WO2008001773A1 - Run flat tire - Google Patents

Run flat tire Download PDF

Info

Publication number
WO2008001773A1
WO2008001773A1 PCT/JP2007/062806 JP2007062806W WO2008001773A1 WO 2008001773 A1 WO2008001773 A1 WO 2008001773A1 JP 2007062806 W JP2007062806 W JP 2007062806W WO 2008001773 A1 WO2008001773 A1 WO 2008001773A1
Authority
WO
WIPO (PCT)
Prior art keywords
bead
tire
vehicle
disposed
rubber
Prior art date
Application number
PCT/JP2007/062806
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Segawa
Kazutaka Hana
Koji Matsuyama
Original Assignee
Toyo Tire & Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006176868A external-priority patent/JP4502333B2/en
Priority claimed from JP2006304124A external-priority patent/JP4544636B2/en
Priority claimed from JP2006305482A external-priority patent/JP4544637B2/en
Application filed by Toyo Tire & Rubber Co., Ltd. filed Critical Toyo Tire & Rubber Co., Ltd.
Publication of WO2008001773A1 publication Critical patent/WO2008001773A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/001Tyres requiring an asymmetric or a special mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/02Seating or securing beads on rims
    • B60C15/0236Asymmetric bead seats, e.g. different bead diameter or inclination angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/0009Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/0009Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts
    • B60C17/0018Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts two or more inserts in each sidewall portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/06Tyres characterised by the transverse section asymmetric

Definitions

  • the present invention is a so-called side reinforcing tape provided with a reinforcing rubber layer disposed in a sidewall portion.
  • the reinforced rubber layer supports the tire to suppress flattening, enabling run flat travel.
  • the pressure on the rim of the bead portion is weakened, so the fitting force with the rim is reduced, and the bead portion is easily detached from the rim. There was a problem.
  • Patent Document 3 a run flat tire is adopted which adopts a double bead structure on the vehicle outer side and does not adopt the double bead structure on the vehicle inner side. It has been proposed that the hardness of the reinforcing rubber layer on the side to be balanced should be greater at the inside of the vehicle than at the outside. Further, Patent Document 3 discloses that the void ratio at the vehicle outer side than the equatorial line of the tread is smaller than the void ratio at the vehicle inner side, and the rubber hardness at the vehicle outer side of the tread is greater than the rubber hardness at the vehicle inner side. There is.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 51 116507
  • Patent Document 2 Japanese Patent Application Laid-Open No. 53-138106
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2006-218889
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2001-130223
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2002-205515
  • Patent Document 6 Japanese Patent Application Laid-Open No. 9 109621
  • Patent Document 7 Japanese Patent Application Laid-Open No. 91-118111
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a run-flat tire capable of improving the ride comfort while maintaining the bead removal performance.
  • the run flat tire according to the present invention comprises a pair of bead portions having an annular first bead, a sidewall portion extending outward from the bead portion in the tire radial direction, and a reinforcing rubber disposed on the sidewall portion.
  • a run flat tire comprising: a layer; and a tread portion in which outer peripheral side ends of the side wall portions are connected via a shoulder portion, the run flat tire being provided on the outer side in the tire width direction of the bead portion disposed on the vehicle outer side;
  • the above-mentioned distributive members are disposed on both sides
  • Each reinforcing rubber layer has a rubber hardness of 65 to 82 °
  • the belt layer disposed below the tread portion has a bending rigidity with respect to the longitudinal direction of 200 mm in tire circumferential direction length X tire width direction As the 0.9 to 2.
  • rubber hardness refers to the hardness according to JIS K6253 durometer hardness test (type A). Further, physical properties such as flexural rigidity are values measured by the method described in the examples.
  • the double bead structure adopted on the outside of the vehicle effectively removes the bead against the lateral force generated on the outside of the vehicle at the time of turning of the vehicle, which is the most likely cause of the bead coming off in the run flat traveling state. Can be prevented. For this reason, it is difficult to cause bead detachment due to buckling, and the rigidity of the belt layer can be lowered, so that the ride quality can be improved.
  • it is possible to effectively prevent bead detachment it is possible to reduce the hardness of the reinforcing rubber layer which makes it unnecessary to make the hardness of the side reinforcing rubber layer greater than the outside on the vehicle inner side. It can improve.
  • the void ratio on the outer side of the vehicle is equal to or less than the void ratio on the inner side of the vehicle, with the tire equator line as a boundary.
  • the void ratio refers to a value as a percentage obtained by dividing the groove area of each region by the total area in the tread width.
  • the tread center buckles in a state where the internal pressure is lowered, and Even when the ground contact pressure at the dab portion increases, the pattern shear rigidity on the outer side of the vehicle with a small void ratio increases when turning the vehicle, and the cornering power increases, so the tire slip angle can be reduced. Since the moment in the bead removal direction which acts on the tire is smaller, the bead removal can be prevented more effectively.
  • At least the cap rubber has a rubber boundary line of different hardness at a position of 40 to 60% of the tread width, and the rubber hardness of the boundary line on the vehicle outside of the vehicle inner side
  • the hardness is preferably equal to or higher than the rubber hardness.
  • the tread center portion buckles in a state of reduced internal pressure and the contact pressure of the shoulder portion rises even when the vehicle turns.
  • the pattern shear rigidity on the outside of the vehicle with a low void ratio is higher, the cornering power is increased, so the tire slip angle can be reduced, and the moment in the bead removal direction acting on the tire is smaller. It is possible to prevent bead detachment more effectively.
  • the annular bulging portion is also provided on the outer side in the tire width direction of the bead portion disposed on the inner side of the vehicle, and the second bead is disposed in each of the pair of annular bulging portions. It is also possible.
  • the pair of annular bulging portions reinforced by the second bead can abut on the rim flange, so the mounting stability with the rim is enhanced, and bead detachment can be effectively prevented.
  • bead detachment due to buckling is less likely to occur, and the rigidity of the belt layer can be lowered, so that the riding comfort performance can be improved.
  • the bead detachment can be effectively prevented, the hardness of the reinforced rubber layer disposed in the sidewall portion can be reduced, and even with this, the riding comfort performance can be improved.
  • the cross-sectional height Hi from the inner periphery of the first bead disposed on the vehicle inner side to the tire maximum diameter point, and the inner periphery of the second bead disposed on the vehicle outer side to the tire maximum diameter point are preferred.
  • the section height is the height in the tire radial direction in the tire meridional section, and the tire is defined as a rim. It shall be measured in the state of no load which was equipped and filled up with specified internal pressure.
  • the specified rim refers to the standard rim determined by JATMA corresponding to the tire size.
  • the prescribed internal pressure is the force S which is the air pressure determined by JATMA, and is 180 kPa when the tire is for a passenger car.
  • the inventors of the present invention conducted intensive studies to find that the amplitude can be suppressed by asymmetrizing vibration modes that are generally formed substantially symmetrically on both sides in the tire width direction. It was found to be effective for reduction.
  • the above-described configuration of the present invention adopts the double bead structure only on the outside of the vehicle, and is most likely to be the cause of bead detachment during run flat traveling, and against lateral force generated on the vehicle outside during turning. It is possible to effectively prevent the bead from coming off.
  • tire vibration occurs with both ends of the first bead disposed on the inside of the vehicle and the second bead disposed on the outside of the vehicle.
  • the reinforcing material extending in the above is disposed. According to this configuration, it is possible to reduce the amplitude of the center portion from the shoulder portion that is the antinode of the tire vibration, and the above-described road noise reduction effect can be suitably enhanced.
  • Another run flat tire according to the present invention includes a pair of bead portions having an annular first bead, sidewall portions extending outward from the bead portions in the tire radial direction, and the sidewall portions.
  • the run flat tire includes a reinforced rubber layer and a tread portion connecting the outer peripheral side ends of the side wall portions to each other via a shoulder portion, and from the bead portion disposed on the vehicle outer side.
  • the tire has a ring-shaped bulging portion having a ring-shaped second bead while bulging outward in the tire width direction, and has a cross-sectional height Hi from the inner periphery of the first bead arranged on the vehicle inner side to the tire maximum diameter point
  • the section height Ho from the inner periphery of the second bead disposed on the vehicle outer side to the maximum diameter point of the tire satisfies the relationship of the force Hi_Ho> 15 mm.
  • This tire adopts a double bead structure only on the outside of the vehicle, and has a run flat It is possible to effectively prevent bead detachment against lateral force generated on the outside of the vehicle during cornering, which is the most likely cause of bead detachment during traveling. And, by adopting the double bead structure only on the vehicle outer side, tire vibration occurs with the first bead arranged on the vehicle inner side and the second bead arranged on the vehicle outer side at both ends, and their sectional heights By satisfying the above relationship (Hi-Ho> 15 mm), it is possible to achieve both of the assemblability of the rim and the anti-bead property, and the road noise can be reduced by the asymmetry of the structure.
  • FIG. 1 A tire meridional cross section showing a run flat tire according to a first embodiment of the present invention
  • FIG. 2 A developed view showing an example of a tread pattern of the run flat tire shown in FIG.
  • FIG. 3 A tire meridian cross section showing a run flat tire according to a second embodiment of the present invention
  • FIG. 4 A tire meridian cross section showing a run flat tire according to a third embodiment of the present invention
  • FIG. ) Vibration mode diagram of a test tire according to Example 5-1 and (b) Comparative example 5-1 Description of symbols
  • FIG. 1 is a tire meridional cross-sectional view showing a run flat tire according to a first embodiment of the present invention when the specified rim is attached.
  • FIG. 2 is a development view showing an example of the tread pattern of the run flat tire shown in FIG.
  • the run flat tire of the present invention includes a pair of bead portions 1, sidewall portions 2 extending outward from the bead portions 1 in the tire radial direction, and sidewall portions 2.
  • a tread portion 4 is provided, the outer peripheral side ends of which are connected via a shoulder portion 3.
  • a bundle of bead wires made of, for example, steel wire is provided with an annular bead la (corresponding to the first bead) and a bead filler 15 arranged in an annular shape in the circumferential direction of the tire.
  • the bead portion 1 is firmly fitted on the tire casing 8 in a state of being reinforced by the carcass layer 5.
  • the bead portion 1 is disposed on the tire outer peripheral side of the rim base 8 b of the rim 8 and is pressed against the rim flange 8 a by the air pressure inside the tire.
  • an inner liner layer 6 for air pressure retention is disposed on the inner peripheral side of the carcass layer 5. Further, on the outer peripheral side of the carcass layer 5, a belt layer 7 for reinforcing by squeezing effect is disposed, and on the outer peripheral surface of the belt layer 7, a tread pattern is formed by tread rubber.
  • organic fibers such as polyester, rayon, nylon, and aramid are used. All of these materials should improve adhesion to rubber. Usually, surface treatment, adhesion treatment and the like are performed.
  • the belt layer 7 will be described later.
  • reinforcing rubber layers 9a and 9b having a tire meridional section having a substantially crescent shape are disposed on the inner side of the carcass layer 5 of the sidewall portion 2.
  • Examples of the raw material rubber for the above-mentioned rubber layer and the like include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR) and the like, and these are used alone. Or used as a mixture of two or more. Further, these rubbers are reinforced with a filler such as carbon black and silica, and at the same time, a vulcanizing agent, a vulcanization accelerator, a plasticizer, an antiaging agent and the like are appropriately blended.
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • IR isoprene rubber
  • IIR butyl rubber
  • a double bead structure is adopted only on the outer side of the vehicle when the tire is attached. That is, an annular bulging portion 10 having an inner circumferential side surface 11 provided on the outer side in the tire width direction of the bead portion 1 disposed on the vehicle outer side and facing the outer circumferential curved surface of the rim flange 8a when the specified rim is mounted And an annular bead lb (corresponding to the second bead) disposed in the bulging portion 10.
  • the inner peripheral side surface 11 of the annular bulging portion 10 is in contact with the outer peripheral curved surface of the rim flange 8a, and there is a reduced diameter portion that holds the tip of the rim flange 8a.
  • a bead lb is provided on the outer periphery side of the diameter reducing portion.
  • the annular bulging portion 10 is provided with a bead lb and is connected to the sidewall portion 2 gently with the portion at the top substantially.
  • the annular bulging portion 10 is not limited to the shape shown in the present embodiment, and may have, for example, a semicircular or trapezoidal cross section of the tire meridian line.
  • the hardness of the rubber mainly constituting the annular bulging portion 10 is determined by maintaining the bead release resistance and the rim shift performance while taking into consideration that the rubber hardness of the reinforcing rubber layer 9a on the vehicle outer side is reduced. 66 to 76 ° is preferable in improving the
  • the annular bulging portion 10 is provided with a bead lb in which a bead wire has an annular shape in the tire circumferential direction.
  • the bead lb of the present embodiment is disposed so as to be positioned on the tire outer peripheral side and the tire width direction outer side from the outermost radius point of the center position force S rim flange 8a when the rim is attached.
  • the bead wire constituting the bead lb is not limited to one composed of the same steel wire bundle as the bead la, for example, one composed of the organic fiber bundle or rubber made of fiber reinforced rubber. It may be a bead or the like.
  • the force rim protector 12 is provided with the rim protector 12 for protecting the rim flange 8a when the specified rim is mounted on the outer side in the tire width direction of the bead portion 1 disposed inside the vehicle. It is also possible to form a shape which is connected to the side wall portion 2 from the position separated from the rim flange 8a without providing it.
  • the reinforcing rubber layers 9a and 9b disposed on both sides each have a rubber hardness of 65 to 82 °, preferably a rubber hardness of 65 to 79 °. If the rubber hardness is less than 65 °, the run flat durability and the bead off performance become insufficient. If the rubber hardness exceeds 82 °, the ride comfort can not be improved.
  • the rubber hardness may be different between the reinforcing rubber layer 9 b disposed on the vehicle inner side and the reinforcing rubber layer 9 a disposed on the vehicle outer side. Also, in that case, it is preferable that the reinforcing rubber layer 9a be larger than the reinforcing rubber layer 9b as the rubber hardness that the lateral force generated on the outside during turning of the vehicle is likely to cause bead detachment during run flat traveling.
  • the reinforcing rubber layer 9a disposed on the vehicle outer side is preferably larger than the reinforcing rubber layer 9b disposed on the vehicle inner side, preferably having a maximum thickness of 0.5 mm or more, preferably 0.8 to 1: 1.5 mm. Only the maximum thickness is large. Specifically, for example, the maximum thickness of the reinforcing rubber layer 9a disposed on the vehicle outer side is 9. 8 to 13. 5 mm, and the maximum thickness of the reinforcing rubber layer 9b disposed on the vehicle inner side is 9 to 12 mm. Me. .
  • the reinforcing rubber layers 9a and 9b are not limited to those formed of a single rubber layer, and may be formed of a plurality of rubber layers having different physical properties such as hardness. In that case, the average value of the rubber hardness of each layer may be within the above range.
  • the reinforcing rubber layer 9a disposed on the vehicle outer side is formed of a single rubber layer
  • the reinforcing rubber layer 9b disposed on the vehicle inner side is formed of two rubber layers
  • the carcass layer 5 is composed of two layers
  • the reinforcing rubber layer 9 b is disposed on the inner side of each carcass layer 5 located in the side wall portion 2.
  • a reinforcing rubber layer 9 a is disposed inside the two carcass layers 5 located in the sidewall portion 2.
  • the reinforcing layer 16 may be disposed substantially along the inner peripheral surface of the annular bulging portion 10.
  • the inner peripheral surface of the annular bulging portion 10 can be reinforced to suppress abrasion.
  • the reinforcing layer 16 include steel cords and chains made of organic fibers such as rayon, nylon, polyester, and aramid.
  • the belt layer 7 disposed below the tread portion 4 has a bending stiffness in the longitudinal direction of 200 mm in the circumferential direction of the tire and a length in the width direction of the tire of 0.9 to 2.
  • 1 X as bending stiffness per 100 mm. It is 10 6 N * m 2 , preferably 1.2 to 2.0 ⁇ 10 6 N.m 2 .
  • the bending stiffness is measured by sampling from a product tire. The belt layer is cut out to dimensions of 250 mm in the circumferential direction of the tire and 100 mm in the width direction of the tire, and this is used as a sample for the Shimadzu photograph tester Conduct a three-point bending test.
  • the bending rigidity of the belt layer 7 in the longitudinal direction is less than 0.9 X 10 6 Nm 2 , the buckling becomes extremely large during cornering, so that the bead is caused by the belt breakage or the belt breakage. There is a problem of detachment. In addition, if it exceeds 2. 1 ⁇ 10 6 N * m 2 , the ride quality can not be improved.
  • a material having a bending stiffness lower than that of a conventional run flat tire is used, and steel, aramid, PEN, polyester or the like is used. All of these materials are usually subjected to surface treatment, adhesion treatment and the like to improve adhesion to rubber.
  • the bending stiffness can be adjusted by the thickness of the material, the number of threads, the inclination angle, etc. in addition to the type of cord.
  • the belt layer 7 has, for example, a two-layer structure, and cords are arranged symmetrically at an angle of preferably 19 to 27 ° with respect to the tire equator line.
  • the outer layer of the belt layer 7 may be provided with a belt reinforcing layer, in which case the bending stiffness is measured without the belt reinforcing layer.
  • the belt reinforcing layer is, for example, a cord arranged or spirally wound in the tire circumferential direction.
  • organic fibers such as polyester, rayon, nylon, and aramid, metal fibers such as steel, and the like are used.
  • the tread portion 4 has, for example, a tread pattern as shown in FIG.
  • the tread pattern formed in the tread portion 4 has a tire equatorial line CL as a boundary of the region A1 outside the vehicle.
  • the void ratio be equal to or less than the void ratio of the area A2 inside the vehicle. More preferably, the void ratio of the region A1 outside the vehicle is 75 to 96% of the void ratio of the region A2 inside the vehicle. If this value is too small, uneven wear on the inside of the vehicle tends to increase.
  • the void ratio of the region A1 outside the vehicle is 25 to 35. /.
  • the void ratio of area A2 inside the vehicle is 30 to 40. / o is preferable.
  • four circumferential grooves and five types of oblique grooves are formed, but it is possible to adjust the void ratio S by the thickness and formation density of these.
  • the tread portion 4 has a boundary line TB of rubber different in hardness at least at a position A3 where the cap rubber is 40 to 60% of the tread width W, and the rubber hardness of the vehicle outside of the boundary line TB is the vehicle It is preferable that the hardness is equal to or higher than the inner rubber hardness. More preferably, the rubber hardness on the outside of the vehicle at the boundary line TB is 102 to 115% of the rubber hardness on the inside of the vehicle. If this value is too large, uneven wear on the inside of the vehicle tends to increase.
  • the rubber hardness on the outer side of the boundary line TB of the vehicle is preferably 65 to 75 °, and the rubber hardness on the inner side of the vehicle is preferably 62 to 70 °. From the viewpoint of durability, the boundary line T of rubber with different hardness
  • B is preferably disposed at the bottom of the groove.
  • the reinforcing rubber layer disposed on the inner side of the vehicle is formed of two rubber layers, but the reinforcing rubber layer disposed on the inner side of the vehicle includes one rubber layer. You may also form in. In that case, the reinforcing rubber layer is disposed on the inside of the two carcass layers located on the side wall also inside the vehicle.
  • the force carcass layer may be constituted by one layer.
  • the inner peripheral side surface of the annular bulging portion may be separated from the outer peripheral side curved surface of the rim flange at normal internal pressure.
  • the tread pattern has four circumferential grooves and five types of oblique grooves, and the tread pattern is particularly limited in the present invention. It is not decided.
  • a belt layer is cut out from the product tire to a dimension of 250 mm in the circumferential direction of the tire and 100 mm in the width direction of the tire, and this is used as a sample to carry out a 3-point bending test with an autograph tester manufactured by Shimadzu Corporation. At this time, by setting the distance between fulcrums to 200 mm and the test speed of 1 mm / sec, bending rigidity in the circumferential direction per 200 x 100 mm is obtained.
  • the calculation method is based on Chapter 5 of Tire Engineering (Grand Prix Publishing).
  • a test tire was mounted on the left front of a real car (domestic 3000cc class FR car), and the car went on a so-called J-turn traveling straight from a straight ahead to a 20 m radius circular course.
  • Each test tire was run-flat at an internal pressure of OkPa, and the bead release resistance was evaluated by the running speed (proportional to the lateral G) when bead removal occurred.
  • the driving speed started from 25 km / h, and the vehicle was driven in 5 km / h increments until bead detachment occurred.
  • Comparative example 1 — 1 is evaluated as an index of 100, and the larger the value, the higher the running speed when bead detachment occurs, that is, the better the bead detachment resistance.
  • the run-flat tire of each example can improve bead removal performance and ride comfort.
  • Comparative Example 1 1 to 5 where the double bead structure was not adopted, the bead declination was significantly deteriorated due to the decrease in the bending rigidity of the belt layer and the decrease in the PAD hardness.
  • the improvement effect of the riding comfort is reduced as in Comparative Example 1-16:! 18 unless the bending rigidity and PAD hardness of the belt layer are reduced.
  • Example 3-:!-3-3 the bead detachment is greatly improved.
  • Comparative Example 3-:!-3-4 the bead detachment was significantly deteriorated due to the decrease in the bending rigidity of the belt layer and the decrease in the PAD hardness.
  • the second embodiment has the same configuration as the first embodiment except for the configuration described below, so the common points are omitted and the differences are mainly described. Note that the same reference numerals are given to the same members * portions as the members * portions described in the first embodiment, and the redundant description will be omitted.
  • FIG. 3 is a tire meridional cross-sectional view showing a run flat tire according to a second embodiment of the present invention when the specified rim is attached.
  • the right side is the outside of the vehicle.
  • double bead structures are adopted on both sides in the tire width direction. That is, a pair of annular bulging portions 10 having an inner peripheral side surface 11 provided on the outer side in the tire width direction of the bead portion 1 and facing the outer peripheral curved surface of the rim flange 8a when the specified rim is attached And an annular bead lb disposed on each of the
  • the reinforcing rubber layers 9a and 9b are not limited to those formed of a single rubber layer as in the present embodiment, but may be formed of plural rubber layers having different physical properties such as hardness.
  • the reinforcing rubber layer 9a is composed of two rubber layers, according to the equation ⁇ (ha 'X ta') + (ha "X ta") / (ta, + ta ")
  • the calculated value may be within the range of the rubber hardness of the above-mentioned reinforced rubber layer 9a, where ta ′, ha, is the maximum thickness of one of the rubber layers constituting the reinforced rubber layer 9a, and the rubber hardness And ta ", ha" are the other maximum thickness, rubber hardness.
  • the reinforcing rubber layers 9a and 9b on both sides are formed of a single rubber layer, and the force S disposed inside the two-layered carcass layer 5 located in the sidewall portion 2,
  • the present invention is not limited to this.
  • at least one of the reinforcing rubber layers may be formed of two rubber layers, and the carcass layer 5 may be interposed between the two layers.
  • the belt layer 7 disposed below the tread portion 4 has a bending stiffness in the longitudinal direction of 200 mm in the circumferential direction of the tire and 100 mm in the width direction of the tire.
  • the flexural rigidity is 0.9 to 2. 1 x 10 6 N 'm 2 and preferably 1. 2 to 2. 0 ⁇ 10 6 ⁇ m'.
  • the bending test was carried out in the same manner as in the first embodiment described above.
  • Comparative example 4 The riding comfort in 5 points is made into 5 points, and 10 points are evaluated as a full mark, and the bearing center is better, and the said index is large and preferable.
  • the J-turn travel was performed in the same manner as in the first embodiment described above, and the bead resistance was evaluated.
  • Comparative Example 4 _ 1 is evaluated as an index of 100, and the larger the value, the higher the running speed when bead detachment occurs, that is, the bead is excellent in bead detachment resistance.
  • the tire has the tire structure shown in FIG. 3, the bending rigidity of the belt layer as shown in Table 4, the rubber hardness (PAD hardness) of the reinforcing rubber layer on both sides, and the difference in the maximum thickness of the reinforcing rubber layer on both sides Omm
  • the riding comfort performance can be improved while maintaining the anti-bead performance.
  • Comparative Examples 4 to 45 in which the double bead structure is not employed, the anti-bead resistance performance is significantly deteriorated, and further, the flexural rigidity or PAD hardness of the belt layer is high, and Comparative Example 4 _ 1 At 4 to 3, the ride performance is degraded.
  • Comparative Examples 4_ 6 to 4_8 even when the double bead structure is adopted, the ride comfort performance is not improved as in Comparative Examples 4_ 6 to 4_8 unless the bending rigidity and the PAD hardness of the belt layer are reduced.
  • the third embodiment has the same configuration and effects as the first embodiment except for the configuration described below, so the common points are omitted and the differences are mainly described. Note that the same reference numerals are given to the same members * portions as the members * portions described in the first embodiment, and the redundant description will be omitted.
  • FIG. 4 is a tire meridional cross-sectional view showing a run flat tire according to a third embodiment of the present invention when the specified rim is attached.
  • a belt layer 7 for reinforcement by hoop effect is disposed, and on the outer periphery thereof, a tread rubber 13 is disposed.
  • the carcass layer 5 and the belt layer 7 are each made of a cord material arranged at a predetermined angle.
  • the cord material organic fibers such as polyester, nylon, nylon, aramid, steel, etc. are preferably used.
  • FIG. 4 shows the outside of the vehicle on the right side and the inside of the vehicle on the left side, and in the present invention, the double bead structure is adopted only on the outside of the vehicle. That is, an annular bulging portion 10 having an annular bead lb is provided while bulging outward from the bead portion 1 disposed on the vehicle outer side in the tire width direction.
  • the inner circumferential side surface 11 of the annular bulging portion 10 may be gradually separated from the outer peripheral curved surface of the rim flange 8a, but in the present embodiment, it is in contact with the outer peripheral curved surface.
  • the hardness of the rubber mainly constituting the annular bulging portion 10 further maintains the bead detachment resistance and the rim deviation performance in consideration of reducing the rubber hardness of the reinforcing rubber layer 9a as described later. In order to improve the ride quality, 65 to 78 ° is preferable.
  • the cross-sectional height Hi from the inner periphery of the bead la disposed on the vehicle inner side to the tire maximum diameter point P and the tire from the inner periphery of the bead lb disposed on the vehicle outer side It is set to satisfy the relationship between the section height Ho and the force Hi_Ho> 15 mm, which makes it possible to achieve both reduction in road noise and improvement in anti-bead resistance performance.
  • the present invention adopts the double bead structure only on the vehicle outer side, the difference in the amount of deflection of the side wall portions 2 on both sides in the run flat state tends to be large. Due to this, the asymmetry of the contact pressure distribution on the tread surface becomes large, which may cause problems such as occurrence of uneven wear and deterioration in steering stability. Therefore, in the present embodiment, the thickness of the reinforcing rubber layer 9a is reduced by increasing the rubber hardness of the reinforcing rubber layer 9b inside the vehicle with respect to the reinforcing rubber layer 9a outside the vehicle. It balances the amount of deflection.
  • the rubber hardness of the reinforcing rubber layer 9a is 60 to 82 °
  • the rubber hardness of the reinforcing rubber layer 9b is 65 to 90.
  • the rubber hardness of the reinforcing rubber layer 9b is made equal to or higher than that of the reinforcing rubber layer 9a, and the maximum thickness is increased by 0.5 mm or more.
  • the rubber hardness of the reinforcing rubber layer 9a disposed on the vehicle outer side is 60 to 82 ° as described above, and preferably 65 to 78 °. If this is less than 60 °, the durability during runflat running becomes insufficient, and if it exceeds 82 °, balance with the deflection inside the vehicle should be taken. Tend to result in uneven wear on the tread surface and a deterioration in ride comfort.
  • the rubber hardness of the reinforcing rubber layer 9b disposed inside the vehicle is 65 to 90 ° as described above, and preferably the rubber hardness is 70 to 85 °. If this is less than 65 °, uneven wear tends to occur on the tread surface, which makes it difficult to balance the amount of sag on the outside of the vehicle, and if it exceeds 90 °, the ride comfort tends to deteriorate.
  • the reinforcing rubber layer 9b preferably has a rubber hardness equal to or higher than that of the reinforcing rubber layer 9a within the range of 65 to 90 °, and preferably has a rubber hardness 5 ° or more higher than that of the reinforcing rubber layer 9a.
  • the reinforcing rubber layer 9b disposed inside the vehicle has a maximum thickness that is larger by 5% to 13% at which the maximum thickness is 4% or more larger than that of the reinforcing rubber layer 9a disposed outside the vehicle. That is, when the maximum thickness of the reinforcing rubber layer 9a is 100, it is more preferable that the maximum thickness of the reinforcing rubber layer 9b is 105 to 113, preferably 104 or more.
  • the reinforcing rubber layers 9a and 9b are not limited to those formed of a single rubber layer, and may be formed of a plurality of rubber layers having different physical properties such as rubber hardness.
  • the reinforcing rubber layer 9a is composed of two rubber layers, according to the equation ⁇ (ha 'X ta') + (ha "X ta") / (ta '+ ta ") Calculated value It should be within the range of rubber hardness of the above-mentioned reinforced rubber layer 9a, where ta,, ha, is the maximum thickness of one of the rubber layers constituting the reinforced rubber layer 9a, and the rubber hardness Yes, ta "and ha" are the other maximum thickness and rubber hardness.
  • the reinforcing rubber layer 9a is formed of a single rubber layer, and the reinforcing rubber layer 9b intervenes one layer of the carcass layer 5
  • the carcass layer 5 is composed of two layers, and the reinforcing rubber layer 9 b is formed on the inner peripheral side of each carcass layer 5 located in the side wall portion 2. Are arranged.
  • the width is substantially 5 to 15%, preferably 10 to 15% of the maximum belt width WB, substantially in the tire circumferential direction. It is preferable to provide a reinforcement (not shown) extending at an angle of 0 °. According to this configuration, it is possible to reduce the amplitude of the center portion that is the antinode of the tire vibration, and it is possible to preferably enhance the road noise reduction effect.
  • the constituent materials of the carcass layer 5 and the belt layer 7 described above can be preferably used.
  • the road noise reduction effect according to the present invention is mainly due to the vibration mode having the asymmetry described above, and the arrangement of the reinforcing member does not excessively increase the weight of the tire.
  • specific examples of the run flat tire according to the third embodiment of the present invention will be described.
  • the evaluation item in an Example etc. measured as follows.
  • Comparative Example 5-1 is evaluated on the basis of an index of 100, and the larger the value is, the larger the traveling speed when bead detachment occurs, that is, the better the bead detachment resistance.
  • test tire was mounted on a real car (domestic 3000cc class FR car) and air pressure was 200kPa for both front and rear, a microphone was attached to the driver's seat ear and road noise level of 200 ⁇ 400Hz was measured at constant speed of 60km Zh. .
  • Comparative Example 5 _ 1 is taken as 100 to measure the measured value. The smaller the value is, the smaller the road noise level is.
  • the hump pressure was evaluated as an index of rim setability. Comparative example 5-1 is evaluated as an index of 100, and the larger the value is, the worse the rim assembling property is, and it is shown.
  • Tires having a tire structure shown in FIG. 4 and a tire size of 245/401 ⁇ 18 as shown in Table 5 are given as Examples 5-1 and 5-2.
  • the rubber hardness of the reinforcing rubber layer on the outer side of the vehicle was 76 °
  • the rubber hardness of the reinforcing rubber layer on the inner side of the vehicle was 78 °, in order to balance the deflection of the side wall portions on both sides.
  • the maximum thickness of the reinforcing rubber layer disposed outside the vehicle was made smaller than that inside the vehicle, and the difference between them was 10% of the maximum thickness of the reinforcing rubber layer disposed outside the vehicle.
  • the reinforcing rubber layers on both sides were each composed of a single layer rubber layer having a rubber hardness of 77 °. Further, the reinforcing rubber layers on both sides were set to the same maximum thickness, and both of them were in the middle of the maximum thicknesses of the reinforcing rubber layers on both sides in the example.
  • the test tester is the same as Example 5-1 except that the value of Hi-Ho is as shown in Table 5.
  • the samples were prepared and set as Comparative Examples 5-2 and 5-3, respectively.
  • Table 5 shows the evaluation results of each example.
  • FIG. 5 is a vibration mode diagram of a test tire according to (a) Example 5-1 and (b) comparative example 5-1, wherein the initial shape before the tire vibrates is indicated by a broken line BL, and the tire is shown in FIG.
  • the vibration mode of is indicated by a solid line SL.
  • Such a vibration mode diagram can be created from the experimentally obtained amplitude and phase of the transfer function.
  • the transfer function is disclosed in detail in Japanese Patent Laid-Open No. 2004-82858. As shown in the figure, when vibration is input to the tread portion of the tire within a frequency range of 200 to 400 Hz, a plurality of measurement points (circles in FIG. It corresponds to the mark).
  • vibration modes substantially symmetrical with respect to the tire equator are formed with the first beads arranged in the pair of bead portions at both ends, and it is possible to Part.
  • This vibration mode is a cross-section secondary mode in which the tire maximum width portion is a node and the buttress portion and the lower side are antinodes.
  • the vibration nodes and antinodes are substantially at the same position on the vehicle outer side and the vehicle inner side.
  • Example 5-1 the first bead disposed in the bead portion on the inner side of the vehicle and the second bead disposed in the annular bulging portion on the outer side of the vehicle are both ends, It can be seen that vibration modes asymmetric to the tire equator are formed. It has a double bead structure on the outside of the vehicle The vibration mode has an asymmetry to suppress the amplitude.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

A run flat tire having reinforced rubber layers (9a, 9b) disposed in the side wall parts has an annular swollen part (10) and an annular second bead (1b). The annular swollen part (10) is formed on the outer side, in the lateral direction of the tire, of a bead part (1) disposed on the outer side of a vehicle, and has an inner peripheral surface (11) facing the outer peripheral curved surface of a rim flange when a specified rim is installed on the tire. The annular second bead (1b) is disposed in the annular swelled part (10). Both the reinforced rubber layers (9a, 9b) disposed on both sides have a rubber hardness in the range from 65° to 82°. Belt layers (7) disposed on the lower side of the tread part (4) have longitudinal bending rigidity in the range from 0.9 to 2.1 × 106 N.m2.

Description

ランフラットタイヤ 技術分野  Run flat tire Technical field
[0001] 本発明は、サイドウォール部に配された補強ゴム層を備える、いわゆるサイド補強タ
Figure imgf000003_0001
[0001] The present invention is a so-called side reinforcing tape provided with a reinforcing rubber layer disposed in a sidewall portion.
Figure imgf000003_0001
背景技術  Background art
[0002] 従来、サイドウォール部に補強ゴム層が配されたサイド補強タイプのランフラットタイ 明  Conventionally, a side reinforced type run flat tie in which a reinforcing rubber layer is disposed on a side wall portion
ャが知られている。力かるランフラットタイヤによれば、パンク等の障害によりタイヤ内 田  Is known. According to the strong run-flat tire, the inside of the
部の空気圧が低下した際、補強ゴム層がタイヤを支持して偏平化を抑制することによ りランフラット走行が可能となる。但し、タイヤ内部の空気圧が低下した状態(ランフラ ット状態)では、ビード部のリムへの押圧が弱まっているため、リムとの嵌合力が低下 し、ビード部カ Sリムから外れ易くなるという問題があった。  When the air pressure in the part decreases, the reinforced rubber layer supports the tire to suppress flattening, enabling run flat travel. However, when the air pressure inside the tire is reduced (runflat state), the pressure on the rim of the bead portion is weakened, so the fitting force with the rim is reduced, and the bead portion is easily detached from the rim. There was a problem.
[0003] これに対して、下記特許文献 1、 2には、リムベース外周側に配される第 1ビードと、 ビード部のタイヤ幅方向外側に膨出する環状膨出部に配される第 2ビードとを備えた 、いわゆるダブルビードタイプのランフラットタイヤが開示されている。力、かるランフラッ トタイヤによれば、ランフラット走行時において、第 2ビードにより補強された環状膨出 部カ^ムフランジの外周側湾曲面に押圧されるため、リムとの嵌合力が高められ、耐 ビード外れ性を向上することができる。  [0003] On the other hand, in Patent Documents 1 and 2 below, the first bead disposed on the rim base outer peripheral side, and the second bead disposed on the annular bulging portion bulging outward in the tire width direction of the bead portion. A so-called double bead type run flat tire provided with a bead is disclosed. According to the run flat tire, since it is pressed against the outer peripheral side curved surface of the annular bulging portion cam flange reinforced by the second bead during run flat running, the fitting force with the rim is enhanced, and the tire is resistant to Bead detachment can be improved.
[0004] また、下記特許文献 3には、車両外側にダブルビード構造を採用し、車両内側には ダブルビード構造を採用しないランフラットタイヤであって、ランフラット時に両側のサ イド部のたわみ量のバランスをとるべぐサイドの補強ゴム層の硬度を車両内側で外 側より大きくしたものが提案されている。更に特許文献 3には、トレッドの赤道線より車 両外側のボイド比率を車両内側のボイド比率より小さくし、またトレッドの車両外側の ゴム硬度を車両内側のゴム硬度より大きくする点が開示されている。  Further, in Patent Document 3 below, a run flat tire is adopted which adopts a double bead structure on the vehicle outer side and does not adopt the double bead structure on the vehicle inner side. It has been proposed that the hardness of the reinforcing rubber layer on the side to be balanced should be greater at the inside of the vehicle than at the outside. Further, Patent Document 3 discloses that the void ratio at the vehicle outer side than the equatorial line of the tread is smaller than the void ratio at the vehicle inner side, and the rubber hardness at the vehicle outer side of the tread is greater than the rubber hardness at the vehicle inner side. There is.
[0005] し力し、上記のようなランフラットタイヤでは、トレッドのバックリングを防止して耐ビー ド外れ性を向上させる観点から、ベルト層に太めのスチール等が使用されており、ベ ルト層の高い剛性によって、乗り心地性が犠牲になっていた。 [0006] また、ビード外れとは別の問題として、ロードノイズと呼ばれる騒音が車室内に発生 することが知られている。このロードノイズは、比較的荒れた路面を走行したときにタイ ャが路面凹凸により加振され、その振動がリム、車軸、車体といった経路で伝播して 、最終的に車室内で騒音となるものであり、近年の自動車の高級化に伴って低減す ることが要求されている。 [0005] In the case of run-flat tires such as those described above, a thick steel or the like is used for the belt layer from the viewpoint of preventing tread buckling and improving bead resistance. The high rigidity of the layers sacrificed the ride comfort. [0006] Further, as another problem with bead dislodging, it is known that a noise called road noise is generated in a vehicle interior. The road noise is generated when the tire is vibrated by the unevenness of the road surface when traveling on a relatively rough road surface, and the vibration is transmitted along the route of the rim, axle, car body, and finally becomes noise in the vehicle interior. It is required to reduce this with the recent upgrading of automobiles.
[0007] ロードノイズのうち 200〜400Hzの周波数域のものは、高周波ロードノイズと呼ばれ る。この高周波ロードノイズを発生するタイヤ振動は、一対のビード部を両端として定 在波を作り、ラジアル方向に振動モードを形成することが知られている。一般に、この 振動モードは、タイヤ最大幅部を節としてバットレス部及びサイド下部を腹とする断面 2次モードが関係すると考えられており(例えば、下記特許文献 4、 5参照)、加えてシ ョルダ部を節としてセンター部(クラウン部)が振動の腹になることも知られている。  [0007] Of the road noise, those in the frequency range of 200 to 400 Hz are called high frequency road noise. It is known that tire vibration that generates high frequency road noise forms a standing wave with a pair of bead portions at both ends to form a vibration mode in the radial direction. Generally, this vibration mode is considered to be related to a cross-sectional secondary mode in which the tire maximum width portion is a node and the buttress portion and the lower side are antinodes (see, for example, Patent Documents 4 and 5 below). It is also known that a center part (crown part) becomes an antinode of vibration with a part as a node.
[0008] この高周波ロードノイズの対策としては、下記特許文献 6、 7記載のようにタイヤ振動 の腹となる部分のゴム厚を増加したり、その部分に密度の大きい部材を配置したりし て振幅を抑制する方法が知られている力 いずれの方法を採用してもタイヤ重量の 大幅な増加が避けられないとレ、う問題が残る。  As measures against this high frequency road noise, as described in Patent Documents 6 and 7 below, the rubber thickness of the portion that becomes the antinode of the tire vibration is increased, or a member with a large density is arranged in that portion. There are known methods for suppressing the amplitude. Regardless of which method is adopted, a significant increase in tire weight can not be avoided.
特許文献 1 :特開昭 51 116507号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 51 116507
特許文献 2 :特開昭 53— 138106号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 53-138106
特許文献 3:特開 2006— 218889号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2006-218889
特許文献 4:特開 2001— 130223号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2001-130223
特許文献 5 :特開 2002— 205515号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 2002-205515
特許文献 6 :特開平 9 109621号公報  Patent Document 6: Japanese Patent Application Laid-Open No. 9 109621
特許文献 7 :特開平 9一 118111号公報  Patent Document 7: Japanese Patent Application Laid-Open No. 91-118111
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0009] 本発明は上記実情に鑑みてなされたものであり、その目的は、ビード外れ性能を維 持しながら、乗り心地の向上を図ることができるランフラットタイヤを提供することにあ る。また、本発明の更なる目的は、リム組み性を悪化させずにランフラット走行時のビ ード外れを防止し、し力、も十分なロードノイズ低減効果を得ることができるランフラット タイヤを提供することにある。 The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a run-flat tire capable of improving the ride comfort while maintaining the bead removal performance. In addition, it is a further object of the present invention to prevent run-off during run-flat travel without deteriorating rim settability, and to obtain a sufficient run-noise reduction effect. To provide tires.
課題を解決するための手段  Means to solve the problem
[0010] 上記目的は、下記の如き本発明により達成できる。即ち、本発明のランフラットタイ ャは、環状の第 1ビードを有する一対のビード部と、前記ビード部から各々タイヤ径 方向外側に延びるサイドウォール部と、前記サイドウォール部に配された補強ゴム層 と、前記サイドウォール部の各々の外周側端同士をショルダ部を介して連ねるトレッド 部と、を備えるランフラットタイヤにおいて、車両外側に配される前記ビード部のタイヤ 幅方向外側に設けられ、規定リム装着時にリムフランジの外周側湾曲面に対向する 内周側面を有する環状膨出部と、その環状膨出部に配された環状の第 2ビードとを 備えると共に、両側に配される前記補強ゴム層は何れもゴム硬度 65〜82° であり、 前記トレッド部の下方に配されるベルト層は長手方向に対する曲げ剛性が、タイヤ周 方向長さ 200mm Xタイヤ幅方向長さ 100mm当たりの曲げ剛性として、 0. 9〜2. 1 X 106N.m2であることを特徴とする。 The above object can be achieved by the present invention as described below. That is, the run flat tire according to the present invention comprises a pair of bead portions having an annular first bead, a sidewall portion extending outward from the bead portion in the tire radial direction, and a reinforcing rubber disposed on the sidewall portion. A run flat tire comprising: a layer; and a tread portion in which outer peripheral side ends of the side wall portions are connected via a shoulder portion, the run flat tire being provided on the outer side in the tire width direction of the bead portion disposed on the vehicle outer side; In addition to an annular bulging portion having an inner peripheral side surface facing the outer peripheral side curved surface of the rim flange when the rim is attached, and an annular second bead arranged on the annular bulging portion, the above-mentioned distributive members are disposed on both sides Each reinforcing rubber layer has a rubber hardness of 65 to 82 °, and the belt layer disposed below the tread portion has a bending rigidity with respect to the longitudinal direction of 200 mm in tire circumferential direction length X tire width direction As the flexural rigidity per length 100 mm, characterized in that from 0.9 to 2. A 1 X 10 6 Nm 2.
[0011] 本発明において、ゴム硬度は、 JISK6253のデュロメータ硬さ試験 (Aタイプ)による 硬さを指す。また、曲げ剛性等の物性は、具体的には実施例に記載された方法で測 定された値である。 In the present invention, rubber hardness refers to the hardness according to JIS K6253 durometer hardness test (type A). Further, physical properties such as flexural rigidity are values measured by the method described in the examples.
[0012] 上記構成によると、ランフラット走行状態において最もビード外れの原因となり易い 、車両旋回時の車両外側に生じる横力に対して、車両外側に採用したダブルビード 構造によって、効果的にビード外れを防止することができる。このため、バックリングに よるビード外れも生じにくくなつて、ベルト層の剛性を低くすることができるので、乗り 心地の向上を図ることができる。また、効果的にビード外れを防止できるため、サイド の補強ゴム層の硬度を車両内側で外側より大きくする必要もなぐ補強ゴム層の硬度 を低減させることができ、これによつても乗り心地の向上を図ることができる。  According to the above configuration, the double bead structure adopted on the outside of the vehicle effectively removes the bead against the lateral force generated on the outside of the vehicle at the time of turning of the vehicle, which is the most likely cause of the bead coming off in the run flat traveling state. Can be prevented. For this reason, it is difficult to cause bead detachment due to buckling, and the rigidity of the belt layer can be lowered, so that the ride quality can be improved. In addition, since it is possible to effectively prevent bead detachment, it is possible to reduce the hardness of the reinforcing rubber layer which makes it unnecessary to make the hardness of the side reinforcing rubber layer greater than the outside on the vehicle inner side. It can improve.
[0013] 上記において、前記トレッド部に形成されたトレッドパターンは、タイヤ赤道線を境 界として車両外側のボイド比率が車両内側のボイド比率と同等以下であることが好ま しい。ここで、ボイド比率とは、トレッド幅内において、各領域の溝面積を全面積で除 して百分率として値を指す。車両外側のボイド比率が車両内側のボイド比率と同等以 下であると、内圧低下状態においてトレッドセンター部がバックリングを起こし、ショル ダ部の接地圧が上昇した場合においても車両旋回時にボイド比率の小さい車両外 側のパターンせん断剛性がより大きくなるため、コーナリングパワーが増加するので、 タイヤのスリップ角を減少させることができ、タイヤに力かるビード外れ方向のモーメン トがより小さくなるため、より効果的にビード外れを防止することができる。 In the above, in the tread pattern formed in the tread portion, it is preferable that the void ratio on the outer side of the vehicle is equal to or less than the void ratio on the inner side of the vehicle, with the tire equator line as a boundary. Here, the void ratio refers to a value as a percentage obtained by dividing the groove area of each region by the total area in the tread width. If the void ratio on the outer side of the vehicle is equal to or less than the void ratio on the inner side of the vehicle, the tread center buckles in a state where the internal pressure is lowered, and Even when the ground contact pressure at the dab portion increases, the pattern shear rigidity on the outer side of the vehicle with a small void ratio increases when turning the vehicle, and the cornering power increases, so the tire slip angle can be reduced. Since the moment in the bead removal direction which acts on the tire is smaller, the bead removal can be prevented more effectively.
[0014] 上記において、前記トレッド部は、少なくともキャップゴムがトレッド幅の 40〜60%の 位置に硬度の異なるゴムの境界線を有し、その境界線の車両外側のゴム硬度が車 両内側のゴム硬度と同等以上であることが好ましい。ここで、トレッド幅とは、タイヤ断 面において、トレッドパターンの踏面の曲率半径でショルダ側へ延長した仮想線と、 両側のバットレスの曲率半径でショルダ側へ延長した 2本の仮想線とが交わる両側の ショルダ点の幅を指す。この場合でも、車両外側のゴム硬度が車両内側のゴム硬度と 同等以上であるため、内圧低下状態においてトレッドセンター部がバックリングを起こ し、ショルダ部の接地圧が上昇した場合においても車両旋回時にボイド比率の小さ い車両外側のパターンせん断剛性がより大きくなるため、コーナリングパワーが増加 するので、タイヤのスリップ角を減少させることができ、タイヤに力かるビード外れ方向 のモーメントがより小さくなるため、より効果的にビード外れを防止することができる。  In the above, in the tread portion, at least the cap rubber has a rubber boundary line of different hardness at a position of 40 to 60% of the tread width, and the rubber hardness of the boundary line on the vehicle outside of the vehicle inner side The hardness is preferably equal to or higher than the rubber hardness. Here, with the tread width, in the tire cross section, an imaginary line extended to the shoulder side with the curvature radius of the tread surface of the tread pattern and two imaginary lines extended to the shoulder side with the curvature radius of the buttress on both sides intersect Points to the width of the shoulder points on both sides. Even in this case, since the rubber hardness of the outer side of the vehicle is equal to or higher than the rubber hardness of the inner side of the vehicle, the tread center portion buckles in a state of reduced internal pressure and the contact pressure of the shoulder portion rises even when the vehicle turns. As the pattern shear rigidity on the outside of the vehicle with a low void ratio is higher, the cornering power is increased, so the tire slip angle can be reduced, and the moment in the bead removal direction acting on the tire is smaller. It is possible to prevent bead detachment more effectively.
[0015] 上述した本発明では、車両内側に配される前記ビード部のタイヤ幅方向外側にも 前記環状膨出部を設け、一対の前記環状膨出部の各々に前記第 2ビードを配するこ とも可能である。ランフラット走行時には、第 2ビードにより補強された一対の環状膨 出部がリムフランジに当接しうるため、リムとの装着安定性が高められ、ビード外れを 効果的に防止することができる。このため、バックリングによるビード外れも生じにくく なって、ベルト層の剛性を低くすることができるので、乗心地性能の向上を図ることが できる。また、ビード外れを効果的に防止できるため、サイドウォール部に配された補 強ゴム層の硬度を低減させることができ、これによつても乗心地性能の向上を図ること ができる。  In the present invention described above, the annular bulging portion is also provided on the outer side in the tire width direction of the bead portion disposed on the inner side of the vehicle, and the second bead is disposed in each of the pair of annular bulging portions. It is also possible. During run-flat travel, the pair of annular bulging portions reinforced by the second bead can abut on the rim flange, so the mounting stability with the rim is enhanced, and bead detachment can be effectively prevented. As a result, bead detachment due to buckling is less likely to occur, and the rigidity of the belt layer can be lowered, so that the riding comfort performance can be improved. Further, since the bead detachment can be effectively prevented, the hardness of the reinforced rubber layer disposed in the sidewall portion can be reduced, and even with this, the riding comfort performance can be improved.
[0016] 上記において、車両内側に配される前記第 1ビードの内周からタイヤ最大径点まで の断面高さ Hiと、車両外側に配される前記第 2ビードの内周からタイヤ最大径点まで の断面高さ Hoとが、 Hi_Ho > 15mmの関係を満たすものが好ましレ、。ここで、断面 高さとは、タイヤ子午線断面におけるタイヤ径方向の高さであり、タイヤを規定リムに 装着して規定内圧を充填した無負荷の状態で測定したものとする。なお、規定リムと は、タイヤサイズに対応して JATMAで決められた標準となるリムを指す。また、規定 内圧とは、 JATMAで決められた空気圧である力 S、タイヤが乗用車用である場合には 180kPaである。 In the above, the cross-sectional height Hi from the inner periphery of the first bead disposed on the vehicle inner side to the tire maximum diameter point, and the inner periphery of the second bead disposed on the vehicle outer side to the tire maximum diameter point The cross section height Ho and the one that satisfy the relationship of Hi_Ho> 15 mm are preferred. Here, the section height is the height in the tire radial direction in the tire meridional section, and the tire is defined as a rim. It shall be measured in the state of no load which was equipped and filled up with specified internal pressure. The specified rim refers to the standard rim determined by JATMA corresponding to the tire size. The prescribed internal pressure is the force S which is the air pressure determined by JATMA, and is 180 kPa when the tire is for a passenger car.
[0017] 本発明者らは、鋭意研究を重ねたところ、通常はタイヤ幅方向両側に略対称的に 形成される振動モードを、非対称化することによって振幅を抑制することができ、ロー ドノイズの低減に有効であることを見出した。本発明の上記構成は、ダブルビード構 造を車両外側にのみ採用したものであり、ランフラット走行時において最もビード外れ の原因となり易レ、、旋回走行時の車両外側に生じる横力に対して効果的にビード外 れを防止することができるものである。そして、ダブルビード構造を車両外側にのみ採 用したことにより、車両内側に配された第 1ビードと車両外側に配された第 2ビードと を両端とするタイヤ振動が発生し、それらの断面高さが上記関係(Hi— Ho > 15mm )を満たすことで、リム組み性と耐ビード外れ性の両立が図れ、構造の非対称により口 ードノイズを低減することができる。  [0017] The inventors of the present invention conducted intensive studies to find that the amplitude can be suppressed by asymmetrizing vibration modes that are generally formed substantially symmetrically on both sides in the tire width direction. It was found to be effective for reduction. The above-described configuration of the present invention adopts the double bead structure only on the outside of the vehicle, and is most likely to be the cause of bead detachment during run flat traveling, and against lateral force generated on the vehicle outside during turning. It is possible to effectively prevent the bead from coming off. And, by adopting the double bead structure only on the outside of the vehicle, tire vibration occurs with both ends of the first bead disposed on the inside of the vehicle and the second bead disposed on the outside of the vehicle. By satisfying the above relationship (Hi−Ho> 15 mm), it is possible to achieve both of the assemblability of the rim and the anti-bead property, and the mouth noise can be reduced by the asymmetry of the structure.
[0018] 上記において、前記トレッド部に配されたベルト層のタイヤ赤道付近の外周側に、 ベルト最大幅の 5〜: 15%の幅で、タイヤ周方向に対して実質的に 0° の角度で延在 する補強材が配されているものが好ましい。この構成によれば、タイヤ振動の腹となる ショルダ部からセンター部の振幅を低減することができ、上記したロードノイズ低減効 果を好適に高めることができる。  In the above, on the outer circumferential side of the belt layer disposed in the tread portion near the tire equator, 5 to 15% of the maximum width of the belt, substantially at an angle of 0 ° with respect to the tire circumferential direction. It is preferable that the reinforcing material extending in the above is disposed. According to this configuration, it is possible to reduce the amplitude of the center portion from the shoulder portion that is the antinode of the tire vibration, and the above-described road noise reduction effect can be suitably enhanced.
[0019] また、本発明の別のランフラットタイヤは、環状の第 1ビードを有する一対のビード部 と、前記ビード部から各々タイヤ径方向外側に延びるサイドウォール部と、前記サイド ウォール部に配された補強ゴム層と、前記サイドウォール部の各々の外周側端同士 をショルダ部を介して連ねるトレッド部とを備えるランフラットタイヤにぉレ、て、車両外 側に配される前記ビード部からタイヤ幅方向外側に膨出すると共に、環状の第 2ビー ドを有する環状膨出部を備え、車両内側に配される前記第 1ビードの内周からタイヤ 最大径点までの断面高さ Hiと、車両外側に配される前記第 2ビードの内周からタイヤ 最大径点までの断面高さ Hoと力 Hi_Ho > 15mmの関係を満たすものである。  Another run flat tire according to the present invention includes a pair of bead portions having an annular first bead, sidewall portions extending outward from the bead portions in the tire radial direction, and the sidewall portions. The run flat tire includes a reinforced rubber layer and a tread portion connecting the outer peripheral side ends of the side wall portions to each other via a shoulder portion, and from the bead portion disposed on the vehicle outer side. The tire has a ring-shaped bulging portion having a ring-shaped second bead while bulging outward in the tire width direction, and has a cross-sectional height Hi from the inner periphery of the first bead arranged on the vehicle inner side to the tire maximum diameter point The section height Ho from the inner periphery of the second bead disposed on the vehicle outer side to the maximum diameter point of the tire satisfies the relationship of the force Hi_Ho> 15 mm.
[0020] このタイヤは、ダブルビード構造を車両外側にのみ採用したものであり、ランフラット 走行時において最もビード外れの原因となり易い、旋回走行時の車両外側に生じる 横力に対して効果的にビード外れを防止することができるものである。そして、ダブル ビード構造を車両外側にのみ採用したことにより、車両内側に配された第 1ビードと 車両外側に配された第 2ビードとを両端とするタイヤ振動が発生し、それらの断面高 さが上記関係(Hi— Ho > 15mm)を満たすことで、リム組み性と耐ビード外れ性の両 立が図れ、構造の非対称によりロードノイズを低減することができる。 [0020] This tire adopts a double bead structure only on the outside of the vehicle, and has a run flat It is possible to effectively prevent bead detachment against lateral force generated on the outside of the vehicle during cornering, which is the most likely cause of bead detachment during traveling. And, by adopting the double bead structure only on the vehicle outer side, tire vibration occurs with the first bead arranged on the vehicle inner side and the second bead arranged on the vehicle outer side at both ends, and their sectional heights By satisfying the above relationship (Hi-Ho> 15 mm), it is possible to achieve both of the assemblability of the rim and the anti-bead property, and the road noise can be reduced by the asymmetry of the structure.
[0021] 上記において、前記トレッド部に配されたベルト層のタイヤ赤道付近の外周側に、 ベルト最大幅の 5〜: 15%の幅で、タイヤ周方向に対して実質的に 0° の角度で延在 する補強材が配されているものが好ましい。この構成によれば、タイヤ振動の腹となる ショルダ部からセンター部の振幅を低減することができ、上記したロードノイズ低減効 果を好適に高めることができる。 In the above, on the outer peripheral side near the tire equator of the belt layer disposed in the tread portion, an angle of substantially 0 ° with respect to the tire circumferential direction with a width of 5 to 15% of the maximum belt width. It is preferable that the reinforcing material extending in the above is disposed. According to this configuration, it is possible to reduce the amplitude of the center portion from the shoulder portion that is the antinode of the tire vibration, and the above-described road noise reduction effect can be suitably enhanced.
図面の簡単な説明  Brief description of the drawings
[0022] [図 1]本発明の第 1実施形態に係るランフラットタイヤを示すタイヤ子午線断面図 [図 2]図 1に示すランフラットタイヤのトレッドパターンの一例を示す展開図  [FIG. 1] A tire meridional cross section showing a run flat tire according to a first embodiment of the present invention [FIG. 2] A developed view showing an example of a tread pattern of the run flat tire shown in FIG.
[図 3]本発明の第 2実施形態に係るランフラットタイヤを示すタイヤ子午線断面図 [図 4]本発明の第 3実施形態に係るランフラットタイヤを示すタイヤ子午線断面図 [図 5] (a)実施例 5—1及び (b)比較例 5—1に係るテストタイヤの振動モード図 符号の説明  [FIG. 3] A tire meridian cross section showing a run flat tire according to a second embodiment of the present invention [FIG. 4] A tire meridian cross section showing a run flat tire according to a third embodiment of the present invention [FIG. ) Vibration mode diagram of a test tire according to Example 5-1 and (b) Comparative example 5-1 Description of symbols
1 ビード部  1 bead part
la 第 1ビード  la 1st bead
lb 第 2ビード  lb second bead
2 サイドウォール部  2 Side wall part
3 ショノレダ部  3 Shonoreda part
4 トレッド咅 B  4 Tread fence B
7 ベノレト層  7 Benolet layer
8 リム  8 rims
8a リムフランジ  8a rim flange
9a 補強ゴム層(車両外側) 9b 補強ゴム層(車両内側) 9a Reinforcement rubber layer (vehicle outside) 9b Reinforcement rubber layer (vehicle inside)
10 環状膨出部  10 Annular bulge
11 内周側面  11 Inner circumference side
P タイヤ最大径点  P tire maximum diameter point
TB 硬度の異なるゴムの境界線  Boundary line of rubber with different TB hardness
W トレッド幅  W tread width
WB ベルト最大幅  WB belt maximum width
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明の実施の形態について図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0025] [第 1実施形態]  First Embodiment
図 1は、規定リム装着時における本発明の第 1実施形態に係るランフラットタイヤを 示すタイヤ子午線断面図である。図 2は、図 1に示すランフラットタイヤのトレッドパタ ーンの一例を示す展開図である。  FIG. 1 is a tire meridional cross-sectional view showing a run flat tire according to a first embodiment of the present invention when the specified rim is attached. FIG. 2 is a development view showing an example of the tread pattern of the run flat tire shown in FIG.
[0026] 本発明のランフラットタイヤは、図 1に示すように、一対のビード部 1と、ビード部 1か ら各々タイヤ径方向外側に延びるサイドウォール部 2と、サイドウォール部 2の各々の 外周側端同士をショルダ部 3を介して連ねるトレッド部 4とを備える。  The run flat tire of the present invention, as shown in FIG. 1, includes a pair of bead portions 1, sidewall portions 2 extending outward from the bead portions 1 in the tire radial direction, and sidewall portions 2. A tread portion 4 is provided, the outer peripheral side ends of which are connected via a shoulder portion 3.
[0027] ビード部 1には、例えばスチールワイヤからなるビードワイヤの集束体がタイヤ周方 向に環状をなすビード la (前記第 1ビードに相当する。)と、ビードフイラ一 15とが配 設されている。このビード laによりカーカス層 5の端部を巻き返して係止することで、 ビード部 1間がカーカス層 5で補強された状態で、タイヤカ^ム 8上に強固に嵌着され る。正常内圧時には、ビード部 1が、リム 8のリムベース 8bのタイヤ外周側に配される とともに、タイヤ内部の空気圧によりリムフランジ 8aに押し付けられる。  [0027] In the bead portion 1, a bundle of bead wires made of, for example, steel wire is provided with an annular bead la (corresponding to the first bead) and a bead filler 15 arranged in an annular shape in the circumferential direction of the tire. There is. By winding back the end of the carcass layer 5 with the bead la and locking it, the bead portion 1 is firmly fitted on the tire casing 8 in a state of being reinforced by the carcass layer 5. At normal internal pressure, the bead portion 1 is disposed on the tire outer peripheral side of the rim base 8 b of the rim 8 and is pressed against the rim flange 8 a by the air pressure inside the tire.
[0028] カーカス層 5の内周側には、空気圧保持のためのインナーライナ一層 6が配される 。また、カーカス層 5の外周側には、たが効果による補強を行うためのベルト層 7が配 されるとともに、ベルト層 7の外周表面には、トレッドゴムによりトレッドパターンが形成 される。  On the inner peripheral side of the carcass layer 5, an inner liner layer 6 for air pressure retention is disposed. Further, on the outer peripheral side of the carcass layer 5, a belt layer 7 for reinforcing by squeezing effect is disposed, and on the outer peripheral surface of the belt layer 7, a tread pattern is formed by tread rubber.
[0029] カーカス層 5の構成材料としては、ポリエステル、レーヨン、ナイロン、ァラミド等の有 機繊維等が使用される。これらの材料は、いずれもゴムとの接着性を高めるベぐ通 常、表面処理や接着処理等がなされている。ベルト層 7については、後述する。 As a constituent material of the carcass layer 5, organic fibers such as polyester, rayon, nylon, and aramid are used. All of these materials should improve adhesion to rubber. Usually, surface treatment, adhesion treatment and the like are performed. The belt layer 7 will be described later.
[0030] サイドウォール部 2のカーカス層 5内側には、タイヤ子午線断面が略三日月状をな す補強ゴム層 9a、 9bが配される。これにより、タイヤ内部の空気圧が低下した際、タイ ャの偏平化が抑制され、ランフラット走行が可能となる。  On the inner side of the carcass layer 5 of the sidewall portion 2, reinforcing rubber layers 9a and 9b having a tire meridional section having a substantially crescent shape are disposed. As a result, when the air pressure inside the tire decreases, flattening of the tire is suppressed and run flat travel becomes possible.
[0031] 上述したゴム層等の原料ゴムとしては、天然ゴム、スチレンブタジエンゴム(SBR)、 ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)等が挙げられ、これらは 1種単独で又は 2種以上混合して使用される。また、これらのゴムはカーボンブラック やシリカ等の充填材で補強されると共に、加硫剤、加硫促進剤、可塑剤、老化防止 剤等が適宜配合される。  Examples of the raw material rubber for the above-mentioned rubber layer and the like include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR) and the like, and these are used alone. Or used as a mixture of two or more. Further, these rubbers are reinforced with a filler such as carbon black and silica, and at the same time, a vulcanizing agent, a vulcanization accelerator, a plasticizer, an antiaging agent and the like are appropriately blended.
[0032] 本実施形態では、図 1に示すように、タイヤ装着時の車両外側のみにダブルビード 構造が採用されている。つまり、車両外側に配されるビード部 1のタイヤ幅方向外側 に設けられ、規定リム装着時にリムフランジ 8aの外周側湾曲面に対向する内周側面 11を有する環状膨出部 10と、その環状膨出部 10に配された環状のビード lb (前記 第 2ビードに相当する。)とを備える。  In the present embodiment, as shown in FIG. 1, a double bead structure is adopted only on the outer side of the vehicle when the tire is attached. That is, an annular bulging portion 10 having an inner circumferential side surface 11 provided on the outer side in the tire width direction of the bead portion 1 disposed on the vehicle outer side and facing the outer circumferential curved surface of the rim flange 8a when the specified rim is mounted And an annular bead lb (corresponding to the second bead) disposed in the bulging portion 10.
[0033] 本実施形態では、環状膨出部 10の内周側面 11がリムフランジ 8aの外周側湾曲面 に当接しており、リムフランジ 8aの先端を抱持する縮径部が存在し、その縮径部のタ ィャ外周側にビード lbが設けられている。環状膨出部 10は、ビード lbが設けられ部 分を略頂部として、サイドウォール部 2になだらかに連なっている。また、環状膨出部 10は、本実施形態で示す形状のものに限られず、例えばタイヤ子午線断面が半円 状や台形状等をなすものなどでもよい。  In the present embodiment, the inner peripheral side surface 11 of the annular bulging portion 10 is in contact with the outer peripheral curved surface of the rim flange 8a, and there is a reduced diameter portion that holds the tip of the rim flange 8a. A bead lb is provided on the outer periphery side of the diameter reducing portion. The annular bulging portion 10 is provided with a bead lb and is connected to the sidewall portion 2 gently with the portion at the top substantially. Further, the annular bulging portion 10 is not limited to the shape shown in the present embodiment, and may have, for example, a semicircular or trapezoidal cross section of the tire meridian line.
[0034] 環状膨出部 10を主に構成するゴムの硬度は、車両外側の補強ゴム層 9aのゴム硬 度を小さくしたことを考慮しつつビード外れ抗力とリムずれ性能を維持して乗り心地を 改善する上で 66〜76° が好ましい。  The hardness of the rubber mainly constituting the annular bulging portion 10 is determined by maintaining the bead release resistance and the rim shift performance while taking into consideration that the rubber hardness of the reinforcing rubber layer 9a on the vehicle outer side is reduced. 66 to 76 ° is preferable in improving the
[0035] 環状膨出部 10には、ビードワイヤがタイヤ周方向に環状をなすビード lbが配される 。本実施形態のビード lbは、リム装着時に、その中心位置力 Sリムフランジ 8aの最外径 点よりタイヤ外周側かつタイヤ幅方向外側に位置するように配されている。ビード lb を構成するビードワイヤは、ビード laと同じスチールワイヤの集束体からなるものに限 られず、例えば、有機繊維の集束体からなるものや、繊維強化ゴムを素材としたゴム ビードなどであってもよい。 [0035] The annular bulging portion 10 is provided with a bead lb in which a bead wire has an annular shape in the tire circumferential direction. The bead lb of the present embodiment is disposed so as to be positioned on the tire outer peripheral side and the tire width direction outer side from the outermost radius point of the center position force S rim flange 8a when the rim is attached. The bead wire constituting the bead lb is not limited to one composed of the same steel wire bundle as the bead la, for example, one composed of the organic fiber bundle or rubber made of fiber reinforced rubber. It may be a bead or the like.
[0036] 一方、本実施形態では、車両内側に配されるビード部 1のタイヤ幅方向外側に、規 定リム装着時にリムフランジ 8aを保護するリムプロテクタ 12が設けられている力 リム プロテクタ 12を設けずに、リムフランジ 8aとの離間位置からサイドウォール部 2になだ らかに連なる形状とすることも可能である。  On the other hand, in the present embodiment, the force rim protector 12 is provided with the rim protector 12 for protecting the rim flange 8a when the specified rim is mounted on the outer side in the tire width direction of the bead portion 1 disposed inside the vehicle. It is also possible to form a shape which is connected to the side wall portion 2 from the position separated from the rim flange 8a without providing it.
[0037] 両側に配される補強ゴム層 9a, 9bは、何れもゴム硬度 65〜82° であり、好ましくは ゴム硬度 65〜79° である。ゴム硬度 65° 未満では、ランフラット耐久性や、ビード外 れ性能が不十分となり、ゴム硬度 82° を超えると、乗り心地の向上を図ることができ ない。  [0037] The reinforcing rubber layers 9a and 9b disposed on both sides each have a rubber hardness of 65 to 82 °, preferably a rubber hardness of 65 to 79 °. If the rubber hardness is less than 65 °, the run flat durability and the bead off performance become insufficient. If the rubber hardness exceeds 82 °, the ride comfort can not be improved.
[0038] 上記のゴム硬度の範囲内において、車両内側に配される補強ゴム層 9bと車両外側 に配される補強ゴム層 9aとは、ゴム硬度が異なっていてもよい。また、その場合、ラン フラット走行時には、車両旋回時の外側に生じる横力がビード外れの原因となり易い こと力 、ゴム硬度として、補強ゴム層 9aが補強ゴム層 9bより大きいことが好ましい。  Within the range of the above rubber hardness, the rubber hardness may be different between the reinforcing rubber layer 9 b disposed on the vehicle inner side and the reinforcing rubber layer 9 a disposed on the vehicle outer side. Also, in that case, it is preferable that the reinforcing rubber layer 9a be larger than the reinforcing rubber layer 9b as the rubber hardness that the lateral force generated on the outside during turning of the vehicle is likely to cause bead detachment during run flat traveling.
[0039] 但し、車両外側に配される補強ゴム層 9aは車両内側に配される補強ゴム層 9bより、 好ましくは最大厚みが 0. 5mm以上大きぐより好ましくは 0. 8〜: 1. 5mmだけ最大 厚みが大きい。具体的には、例えば車両外側に配される補強ゴム層 9aの最大厚み が 9. 8〜: 13. 5mmであり、車両内側に配される補強ゴム層 9bの最大厚みが 9〜12 mmでめ。。  However, the reinforcing rubber layer 9a disposed on the vehicle outer side is preferably larger than the reinforcing rubber layer 9b disposed on the vehicle inner side, preferably having a maximum thickness of 0.5 mm or more, preferably 0.8 to 1: 1.5 mm. Only the maximum thickness is large. Specifically, for example, the maximum thickness of the reinforcing rubber layer 9a disposed on the vehicle outer side is 9. 8 to 13. 5 mm, and the maximum thickness of the reinforcing rubber layer 9b disposed on the vehicle inner side is 9 to 12 mm. Me. .
[0040] また、補強ゴム層 9a, 9bは、単一のゴム層からなるものに限られず、硬さ等の物性 の異なる複数のゴム層力 構成されるものでもよい。その場合、各層のゴム硬度の平 均値が上記の範囲内であればよい。  Further, the reinforcing rubber layers 9a and 9b are not limited to those formed of a single rubber layer, and may be formed of a plurality of rubber layers having different physical properties such as hardness. In that case, the average value of the rubber hardness of each layer may be within the above range.
[0041] 図示した例では、車両外側に配される補強ゴム層 9aは単一のゴム層で形成され、 車両内側に配される補強ゴム層 9bは 2層のゴム層で形成されており、両層の間に力 一カス層 5が介在している。この例では、カーカス層 5が 2層で構成され、サイドウォー ル部 2に位置する各々のカーカス層 5の内側に補強ゴム層 9bが各々配されている。 なお、車両外側では、サイドウォール部 2に位置する 2層のカーカス層 5の内側に補 強ゴム層 9aが配されている。  In the illustrated example, the reinforcing rubber layer 9a disposed on the vehicle outer side is formed of a single rubber layer, and the reinforcing rubber layer 9b disposed on the vehicle inner side is formed of two rubber layers, A force layer 5 intervenes between the two layers. In this example, the carcass layer 5 is composed of two layers, and the reinforcing rubber layer 9 b is disposed on the inner side of each carcass layer 5 located in the side wall portion 2. At the outer side of the vehicle, a reinforcing rubber layer 9 a is disposed inside the two carcass layers 5 located in the sidewall portion 2.
[0042] 本発明では、補強層 16を環状膨出部 10の内周面に略沿って配設してもよぐこれ によって環状膨出部 10の内周面を補強して摩滅を抑制することができる。補強層 16 としては、スチールコードや、レーヨン、ナイロン、ポリエステル、ァラミド等の有機繊維 力 構成されるチェ一ファが例示される。 In the present invention, the reinforcing layer 16 may be disposed substantially along the inner peripheral surface of the annular bulging portion 10. Thus, the inner peripheral surface of the annular bulging portion 10 can be reinforced to suppress abrasion. Examples of the reinforcing layer 16 include steel cords and chains made of organic fibers such as rayon, nylon, polyester, and aramid.
[0043] トレッド部 4の下方に配されるベルト層 7は、長手方向に対する曲げ剛性力 タイヤ 周方向長さ 200mm Xタイヤ幅方向長さ 100mm当たりの曲げ剛性として、 0. 9〜2. l X 106N*m2であり、好ましくは 1. 2〜2. 0 X 106N .m2である。曲げ剛性は、製品タ ィャからサンプリングして測定する場合、タイヤ周方向長さ 250mm Xタイヤ幅方向 長さ 100mmの寸法にベルト層を切り出し、これをサンプノレとして島津製作所製ォー トグラフ試験機にて、 3点曲げ試験を実施する。この際、支点間距離を 200mm、試 験速度 ImmZsecとすることで、 200 X 100mmあたりの周方向の曲げ剛性を得る。 計算方法はタイヤ工学 (グランプリ出版)第 5章による。 The belt layer 7 disposed below the tread portion 4 has a bending stiffness in the longitudinal direction of 200 mm in the circumferential direction of the tire and a length in the width direction of the tire of 0.9 to 2. 1 X as bending stiffness per 100 mm. It is 10 6 N * m 2 , preferably 1.2 to 2.0 × 10 6 N.m 2 . The bending stiffness is measured by sampling from a product tire. The belt layer is cut out to dimensions of 250 mm in the circumferential direction of the tire and 100 mm in the width direction of the tire, and this is used as a sample for the Shimadzu photograph tester Conduct a three-point bending test. At this time, by setting the distance between fulcrums to 200 mm and the test speed I mm Z sec, bending rigidity in the circumferential direction per 200 x 100 mm is obtained. The calculation method is according to Chapter 5 of Tire Engineering (Grand Prix publication).
[0044] ベルト層 7の長手方向に対する曲げ剛性が 0. 9 X 106N.m2未満であると、コーナリ ング時にバックリングが極度に大きくなりすぎるため、ベルト折れや、ベルト折れに起 因したビード外れの問題が生じる。また、 2. 1 X 106N*m2を超えると、乗り心地の向 上が図れなくなる。 [0044] If the bending rigidity of the belt layer 7 in the longitudinal direction is less than 0.9 X 10 6 Nm 2 , the buckling becomes extremely large during cornering, so that the bead is caused by the belt breakage or the belt breakage. There is a problem of detachment. In addition, if it exceeds 2. 1 × 10 6 N * m 2 , the ride quality can not be improved.
[0045] このようなベルト層 7の構成材料としては、従来のランフラットタイヤより曲げ剛性の 低い材料が使用され、スチール、ァラミド、 PEN、ポリエステル等が使用される。これ らの材料は、いずれもゴムとの接着性を高めるベぐ通常、表面処理や接着処理等が なされている。曲げ剛性はコード種類の他、材料の太さ、打ち込み本数、傾斜角度な どによって調整することができる。  As a constituent material of such a belt layer 7, a material having a bending stiffness lower than that of a conventional run flat tire is used, and steel, aramid, PEN, polyester or the like is used. All of these materials are usually subjected to surface treatment, adhesion treatment and the like to improve adhesion to rubber. The bending stiffness can be adjusted by the thickness of the material, the number of threads, the inclination angle, etc. in addition to the type of cord.
[0046] ベルト層 7は、例えば 2層構造からなり、タイヤ赤道線に対して好ましくは 19〜27° の角度でコードが対称に配置される。ベルト層 7の外層にはベルト補強層を設けても よいが、その場合には、ベルト補強層を除外した状態で曲げ剛性が測定される。ベル ト補強層は、例えばタイヤ周方向に配置又はらせん状に卷回したコードが使用される 。ベルト補強層の構成材料としては、ポリエステル、レーヨン、ナイロン、ァラミド等の 有機繊維、スチール等の金属繊維等が使用される。  The belt layer 7 has, for example, a two-layer structure, and cords are arranged symmetrically at an angle of preferably 19 to 27 ° with respect to the tire equator line. The outer layer of the belt layer 7 may be provided with a belt reinforcing layer, in which case the bending stiffness is measured without the belt reinforcing layer. The belt reinforcing layer is, for example, a cord arranged or spirally wound in the tire circumferential direction. As a constituent material of the belt reinforcing layer, organic fibers such as polyester, rayon, nylon, and aramid, metal fibers such as steel, and the like are used.
[0047] トレッド部 4は、例えば図 2に示すようなトレッドパターンを有している。トレッド部 4に 形成されたトレッドパターンは、タイヤ赤道線 CLを境界として車両外側の領域 A1の ボイド比率が車両内側の領域 A2のボイド比率と同等以下であることが好ましい。より 好ましくは車両外側の領域 A1のボイド比率が車両内側の領域 A2のボイド比率の 75 〜96%の場合である。この値が小さすぎると、車両内側の偏摩耗が大きくなる傾向が ある。 The tread portion 4 has, for example, a tread pattern as shown in FIG. The tread pattern formed in the tread portion 4 has a tire equatorial line CL as a boundary of the region A1 outside the vehicle. It is preferable that the void ratio be equal to or less than the void ratio of the area A2 inside the vehicle. More preferably, the void ratio of the region A1 outside the vehicle is 75 to 96% of the void ratio of the region A2 inside the vehicle. If this value is too small, uneven wear on the inside of the vehicle tends to increase.
[0048] 具体的には、車両外側の領域 A1のボイド比率が 25〜35。/。、車両内側の領域 A2 のボイド比率が 30〜40。/oが好ましい。図示した例では、 4本の周方向溝と、 5種類の 斜め溝とが形成されているが、これらの太さや形成密度によって、ボイド比率を調整 すること力 Sできる。  [0048] Specifically, the void ratio of the region A1 outside the vehicle is 25 to 35. /. , The void ratio of area A2 inside the vehicle is 30 to 40. / o is preferable. In the illustrated example, four circumferential grooves and five types of oblique grooves are formed, but it is possible to adjust the void ratio S by the thickness and formation density of these.
[0049] また、トレッド部 4は、少なくともキャップゴムがトレッド幅 Wの 40〜60%の位置 A3に 硬度の異なるゴムの境界線 TBを有し、その境界線 TBの車両外側のゴム硬度が車両 内側のゴム硬度と同等以上であることが好ましい。より好ましくは、境界線 TBの車両 外側のゴム硬度が車両内側のゴム硬度の 102〜115%の場合である。この値が大き すぎると、車両内側の偏摩耗が大きくなる傾向がある。  In addition, the tread portion 4 has a boundary line TB of rubber different in hardness at least at a position A3 where the cap rubber is 40 to 60% of the tread width W, and the rubber hardness of the vehicle outside of the boundary line TB is the vehicle It is preferable that the hardness is equal to or higher than the inner rubber hardness. More preferably, the rubber hardness on the outside of the vehicle at the boundary line TB is 102 to 115% of the rubber hardness on the inside of the vehicle. If this value is too large, uneven wear on the inside of the vehicle tends to increase.
[0050] 具体的には、境界線 TBの車両外側のゴム硬度が 65〜75° 、車両内側のゴム硬 度が 62〜70° が好ましい。なお、耐久性の観点から、硬度の異なるゴムの境界線 TSpecifically, the rubber hardness on the outer side of the boundary line TB of the vehicle is preferably 65 to 75 °, and the rubber hardness on the inner side of the vehicle is preferably 62 to 70 °. From the viewpoint of durability, the boundary line T of rubber with different hardness
Bは、溝底に配置するのが好ましい。 B is preferably disposed at the bottom of the groove.
[0051] 上記の実施形態では、車両内側に配される補強ゴム層が 2層のゴム層で形成され ている例を示したが、車両内側に配される補強ゴム層を 1層のゴム層で形成してもよ レ、。その場合、車両内側においても、サイドウォール部に位置する 2層のカーカス層 の内側に補強ゴム層が配される。 In the above embodiment, an example is shown in which the reinforcing rubber layer disposed on the inner side of the vehicle is formed of two rubber layers, but the reinforcing rubber layer disposed on the inner side of the vehicle includes one rubber layer. You may also form in. In that case, the reinforcing rubber layer is disposed on the inside of the two carcass layers located on the side wall also inside the vehicle.
[0052] 上記の実施形態では、カーカス層を 2層で構成する例を示したが、本発明では、力 一カス層を 1層で構成してもよい。また、正常内圧時に、環状膨出部の内周側面がリ ムフランジの外周側湾曲面から離れているものでも構わない。 In the above embodiment, an example in which the carcass layer is constituted by two layers is shown, but in the present invention, the force carcass layer may be constituted by one layer. In addition, the inner peripheral side surface of the annular bulging portion may be separated from the outer peripheral side curved surface of the rim flange at normal internal pressure.
[0053] 上記の実施形態では、図 2に示すように 4本の周方向溝と 5種類の斜め溝とが形成 されたトレッドパターンを有する例を示した力 本発明では、トレッドパターンは特に限 定されない。 In the above embodiment, as shown in FIG. 2, an example is shown in which the tread pattern has four circumferential grooves and five types of oblique grooves, and the tread pattern is particularly limited in the present invention. It is not decided.
[0054] 次に、本発明の第 1実施形態に係るランフラットタイヤの実施例について具体的に 説明する。なお、実施例等における評価項目は下記のようにして測定を行った。 [0055] (1)ベルト層の曲げ剛性 Next, specific examples of the run flat tire according to the first embodiment of the present invention will be described. In addition, the evaluation item in an Example etc. measured as follows. (1) Flexural rigidity of the belt layer
製品タイヤから、タイヤ周方向長さ 250mm Xタイヤ幅方向長さ 100mmの寸法に ベルト層を切り出し、これをサンプノレとして島津製作所製オートグラフ試験機にて、 3 点曲げ試験を実施する。この際、支点間距離を 200mm、試験速度 lmm/secとす ることで、 200 X 100mmあたりの周方向の曲げ剛性を得る。計算方法はタイヤ工学( グランプリ出版)第 5章による。  A belt layer is cut out from the product tire to a dimension of 250 mm in the circumferential direction of the tire and 100 mm in the width direction of the tire, and this is used as a sample to carry out a 3-point bending test with an autograph tester manufactured by Shimadzu Corporation. At this time, by setting the distance between fulcrums to 200 mm and the test speed of 1 mm / sec, bending rigidity in the circumferential direction per 200 x 100 mm is obtained. The calculation method is based on Chapter 5 of Tire Engineering (Grand Prix Publishing).
[0056] (2)耐ビード外れ性  (2) Anti-bead resistance
テストタイヤを、実車(国産 3000ccクラス FR車)の左側前方に装着し、直進から半 径 20mの円形コースを右回りに旋回する、いわゆる Jターン走行を行った。各テストタ ィャは、内圧 OkPaのランフラット状態とし、ビード外れが発生したときの走行速度 (横 Gに比例)により耐ビード外れ性を評価した。走行速度は、 25km/hからスタートし、 5km/h増分する方式でビード外れが発生するまで走行を行った。比較例 1 _ 1を 1 00として指数評価し、数値が大きいほどビード外れが発生したときの走行速度が大き レ、、即ち耐ビード外れ性に優れていることを示す。  A test tire was mounted on the left front of a real car (domestic 3000cc class FR car), and the car went on a so-called J-turn traveling straight from a straight ahead to a 20 m radius circular course. Each test tire was run-flat at an internal pressure of OkPa, and the bead release resistance was evaluated by the running speed (proportional to the lateral G) when bead removal occurred. The driving speed started from 25 km / h, and the vehicle was driven in 5 km / h increments until bead detachment occurred. Comparative example 1 — 1 is evaluated as an index of 100, and the larger the value, the higher the running speed when bead detachment occurs, that is, the better the bead detachment resistance.
[0057] (3)乗り心地  [0057] (3) Ride comfort
実車(国産 3000ccクラス FR車)による官能評価にて比較した。乗り心地は、比較例 1—1における乗り心地を 5ポイントとし、 10ポイントを満点として評価した。当該指数 が大きいほど乗り心地が良く好ましい。  We compared by sensory evaluation with a real car (domestic 3000cc class FR car). The ride quality was rated as 10 points, with the ride quality in Comparative Example 1-1 as 5 points. The larger the index, the better the ride and the better.
[0058] 実施例 1 1 2  Example 1 1 2
図 1に示す構造 (但し、トレッドゴムは 1種のみ)および図 2に示すパターンを有し、表 1に示すような、ベルト層の曲げ剛性、両側の補強ゴム層のゴム硬度(PAD硬度)とし 、更に、両側の補強ゴム層の最大厚みの差 Omm、車両外側のボイド比率 Z車両内 側のボイド比率 = 1、トレッドゴム硬度 68° で、サイズが 245/40R18のテストタイヤ を作製した。その評価結果を表 1に併せて示す。  Flexural rigidity of the belt layer, rubber hardness (PAD hardness) of reinforcing rubber layers on both sides as shown in Table 1 having the structure shown in FIG. 1 (however, only one type of tread rubber) and the pattern shown in FIG. Furthermore, a test tire having a size of 245 / 40R18 was produced with a difference Omm in maximum thickness between the reinforcing rubber layers on both sides, a void ratio in the vehicle outer side Z ratio in the vehicle inner side = 1, and a tread rubber hardness of 68 °. The evaluation results are shown in Table 1 together.
[0059] 比較例 1一:!〜 1一 5  Comparative Example 1 1:! To 1 1 5
図 1に示す構造 (但し、第 2ビードなし、トレッドゴムは 1種のみ)および図 2に示すパ ターンを有し、表 1に示すような、ベルト層の曲げ剛性、両側の補強ゴム層のゴム硬 度(PAD硬度)とし、更に、両側の補強ゴム層の最大厚みの差 Omm、車両外側のボ イド比率/車両内側のボイド比率 = 1、トレッドゴム硬度 68° で、サイズが 245/40 R18のテストタイヤを作製した。その評価結果を表 1に併せて示す。 The structure shown in Fig. 1 (but without the second bead, tread rubber is only one type) and the pattern shown in Fig. Rubber hardness (PAD hardness), and further, the maximum thickness difference between the reinforced rubber layers on both sides, Omm, A test tire with a size of 245/40 R18 was produced with an id ratio / void ratio inside the vehicle = 1, tread rubber hardness 68 °. The evaluation results are shown in Table 1 together.
[0060] 比較例 1一 6〜:!一 8  Comparative Example 1 1 6-: 1 8
図 1に示す構造 (但し、トレッドゴムは 1種のみ)および図 2に示すパターンを有し、表 1に示すような、ベルト層の曲げ剛性、両側の補強ゴム層のゴム硬度(PAD硬度)とし 、更に、両側の補強ゴム層の最大厚みの差 Omm、車両外側のボイド比率 Z車両内 側のボイド比率 = 1、トレッドゴム硬度 68° で、サイズが 245/40R18のテストタイヤ を作製した。その評価結果を表 1に併せて示す。  Flexural rigidity of the belt layer, rubber hardness (PAD hardness) of reinforcing rubber layers on both sides as shown in Table 1 having the structure shown in FIG. 1 (however, only one type of tread rubber) and the pattern shown in FIG. Furthermore, a test tire having a size of 245 / 40R18 was produced with a difference Omm in maximum thickness between the reinforcing rubber layers on both sides, a void ratio in the vehicle outer side Z ratio in the vehicle inner side = 1, and a tread rubber hardness of 68 °. The evaluation results are shown in Table 1 together.
[0061] [表 1] [0061] [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
[0062] 表 1の結果が示すように、各実施例のランフラットタイヤでは、ビード外れ性能と乗り 心地の向上を図ることができる。これに対して、ダブルビード構造を採用しない比較 例 1一:!〜 1 5では、ベルト層の曲げ剛性の低下や PAD硬度の低下によって、ビー ド外れ性が顕著に悪化した。また、車両外側のみをダブルビード構造にした場合でも 、ベルト層の曲げ剛性や PAD硬度を低下させないと、比較例 1一 6〜:!一 8のように、 乗り心地の改善効果が小さくなる。 As shown in the results of Table 1, the run-flat tire of each example can improve bead removal performance and ride comfort. On the other hand, in Comparative Example 1 1 to 5 where the double bead structure was not adopted, the bead declination was significantly deteriorated due to the decrease in the bending rigidity of the belt layer and the decrease in the PAD hardness. Further, even when only the vehicle outer side is made to have a double bead structure, the improvement effect of the riding comfort is reduced as in Comparative Example 1-16:! 18 unless the bending rigidity and PAD hardness of the belt layer are reduced.
[0063] 実施例 2— :!〜 2— 5  Example 2 —:! — 2—5
図 1に示す構造 (但し、トレッドゴムは 1種のみ)および図 2に示すパターンを有し、表 2に示すような、ベルト層の曲げ剛性、両側の補強ゴム層のゴム硬度(PAD硬度)、ト レッドゴム硬度、車両外側のボイド比率 Z車両内側のボイド比率とし、更に、両側の 補強ゴム層の最大厚みの差 Ommで、サイズが 245/40R18のテストタイヤを作製し た。その評価結果を表 2に併せて示す。  Flexural rigidity of the belt layer, rubber hardness (PAD hardness) of the reinforcing rubber layers on both sides as shown in Table 2 having the structure shown in FIG. 1 (however, only one kind of tread rubber) and the pattern shown in FIG. Test tire with a size of 245 / 40R18 was produced with tread rubber hardness, void ratio on the outside of the vehicle and void ratio on the inside of the vehicle as well as the difference Omm in the maximum thickness of the reinforced rubber layer on both sides. The evaluation results are shown in Table 2 together.
[0064] 比較例 2— :!〜 2— 5  Comparative Example 2—:! — 2 — 5
図 1に示す構造 (但し、第 2ビードなし、トレッドゴムは 1種のみ)および図 2に示すパ ターンを有し、表 2に示すような、ベルト層の曲げ剛性、両側の補強ゴム層のゴム硬 度(PAD硬度)、トレッドゴム硬度、車両外側のボイド比率/車両内側のボイド比率と し、更に、両側の補強ゴム層の最大厚みの差 Ommで、サイズが 245/40R18のテス トタイヤを作製した。その評価結果を表 2に併せて示す。  The structure shown in Figure 1 (but without the second bead, tread rubber is only one type) and the pattern shown in Figure 2, the bending stiffness of the belt layer as shown in Table 2, the reinforcement rubber layer on both sides Test tire with a size of 245 / 40R18, with rubber hardness (PAD hardness), tread rubber hardness, void ratio on the outside of the vehicle / void ratio on the inside of the vehicle, and the difference Omm in maximum thickness of the reinforced rubber layer on both sides. Made. The evaluation results are shown in Table 2 together.
[0065] [表 2] [Table 2]
Figure imgf000018_0001
Figure imgf000018_0001
[0066] 表 2の結果が示すように、各実施例のランフラットタイヤでは、ビード外れ性能と乗り 心地の向上を図ることができる。特に、車両外側のボイド比率を十分小さくした実施 例 2— 2〜2— 3では、ビード外れ性が大きく改善されている。これに対して、ダブルビ ード構造を採用しなレ、比較例 2—:!〜 2— 5では、ベルト層の曲げ剛性の低下や PA D硬度の低下によって、ビード外れ性が顕著に悪化した。 As shown in the results of Table 2, in the run flat tire of each example, it is possible to improve the bead removal performance and the ride comfort. In particular, in Examples 2-2 to 2-3 in which the void ratio on the outer side of the vehicle is sufficiently reduced, the bead detachment property is greatly improved. On the other hand, in the case of the double bead structure not adopted, in Comparative Example 2-:--2-5, the bead detachment property was significantly deteriorated due to the decrease in the bending rigidity of the belt layer and the decrease in the PAD hardness. .
[0067] 実施例 3— :!〜 3— 4  [0067] Example 3-:!-3-4
図 1に示す構造および図 2に示すパターンを有し、表 3に示すような、ベルト層の曲 げ剛性、両側の補強ゴム層のゴム硬度(PAD硬度)、両側のトレッドゴム硬度、車両 外側のボイド比率 Z車両内側のボイド比率とし、更に、両側の補強ゴム層の最大厚 みの差 Ommで、サイズが 245/40R18のテストタイヤを作製した。その評価結果を 表 3に併せて示す。  With the structure shown in FIG. 1 and the pattern shown in FIG. 2, as shown in Table 3, bending stiffness of the belt layer, rubber hardness (PAD hardness) of reinforcing rubber layers on both sides, tread rubber hardness on both sides, vehicle outer side The void ratio of Z was made into the void ratio on the inside of the vehicle, and a test tire with a size of 245 / 40R18 was produced with the difference Omm between the maximum thicknesses of the reinforcing rubber layers on both sides. The evaluation results are shown in Table 3 together.
[0068] 比較例 3— :!〜 3— 4  Comparative Example 3—:! — 3 — 4
図 1に示す構造 (但し、第 2ビードなし)および図 2に示すパターンを有し、表 3に示 すような、ベルト層の曲げ剛性、両側の補強ゴム層のゴム硬度(PAD硬度)、両側の トレッドゴム硬度、車両外側のボイド比率/車両内側のボイド比率とし、更に、両側の 補強ゴム層の最大厚みの差 Ommで、サイズが 245/40R18のテストタイヤを作製し た。その評価結果を表 3に併せて示す。  Flexural rigidity of the belt layer, rubber hardness (PAD hardness) of the reinforcing rubber layers on both sides, as shown in Table 3, having the structure shown in FIG. 1 (but without the second bead) and the pattern shown in FIG. Test tires with a size of 245 / 40R18 were produced with tread rubber hardness on both sides, void ratio on the outside of the vehicle / void ratio on the inside of the vehicle, and a difference Omm between the maximum thickness of the reinforced rubber layers on both sides. The evaluation results are shown in Table 3 together.
[0069] [表 3] [Table 3]
Figure imgf000020_0001
表 3の結果が示すように、各実施例のランフラットタイヤでは、ビード外れ性能と乗り 心地の向上を図ることができる。特に、車両外側のトレッドゴム硬度をより大きくした実 施例 3— :!〜 3— 3では、ビード外れ性が大きく改善されている。これに対して、ダブル ビード構造を採用しなレ、比較例 3— :!〜 3— 4では、ベルト層の曲げ剛性の低下や P AD硬度の低下によって、ビード外れ性が顕著に悪化した。
Figure imgf000020_0001
As the results in Table 3 show, the run-flat tire of each example can improve bead dislodging performance and ride comfort. In particular, the tread rubber hardness on the outside of the vehicle has been increased. In Example 3-:!-3-3, the bead detachment is greatly improved. On the other hand, in the case where the double bead structure was not adopted, in Comparative Example 3-:!-3-4, the bead detachment was significantly deteriorated due to the decrease in the bending rigidity of the belt layer and the decrease in the PAD hardness.
[0071] [第 2実施形態] Second Embodiment
第 2実施形態は、以下に説明する構成の他は、第 1実施形態と同様の構成'作用で あるので、共通点を省略して主に相違点について説明する。なお、第 1実施形態で 説明した部材*部位と同一の部材*部位には同一の符号を付し、重複した説明を省 略する。  The second embodiment has the same configuration as the first embodiment except for the configuration described below, so the common points are omitted and the differences are mainly described. Note that the same reference numerals are given to the same members * portions as the members * portions described in the first embodiment, and the redundant description will be omitted.
[0072] 図 3は、規定リム装着時における本発明の第 2実施形態に係るランフラットタイヤを 示すタイヤ子午線断面図である。図 3においては、右側が車両外側となる。  FIG. 3 is a tire meridional cross-sectional view showing a run flat tire according to a second embodiment of the present invention when the specified rim is attached. In FIG. 3, the right side is the outside of the vehicle.
[0073] 本実施形態では、図 3に示すように、タイヤ幅方向両側にてダブルビード構造が採 用されている。つまり、ビード部 1のタイヤ幅方向外側に設けられ、規定リム装着時に リムフランジ 8aの外周側湾曲面に対向する内周側面 11を有する一対の環状膨出部 10と、その環状膨出部 10の各々に配された環状のビード lbとを備える。  In the present embodiment, as shown in FIG. 3, double bead structures are adopted on both sides in the tire width direction. That is, a pair of annular bulging portions 10 having an inner peripheral side surface 11 provided on the outer side in the tire width direction of the bead portion 1 and facing the outer peripheral curved surface of the rim flange 8a when the specified rim is attached And an annular bead lb disposed on each of the
[0074] 補強ゴム層 9a、 9bは、本実施形態のような単一のゴム層からなるものに限られず、 硬さ等の物性の異なる複数のゴム層力 構成されるものでもよい。その場合、例えば 、補強ゴム層 9aが 2つのゴム層から構成される場合には、 { (ha' X ta' ) + (ha" X ta" ) }/ (ta, +ta")の式より算出される値が、上記した補強ゴム層 9aのゴム硬度の範囲 内であればよい。ここで、 ta'、 ha,は、補強ゴム層 9aを構成するゴム層の一方の最大 厚み、ゴム硬度であり、 ta"、 ha"は、他方の最大厚み、ゴム硬度である。  The reinforcing rubber layers 9a and 9b are not limited to those formed of a single rubber layer as in the present embodiment, but may be formed of plural rubber layers having different physical properties such as hardness. In that case, for example, when the reinforcing rubber layer 9a is composed of two rubber layers, according to the equation {(ha 'X ta') + (ha "X ta") / (ta, + ta ") The calculated value may be within the range of the rubber hardness of the above-mentioned reinforced rubber layer 9a, where ta ′, ha, is the maximum thickness of one of the rubber layers constituting the reinforced rubber layer 9a, and the rubber hardness And ta ", ha" are the other maximum thickness, rubber hardness.
[0075] 本実施形態では、両側の補強ゴム層 9a、 9bが単一のゴム層で形成され、サイドゥォ ール部 2に位置する 2層のカーカス層 5の内側に配されている力 S、本発明はこれに限 られるものではなレ、。例えば、補強ゴム層の少なくとも一方を 2層のゴム層で形成して 、カーカス層 5を両層の間に介在させるようにしても構わない。  In the present embodiment, the reinforcing rubber layers 9a and 9b on both sides are formed of a single rubber layer, and the force S disposed inside the two-layered carcass layer 5 located in the sidewall portion 2, The present invention is not limited to this. For example, at least one of the reinforcing rubber layers may be formed of two rubber layers, and the carcass layer 5 may be interposed between the two layers.
[0076] 前述の第 1実施形態と同様に、トレッド部 4の下方に配されるベルト層 7は、長手方 向に対する曲げ剛性力 タイヤ周方向長さ 200mm Xタイヤ幅方向長さ 100mm当た りの曲げ剛性として、 0. 9〜2. l X 106N 'm2であり、好ましくは 1. 2〜2. 0 Χ 106Ν · m 'である。 [0077] 次に、本発明の第 2実施形態に係るランフラットタイヤの実施例について具体的に 説明する。なお、実施例等における評価項目は下記のようにして測定を行った。 As in the first embodiment described above, the belt layer 7 disposed below the tread portion 4 has a bending stiffness in the longitudinal direction of 200 mm in the circumferential direction of the tire and 100 mm in the width direction of the tire. The flexural rigidity is 0.9 to 2. 1 x 10 6 N 'm 2 and preferably 1. 2 to 2. 0 Χ 10 6 Ν m'. Next, specific examples of the run flat tire according to the second embodiment of the present invention will be described. In addition, the evaluation item in an Example etc. measured as follows.
[0078] (1)ベルト層の曲げ剛性 (1) Flexural rigidity of the belt layer
前述の第 1実施形態と同様の要領で曲げ試験を実施した。  The bending test was carried out in the same manner as in the first embodiment described above.
[0079] (2)乗心地性能 (2) Ride comfort
前述の第 1実施形態と同様の要領で官能試験を実施した。比較例 4一 1における乗 心地を 5ポイントとし、 10ポイントを満点として評価し、当該指数が大きいほど乗り心 地が良く好ましい。  The sensory test was performed in the same manner as in the first embodiment described above. Comparative example 4 The riding comfort in 5 points is made into 5 points, and 10 points are evaluated as a full mark, and the bearing center is better, and the said index is large and preferable.
[0080] (3)耐ビード外れ性 (3) Anti-bead resistance
前述の第 1実施形態と同様の要領で Jターン走行を実施し、耐ビード外れ性を評価 した。  The J-turn travel was performed in the same manner as in the first embodiment described above, and the bead resistance was evaluated.
比較例 4_ 1を 100として指数評価し、数値が大きいほどビード外れが発生したときの 走行速度が大きレ、、即ち耐ビード外れ性に優れてレ、ることを示す。  Comparative Example 4 _ 1 is evaluated as an index of 100, and the larger the value, the higher the running speed when bead detachment occurs, that is, the bead is excellent in bead detachment resistance.
[0081] 比較例 4一 :!〜 4一 5  Comparative Example 4 1:! To 4 1 5
図 3においてダブルビード構造を備えず、表 4に示すようなベルト層の曲げ剛性、両 側の補強ゴム層のゴム硬度(PAD硬度)とし、更に、両側の補強ゴム層の最大厚み の差 Omm、トレッドゴム硬度 68。 で、サイズが 245/40R18のテストタイヤを作製し た。その評価結果を表 4に併せて示す。  The flexural rigidity of the belt layer as shown in Table 4 and the rubber hardness (PAD hardness) of the reinforcing rubber layers on both sides as shown in Table 4 without the double bead structure in FIG. 3 and the difference in the maximum thickness of the reinforcing rubber layers on both sides Omm , Tread rubber hardness 68. Then, a test tire with a size of 245 / 40R18 was produced. The evaluation results are shown in Table 4 together.
[0082] 比較例 4 6〜4 8、実施例 4一 :!〜 4 2  Comparative Examples 4 6 to 4 8, Example 4 1:! To 4 2
図 3に示すタイヤ構造を有し、表 4に示すようなベルト層の曲げ剛性、両側の補強ゴ ム層のゴム硬度(PAD硬度)とし、更に、両側の補強ゴム層の最大厚みの差 Omm、ト レッドゴム硬度 68° で、サイズが 245Z40R18のテストタイヤを作製した。その評価 結果を表 4に併せて示す。  The tire has the tire structure shown in FIG. 3, the bending rigidity of the belt layer as shown in Table 4, the rubber hardness (PAD hardness) of the reinforcing rubber layer on both sides, and the difference in the maximum thickness of the reinforcing rubber layer on both sides Omm A test tire having a tread rubber hardness of 68 ° and a size of 245Z40R18 was produced. The evaluation results are shown in Table 4 together.
[0083] [表 4]
Figure imgf000023_0001
[Table 4]
Figure imgf000023_0001
[0084] 表 4の結果が示すように、各実施例のランフラットタイヤでは、耐ビード外れ性能を 維持しながら、乗心地性能の向上を図ることができる。これに対して、ダブルビード構 造を採用しない比較例 4 2〜4 5では、耐ビード外れ性能が顕著に悪化し、更に ベルト層の曲げ剛性または PAD硬度が高レ、比較例 4 _ 1〜4 _ 3では、乗心地性能 が悪化する。また、ダブルビード構造を採用した場合でも、ベルト層の曲げ剛性や P AD硬度を低下させないと、比較例 4_ 6〜4_8のように乗心地性能が改善されない As shown in the results of Table 4, in the run flat tires of the respective examples, the riding comfort performance can be improved while maintaining the anti-bead performance. On the other hand, in Comparative Examples 4 to 45 in which the double bead structure is not employed, the anti-bead resistance performance is significantly deteriorated, and further, the flexural rigidity or PAD hardness of the belt layer is high, and Comparative Example 4 _ 1 At 4 to 3, the ride performance is degraded. Moreover, even when the double bead structure is adopted, the ride comfort performance is not improved as in Comparative Examples 4_ 6 to 4_8 unless the bending rigidity and the PAD hardness of the belt layer are reduced.
[0085] [第 3実施形態] Third Embodiment
第 3実施形態は、以下に説明する構成の他は、第 1実施形態と同様の構成'作用で あるので、共通点を省略して主に相違点について説明する。なお、第 1実施形態で 説明した部材*部位と同一の部材*部位には同一の符号を付し、重複した説明を省 略する。  The third embodiment has the same configuration and effects as the first embodiment except for the configuration described below, so the common points are omitted and the differences are mainly described. Note that the same reference numerals are given to the same members * portions as the members * portions described in the first embodiment, and the redundant description will be omitted.
[0086] 図 4は、規定リム装着時における本発明の第 3実施形態に係るランフラットタイヤを 示すタイヤ子午線断面図である。  FIG. 4 is a tire meridional cross-sectional view showing a run flat tire according to a third embodiment of the present invention when the specified rim is attached.
[0087] カーカス層 5の外周には、たが効果による補強を行うためのベルト層 7が配され、そ の外周にはトレッドゴム 13が配される。カーカス層 5及びベルト層 7は、それぞれ所定 角度で配列されたコード材により構成され、該コード材としては、ポリエステル、レーョ ン、ナイロン、ァラミド等の有機繊維やスチール等が好ましく使用される。  On the outer periphery of the carcass layer 5, a belt layer 7 for reinforcement by hoop effect is disposed, and on the outer periphery thereof, a tread rubber 13 is disposed. The carcass layer 5 and the belt layer 7 are each made of a cord material arranged at a predetermined angle. As the cord material, organic fibers such as polyester, nylon, nylon, aramid, steel, etc. are preferably used.
[0088] 図 4は、車両外側を右側に、車両内側を左側に記載しており、本発明ではダブルビ ード構造が車両外側にのみ採用されている。即ち、車両外側に配されるビード部 1か らタイヤ幅方向外側に膨出すると共に、環状のビード lbを有する環状膨出部 10を備 える。環状膨出部 10の内周側面 11は、リムフランジ 8aの外周側湾曲面から徐々に 離間するものでも構わないが、本実施形態では外周側湾曲面に当接している。  FIG. 4 shows the outside of the vehicle on the right side and the inside of the vehicle on the left side, and in the present invention, the double bead structure is adopted only on the outside of the vehicle. That is, an annular bulging portion 10 having an annular bead lb is provided while bulging outward from the bead portion 1 disposed on the vehicle outer side in the tire width direction. The inner circumferential side surface 11 of the annular bulging portion 10 may be gradually separated from the outer peripheral curved surface of the rim flange 8a, but in the present embodiment, it is in contact with the outer peripheral curved surface.
[0089] ベルト層 7の長手方向に対する曲げ剛性力 タイヤ周方向長さ 200mm Xタイヤ幅 方向長さ 100mm当たりの曲げ剛性として、 0. 9〜2. 1 X 106N'm2である場合には 、前述の第 1実施形態で説明したように乗り心地を向上することができる。 [0089] Bending rigidity with respect to the longitudinal direction of belt layer 7 Tire circumferential direction length 200 mm X tire width Direction length 100 mm as bending stiffness, 0.9 to 2.1 X 10 6 N'm 2 As described in the first embodiment, the ride quality can be improved.
[0090] 環状膨出部 10を主として構成するゴムの硬度は、後述するように補強ゴム層 9aの ゴム硬度を小さくしたことを考慮した上で、更にビード外れ抗力とリムずれ性能を維持 して乗り心地を改善する上で 65〜78° が好ましい。 [0090] The hardness of the rubber mainly constituting the annular bulging portion 10 further maintains the bead detachment resistance and the rim deviation performance in consideration of reducing the rubber hardness of the reinforcing rubber layer 9a as described later. In order to improve the ride quality, 65 to 78 ° is preferable.
[0091] 本実施形態では、車両内側に配されるビード laの内周からタイヤ最大径点 Pまで の断面高さ Hiと、車両外側に配されるビード lbの内周からタイヤ最大径点 Pまでの 断面高さ Hoと力 Hi_Ho > 15mmの関係を満たすように設定されており、これによ つてロードノイズの低減と耐ビード外れ性能の向上の両立が可能となる。  In the present embodiment, the cross-sectional height Hi from the inner periphery of the bead la disposed on the vehicle inner side to the tire maximum diameter point P and the tire from the inner periphery of the bead lb disposed on the vehicle outer side It is set to satisfy the relationship between the section height Ho and the force Hi_Ho> 15 mm, which makes it possible to achieve both reduction in road noise and improvement in anti-bead resistance performance.
[0092] 即ち、ダブルビード構造を車両外側にのみ採用したことで、車両内側に配されたビ ード l aと車両外側に配されたビード lbとを両端とするタイヤ振動が発生し、それらの 断面高さ Hi、 Hoが Hi_Ho > 15mmを満たすことから、タイヤ振動の両端の断面高 さを互いに適度に異ならせることができる。その結果、タイヤ赤道 CLに対して非対称 の振動モードを形成することができ、振幅を抑えてロードノイズを低減することができ る。なお、(Hi— Ho)は、ビード外れ抗カを維持しつつ、上記のロードノイズ低減効果 を適切に得るために、 20mm以下であることが好ましレ、。  That is, by adopting the double bead structure only on the outside of the vehicle, tire vibration occurs with both ends of the bead la disposed on the inside of the vehicle and the bead lb disposed on the outside of the vehicle. Since the section heights Hi and Ho satisfy Hi_Ho> 15 mm, the section heights at both ends of the tire vibration can be made to be appropriately different from each other. As a result, an asymmetric vibration mode can be formed with respect to the tire equator CL, and the amplitude can be suppressed to reduce road noise. Note that (Hi-Ho) is preferably 20 mm or less, in order to properly obtain the above-mentioned road noise reduction effect while maintaining anti-bead resistance.
[0093] 既述のように、本発明は、ダブルビード構造を車両外側にのみ採用するものである ため、ランフラット状態における両側のサイドウォール部 2のたわみ量の差が大きくな る傾向にあり、それに起因して、トレッド面の接地圧分布の非対称性が大きくなり、偏 摩耗の発生や操縦安定性の低下等の問題が生じるおそれがある。そこで、本実施形 態では、車両外側の補強ゴム層 9aに対して、車両内側の補強ゴム層 9bのゴム硬度 を大きくすることで、また補強ゴム層 9aの厚みを薄くすることで、両側のたわみ量のバ ランスを取っている。  As described above, since the present invention adopts the double bead structure only on the vehicle outer side, the difference in the amount of deflection of the side wall portions 2 on both sides in the run flat state tends to be large. Due to this, the asymmetry of the contact pressure distribution on the tread surface becomes large, which may cause problems such as occurrence of uneven wear and deterioration in steering stability. Therefore, in the present embodiment, the thickness of the reinforcing rubber layer 9a is reduced by increasing the rubber hardness of the reinforcing rubber layer 9b inside the vehicle with respect to the reinforcing rubber layer 9a outside the vehicle. It balances the amount of deflection.
[0094] 具体的には、補強ゴム層 9aのゴム硬度を 60〜82° とし、補強ゴム層 9bのゴム硬度 を 65〜90。 とし、補強ゴム層 9bのゴム硬度を補強ゴム層 9aと同等かそれ以上にし て、且つ最大厚みを 0. 5mm以上大きくしている。補強ゴム層 9a、 9bのゴム硬度及 び最大厚みの関係を、このように調整することによって両側のたわみ量のバランスを 適切に取ることができる。上述した非対称性を有する振動モードは、このようなバラン ス調整を行っても問題なく形成される。  [0094] Specifically, the rubber hardness of the reinforcing rubber layer 9a is 60 to 82 °, and the rubber hardness of the reinforcing rubber layer 9b is 65 to 90. The rubber hardness of the reinforcing rubber layer 9b is made equal to or higher than that of the reinforcing rubber layer 9a, and the maximum thickness is increased by 0.5 mm or more. By adjusting the relationship between the rubber hardness and the maximum thickness of the reinforcing rubber layers 9a and 9b in this way, it is possible to properly balance the amount of deflection on both sides. The vibration modes having the above-mentioned asymmetry can be formed without problems even if such balance adjustment is performed.
[0095] 車両外側に配される補強ゴム層 9aのゴム硬度は、上述のように 60〜82° であり、 好ましくは 65〜78° である。これが 60° 未満であると、ランフラット走行時の耐久性 等が不十分となり、また 82° を超えると、車両内側のたわみ量とのバランスを取ること が難しくなり、トレッド面に偏摩耗が生じたり乗り心地が悪化したりする傾向にある。 The rubber hardness of the reinforcing rubber layer 9a disposed on the vehicle outer side is 60 to 82 ° as described above, and preferably 65 to 78 °. If this is less than 60 °, the durability during runflat running becomes insufficient, and if it exceeds 82 °, balance with the deflection inside the vehicle should be taken. Tend to result in uneven wear on the tread surface and a deterioration in ride comfort.
[0096] 一方、車両内側に配される補強ゴム層 9bのゴム硬度は、上述のように 65〜90° で あり、好ましくはゴム硬度 70〜85° である。これが 65° 未満であると、車両外側のた わみ量とのバランスを取ることが難しぐトレッド面に偏摩耗が生じ易くなり、また 90° を超えると乗り心地が悪化する傾向にある。補強ゴム層 9bは、 65〜90° の範囲内に おいて、補強ゴム層 9aよりもゴム硬度が同等かそれ以上であり、補強ゴム層 9aよりも ゴム硬度が 5° 以上大きいことが好ましい。  On the other hand, the rubber hardness of the reinforcing rubber layer 9b disposed inside the vehicle is 65 to 90 ° as described above, and preferably the rubber hardness is 70 to 85 °. If this is less than 65 °, uneven wear tends to occur on the tread surface, which makes it difficult to balance the amount of sag on the outside of the vehicle, and if it exceeds 90 °, the ride comfort tends to deteriorate. The reinforcing rubber layer 9b preferably has a rubber hardness equal to or higher than that of the reinforcing rubber layer 9a within the range of 65 to 90 °, and preferably has a rubber hardness 5 ° or more higher than that of the reinforcing rubber layer 9a.
[0097] 車両内側に配される補強ゴム層 9bは、車両外側に配される補強ゴム層 9aに対して 最大厚みが 4%以上大きぐ 5〜: 13%だけ最大厚みが大きいことが好ましい。即ち、 補強ゴム層 9aの最大厚みを 100とした場合には、補強ゴム層 9bの最大厚みは 104 以上が好ましぐ 105〜: 113であることがより好ましいものとなる。  It is preferable that the reinforcing rubber layer 9b disposed inside the vehicle has a maximum thickness that is larger by 5% to 13% at which the maximum thickness is 4% or more larger than that of the reinforcing rubber layer 9a disposed outside the vehicle. That is, when the maximum thickness of the reinforcing rubber layer 9a is 100, it is more preferable that the maximum thickness of the reinforcing rubber layer 9b is 105 to 113, preferably 104 or more.
[0098] 補強ゴム層 9a、 9bは、単一のゴム層からなるものに限られず、ゴム硬度等の物性の 異なる複数のゴム層から構成されるものでもよい。その場合、例えば、補強ゴム層 9a が 2つのゴム層から構成される場合には、 { (ha ' X ta' ) + (ha" X ta") } / (ta' +ta" )の式より算出される値力 上記した補強ゴム層 9aのゴム硬度の範囲内であればよい 。ここで、 ta,、 ha,は、補強ゴム層 9aを構成するゴム層の一方の最大厚み、ゴム硬度 であり、 ta"、 ha"は、他方の最大厚み、ゴム硬度である。図例では、補強ゴム層 9aが 単一のゴム層で形成され、補強ゴム層 9bがカーカス層 5の 1層を介在させた 2層のゴ ム層で形成されている。本実施形態ではカーカス層 5が 2層で構成され、サイドウォー ル部 2に位置する各々のカーカス層 5の内周側に補強ゴム層 9bが配されている。  The reinforcing rubber layers 9a and 9b are not limited to those formed of a single rubber layer, and may be formed of a plurality of rubber layers having different physical properties such as rubber hardness. In that case, for example, in the case where the reinforcing rubber layer 9a is composed of two rubber layers, according to the equation {(ha 'X ta') + (ha "X ta") / (ta '+ ta ") Calculated value It should be within the range of rubber hardness of the above-mentioned reinforced rubber layer 9a, where ta,, ha, is the maximum thickness of one of the rubber layers constituting the reinforced rubber layer 9a, and the rubber hardness Yes, ta "and ha" are the other maximum thickness and rubber hardness. In the example shown in the figure, the reinforcing rubber layer 9a is formed of a single rubber layer, and the reinforcing rubber layer 9b intervenes one layer of the carcass layer 5 In the present embodiment, the carcass layer 5 is composed of two layers, and the reinforcing rubber layer 9 b is formed on the inner peripheral side of each carcass layer 5 located in the side wall portion 2. Are arranged.
[0099] 本実施形態では、ベルト層 7のタイヤ赤道 CL付近の外周側に、ベルト最大幅 WB の 5〜15%、好ましくは 10〜: 15%の幅で、タイヤ周方向に対して実質的に 0° の角 度で延在する補強材(不図示)を配することが好ましい。この構成によれば、タイヤ振 動の腹となるセンター部の振幅を低減することができ、ロードノイズ低減効果を好適 に高めることができる。この補強材の構成材料としては、上述したカーカス層 5やベル ト層 7の構成材料が好ましく使用できる。なお、本発明によるロードノイズ低減効果は 、既述の非対称性を有する振動モードによるものが主であり、該補強材の配設によつ てタイヤ重量が過度に増加することはない。 [0100] 次に、本発明の第 3実施形態に係るランフラットタイヤの実施例について具体的に 説明する。なお、実施例等における評価項目は下記のようにして測定を行った。 In the present embodiment, on the outer peripheral side of the belt layer 7 near the tire equator CL, the width is substantially 5 to 15%, preferably 10 to 15% of the maximum belt width WB, substantially in the tire circumferential direction. It is preferable to provide a reinforcement (not shown) extending at an angle of 0 °. According to this configuration, it is possible to reduce the amplitude of the center portion that is the antinode of the tire vibration, and it is possible to preferably enhance the road noise reduction effect. As a constituent material of this reinforcing material, the constituent materials of the carcass layer 5 and the belt layer 7 described above can be preferably used. The road noise reduction effect according to the present invention is mainly due to the vibration mode having the asymmetry described above, and the arrangement of the reinforcing member does not excessively increase the weight of the tire. Next, specific examples of the run flat tire according to the third embodiment of the present invention will be described. In addition, the evaluation item in an Example etc. measured as follows.
[0101] (1)耐ビード外れ性  (1) Anti-bead resistance
前述の第 1実施形態と同様の要領で Jターン走行を実施し、耐ビード外れ性を評価 した。比較例 5—1を 100として指数評価し、数値が大きいほどビード外れが発生した ときの走行速度が大きい、即ち耐ビード外れ性に優れていることを示す。  The J-turn travel was performed in the same manner as in the first embodiment described above, and the bead resistance was evaluated. Comparative Example 5-1 is evaluated on the basis of an index of 100, and the larger the value is, the larger the traveling speed when bead detachment occurs, that is, the better the bead detachment resistance.
[0102] (2)ロードノイズレベル  (2) Road noise level
テストタイヤを実車(国産 3000ccクラス FR車)に装着してフロントとリア共に空気圧 200kPaとし、運転席の耳元にマイクを取り付けて 60kmZhの定速走行で、 200〜4 00Hzのロードノイズレベルを測定した。比較例 5 _ 1を 100として測定値を指数化し 、数値が小さいほどロードノイズレベルが小さいことを示す。  The test tire was mounted on a real car (domestic 3000cc class FR car) and air pressure was 200kPa for both front and rear, a microphone was attached to the driver's seat ear and road noise level of 200 ~ 400Hz was measured at constant speed of 60km Zh. . Comparative Example 5 _ 1 is taken as 100 to measure the measured value. The smaller the value is, the smaller the road noise level is.
[0103] (3)リム組み性  (103) Rim setability
リム組み性の指標としてハンプ圧を評価した。比較例 5— 1を 100として指数評価し 、数値が大きいほどリム組み性が悪レ、ことを示す。  The hump pressure was evaluated as an index of rim setability. Comparative example 5-1 is evaluated as an index of 100, and the larger the value is, the worse the rim assembling property is, and it is shown.
[0104] 実施例 5— 1、 5— 2  Example 5-1 and 5-2
図 4に示すタイヤ構造を有し、表 5に示すような ¾ー^10でサィズが245/401^18 のタイヤを、実施例 5— 1、 5— 2とした。なお、両側のサイドウォール部のたわみ量の バランスを取るため、車両外側の補強ゴム層のゴム硬度を 76° 、車両内側の補強ゴ ム層のゴム硬度を 78° とした。また、車両外側に配される補強ゴム層の最大厚みを 車両内側よりも小さくし、それらの差を車両外側に配される補強ゴム層の最大厚みの 10%とした。  Tires having a tire structure shown in FIG. 4 and a tire size of 245/401 ^ 18 as shown in Table 5 are given as Examples 5-1 and 5-2. The rubber hardness of the reinforcing rubber layer on the outer side of the vehicle was 76 °, and the rubber hardness of the reinforcing rubber layer on the inner side of the vehicle was 78 °, in order to balance the deflection of the side wall portions on both sides. In addition, the maximum thickness of the reinforcing rubber layer disposed outside the vehicle was made smaller than that inside the vehicle, and the difference between them was 10% of the maximum thickness of the reinforcing rubber layer disposed outside the vehicle.
[0105] 比較例 5— 1  Comparative Example 5-1
図 4に示すタイヤ構造においてダブルビード構造を持たなレ、、サイズが 245/40R 18のタイヤを比較例 5—1とした。なお、両側の補強ゴム層をいずれもゴム硬度 77° の単層のゴム層で構成した。また、両側の補強ゴム層を同じ最大厚みに設定し、いず れも実施例における両側の補強ゴム層の最大厚みの中間になる厚みにした。  A tire having a double bead structure in the tire structure shown in FIG. The reinforcing rubber layers on both sides were each composed of a single layer rubber layer having a rubber hardness of 77 °. Further, the reinforcing rubber layers on both sides were set to the same maximum thickness, and both of them were in the middle of the maximum thicknesses of the reinforcing rubber layers on both sides in the example.
[0106] 比較例 5— 2、 5— 3 Comparative Example 5—2, 5—3
Hi— Hoが表 5に示すような値である点を除いて、実施例 5—1と同じであるテストタ ィャを作製し、それぞれ比較例 5— 2、 5— 3とした。各例の評価結果を表 5に示す。 The test tester is the same as Example 5-1 except that the value of Hi-Ho is as shown in Table 5. The samples were prepared and set as Comparative Examples 5-2 and 5-3, respectively. Table 5 shows the evaluation results of each example.
[0107] [表 5] [0107] [Table 5]
Figure imgf000028_0001
Figure imgf000028_0001
[0108] 表 5に示すように、実施例 5— 1、 5— 2では、優れた耐ビード外れ性を発揮しながら ロードノイズを低減できており、し力もハンプ圧が従来品と同等でリム組み性の悪化を 防止できてレ、る。これに対して、ダブルビード構造を持たなレ、比較例 5— 1では耐ビ ード外れ性が低ぐロードノイズ低減効果も得られていなレ、。また、単にダブルビード 構造を車両外側にのみ採用した比較例 5— 2、 5— 3においても、十分なロードノイズ 低減効果が得られている力 リム組み性に関してハンプ圧が大きく不利となる。 As shown in Table 5, in Examples 5-1 and 5-2, the road noise can be reduced while exhibiting excellent bead detachment resistance, and the hump pressure is also equal to that of the conventional product and the rim I can prevent the deterioration of the teamability. On the other hand, in the case of the double bead structure, in Comparative Example 5-1, the road noise reduction effect with which the anti-bead resistance is low is also obtained. Also, in Comparative Examples 5-2 and 5-3 in which only the double bead structure is adopted only on the outer side of the vehicle, the hump pressure is significantly disadvantageous with respect to the force rim assembling property with which a sufficient road noise reduction effect is obtained.
[0109] 図 5は、(a)実施例 5— 1及び (b)比較例 5— 1に係るテストタイヤの振動モード図で あり、タイヤが振動する前の初期形状を破線 BLで示し、タイヤの振動モードを実線 S Lで示している。かかる振動モード図は、実験的に求めた伝達関数の振幅と位相から 作成することができる。伝達関数は、特開 2004— 82858号公報に詳しく開示されて レヽるとおり、タイヤのトレッド部に周波数 200〜400Hzの範囲内で振動を入力したと きの、複数の測定点(図中の円形マークが相当する。)での応答から求められる。  FIG. 5 is a vibration mode diagram of a test tire according to (a) Example 5-1 and (b) comparative example 5-1, wherein the initial shape before the tire vibrates is indicated by a broken line BL, and the tire is shown in FIG. The vibration mode of is indicated by a solid line SL. Such a vibration mode diagram can be created from the experimentally obtained amplitude and phase of the transfer function. The transfer function is disclosed in detail in Japanese Patent Laid-Open No. 2004-82858. As shown in the figure, when vibration is input to the tread portion of the tire within a frequency range of 200 to 400 Hz, a plurality of measurement points (circles in FIG. It corresponds to the mark).
[0110] まず、(b)比較例 5—1では、一対のビード部に配された第 1ビードを両端とし、タイ ャ赤道に対して略対称な振動モードが形成されてレ、ることが分力、る。この振動モード は、タイヤ最大幅部を節とし、バットレス部及びサイド下部を腹とする断面 2次モード であり、振動の節と腹が車両外側と車両内側とで略同位置になっている。  First, in (b) Comparative Example 5-1, vibration modes substantially symmetrical with respect to the tire equator are formed with the first beads arranged in the pair of bead portions at both ends, and it is possible to Part. This vibration mode is a cross-section secondary mode in which the tire maximum width portion is a node and the buttress portion and the lower side are antinodes. The vibration nodes and antinodes are substantially at the same position on the vehicle outer side and the vehicle inner side.
[0111] これに対して(a)実施例 5—1では、車両内側のビード部に配された第 1ビードと車 両外側の環状膨出部に配された第 2ビードとを両端とし、タイヤ赤道に対して非対称 な振動モードが形成されていることが分かる。これは、ダブルビード構造を車両外側 にのみ採用したことによるものであり、振動モードに非対称性を持たせて振幅を抑制 すること力 Sできている。 On the other hand, (a) In Example 5-1, the first bead disposed in the bead portion on the inner side of the vehicle and the second bead disposed in the annular bulging portion on the outer side of the vehicle are both ends, It can be seen that vibration modes asymmetric to the tire equator are formed. It has a double bead structure on the outside of the vehicle The vibration mode has an asymmetry to suppress the amplitude.

Claims

請求の範囲 The scope of the claims
[1] 環状の第 1ビードを有する一対のビード部と、前記ビード部から各々タイヤ径方向 外側に延びるサイドウォール部と、前記サイドウォール部に配された補強ゴム層と、前 記サイドウォール部の各々の外周側端同士をショルダ部を介して連ねるトレッド部と、 を備えるランフラットタイヤにおいて、  [1] A pair of bead portions having an annular first bead, a sidewall portion extending outward in the tire radial direction from the bead portion, a reinforcing rubber layer disposed on the sidewall portion, and the sidewall portion A run flat tire comprising: a tread portion in which respective outer peripheral side ends of each are connected via a shoulder portion;
車両外側に配される前記ビード部のタイヤ幅方向外側に設けられ、規定リム装着時 にリムフランジの外周側湾曲面に対向する内周側面を有する環状膨出部と、その環 状膨出部に配された環状の第 2ビードとを備えると共に、  An annular bulging portion provided on the outer side in the tire width direction of the bead portion disposed on the vehicle outer side and having an inner peripheral side surface facing the outer peripheral side curved surface of the rim flange when the specified rim is mounted, and the annular bulging portion And an annular second bead disposed on the
両側に配される前記補強ゴム層は何れもゴム硬度 65〜82° であり、前記トレッド部 の下方に配されるベルト層は長手方向に対する曲げ剛性力 タイヤ周方向長さ 200 mm Xタイヤ幅方向長さ 100mm当たりの曲げ剛性として、 0. 9〜2. l X 106N -m2 であることを特徴とするランフラットタイヤ。 The reinforcing rubber layers disposed on both sides each have a rubber hardness of 65 to 82 °, and the belt layer disposed below the tread portion has a bending rigidity with respect to the longitudinal direction. Tire circumferential length 200 mm X tire width direction A run flat tire characterized by having a flexural rigidity of 0.9 to 2. 1 x 10 6 N-m 2 per 100 mm in length.
[2] 前記トレッド部に形成されたトレッドパターンは、タイヤ赤道線を境界として車両外側 のボイド比率が車両内側のボイド比率と同等以下である請求項 1記載のランフラットタ ィャ。 [2] The run flat tire according to claim 1, wherein in the tread pattern formed in the tread portion, the void ratio on the vehicle outer side is equal to or less than the void ratio on the vehicle inner side with the tire equatorial line as a boundary.
[3] 前記トレッド部は、少なくともキャップゴムがトレッド幅の 40〜60%の位置に硬度の 異なるゴムの境界線を有し、その境界線の車両外側のゴム硬度が車両内側のゴム硬 度と同等以上である請求項 1記載のランフラットタイヤ。  [3] In the tread portion, at least the cap rubber has a rubber boundary line of different hardness at a position of 40 to 60% of the tread width, and the rubber hardness of the vehicle outside of the boundary line is the rubber hardness of the vehicle inside The run flat tire according to claim 1, which is equal to or more than the same.
[4] 車両内側に配される前記ビード部のタイヤ幅方向外側にも前記環状膨出部が設け られ、一対の前記環状膨出部の各々に前記第 2ビードが配されている請求項 1記載 のランフラットタイヤ。 [4] The annular bulging portion is also provided on the outer side in the tire width direction of the bead portion disposed inside the vehicle, and the second bead is disposed in each of the pair of annular bulging portions. Run flat tire of description.
[5] 車両内側に配される前記第 1ビードの内周からタイヤ最大径点までの断面高さ Hiと 、車両外側に配される前記第 2ビードの内周からタイヤ最大径点までの断面高さ Ho と力 Hi_Ho > 15mmの関係を満たす請求項 1記載のランフラットタイヤ。  [5] The section height Hi from the inner periphery of the first bead disposed on the vehicle inner side to the tire maximum diameter point, and the section from the inner periphery of the second bead disposed on the vehicle outer side to the tire maximum diameter point The run flat tire according to claim 1, wherein the height Ho and the force Hi_Ho> 15 mm are satisfied.
[6] 前記トレッド部に配されたベルト層のタイヤ赤道付近の外周側に、ベルト最大幅の 5 〜 15%の幅で、タイヤ周方向に対して実質的に 0° の角度で延在する補強材が配さ れてレ、る請求項 5記載のランフラットタイヤ。  [6] The belt layer disposed in the tread extends around the tire equator at an angle of substantially 0 ° with respect to the tire circumferential direction with a width of 5 to 15% of the maximum belt width. The run flat tire according to claim 5, wherein a reinforcing material is disposed.
[7] 環状の第 1ビードを有する一対のビード部と、前記ビード部から各々タイヤ径方向 外側に延びるサイドウォール部と、前記サイドウォール部に配された補強ゴム層と、前 記サイドウォール部の各々の外周側端同士をショルダ部を介して連ねるトレッド部とを 備えるランフラットタイヤにおいて、 [7] A pair of bead portions having an annular first bead, and the bead portions respectively from the bead radial direction A run flat tire comprising: a sidewall portion extending outward; a reinforcing rubber layer disposed on the sidewall portion; and a tread portion connecting outer peripheral side ends of the sidewall portions via a shoulder portion.
車両外側に配される前記ビード部からタイヤ幅方向外側に膨出すると共に、環状の 第 2ビードを有する環状膨出部を備え、  An annular bulging portion having an annular second bead while bulging outward from the bead portion disposed on the vehicle outer side in the tire width direction,
車両内側に配される前記第 1ビードの内周からタイヤ最大径点までの断面高さ Hiと 、車両外側に配される前記第 2ビードの内周からタイヤ最大径点までの断面高さ Ho とが、 Hi— Ho > 15mmの関係を満たすことを特徴とするランフラットタイヤ。  The section height Hi from the inner periphery of the first bead disposed on the vehicle inner side to the tire maximum diameter point, and the section height from the inner periphery of the second bead disposed on the vehicle outer side to the tire maximum diameter point Ho A run flat tire characterized by satisfying the relationship of “Hi−Ho> 15 mm”.
前記トレッド部に配されたベルト層のタイヤ赤道付近の外周側に、ベルト最大幅の 5 〜 15%の幅で、タイヤ周方向に対して実質的に 0° の角度で延在する補強材が配さ れてレ、る請求項 7記載のランフラットタイヤ。  A reinforcing material extending at an angle of substantially 0 ° with respect to the tire circumferential direction with a width of 5 to 15% of the maximum belt width on the outer circumferential side of the belt layer disposed in the tread portion near the tire equator The run flat tire according to claim 7, which is arranged.
PCT/JP2007/062806 2006-06-27 2007-06-26 Run flat tire WO2008001773A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006176868A JP4502333B2 (en) 2006-06-27 2006-06-27 Run flat tire
JP2006-176868 2006-06-27
JP2006304124A JP4544636B2 (en) 2006-11-09 2006-11-09 Run flat tire
JP2006-304124 2006-11-09
JP2006305482A JP4544637B2 (en) 2006-11-10 2006-11-10 Run flat tire
JP2006-305482 2006-11-10

Publications (1)

Publication Number Publication Date
WO2008001773A1 true WO2008001773A1 (en) 2008-01-03

Family

ID=38845537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062806 WO2008001773A1 (en) 2006-06-27 2007-06-26 Run flat tire

Country Status (1)

Country Link
WO (1) WO2008001773A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188178A1 (en) 2013-05-22 2014-11-27 Cantab Anti-Infectives Limited Polymyxin derivatives and their use in combination therapy together with different antibiotics
JP2019111859A (en) * 2017-12-21 2019-07-11 Toyo Tire株式会社 Pneumatic tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116507A (en) * 1975-04-02 1976-10-14 Toyo Tire & Rubber Co Ltd Assembly of pneumatic tyre and rim
JP2000343912A (en) * 1999-06-04 2000-12-12 Topy Ind Ltd Tire having damper part
WO2006028083A1 (en) * 2004-09-09 2006-03-16 Toyo Tire & Rubber Co., Ltd. Run flat tire and method of manufacturing run flat tire
WO2006085450A1 (en) * 2005-02-08 2006-08-17 Toyo Tire & Rubber Co., Ltd. Run-flat tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116507A (en) * 1975-04-02 1976-10-14 Toyo Tire & Rubber Co Ltd Assembly of pneumatic tyre and rim
JP2000343912A (en) * 1999-06-04 2000-12-12 Topy Ind Ltd Tire having damper part
WO2006028083A1 (en) * 2004-09-09 2006-03-16 Toyo Tire & Rubber Co., Ltd. Run flat tire and method of manufacturing run flat tire
WO2006085450A1 (en) * 2005-02-08 2006-08-17 Toyo Tire & Rubber Co., Ltd. Run-flat tire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188178A1 (en) 2013-05-22 2014-11-27 Cantab Anti-Infectives Limited Polymyxin derivatives and their use in combination therapy together with different antibiotics
JP2019111859A (en) * 2017-12-21 2019-07-11 Toyo Tire株式会社 Pneumatic tire
JP6993865B2 (en) 2017-12-21 2022-02-10 Toyo Tire株式会社 Pneumatic tires

Similar Documents

Publication Publication Date Title
JP4457388B2 (en) Run flat tire
JP4971700B2 (en) Run flat tire
JP5263271B2 (en) Run flat tire
JP5282794B2 (en) Run flat tire
CN101489810B (en) Run flat tire
CN104321209A (en) Run-flat tire
JP2000211323A (en) Pneumatic tire
JP4506477B2 (en) Installation method of pneumatic tire
JP5104050B2 (en) Pneumatic tire
JP2008155866A (en) Pneumatic tire and vehicle with the same
JP2012071709A (en) Run flat tire
JP2007302097A (en) Pneumatic tire
JP4502333B2 (en) Run flat tire
WO2008001773A1 (en) Run flat tire
JP2005297752A (en) Pneumatic tire
JP4946607B2 (en) Pneumatic tire
JP2003335112A (en) Pneumatic tire and tire with rim
JP4544636B2 (en) Run flat tire
JP3730618B2 (en) Pneumatic tire
JP2000016023A (en) Pneumatic tire
JP4587097B2 (en) Run flat tire
JP2006131171A (en) Pneumatic radial tire
JP4179447B2 (en) Pneumatic radial tire
JP4544637B2 (en) Run flat tire
JP5070755B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780024489.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767612

Country of ref document: EP

Kind code of ref document: A1