloc.
14 - Brûleur selon l'une des revendications précédentes, comportant des moyens pour contrôler les impulsions des jets primaire et/ou secondaires.
15 - Brûleur selon l'une quelconque des revendications précédentes, comportant un ouvreau disposé à l'extrémité du passage et au moins une canalisation secondaire débouchant sur le passage par une ouverture secondaire située dans l'ouvreau.
16 - Procédé pour chauffer une charge au moyen d'une flamme, ladite flamme étant produite en utilisant un brûleur selon l'une des revendications précédentes.
17 - Procédé suivant la revendication 16, dans lequel on fait varier la direction et/ou l'ouverture de la flamme en faisant interagir un jet primaire avec au moins un jet secondaire.
18 - Procédé suivant la revendication 17, dans lequel le jet primaire est un jet contenant du comburant ou du combustible ou un prémélange de comburant et de combustible.
19 - Procédé selon l'une des revendications 16 à 18, dans lequel on fait varier la direction de la flamme afin de balayer un moins une partie de la surface de la charge.
20 - Procédé selon la revendication 19, dans lequel on fait varier la direction de la flamme dans au moins deux plans sécants afin de balayer un moins une partie de la surface de la charge. 21 - Procédé selon l'une quelconque des revendications 16 à 20, dans lequel, dans une première phase, on dirige la flamme en direction de la charge et en ce que dans une deuxième phase, on dirige la flamme sensiblement parallèlement à la charge.
PCT/FR2007/051598 2006-07-06 2007-07-05 Brûleur à flamme à direction et/ou ouverture variable et procédé de mise en oeuvre WO2008003908A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/307,737 US20100068666A1 (en) 2006-07-06 2007-07-05 Burner the Direction and/or Size of the Flame of Which Can Be Varied, and Method of Implementing It
ES07823552.0T ES2604078T3 (es) 2006-07-06 2007-07-05 Quemador con llama de dirección y/o apertura variable y procedimiento de puesta en práctica
EP07823552.0A EP2041492B1 (fr) 2006-07-06 2007-07-05 Brûleur à flamme à direction et/ou ouverture variable et procédé de mise en oeuvre
BRPI0714153-0A BRPI0714153A2 (pt) 2006-07-06 2007-07-05 queimador com chama de sentido e/ou tamanho variÁveis, e mÉtodo de executÁ-lo
CN2007800256482A CN101484752B (zh) 2006-07-06 2007-07-05 火焰方向和/或口径可调的燃烧器及其实施方法
JP2009517362A JP5221532B2 (ja) 2006-07-06 2007-07-05 炎の方向及び/又は軸角度を変更可能なバーナー並びにそれを実施する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0652847A FR2903479A1 (fr) 2006-07-06 2006-07-06 Bruleur a flamme orientable et procede de mise en oeuvre
FR0652847 2006-07-06

Publications (2)

Publication Number Publication Date
WO2008003908A2 true WO2008003908A2 (fr) 2008-01-10
WO2008003908A3 WO2008003908A3 (fr) 2008-05-02

Family

ID=37768724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051598 WO2008003908A2 (fr) 2006-07-06 2007-07-05 Brûleur à flamme à direction et/ou ouverture variable et procédé de mise en oeuvre

Country Status (10)

Country Link
US (1) US20100068666A1 (fr)
EP (1) EP2041492B1 (fr)
JP (1) JP5221532B2 (fr)
CN (1) CN101484752B (fr)
BR (1) BRPI0714153A2 (fr)
ES (1) ES2604078T3 (fr)
FR (1) FR2903479A1 (fr)
PL (1) PL2041492T3 (fr)
RU (1) RU2433343C2 (fr)
WO (1) WO2008003908A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024499A (ja) * 2008-07-22 2010-02-04 Jfe Steel Corp 転炉操業方法
EP2415886A1 (fr) 2010-08-04 2012-02-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de fonte de métal ferreux
US8336335B2 (en) 2007-07-10 2012-12-25 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Oven and oxy-combustible method for melting vitrifiable materials

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2903478B1 (fr) * 2006-07-06 2008-09-19 L'air Liquide Procede de chauffage d'une charge, notamment d'aluminium
US20110127701A1 (en) * 2009-11-30 2011-06-02 Grant Michael G K Dynamic control of lance utilizing co-flow fluidic techniques
US8632621B2 (en) * 2010-07-12 2014-01-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for melting a solid charge
US8827691B2 (en) * 2010-07-12 2014-09-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Distributed combustion process and burner
US8915731B2 (en) 2010-12-30 2014-12-23 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Flameless combustion burner
CN104571581B (zh) * 2014-12-22 2017-04-26 渤海大学 一种用于多主机共享显示设备的切换装置及切换方法
US11098894B2 (en) * 2018-07-11 2021-08-24 Praxair Technology, Inc. Multifunctional fluidic burner
EP3715713A1 (fr) * 2019-03-26 2020-09-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Brûleur à rideau de flamme compact, procédé de fonctionnement du brûleur et utilisation du procédé

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306184A1 (fr) * 1987-08-29 1989-03-08 The BOC Group plc Brûleur
EP0545357A1 (fr) * 1991-12-02 1993-06-09 Praxair Technology, Inc. Système fluidique d'orientation d'un jet atomisé
EP0703410A1 (fr) * 1994-09-22 1996-03-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ouvreau pour oxybrûleur, ensemble d'oxybrûleur comportant un tel ouvreau et procédé de mise en oeuvre d'un tel ensemble
WO1996027761A1 (fr) * 1995-03-07 1996-09-12 Luminis Pty. Ltd. Buse de pulverisation de jet a precession et a flamme variable
WO1997044618A1 (fr) * 1996-05-17 1997-11-27 Xothermic, Inc. Bruleur et procede

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1754603A (en) * 1928-05-28 1930-04-15 Charles J Brown Furnace gas burner
US2310274A (en) * 1938-02-04 1943-02-09 Reginald W Beckett Apparatus for burning liquid fuel
US2369235A (en) * 1941-05-10 1945-02-13 Servel Inc Gas burner
US3180394A (en) * 1955-04-26 1965-04-27 Bloom Eng Co Inc Gas burner
US3174527A (en) * 1962-06-13 1965-03-23 Zink Co John Combination oil and/or gaseous fuel burner
US3241594A (en) * 1963-03-25 1966-03-22 Ralph M Watson Method and apparatus for vaporizing and burning fuel oil
DE1551828B2 (de) * 1967-10-03 1976-08-26 Zimmermann & Jansen GmbH, 5160 Düren Gasbrenner, insbesondere fuer winderhitzer
NL171191C (nl) * 1973-12-20 1983-02-16 Shell Int Research Gasbrander en werkwijze voor partiele verbranding van een gasvormige brandstof.
JPS5819929B2 (ja) * 1978-07-11 1983-04-20 新日本製鐵株式会社 低NO↓xバ−ナ−
JPS6233214A (ja) * 1985-08-07 1987-02-13 Hitachi Ltd 石炭水スラリアトマイザ
US4887962A (en) * 1988-02-17 1989-12-19 Shell Oil Company Partial combustion burner with spiral-flow cooled face
JPH0740831Y2 (ja) * 1989-04-28 1995-09-20 日本碍子株式会社 バーナータイル
US4954076A (en) * 1989-07-28 1990-09-04 Air Products And Chemicals, Inc. Flame stabilized oxy-fuel recirculating burner
US5275554A (en) * 1990-08-31 1994-01-04 Power-Flame, Inc. Combustion system with low NOx adapter assembly
US5098282A (en) * 1990-09-07 1992-03-24 John Zink Company Methods and apparatus for burning fuel with low NOx formation
EP0550700B1 (fr) * 1990-10-05 1998-07-22 Massachusetts Institute Of Technology Systeme de combustion a emission reduite d'oxydes azotes
US5110285A (en) * 1990-12-17 1992-05-05 Union Carbide Industrial Gases Technology Corporation Fluidic burner
US5100313A (en) * 1991-02-05 1992-03-31 Union Carbide Industrial Gases Technology Corporation Coherent jet combustion
JPH0537954U (ja) * 1991-10-29 1993-05-21 三菱重工業株式会社 直火式連続加熱炉における鋼帯の加熱装置
ES2136177T3 (es) * 1993-10-01 1999-11-16 Air Liquide Quemador y utilizacion del mismo en un horno de vidrio.
DE4411622A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Vormischbrenner
US5772422A (en) * 1996-08-27 1998-06-30 Pvi Industries, Inc. Burner array for water heating apparatus
JP4242247B2 (ja) * 2003-10-07 2009-03-25 大陽日酸株式会社 バーナー又はランスのノズル構造及び金属の溶解・精錬方法
ITMI20050241A1 (it) * 2005-02-18 2006-08-19 Techint Spa Iniettore multifunzione e relativo procedimento di combustione per trattamento metallurgico in un forno ad arco elettrico

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306184A1 (fr) * 1987-08-29 1989-03-08 The BOC Group plc Brûleur
EP0545357A1 (fr) * 1991-12-02 1993-06-09 Praxair Technology, Inc. Système fluidique d'orientation d'un jet atomisé
EP0703410A1 (fr) * 1994-09-22 1996-03-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ouvreau pour oxybrûleur, ensemble d'oxybrûleur comportant un tel ouvreau et procédé de mise en oeuvre d'un tel ensemble
WO1996027761A1 (fr) * 1995-03-07 1996-09-12 Luminis Pty. Ltd. Buse de pulverisation de jet a precession et a flamme variable
WO1997044618A1 (fr) * 1996-05-17 1997-11-27 Xothermic, Inc. Bruleur et procede

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8336335B2 (en) 2007-07-10 2012-12-25 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Oven and oxy-combustible method for melting vitrifiable materials
JP2010024499A (ja) * 2008-07-22 2010-02-04 Jfe Steel Corp 転炉操業方法
EP2415886A1 (fr) 2010-08-04 2012-02-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de fonte de métal ferreux
WO2012016913A1 (fr) 2010-08-04 2012-02-09 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de fusion de déchets métalliques

Also Published As

Publication number Publication date
WO2008003908A3 (fr) 2008-05-02
JP2009543012A (ja) 2009-12-03
CN101484752B (zh) 2012-12-12
US20100068666A1 (en) 2010-03-18
RU2009103903A (ru) 2010-08-20
ES2604078T3 (es) 2017-03-02
EP2041492B1 (fr) 2016-09-14
JP5221532B2 (ja) 2013-06-26
CN101484752A (zh) 2009-07-15
PL2041492T3 (pl) 2017-07-31
FR2903479A1 (fr) 2008-01-11
RU2433343C2 (ru) 2011-11-10
EP2041492A2 (fr) 2009-04-01
BRPI0714153A2 (pt) 2012-12-25

Similar Documents

Publication Publication Date Title
EP2041492B1 (fr) Brûleur à flamme à direction et/ou ouverture variable et procédé de mise en oeuvre
FR2903325A1 (fr) Procede et appareil d&#39;injection d&#39;un jet de fluide de direction et/ou d&#39;ouverture variable
EP1379810B1 (fr) Procédé de combustion comportant des injections séparées de combustible et d&#39;oxydant et ensemble brûleur pour la mise en oeuvre de ce procédé
EP0782973A1 (fr) Procédé de chauffage de la charge d&#39;un four de verre
EP2041493B1 (fr) Procédé de chauffage d&#39;une charge
EP0481835B1 (fr) Procédé de chauffe d&#39;une enceinte thermique et brûleur
EP1702177A1 (fr) Procede de combustion etagee avec injection optimisee de l&#39;oxydant primaire
WO2009071811A2 (fr) Procédé et système de combustion
EP3715717B9 (fr) Procédé de combustion et brûleur pour sa mise en oeuvre
WO2013029977A1 (fr) Dispositif de stabilisation de la combustion diluee dans une enceinte de combustion a parois froides
FR2926350A1 (fr) Procede et four de fusion.
EP3303232B1 (fr) Four a injection sonique
EP0947768A1 (fr) Procédé de combustion par injections séparées du combustible et du comburant
EP0854323A1 (fr) Chambre de combustion d&#39;air chargé de particules combustibles
FR3103027A1 (fr) Procédé de régulation d’une installation de combustion, ainsi qu’installation de combustion correspondante
FR2683620A1 (fr) Enceinte thermique pour le traitement de produits industriels et four a chaux industriel comportant une telle enceinte.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025648.2

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2007823552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007823552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009517362

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008122124

Country of ref document: EG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009103903

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823552

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12307737

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0714153

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090106