WO2008003189A1 - Circuit de traitement de service audio et terminal à carte audio - Google Patents

Circuit de traitement de service audio et terminal à carte audio Download PDF

Info

Publication number
WO2008003189A1
WO2008003189A1 PCT/CN2006/003180 CN2006003180W WO2008003189A1 WO 2008003189 A1 WO2008003189 A1 WO 2008003189A1 CN 2006003180 W CN2006003180 W CN 2006003180W WO 2008003189 A1 WO2008003189 A1 WO 2008003189A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio service
subunit
audio
signal
service processing
Prior art date
Application number
PCT/CN2006/003180
Other languages
English (en)
French (fr)
Inventor
Lijuan Tan
Weijie Wang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008003189A1 publication Critical patent/WO2008003189A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/26Devices for calling a subscriber
    • H04M1/30Devices which can set up and transmit only one digit at a time
    • H04M1/50Devices which can set up and transmit only one digit at a time by generating or selecting currents of predetermined frequencies or combinations of frequencies
    • H04M1/505Devices which can set up and transmit only one digit at a time by generating or selecting currents of predetermined frequencies or combinations of frequencies signals generated in digital form

Definitions

  • the present invention relates to audio sounding technology, and more particularly to an audio service processing circuit and an audio card terminal.
  • the audio card terminal is a terminal specially issued for the convenience of the user to use related services, using audio sounding technology, and simplifying user input.
  • it sets personalized buttons such as "call” and "delivery” according to the special functions of the service, and combines with the corresponding services to carry out audio card services, such as card audio card service, S-phone card service, etc. .
  • the audio card terminal needs to complete data storage related to the audio card service, including information such as service access code, physical ID, encryption key, encryption seed, and check code; and complete data transmission in communication with the network device. It transmits the user data through the DTMF (Dual-Tone Multifirequency) (and the frequency shift keying (FSK) modulated sound signal to the microphone of the telephone terminal, and then transmits it to the network device. After the network device demodulates the sound signal, the data information is taken out and processed by the network system.
  • the audio card terminal generally needs to perform the following operations when communicating with the network device:
  • the service access code which is the number dialed by the audio card terminal, is sent using the DTMF signal;
  • the encrypted and encoded data is transmitted using the audio FSK signal.
  • the audio card terminal realizes the audio service processing by integrating the single-chip microcomputer to perform corresponding peripheral circuit design, and the single-chip microcomputer needs to have the DTMF/FSK signal output function, in the single In the tablet machine, the read, write and modify operations of the audio card related data are completed by programming, and a secret key is generated once, and the encryption operation of the data to be sent is completed by using the key; in order to complete the complete audio card function, it is also required Design corresponding peripheral circuits (such as digital-to-analog converter DAC, driver and speaker), realize the digital-to-analog conversion of DTMF/FSK signals, and convert the signal into sound, etc., as shown in Figure 1.
  • Design corresponding peripheral circuits such as digital-to-analog converter DAC, driver and speaker
  • the structure is simple, because only the corresponding single-chip microcomputer needs to be purchased, and then some peripheral circuits (such as speakers) can be designed to realize the function of the audio card.
  • the single-chip microcomputer-based audio card terminal The cost is high.
  • the programming interface of the single chip microcomputer realizes the programming of the internal memory of the single chip microcomputer, and completes the operations of reading, writing and modifying the data related to the audio card.
  • the technical problem to be solved by the present invention is to provide an audio service processing circuit and an audio card terminal provided with the circuit, so as to solve the problem that the business function of the audio card terminal cannot be realized under the condition of ensuring low cost in the prior art.
  • an embodiment of the present invention provides an audio service processing circuit, including: a microprocessor, a storage unit, a bus control unit, and an audio service processing unit;
  • the storage unit is configured to store application instructions and audio service data
  • the microprocessor is configured to read an application instruction in the storage unit, generate a signal accessed by a system bus, and implement access to the storage unit and the audio service processing unit on a system bus;
  • the bus control unit is configured to provide a control function of the microprocessor to the system bus;
  • the audio service processing unit is configured to receive user button information through a button interface, and generate a DTMF/FSK audio signal to be sent to the speaker interface, and drive the speaker Sounds.
  • an embodiment of the present invention further provides an audio card terminal, where the audio card terminal includes: a user interface, a peripheral circuit, and an audio service processing circuit, where the audio service processing circuit includes: a microprocessor, a storage unit, and a bus a control unit and an audio service processing unit; wherein
  • the storage unit is configured to store application instructions and audio service data
  • the microprocessor is configured to read an application instruction in the storage unit, generate a signal accessed by a system bus, and implement, by the bus control unit, the storage unit on the system bus and the audio service processing unit Access
  • the bus control unit is configured to provide a control function of the microprocessor to the system bus;
  • the audio service processing unit is configured to receive user button information through a button interface, and generate a DTMF/FSK audio signal to be sent to the speaker interface, and drive the speaker Sounds.
  • the embodiment of the present invention constructs an audio service processing circuit and an audio card terminal through a single-chip structure, which shortens the development cycle and reduces the cost, thereby providing a low-cost audio service processing circuit and an audio card. terminal.
  • FIG. 1 is a schematic diagram of a prior art MCU-based audio card solution
  • FIG. 2 is a schematic diagram of the principle of an audio service processing circuit according to an embodiment of the present invention.
  • FIG. 3 is a system block diagram of an audio service processing circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a system for processing an audio service according to a first embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a system for processing an audio service according to a second embodiment of the present invention
  • FIG. 6 is a third embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a system of an audio service processing circuit according to a fourth embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a system for processing an audio service according to a fifth embodiment of the present invention
  • 9 is a schematic structural diagram of a system of an audio service processing circuit according to a sixth embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of a system for processing an audio service according to a seventh embodiment of the present invention
  • the audio service processing circuit at least includes: a microprocessor 10, a storage unit 20, and a bus control unit. And an audio service processing unit 60; wherein the microprocessor 10 is configured to read instruction data in the storage unit, generate a signal accessed by the system bus, and implement the storage unit and the audio service on the system bus.
  • the storage unit 20 is configured to store application instructions and audio service data, the audio service data including a service access code, a user physical ID, an encryption key, an encryption seed, and check code information;
  • the bus control unit 30 is used to provide the control function of the microprocessor to the system bus;
  • the audio service processing unit 60 is configured to receive user button information through a button interface, and generate a DTMF/FSK audio signal to be sent to the speaker interface to drive the speaker to sound.
  • FIG. 3 is a system structural diagram of an audio service processing circuit according to an embodiment of the present invention.
  • the audio service processing circuit includes: a microprocessor 10, a bus control unit 30, a universal asynchronous transceiver 50, and an audio service processing unit 60. And a storage unit 20; wherein
  • the storage unit 20 includes: a program storage unit 201 and a data storage unit 202, which may be two independent physical memories, or two logically independent parts of one physical memory.
  • the program storage unit 20 is connected to the microprocessor 10 for storing application program instructions.
  • the program storage unit 20 may specifically use a ROM (Read Only Memory) or a FLASH (a rewritable memory).
  • the ROM needs to mask the application instructions when the audio service processing circuit is produced, and the FLASH can download the application to the FLASH after the audio service processing circuit is produced.
  • the data storage unit 202 is interconnected with the system bus and configured to store data information related to the audio card service, such as a service access code, an audio card physical ID, an encryption key, an encryption seed, and a check code.
  • the data storage unit may specifically use EEPROM, FLASH and other non-volatile memories.
  • the microprocessor 10 is configured to read application instructions in the program storage unit 201, generate signals accessed by the system bus, and implement a memory unit on the system bus, a universal asynchronous transceiver 50, and audio through the bus control unit 30. Access to the business processing unit 60.
  • the microprocessor 10 can employ an 8051 core microprocessor, but is not limited to a 8051 core microprocessor.
  • the bus control unit 30 is connected to the system bus for providing the control function of the microprocessor 10 to the system bus, and the storage unit 20, the universal asynchronous transceiver 50 and the audio service processing unit 60 are uniformly compiled as micro processing.
  • the external data area of the device 10. : The audio service processing unit 60, and system bus interconnect, through key interface for receiving a user key information, and generates a dual tone multifrequency (DTMF, Dual - Tone Multifrequency) / Frequency and The frequency shift keying (FSK) signal is sent to the speaker interface to drive the speaker to sound.
  • DTMF Dual - Tone Multifrequency
  • FSK frequency shift keying
  • the audio service processing circuit further includes a universal asynchronous transceiver 50, and the applicable asynchronous transceiver 50 is interconnected with the system bus. It is used for data communication with the general-purpose smart card reading and writing device through the I/O interface to realize the operation of the card issuer to read, write and modify the audio card related business data, and is also compatible with the current smart card issuing and personalization related platforms.
  • the universal asynchronous transceiver 50 through the I/O interface can also receive an application or a patch downloaded by the user, and the program can satisfy the audio service processing circuit of different services and the frequency card terminal provided with the circuit, thereby The same audio service and different audio services, such as a "communication card service, S telephone card service, etc.”, an audio service processing circuit and an audio card terminal provided with the circuit can be recycled.
  • FIG. 4 is a schematic structural diagram of an audio service processing circuit according to a first embodiment of the present invention, including: a microprocessor 10, a storage unit 20, a bus control unit 30, a universal asynchronous transceiver 50, and an audio service processing unit 60.
  • the audio service processing unit 60 specifically includes: a button processing sub-unit 601, interconnected with the system bus, receives the user's button information through the button interface, converts the received user button information into a digitized button signal, and according to The button signal performs power management of the chip.
  • the DTMF/FSK signal generating subunit 602 is interconnected with the system bus for receiving the sinusoidal signal sample value corresponding to the audio service data to be transmitted configured by the microprocessor 10, and generating a DTMF/FSK audio signal to be sent to the speaker interface to drive the speaker. Sounds.
  • the button processing sub-unit 601 receives the user's button information through the button interface, and converts the user's button information into a digitized button signal;
  • a corresponding service access code is generated, for example, a sine sample value of each digital DTMF signal in 17900. And it is configured to the DTMF FSK signal generation sub-unit 602. -6-
  • the DTMF/FSK signal generating sub-unit 602 After receiving the sinusoidal sample value of the DTMF signal, the DTMF/FSK signal generating sub-unit 602 performs digital-to-analog conversion, performs correct analog signal superposition, and then outputs a DTMF audio signal to the speaker interface to drive the speaker to sound. '
  • the microprocessor 10 reads the service data in the data storage unit 202 through the bus control unit 30, for example, the user physical ID and the like. And the sinusoidal sample value of the FSK signal of each digit in the service data to be transmitted is generated by the application program in the calling program storage unit 201, and the sinusoidal sample value of each FSK signal in the service data to be transmitted is generated and configured to generate the DTMF/FSK signal. Subunit 602.
  • the DTMF/FSK signal generating sub-unit 602 After receiving the sine sample value of the FSK number, the DTMF/FSK signal generating sub-unit 602 performs digital-to-analog conversion, and performs correct analog signal superposition, and then outputs the FSK signal to the speaker interface to drive the speaker to sound.
  • FIG. 5 is a schematic structural diagram of an audio service processing circuit according to a second embodiment of the present invention. The difference from the audio service processing circuit shown in FIG. 4 is that the audio service processing unit 60 further includes two.
  • An encryption engine (Crypto) subunit 604 interconnected with the system bus, for generating a one-time secret key and using the key to complete an encryption operation of the service data to be sent; an algorithm for generating a one-time secret key, and an encryption operation
  • the algorithm is not limited. It only needs to meet the security requirements of the audio card service and the requirements for the encryption bit width.
  • a frame processing (CODE) sub-unit 605 is interconnected with the system bus for performing data frame processing and channel coding operations of the service data to be transmitted according to the frame format and coding requirements of the network.
  • the processing flow of the DTMF FSK signal generated by the audio service processing circuit is different from that in the first embodiment:
  • step 4 in the first embodiment is implemented by using the Crypto sub-unit 604.
  • step 4 in the first embodiment can also be used.
  • step 4 of the first embodiment are implemented by using the CODE sub-unit 605.
  • step 4 in the first embodiment can also be used.
  • the processor 10 reads the service data in the data storage unit 202 through the bus control unit 30, and configures it to the Crypto sub-unit 604 through the system bus. 4-2. After the Crypto sub-unit 604 performs a one-secret encryption process on the service data to be transmitted, a state control signal is generated, and the state control signal identifies that the Crypto sub-unit 604 has completed the encryption operation.
  • the microprocessor 10 accesses the status control signal in the Crypto sub-unit 604, reads the encrypted service data to be transmitted, and configures the to-be-sent service data to the CODE sub-unit 605.
  • the CODE sub-unit 605 After performing channel coding and frame processing operations on the to-be-sent service data, the CODE sub-unit 605 generates a state control signal, and the state control signal identifies that the CODE sub-unit 605 has completed the encoding and frame processing operations.
  • the processor 10 accesses the state control signal in the CODE subunit 605, reads the to-be-sent service data that completes the encryption, encoding, and frame processing, and generates the to-be-sent service by calling the application in the program storage unit 201.
  • the sinusoidal sample value of each digital FSK signal in the data is assigned to the DTMF/FSK signal generation sub-unit 602. It should be noted that the above steps replace the step 4 in the first embodiment, which is the processing flow of the second embodiment.
  • the interaction speed of the audio service is accelerated by using the Crypto sub-unit 604 and the CODE sub-unit 605, and the resources of the microcontroller 10 are saved.
  • FIG. 6 is a schematic structural diagram of an audio service processing circuit according to a third embodiment of the present invention, which is different from the audio service processing circuit shown in Embodiment 1 of FIG. 4 in that: the audio service processing unit 60 further includes : A sinusoidal sample value lookup sub-unit 606 interconnected with the system bus for storing sinusoidal values of various frequencies.
  • the sinusoidal sample value lookup subunit 606 can be implemented in a memory.
  • the sinusoidal sample value of the DTMF/FSK signal in the steps 2 and 4 of the first embodiment is implemented by using the sinusoidal sample value finding sub-unit 606. Specifically, the microprocessor 10 searches the sub-unit 606 from the sine sample value. Read the sinusoidal sample value of the corresponding DTMF/FSK signal.
  • the difference between the processing flow of the audio service processing circuit of the third embodiment and the first embodiment is as follows:
  • the microprocessor 10 reads the service data in the data storage unit 202 through the bus control unit 30, and sequentially implements the service data to be transmitted, such as the physical ID, by calling the application program in the program storage unit 201.
  • the encryption seed or the like performs encryption, channel coding, and frame processing operations, and then generates an indication signal of the FSK signal generation and the digital signal to be transmitted, and accesses the sine sample value lookup subunit 606 to query the sine sample value of the FSK signal of the digital to be transmitted. And configured to the DTMF/FSK signal generation sub-unit 602. It should be noted that the above steps replace the steps 2 and 4 in the first embodiment, which is the processing flow of the third embodiment. - In the third embodiment, the speed of interaction of the audio service is accelerated by using the sinusoidal sample value lookup subunit 606, and the resources of the microcontroller 10 are saved.
  • FIG. 7 is a schematic structural diagram of an audio service processing circuit according to a fourth embodiment of the present invention, which is different from the audio service processing circuit shown in Embodiment 3 of FIG. 6 in that: the audio service processing unit 60 further includes :
  • the Crypto subunit 604 is interconnected with the system bus, and is configured to generate a one-time secret key and use the key to complete the encryption operation of the service data to be sent; wherein the algorithm for generating the one-time secret key and the algorithm of the encryption operation are not limited . It only needs to meet the security requirements of the audio card service and the encryption bit width: the requirements can be, considering the prior art, and therefore will not be described in detail.
  • the CODE subunit 605 is interconnected with the system bus for performing data frame processing and channel coding operations of the service data to be transmitted according to the frame format and coding requirements of the network.
  • the encryption operation in the step 4 of the third embodiment is implemented by using the Crypto sub-unit 604. In the actual application, the encryption operation may still adopt the step 4 of the third embodiment.
  • the channel coding and frame processing operations in step 4 of the third embodiment are implemented by using the CODE sub-unit 605.
  • the channel coding and frame processing operations may still adopt the steps of the third embodiment. 4.
  • the difference between the processing flow of the audio service processing circuit of the fourth embodiment and the third embodiment is as follows: 4-1.
  • the processor 10 reads the service data in the data storage unit 202 through the bus control unit 30 and configures it to the Crypto sub-unit 604.
  • the microprocessor 10 accesses the status control signal in the Crypto sub-unit 604, reads the encrypted service data to be transmitted, and configures the to-be-sent service data to the CODE sub-unit 605.
  • the CODE sub-unit 605 After performing channel coding and frame processing operations on the to-be-sent service data, the CODE sub-unit 605 generates a state control signal, and the state control signal identifies that the CODE sub-unit 605 has completed the encoding and frame processing operations.
  • the microprocessor 10 accesses the state control signal in the CODE subunit 605, reads the to-be-sent service data that completes encryption, encoding, and frame processing, generates an indication signal of the FSK signal generation, and a digital signal to be transmitted. And reading the sinusoidal sample value lookup subunit 606, from which the sinusoidal sample value of the FSK signal of the digital to be transmitted is queried and configured to the DTMF/FSK signal generation subunit 602. It should be noted that the above steps replace the step 4 in the third embodiment, which is the processing flow of the fourth embodiment.
  • the interaction speed of the audio service is further accelerated by using the Crypto sub-unit 604 and the CODE sub-unit 605, and the resources of the controller 10 are saved.
  • FIG. 8 is a schematic structural diagram of an audio service processing circuit according to a fifth embodiment of the present invention, which is different from the audio service processing circuit shown in the first embodiment of FIG. 4 in that: the audio service processing unit 60 further includes: Control subunit 603, wherein
  • Key processing subunit 601 receiving user button information through the button interface, converting the user button information into a digitized button signal and transmitting to the control subunit 603;
  • Control subunit 603 interconnected with the system bus, stores control information related to the audio service, and controls and schedules the control information. Specifically, the control subunit 603 sets a corresponding control signal according to the received key signal, and sends the sinusoidal signal sample value of the audio service data configured by the microprocessor 10 to the control signal to the DTMF/FSK signal generator.
  • the DTMF/FSK signal generation sub-unit 602 performs digital-to-analog conversion of the received sinusoidal signal samples, performs correct analog signal superposition, completes the output of the DTMF or FSK signals, and drives the speaker to sound.
  • the processing flow of the DTMF/FSK signal generated by the audio service processing circuit 60 is as follows: 1.
  • the button processing sub-unit 601 accepts the user button information through the button interface, and converts the user button information into a digitized button signal and sends the signal to the control sub-unit 603.
  • the control sub-unit 603 sets a corresponding control signal for performing the operation type according to the received key signal (for example, the DTMF signal for transmitting the 17900 service access code data), wherein the control signal of the execution operation type identifies the next What to do with the steps.
  • the received key signal for example, the DTMF signal for transmitting the 17900 service access code data
  • the microprocessor 1Q accesses the control signal in the control sub-unit 603 to generate a sine sample value of the DTM signal of each digit in the service access code to be transmitted and configures it to the DTMF/FSK signal generation sub-unit 602.
  • the DTMF FSK signal generating sub-unit 602 receives the sinusoidal sampling value of the above DTMF signal, performs digital-to-analog conversion, and performs correct analog signal superposition, and then outputs a DTMF signal to the speaker interface to drive the speaker to sound.
  • the control subunit 603 sets a corresponding status flag control signal and a control signal for executing a type of operation, wherein the status flag control signal is used to identify an execution status of an operation, for example
  • the DTMF signal has been transmitted; the control signal of the type of execution operation is used to identify what operation is performed in the next step.
  • the microprocessor 10 queries the status flag control signal in the control subunit 603, it queries the operation type control signal in the control subunit 603 to determine what operation is to be performed, for example: first query the status flag control signal to determine "The DTMF signal has been sent", and then query the operation type control signal to confirm that the "encryption operation of the service data to be sent" should be performed; or, for example: first query the status flag control signal to determine "service data encryption completion", and then query the operation type control The signal acknowledgement should perform "channel coding and frame processing operations" and the like.
  • the microprocessor 10 reads the service data in the data storage unit 202, such as a physical ID, an encryption seed, an encryption key, etc., and sequentially encrypts and codes the service data to be sent by calling the application program in the program storage unit 201. And a frame processing operation and generating a sinusoidal sample value of the FSK signal for each digit in the data to be transmitted and configuring to the control sub-unit 603.
  • the control sub-unit 603 receives the sine sample value of the FSK signal and then allocates it to the DTMF/FSK signal generation sub-unit 602, and the DTMF FSK signal generation sub-unit 602 performs digital-to-analog conversion on the sine sample value of the received FSK signal, and Perform the correct analog signal superposition, then output the FSK signal to the speaker interface to drive the speaker to sound.
  • the amount of operation processing of the microprocessor 10 is reduced by using the control subunit, and the interaction speed of each audio service is improved, and the added control subunit 603 is more advantageous for the modular design of the chip.
  • FIG. 9 is a schematic structural diagram of an audio service processing circuit according to a sixth embodiment of the present invention.
  • the difference between the audio service processing circuit and the audio service processing circuit shown in FIG. 8 is as follows:
  • the audio service processing unit 60 further includes:
  • the Crypto subunit 604 is interconnected with the system bus for generating a one-time secret key and using the key to complete the encryption operation of the data to be sent; wherein the algorithm for generating the one-time secret key and the algorithm for the encryption operation are not limited. It only needs to meet the security requirements of the audio card service and the requirements for the encryption bit width.
  • the CODE subunit 605 is interconnected with the system bus, and performs data frame processing and channel coding operations of the service data to be transmitted according to the frame format and coding requirements of the network.
  • the encryption operation in step 7 of the fifth embodiment is implemented by using the Crypto sub-unit 604.
  • the encryption operation may still adopt the step 7 of the fifth embodiment.
  • the if code and frame processing operations; in practical applications, the channel coding and frame processing operations can still use step 7 of the fifth embodiment.
  • the difference between the processing flow of the audio service processing circuit of the sixth embodiment and the fifth embodiment is as follows: 7-1.
  • the microprocessor 10 reads the service data in the data storage unit 202 through the bus control unit 30, and configures it to the Crypto subunit 604. ;
  • the Crypto sub-unit 604 performs a one-secret encryption process on the service data to be sent, and generates a corresponding state control signal, and the state control signal identifies that the Crypto sub-unit 604 has completed the encryption operation;
  • the microprocessor 10 accesses the above state control signal in the Crypto sub-unit 604, reads the encrypted service data to be transmitted, and configures the to-be-sent service data to the CODE sub-unit 605;
  • the CODE sub-unit 605 After performing channel coding and frame processing operations on the to-be-sent service data, the CODE sub-unit 605 generates a corresponding state control signal, where the state control signal identifies that the CODE sub-unit 605 has completed the encoding and frame processing operations; 7-5.
  • the microprocessor 10 accesses the foregoing state control signal in the CODE subunit 605, reads the to-be-sent service data that completes encryption, encoding, and frame processing, and generates the to-be-sent by calling the application in the program storage unit 201.
  • the sinusoidal sample value of each digital FSK signal in the traffic data is assigned to control subunit 603. It should be noted that the above steps replace the step 7 in the fifth embodiment, which is the processing flow of the sixth embodiment.
  • the interaction speed of each audio service is accelerated by using the Crypto sub-unit 604 and the CODE sub-unit 605, and the resources of the microcontroller 10 are saved.
  • FIG. 10 is a schematic structural diagram of an audio service processing circuit according to a seventh embodiment of the present invention, which is different from the audio service processing circuit shown in Embodiment 5 of FIG. 8 in that: the audio service processing unit 60 further includes: The sinusoidal sample value lookup subunit 606, which is interconnected by the control subunit 603, is used to store sinusoidal employed values for a plurality of frequencies. In a practical application, the sinusoidal sample value lookup subunit 606 can be implemented in a memory.
  • the seventh embodiment achieves the sinusoidal sample value of the DTMF/FSK signal generated in steps 3, 7 of the fifth embodiment by using the sinusoidal sample value lookup subunit 606.
  • the difference between the processing flow of the audio service processing circuit of the seventh embodiment and the fifth embodiment is as follows: The difference from the step 3 in the fifth embodiment:
  • the processor 10 accesses the control signal in the control sub-unit 603 to generate a DTMF signal.
  • the indication signal and the service access code digital signal to be transmitted are configured to the control sub-unit 603.
  • the control sub-unit 603 queries the sine sample value of the DTMF signal of the digital to be transmitted from the sine sample search sub-unit 606 and allocates it to the DTMF.
  • the microprocessor 10 reads the service in the data storage unit 202 through the bus control unit 30: and sequentially implements the service data to be transmitted, for example, the physical ID, by calling the application program in the program storage unit 201.
  • Encryption seed, encryption, seed, etc. perform encryption, channel coding, and data frame processing operations, and then generate an indication signal of the FSK signal generation and the digital signal to be transmitted and configure it to the control subunit 603.
  • the control subunit 603 searches from the sine sample value lookup subunit 606.
  • the sinusoidal sample value of the FSK signal of the digital to be transmitted is queried and configured to the DTMF/FSK signal generation sub-unit 602.
  • the above steps replace the steps 3 and 7 in the fifth embodiment respectively, which is the processing flow of the seventh embodiment.
  • the interaction speed of each audio service is accelerated by using the sine sample value finding sub-unit 606, and the resources of the microcontroller 10 are saved.
  • FIG. 11 is a schematic structural diagram of an audio service processing circuit according to an eighth embodiment of the present invention.
  • the audio service processing unit 60 further includes:
  • the Crypto subunit 604 is interconnected with the system bus for generating a one-time secret key and using the key to complete the encryption operation of the data to be sent; wherein the algorithm for generating the one-time secret key and the algorithm for the encryption operation are not limited. It only needs to meet the security requirements of the audio card service and the requirements for the encryption bit width.
  • the CODE subunit 605 is interconnected with the system bus, and performs data frame processing and channel coding operations of the service data to be transmitted according to the frame format and coding requirements of the network.
  • the encryption operation in the above step ⁇ of the seventh embodiment is implemented by using the Crypto sub-unit 604; in the actual application, the encryption operation may still adopt the step 7 of the seventh embodiment.
  • Channel coding and frame processing operations; in practical applications, channel coding and frame processing operations may still employ step 7 of embodiment 7.
  • the processing flow of the audio service processing circuit of the eighth embodiment differs from the seventh embodiment as follows: 7-1.
  • the microprocessor 10 reads the service data in the data storage unit 202 through the bus control unit 30, and configures it to the Crypto subunit 604. .
  • the Crypto sub-unit 604 performs a one-secret encryption process on the service data to be transmitted, and generates a corresponding state control signal, and the state control signal identifies that the Crypto sub-unit 604 has completed the encryption operation.
  • the microprocessor 10 accesses the foregoing state control signal in the Crypto subunit 604, reads the encrypted service data to be transmitted, and allocates the to-be-sent service data to the CODE subunit 605.
  • the CODE sub-unit 605 After performing channel coding and frame processing operations on the to-be-sent service data, the CODE sub-unit 605 generates a corresponding state control signal, and the state control signal identifies that the CODE sub-unit 605 has completed the encoding and frame processing operations. 7-5.
  • the microprocessor 10 accesses the state control signal in the CODE subunit 605, reads the to-be-sent service data that completes the encryption, encoding, and frame processing, generates an indication signal of the FSK signal generation, and generates and configures the digital signal to be transmitted.
  • control sub-unit 603 queries the sine sample value of each digital FSK signal to be transmitted from the sine sample value lookup sub-unit 606 and configures it to the DTMF/FSK signal generation sub-unit 602. It should be noted that the above steps replace the step 7 in the seventh embodiment, which is the processing flow of the eighth embodiment.
  • the interaction speed of each audio service is further accelerated by using the Crypto sub-unit 604 and the CODE sub-unit 605, and the resources of the microcontroller 10 are saved.
  • an embodiment of the present invention further provides an audio card terminal, where the audio card terminal includes: a user interface, a peripheral circuit, and an audio service processing circuit.
  • the user interface includes a housing portion and a button, which can be customized according to user requirements;
  • the peripheral circuit includes a battery and a speaker, etc.; the user interface and peripheral circuits are well known to those skilled in the art. , will not repeat them here.
  • the button interface on the audio service processing circuit is connected to the button on the user interface of the audio card terminal of the present invention, and is used for receiving user information according to the fourth; the speaker interface on the audio service processing circuit and the peripheral circuit of the audio card terminal of the present invention
  • the speakers in the middle are connected to drive the speakers to produce an acoustic signal.
  • the embodiment of the present invention provides a low-cost audio service processing circuit and an audio card terminal provided with the circuit by using a technical solution of a single-chip structure.
  • the embodiment of the present invention can also Compatible with current smart card issuance, personalization and other related platforms, thereby further providing a highly compatible audio service processing circuit and an audio card terminal provided with the circuit, and for the card issuer, can use the existing universal smart card to read and write
  • the device implements operations such as reading, writing, and modifying audio card related service data stored in the audio service processing circuit, thereby further reducing costs;
  • the embodiment of the present invention can also receive an application or patch downloaded by the card issuer or the user, thereby further providing a recyclable audio service processing circuit and an audio card terminal provided with the circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Telephonic Communication Services (AREA)
  • Telephone Function (AREA)

Description

一种音频业务处理电路及音频卡终端 本申请要求于 2006 年 6 月 28 日提交中国专利局、 申请号为 200610061397.0,发明名称为 "一种音频业务处理电路及音频卡终端,,的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及音频发声技术, 尤其是涉及一种音频业务处理电路及音频卡 ― 终端。
背景技术
对于现有的智能网业务来说, 用户在使用有关卡号的 务时, 要输入用 户 ID或者密码。 由于卡类用户的迅速增多, 以及安全性的考虑, 现有的卡 号和密码越来越长, 因此用户在使用时, 不得不输入烦瑣的卡号 ID以及密 码, 使用起来较为麻烦。 音频卡终端是为方便用户使用相关业务, 采用音频 发声技术, 简化用户输入而专门发行的终端。 它作为业务的一种新型接入手 段, 根据业务的特色功能设置个性化按键例如 "呼叫"、 "代拔", 与相应业 务结合共同开展音频卡业务, 如一卡通音频卡业务、 S电话卡业务等。 音频 卡终端需要完成与音频卡业务相关的数据存储, 包括业务接入码、 物理 ID、 加密密钥、加密种子及校验码等信息;还要完成与网络设备通信的数据发送。 它将用户数据通过双音多频(DTMF, Dual - Tone Multifirequency ) (和频移 键控(FSK, frequency shift keying )调制之后的声音信号, 发送到电话机终 端的麦克, 再传送到网络设备中, 网络设备对声音信号解调后取出其中的数 据信息 , 再交由网络系统处理。 音频卡终端在与网络设备进行通信的时候一 般需要执行以下操作:
1、 将音频卡终端代拨的号码即业务接入码使用 DTMF信号发送出去;
2、 产生一次一密机制需要的密钥;
3、 将音频卡终端中物理 ID、 加密种子及认证密钥等数据进行加密、 编 码处理, 保证承载业务的安全性;
4、 将加密、 编码后的数据使用音频 FSK信号传送出去。
在现有技术中, 音频卡终端是通过集成单片机进行相应的外围电路设计 来实现音频业务处理的,该单片机需要具有 DTMF/FSK信号输出功能,在单 片机中, 通过编程完成对音频卡相关数据的读、 写和修改操作, 产生一次一 密的密钥, 使用该密钥完成对待发数据的加密操作; 为了完成完整的音频卡 功能, 还需要设计相应的外围电路(如数模转换器 DAC、驱动和扬声器等), 实现 DTMF/FSK信号的数模变换, 以及将该信号转换成声音等操作,具体如 图 1所示。
基于图 1所述现有实现方案, 结构虽然简单, 因为只需要购买相应的单 片机, 再设计一些外围电路(比如扬声器等)就可以实现音频卡的功能, 但 是, 这种基于单片机的音频卡终端成本开销大, 一方面, 需要购买具有 DTMF/FSK信号输出功能的专用单片机, 还需要在该单片机上实现相关功能 的代码开发, 以及设计相应的外围电路; 另一方面, 发卡方还需要拥有一个 单片机的编程接口, 来实现对单片机内存储器的编程, 完成对音频卡相关业 务数据的读、 写、 修改等操作。
由此可见, 在现有技术中, 实现音频卡的业务功能需要的成本比较高, 目前, 还没有专用的电路芯片能完成音频卡终端业务功能。 因此, 在保证低 成本的情况下, 如何实现一种能完成音频业务处理功能的电路以及基于该电 路而实现的音频卡终端, 成为业界目前亟需解决的一个问题。
发明内容
本发明解决的技术问题是提供一种音频业务处理电路以及设置有该电 路的音频卡终端, 以解决现有技术中不能在保证低成本的情况下实现音频卡 终端的业务功能。
为了实现上述技术问题, 本发明实施例提供一种音频业务处理电路, 包 括: 微处理器、 存储单元、 总线控制单元和音频业务处理单元; 其中,
所述存储单元用于存储应用程序指令和音频业务数据;
所述微处理器用于读取所述存储单元中的应用程序指令, 产生系统总线 访问的信号, 实现对系统总线上的所述存储单元和所述音频业务处理单元的 访问;
所述总线控制单元用于提供所述微处理器对系统总线的控制功能; 所述音频业务处理单元用于通过按键接口接收用户按键信息, 并产生 DTMF/FSK音频信号发送给扬声器接口, 驱动扬声器发声。 相应的, 本发明实施例还提供一种音频卡终端, 所述音频卡终端包括: 用户界面、 外围电路, 和音频业务处理电路, 所述音频业务处理电路包括: 微处理器、 存储单元、 总线控制单元和音频业务处理单元; 其中,
所述存储单元用于存储应用程序指令和音频业务数据;
所述微处理器用于读取所述存储单元中的应用程序指令, 产生系统总线 访问的信号, 并通过所述总线控制单元实现对系统总线上的所述存储单元和 所述音频业务处理单元的访问;
所述总线控制单元用于提供所述微处理器对系统总线的控制功能; 所述音频业务处理单元用于通过按键接口接收用户按键信息, 并产生 DTMF/FSK音频信号发送给扬声器接口, 驱动扬声器发声。
由上述公开的技术方案可知, 本发明实施例通过单芯片结构来构建音频 业务处理电路及音频卡终端, 缩短了开发周期, 降低了成本, 从而提供一种 低成本的音频业务处理电路及音频卡终端。
附图说明
图 1是现有技术中基于单片机的音频卡方案示意图;
图 2是本发明实施例所述音频业务处理电路的原理示意图;
图 3是本发明实施例所述音频业务处理电路的系统框图;
图 4是本发明第一实施例所述音频业务处理电路的系统结构示意图; 图 5是本发明第二实施例所述音频业务处理电路的系统结构示意图; 图 6是本发明第三实施例所述音频业务处理电路的系统结构示意图; 图 Ί是本发明第四实施例所述音频业务处理电路的系统结构示意图; 图 8是本发明第五实施例所述音频业务处理电路的系统结构示意图; 图 9是本发明第六实施例所述音频业务处理电路的系统结构示意图; 图 10是本发明第七实施例所述音频业务处理电路的系统结构示意图; 图 11是本发明第八实施例所述音频业务处理电路的系统结构示意图。 具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明。
请参考图 2, 为本发明实施例所述音频业务处理电路的原理示意图, 所 述音频业务处理电路至少包括: 微处理器 10、 存储单元 20、 总线控制单元 30和音频业务处理单元 60; 其中, 该微处理器 10用于读取所述存储单元中 的指令数据, 产生系统总线访问的信号, 实现对系统总线上的所述存储单元 和所述音频业务处理单元的访问; 该存储单元 20用于存储应用程序指令和 音频业务数据, 该音频业务数据包括业务接入码、 用户物理 ID、 加密密钥、 加密种子及校验码信息; 该总线控制单元 30用于提供所述微处理器对系统 总线的控制功能; 该音频业务处理单元 60用于通过按键接口接收用户按键 信息, 并产生 DTMF/FSK音频信号发送给扬声器接口, 驱动扬声器发声。
还请参考图 3 , 为本发明实施例所述音频业务处理电路的系统结构图, 该音频业务处理电路包括: 微处理器 10、 总线控制单元 30、 通用异步收发 器 50、 音频业务处理单元 60和存储单元 20; 其中,
所述存储单元 20包括: 程序存储单元 201和数据存储单元 202, 它们可 以是两个独立的物理存储器, 也可以是一个物理存储器上两个逻辑上相互独 立的部分。 其中, 所述程序存储单元 20, 与微处理器 10相连, 用于存储应 用程序指令。 在实际应用中, 所述程序存储单元 20可具体采用 ROM (只读 存储器)或者 FLASH (一种可以擦写的存储器)。 ROM则需要在音频业务处 理电路生产的时候掩模应用程序指令, 而 FLASH则可以在音频业务处理电 路生产之后, 由用户自行下载应用程序到 FLASH。 数据存储单元 202, 与系 统总线互连, 用于存储业务接入码、 音频卡物理 ID、 加密密钥、 加密种子和 校验码等与音频卡业务相关的数据信息; 在实际应用中, 所述数据存储单元 可具体采用 EEPROM、 FLASH及其它非易失的存储器。
所述」微处理器 10用于读取程序存储单元 201 中的应用程序指令, 产生 系统总线访问的信号, 并通过总线控制单元 30 实现对系统总线上的存储单 元、 通用异步收发器 50和音频业务处理单元 60的访问。 在实际应用.中, 微 处理器 10可采用 8051核微处理器, 但不限于 8051核的微处理器。
所述总线控制单元 30, 连接在系统总线上, 用于提供微处理器 10对系 统总线的控制功能, 将存储单元 20、 通用异步收发器 50和音频业务处理单 元 60进行统一编制, 作为微处理器 10的外部数据区。 , : 所述音频业务处理单元 60, 与系统总线互连, 用于通 按键接口 收用 户按键信息, 并产生双音多频(DTMF, Dual - Tone Multifrequency ) /和频 移键控(FSK, frequency shift keying )音频信号发送给扬声器接口, 驱动扬 声器发声。
本发明为了进一步实现与外部的设备进行通信, 如果发卡方对存储单元 的内容进行 改, 所述音频业务处理电路还包括通用异步收发器 50, 所述適 用异步收发器 50与系统总线互连,用于通过 I/O接口与通用型智能卡读写设 备进行数据通信, 来实现发卡方对音频卡相关业务数据的读、 写和修改等操 作, 还可以兼容目前的智能卡发卡、 个性化等相关平台, 并且通过 I/O接口 通用异步收发器 50还可以接收用户下载的应用程序或补丁程序, 所述程序 可以满足不同业务的音频业务处理电路及设置有该电路的 频卡终端, 从而 4†对同一种音频业务和不同的音频业务, 如一"" ^通音频卡业务、 S电话卡业 务等, 一个音频业务处理电路及设置有该电路的音频卡终端都可以循环使 用。
还请参考图 4, 为本发明第一实施例所述音频业务处理电路的结构示意 图, 包括: 微处理器 10、 存储单元 20、 总线控制单元 30、 通用异步收发器 50和音频业务处理单元 60, 其中, 所述音频业务处理单元 60具体包括: 按键处理子单元 601, 与系统总线互连, 通过按键接口接收用户的按键 信息, 将接收到的用户按键信息转换成数字化的按键信号, 并根据按键信号 进行芯片的电源管理。
DTMF/FSK信号产生子单元 602, 与系统总线互连, 用于接收微处理器 10 配置的待发送音频业务数据相应的正弦信号采样值, 并产生 DTMF/FSK 音频信号发送给扬声器接口, 驱动扬声器发声。
下面详细的说明本实施例一中音频业务处理电路产生 DTMF/FSK音频 信号的处理流程, 步骤如下:
1、 按键处理子单元 601 通过按键接口接收用户的按键信息, 并将用户 的按键信息转化为数字化的按键信号;
2、 微处理器 10通过总线控制单元 30访问到该按键信号后, 产生对应 的业务接入码, 例如: 17900中每个数字的 DTMF信号的正弦采样值。 并将 其配置给 DTMF FSK信号产生子单元 602。 -6-
3、 DTMF/FSK信号产生子单元 602接收到所述 DTMF信号的正弦采样 值后, 进行数模转换, 并进行正确的模拟信号叠加, 然后输出 DTMF音频信 号给扬声器接口, 驱动扬声器发声。 '
4、 微处理器 10通过总线控制单元 30读取数据存储单元 202中业务数 据, 例如: 用户物理 ID等。 并通过调用程序存储单元 201 中应用程序依次 实现对待发送业务数据进行加密、 信道编码和帧处理操作以及产生待发送业 务数据中每个数字的 FSK信号的正弦采样值并配置给 DTMF/FSK信号产生 子单元 602。
5、 DTMF/FSK信号产生子单元 602接收到所述 FSK 号的正弦采样值 后, 进行数模转换, 并进行正确的模拟信号叠加, 然后输出 FSK信号给扬声 器接口, 驱动扬声器发声。
请参考图 5,为本发明第二实施例所述音频业务处理电路的结构示意图, 其与如图 4所示的音频业务处理电路的区别在于:所述音频业务处理单元 60 还包括二
加密引擎(Crypto )子单元 604, 与系统总线互连, 用于产生一次一密 密钥并使用该密钥完成对待发送业务数据的加密操作; 其中产生一次一密密 钥的算法, 以及加密操作的算法不限。 只需要满足音频卡业务的安全需求和 对加密位宽的要求即可。
帧处理(CODE )子单元 605, 与系统总线互连, 用于根据网络端的帧 格式和编码要求, 完成待发送业务数据的数据帧处理和信道编码操作。
在本实施例二中,所述音频业务处理电路产生 DTMF FSK信号的处理流 程与实施例一的区别在于:
本实施例二是通过使用 Crypto子单元 604来实现实施例一中所述步骤 4 的加密 作; 在实际应用中, 也可采用实施例一中步骤 4。
本实施例二是通过使用 CODE子单元 605来实现实施例一中所述步驟 4 的信道编码和帧处理操作; 在实际应用中, 也可采用实施例一中步骤 4。
本实施例二的音频业务处理电路的处理流程与实施例一区別如下:
4-1、 处理器 10通过总线控制单元 30读取数据存储单元 202中业务数 据, 并将其通过系统总线配置给 Crypto子单元 604。 4-2、 Crypto子单元 604对待发送业务数据进行一次一密的加密处理后, 产生状态控制信号,所述状态控制信号标识 Crypto子单元 604已完成加密操 作。
4-3、 微处理器 10访问到 Crypto子单元 604中的状态控制信号, 读取加 密后的待发送业务数据,并将所述待发送业务数据配置到 CODE子单元 605。
4-4、 CODE子单元 605对所述待发送业务数据进行信道编码、 帧处理操 作后, 产生状态控制信号,所述状态控制信号标识 CODE子单元 605 已完成 编码和帧处理操作。
4-5、 处理器 10访问到 CODE子单元 605中的状态控制信号, 读取完 成加密、 编码和帧处理的待发送业务数据, 并通过调用程序存储单元 201中 应用程序产生所述待发送业务数据中每个数字的 FSK信号的正弦采样值并 配置给 DTMF/FSK信号产生子单元 602。 值得注意的是: 上述的步骤替代实 施例一中的步骤 4就是本实施例二的处理流程。
在本实施例二中, 通过使用 Crypto子单元 604和 CODE子单元 605加 快了音频业务的交互速度, 并且节省了微控制器 10的资源。
再请参考图 6, 为本发明第三实施例所述音频业务处理电路的结构示意 图, 其与如图 4中实施例一所示的音频业务处理电路的区别在于: 音频业务 处理单元 60还包括: 与系统总线互连的正弦采样值查找子单元 606, 用于存 储多种频率的正弦采用值。 在实际应用中, 正弦采样值查找子单元 606可以 用存储器来实现。
本实施例三是通过使用正弦采样值查找子单元 606来实现实施例一步骤 2、 4中的产生 DTMF/FSK信号的正弦采样值, 具体为微处理器 10从正弦采 样值查找子单元 606中读取相应的 DTMF/FSK信号的正弦采样值。
本实施例三的音频业务处理电路的处理流程与实施例一的区别如下: 与实施例一中步骤 2的区別: 微处理器 10访问到所述按键信号后, 产 生 DTMF信号发生的指示信号以及待发送的业务接入码的数字信号,并访问 正弦采样值查找子单元 606, 从中查询待发送数字的 DTMF信号的正弦采样 值并配置给 DTMF/FSK信号产生子单元 602。 与实施例一中步骤 4的区别: 微处理器 10通过总线控制单元 30读取数 据存储单元 202中业务数据, 并通过调用程序存储单元 201中应用程序依次 实现对待发送业务数据, 例如物理 ID、加密种子等进行加密、信道编码和帧 处理操作, 然后产生 FSK信号发生的指示信号以及待发送的数字信号,并访 问正弦采样值查找子单元 606, 从中查询待发送数字的 FSK信号的正弦采样 值并配置给 DTMF/FSK信号产生子单元 602。 值得注意的是: 上述的步骤替 代实施例一中的步骤 2、 4就是本实施例三的处理流程。 - 本实施例三, 通过采用正弦采样值查找子单元 606加快了音频业务的交 互速度, 并且节省了微控制器 10的资源。
请参考图 7,为本发明第四实施例所述音频业务处理电路的结构示意图, 其与如图 6实施例三所示的音频业务处理电路的区别在于: 所述音频业务处 理单元 60还包括:
Crypto子单元 604, 与系统总线互连, 用于产生一次一密密钥并使用该 密钥完成对待发送业务数据的加密操作; 其中产生一次一密密钥的算法, 以 及加密操作的算法不限。 只需要满足音频卡业务的安全需求和对加密位宽的: 要求即可, 考虑到是现有技术, 因此不详细描述。
CODE子单元 605, 与系统总线互连, 用于根据网络端的帧格式和编码 要求, 完成待发送业务数据的数据帧处理和信道编码操作。
本实施例四是通过使用 Crypto子单元 604来实现实施例三所述步骤 4中 的加密操作; 在实际应用中, 加密操作也可仍采用实施例三的步骤 4。
本实施例四是通过使用 CODE子单元 605来实现实施例三所述步驟 4中 的信道编码和帧处理操作的; 在实际应用中, 信道编码和帧处理操作也可仍 采用实施例三的步骤 4。
本实施例四的音频业务处理电路的处理流程与实施例三的区别如下: 4-1、 处理器 10通过总线控制单元 30读取数据存储单元 202中业务数 据, 并配置给 Crypto子单元 604。
4-2、 Crypto子单元 604对待发送业务数据进行一次一密的加密处理后, 产生状态控制信号,所述状态控制信号标识 Crypto子单元 604已完成加密操 作。 ― ―
4-3、 微处理器 10访问到 Crypto子单元 604中的状态控制信号, 读取加 密后的待发送业务数据,并将所述待发送业务数据配置到 CODE子单元 605。
4-4、 CODE子单元 605对所述待发送业务数据进行信道编码、 帧处理操 作后, 产生状态控制信号,所述状态控制信号标识 CODE子单元 605 已完成 编码和帧处理操作。
4-5、 微处理器 10访问到 CODE子单元 605中的状态控制信号, 读取完 成加密、编码和帧处理的所述待发送业务数据, 产生 FSK信号发生的指示信 号以及待发送的数字信号, 并读取正弦采样值查找子单元 606, 从中查询待 发送数字的 FSK信号的正弦采样值并配置给 DTMF/FSK信号产生子单元 602。 值得注意的是: 上述的步骤替代实施例三中的步骤 4就是本实施例四 的处理流程。
本实施例四, 通过使用 Crypto子单元 604和 CODE子单元 605更加加 快了音频业务的交互速度, 并且节省了 ^敫控制器 10的资源。
.请参考图 8,为本发明第五实施例所述音频业务处理电路的结构示意图, 其与如图 4实施例一所示的音频业务处理电路的区別在于: 音频业务处理单 元 60还包括: 控制子单元 603, 其中,
按键处理子单元 601 , 通过按键接口接收用户按键信息, 将所述用户按 键信息转换成数字化的按键信号并发送给控制子单元 603;
控制子单元 603, 与系统总线互连, 存储与音频业务相关的控制信息, 并对这些控制信息进行控制和调度。 具体如下: 控制子单元 603根据接收到 的按键信号设置相应的控制信号, 并将微处理器 10访问到该控制信号后所 配置的音频业务数据的正弦信号采样值发送给 DTMF/FSK信号产生子单元 602;
DTMF/FSK信号产生子单元 602, 将接收到的正弦信号采样值进行数模 转换, 并进行正确的模拟信号叠加, 完成 DTMF或 FSK信号的输出, 并驱 动扬声器发声。
本实施例五中, 音频业务处理电路 60产生 DTMF/FSK信号的处理流程 具体如下: 1、 按键处理子单元 601 通过按键接口接受用户按键信息, 并将用户按 键信息转化为数字化的按键信号发送给控制子单元 603。
2、 控制子单元 603根据接收到的按键信号, 设置相应的执行操作类型 的控制信号 (例如: 该发送 17900业务接入码数据的 DTMF信号), 其中, 该执行操作类型的控制信号标识下个步骤执行什么操作。
3、 微处理器 1Q访问到控制子单元 603中的上述控制信号, 产生待发送 业务接入码中每个数字的 DTM 信号的正弦采样值并配置给 DTMF/FSK信 号产生子单元 602。
4、 DTMF FSK信号产生子单元 602接收到上述 DTMF信号的正弦采样 值后, 进行数模转换, 并进行正确的模拟信号叠加, 然后输出 DTMF信号给 扬声器接口, 驱动扬声器发声。
5、 控制子单元 603设置相应的状态标志控制信号和执行搡作类型的控 制信号, 其中, 该状态标志控制信号用于标识某项操作的执行状态, 例如
DTMF信号已经发送完毕; 该执行操作类型的控制信号用于标识下个步骤执 行什么操作。
6、 微处理器 10查询到控制子单元 603中的状态标志控制信号之后, 再 查询控制子单元 603中的操作类型控制信号, 来确定即将执行何种操作, 例 如: 先查询状态标志控制信号确定 "DTMF信号已经发送完毕", 再查询操 作类型控制信号确认应执行 "对待发送业务数据进行加密操作"; 或者, 例 如: 先查询状态标志控制信号确定 "业务数据加密完成", 再查询操作类型 控制信号确认应执行 "信道编码和帧处理操作" 等。
7、微处理器 10读取数据存储单元 202中的业务数据, 例如物理 ID、 加 密种子和加密密钥等, 并通过调用程序存储单元 201中应用程序依次实现对 待发送业务数据进行加密、 信道编码和帧处理操作以及产生待发送数据中每 个数字的 FSK信号的正弦采样值并配置给控制子单元 603。
8、 控制子单元 603 接收到上述 FSK 信号的正弦采样值后配置给 DTMF/FSK信号产生子单元 602, DTMF FSK信号产生子单元 602将接收到 的 FSK信号的正弦采样值进行数模转换, 并进行正确的模拟信号叠加, 然后 输出 FSK信号给扬声器接口, 驱动扬声器发声。 本实施例五, 通过利用控制子单元来减少微处理器 10的运算处理量, 提高每次音频业务的交互速度, 并且增加的控制子单元 603更利于芯片模块 化的设计。
请参考图 9,为本发明第六实施例所述音频业务处理电路的结构示意图, 其与如图 8实施例五所示的音频业务处理电路的区别在于: 音频业务处理单 元 60还包括:
Crypto子单元 604, 与系统总线互连, 用于产生一次一密密钥并使用该 密钥完成对待发送数据的加密操作; 其中产生一次一密密钥的算法, 以及加 密操作的算法不限。 只需要满足音频卡业务的安全需求和对加密位宽的要求 即可。
CODE子单元 605, 与系统总线互连, 根据网络端的帧格式和编码要求, 完成待发送业务数据的数据帧处理和信道编码操作。
本实施例六是通过使用 Crypto子单元 604来实现实施例五所述步驟 7中 的加密搡作; 在实际应用中, 加密操作也可仍采用实施例五的步骤 7。 的信 if编码和帧处理操作; 在实际应用中, 道编码和帧处理操作 ^可仍采用 实施例五的步骤 7。
本实施例六的音频业务处理电路的处理流程与实施例五的区别如下: 7-1、微处理器 10通过总线控制单元 30读取数据存储单元 202中业务数 据, 并配置给 Crypto子单元 604;
7-2、 Crypto子单元 604对待发送业务数据进行一次一密的加密处理后, 产生相应的状态控制信号,该状态控制信号标识 Crypto子单元 604已完成加 密操作;
7-3、 微处理器 10访问到 Crypto子单元 604中的上述状态控制信号, 读 取加密后的待发送业务数据, 并将该待发送业务数据配置给 CODE子单元 605;
7-4、 CODE子单元 605对该待发送业务数据进行信道编码、 帧处理操作 后, 产生相应的状态控制信号,该状态控制信号标识 CODE子单元 605 已完 成编码和帧处理操作; 7-5、 微处理器 10访问到 CODE子单元 605中的上述状态控制信号, 读 取完成加密、编码和帧处理的待发送业务数据,并通过调用程序存储单元 201 中应用程序产生该待发送业务数据中每个数字的 FSK信号的正弦采样值并 配置给控制子单元 603。 值得注意的是: 上述的步骤替代实施例五中的步骤 7就是本实施例六的处理流程。
本实施例六, 通过使用 Crypto子单元 604和 CODE子单元 605加快了 每次音频业务的交互速度, 并且节省了微控制器 10的资源。
倩参考图 10, 为本发明第七实施例所述音频业务处理电路的结构示意 图, 其与如图 8实施例五所示的音频业务处理电路的区别在于: 音频业务处 理单元 60还包括: 与控制子单元 603互连的正弦采样值查找子单元 606, 正 弦采样值查找子单元 606用于存储多种频率的正弦采用值。 在实际应用中, 正弦采样值查找子单元 606可以用存储器来实现。
本实施例七是通过使用正弦采样值查找子单元 606来实现实施例五的步' 驟 3、 7中的产生 DTMF/FSK信号的正弦采样值。
本实施例七的音频业务处理电路的处理流程与实施例五的区别如下: 与实施例五中步骤 3的区别: 敫处理器 10访问到控制子单元 603中的 上述控制信号,产生 DTMF信号发生的指示信号以及待发送的业务接入码数 字信号并配置给控制子单元 603 , 控制子单元 603从正弦釆样值查找子单元 606中查询待发送数字的 DTMF信号的正弦采样值并配置给 DTMF/FSK信号 产生子单元 602。
与实施例五中步骤 7的区别: 微处理器 10通过总线控制单元 30读取数 据存储单元 202中业务 :据, 并通过调用程序存储单元 201中应用程序依次 实现对待发送业务数据, 例如物理 ID、 加密种子等进行加密、信道编码和数 据帧处理操作,然后产生 FSK信号发生的指示信号以及待发送的数字信号并 配置给控制子单元 603 , 控制子单元 603从正弦采样值查找子单元 606中查 询待发送数字的 FSK信号的正弦采样值并配置给 DTMF/FSK信号产生子单 元 602。 值得注意的是: 上述的步骤分别替代实施例五中的步骤 3、 7就是本 实施例七的处理流程。 本实施例七, 通过采用正弦采样值查找子单元 606加快了每次音频业务 的交互速度, 并且节省了微控制器 10的资源。
请参考图 11 , 为本发明音频业务处理电路的第八实施例的结构示意图, 其与如图 10 实施例七所示的音频业务处理电路的区别在于: 音频业务处理 单元 60还包括:
Crypto子单元 604, 与系统总线互连, 用于产生一次一密密钥并使用该 密钥完成对待发送数据的加密操作; 其中产生一次一密密钥的算法, 以及加 密操作的算法不限。 只需要满足音频卡业务的安全需求和对加密位宽的要求 即可。
CODE子单元 605, 与系统总线互连,根据网络端的帧格式和编码要求, 完成待发送业务数据的数据帧处理和信道编码操作。
本实施例八是通过使用 Crypto子单元 604来实现实施例七上述步骤 Ί中 的加密操作; 在实际应用中, 加密操作也可仍采用实施例七的步骤 7。 的信道编码和帧处理操作; 在实际应用中, 信道编码和帧处理操作也可仍采 用实施例七的步骤 7。
本实施例八的音频业务处理电路的处理流程与实施例七的区别如下: 7-1、微处理器 10通过总线控制单元 30读取数据存储单元 202中业务数 据, 并配置给 Crypto子单元 604。
7-2、 Crypto子单元 604对待发送业务数据进行一次一密的加密处理后, 产生相应的状态控制信号,该状态控制信号标识 Crypto子单元 604 已完成加 密操作。
7-3、 微处理器 10访问到 Crypto子单元 604中的上述状态控制信号, 读 取加密后的待发送业务数据, 并将该待发送业务数据配置给 CODE 子单元 605。
7-4、 CODE子单元 605对上述待发送业务数据进行信道编码、 帧处理操 作后, 产生相应的状态控制信号,该状态控制信号标识 CODE子单元 605 已 完成编码和帧处理操作。 7-5、 微处理器 10访问到 CODE子单元 605中的状态控制信号, 读取完 成加密、编码和帧处理的待发送业务数据,产生 FSK信号发生的指示信号及 待发送的数字信号并配置给控制子单元 603, 控制子单元 603从正弦采样值 查找子单元 606中查询待发送的每个数字的 FSK信号的正弦釆样值并配置给 DTMF/FSK信号产生子单元 602。 值得注意的是: 上述的步骤替代实施例七 中的步骤 7就是本实施例八的处理流程。
本实施例八, 通过使用 Crypto子单元 604和 CODE子单元 605更加加 快了每次音频业务的交互速度, 并且节省了微控制器 10的资源。
相应的, 本发明实施例还提供一种音频卡终端, 该音频卡终端包括: 用 户界面、 外围电路和音频业务处理电路。 其中, 所述用户界面包括外壳部分 和按键, 可以根据用户的需求来进行定制; 所述外围电路包括电池和扬声器 等; 对于本领域的技术人员来说所述用户界面和外围电路已为公知技术, 在 此不再赘述。
对于音频业务处理电路, 为上述本发明实施例所提供的音频业务处理电 路, 其功能和作用详见上述。 该音频业务处理电路上的按键接口与本发明音 频卡终端的用户界面上的按键相连, 用于接收用户按 4建信息; 该音频业务处 理电路上的扬声器接口与本发明音频卡终端的外围电路中的扬声器相连, 用 于驱动扬声器, 产生声音信号。
由此可见, 通过采用单芯片结构的技术方案, 本发明实施例提供一种低 成本的音频业务处理电路及设置有该电路的音频卡终端; 通过利用通用异步 收发器, 本发明实施例还可以兼容目前的智能卡发卡、 个性化等相关平台, 从而进一步提供一种高兼容的音频业务处理电路及设置有该电路的音频卡 终端, 同时对发卡方来说, 可以使用现有的通用智能卡读写设备来实现对音 频业务处理电路中存储的音频卡相关业务数据的读、 写和修改等操作, 从而 更进一步的降低成本;
通过利用通用异步收发器, 本发明实施例还可以接收发卡方或用户下载 的应用程序或补丁程序, 从而更进一步提供一种能循环使用的音频业务处理 电路及设置有该电路的音频卡终端。
以上所述仅为本发明的优选实施例而巳, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利 要求范围之内

Claims

权 利 要 求
1、 一种音频业务处理电路, 其特征在于, 包括: 微处理器、存储单元、 总线控制单元和音频业务处理单元; 其中,
所述存储单元用于存储应用程序指令和音频业务数据;
所述微处理器用于读取所迷存储单元中的应用程序指令, 产生系统总线 访问的信号, 实现对系统总线上的所述存储单元和所述音频业务处理单元的 访问;
所述总线控制单元用于提供所述^ ^处理器对系统总线的控制功能; 所述音频业务处理单元用于通过按键接口接收用户按键信息, 并产生双 音多频 DTMF/频移键控 FSK音频信号发送给扬声器接口,驱动扬声器发声。
2、 如权利要求 1 所述的音频业务处理电路, 其特征在于, 所述存储单 元包括:
数据存储子单元, 与系统总线相连, 用于存储音频业务数据;
程序存储子单元, 与所述微处理器相连, 用于存储应用程序指令。
3、 如权利要求 1 所述的音频业务处理电路, 其特征在于, 所述音频业 务处理电路还包括:
通用异步收发器, 与系统总线互连, 用于通过 I/O接口与外部进行数据 通信。
4、 如权利要求 2或 3所述的音频业务处理电路, 其特征在于, 所述音 频业务处理单元包括:
按键处理子单元, 与系统总线互连, 用于通过按键接口接收用户按键信 息, 将所述用户按键信息转换成数字化的按键信号;
DTMF/FSK信号产生子单元, 与系统总线互连, 用于将所述微处理器配 置的音频业务数据的正弦信号采样值进行数模转换, 并进行正确的模拟信号 叠加, 完成 DTMF或 FSK信号的输出, 并驱动扬声器发声。
5、 如权利要求 4所述的音频业务处理电路, 其特征在于, 所述音频业 务处理单元还包括: 加密引擎 Crypto子单元和 /或帧处理 CODE子单元, 分 别与系统总线互连;
所述 Crypto子单元,用于产生一次一密密钥并使用该密钥完成对待发送 音频业务数据的加密操作;
所述 CODE子单元, 根据网络端的帧格式和编码要求, 对加密数据进行 数据帧处理和编码操作。
6、 如权利要求 5 所述的音频业务处理电路, 其特征在于, 所述音频业 务处理单元还包括: 正弦采样值查找子单元, 所述正弦采样值查找子单元与 系统总线互连, 用于存储多个频率的正弦采样值。
7、 如权利要求 2或 3所述的音频业务处理电路, 其特征在于, 所述音 频业务处理单元包括:按键处理子单元、控制子单元和 DTMF/FSK信号产生 子单元;
所述按键处理子单元, 通过按键接口接收用户按键信.息, 将所述用户按 键信息转换成数字化的按键信号并发送给控制子单元;
所述控制子单元, 与系统总线互连, 用于存储与音频业务相关的控制信 息, 并根据接收到的按键信号设置相应的控制信号, 并将所述微处理器访问 到该控制信号后所配置的音频业务数据的正弦信号釆样值发送给 DTMF/FSK信号产生子单元;
所述 DTMF/FSK信号产生子单元,用于将接收到的正弦信号采样值进行 数模转换, 并进行正确的模拟信号叠加, 完成 DTMF或 FSK信号的输出, 并驱动扬声器发声。
8、 如权利要求 7所述的音频业务处理电路, 其特征在于, 所述音频业 务处理单元还包括: Crypto子单元和 /或 CODE子单元, 分别与系统总线互 连;
所述 Crypto子单元,用于产生一次一密密钥并使用该密钥完成对待发送 音频业务数据的加密操作;
所述 CODE子单元, 根据网络端的帧格式和编码要求, 对加密数据进行 数据帧处理和编码操作。
9、 如权利要求 8 所述的音频业务处理电路, 其特征在于, 所述音频业 务处理单元还包括: 正弦采样值查找子单元, 所述正弦采样值查找子单元与 所述控制子单元互连, 用于存储多个频率的正弦采样值。
10、.一种音频卡终端, 包括: 用户界面和外围电路, 其特征在于, 还 括有音频业务处理电路, 所述音频业务处理电路包括: 微处理器、存储单元、 总线控制单元和音频业务处理单元; 其中,
所述存储单元用于存储应用程序指令和音频业务数据;
所述敖处理器用于读取所述存储单元中的应用程序指令, 产生系统总线 访问的信号, 并通过所述总线控制单元实现对系统总线上的所述存储单元和 所述音频业务处理单元的访问;
所述总线控制单元用于提供所述微处理器对系统总线的控制功能; 所述音频业务处理单元用于通过按键接口接收用户按键信息 , 并产生
DTMF/FSK音频信号发送给扬声器接口, 驱动扬声器发声。
11、 如权利要求 10所述的音频卡终端, 其特征在于, 所述存储单元包 括:
数据存储子单元, 与系统总线相连, 用于存储音频业务数据;
程序存储子单元, 与所述微处理器相连, 用于存储应用程序指令。
12、 如权利要求 11 所述的音频卡终端, 其特征在于, 所述音频业务处 理电路还包括:
通用异步收发器, 与系统总线互连, 用于通过 I/O接口与外部进行数据 通信。
13、 如权利要求 11或 12所述的音频卡终端, 其特征在于, 所述音频业 务处理单元包括:
按键处理子单元, 与系统总线互连, 用于通过按键接口接收用户按键信 息 , 将所述用户按键信息转换成数字化的按键信号; DTMF/FSK信号产生子单元, 与系统总线互连, 用于将所述微处理器配 置的音频业务数据的正弦信号采样值进行数模转换, 并进行正确的模拟信号 叠加, 完成 DTMF或 FSK信号的输出, 并驱动扬声器发声。
14、 如权利要求 11或 12所述的音频卡终端, 其特征在于, 所述音频业 务处理单元包括:按键处理子单元、控制子单元和 DTMF/FSK信号产生子单 元;
所述按键处理子单元, 通过按键接口接收用户按键信息, 将所述用户按 键信息转换成数字化的按键信号并发送给控制子单元;
所述控制子单元, 与系统总线互连, 用于存储与音频业务相关的控制信 息, 并根据接收到的按键信号设置相应的控制信号, 并将所述微处理器访问 到该控制信号后所配置的音频业务数据的正弦信号采样值发送给
DTMF/FSK信号产生子单元;
所述 DTMF/FSK信号产生子单元,用于将接收到的正弦信号采样值进行 数模转换, 并进行正确的模拟信号叠加, 完成 DTMF或 FSK信号的输出, 并驱动扬声器发声。
PCT/CN2006/003180 2006-06-28 2006-11-27 Circuit de traitement de service audio et terminal à carte audio WO2008003189A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006100613970A CN101001146B (zh) 2006-06-28 2006-06-28 一种音频业务处理电路及音频卡终端
CN200610061397.0 2006-06-28

Publications (1)

Publication Number Publication Date
WO2008003189A1 true WO2008003189A1 (fr) 2008-01-10

Family

ID=38692972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003180 WO2008003189A1 (fr) 2006-06-28 2006-11-27 Circuit de traitement de service audio et terminal à carte audio

Country Status (2)

Country Link
CN (1) CN101001146B (zh)
WO (1) WO2008003189A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111405649A (zh) * 2020-03-26 2020-07-10 Tcl移动通信科技(宁波)有限公司 一种信息传输方法、装置及移动终端

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223234B (zh) * 2011-06-17 2013-11-20 飞天诚信科技股份有限公司 基于音频通信的电子签名系统及方法
CN102387235B (zh) * 2011-10-14 2013-10-23 华平信息技术股份有限公司 一种使用单片机产生dtmf按键提示音的方法
CN108564746A (zh) * 2018-05-21 2018-09-21 王连队 一种基于智能家居的门禁报警设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2337719Y (zh) * 1998-02-26 1999-09-08 徐学洪 汉字显示多功能电话号码速拨器
CN2425461Y (zh) * 1999-08-23 2001-03-28 北京智博通信息系统工程技术有限责任公司 智能电话拨号器
US20020106073A1 (en) * 2001-02-02 2002-08-08 Tevlin Peter S. Audio telephone dialer for telephone number selected on display in any software application
CN1846060A (zh) * 2003-07-07 2006-10-11 乔治亚技术研究公司 利用分布式合成喷流致动器进行热管理的系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2337719Y (zh) * 1998-02-26 1999-09-08 徐学洪 汉字显示多功能电话号码速拨器
CN2425461Y (zh) * 1999-08-23 2001-03-28 北京智博通信息系统工程技术有限责任公司 智能电话拨号器
US20020106073A1 (en) * 2001-02-02 2002-08-08 Tevlin Peter S. Audio telephone dialer for telephone number selected on display in any software application
CN1846060A (zh) * 2003-07-07 2006-10-11 乔治亚技术研究公司 利用分布式合成喷流致动器进行热管理的系统和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111405649A (zh) * 2020-03-26 2020-07-10 Tcl移动通信科技(宁波)有限公司 一种信息传输方法、装置及移动终端
CN111405649B (zh) * 2020-03-26 2023-06-20 Tcl移动通信科技(宁波)有限公司 一种信息传输方法、装置及移动终端

Also Published As

Publication number Publication date
CN101001146B (zh) 2010-06-09
CN101001146A (zh) 2007-07-18

Similar Documents

Publication Publication Date Title
CN103635912B (zh) 用于对向认证令牌发送的数据编码和解码的方法和装置
CN101061663B (zh) 通过声音信道进行数字认证
TWI253246B (en) Communications system and method for configuring a transceiver
CN1516387A (zh) 基于无线应用协议的保密会话建立
CN1655637A (zh) 用于存储和再现移动终端中的数据的方法
WO2001011575A1 (en) Portable certification device with acoustic coupling
JPH10107675A (ja) セルラ電話機のプログラム方法およびシステム
CN104350483A (zh) 电子设备的整体识别
JP2007518284A (ja) 移動機器における実施許諾モジュールの登録のための方法およびシステム
CN102026187A (zh) 用户识别模块及基于该用户识别模块的传输方法、系统
CN101360142A (zh) 一种信息交换的方法及终端
WO2020154922A1 (zh) 智能锁控制方法及装置
CN112533185B (zh) 一种音响配网方法、装置、计算机设备和存储介质
WO2008003189A1 (fr) Circuit de traitement de service audio et terminal à carte audio
CN101527714A (zh) 制证的方法、装置及系统
WO2012034323A1 (zh) 使用数据卡与无线网络通信的方法、系统及数据卡
CN105208529A (zh) 一种移动终端的位置提示方法及位置提示模块
WO2013174321A1 (zh) 执行命令的方法、装置、智能卡及移动终端
CN202150861U (zh) 数字证书安全锁装置、数字证书认证系统
WO2022228588A1 (zh) 用于绑定用户账户的方法、系统、装置及设备
JP2001525584A (ja) 特殊アプリケーション、特に交通テレマティクサービスに関係するトランザクションの少なくとも1つを端末側で処理するための方法およびこの方法を実施するためのカード
CN105610580A (zh) 基于智能手机的外置语音加密装置及其实现方法
WO2012065422A1 (zh) 移动终端密钥的更新方法及移动终端
WO2017054496A1 (zh) 一种发送文本信息、获取文本信息的方法及装置
CN103023642A (zh) 一种移动终端及其数字证书功能实现方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06828186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06828186

Country of ref document: EP

Kind code of ref document: A1