WO2008001756A1 - Organic electroluminescence element - Google Patents

Organic electroluminescence element Download PDF

Info

Publication number
WO2008001756A1
WO2008001756A1 PCT/JP2007/062777 JP2007062777W WO2008001756A1 WO 2008001756 A1 WO2008001756 A1 WO 2008001756A1 JP 2007062777 W JP2007062777 W JP 2007062777W WO 2008001756 A1 WO2008001756 A1 WO 2008001756A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
auxiliary electrode
organic
auxiliary
layer
Prior art date
Application number
PCT/JP2007/062777
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Tanaka
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2008001756A1 publication Critical patent/WO2008001756A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals

Definitions

  • the present invention relates to an organic electoluminescence element useful as a light-emitting element used in a planar light source, a segment display device, a dot matrix display device, a liquid crystal display device and the like.
  • organic fluorescent dye is used as a light-emitting layer, and this light-emitting layer is laminated with a layer of an organic charge transport compound that has been used for electrophotographic photoreceptors and the like.
  • organic EL elements organic-electric-luminescence elements
  • Patent Document 1 in a planar light emitting device using an organic EL element, a transparent electrode of the organic EL element is disclosed.
  • a planar light emitting device in which an auxiliary electrode having a resistance lower than that of the transparent electrode is electrically connected.
  • the auxiliary electrode is thinned in a portion that is thick and far from the connection terminal, so that the current value is high and the light emission is strong in the portion near the connection terminal, but the aperture ratio is high. It is described that in a small and far part, the current value is small and the light emission is weak and the aperture ratio is large, so that unevenness of the light emission brightness as a whole can be suppressed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-14128
  • the present invention has been made in view of the above-described problems of the prior art, reduces voltage drop due to resistance of a transparent electrode or a semi-transparent electrode, and causes uneven light emission brightness even when the light emission area is large.
  • An object of the present invention is to provide an organic electoluminescence device that is sufficiently suppressed and capable of uniform light emission.
  • a first electrode including a transparent electrode or a semitransparent electrode, a second electrode facing the first electrode, and the first electrode
  • the auxiliary electrode is arranged in a specific form on the surface of the first electrode, thereby making it transparent
  • the inventors have found that the voltage drop due to the resistance of the electrode or the translucent electrode can be reduced, and that unevenness in light emission luminance can be sufficiently suppressed even when the light emission area is large, and the present invention has been completed.
  • the organic electoluminescence device of the present invention includes a first electrode including a transparent electrode or a translucent electrode, a second electrode facing the first electrode, the first electrode, and the second electrode.
  • An organic electroluminescence device comprising at least one organic layer provided between electrodes,
  • a frame-shaped first auxiliary electrode disposed on the surface of the first electrode and electrically connected to the first electrode;
  • a second auxiliary electrode which is arranged in a frame of the first auxiliary electrode and is constituted by a thin wire electrode electrically connected to the first auxiliary electrode;
  • the first auxiliary electrode and the second auxiliary electrode are made of a material having a lower resistivity than that of the first electrode.
  • the ratio of the line width of the second auxiliary electrode to the first auxiliary electrode is preferably in the range of 1/1000 to 1/10.
  • the first auxiliary electrode and the second auxiliary electrode are surfaces of the surface of the first electrode opposite to the organic layer. Les, which are preferably placed on the surface.
  • the first electrode is partitioned into a plurality of electrically separated cells, and each of the plurality of cells is electrically connected by the second auxiliary electrode.
  • the second auxiliary electrode are preferably connected.
  • a planar light source of the present invention is characterized by including the organic electoluminescence device.
  • a segment display device of the present invention is characterized by including the organic-elect mouth luminescence element.
  • the dot matrix display device of the present invention is characterized by comprising the organic electoluminescence device.
  • a liquid crystal display device of the present invention includes the organic electoluminescence device.
  • the organic electoluminescence device of the present invention the voltage drop due to the resistance of the transparent electrode or the translucent electrode is reduced, and even when the emission area is wide, unevenness in the emission luminance is sufficiently suppressed, Uniform light emission is possible. That is, in the organic electoluminescence device of the present invention, the frame-shaped first auxiliary electrode electrically connected to the first electrode on the surface of the first electrode including the transparent electrode or the translucent electrode, And a second auxiliary electrode which is arranged in a frame of the first auxiliary electrode and is constituted by a thin wire electrode electrically connected to the first auxiliary electrode.
  • the first auxiliary electrode and the second auxiliary electrode are made of a material having a low resistivity (high electrical conductivity) compared to the first electrode, and therefore, a voltage drop due to the resistance of the first electrode. Can be reduced.
  • the first auxiliary electrode has a wide line width and can pass a sufficient current. Therefore, even if the distance from the connection terminal is long, the first auxiliary electrode is affected by a voltage drop due to wiring resistance. Hardly receive.
  • the second auxiliary electrode is affected by the voltage drop due to the wiring resistance due to its thin line width, it uses light that blocks the amount of light generated by the organic layer force due to its thin line width. The effect on efficiency is small.
  • the second auxiliary electrode is disposed within the frame of the first auxiliary electrode and is electrically connected, even if the distance from the connection terminal is long. Voltage drop due to wiring resistance is alleviated.
  • the organic electoluminescence device of the present invention the voltage drop due to the resistance of the transparent electrode or the translucent electrode is reduced, and the light emitting area is widened. Even in such a case, unevenness in light emission luminance is sufficiently suppressed, and uniform light emission is possible.
  • the first electrode is partitioned into a plurality of electrically separated cells, and the plurality of cells are electrically connected to each other by the second auxiliary electrode.
  • the emission luminance can be further improved. That is, by dividing the first electrode into a plurality of electrically separated cells, it is possible to suppress the light emitting component that is guided in the surface direction of the first electrode, and to improve the light emission luminance. Become.
  • the plurality of cells are electrically connected to each other by the second auxiliary electrode, unevenness in light emission luminance between the plurality of cells is sufficiently suppressed.
  • an organic electoluminescence device capable of reducing the voltage drop due to the resistance of the transparent electrode or the translucent electrode, sufficiently suppressing unevenness in light emission luminance even when the light emission area is large, and capable of uniform light emission. Can be provided.
  • the organic electoluminescence device of the present invention includes a first electrode including a transparent electrode or a translucent electrode, a second electrode facing the first electrode, and between the first electrode and the second electrode.
  • An organic electoluminescence device comprising at least one organic layer provided,
  • a frame-shaped first auxiliary electrode disposed on the surface of the first electrode and electrically connected to the first electrode;
  • a second auxiliary electrode which is arranged in a frame of the first auxiliary electrode and is constituted by a thin wire electrode electrically connected to the first auxiliary electrode;
  • the 1st electrode concerning this invention is an electrode containing a transparent electrode or a semi-transparent electrode, Comprising: It becomes an anode of the organic electoluminescence element of this invention.
  • a first electrode use a metal oxide, metal sulfide or metal thin film with high electrical conductivity. Those having a high transmittance can be suitably used, and can be appropriately selected depending on the organic layer to be used.
  • the material for the first electrode include indium oxide, zinc oxide, tin oxide, and conductive glass composed of indium 'tin' oxide (ITO), indium 'zinc oxide, etc., which are composites thereof. (NESA, etc.), gold, platinum, silver and copper are used. Among these, ITO, indium / zinc oxide and tin oxide are preferable.
  • the film thickness of the first electrode as described above is a force that can be appropriately selected in consideration of light transmittance and electrical conductivity, for example, 10 nm to 10 xm, preferably 20 nm to l ⁇ m. Yes, more preferably from 50 nm to 500 nm.
  • the distance between adjacent cells is lm to 50 ⁇ 50 ⁇ , preferably Five ! ⁇ 30 z m. If the distance between the P-contact cells is less than the lower limit, the light guided in the surface direction of the first electrode tends not to be sufficiently suppressed. On the other hand, if the upper limit is exceeded, the actual light emitting area is not increased. Since it becomes smaller, the luminous efficiency tends to decrease.
  • the shape of the plurality of cells electrically separated in this way is not particularly limited, and examples thereof include a rectangular shape such as a stripe shape, a triangular shape, and a quadrangular shape.
  • the first electrode is formed when the organic electroluminescence device of the present invention is produced. After that, the material of what is formed (for example, auxiliary electrode, organic layer) is filled between the adjacent cells.
  • Examples of the method for forming the first electrode as described above include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • Examples of a method of partitioning such a first electrode into a plurality of electrically separated cells include a method of forming a pattern by an etching method using a photoresist after forming the first electrode.
  • a transparent conductive film made of an organic material such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
  • a conductive polymer such as a phthalocyanine derivative or a polythiophene derivative, Mo oxide, amorphous force is formed on the surface of the first electrode on the organic layer side.
  • a layer with a thickness of 1 to 200 nm such as monobon, carbon fluoride, polyamine compound, etc., or a layer with an average film thickness of 10 nm or less made of metal oxide, metal fluoride, organic insulating material, etc. may be provided.
  • a frame-shaped first auxiliary electrode disposed on the surface of the first electrode and electrically connected to the first electrode
  • a second auxiliary electrode disposed within the frame of the first auxiliary electrode and configured by a thin wire electrode electrically connected to the first auxiliary electrode;
  • Examples of the arrangement form of the first auxiliary electrode and the second auxiliary electrode include the arrangement forms shown in FIG. 1, FIG. 2, FIG. 3, and FIG.
  • the second auxiliary electrodes made up of thin wire electrodes are arranged in a lattice pattern within the frame of the frame-shaped first auxiliary electrode.
  • the second auxiliary electrodes made of thin wire electrodes are arranged in a stripe pattern in the frame of the frame-shaped first auxiliary electrode.
  • the second auxiliary electrode constituted by the thin wire electrode is arranged in a honeycomb shape within the frame of the frame-shaped first auxiliary electrode.
  • the second auxiliary electrodes made up of fine wire electrodes are arranged in a lattice shape within the frame of the frame-like first auxiliary electrode, and further, the fine auxiliary wires are made up of fine wire electrodes in the lattice.
  • the second auxiliary electrodes are arranged in a grid pattern.
  • the shape of the frame-shaped first auxiliary electrode is not particularly limited as long as the second auxiliary electrode is formed in the frame, and examples thereof include a rectangular shape and a circular shape.
  • the line width of the first auxiliary electrode can be appropriately selected according to the light emitting area of the organic-electric-luminescence element, but is preferably in the range of 3 to 20 mm. It is more preferable.
  • the line width of the thin wire electrode constituting the second auxiliary electrode (hereinafter referred to as “the line width of the second auxiliary electrode”) is in the range of:! To 200 xm from the viewpoint of light utilization efficiency. The range of 10 to 100 ⁇ m is more preferable.
  • the ratio of the line widths of the second auxiliary electrode and the first auxiliary electrode is 1 / 1000 to: 1/10 is preferable. 1/500 to 1/20 is more preferable. If the ratio of the line widths is within the above range, the light use efficiency tends to be further improved, and unevenness in the light emission luminance can be further suppressed.
  • the first Invite than resistivity lower electrode material is not particularly limited, usually 10 7
  • a conductive material having an electrical conductivity of S / cm or more is used, and metal materials such as aluminum, silver, chromium, gold, copper, and tantalum are preferably used.
  • metal materials such as aluminum, silver, chromium, gold, copper, and tantalum are preferably used.
  • aluminum, chromium, copper, and silver are more preferable from the viewpoint of high electrical conductivity and ease of material handling.
  • the auxiliary electrode covers the light emitting area of the element.
  • the area ratio is preferably 20% or more and 90% or less, more preferably 30% or more and 80% or less.
  • the thicknesses of the first auxiliary electrode and the second auxiliary electrode are forces that can be appropriately selected so that the sheet resistance becomes a desired value, for example, 10 to 500 nm, preferably 20 to 300. And more preferably 50 to 150.
  • the first auxiliary electrode and the second auxiliary electrode may be disposed on the surface of the first electrode on the organic layer side. Although it is good, it is arrange
  • a method of forming the first auxiliary electrode and the second auxiliary electrode as described above for example, a film of the material of the auxiliary electrode by a vacuum deposition method, a sputtering method, or a laminating method in which a metal thin film is thermocompression bonded.
  • a method of forming a pattern by an etching method using a photoresist after forming the film is mentioned.
  • the 2nd electrode concerning this invention is an electrode arrange
  • a material for such a second electrode a material having a low work function is preferable. , Yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and other metals and alloys of two or more thereof; or one or more of them and gold, silver, platinum, copper, mangan, Alloys with one or more of titanium, cobalt, nickel, tungsten, tin; graphite or graphite intercalation compounds are used.
  • These alloys include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy, etc. It is done.
  • the film thickness of such a second electrode can be appropriately selected in consideration of electrical conductivity and durability, but is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to l ⁇ m. And more preferably 50 nm to 500 nm.
  • Examples of the method for forming the second electrode as described above include a vacuum deposition method, a sputtering method, and a laminating method in which a metal thin film is thermocompression bonded.
  • a second electrode may have a laminated structure of two or more layers. Further, a layer made of a conductive polymer or a layer made of a metal oxide, metal fluoride, organic insulating material or the like having an average film thickness of 2 nm or less may be provided between the second electrode and the organic layer.
  • the organic layer according to the present invention is a layer provided between the first electrode and the second electrode.
  • Such an organic layer may be a layer containing at least one luminescent material, but may be composed of a plurality of layers.
  • the operation of an organic electoluminescence device essentially consists of the process of injecting electrons and holes from the electrode, the process of electrons and holes moving through the organic layer, the recombination of electrons and holes, and singlet excitation. It consists of a process of generating a photon or triplet exciton and a process in which the exciton emits light, but the organic layer is composed of multiple layers In some cases, the functions required in each process can be shared among multiple materials, and each material can be optimized independently.
  • examples of the light emission color of such an organic layer include light emission of an intermediate color and white other than light emission of the three primary colors of red, blue, and green.
  • light emission of three primary colors is preferable, and for a flat light source, light emission of white or intermediate color is preferable.
  • a polymer light emitting material (ii) that is composed only of the low molecular weight light emitting material (i) can be used as the light emitting material used in such an organic layer.
  • the other materials used in the organic layer are different. Therefore, the case of using the low molecular weight luminescent material (i) and the case of using the polymer luminescent material (ii) are described below. Each will be explained separately.
  • the organic layer material in the case of using low-molecular-weight luminescent materials is “Organic EL Display” (Co-authored by Shizuo Tokito, Chinamiya Adachi, Hideyuki Murata, Ohm Co., Ltd., 2004, first edition, first edition) Fluorescent and phosphorescent materials, hole transport materials, electron block materials, hole block materials, and electron transport materials described on pages 48, 83 to 99, and 101 to 120 are listed. Specifically, as hole transport materials, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-2-209988.
  • JP-A-2-311591, JP-A-3-37992, JP-A-3-152184, JP-A-11-35687, JP-A-11-217392, JP-A-2000-80167 Etc. are exemplified.
  • examples of the low molecular weight light emitting material include Ir (ppy) and Btp Ir (acac) having iridium as a central metal, PtOEP and europium having platinum as a central metal, for example.
  • the thickness of the layer containing the material of these organic layers is generally a force of 5 to 200 nm that is appropriately selected so that the light emission efficiency and the driving voltage have desired values.
  • the thickness of the hole transport layer is, for example, 10 to:! OOnm, preferably 20 to 80nm.
  • the thickness of the light emitting layer is, for example, 10 to:! OOnm, preferably 20 to 80 nm.
  • the thickness of the hole blocking layer is, for example, 5 to 50 nm, preferably 10 to 30 nm.
  • the thickness of the electron injection layer is, for example, 10 to:! OOnm, preferably 20 to 80 nm.
  • an organic electroluminescence device can be constructed with a structure in which the charge injection layer and the charge transport layer are laminated. More specifically, as a hole transport material, an electron transport material, and a light emitting material of a polymer compound, W099 / 13692 published Akira Itada, W099 / 4816 (1 ⁇ 2 ⁇ ?
  • These polymer light-emitting materials and charge transport materials can be mixed with light-emitting materials and charge transport materials used in the organic layer when the above-described low-molecular light-emitting materials are used. .
  • the low molecular light emitting materials described above may be included in the structure of these materials.
  • a layer containing a conductive polymer or provided between the first electrode and the hole transport layer, the material of the first electrode and the hole transport layer are provided.
  • a layer including a material having an ionic potential of an intermediate value with respect to the included hole transporting material, provided between the second electrode and the electron transport layer, and included in the material of the second electrode and the electron transport layer A layer containing a material having an electron affinity with a value intermediate to that of the electron transporting material.
  • a charge injection layer is a layer containing a conductive polymer
  • the layer containing the conductive polymer is located between at least one electrode (first electrode, second electrode) and the light emitting layer. Next to the electrode.
  • the electrical conductivity of such a conductive polymer is preferably 10 _7 S / cm or more and preferably 10 3 S / cm or less. It is particularly preferred that the 3 ⁇ 4 / cm or more at and and equal to or less than 10 2 S / cm is less than more preferably tool is at 10_ 5 S / cm or more and lo / cm. Further, usually such conductive the electric conductivity of the high-molecular to less 10_ 5 S / cm or more at and and 10 3 S / cm, a suitable amount of ions are doped into the good Una conductive polymer.
  • an anion is used for the hole injection layer, and a force thione is used for the electron injection layer.
  • examples of anions include polystyrene sulfonate ions, alkylbenzene sulfonate ions, camphor sulfonate ions, etc.
  • examples of cations include lithium ions, sodium ions, potassium ions, tetraptyl ammonium ions.
  • Etc. The material used for the charge injection layer may be appropriately selected depending on the material of the electrode and the adjacent layer, but polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene.
  • Lembinylene and its derivatives Polyethylene vinylene and its derivatives, Polyquinoline and its derivatives, Polyquinoxaline and its derivatives, Conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain; Metal phthalocyanine (copper Phthalocyanine, etc.); carbon and the like.
  • an insulating layer having a thickness of 10 nm or less may be provided adjacent to the first electrode and / or the second electrode.
  • an insulating layer material include metal fluorides, metal oxides, organic insulating materials, and the like, and metal fluorides and metal oxides such as alkali metals and alkali earth metals are preferable.
  • the electron transporting polymer material contained in the organic layer on the side close to the second electrode is not particularly limited as long as it is a polymer material that injects electrons from the electrode and transports electrons.
  • a ⁇ and ⁇ conjugated polymer or a polymer material containing an electron transporting group in the polymer can be used as appropriate.
  • a low molecular electron transporting material can be used in combination.
  • these hole transporting materials and electron transporting materials can also be suitably used for those having a light emitting mechanism.
  • these layers are doped with the light emitting material. It can also be used.
  • the thickness of the layer containing the material of the organic layer as described above has an optimum value depending on the material used, but can be appropriately selected so that the driving voltage and the light emission efficiency become appropriate values.
  • the thickness of the light emitting layer is, for example, 5 to 300 nm, preferably 30 to 200 nm, and more preferably 40 to 150 nm.
  • the thickness of the charge injection layer is, for example, 1 nm to 1000 nm, preferably 2 nm to:! OOnm.
  • the thickness of the electron transport layer is, for example, 1 nm to l z m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm.
  • a method for forming a layer (light emitting layer, charge transport layer, charge injection layer) containing a polymer material among the organic layer materials described so far for example, coating from a solution is used. And a method of forming a film by a printing method or a printing method. In addition, such a method is It can also be used as a method for forming a layer that does not contain a child material (light emitting layer, charge transport layer, charge injection layer). According to such a method, it is only necessary to remove the solvent by drying after applying the solution, and the same method can be applied even when a charge transport material or a light emitting material is mixed, which is very advantageous in production. is there.
  • coating and printing methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, and screen.
  • coating method include a printing method, a flexographic printing method, an offset printing method, a slippery coating method, a nozure coating method, and an inkjet printing method.
  • the charge injection material can be formed into an emulsion in which water or alcohol is dispersed in the same manner as the solution.
  • the solvent used for the material of the organic layer is not particularly limited, but a solvent capable of dissolving or uniformly dispersing the polymer material is preferable.
  • examples of such solvents include chlorine solvents such as chloroform, methylene chloride, dichloroethane; ether solvents such as tetrahydrofuran; toluene , Xylene, tetralin, anisole, n-hexylbenzene, cyclohexylbenzene and other aromatic hydrocarbon solvents; decalin, bicyclohexyl and other aliphatic hydrocarbon solvents; acetone, methyl ethyl ketone, 2- Examples include ketone solvents such as heptanone; ester solvents such as ethyl acetate, butyl acetate, ethyl cellosolve acetate, and polypropylene alcohol mono
  • insolubilize the first formed layer in order to prevent mixing of the upper and lower layers.
  • a method for insolubilization in this way, a soluble precursor or a polymer having a soluble group is used, and the precursor is converted into a synergistic polymer by heat treatment or dissolved by decomposing the soluble group.
  • a method of insolubilizing by lowering the property, a method of using a hole transporting polymer having a crosslinking group in the molecule, a method of mixing a monomer or a macromer that causes a crosslinking reaction by heat, light, electron beam, etc. are listed.
  • Examples of such a cross-linking group include polymers having a bur group, a (meth) acrylate group, an oxetane group, a cyclobutadiene group, a gen group and the like in the side chain.
  • the introduction rate of these groups is There is no particular limitation as long as it is insolubilized in the solvent used for film formation of the electron transporting polymer, but for example 0.01 to 30% by mass, preferably 0.5 to 20% by mass, and more preferably rather is:! it is ⁇ 10 mass 0/0.
  • the monomer or macromer that causes a crosslinking reaction is a compound having a weight average molecular weight of 2000 or less in terms of polystyrene, such as a bur group, a (meth) acrylate group, an oxetane group, a cyclobutadiene group, and a gen group. Those having two or more groups are exemplified. Furthermore, compounds that can undergo a cross-linking reaction between molecules such as acid anhydride groups and cinnamic acid are also exemplified. As examples of these, those described in “Current Status and Prospects of UV'EB Curing Technology” (supervised by Kunihiro Kashimura, CMC Publishing 2002, 1st edition, 1st edition, 2nd chapter) are preferably used. it can.
  • the monomer before polymerization is distilled, sublimated and purified
  • Polymerization is preferably performed after purification by a column chromatography method such as recrystallization.
  • acid washing, alkali washing, neutralization, water washing, organic solvent washing, reprecipitation, centrifugation, extraction, column chromatography, dialysis, and other conventional separation operations, purification operations, drying, and other operations It is preferable to carry out a purification treatment by the above.
  • the organic electoluminescence device of the present invention can be produced by forming the first electrode, the second electrode, the first auxiliary electrode, the second auxiliary electrode, and the organic layer on the support substrate.
  • a support substrate any substrate that does not change when producing an organic electoluminescence device may be used. Examples thereof include glass, plastic, polymer film, and silicon substrate.
  • a transparent thing when taking out the light from the said organic layer from such a support substrate side, it is preferable to use a transparent thing as a support substrate.
  • the element structure of the organic electoluminescence device of the present invention is not particularly limited, and it may be a top emission type or a bottom emission type.
  • a protective layer may be provided as necessary.
  • the material for such a protective layer include glass, plastic, polymer film, silicon substrate, and photo-curing resin such as acrylic resin. . These protective layer materials can be used singly or in combination of two or more.
  • a transparent thing when taking out the light from the said organic layer from such a protective layer side, it is preferable to use a transparent thing as a material of a protective layer.
  • the organic-electric-luminescence element of the present invention as described above is a curved or flat surface light source for a backlight or illumination of a liquid crystal display; a segment display device used for interiors and advertisements It can be suitably used as a light-emitting element used in dot matrix display devices, liquid crystal display devices, and the like.
  • Polymer compound 1 represented by the following general formula (1) was synthesized by the following method.
  • Polymer compound 2 represented by the following general formula (2) was synthesized by the following method.
  • the purified toluene solution was washed with a 1N aqueous hydrochloric acid solution, allowed to stand and separated, and then the toluene solution was recovered. Then, this tonorene solution was washed with about 3% by mass ammonia water, allowed to stand and liquid separation, and then the toluene solution was recovered. Thereafter, this toluene solution was washed with ion-exchanged water, allowed to stand and separated, and the washed toluene solution was recovered.
  • the washed tonorene solution was poured into methanol to form a precipitate.
  • the precipitate was washed with methanol and then dried under reduced pressure to obtain polymer compound 2.
  • the obtained polymer compound 2 had a polystyrene equivalent weight average molecular weight of 8.2 ⁇ 10 5 , The number-average molecular weight in terms of len was 1. OX 10 5 .
  • a glass substrate (100 mm x 100 mm) is used as the support substrate, Cr is used on the support substrate and Ar is used as the sputtering gas. Deposited. The film forming pressure at this time was 0.5 Pa, and the sputtering power was 2. OkW. After applying the resist on the Cr film, 1 beta for 90 seconds at 10 ° C, then a square frame-shaped opening composed of a line width of 20 mm and a vertical-horizontal pitch in the frame of the opening. 300 ⁇ m.
  • the first electrode was formed on the substrate on which the auxiliary electrode was formed.
  • ITO having a film thickness of 3000 nm was deposited by a DC sputtering method at 120 ° C. using an ITO firing target as the first electrode material and Ar as the sputtering gas.
  • the film forming pressure was 0.25 Pa
  • the sputtering power was 0.25 kW.
  • annealing was performed in an oven at 200 ° C for 40 minutes.
  • the substrate on which the first electrode is formed is ultrasonically cleaned using a weak alkaline detergent at 60 ° C, cold water, and hot water at 50 ° C, pulled up from the hot water at 50 ° C and dried, and then UV-treated for 20 minutes. / ⁇ washed.
  • a suspension of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid (trade name: BaytronP CH8000, manufactured by Starck Vitec Co., Ltd.) was added to the cleaned substrate.
  • a thin film is formed with a thickness of 80 nm by spin coating, and 200 ° on an air atmosphere on a hot plate.
  • a hole injection layer was formed by heat treatment with C for 15 minutes.
  • the polymer compound 1 and the polymer compound 2 obtained in Synthesis Examples 1 and 2 were weighed at a weight ratio of 1: 1, and dissolved in toluene to prepare a 1% by mass polymer solution.
  • a polymer solution is spin-coated on a substrate on which a hole injection layer is formed to form a film with a thickness of 80 nm, and then a nitrogen atmosphere.
  • a light emitting layer was formed by heat treatment at 130 ° C. for 60 minutes on the lower hot plate.
  • the substrate on which the light emitting layer was formed was introduced into a vacuum vapor deposition machine, and LiF, Ca, and A1 were sequentially deposited as cathodes at thicknesses of 2 nm, 5 nm, and 200 nm, respectively, to form a second electrode.
  • Degree of vacuum metal vapor deposition was initiated after reaching below 1 X 10- 4 Pa.
  • the surface of the second electrode on the substrate on which the second electrode is formed is covered with a glass plate in an inert gas, and the four sides are further covered with a photocurable resin, and then the photocurable resin is cured.
  • An organic EL light-emitting device was fabricated by forming a protective layer.
  • the organic EL light emitting device thus obtained is shown in FIG. That is, the organic EL device shown in FIG. 5 includes a support substrate 1, a first auxiliary electrode 2, a second auxiliary electrode 3, a first electrode 4, a charge injection layer 5, a light emitting layer 6, a second electrode 7, and a protective layer 8. It has. An organic layer 11 consisting of the charge injection layer 5 and the light emitting layer 6 is sandwiched between the first electrode 4 and the second electrode 7. The first auxiliary electrode 2 and the second auxiliary electrode 3 are disposed on the surface of the first electrode 4 opposite to the organic layer 11.
  • a comparative organic EL was used in the same manner as in Example 1 except that a photomask having only a square frame-shaped opening composed of a line width of 20 mm was used. A light emitting element was manufactured.
  • the vertical and horizontal pitches are 300 ⁇ m each 1
  • a comparative organic EL light-emitting device was fabricated in the same manner as in Example 1 except that a photomask having a lattice-type opening made of 00 ⁇ m and a line width of 70 ⁇ ⁇ 30 ⁇ m was used.
  • Example 1 The light emission characteristics of the organic EL light emitting devices obtained in Example 1 and Comparative Examples 1 and 2 were evaluated. In other words, the luminance of light emitted when a voltage of 8 V was applied to the entire device was measured, and the appearance of the light emitting surface was visually observed. The results obtained are shown in Table 1.
  • the voltage drop due to the resistance of the transparent electrode or the translucent electrode is reduced, and even when the light emitting area is large, unevenness in the light emission luminance is sufficiently suppressed, and uniform light emission is achieved. It is possible to provide an organic-electric-mouth luminescence element that can be used.
  • the organic electoluminescence element of the present invention is useful as a light emitting element used in a planar light source, a segment display device, a dot matrix display device, a liquid crystal display device and the like.
  • FIG. 1 A schematic plan view showing the positional relationship between a first auxiliary electrode and a second auxiliary electrode arranged on the surface of the first electrode in a preferred embodiment of the organic electroluminescence device of the present invention. It is.
  • FIG. 2 is a schematic plan view showing the positional relationship between a first auxiliary electrode and a second auxiliary electrode arranged on the surface of the first electrode in another preferred embodiment of the organic electoluminescence device of the present invention.
  • FIG. 3 is a schematic plan view showing the positional relationship between a first auxiliary electrode and a second auxiliary electrode arranged on the surface of the first electrode in another preferred embodiment of the organic electoluminescence device of the present invention.
  • FIG. 4 is a schematic plan view showing the positional relationship between the first auxiliary electrode and the second auxiliary electrode arranged on the surface of the first electrode in another preferred embodiment of the organic electoluminescence device of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the laminated structure of the organic electoluminescence device obtained in the example.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An organic electroluminescence element is provided with a first electrode including a transparent electrode or a semi-transparent electrode; a second electrode facing the first electrode; and at least one organic layer arranged between the first electrode and the second electrode. The organic electroluminescence element is composed of a frame-like first auxiliary electrode, which is arranged on the surface of the first electrode and is electrically connected to the first electrode, and a second auxiliary electrode, which is arranged inside the frame of the first auxiliary electrode and is composed of a fine wire electrode electrically connected to the first auxiliary electrode. The first auxiliary electrode and the second auxiliary electrode are composed of a material having a resistivity lower than that of the first electrode.

Description

明 細 書  Specification
有機エレクト口ルミネッセンス素子  Organic electoluminescence device
技術分野  Technical field
[0001] 本発明は、面状光源、セグメント表示装置、ドットマトリックス表示装置、液晶表示装 置等に用いられる発光素子として有用な有機エレクト口ルミネッセンス素子に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to an organic electoluminescence element useful as a light-emitting element used in a planar light source, a segment display device, a dot matrix display device, a liquid crystal display device and the like. Background art
[0002] 近年、表示装置や照明装置において、有機蛍光色素を発光層に用い、この発光層 と電子写真の感光体等に用レ、られている有機電荷輸送化合物の層とを積層した二 層構造を有する有機エレクト口ルミネッセンス素子(以下、有機 EL素子とレ、うことがあ る。)を用いることが検討されてレ、る。  [0002] In recent years, in display devices and lighting devices, an organic fluorescent dye is used as a light-emitting layer, and this light-emitting layer is laminated with a layer of an organic charge transport compound that has been used for electrophotographic photoreceptors and the like. The use of organic-electric-luminescence elements (hereinafter sometimes referred to as organic EL elements) having a structure has been studied.
[0003] し力 ながら、これら有機 EL素子等を用いた表示装置や照明装置においては、そ の発光面積が大きくなるにつれて、透明電極又は半透明電極の配線抵抗による電 圧低下が無視できなくなり、発光輝度のムラが大きくなつてしまうという問題点がある。  [0003] However, in display devices and lighting devices using these organic EL elements, the voltage drop due to the wiring resistance of the transparent electrode or translucent electrode cannot be ignored as the light emitting area increases. There is a problem that the unevenness of the light emission luminance is increased.
[0004] このような問題を解決するために、例えば、特開 2004— 14128号公報(特許文献 1)には、有機 EL素子を用いた面状発光装置において、前記有機 EL素子の透明電 極に、前記透明電極より低抵抗の補助電極を電気的に接続した面状発光装置が開 示されている。また、特許文献 1の明細書中において、当該補助電極を接続端子か ら近い部分では太ぐ遠い部分では細くすることによって、接続端子から近い部分で は電流値が高く発光が強いが開口率が小さぐ遠い部分では電流値が小さく発光が 弱レヽが開口率が大きレ、ために全体としての発光輝度のムラを抑制できることが記載さ れている。  [0004] In order to solve such a problem, for example, in Japanese Unexamined Patent Application Publication No. 2004-14128 (Patent Document 1), in a planar light emitting device using an organic EL element, a transparent electrode of the organic EL element is disclosed. In addition, a planar light emitting device is disclosed in which an auxiliary electrode having a resistance lower than that of the transparent electrode is electrically connected. In addition, in the specification of Patent Document 1, the auxiliary electrode is thinned in a portion that is thick and far from the connection terminal, so that the current value is high and the light emission is strong in the portion near the connection terminal, but the aperture ratio is high. It is described that in a small and far part, the current value is small and the light emission is weak and the aperture ratio is large, so that unevenness of the light emission brightness as a whole can be suppressed.
[0005] し力、しながら、特許文献 1に記載されているような有機 EL素子を用いた場合でも、 接続端子から遠い部分では電流値が小さくなるために、発光輝度のムラを十分に抑 制することができなかった。また、開口率を調整しながら発光輝度のムラを抑制した場 合にも、光の利用効率が低下してしまうという点で課題があった。  However, even when an organic EL element as described in Patent Document 1 is used, the current value becomes small at a portion far from the connection terminal, so that unevenness in emission luminance is sufficiently suppressed. I couldn't control it. In addition, there is a problem in that the light use efficiency is lowered when unevenness of light emission luminance is suppressed while adjusting the aperture ratio.
特許文献 1:特開 2004— 14128号公報  Patent Document 1: Japanese Patent Laid-Open No. 2004-14128
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0006] 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、透明電極又 は半透明電極の抵抗による電圧低下を軽減し、発光面積が大きい場合でも発光輝 度のムラが十分に抑制され、均一発光が可能な有機エレクト口ルミネッセンス素子を 提供することを目的とする。  [0006] The present invention has been made in view of the above-described problems of the prior art, reduces voltage drop due to resistance of a transparent electrode or a semi-transparent electrode, and causes uneven light emission brightness even when the light emission area is large. An object of the present invention is to provide an organic electoluminescence device that is sufficiently suppressed and capable of uniform light emission.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、透明電極又は半透 明電極を含む第一電極と、前記第一電極に対向する第二電極と、前記第一電極及 び前記第二電極の間に設けられた少なくとも 1層の有機層とを備える有機エレクト口 ノレミネッセンス素子において、前記第一電極の表面上に補助電極を特定の形態で 配置することにより、透明電極又は半透明電極の抵抗による電圧低下を軽減し、発 光面積が大きい場合でも発光輝度のムラを十分に抑制できることを見出し、本発明を 完成するに至った。  [0007] As a result of intensive studies to achieve the above object, the present inventor has found that a first electrode including a transparent electrode or a semitransparent electrode, a second electrode facing the first electrode, and the first electrode In an organic electret nominence element comprising an electrode and at least one organic layer provided between the second electrode, the auxiliary electrode is arranged in a specific form on the surface of the first electrode, thereby making it transparent The inventors have found that the voltage drop due to the resistance of the electrode or the translucent electrode can be reduced, and that unevenness in light emission luminance can be sufficiently suppressed even when the light emission area is large, and the present invention has been completed.
[0008] すなわち、本発明の有機エレクト口ルミネッセンス素子は、透明電極又は半透明電 極を含む第一電極と、前記第一電極に対向する第二電極と、前記第一電極及び前 記第二電極の間に設けられた少なくとも 1層の有機層とを備える有機エレクトロルミネ ッセンス素子であって、  [0008] That is, the organic electoluminescence device of the present invention includes a first electrode including a transparent electrode or a translucent electrode, a second electrode facing the first electrode, the first electrode, and the second electrode. An organic electroluminescence device comprising at least one organic layer provided between electrodes,
前記第一電極の表面上に配置され、前記第一電極に電気的に接続された枠状の 第一補助電極と、  A frame-shaped first auxiliary electrode disposed on the surface of the first electrode and electrically connected to the first electrode;
前記第一補助電極の枠内に配置され、前記第一補助電極に電気的に接続された 細線電極により構成されてレ、る第二補助電極と、  A second auxiliary electrode which is arranged in a frame of the first auxiliary electrode and is constituted by a thin wire electrode electrically connected to the first auxiliary electrode;
を備え、前記第一補助電極及び第二補助電極は、前記第一電極と比較して抵抗率 の低い材料からなる、ことを特徴とするものである。  The first auxiliary electrode and the second auxiliary electrode are made of a material having a lower resistivity than that of the first electrode.
[0009] また、本発明の有機エレクト口ルミネッセンス素子においては、前記第二補助電極と 前記第一補助電極との線幅の比(前記第二補助電極の線幅/前記第一補助電極 の線幅)力 1/1000〜1/10の範囲であることが好ましい。  [0009] Further, in the organic electoluminescence device of the present invention, the ratio of the line width of the second auxiliary electrode to the first auxiliary electrode (the line width of the second auxiliary electrode / the line of the first auxiliary electrode) The width) force is preferably in the range of 1/1000 to 1/10.
[0010] さらに、本発明の有機エレクト口ルミネッセンス素子においては、前記第一補助電極 及び前記第二補助電極が、前記第一電極の表面のうち、前記有機層と反対側の表 面上に配置されてレ、ることが好ましレ、。 [0010] Further, in the organic electoluminescence device of the present invention, the first auxiliary electrode and the second auxiliary electrode are surfaces of the surface of the first electrode opposite to the organic layer. Les, which are preferably placed on the surface.
[0011] また、本発明の有機エレクト口ルミネッセンス素子においては、前記第一電極が電 気的に分離された複数のセルに仕切られており、前記複数のセルがそれぞれ前記 第二補助電極によって電気的に接続されていることが好ましい。  [0011] Further, in the organic electoluminescence device of the present invention, the first electrode is partitioned into a plurality of electrically separated cells, and each of the plurality of cells is electrically connected by the second auxiliary electrode. Are preferably connected.
[0012] 本発明の面状光源は、前記有機エレクト口ルミネッセンス素子を備えることを特徴と するものである。また、本発明のセグメント表示装置は、前記有機エレクト口ルミネッセ ンス素子を備えることを特徴とするものである。さらに、本発明のドットマトリックス表示 装置は、前記有機エレクト口ルミネッセンス素子を備えることを特徴とするものである。 また、本発明の液晶表示装置は、前記有機エレクト口ルミネッセンス素子を備えること を特徴とするものである。  [0012] A planar light source of the present invention is characterized by including the organic electoluminescence device. In addition, a segment display device of the present invention is characterized by including the organic-elect mouth luminescence element. Furthermore, the dot matrix display device of the present invention is characterized by comprising the organic electoluminescence device. In addition, a liquid crystal display device of the present invention includes the organic electoluminescence device.
[0013] なお、本発明の有機エレクト口ルミネッセンス素子によれば、透明電極又は半透明 電極の抵抗による電圧低下が軽減され、発光面積が広レ、場合でも発光輝度のムラが 十分に抑制され、均一発光が可能となる。すなわち、本発明の有機エレクト口ルミネッ センス素子においては、透明電極又は半透明電極を含む第一電極の表面上に、前 記第一電極に電気的に接続された枠状の第一補助電極と、前記第一補助電極の枠 内に配置され、前記第一補助電極に電気的に接続された細線電極により構成されて いる第二補助電極と、が配置されている。そして、前記第一補助電極及び第二補助 電極は、前記第一電極と比較して抵抗率の低い(電気伝導率の高い)材料からなる ものであるので、前記第一電極の抵抗による電圧低下を軽減できる。  [0013] Note that, according to the organic electoluminescence device of the present invention, the voltage drop due to the resistance of the transparent electrode or the translucent electrode is reduced, and even when the emission area is wide, unevenness in the emission luminance is sufficiently suppressed, Uniform light emission is possible. That is, in the organic electoluminescence device of the present invention, the frame-shaped first auxiliary electrode electrically connected to the first electrode on the surface of the first electrode including the transparent electrode or the translucent electrode, And a second auxiliary electrode which is arranged in a frame of the first auxiliary electrode and is constituted by a thin wire electrode electrically connected to the first auxiliary electrode. The first auxiliary electrode and the second auxiliary electrode are made of a material having a low resistivity (high electrical conductivity) compared to the first electrode, and therefore, a voltage drop due to the resistance of the first electrode. Can be reduced.
[0014] さらに、本発明においては、前記第一補助電極は、線幅が広く十分な電流を流す ことができるために接続端子からの距離が長い部分であっても配線抵抗による電圧 低下の影響をほとんど受けない。また、前記第二補助電極は、線幅が細いために配 線抵抗による電圧低下の影響を受けるものの、線幅が細いために有機層力 発せら れた光を遮る量が少なぐ光の利用効率に与える影響は少なレ、。そして、本発明に おいては、前記第二補助電極が前記第一補助電極の枠内に配置され、しかも電気 的に接続されているために、接続端子からの距離が長い部分であっても配線抵抗に よる電圧低下が緩和される。そのため、本発明の有機エレクト口ルミネッセンス素子に よれば、透明電極又は半透明電極の抵抗による電圧低下を軽減し、発光面積が広 い場合でも発光輝度のムラが十分に抑制され、均一発光が可能となる。 Furthermore, in the present invention, the first auxiliary electrode has a wide line width and can pass a sufficient current. Therefore, even if the distance from the connection terminal is long, the first auxiliary electrode is affected by a voltage drop due to wiring resistance. Hardly receive. In addition, although the second auxiliary electrode is affected by the voltage drop due to the wiring resistance due to its thin line width, it uses light that blocks the amount of light generated by the organic layer force due to its thin line width. The effect on efficiency is small. In the present invention, since the second auxiliary electrode is disposed within the frame of the first auxiliary electrode and is electrically connected, even if the distance from the connection terminal is long. Voltage drop due to wiring resistance is alleviated. Therefore, according to the organic electoluminescence device of the present invention, the voltage drop due to the resistance of the transparent electrode or the translucent electrode is reduced, and the light emitting area is widened. Even in such a case, unevenness in light emission luminance is sufficiently suppressed, and uniform light emission is possible.
[0015] また、本発明においては、前記第一電極を電気的に分離された複数のセルに仕切 り、前記複数のセルをそれぞれ前記第二補助電極で電気的に接続をとるような構造 とすることにより、発光輝度の更なる向上を図ることができる。すなわち、前記第一電 極を電気的に分離された複数のセルに仕切ることにより、前記第一電極の面方向に 導波する発光成分を抑制することが可能となり、発光輝度の向上が可能となる。また 、前記複数のセルはそれぞれ前記第二補助電極で電気的に接続されているため、 前記複数のセル間での発光輝度のムラも十分に抑制される。 [0015] In the present invention, the first electrode is partitioned into a plurality of electrically separated cells, and the plurality of cells are electrically connected to each other by the second auxiliary electrode. By doing so, the emission luminance can be further improved. That is, by dividing the first electrode into a plurality of electrically separated cells, it is possible to suppress the light emitting component that is guided in the surface direction of the first electrode, and to improve the light emission luminance. Become. In addition, since the plurality of cells are electrically connected to each other by the second auxiliary electrode, unevenness in light emission luminance between the plurality of cells is sufficiently suppressed.
発明の効果  The invention's effect
[0016] 本発明によれば、透明電極又は半透明電極の抵抗による電圧低下を軽減し、発光 面積が大きい場合でも発光輝度のムラが十分に抑制され、均一発光が可能な有機 エレクト口ルミネッセンス素子を提供することが可能となる。  [0016] According to the present invention, an organic electoluminescence device capable of reducing the voltage drop due to the resistance of the transparent electrode or the translucent electrode, sufficiently suppressing unevenness in light emission luminance even when the light emission area is large, and capable of uniform light emission. Can be provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の有機エレクト口ルミネッセンス素子をその好適な実施形態に即して 詳細に説明する。 Hereinafter, the organic electoluminescence device of the present invention will be described in detail according to preferred embodiments thereof.
[0018] 本発明の有機エレクト口ルミネッセンス素子は、透明電極又は半透明電極を含む第 一電極と、前記第一電極に対向する第二電極と、前記第一電極及び前記第二電極 の間に設けられた少なくとも 1層の有機層とを備える有機エレクト口ルミネッセンス素 子であって、  [0018] The organic electoluminescence device of the present invention includes a first electrode including a transparent electrode or a translucent electrode, a second electrode facing the first electrode, and between the first electrode and the second electrode. An organic electoluminescence device comprising at least one organic layer provided,
前記第一電極の表面上に配置され、前記第一電極に電気的に接続された枠状の 第一補助電極と、  A frame-shaped first auxiliary electrode disposed on the surface of the first electrode and electrically connected to the first electrode;
前記第一補助電極の枠内に配置され、前記第一補助電極に電気的に接続された 細線電極により構成されてレ、る第二補助電極と、  A second auxiliary electrode which is arranged in a frame of the first auxiliary electrode and is constituted by a thin wire electrode electrically connected to the first auxiliary electrode;
を備えることを特徴とするものである。  It is characterized by providing.
[0019] (第一電極) [0019] (First electrode)
本発明にかかる第一電極は、透明電極又は半透明電極を含む電極であって、本 発明の有機エレクト口ルミネッセンス素子の陽極となるものである。このような第一電 極としては、電気伝導度の高い金属酸化物、金属硫化物や金属の薄膜を用いること ができ、透過率が高いものが好適に利用でき、用いる有機層により適宜選択して用 レ、ることができる。このような第一電極の材料としては、例えば、酸化インジウム、酸化 亜鉛、酸化スズ、及びそれらの複合体であるインジウム'スズ 'オキサイド(ITO)、イン ジゥム '亜鉛 ·オキサイド等からなる導電性ガラス (NESA等)、金、白金、銀、銅が用 レ、られる。これらの中でも、 IT〇、インジウム ·亜鉛 'オキサイド、酸化スズが好ましい。 The 1st electrode concerning this invention is an electrode containing a transparent electrode or a semi-transparent electrode, Comprising: It becomes an anode of the organic electoluminescence element of this invention. As such a first electrode, use a metal oxide, metal sulfide or metal thin film with high electrical conductivity. Those having a high transmittance can be suitably used, and can be appropriately selected depending on the organic layer to be used. Examples of the material for the first electrode include indium oxide, zinc oxide, tin oxide, and conductive glass composed of indium 'tin' oxide (ITO), indium 'zinc oxide, etc., which are composites thereof. (NESA, etc.), gold, platinum, silver and copper are used. Among these, ITO, indium / zinc oxide and tin oxide are preferable.
[0020] このような第一電極の膜厚は、光の透過性と電気伝導度とを考慮して適宜選択する ことができる力 例えば 10nm〜10 x mであり、好ましくは 20nm〜l μ mであり、より 好ましくは 50nm〜500nmである。  [0020] The film thickness of the first electrode as described above is a force that can be appropriately selected in consideration of light transmittance and electrical conductivity, for example, 10 nm to 10 xm, preferably 20 nm to l μm. Yes, more preferably from 50 nm to 500 nm.
[0021] また、このような第一電極を電気的に分離された複数のセルに仕切る構造とする場 合には、隣接するセルとの間の間隔は l m〜50 μ ΐηであり、好ましくは 5 !〜 30 z mである。 P 接するセルとの間の間隔が前記下限未満では、第一電極の面方向に 導波する光を十分に抑制することができない傾向にあり、他方、前記上限を超えると 、実際の発光面積が小さくなるため、発光効率が低下する傾向にある。  [0021] Further, when the first electrode is divided into a plurality of electrically separated cells, the distance between adjacent cells is lm to 50 μ50η, preferably Five ! ~ 30 z m. If the distance between the P-contact cells is less than the lower limit, the light guided in the surface direction of the first electrode tends not to be sufficiently suppressed. On the other hand, if the upper limit is exceeded, the actual light emitting area is not increased. Since it becomes smaller, the luminous efficiency tends to decrease.
[0022] さらに、このように電気的に分離された複数のセルの形状としては、特に限定されな いが、例えば、ストライプ状、三角形状、四角形状等の矩形状が挙げられる。なお、こ のような第一電極を電気的に分離された複数のセルに仕切る構造とする場合におい ては、本発明の有機エレクト口ルミネッセンス素子を作製するにあたり、このような第一 電極を形成した後に形成されるもの(例えば、補助電極、有機層)の材料が隣接する セルとの間に充填されることとなる。  Further, the shape of the plurality of cells electrically separated in this way is not particularly limited, and examples thereof include a rectangular shape such as a stripe shape, a triangular shape, and a quadrangular shape. In the case where such a first electrode is divided into a plurality of electrically separated cells, the first electrode is formed when the organic electroluminescence device of the present invention is produced. After that, the material of what is formed (for example, auxiliary electrode, organic layer) is filled between the adjacent cells.
[0023] 以上説明したような第一電極を形成させる方法としては、真空蒸着法、スパッタリン グ法、イオンプレーティング法、メツキ法等が挙げられる。また、このような第一電極を 電気的に分離された複数のセルに仕切る方法としては、例えば、第一電極を形成し た後に、フォトレジストを用いたエッチング法によりパターン形成する方法が挙げられ る。  [0023] Examples of the method for forming the first electrode as described above include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Examples of a method of partitioning such a first electrode into a plurality of electrically separated cells include a method of forming a pattern by an etching method using a photoresist after forming the first electrode. The
[0024] なお、このような第一電極として、ポリア二リン又はその誘導体、ポリチォフェン又は その誘導体等の有機物の透明導電膜を用いてもよい。また、有機層への電荷注入を 容易にするという観点から、このような第一電極の有機層側の表面上に、フタロシア ニン誘導体、ポリチォフェン誘導体等の導電性高分子、 Mo酸化物、アモルファス力 一ボン、フッ化カーボン、ポリアミン化合物等の l〜200nmの層、或いは金属酸化物 や金属フッ化物、有機絶縁材料等からなる平均膜厚 10nm以下の層を設けてもよい [0024] Note that, as such a first electrode, a transparent conductive film made of an organic material such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used. In addition, from the viewpoint of facilitating charge injection into the organic layer, a conductive polymer such as a phthalocyanine derivative or a polythiophene derivative, Mo oxide, amorphous force is formed on the surface of the first electrode on the organic layer side. A layer with a thickness of 1 to 200 nm such as monobon, carbon fluoride, polyamine compound, etc., or a layer with an average film thickness of 10 nm or less made of metal oxide, metal fluoride, organic insulating material, etc. may be provided.
[0025] (補助電極) [0025] (auxiliary electrode)
本発明の有機エレクト口ルミネッセンス素子においては、前記第一電極の表面上に 配置され、前記第一電極に電気的に接続された枠状の第一補助電極と、  In the organic electoluminescence device of the present invention, a frame-shaped first auxiliary electrode disposed on the surface of the first electrode and electrically connected to the first electrode;
前記第一補助電極の枠内に配置され、前記第一補助電極に電気的に接続された 細線電極により構成されてレヽる第二補助電極と、  A second auxiliary electrode disposed within the frame of the first auxiliary electrode and configured by a thin wire electrode electrically connected to the first auxiliary electrode;
を備えることが必要である。本発明においては、前記第一電極の表面上に第一補助 電極及び第二補助電極を上記のような形態で配置することにより、有機 EL素子の発 光面積が大きい場合でも発光輝度のムラを十分に抑制することが可能となる。  It is necessary to have In the present invention, by arranging the first auxiliary electrode and the second auxiliary electrode on the surface of the first electrode in the form as described above, even when the light emitting area of the organic EL element is large, unevenness in light emission luminance is achieved. It can be sufficiently suppressed.
[0026] このような第一補助電極及び第二補助電極の配置形態としては、例えば、図 1、図 2、図 3、及び図 4に示す配置形態を挙げることができる。図 1に示す配置形態におい ては、枠状の第一補助電極の枠内に細線電極により構成されている第二補助電極 が格子状に配置されている。また、図 2に示す配置形態においては、枠状の第一補 助電極の枠内に細線電極により構成されている第二補助電極がストライプ状に配置 されている。さらに、図 3に示す配置形態においては、枠状の第一補助電極の枠内 に細線電極により構成されている第二補助電極がハニカム状に配置されている。図 4 に示す配置形態においては、枠状の第一補助電極の枠内に細線電極により構成さ れている第二補助電極が格子状に配置され、さらにその格子内により細い細線電極 により構成されてレ、る第二補助電極が格子状に配置されてレ、る。 Examples of the arrangement form of the first auxiliary electrode and the second auxiliary electrode include the arrangement forms shown in FIG. 1, FIG. 2, FIG. 3, and FIG. In the arrangement form shown in FIG. 1, the second auxiliary electrodes made up of thin wire electrodes are arranged in a lattice pattern within the frame of the frame-shaped first auxiliary electrode. Further, in the arrangement form shown in FIG. 2, the second auxiliary electrodes made of thin wire electrodes are arranged in a stripe pattern in the frame of the frame-shaped first auxiliary electrode. Furthermore, in the arrangement form shown in FIG. 3, the second auxiliary electrode constituted by the thin wire electrode is arranged in a honeycomb shape within the frame of the frame-shaped first auxiliary electrode. In the arrangement form shown in FIG. 4, the second auxiliary electrodes made up of fine wire electrodes are arranged in a lattice shape within the frame of the frame-like first auxiliary electrode, and further, the fine auxiliary wires are made up of fine wire electrodes in the lattice. The second auxiliary electrodes are arranged in a grid pattern.
[0027] ここで、枠状の第一補助電極の形状は、第二補助電極が枠内に形成されていれば 特に限定されず、矩形状、円形状等が挙げられる。また、第一補助電極の線幅は、 有機エレクト口ルミネッセンス素子の発光面積に応じて適宜選択することができるが、 :!〜 50mmの範囲であることが好ましぐ 3〜20mmの範囲であることがより好ましい。 さらに、第二補助電極を構成する細線電極の線幅(以下、「第二補助電極の線幅」と レ、う)は、光の利用効率の観点から、:!〜 200 x mの範囲であることが好ましぐ 10〜 100 μ mの範囲であることがより好ましい。 [0028] また、本発明においては、前記第二補助電極と前記第一補助電極との線幅の比( 前記第二補助電極の線幅/前記第一補助電極の線幅)が、 1/1000〜: 1/10の範 囲であることが好ましぐ 1/500〜 1/20の範囲であることがより好ましい。線幅の比 が前記範囲内であれば、光の利用効率を更に向上させ、発光輝度のムラを更に抑 制することができる傾向にある。 [0027] Here, the shape of the frame-shaped first auxiliary electrode is not particularly limited as long as the second auxiliary electrode is formed in the frame, and examples thereof include a rectangular shape and a circular shape. In addition, the line width of the first auxiliary electrode can be appropriately selected according to the light emitting area of the organic-electric-luminescence element, but is preferably in the range of 3 to 20 mm. It is more preferable. Further, the line width of the thin wire electrode constituting the second auxiliary electrode (hereinafter referred to as “the line width of the second auxiliary electrode”) is in the range of:! To 200 xm from the viewpoint of light utilization efficiency. The range of 10 to 100 μm is more preferable. In the present invention, the ratio of the line widths of the second auxiliary electrode and the first auxiliary electrode (the line width of the second auxiliary electrode / the line width of the first auxiliary electrode) is 1 / 1000 to: 1/10 is preferable. 1/500 to 1/20 is more preferable. If the ratio of the line widths is within the above range, the light use efficiency tends to be further improved, and unevenness in the light emission luminance can be further suppressed.
[0029] このような第一補助電極及び第二補助電極の材料としては、前記第一電極の材料 より抵抗率が低ければ(電気伝導率が高ければ)特に制限はないが、通常は 107S/ cm以上の電気伝導度を有する導電材料が使用され、アルミニウム、銀、クロム、金、 銅、タンタル等の金属材料が好適に利用される。これらの中でも、電気伝導度の高さ 、材料のハンドリングの容易さの観点から、アルミニウム、クロム、銅、銀がより好ましい [0029] As a material for the first auxiliary electrode and the second auxiliary electrode, (the higher the electrical conductivity) the first Invite than resistivity lower electrode material is not particularly limited, usually 10 7 A conductive material having an electrical conductivity of S / cm or more is used, and metal materials such as aluminum, silver, chromium, gold, copper, and tantalum are preferably used. Among these, aluminum, chromium, copper, and silver are more preferable from the viewpoint of high electrical conductivity and ease of material handling.
[0030] また、第一補助電極及び第二補助電極の材料として金属を用いた場合には、後述 する有機層からの光が遮断されることから、素子の発光する面積に対する補助電極 で被われる面積の割合は、 20%以上であり且つ 90%以下であることが好ましぐ 30 %以上であり且つ 80%以下であることがより好ましい。 [0030] Further, when a metal is used as the material of the first auxiliary electrode and the second auxiliary electrode, light from the organic layer described later is blocked, so that the auxiliary electrode covers the light emitting area of the element. The area ratio is preferably 20% or more and 90% or less, more preferably 30% or more and 80% or less.
[0031] さらに、このような第一補助電極及び第二補助電極の厚みは、面抵抗が所望の値 となるように適宜選択することができる力 例えば 10〜500nmであり、好ましくは 20 〜300應であり、より好ましくは 50〜: 150應である。  [0031] Further, the thicknesses of the first auxiliary electrode and the second auxiliary electrode are forces that can be appropriately selected so that the sheet resistance becomes a desired value, for example, 10 to 500 nm, preferably 20 to 300. And more preferably 50 to 150.
[0032] さらに、本発明の有機エレクト口ルミネッセンス素子においては、前記第一補助電極 及び前記第二補助電極が、前記第一電極の表面のうち、有機層側の表面上に配置 されていてもよいが、前記第一電極と、前記第一補助電極及び前記第二補助電極と の電気的な接続をより確実にするという観点から、有機層と反対側の表面上に配置さ れていることが好ましい。  [0032] Further, in the organic electoluminescence device of the present invention, the first auxiliary electrode and the second auxiliary electrode may be disposed on the surface of the first electrode on the organic layer side. Although it is good, it is arrange | positioned on the surface on the opposite side to an organic layer from a viewpoint of making electrical connection of said 1st electrode, said 1st auxiliary electrode, and said 2nd auxiliary electrode more reliable. Is preferred.
[0033] 以上説明したような第一補助電極及び第二補助電極を形成させる方法としては、 例えば、真空蒸着法、スパッタリング法、又は金属薄膜を熱圧着するラミネート法等 により補助電極の材料の膜を形成した後に、フォトレジストを用いたエッチング法によ りパターン形成する方法が挙げられる。  [0033] As a method of forming the first auxiliary electrode and the second auxiliary electrode as described above, for example, a film of the material of the auxiliary electrode by a vacuum deposition method, a sputtering method, or a laminating method in which a metal thin film is thermocompression bonded. A method of forming a pattern by an etching method using a photoresist after forming the film is mentioned.
[0034] (第二電極) 本発明にかかる第二電極は、前記第一電極に対向して配置される電極であって、 本発明の有機エレクト口ルミネッセンス素子の陰極となるものである。このような第二 電極の材料としては、仕事関数の小さい材料が好ましぐ例えば、リチウム、ナトリウム 、カリウム、ノレビジゥム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウ ム、バリウム、ァノレミニゥム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、 セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれら のうちの 2つ以上の合金;或いはそれらのうちの 1つ以上と、金、銀、白金、銅、マンガ ン、チタン、コバルト、ニッケル、タングステン、錫のうちの 1つ以上との合金;グラフアイ ト又はグラフアイト層間化合物が用いられる。これらの合金としては、マグネシウム一 銀合金、マグネシウム—インジウム合金、マグネシウム—アルミニウム合金、インジゥ ム—銀合金、リチウム—アルミニウム合金、リチウム—マグネシウム合金、リチウム—ィ ンジゥム合金、カルシウム―アルミニウム合金等が挙げられる。 [0034] (Second electrode) The 2nd electrode concerning this invention is an electrode arrange | positioned facing said 1st electrode, Comprising: It becomes a cathode of the organic electoluminescence element of this invention. As a material for such a second electrode, a material having a low work function is preferable. , Yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and other metals and alloys of two or more thereof; or one or more of them and gold, silver, platinum, copper, mangan, Alloys with one or more of titanium, cobalt, nickel, tungsten, tin; graphite or graphite intercalation compounds are used. These alloys include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy, etc. It is done.
[0035] このような第二電極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択すること ができるが、例えば 10nm〜: 10 μ mであり、好ましくは 20nm〜l μ mであり、さらに 好ましくは 50nm〜500nmである。  [0035] The film thickness of such a second electrode can be appropriately selected in consideration of electrical conductivity and durability, but is, for example, 10 nm to 10 μm, preferably 20 nm to l μm. And more preferably 50 nm to 500 nm.
[0036] 以上説明したような第二電極を形成させる方法としては、真空蒸着法、スパッタリン グ法、又は金属薄膜を熱圧着するラミネート法等が挙げられる。なお、このような第二 電極を 2層以上の積層構造としてもよい。また、第二電極と有機層との間に、導電性 高分子からなる層、或いは金属酸化物や金属フッ化物、有機絶縁材料等からなる平 均膜厚 2nm以下の層を設けてもよい。  [0036] Examples of the method for forming the second electrode as described above include a vacuum deposition method, a sputtering method, and a laminating method in which a metal thin film is thermocompression bonded. Such a second electrode may have a laminated structure of two or more layers. Further, a layer made of a conductive polymer or a layer made of a metal oxide, metal fluoride, organic insulating material or the like having an average film thickness of 2 nm or less may be provided between the second electrode and the organic layer.
[0037] (有機層)  [0037] (Organic layer)
本発明にかかる有機層は、前記第一電極及び前記第二電極の間に設けられた層 である。  The organic layer according to the present invention is a layer provided between the first electrode and the second electrode.
このような有機層は、少なくとも 1層の発光材料を含有する層であればよいが、複数 の層により構成されていてもよレ、。有機エレクト口ルミネッセンス素子の動作は、本質 的に、電子及び正孔を電極から注入する過程と、電子及び正孔が有機層を移動する 過程と、電子及び正孔が再結合し、一重項励起子又は三重項励起子を生成する過 程と、その励起子が発光する過程とからなるが、有機層が複数の層により構成される 場合には、各過程において要求される機能を複数の材料に分担させるとともに、それ ぞれの材料を独立して最適化できる。また、このような有機層の発光色としては、赤、 青、緑の 3原色の発光以外に、中間色や白色の発光が例示される。フルカラー素子 には、 3原色の発光色が、平面光源では白色や中間色の発光が好ましい。 Such an organic layer may be a layer containing at least one luminescent material, but may be composed of a plurality of layers. The operation of an organic electoluminescence device essentially consists of the process of injecting electrons and holes from the electrode, the process of electrons and holes moving through the organic layer, the recombination of electrons and holes, and singlet excitation. It consists of a process of generating a photon or triplet exciton and a process in which the exciton emits light, but the organic layer is composed of multiple layers In some cases, the functions required in each process can be shared among multiple materials, and each material can be optimized independently. Further, examples of the light emission color of such an organic layer include light emission of an intermediate color and white other than light emission of the three primary colors of red, blue, and green. For full-color elements, light emission of three primary colors is preferable, and for a flat light source, light emission of white or intermediate color is preferable.
[0038] また、本発明においては、このような有機層に用いられる発光材料として、低分子 型発光材料 (i)だけでなぐ高分子型発光材料 (ii)を用いることができる。そして、こ のような発光材料の種類によっては、有機層に用いられる他の材料が異なるので、以 下低分子型発光材料 (i)を用いる場合と高分子発光材料 (ii)を用いる場合とに分け てそれぞれ説明する。  [0038] Further, in the present invention, as the light emitting material used in such an organic layer, a polymer light emitting material (ii) that is composed only of the low molecular weight light emitting material (i) can be used. Depending on the type of such luminescent material, the other materials used in the organic layer are different. Therefore, the case of using the low molecular weight luminescent material (i) and the case of using the polymer luminescent material (ii) are described below. Each will be explained separately.
[0039] (i)低分子型発光材料を用いる場合  [0039] (i) When using a low molecular weight light emitting material
低分子型発光材料を用いる場合における有機層の材料としては、「有機 ELデイス プレイ」(時任静夫、安達千波矢、村田英幸 共著 株式会社オーム社 平成 16年刊 第 1版第 1刷発行) 17〜48頁、 83〜99頁、 101〜120頁に記載の蛍光や燐光発 光材料、正孔輸送材料、電子ブロック材料、正孔ブロック材料、電子輸送材料が挙 げられる。具体的には、正孔輸送材料としては、特開昭 63— 70257号公報、同 63 — 175860号公報、特開平 2— 135359号公報、同 2— 135361号公報、同 2— 209 988号公報、同 2— 311591号公報、同 3— 37992号公報、同 3— 152184号公報、 同 11— 35687号公報、同 11— 217392号公報、特開 2000— 80167号公報に記 載されているもの等が例示される。  The organic layer material in the case of using low-molecular-weight luminescent materials is “Organic EL Display” (Co-authored by Shizuo Tokito, Chinamiya Adachi, Hideyuki Murata, Ohm Co., Ltd., 2004, first edition, first edition) Fluorescent and phosphorescent materials, hole transport materials, electron block materials, hole block materials, and electron transport materials described on pages 48, 83 to 99, and 101 to 120 are listed. Specifically, as hole transport materials, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-2-209988. Described in JP-A-2-311591, JP-A-3-37992, JP-A-3-152184, JP-A-11-35687, JP-A-11-217392, JP-A-2000-80167 Etc. are exemplified.
[0040] さらに、低分子型発光材料 (三重項発光錯体)としては、例えば、イリジウムを中心 金属とする Ir (ppy) 、 Btp Ir (acac)、白金を中心金属とする PtOEP、ユーロピウム  [0040] Furthermore, examples of the low molecular weight light emitting material (triplet light emitting complex) include Ir (ppy) and Btp Ir (acac) having iridium as a central metal, PtOEP and europium having platinum as a central metal, for example.
3 2  3 2
を中心金属とする Eu (TTA) phenが挙げられる。具体的には、例えば、 Nature, (  Eu (TTA) phen with a central metal. Specifically, for example, Nature, (
3  Three
1998) , 395, 151 , Appl. Phys. Lett. (1999) , 75 (1), 4、 Pro SPIE— Int. So Opt. Eng. (2001) , 4105 (Organic Light— Emitting Materials and DevicesIV) , 119, J. Am. Chem. So , (2001) , 123, 4304、 Appl. Phys. Lett. , (1997) , 71 (18) , 2596、 Syn. Met. , (1998), 94 (1) , 103、 Syn. Me t. , (1999), 99 (2) , 1361、 Adv. Mater. , (1999), 11 (10) , 852, Jpn. J. Ap pi. Phys., 34, 1883 (1995)等に記載されているもの等が例示される。 [0041] これらの有機層の材料を含有する層の厚みとしては、発光効率や駆動電圧が所望 の値になるように適宜選択される力 5〜200nmが一般的である。また、正孔輸送層 の厚みは、例えば 10〜: !OOnmであり、好ましくは 20〜80nmである。発光層の厚み は、例えば 10〜: !OOnmであり、好ましくは 20〜80nmである。正孔ブロック層の厚み は、例えば 5〜50nmであり、好ましくは 10〜30nmである。電子注入層の厚みは、 例えば 10〜: !OOnmであり、好ましくは 20〜80nmである。 1998), 395, 151, Appl. Phys. Lett. (1999), 75 (1), 4, Pro SPIE— Int. So Opt. Eng. (2001), 4105 (Organic Light— Emitting Materials and Devices IV), 119 , J. Am. Chem. So, (2001), 123, 4304, Appl. Phys. Lett., (1997), 71 (18), 2596, Syn. Met., (1998), 94 (1), 103 , Syn. Met., (1999), 99 (2), 1361, Adv. Mater., (1999), 11 (10), 852, Jpn. J. Ap pi. Phys., 34, 1883 (1995) And the like are exemplified. [0041] The thickness of the layer containing the material of these organic layers is generally a force of 5 to 200 nm that is appropriately selected so that the light emission efficiency and the driving voltage have desired values. The thickness of the hole transport layer is, for example, 10 to:! OOnm, preferably 20 to 80nm. The thickness of the light emitting layer is, for example, 10 to:! OOnm, preferably 20 to 80 nm. The thickness of the hole blocking layer is, for example, 5 to 50 nm, preferably 10 to 30 nm. The thickness of the electron injection layer is, for example, 10 to:! OOnm, preferably 20 to 80 nm.
[0042] これらの層を形成させる方法としては、真空蒸着、クラスター蒸着、分子線蒸着等の 真空プロセス以外に、溶液ゃェマルジヨンを形成できる材料の場合は、後述するコー ティング法や印刷法にて製膜する方法が挙げられる。  [0042] As a method for forming these layers, in addition to vacuum processes such as vacuum deposition, cluster deposition, and molecular beam deposition, in the case of a material capable of forming solution emulsion, a coating method or a printing method described later is used. The method of forming a film is mentioned.
[0043] (ii)高分子型発光材料を用いる場合  [0043] (ii) When using a polymer light-emitting material
高分子型発光材料を用いる場合における有機層の材料としては、「高分子 EL材料 」(大西敏博、小山珠美 共著 共立出版 2004年刊 初版版第 1刷発行) 33〜58 頁に記載の材料が挙げられ、電荷注入層や電荷輸送層と積層した構造で有機エレ タトロルミネッセンス素子を構築することができる。より具体的には、高分子化合物の 正孔輸送性材料、電子輸送性材料及び発光材料としては、 W099/13692公開明 糸田 、 W099/4816(½^? 9糸田 、 GB2340304A, WO00/53656 9糸田 、 WO01/19834 開明糸田 、 WO00/55927 開明糸田 、 GB2348316, W 000/46321公開明細書、 WO00/06665公開明細書、 W099/54943公開明 糸田 、 W099/54385 9糸田 、 US5777070, WO98/06773 ^ J糸田 、 WO97/05184 開明糸田 、 WO00/35987 開明糸田 、 WO00/53655 開 明細書、 WO01/34722公開明細書、 W099/24526公開明細書、 WO00/22  Examples of materials for the organic layer in the case of using polymer light-emitting materials include “polymer EL materials” (co-authored by Toshihiro Onishi and Tamami Koyama, published by Kyoritsu Publishing Co., Ltd., 2004, first edition). Thus, an organic electroluminescence device can be constructed with a structure in which the charge injection layer and the charge transport layer are laminated. More specifically, as a hole transport material, an electron transport material, and a light emitting material of a polymer compound, W099 / 13692 published Akira Itada, W099 / 4816 (½ ^? 9 Itoda, GB2340304A, WO00 / 53656 9 Itoda , WO01 / 19834 Kaimei Itoda, WO00 / 55927 Kaimei Itoda, GB2348316, W 000/46321 published specification, WO00 / 06665 published specification, W099 / 54943 published Akira Itada, W099 / 54385 9 Itada, US5777070, WO98 / 06773 ^ J Itoda, WO97 / 05184 Kaimei Itoda, WO00 / 35987 Kaimei Itoda, WO00 / 53655 Open specification, WO01 / 34722 Open specification, W099 / 24526 Open specification, WO00 / 22
糸田 、 WO00/22026A 糸田 、 糸田 、 US Ito, WO00 / 22026A Ito, Ito, US
573636、 W098/21262A開明糸田 、 US5741921, WO97/09394A開明糸田 、 W096/29356A開明糸田 、 WO96/10617A開明糸田 、 EP0707020, W 095/07955公開明糸田書、特開 2001— 181618号公報、特開 2001— 123156号 公報、特開 2001— 3045号公報、特開 2000— 351967号公報、特開 2000— 303 066号公報、特開 2000— 299189号公報、特開 2000— 252065号公報、特開 20 00— 136379号公報、特開 2000— 104057号公報、特開 2000— 80167号公報、 特開平 10— 324870号公報、特開平 10— 114891号公報、特開平 9 111233号 公報、特開平 9— 45478号公報等に開示されているポリフルオレン、その誘導体及 び共重合体、ポリアリーレン、その誘導体及び共重合体、ポリアリーレンビニレン、そ の誘導体及び共重合体、芳香族ァミン及びその誘導体の(共)重合体が挙げられる。 これらの高分子型発光材料や電荷輸送材料には、前述した低分子型発光材料を用 レヽる場合に有機層に用レヽられる発光材料や電荷輸送材料を混合して用レ、てもよレヽ。 また、これらの高分子型発光材料や電荷輸送材料においては、前述した低分子型 発光材料がこれらの材料の構造に含まれてレ、てもよレ、。 US Pat. — 123156, JP 2001-3045, JP 2000-351967, JP 2000-303 066, JP 2000-299189, JP 2000-252065, JP 2000 00 — 136379, JP 2000-104057, JP 2000-80167, Polyfluorenes, derivatives and copolymers thereof, polyarylenes, disclosed in JP-A-10-324870, JP-A-10-114891, JP-A-9111233, JP-A-9-45478, etc. Derivatives and copolymers thereof, polyarylene vinylenes, derivatives and copolymers thereof, and (co) polymers of aromatic amines and derivatives thereof. These polymer light-emitting materials and charge transport materials can be mixed with light-emitting materials and charge transport materials used in the organic layer when the above-described low-molecular light-emitting materials are used. . In these polymer light emitting materials and charge transport materials, the low molecular light emitting materials described above may be included in the structure of these materials.
[0044] 電荷注入層の具体的な例としては、導電性高分子を含む層又は前記第一電極と 正孔輸送層との間に設けられ、前記第一電極の材料と正孔輸送層に含まれる正孔 輸送性材料との中間の値のイオンィ匕ポテンシャルを有する材料を含む層、前記第二 電極と電子輸送層との間に設けられ、前記第二電極の材料と電子輸送層に含まれる 電子輸送性材料との中間の値の電子親和力を有する材料を含む層等が挙げられる [0044] As a specific example of the charge injection layer, a layer containing a conductive polymer or provided between the first electrode and the hole transport layer, the material of the first electrode and the hole transport layer are provided. A layer including a material having an ionic potential of an intermediate value with respect to the included hole transporting material, provided between the second electrode and the electron transport layer, and included in the material of the second electrode and the electron transport layer A layer containing a material having an electron affinity with a value intermediate to that of the electron transporting material.
[0045] また、このような電荷注入層が導電性高分子を含む層である場合、導電性高分子 を含む層は少なくとも一方の電極(第一電極、第二電極)と発光層との間に電極に隣 接して設けられる。 [0045] When such a charge injection layer is a layer containing a conductive polymer, the layer containing the conductive polymer is located between at least one electrode (first electrode, second electrode) and the light emitting layer. Next to the electrode.
このような導電性高分子の電気伝導度は、 10_7S/cm以上であり且つ 103S/cm 以下であることが好ましぐ発光画素間のリーク電流を小さくするためには、 10"¾/ cm以上であり且つ 102S/cm以下であることがより好ましぐ 10_5S/cm以上であり 且つ lo /cm以下であることが特に好ましい。また、通常はこのような導電性高分 子の電気伝導度を 10_5S/cm以上であり且つ 103S/cm以下とするために、このよ うな導電性高分子に適量のイオンをドープする。 In order to reduce the leakage current between the light emitting pixels, the electrical conductivity of such a conductive polymer is preferably 10 _7 S / cm or more and preferably 10 3 S / cm or less. it is particularly preferred that the ¾ / cm or more at and and equal to or less than 10 2 S / cm is less than more preferably tool is at 10_ 5 S / cm or more and lo / cm. Further, usually such conductive the electric conductivity of the high-molecular to less 10_ 5 S / cm or more at and and 10 3 S / cm, a suitable amount of ions are doped into the good Una conductive polymer.
[0046] ドープするイオンとしては、正孔注入層であればァニオン、電子注入層であれば力 チオンが用いられる。ァニオンの例としては、ポリスチレンスルホン酸イオン、アルキ ルベンゼンスルホン酸イオン、樟脳スルホン酸イオン等が挙げられ、カチオンの例と しては、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラプチルアンモニゥムィ オン等が挙げられる。 [0047] 電荷注入層に用いる材料としては、電極や隣接する層の材料との関係で適宜選択 すればよいが、ポリア二リン及びその誘導体、ポリチォフェン及びその誘導体、ポリピ ロール及びその誘導体、ポリフエ二レンビニレン及びその誘導体、ポリチェ二レンビニ レン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体 、芳香族ァミン構造を主鎖又は側鎖に含む重合体等の導電性高分子;金属フタロシ ァニン (銅フタロシアニン等);カーボン等が挙げられる。 [0046] As ions to be doped, an anion is used for the hole injection layer, and a force thione is used for the electron injection layer. Examples of anions include polystyrene sulfonate ions, alkylbenzene sulfonate ions, camphor sulfonate ions, etc., and examples of cations include lithium ions, sodium ions, potassium ions, tetraptyl ammonium ions. Etc. [0047] The material used for the charge injection layer may be appropriately selected depending on the material of the electrode and the adjacent layer, but polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene. Lembinylene and its derivatives, Polyethylene vinylene and its derivatives, Polyquinoline and its derivatives, Polyquinoxaline and its derivatives, Conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain; Metal phthalocyanine (copper Phthalocyanine, etc.); carbon and the like.
[0048] また、電荷注入を容易にする目的で、前記第一電極及び/又は前記第二電極に 隣接して厚みが 10nm以下の絶縁層を設けてもよレ、。このような絶縁層の材料として は、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられ、アルカリ金属又はァ ルカリ土類金属等の金属フッ化物や金属酸化物が好ましい。  [0048] For the purpose of facilitating charge injection, an insulating layer having a thickness of 10 nm or less may be provided adjacent to the first electrode and / or the second electrode. Examples of such an insulating layer material include metal fluorides, metal oxides, organic insulating materials, and the like, and metal fluorides and metal oxides such as alkali metals and alkali earth metals are preferable.
[0049] また、第二電極に近い側の有機層に含有される電子輸送性高分子材料としては、 電極から電子が注入され、電子を輸送する高分子材料であればよく特に制限はされ ないが、 π及び σ共役系高分子や電子輸送性の基を高分子中に含む高分子材料 を適宜使用することができる。さらに、低分子の電子輸送性材料を併用することもでき る。  [0049] The electron transporting polymer material contained in the organic layer on the side close to the second electrode is not particularly limited as long as it is a polymer material that injects electrons from the electrode and transports electrons. However, a π and σ conjugated polymer or a polymer material containing an electron transporting group in the polymer can be used as appropriate. Furthermore, a low molecular electron transporting material can be used in combination.
[0050] これらの正孔輸送性材料や電子輸送性材料は電荷の輸送以外に、発光機構を有 しているものも好適に利用できる力 本発明においては、前記発光材料をこれらの層 にドーピングして用いることもできる。  [0050] In addition to charge transport, these hole transporting materials and electron transporting materials can also be suitably used for those having a light emitting mechanism. In the present invention, these layers are doped with the light emitting material. It can also be used.
[0051] 以上説明したような有機層の材料を含有する層の厚みは、用いる材料によって最 適値が異なるが、駆動電圧と発光効率が適度な値となるように適宜選択することがで きる。また、発光層の厚みは、例えば 5〜300nmであり、好ましくは 30〜200nmであ り、さらに好ましくは 40〜: 150nmである。電荷注入層の厚みは、例えば lnm〜1000 nmであり、好ましくは 2nm〜: !OOnmである。電子輸送層の厚みは、例えば lnm〜l z mであり、好ましくは 2nm〜500nmであり、さらに好ましくは 5nm〜200nmである  [0051] The thickness of the layer containing the material of the organic layer as described above has an optimum value depending on the material used, but can be appropriately selected so that the driving voltage and the light emission efficiency become appropriate values. . The thickness of the light emitting layer is, for example, 5 to 300 nm, preferably 30 to 200 nm, and more preferably 40 to 150 nm. The thickness of the charge injection layer is, for example, 1 nm to 1000 nm, preferably 2 nm to:! OOnm. The thickness of the electron transport layer is, for example, 1 nm to l z m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm.
[0052] また、ここまで述べてきた有機層の材料のうちの高分子材料を含有する層(発光層 、電荷輸送層、電荷注入層)を形成させる方法としては、例えば、溶液からのコーティ ング法や印刷法にて製膜する方法が挙げられる。なお、このような方法は、前記高分 子材料を含有しない層(発光層、電荷輸送層、電荷注入層)を形成させる方法として も採用すること力 Sできる。このような方法によれば、溶液を塗布後乾燥することにより 溶媒を除去するだけでよぐまた電荷輸送材料や発光材料を混合した場合において も同様な手法が適用でき、製造上非常に有利である。このようなコーティング法及び 印刷法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビ ァコート法、バーコート法、ロールコート法、ワイア一バーコート法、ディップコート法、 スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、キヤビラリ一 コート法、ノズノレコート法、インクジェットプリント法等の塗布法が挙げられる。また、電 荷注入材料は、ェマルジヨン状で水やアルコールに分散させたものを溶液と同様な 方法で、製膜することができる。 [0052] In addition, as a method for forming a layer (light emitting layer, charge transport layer, charge injection layer) containing a polymer material among the organic layer materials described so far, for example, coating from a solution is used. And a method of forming a film by a printing method or a printing method. In addition, such a method is It can also be used as a method for forming a layer that does not contain a child material (light emitting layer, charge transport layer, charge injection layer). According to such a method, it is only necessary to remove the solvent by drying after applying the solution, and the same method can be applied even when a charge transport material or a light emitting material is mixed, which is very advantageous in production. is there. Examples of such coating and printing methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, and screen. Examples of the coating method include a printing method, a flexographic printing method, an offset printing method, a slippery coating method, a nozure coating method, and an inkjet printing method. Further, the charge injection material can be formed into an emulsion in which water or alcohol is dispersed in the same manner as the solution.
[0053] このようなコーティング法や印刷法において、有機層の材料に用いる溶媒としては 特に限定されないが、前記高分子材料を溶解又は均一に分散できるものが好ましい 。前記高分子材料が非極性溶媒に可溶なものである場合において、このような溶媒 としては、例えば、クロ口ホルム、塩化メチレン、ジクロロェタン等の塩素系溶媒;テトラ ヒドロフラン等のエーテル系溶媒;トルエン、キシレン、テトラリン、ァニソール、 n—へ キシルベンゼン、シクロへキシルベンゼン等の芳香族炭化水素系溶媒;デカリン、ビ シクロへキシル等の脂肪族炭化水素系溶媒;アセトン、メチルェチルケトン、 2—ヘプ タノン等のケトン系溶媒;酢酸ェチル、酢酸ブチル、ェチルセルソルブアセテート、プ ロピレンダリコールモノメチルエーテルアセテート等のエステル系溶媒が挙げられる。  In such a coating method or printing method, the solvent used for the material of the organic layer is not particularly limited, but a solvent capable of dissolving or uniformly dispersing the polymer material is preferable. In the case where the polymer material is soluble in a non-polar solvent, examples of such solvents include chlorine solvents such as chloroform, methylene chloride, dichloroethane; ether solvents such as tetrahydrofuran; toluene , Xylene, tetralin, anisole, n-hexylbenzene, cyclohexylbenzene and other aromatic hydrocarbon solvents; decalin, bicyclohexyl and other aliphatic hydrocarbon solvents; acetone, methyl ethyl ketone, 2- Examples include ketone solvents such as heptanone; ester solvents such as ethyl acetate, butyl acetate, ethyl cellosolve acetate, and polypropylene alcohol monomethyl ether acetate.
[0054] また、複数の層を積層する場合においては、上下の層の混合を防止するために、 最初に形成された層を不溶化することが好ましい。このように不溶化する方法として は、可溶性の前駆体や可溶基を有する高分子を用いて、熱処理により、前駆体を共 役系高分子に転換したり、可溶基を分解することで溶解性を低下させることで不溶化 する方法や、架橋基を分子内に有する正孔輸送性高分子を用いる方法、或いは、熱 、光、電子線等により架橋反応を生ずるモノマーやマクロマーを混合する方法等が挙 げられる。 [0054] When a plurality of layers are stacked, it is preferable to insolubilize the first formed layer in order to prevent mixing of the upper and lower layers. As a method for insolubilization in this way, a soluble precursor or a polymer having a soluble group is used, and the precursor is converted into a synergistic polymer by heat treatment or dissolved by decomposing the soluble group. A method of insolubilizing by lowering the property, a method of using a hole transporting polymer having a crosslinking group in the molecule, a method of mixing a monomer or a macromer that causes a crosslinking reaction by heat, light, electron beam, etc. Are listed.
[0055] このような架橋基としては、側鎖にビュル基、(メタ)アタリレート基、ォキセタン基、シ クロブタジエン基、ジェン基等を有する高分子が例示される。これらの基の導入率は 、電子輸送性高分子の製膜時に使用する溶媒に対して不溶化すれば特に制限はな いが、例えば 0. 01〜30質量%であり、好ましくは 0. 5〜20質量%であり、より好まし くは:!〜 10質量0 /0である。 [0055] Examples of such a cross-linking group include polymers having a bur group, a (meth) acrylate group, an oxetane group, a cyclobutadiene group, a gen group and the like in the side chain. The introduction rate of these groups is There is no particular limitation as long as it is insolubilized in the solvent used for film formation of the electron transporting polymer, but for example 0.01 to 30% by mass, preferably 0.5 to 20% by mass, and more preferably rather is:! it is ~ 10 mass 0/0.
[0056] また、架橋反応を生ずるモノマーやマクロマーとしては、ポリスチレン換算の重量平 均分子量 2000以下の化合物で、ビュル基、(メタ)アタリレート基、ォキセタン基、シク 口ブタジエン基、ジェン基等の基を二つ以上有するものが挙げられる。さらに、酸無 水物基や桂皮酸のように分子間で架橋反応し得る化合物も例示される。これらの例と しては、「UV'EB硬化技術の現状と展望」(巿村國宏 監修 株式会社シーエムシー 出版 2002年刊 第 1版第 1刷発行 第 2章)に記載のものが好適に使用できる。 [0056] The monomer or macromer that causes a crosslinking reaction is a compound having a weight average molecular weight of 2000 or less in terms of polystyrene, such as a bur group, a (meth) acrylate group, an oxetane group, a cyclobutadiene group, and a gen group. Those having two or more groups are exemplified. Furthermore, compounds that can undergo a cross-linking reaction between molecules such as acid anhydride groups and cinnamic acid are also exemplified. As examples of these, those described in “Current Status and Prospects of UV'EB Curing Technology” (supervised by Kunihiro Kashimura, CMC Publishing 2002, 1st edition, 1st edition, 2nd chapter) are preferably used. it can.
[0057] さらに、高分子化合物を有機層の材料として用いる場合には、その純度が電荷輸 送特性や発光特性等の素子の性能に影響を与えるため、重合前のモノマーを蒸留、 昇華精製、再結晶等、カラムクロマトグラフィーの方法で精製した後に重合することが 好ましい。また重合後、酸洗浄、アルカリ洗浄、中和、水洗浄、有機溶媒洗浄、再沈 殿、遠心分離、抽出、カラムクロマトグラフィー、透析などの慣用の分離操作、精製操 作、乾燥、その他の操作による純化処理をすることが好ましい。  [0057] Furthermore, when a polymer compound is used as the material for the organic layer, the purity affects the device performance such as charge transport characteristics and light emission characteristics. Therefore, the monomer before polymerization is distilled, sublimated and purified, Polymerization is preferably performed after purification by a column chromatography method such as recrystallization. In addition, after polymerization, acid washing, alkali washing, neutralization, water washing, organic solvent washing, reprecipitation, centrifugation, extraction, column chromatography, dialysis, and other conventional separation operations, purification operations, drying, and other operations It is preferable to carry out a purification treatment by the above.
[0058] (有機エレクト口ルミネッセンス素子)  [0058] (Organic Elect Mouth Luminescence Element)
本発明の有機エレクト口ルミネッセンス素子は、前述した第一電極、第二電極、第 一補助電極、第二補助電極、及び有機層を支持基板上に形成させることにより作製 すること力 Sできる。このような支持基板としては、有機エレクト口ルミネッセンス素子を 作製する際に変化しないものであればよぐ例えば、ガラス、プラスチック、高分子フィ ルム、シリコン基板が挙げられる。なお、このような支持基板側から前記有機層からの 光を取り出す場合には、支持基板として透明なものを用いることが好ましい。また、本 発明の有機エレクト口ルミネッセンス素子の素子構造は特に限定されず、トップェミツ シヨン型であってもよぐボトムェミッション型であってもよレ、。また、このような素子構造 に応じて上記支持基板上に前記第一電極等を形成させる順番を適宜選択すること 力 Sできる。さらに、本発明の有機エレクト口ルミネッセンス素子においては、必要に応 じて保護層を設けてもよい。このような保護層の材料としては、ガラス、プラスチック、 高分子フィルム、シリコン基板の他に、アクリル系樹脂等の光硬化樹脂が挙げられる 。これらの保護層の材料は、 1種を単独で又は 2種以上を組み合わせて使用すること ができる。なお、このような保護層側から前記有機層からの光を取り出す場合には、 保護層の材料として透明なものを用いることが好ましい。 The organic electoluminescence device of the present invention can be produced by forming the first electrode, the second electrode, the first auxiliary electrode, the second auxiliary electrode, and the organic layer on the support substrate. As such a support substrate, any substrate that does not change when producing an organic electoluminescence device may be used. Examples thereof include glass, plastic, polymer film, and silicon substrate. In addition, when taking out the light from the said organic layer from such a support substrate side, it is preferable to use a transparent thing as a support substrate. The element structure of the organic electoluminescence device of the present invention is not particularly limited, and it may be a top emission type or a bottom emission type. Further, it is possible to appropriately select the order in which the first electrode and the like are formed on the support substrate according to such an element structure. Furthermore, in the organic electoluminescence device of the present invention, a protective layer may be provided as necessary. Examples of the material for such a protective layer include glass, plastic, polymer film, silicon substrate, and photo-curing resin such as acrylic resin. . These protective layer materials can be used singly or in combination of two or more. In addition, when taking out the light from the said organic layer from such a protective layer side, it is preferable to use a transparent thing as a material of a protective layer.
[0059] 以上説明したような本発明の有機エレクト口ルミネッセンス素子は、液晶ディスプレ ィのバックライト又は照明用としての曲面状や平面状の面状光源;インテリアや広告 に用レ、られるセグメント表示装置、ドットマトリックス表示装置、液晶表示装置等に用 レ、られる発光素子として好適に用いることができる。  [0059] The organic-electric-luminescence element of the present invention as described above is a curved or flat surface light source for a backlight or illumination of a liquid crystal display; a segment display device used for interiors and advertisements It can be suitably used as a light-emitting element used in dot matrix display devices, liquid crystal display devices, and the like.
実施例  Example
[0060] 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は 以下の実施例に限定されるものではなレ、。なお、合成例 1、 2において用いた下記構 造式 (A)〜(C)で表される化合物 A〜Cとしては、 WO2000/046321公開明細書 に記載された方法に従って合成したものを用いた。  [0060] Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. The compounds A to C represented by the following structural formulas (A) to (C) used in Synthesis Examples 1 and 2 were synthesized according to the method described in the published specification of WO2000 / 046321. .
[0061] [化 1]  [0061] [Chemical 1]
Figure imgf000017_0001
Figure imgf000017_0001
[0062] [化 2] [0062] [Chemical 2]
Figure imgf000017_0002
Figure imgf000017_0002
[0063] [化 3] [0063] [Chemical 3]
Figure imgf000018_0001
Figure imgf000018_0001
[0064] (合成例 1) [0064] (Synthesis Example 1)
下記一般式(1)で表される高分子化合物 1を以下の方法により合成した。  Polymer compound 1 represented by the following general formula (1) was synthesized by the following method.
[0065] [化 4] [0065] [Chemical 4]
Figure imgf000018_0002
Figure imgf000018_0002
[0066] すなわち、先ず、 200mlセパラブルフラスコにメチルトリオクチルアンモニゥムクロラ イド(ァノレドリツチ社製、商品名: Aliquat336)を 0. 91gと、ィ匕合物 Aを 5. 23gと、ィ匕 合物 Cを 4. 55gとを反応容器に仕込んだ後、反応系内を窒素ガスで置換した。その 後、トルエン 70mlを加え、酢酸パラジウム 2. Omg、トリス(o_トリル)ホスフィン 15. 1 mgをカ卩えた後に、還流させて混合溶液を得た。 [0066] That is, first, in a 200 ml separable flask, 0.991 g of methyltrioctyl ammonium chloride (trade name: Aliquat336, manufactured by Anoledritch Co., Ltd.) and 5.23 g of Compound A were combined. After charging 4.55 g of product C into the reaction vessel, the inside of the reaction system was replaced with nitrogen gas. Thereafter, 70 ml of toluene was added, and 2. Omg of palladium acetate and 15.1 mg of tris (o_tolyl) phosphine were added, followed by refluxing to obtain a mixed solution.
[0067] 次に、得られた混合溶液に、炭酸ナトリウム水溶液 19mlを滴下後、還流下終夜攪 拌した後、フエニルホウ酸 0. 12gをカ卩えて 7時間攪拌した。その後、 300mlのトルェ ンを加え、反応液を分液し、有機相を酢酸水溶液及び水で洗浄した後、ナトリウム N , N ジェチルジチォカルバメート水溶液を加えて 4時間攪拌した。  [0067] Next, 19 ml of an aqueous sodium carbonate solution was added dropwise to the obtained mixed solution, and the mixture was stirred overnight under reflux, and then 0.12 g of phenylboric acid was added and stirred for 7 hours. Thereafter, 300 ml of toluene was added, the reaction solution was separated, and the organic phase was washed with an acetic acid aqueous solution and water, and then an aqueous solution of sodium N, N decyldithiocarbamate was added and stirred for 4 hours.
[0068] 次いで、攪拌後の混合溶液を分液した後、シリカゲル アルミナカラムを通し、トル ェンで洗浄した後に、メタノールに滴下してポリマーを沈殿させ、その後、得られたポ リマーをろ過、減圧乾燥した後にトルエンに溶解させた。そして、得られたトルエン溶 液を再度メタノールに滴下して沈殿物を生じさせ、この沈殿物をろ過、減圧乾燥して 高分子化合物 1を 6. 33g得た。得られた高分子化合物 1のポリスチレン換算の重量 平均分子量 Mwは 3. 2 X 105であり、ポリスチレン換算の数平均分子量 Mnは 8. 8 X[0068] Next, after the mixed solution after stirring was separated, the solution was passed through a silica gel alumina column, washed with toluene, and then dropped into methanol to precipitate a polymer. Then, the obtained polymer was filtered, After drying under reduced pressure, it was dissolved in toluene. The obtained toluene solution is dropped again into methanol to form a precipitate, which is filtered and dried under reduced pressure. 6.33 g of polymer compound 1 was obtained. The polystyrene equivalent weight average molecular weight Mw of the obtained polymer compound 1 was 3.2 X 10 5 , and the polystyrene equivalent number average molecular weight Mn was 8.8 X
104であった。 10 was 4 .
[0069] (合成例 2) [0069] (Synthesis Example 2)
下記一般式(2)で表される高分子化合物 2を以下の方法により合成した。  Polymer compound 2 represented by the following general formula (2) was synthesized by the following method.
[0070] [化 5] [0070] [Chemical 5]
Figure imgf000019_0001
Figure imgf000019_0001
[0071] すなわち、先ず、化合物 Bを 22. 5gと 2, 2' ビビリジルを 17. 6gとを反応容器に 仕込んだ後、反応系内を窒素ガスで置換した。その後、あらかじめアルゴンガスでバ プリングして脱気したテトラヒドロフラン (脱水溶媒) 1500gをカ卩え、混合溶液を得た。 そして、得られた混合溶液に、ビス(1 , 5 シクロォクタジェン)ニッケル(0)を 31gカロ え、室温で 10分間攪拌した後、 60°Cで 3時間反応した。なお、反応は、窒素ガス雰 囲気中で行った。 That is, first, 22.5 g of compound B and 17.6 g of 2,2 ′ bibilidyl were charged into a reaction vessel, and then the inside of the reaction system was replaced with nitrogen gas. Thereafter, 1500 g of tetrahydrofuran (dehydrated solvent) deaerated by bubbling with argon gas in advance was collected to obtain a mixed solution. Then, 31 g of bis (1,5 cyclooctagen) nickel (0) was added to the obtained mixed solution, stirred at room temperature for 10 minutes, and reacted at 60 ° C. for 3 hours. The reaction was performed in a nitrogen gas atmosphere.
[0072] 次に、得られた反応溶液を冷却した後、この溶液に、 25質量%アンモニア水 200m 1Zメタノール 900ml/イオン交換水 900ml混合溶液をそそぎ込み、約 1時間攪拌し た。その後、生成した沈殿物を濾過して回収し、この沈殿物を減圧乾燥した後、トル ェンに溶解させた。そして、得られたトルエン溶液を濾過して不溶物を除去した後、こ のトノレェン溶液を、アルミナを充填したカラムを通過させることにより精製した。  [0072] Next, after cooling the obtained reaction solution, a mixed solution of 25 mass% ammonia water 200m 1Z methanol 900ml / ion-exchanged water 900ml was poured into this solution and stirred for about 1 hour. Thereafter, the produced precipitate was collected by filtration, and this precipitate was dried under reduced pressure and then dissolved in toluene. Then, the obtained toluene solution was filtered to remove insoluble matters, and then this tonorene solution was purified by passing through a column packed with alumina.
[0073] 次に、精製後のトルエン溶液を、 1規定塩酸水溶液で洗浄し、静置、分液した後、ト ルェン溶液を回収した。そして、このトノレエン溶液を、約 3質量%アンモニア水で洗浄 し、静置、分液した後、トルエン溶液を回収した。その後、このトルエン溶液をイオン 交換水で洗浄し、静置、分液した後、洗浄後のトルエン溶液を回収した。  [0073] Next, the purified toluene solution was washed with a 1N aqueous hydrochloric acid solution, allowed to stand and separated, and then the toluene solution was recovered. Then, this tonorene solution was washed with about 3% by mass ammonia water, allowed to stand and liquid separation, and then the toluene solution was recovered. Thereafter, this toluene solution was washed with ion-exchanged water, allowed to stand and separated, and the washed toluene solution was recovered.
[0074] 次いで、洗浄後のトノレエン溶液をメタノール中にそそぎ込み、沈殿物を生じさせ、こ の沈殿物をメタノールで洗浄した後、減圧乾燥して高分子化合物 2を得た。得られた 高分子化合物 2のポリスチレン換算の重量平均分子量は 8. 2 X 105であり、ポリスチ レン換算の数平均分子量は 1. O X 105であった。 [0074] Next, the washed tonorene solution was poured into methanol to form a precipitate. The precipitate was washed with methanol and then dried under reduced pressure to obtain polymer compound 2. The obtained polymer compound 2 had a polystyrene equivalent weight average molecular weight of 8.2 × 10 5 , The number-average molecular weight in terms of len was 1. OX 10 5 .
[0075] (実施例 1 )  [0075] (Example 1)
支持基板としてガラス基板(100mm X 100mm)を用い、前記支持基板上に、 Crタ 一ゲット及びスパッタガスとして Arを用レ、、 120°Cにおける DCスパッタ法により、 S莫厚 l OOOnmの Crを堆積させた。このときの製膜圧力は 0. 5Pa、スパッタリングパワーは 2. OkWであった。 Cr膜の上にレジスト塗布後、 1 10°Cで 90秒間ベータした後、線幅 20mmのライン力 構成される正方形の枠状の開口部と前記開口部の枠内に縦-横 のピッチがそれぞれ 300 μ m . 100 μ m、線幅 70 μ ηι · 30 μ mからなる格子型の開 口部とを有するフォトマスクを通して、 200mJのエネルギーで露光し、 0. 5質量0 /0の 水酸化カリウム水溶液によって現像後、 130°Cで 1 10秒間ポストベータした。次いで、 Cr用エッチング液に、 40°C、 120秒間浸漬し、 Crのパターユングを行レ、、最後に 2 質量%水酸化カリウム水溶液に浸漬することで、レジスト残渣を剥離し、 Crからなる 補助電極 (第一補助電極及び第二補助電極)を形成した。 A glass substrate (100 mm x 100 mm) is used as the support substrate, Cr is used on the support substrate and Ar is used as the sputtering gas. Deposited. The film forming pressure at this time was 0.5 Pa, and the sputtering power was 2. OkW. After applying the resist on the Cr film, 1 beta for 90 seconds at 10 ° C, then a square frame-shaped opening composed of a line width of 20 mm and a vertical-horizontal pitch in the frame of the opening. 300 μ m. 100 μ m, respectively, through a photomask having an open mouth of the lattice consisting of the line width 70 μ ηι · 30 μ m, and the exposure energy of 200 mJ, hydroxide of 0.5 mass 0/0 After development with an aqueous potassium solution, it was post-beta for 10 seconds at 130 ° C. Next, immerse in Cr etching solution at 40 ° C for 120 seconds, pattern Cr, and finally immerse in 2% by weight aqueous potassium hydroxide solution to remove resist residue and consist of Cr Auxiliary electrodes (first auxiliary electrode and second auxiliary electrode) were formed.
[0076] 次に、補助電極が形成された基板上に第一電極を形成した。すなわち、第一電極 材料として ITO焼成ターゲット、スパッタガスとして Arを用い、 120°Cにおける DCス パッタ法により、膜厚 3000nmの ITOを堆積させた。このときの製膜圧力は 0. 25Pa 、スパッタリングパワーは 0. 25kWであった。その後、 200°Cのオーブンで 40分間ァ ニール処理を行った。その後、第一電極が形成された基板を 60°Cの弱アルカリ性洗 剤、冷水、 50°Cの温水を用いて超音波洗浄し、 50°Cの温水から引き上げて乾燥した 後、 20分間 UV/〇洗浄を行った。  Next, the first electrode was formed on the substrate on which the auxiliary electrode was formed. In other words, ITO having a film thickness of 3000 nm was deposited by a DC sputtering method at 120 ° C. using an ITO firing target as the first electrode material and Ar as the sputtering gas. At this time, the film forming pressure was 0.25 Pa, and the sputtering power was 0.25 kW. Then, annealing was performed in an oven at 200 ° C for 40 minutes. After that, the substrate on which the first electrode is formed is ultrasonically cleaned using a weak alkaline detergent at 60 ° C, cold water, and hot water at 50 ° C, pulled up from the hot water at 50 ° C and dried, and then UV-treated for 20 minutes. / ○ washed.
3  Three
[0077] そして、洗浄後の基板に、ポリ(3, 4)エチレンジォキシチォフェン/ポリスチレンス ルホン酸(スタルクヴィテック社製、商品名: BaytronP CH8000)の懸濁液を 0. 45 β m径のフィルター及び 0. 2 μ m径のフィルターを用いて 2段階目にろ過した液を用 いて、スピンコートにより 80nmの厚みで薄膜を形成し、大気雰囲気下においてホット プレート上で、 200°Cで 15分間熱処理し、正孔注入層を形成した。次いで、合成例 1 、 2で得られた高分子化合物 1及び高分子化合物 2を重量比で 1: 1の比で計り取り、 トルエンに溶解させ、 1質量%の高分子溶液を作製し、この高分子溶液を正孔注入 層が形成された基板上にスピンコートして 80nmの膜厚で製膜した後、窒素雰囲気 下のホットプレート上で 130°C、 60分間熱処理し、発光層を形成した。その後、発光 層が形成された基板を真空蒸着機に導入し、陰極として LiF、 Ca、 A1を順次それぞ れ、 2nm、 5nm、 200nmの厚みで蒸着し、第二電極を形成した。なお、真空度が 1 X 10— 4Pa以下に到達した後に金属の蒸着を開始した。最後に、不活性ガス中で、 第二電極が形成された基板における第二電極の表面をガラス板で覆レ、、さらに 4辺 を光硬化樹脂で覆った後に、光硬化樹脂を硬化させることで保護層を形成して、有 機 EL発光素子を作製した。 [0077] Then, a suspension of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid (trade name: BaytronP CH8000, manufactured by Starck Vitec Co., Ltd.) was added to the cleaned substrate. Using the solution filtered at the second stage using a m-diameter filter and a 0.2 μm-diameter filter, a thin film is formed with a thickness of 80 nm by spin coating, and 200 ° on an air atmosphere on a hot plate. A hole injection layer was formed by heat treatment with C for 15 minutes. Next, the polymer compound 1 and the polymer compound 2 obtained in Synthesis Examples 1 and 2 were weighed at a weight ratio of 1: 1, and dissolved in toluene to prepare a 1% by mass polymer solution. A polymer solution is spin-coated on a substrate on which a hole injection layer is formed to form a film with a thickness of 80 nm, and then a nitrogen atmosphere. A light emitting layer was formed by heat treatment at 130 ° C. for 60 minutes on the lower hot plate. Thereafter, the substrate on which the light emitting layer was formed was introduced into a vacuum vapor deposition machine, and LiF, Ca, and A1 were sequentially deposited as cathodes at thicknesses of 2 nm, 5 nm, and 200 nm, respectively, to form a second electrode. Degree of vacuum metal vapor deposition was initiated after reaching below 1 X 10- 4 Pa. Finally, the surface of the second electrode on the substrate on which the second electrode is formed is covered with a glass plate in an inert gas, and the four sides are further covered with a photocurable resin, and then the photocurable resin is cured. An organic EL light-emitting device was fabricated by forming a protective layer.
[0078] このようにして得られた有機 EL発光素子を図 5に示す。すなわち、図 5に示す有機 EL素子は、支持基板 1、第一補助電極 2、第二補助電極 3、第一電極 4、電荷注入 層 5、発光層 6、第二電極 7、及び保護層 8を備えている。そして、電荷注入層 5及び 発光層 6とからなる有機層 1 1が、第一電極 4及び第二電極 7に挟持されている。また 、第一電極 4の有機層 1 1と反対側の表面上に第一補助電極 2及び第二補助電極 3 が配置されている。  The organic EL light emitting device thus obtained is shown in FIG. That is, the organic EL device shown in FIG. 5 includes a support substrate 1, a first auxiliary electrode 2, a second auxiliary electrode 3, a first electrode 4, a charge injection layer 5, a light emitting layer 6, a second electrode 7, and a protective layer 8. It has. An organic layer 11 consisting of the charge injection layer 5 and the light emitting layer 6 is sandwiched between the first electrode 4 and the second electrode 7. The first auxiliary electrode 2 and the second auxiliary electrode 3 are disposed on the surface of the first electrode 4 opposite to the organic layer 11.
[0079] (比較例 1 )  [0079] (Comparative Example 1)
補助電極を形成する際のフォトマスクとして、線幅 20mmのライン力 構成される正 方形の枠状の開口部のみを有するフォトマスクを用いた以外は実施例 1と同様にして 比較用の有機 EL発光素子を作製した。  As a photomask for forming the auxiliary electrode, a comparative organic EL was used in the same manner as in Example 1 except that a photomask having only a square frame-shaped opening composed of a line width of 20 mm was used. A light emitting element was manufactured.
[0080] (比較例 2) [0080] (Comparative Example 2)
補助電極を形成する際のフォトマスクとして、縦'横のピッチがそれぞれ 300 μ m ' 1 As a photomask for forming the auxiliary electrode, the vertical and horizontal pitches are 300 μm each 1
00 μ m、線幅 70 μ ΐη · 30 β mからなる格子型の開口部とを有するフォトマスクを用い た以外は実施例 1と同様にして比較用の有機 EL発光素子を作製した。 A comparative organic EL light-emitting device was fabricated in the same manner as in Example 1 except that a photomask having a lattice-type opening made of 00 μm and a line width of 70 μΐη · 30 βm was used.
[0081] <有機 EL発光素子の発光特性の評価 > [0081] <Evaluation of light emission characteristics of organic EL light emitting device>
実施例 1及び比較例 1〜 2で得られた有機 EL発光素子の発光特性を評価した。す なわち、素子全体に 8Vの電圧を印加した際の発光輝度を測定し、さらに発光面の様 子を目視にて観察した。得られた結果を表 1に示す。  The light emission characteristics of the organic EL light emitting devices obtained in Example 1 and Comparative Examples 1 and 2 were evaluated. In other words, the luminance of light emitted when a voltage of 8 V was applied to the entire device was measured, and the appearance of the light emitting surface was visually observed. The results obtained are shown in Table 1.
[0082] [表 1] 表 1 [0082] [Table 1] table 1
Figure imgf000022_0001
Figure imgf000022_0001
[0083] 表 1に示す結果から明らかなように、本発明の有機エレクト口ルミネッセンス素子に おいては、発光面積が大きい場合でも発光輝度のムラが十分に抑制され、均一発光 が可能であることが確認された。 As is clear from the results shown in Table 1, in the organic electoluminescence device of the present invention, even when the emission area is large, unevenness in emission luminance is sufficiently suppressed, and uniform emission is possible. Was confirmed.
産業上の利用可能性  Industrial applicability
[0084] 以上説明したように、本発明によれば、透明電極又は半透明電極の抵抗による電 圧低下を軽減し、発光面積が大きい場合でも発光輝度のムラが十分に抑制され、均 一発光が可能な有機エレクト口ルミネッセンス素子を提供することが可能となる。 As described above, according to the present invention, the voltage drop due to the resistance of the transparent electrode or the translucent electrode is reduced, and even when the light emitting area is large, unevenness in the light emission luminance is sufficiently suppressed, and uniform light emission is achieved. It is possible to provide an organic-electric-mouth luminescence element that can be used.
[0085] したがって、本発明の有機エレクト口ルミネッセンス素子は、面状光源、セグメント表 示装置、ドットマトリックス表示装置、液晶表示装置等に用いられる発光素子として有 用である。 Therefore, the organic electoluminescence element of the present invention is useful as a light emitting element used in a planar light source, a segment display device, a dot matrix display device, a liquid crystal display device and the like.
図面の簡単な説明  Brief Description of Drawings
[0086] [図 1]本発明の有機エレクト口ルミネッセンス素子の好適な一実施形態における第一 電極の表面上に配置された第一補助電極及び第二補助電極の位置関係を示す概 略平面図である。  [0086] [FIG. 1] A schematic plan view showing the positional relationship between a first auxiliary electrode and a second auxiliary electrode arranged on the surface of the first electrode in a preferred embodiment of the organic electroluminescence device of the present invention. It is.
[図 2]本発明の有機エレクト口ルミネッセンス素子の好適な他の実施形態における第 一電極の表面上に配置された第一補助電極及び第二補助電極の位置関係を示す 概略平面図である。  FIG. 2 is a schematic plan view showing the positional relationship between a first auxiliary electrode and a second auxiliary electrode arranged on the surface of the first electrode in another preferred embodiment of the organic electoluminescence device of the present invention.
[図 3]本発明の有機エレクト口ルミネッセンス素子の好適な他の実施形態における第 一電極の表面上に配置された第一補助電極及び第二補助電極の位置関係を示す 概略平面図である。  FIG. 3 is a schematic plan view showing the positional relationship between a first auxiliary electrode and a second auxiliary electrode arranged on the surface of the first electrode in another preferred embodiment of the organic electoluminescence device of the present invention.
[図 4]本発明の有機エレクト口ルミネッセンス素子の好適な他の実施形態における第 一電極の表面上に配置された第一補助電極及び第二補助電極の位置関係を示す 概略平面図である。 [図 5]実施例において得られた有機エレクト口ルミネッセンス素子の積層構造を示す 概略断面図である。 FIG. 4 is a schematic plan view showing the positional relationship between the first auxiliary electrode and the second auxiliary electrode arranged on the surface of the first electrode in another preferred embodiment of the organic electoluminescence device of the present invention. FIG. 5 is a schematic cross-sectional view showing the laminated structure of the organic electoluminescence device obtained in the example.
符号の説明 Explanation of symbols
1 支持基板  1 Support substrate
2 第一補助電極  2 First auxiliary electrode
3 第二補助電極  3 Second auxiliary electrode
4 第一電極  4 First electrode
5 電荷注入層  5 Charge injection layer
6 発光層  6 Light emitting layer
7 第二電極  7 Second electrode
8 保護層  8 Protective layer
11 有機層  11 Organic layer

Claims

請求の範囲 The scope of the claims
[1] 透明電極又は半透明電極を含む第一電極と、前記第一電極に対向する第二電極 と、前記第一電極及び前記第二電極の間に設けられた少なくとも 1層の有機層とを 備える有機エレクト口ルミネッセンス素子であって、  [1] A first electrode including a transparent electrode or a semi-transparent electrode, a second electrode facing the first electrode, and at least one organic layer provided between the first electrode and the second electrode; An organic electoluminescence device comprising:
前記第一電極の表面上に配置され、前記第一電極に電気的に接続された枠状の 第一補助電極と、  A frame-shaped first auxiliary electrode disposed on the surface of the first electrode and electrically connected to the first electrode;
前記第一補助電極の枠内に配置され、前記第一補助電極に電気的に接続された 細線電極により構成されてレ、る第二補助電極と、  A second auxiliary electrode which is arranged in a frame of the first auxiliary electrode and is constituted by a thin wire electrode electrically connected to the first auxiliary electrode;
を備え、前記第一補助電極及び第二補助電極は、前記第一電極と比較して抵抗率 の低レ、材料からなる、上記有機エレクト口ルミネッセンス素子。  And the first auxiliary electrode and the second auxiliary electrode are made of a material having a low resistivity as compared with the first electrode, and the organic electoluminescence device.
[2] 前記第二補助電極と前記第一補助電極との線幅の比(前記第二補助電極の線幅 /前記第一補助電極の線幅) 1/1000〜: 1/10の範囲である請求項 1に記載 の有機エレクト口ルミネッセンス素子。  [2] Ratio of line width between the second auxiliary electrode and the first auxiliary electrode (line width of the second auxiliary electrode / line width of the first auxiliary electrode) 1/1000 to: 1/10 The organic electoluminescence device according to claim 1.
[3] 前記第一補助電極及び前記第二補助電極が、前記第一電極の表面のうち、前記 有機層と反対側の表面上に配置されている請求項 1又は 2に記載の有機エレクト口 ノレミネッセンス素子。  [3] The organic elect mouth according to claim 1 or 2, wherein the first auxiliary electrode and the second auxiliary electrode are arranged on a surface of the first electrode opposite to the organic layer. Nominescence element.
[4] 前記第一電極が電気的に分離された複数のセルに仕切られており、前記複数のセ ルがそれぞれ前記第二補助電極によって電気的に接続されている請求項 1〜3のう ちのいずれか一項に記載の有機エレクト口ルミネッセンス素子。  [4] The method according to any one of claims 1 to 3, wherein the first electrode is partitioned into a plurality of electrically separated cells, and the plurality of cells are electrically connected to each other by the second auxiliary electrode. The organic electoluminescence device according to any one of the above.
[5] 請求項 1〜4のうちのいずれか一項に記載の有機エレクト口ルミネッセンス素子を備 える面状光源。  [5] A planar light source comprising the organic electoluminescence device according to any one of claims 1 to 4.
[6] 請求項 1〜4のうちのいずれか一項に記載の有機エレクト口ルミネッセンス素子を備 えるセグメント表示装置。  [6] A segment display device comprising the organic electoluminescence element according to any one of claims 1 to 4.
[7] 請求項 1〜4のうちのいずれか一項に記載の有機エレクト口ルミネッセンス素子を備 えるドットマトリックス表示装置。 [7] A dot matrix display device comprising the organic electoluminescence device according to any one of [1] to [4].
[8] 請求項 1〜4のうちのいずれか一項に記載の有機エレクト口ルミネッセンス素子を備 える液晶表示装置。 [8] A liquid crystal display device comprising the organic electoluminescence device according to any one of claims 1 to 4.
PCT/JP2007/062777 2006-06-28 2007-06-26 Organic electroluminescence element WO2008001756A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-177523 2006-06-28
JP2006177523 2006-06-28

Publications (1)

Publication Number Publication Date
WO2008001756A1 true WO2008001756A1 (en) 2008-01-03

Family

ID=38845520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062777 WO2008001756A1 (en) 2006-06-28 2007-06-26 Organic electroluminescence element

Country Status (2)

Country Link
TW (1) TW200808119A (en)
WO (1) WO2008001756A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010077139A3 (en) * 2008-12-29 2010-11-04 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Electro-optic device and method for manufacturing the same
WO2013004746A1 (en) * 2011-07-04 2013-01-10 Commissariat à l'énergie atomique et aux énergies alternatives Photodiode device containing a capacitor for controlling dark current or leakage current
EP2560462A4 (en) * 2010-06-07 2016-10-26 Nec Lighting Ltd Organic electroluminescent illumination device
JP2018538673A (en) * 2015-12-10 2018-12-27 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. OLED display panel and display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201017876A (en) 2008-10-22 2010-05-01 Wintek Corp Organic light emitting diode display device and manufacturing method thereof
TWI425865B (en) * 2010-03-04 2014-02-01 Nat Univ Tsing Hua A method for manufacturing an organic light-emitting diode device
JP6487173B2 (en) * 2014-10-08 2019-03-20 株式会社ジャパンディスプレイ Display device and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280172A (en) * 2001-03-15 2002-09-27 Seiko Epson Corp Organic el display panel and its manufacturing method
JP2002318556A (en) * 2001-04-20 2002-10-31 Toshiba Corp Active matrix type planar display device and manufacturing method therefor
JP2002343578A (en) * 2001-05-10 2002-11-29 Nec Corp Light-emitting body, light-emitting element and light- emitting display device
JP2004014128A (en) * 2002-06-03 2004-01-15 Toyota Industries Corp Planar light emitting device
JP2004335389A (en) * 2003-05-12 2004-11-25 Sony Corp Evaporation mask, manufacturing method of display device using the same, and display device
JP2005019211A (en) * 2003-06-26 2005-01-20 Casio Comput Co Ltd El display panel and its manufacturing method
JP2007141844A (en) * 2005-11-15 2007-06-07 Samsung Electronics Co Ltd Display and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280172A (en) * 2001-03-15 2002-09-27 Seiko Epson Corp Organic el display panel and its manufacturing method
JP2002318556A (en) * 2001-04-20 2002-10-31 Toshiba Corp Active matrix type planar display device and manufacturing method therefor
JP2002343578A (en) * 2001-05-10 2002-11-29 Nec Corp Light-emitting body, light-emitting element and light- emitting display device
JP2004014128A (en) * 2002-06-03 2004-01-15 Toyota Industries Corp Planar light emitting device
JP2004335389A (en) * 2003-05-12 2004-11-25 Sony Corp Evaporation mask, manufacturing method of display device using the same, and display device
JP2005019211A (en) * 2003-06-26 2005-01-20 Casio Comput Co Ltd El display panel and its manufacturing method
JP2007141844A (en) * 2005-11-15 2007-06-07 Samsung Electronics Co Ltd Display and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010077139A3 (en) * 2008-12-29 2010-11-04 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Electro-optic device and method for manufacturing the same
US8772776B2 (en) 2008-12-29 2014-07-08 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Electro-optic device and method for manufacturing the same
EP2560462A4 (en) * 2010-06-07 2016-10-26 Nec Lighting Ltd Organic electroluminescent illumination device
WO2013004746A1 (en) * 2011-07-04 2013-01-10 Commissariat à l'énergie atomique et aux énergies alternatives Photodiode device containing a capacitor for controlling dark current or leakage current
FR2977719A1 (en) * 2011-07-04 2013-01-11 Commissariat Energie Atomique PHOTODIODE-TYPE DEVICE CONTAINING A CAPACITY FOR CONTROLLING DARK OR LEAKAGE CURRENT
CN103688382A (en) * 2011-07-04 2014-03-26 原子能和替代能源委员会 Photodiode device containing a capacitor for controlling dark current or leakage current
US9142789B2 (en) 2011-07-04 2015-09-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photodiode device containing a capacitor for controlling dark current or leakage current
CN103688382B (en) * 2011-07-04 2016-08-17 原子能和替代能源委员会 Photoelectric diode device including the capacitor for controlling dark current or leakage current
JP2018538673A (en) * 2015-12-10 2018-12-27 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. OLED display panel and display device

Also Published As

Publication number Publication date
TW200808119A (en) 2008-02-01

Similar Documents

Publication Publication Date Title
JP5076023B2 (en) Organic electroluminescence device
US8574937B2 (en) High efficiency electroluminescent devices and methods for producing the same
WO2009122876A1 (en) Organic electroluminescence element and method for manufacturing the same
JP2008034362A (en) Organic electroluminescent element
JP5314385B2 (en) Method for manufacturing organic electroluminescence element
JP2010509729A (en) Cavity electroluminescent device and manufacturing method thereof
JP4907456B2 (en) Organic electroluminescence device
JP4828367B2 (en) Organic electroluminescence device
JP2008503055A (en) Stacked organic electroluminescence device
WO2008001756A1 (en) Organic electroluminescence element
JP2010040210A (en) Organic electroluminescent element, method of manufacturing the same, lighting system, planar light source, and display device
JP5254711B2 (en) Organic electroluminescence device and method for manufacturing the same
WO2011096509A1 (en) Organic electroluminescent element, method for producing same, and device for producing same
JP2010055864A (en) Organic electroluminescent device and its manufacturing method
JP5203996B2 (en) Method for manufacturing organic electroluminescence element
JP5314395B2 (en) Method for manufacturing organic electroluminescence element
JP5072816B2 (en) Method for manufacturing organic electroluminescence device
JP5314352B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, SURFACE LIGHT SOURCE, AND DISPLAY DEVICE
JP2010027539A (en) Organic electroluminescent element, and manufacturing method therefor
JP2011014251A (en) Manufacturing method of organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767583

Country of ref document: EP

Kind code of ref document: A1