WO2008001411A1 - Process for producing semiconductor memory device - Google Patents

Process for producing semiconductor memory device Download PDF

Info

Publication number
WO2008001411A1
WO2008001411A1 PCT/JP2006/312594 JP2006312594W WO2008001411A1 WO 2008001411 A1 WO2008001411 A1 WO 2008001411A1 JP 2006312594 W JP2006312594 W JP 2006312594W WO 2008001411 A1 WO2008001411 A1 WO 2008001411A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
target
manufacturing
stable composition
semiconductor memory
Prior art date
Application number
PCT/JP2006/312594
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Matsui
Takahiro Morikawa
Motoyasu Terao
Norikatsu Takaura
Original Assignee
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp. filed Critical Renesas Technology Corp.
Priority to JP2008522217A priority Critical patent/JPWO2008001411A1/en
Priority to PCT/JP2006/312594 priority patent/WO2008001411A1/en
Priority to TW096119969A priority patent/TW200814382A/en
Publication of WO2008001411A1 publication Critical patent/WO2008001411A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Definitions

  • the present invention relates to a manufacturing technique of a semiconductor memory device, and more particularly to a technique effective when applied to the manufacture of a phase change memory using chalcogenide as a recording layer material.
  • Microcomputers for embedded devices that incorporate a flash memory for storing programs and data are installed in information devices, home appliances, and in-vehicle devices.
  • memory-embedded microcomputers memory-embedded microcomputers
  • flash memory for storing programs and data
  • the demand for higher performance of memory-embedded microcomputers has increased, and even for embedded flash memory, there has been a demand for improved rewrite resistance and further integration. Yes.
  • DRAM which is a general-purpose memory
  • miniaturization of memory cells has been advanced in order to meet the demand for higher integration density.
  • DRAM that stores information with the amount of charge stored in the capacitor has the problem that the storage capacity decreases if the capacitor area is reduced.
  • the dielectric material of the capacitor is thinned below a certain value, there is a problem that the leakage current increases.
  • the capacitor could be formed in a deep trench to prevent the area from decreasing.However, if further miniaturization was promoted, the trench aspect ratio reached the limit of processing, and cutting-edge processing technology was developed. Even if you make full use of it, you will not be able to make a yield device.
  • phase change RAM using phase change of chalcogenide materials
  • MRAM Magnetic RAM
  • RRAM Resistance RAM
  • phase change memory has attracted attention as the next generation of non-volatile memory for memory embedded microcomputers and DRAM replacement memory because of its features such as high speed of writing and reading, and high rewrite endurance and integration. Speak.
  • a phase change memory uses a chalcogenide film as a storage layer, and the chalcogenide is heated by heat. Using the change in the amorphous state (high resistance) and the crystalline state (low resistance) with different electrical resistance, the difference in the amount of current flowing through the film is stored and read out as "1" to "0" information.
  • Multi-component chalcogenide a storage layer material, has already been used as a recording layer material for optical discs such as CD-RW and DVD-RAM. Compared to it, it is easy to handle.
  • Patent Documents 1 to 6 disclose techniques for forming a multi-system chalcogenide film on the surface of an optical disc by sputtering using a plurality of types of sputtering targets.
  • Patent Document 1 describes an InGeSbTe recording layer by sputtering using two types of targets (InSbTe—GeSb, InSbTe—Ge, GeSbTe—InSbTeTeGeSbTe—In).
  • a technique for forming a film is disclosed.
  • Patent Document 2 JP-A-2005-254485 (Patent Document 2) describes three types of targets (GeTe-BiTe
  • Patent Document 3 discloses a technique for forming a recording layer by a sputtering method using two types of targets (GeSbTe—GeSGeSbTe—Ta, GeSbTe—InSbTe). Yes.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-79761 describes AgGaGeSbTe, AgGaSbTe, Znln
  • a recording layer deposition technique is disclosed by a sputtering method using two or more targets of any of SbTe, GaSbTe, Sb, Ge, Ag, and SbTe.
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-2688587 (Patent Document 5) describes two types of targets (CrTe-GeSb
  • Patent Document 6 describes a recording layer by sputtering using three types of single element targets (Ge—S b—Te) or three types of GeSbTe targets having different composition ratios. The film forming technique is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-255698
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-254485
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-56958
  • Patent Document 4 JP 2000-79761 A
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-268587
  • Patent Document 6 Japanese Patent Laid-Open No. 4-106740
  • a semiconductor chip When a semiconductor chip is mounted on a wiring board or the like, it is exposed to a temperature environment higher than its operating temperature, for example, 250 ° C for several minutes in the soldering process and 180 ° C for several hours in the crimping process. Is done.
  • a temperature environment higher than its operating temperature for example, 250 ° C for several minutes in the soldering process and 180 ° C for several hours in the crimping process. Is done.
  • mounting is usually performed after the program is stored in the memory part, so data is not erased due to thermal load during the mounting process. Data retention characteristics must be guaranteed even in high temperature environments.
  • chalcogenide which is a storage layer material for phase change memory, becomes a metastable phase in a high-resistance amorphous state, so that crystallization (low resistance) proceeds rapidly in a high-temperature environment. There is a problem of end.
  • the present inventors have studied the use of a ternary chalcogenide composed of Ge—Sb—Te as a storage layer material of a phase change memory.
  • Ge Sb Te 140 ° About C
  • the present inventors examined the use of InGeSbTe, which has higher heat resistance than GeSbTe, as the storage layer material in order to realize a phase change memory that exhibits excellent data retention characteristics even in a high temperature environment.
  • a sputtering method is used to form a chalcogenide film on the surface of an optical disk or a semiconductor wafer. Therefore, an InGeSbTe target is required to form an InGeSbTe film by sputtering.
  • In does not completely dissolve in GeSbTe, when an InGeSbTe target is manufactured, for example, a crystal having a composition of Ge Sb Te is formed.
  • a phase-separated target in which grains and crystal grains having a composition of InTe are mixed is obtained.
  • the deposition rate is In Te or
  • the 2 25 5 rate is estimated to be about twice as large as In Te. As a result, the result is a different composition.
  • the stoichiometric composition of InGeSbTe varies locally or changes over time.
  • An object of the present invention is to provide a technology for manufacturing a phase change memory that exhibits excellent data retention characteristics even in a high temperature environment.
  • An invention of the present application is a method for manufacturing a semiconductor memory device, comprising a step of forming a memory layer for storing information on a semiconductor substrate by a difference in electrical resistance value associated with a phase change.
  • the layer is composed of a chalcogenide film having indium, germanium, antimony, and tellurium force, and the chalcogenide film is formed by sputtering using a plurality of types of targets each composed of a compound having a stable composition. .
  • One invention of the present application is that a memory cell selecting MISFET formed on a main surface of a semiconductor substrate is electrically connected to the memory cell selecting MISFET, and information is obtained by a difference in electric resistance value accompanying a phase change.
  • the step of forming the memory layer includes the following steps (a) to (c).
  • stable composition refers to a composition in which a compound is not separated into crystal grains having different compositions and crystal phases even if the compound is kept in a high temperature environment for a long time. Point to. What can be expressed as stoichiometric composition, equilibrium composition, and compound composition can be a stable composition. If a target having a stable composition is used, the uniformity of the crystal phase and composition of the crystal grains constituting the target can be increased.
  • GeTe and Sb Te are considered pseudo-binary systems.
  • Ge Sb Te When constructed with a composition ratio (Ge Sb Te), it is stable up to 903K. Ge SbTe is also stable
  • the crystal phase and composition of the crystal grains are uniform.
  • the sex can be further increased.
  • the composition of Ge, Sb, and Te is acceptable up to ⁇ 2% variation.
  • the composition is stable up to 430 ° C when the composition ratio of Ge is 50 atomic% and Te is 50 atomic%.
  • a target with a composition that can be expressed in GeSb may be used.
  • the composition of Ge and Te is acceptable up to ⁇ 2% variation.
  • a binary system composed of Sb—Te is stable up to 617 ° C when it is composed of a composition ratio of 40 atomic% Sb and 60 atomic% Te.
  • a target with a composition that can be expressed in Sb Te is stable up to 430 ° C when the composition ratio of Ge is 50 atomic% and Te is 50 atomic%.
  • a target with a composition that can be expressed in GeSb may be used.
  • the composition of Ge and Te is acceptable up to ⁇ 2% variation.
  • a binary system composed of Sb—Te is stable up to 617 ° C when it is composed of a composition ratio of 40 atomic% Sb and 60 atomic% Te.
  • composition of Sb and Te can tolerate a variation of ⁇ 2%.
  • a binary system composed of In—Te is stable up to 462 ° C when In is composed of 57.1 atomic% and Te is 42.9 atomic%.
  • Composition with atomic% and Te 50 atomic% The composition is stable up to 696 ° C, and the composition is stable up to 649 ° C with an In force of 2.9 atomic% and Te of 57.1 atomic%. If the composition ratio of Te is 60 atomic% at atomic%, the composition is stable up to 605 ° C.
  • composition ratio of Te is 7.5 atomic% and Te is 62.5 atomic%, 625 It is stable up to ° C, and it is stable up to 467 ° C when it is composed of a composition ratio of 71.4 atomic% In and 28.6 atomic% In. In Te, InTe (pair
  • Composition ratio 1: 1) Use target with composition that can be expressed as In Te, In Te, In Te, In Te, In Te, In Te
  • composition of In and Te can tolerate a variation of ⁇ 2%.
  • a chalcogenide film with good electrical properties and high heat resistance can be produced, it can be used in a high temperature environment! / A phase change memory that exhibits excellent data retention characteristics can be manufactured with good yield.
  • FIG. 1 is a cross-sectional view showing a method of manufacturing a phase change memory according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 1.
  • FIG. 3 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 2.
  • FIG. 4 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 3.
  • FIG. 5 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 4.
  • FIG. 6 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 5.
  • FIG. 7 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 6.
  • FIG. 8 is a schematic configuration diagram showing an example of a sputtering apparatus used for manufacturing a phase change memory.
  • FIG. 9 is a schematic configuration diagram showing a sputtering chamber of the sputtering apparatus shown in FIG.
  • FIG. 10 is a sectional view of a key portion showing the method for manufacturing the phase change memory following FIG. 6.
  • FIG. 11 is a sectional view of a key portion showing a method for manufacturing the phase change memory following FIG. 10.
  • FIG. 12 is a sectional view of the substantial part showing the production method of the phase change memory following FIG. 11.
  • FIG. 12 is a sectional view of the substantial part showing the production method of the phase change memory following FIG. 11.
  • FIG. 13 is a sectional view of the substantial part showing the production method of the phase change memory following FIG. 12.
  • FIG. 14 is a fragmentary cross-sectional view showing the manufacturing method of the phase change memory following FIG. 13.
  • FIG. 15 is a cross sectional view for a main portion showing the method for manufacturing the phase change memory following FIG. 14.
  • FIG. 16 is a cross sectional view for a main portion showing the method for manufacturing the phase change memory following FIG. 15.
  • FIG. 17 is a fragmentary cross-sectional view showing the manufacturing method of the phase change memory following FIG. 16.
  • FIG. 18 is a schematic configuration diagram showing another example of a sputtering apparatus used for manufacturing a phase change memory.
  • FIG. 19 is a diagram for explaining the operation principle of the phase change memory according to the embodiment of the present invention.
  • FIG. 20 is a phase diagram of Ge—Sb—Te chalcogenide.
  • a method of manufacturing a phase change memory according to the present embodiment will be described in the order of steps with reference to FIGS.
  • a substrate 1 having a single crystal silicon force with a plane orientation (100) is prepared.
  • a semiconductor substrate other than the single crystal silicon substrate for example, an SOI (Silicon On Insulator) substrate, a single crystal Ge substrate, a GOI (Ge On Insulator) substrate, a strained silicon substrate in which strain stress is applied to the crystal, or the like is used. There is no problem.
  • an oxide silicon film is embedded in the opening.
  • the surface of the substrate 1 is flattened by a chemical mechanical polishing (CMP) method, and an element isolation groove 2 is formed, thereby defining an active region in which a transistor is formed.
  • CMP chemical mechanical polishing
  • the gate insulating film 3 made of an oxide silicon film having a thickness of about 3 nm on the surface of the substrate 1.
  • a silicon oxynitride film SiON film
  • a high-k film obtained by oxidizing or nitriding various metals, or a laminated film of these may be used.
  • a cap made of an oxide silicon film is deposited on the polycrystalline silicon film 4n by the CVD method. Insulating film 5 is deposited.
  • phosphorus or arsenic is introduced during the film formation.
  • the polycrystalline silicon film 4n serves as a gate electrode material, but a gate electrode material other than the polycrystalline silicon film 4n, such as a silicide film or a metal film, may be used.
  • the gate insulating film 5 and the polycrystalline silicon film 4n are patterned by dry etching using a photoresist film as a mask to form the gate electrode 4, followed by Then, phosphorus or arsenic is ion-implanted into the substrate 1 to form the n_ type diffusion layer 6.
  • a sidewall spacer 7 is formed on the side wall of the gate electrode 4 by anisotropically etching a silicon nitride film deposited on the substrate 1 by the CVD method, followed by Then, after ion implantation of arsenic into the substrate 1, an n + diffusion layer 8 constituting the source and drain is formed by performing an active heat treatment.
  • the n-channel type memory cell selection MISFET is completed through the above steps.
  • the gate electrode 4 can also be formed by a dummy gate process.
  • a dummy gate conductive film (such as a polycrystalline silicon film) deposited on the gate insulating film is first processed to form a dummy gate electrode, followed by formation of a source and drain, and then gate insulation. The film and dummy gate electrode are removed. Next, a gate insulating film is formed again, and a conductive film for a gate (such as a metal film) is deposited thereon, and then the conductive film is processed to form a gate electrode.
  • the gate insulating film is formed by using a high-k material having a low crystallization temperature.
  • an interlayer insulating film 10 made of an oxide silicon film is deposited on the substrate 1 by the CVD method, and then the surface is flattened by the mechanical mechanical polishing method.
  • a contact hole 11 is formed in the interlayer insulating film 10 above the n + diffusion layer 8 (source and drain), and a plug 12 is formed inside the contact hole 11.
  • the plug 12 serves to electrically connect the memory layer formed on the interlayer insulating film 10 and the MISFET for selecting the lower memory cell in the next process.
  • it is composed of a laminated film of a TiN film and a W film.
  • a first-layer wiring 13 is formed on the interlayer insulating film 10.
  • the wiring 13 is formed, for example, by depositing a W film on the interlayer insulating film 10 by sputtering and patterning the W film by dry etching using a photoresist film as a mask.
  • the wiring 13 is electrically connected to the n + diffusion layer 8 through the plug 12 inside the contact hole 11.
  • an interlayer insulating film 14 made of an oxide silicon film is deposited on the substrate 1 by the CVD method, and then the surface is flattened by the mechanical mechanical polishing method. Then, through holes 15 and plugs 16 are formed in the interlayer insulating film 14 above the wirings 13 by a method similar to the method of forming the contact holes 11 and the plugs 12.
  • an oxide tantalum (Ta 2 O 3) film is formed on the interlayer insulating film 14 using the following method.
  • An interface layer 18 consisting of 2 5, an InGeSbTe film 19a as a memory layer material, and a W film 20a as an upper electrode material are deposited.
  • FIG. 8 is a schematic configuration diagram showing a multi-chamber type sputtering apparatus used for forming the interface layer 18, the InGeSbTe film 19a, and the W film 20a.
  • the sputtering apparatus 100 includes a plurality of chambers including a sputtering chamber 101 and a heat treatment chamber 102, a robot hand 103 that transports the substrate 1 (Ueno) to the plurality of chambers, a loader 104, and an unloader 105. It is configured so that film formation and heat treatment can be performed continuously inside the apparatus.
  • FIG. 9 is a schematic configuration diagram showing the sputtering chamber 101 of the sputtering apparatus 100 shown in FIG.
  • a wafer stage 106 serving also as one electrode is installed, and a substrate 1 (wafer) is positioned on the wafer stage 106.
  • a substrate 1 wafer
  • four force sword electrodes 108a, 108b, 108c, 108d force S which also serve as target holders, are installed.
  • the Ta target 109c is attached to the W target 109b
  • the force sword electrode 108c the InTe target 109d is attached to the force sword electrode 108d.
  • magnets 107a, 107b, 107c, and 107d for applying a magnetic field to the targets (109a to 109d) are installed on the force sword electrodes 108a to 108d, respectively. That is, the sputtering apparatus 100 is a multi-force sword type magnetron sputtering apparatus that performs film formation using four types of targets (109a to 109d) attached to four force sword electrodes (108a to 108d).
  • the GeSbTe target 109a is composed of a GeSbTe compound having a stable composition, for example, Ge Sb Te.
  • InTe target 109d has a stable composition
  • InTe compounds such as InTe are used.
  • the stable composition is
  • Ar gas is introduced into the sputtering chamber 101, and the wafer stage 106 on which the substrate 1 (wafer) is mounted is rotated at a rate of about 60 revolutions per minute. Rotate horizontally.
  • a predetermined voltage is applied between the force sword electrode 108c holding the Ta target 109c and the wafer stage 106 by applying a predetermined DC power.
  • a predetermined magnetic field is applied to the Ta target 109c using the magnetic coil 107a.
  • a plasma is formed between the force sword electrode 108c and the wafer stage 106, and the Ar gas is dissociated into Ar + ions.
  • the dissociated Ar + ions collide with the Ta target 109c held by the force sword electrode 108c, and a Ta film 18a is formed on the surface of the substrate 1 (wafer) (FIG. 10).
  • the substrate 1 is transferred to the heat treatment chamber 102 shown in FIG. 8, and the Ta film 18a is radical-oxidized to form an interface layer 18 made of a tantalum oxide (Ta 2 O 3) film (FIG. 11).
  • the interface layer 18 functions as an adhesive layer that prevents the interlayer insulating film 14 and the memory layer material (InGeSbTe film 19a) formed thereon from being peeled off. It also serves as a heat resistance layer that suppresses escape.
  • FIG. 10 and subsequent cross-sectional views illustration of the portion below the wiring 13 is omitted for easy understanding of the drawing.
  • the InGeSbTe film 19a formed by the above-described method has a stoichiometric composition because the two types of targets used (GeSb Te target 109a and InTe target 109d) both have stable yarns. As a result of suppressing local variation and fluctuation over time, the crystal phase and composition uniformity of the crystal grains are higher than those of InGeSbTe films formed using a single InGeSbTe target. It becomes a film.
  • the oxide silicon film is patterned by dry etching using a photoresist film as a mask.
  • the hard mask 21 is formed by Jung.
  • the upper electrode 20 is formed by patterning the W film 20a by dry etching using the hard mask 21 as a mask.
  • the InGeSbTe film 19 a is patterned by dry etching using the upper electrode 20 as a mask, and then the interface layer under the InGeSbTe film 19 a is formed. Patter 18 Through the steps so far, the memory layer 19 made of the InGeSbTe film 19a is formed on the interlayer insulating film.
  • an interlayer insulating film 22 made of an oxide silicon film is deposited on the upper electrode 20 by a CVD method, and then the surface is subjected to an electrochemical mechanical polishing method. After flattening, the through hole 23 and the plug 24 are formed in the interlayer insulating film 22 on the upper electrode 20 by the same method as the method for forming the through hole 15 and the plug 16 described above.
  • the second layer 13 is formed on the interlayer insulating film 22 by a method similar to the method for forming the first layer wiring 13.
  • a layer of wiring 25 is formed. The wiring 25 is electrically connected to the upper electrode 20 via the plug 24 inside the through hole 23.
  • a force sword electrode 108a holding the GeSbTe target 109a and InTe target 109d may be alternately applied to the force sword electrode 108d that holds the InTe target 109d, and the GeSbTe film formation and the InTe film formation may be alternately repeated.
  • the combination of two types of targets (GeSbTe target 109a and InTe target 109d) used when forming the InGeSbTe film 19a is a set that can be expressed by Ge Sb Te.
  • the combination of the compound and the compound having a composition that can be expressed by In Te is limited.
  • the GeSbTe target 109a has a composition that can be expressed by another GeSb Te compound having a stable yarn, for example, GeSb Te, GeSb Te, or Ge SbTe.
  • a compound can be used.
  • the composition ratio of Ge, Sb, and Te in the GeSbTe composite can be allowed up to ⁇ 2% variation.
  • composition ratio of In and Te in the InTe compound is ⁇ 2%. Variations can be tolerated.
  • two or more types having a stable composition are formed by simultaneously sputtering two types of targets having a stable composition (GeSbTe target 109a and InTe target 109d) to form an InGeSbTe film 19a.
  • the InGeSbTe film 19a is formed by simultaneously sputtering the target.
  • a first target composed of a GeTe compound, a second target composed of an SbTe compound, and a third target composed of an InTe compound are simultaneously sputtered, and InGeSbTe
  • the film 19a can also be formed.
  • a SbTe compound having a stable composition a compound having a composition that can be expressed by Sb Te is used as a SbTe compound having a stable composition.
  • InTe compounds having a stable composition include the above compounds (In Te, In Te, I
  • the remaining one force sword electrode (for example, 108d) Attach either W target 109b or Ta target 109c to the film.
  • the oxide tantalum (Ta 2 O 3) film constituting the interface layer 18 is formed using a separate sputtering chamber.
  • the InGeSbTe film 19a can be formed using a sputtering apparatus provided with three force sword electrodes (108a, 108b, 108c) in the sputtering chamber 101.
  • the first to third targets (InTe target 109d, GeTe target 109e, SbTe target 109f) having the above-described stable composition are attached to the force sword electrodes (108a, 108b, 108c) and sputtered simultaneously. .
  • two types of targets with stable composition (GeSbTe target 109a and InTe target 109d) are attached to two force sword electrodes, and the remaining one of the force sword electrodes is displaced by W target 109b or Ta target 109c. It is also possible to carry out film formation by attaching these.
  • the InGeSbTe film 19a is formed using a plurality of targets having different compositions
  • the InGeSbTe it is possible to optimize the composition ratio of the four types of atoms (In, Ge, Sb and Te) constituting the Te film 19a. It is also possible to optimize the composition ratio of the four types of atoms that make up the InGeSbTe film 19a by controlling the RF power applied to each force sword electrode while keeping the number and combination of targets constant. is there. Furthermore, by changing the RF power applied to the force sword electrode during film formation, the composition ratio of atoms along the film thickness direction of the InGeSbTe film 19a can be changed. Can be controlled along the film thickness direction.
  • the target surface and the semiconductor substrate surface are arranged parallel to each other.
  • the present invention is not limited to this, and the target surface is arranged obliquely so as to face the center of the semiconductor substrate. May be.
  • the film formation rate increases and at the same time the film thickness and composition uniformity improve.
  • the force is described as each target is arranged in a horizontal row.
  • the present invention is not limited to this. For example, when the targets are arranged at equal distances from the center of the semiconductor substrate 1, the uniformity of the film thickness and composition is improved.
  • a reset pulse is applied so that the temperature of the chalcogenide material is heated above the melting point to rapidly cool it.
  • the melting point is, for example, 600 ° C.
  • the rapid cooling time (tl) is, for example, 2 nsec.
  • a set pulse is applied so that the temperature of the chalcogenide material is maintained above the crystallization temperature and below the melting point.
  • the crystallization temperature is, for example, 400 ° C.
  • the time (t2) required for crystallization is 50 nsec, for example.
  • the present invention can be applied to the manufacture of a phase change memory using a chalcogenide film as a storage layer.

Abstract

A memory layer of phase change memory consisting of a highly thermostable InGeSbTe film. This InGeSbTe film is formed by simultaneous sputtering of GeSbTe target (109a) of Ge2Sb2Te5 of stable composition and InTe target (109d) of In2Te3 of stable composition in sputtering chamber (101). Accordingly, aging change and local fluctuation of stoichiometric composition of the InGeSbTe film can be inhibited so that there can be obtained an InGeSbTe film ensuring high homogeneity of composition and crystal phase of crystal grains.

Description

明 細 書  Specification
半導体記憶装置の製造方法  Manufacturing method of semiconductor memory device
技術分野  Technical field
[0001] 本発明は、半導体記憶装置の製造技術に関し、特に、記録層材料としてカルコゲ ナイドを用いた相変化メモリの製造に適用して有効な技術に関する。  TECHNICAL FIELD [0001] The present invention relates to a manufacturing technique of a semiconductor memory device, and more particularly to a technique effective when applied to the manufacture of a phase change memory using chalcogenide as a recording layer material.
背景技術  Background art
[0002] 情報機器、家電機器、車載機器などには、プログラムやデータを格納するためのフ ラッシュメモリを混載した組込み機器向けマイコン (メモリ混載マイコン)が搭載されて いる。近年は、これらの機器の機能向上に伴って、メモリ混載マイコンの高性能化の 要求が高まり、混載するフラッシュメモリに対しても、書換え耐性の向上や集積度のさ らなる向上が要求されている。  [0002] Microcomputers for embedded devices (memory-embedded microcomputers) that incorporate a flash memory for storing programs and data are installed in information devices, home appliances, and in-vehicle devices. In recent years, as the functions of these devices have improved, the demand for higher performance of memory-embedded microcomputers has increased, and even for embedded flash memory, there has been a demand for improved rewrite resistance and further integration. Yes.
[0003] また、汎用メモリである DRAMにおいても、さらなる高集積ィ匕の要求に応えるため に、メモリセルの微細化が進められている。し力し、キャパシタに蓄えられる電荷の量 で情報を記憶する DRAMは、キャパシタの面積を小さくすると、蓄積容量が減ってし まうという問題がある。また、キャパシタの誘電体材料を一定値以下に薄膜化すると、 リーク電流の増加してしまうという問題もある。これまでは、キャパシタを深いトレンチ 内に形成するなどして面積の低下を防いできたが、さらなる微細化を推進しょうとする と、トレンチのアスペクト比が加工の限界に達し、最先端の加工技術を駆使しても歩 留りょくデバイスを作ることができなくなる。  [0003] Also, in DRAM, which is a general-purpose memory, miniaturization of memory cells has been advanced in order to meet the demand for higher integration density. However, DRAM that stores information with the amount of charge stored in the capacitor has the problem that the storage capacity decreases if the capacitor area is reduced. In addition, if the dielectric material of the capacitor is thinned below a certain value, there is a problem that the leakage current increases. Previously, the capacitor could be formed in a deep trench to prevent the area from decreasing.However, if further miniaturization was promoted, the trench aspect ratio reached the limit of processing, and cutting-edge processing technology was developed. Even if you make full use of it, you will not be able to make a yield device.
[0004] このような状況に鑑み、最近は、様々な新 、半導体記憶素子が提案されて 、る。  In view of such a situation, recently, various new semiconductor memory elements have been proposed.
代表的なものとして、カルコゲナイド材料の相変化を利用した相変ィ匕メモリ(Phase ch ange RAM; PRAM)、磁性体のスピンを利用した MRAM (Magnetic RAM),有機分 子の酸化 ·還元を利用した分子メモリ、強相関電子系と呼ばれる物質を用 、る RRA M(Resistance RAM)などを挙げることができる。なかでも、相変化メモリは、書込み'読 出しが高速で行なえ、高い書換え耐性や集積ィ匕に有利であるという特徴から、次世 代のメモリ混載マイコン用不揮発メモリや DRAM代替メモリとして注目されて ヽる。  Typical examples include phase change RAM (PRAM) using phase change of chalcogenide materials, MRAM (Magnetic RAM) using spin of magnetic material, and oxidation / reduction of organic molecules. RRAM (Resistance RAM) using a material called a molecular memory or a strongly correlated electron system. Above all, phase change memory has attracted attention as the next generation of non-volatile memory for memory embedded microcomputers and DRAM replacement memory because of its features such as high speed of writing and reading, and high rewrite endurance and integration. Speak.
[0005] 相変化メモリは、記憶層としてカルコゲナイド膜を使い、カルコゲナイドが熱によって 電気抵抗の異なるアモルファス状態 (高抵抗)と結晶状態 (低抵抗)に変化することを 利用し、膜を流れる電流量の違いを" 1"ど' 0"の情報として記憶と読み出しを行う。記 憶層材料である多元系カルコゲナイドは、すでに CD—RWや DVD—RAMのような 光ディスクの記録層材料として使用されている実績があることから、上記した他の半 導体記憶素子で使用する材料に比べて扱 、が容易であると 、う特徴がある。 [0005] A phase change memory uses a chalcogenide film as a storage layer, and the chalcogenide is heated by heat. Using the change in the amorphous state (high resistance) and the crystalline state (low resistance) with different electrical resistance, the difference in the amount of current flowing through the film is stored and read out as "1" to "0" information. Multi-component chalcogenide, a storage layer material, has already been used as a recording layer material for optical discs such as CD-RW and DVD-RAM. Compared to it, it is easy to handle.
[0006] 以下の特許文献 1〜6は、複数種類のスパッタターゲットを用いたスパッタリング法 によって、光ディスクの表面に多元系カルコゲナイド膜を成膜する技術を開示してい る。 [0006] The following Patent Documents 1 to 6 disclose techniques for forming a multi-system chalcogenide film on the surface of an optical disc by sputtering using a plurality of types of sputtering targets.
[0007] 特開 2004— 255698号公報(特許文献 1)は、 2種類のターゲット(InSbTe— GeS b、 InSbTe— Ge、 GeSbTe— InSbTeゝ GeSbTe— In)を用いたスパッタリング法に よって、 InGeSbTe記録層を成膜する技術を開示して 、る。  [0007] JP 2004-255698 A (Patent Document 1) describes an InGeSbTe recording layer by sputtering using two types of targets (InSbTe—GeSb, InSbTe—Ge, GeSbTe—InSbTeTeGeSbTe—In). A technique for forming a film is disclosed.
[0008] 特開 2005— 254485号公報(特許文献 2)は、 3種類のターゲット(GeTe— BiTe JP-A-2005-254485 (Patent Document 2) describes three types of targets (GeTe-BiTe
-SiTe)を用いたスパッタリング法によって、 BiGeSiTe記録層を成膜する技術を開 示している。  The technology to form a BiGeSiTe recording layer by sputtering using -SiTe) is disclosed.
[0009] 特開 2001— 56958号公報(特許文献 3)は、 2種類のターゲット(GeSbTe— Geゝ GeSbTe— Ta、 GeSbTe -InSbTe)を用いたスパッタリング法による記録層の成膜 技術を開示している。  [0009] Japanese Unexamined Patent Publication No. 2001-56958 (Patent Document 3) discloses a technique for forming a recording layer by a sputtering method using two types of targets (GeSbTe—GeSGeSbTe—Ta, GeSbTe—InSbTe). Yes.
[0010] 特開 2000— 79761号公報(特許文献 4)は、 AgGaGeSbTe、 AgGaSbTe、 Znln [0010] Japanese Unexamined Patent Publication No. 2000-79761 (Patent Document 4) describes AgGaGeSbTe, AgGaSbTe, Znln
SbTe、 GaSbTe、 Sb、 Ge、 Ag、 SbTeのいずれ力 2種以上のターゲットを用いたス ノ ッタリング法による記録層の成膜技術を開示している。 A recording layer deposition technique is disclosed by a sputtering method using two or more targets of any of SbTe, GaSbTe, Sb, Ge, Ag, and SbTe.
[0011] 特開 2004— 268587号公報(特許文献 5)は、 2種類のターゲット(CrTe— GeSb[0011] Japanese Unexamined Patent Application Publication No. 2004-2688587 (Patent Document 5) describes two types of targets (CrTe-GeSb
Teなど)を用いたスパッタリング法による記録層の成膜技術を開示して!/、る。 Disclosure of recording layer deposition technology by sputtering using Te etc.! /
[0012] 特開平 4— 106740号公報(特許文献 6)は、 3種類の単一元素ターゲット(Ge— S b—Te)または組成比の異なる 3種類の GeSbTeターゲットを用いたスパッタリング法 による記録層の成膜技術を開示している。 Japanese Laid-Open Patent Publication No. 4-106740 (Patent Document 6) describes a recording layer by sputtering using three types of single element targets (Ge—S b—Te) or three types of GeSbTe targets having different composition ratios. The film forming technique is disclosed.
特許文献 1:特開 2004— 255698号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-255698
特許文献 2:特開 2005 - 254485号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-254485
特許文献 3:特開 2001— 56958号公報 特許文献 4:特開 2000 - 79761号公報 Patent Document 3: Japanese Patent Laid-Open No. 2001-56958 Patent Document 4: JP 2000-79761 A
特許文献 5:特開 2004— 268587号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-268587
特許文献 6:特開平 4— 106740号公報  Patent Document 6: Japanese Patent Laid-Open No. 4-106740
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 半導体チップは、配線基板などに実装される際、例えば半田付け工程で 250°C、 数分、圧着工程で 180°C、数時間というように、その動作温度より高い温度環境に晒 される。メモリ混載マイコンの場合は、メモリ部分にプログラムを記憶させた後に実装 を行うのが一般的であるため、実装工程での熱負荷によってデータが消去されてしま うことがないよう、動作温度よりある程度高い温度環境下でもデータ保持特性を保証 する必要がある。 [0013] When a semiconductor chip is mounted on a wiring board or the like, it is exposed to a temperature environment higher than its operating temperature, for example, 250 ° C for several minutes in the soldering process and 180 ° C for several hours in the crimping process. Is done. In the case of a memory-embedded microcomputer, mounting is usually performed after the program is stored in the memory part, so data is not erased due to thermal load during the mounting process. Data retention characteristics must be guaranteed even in high temperature environments.
[0014] ところが、相変ィ匕メモリの記憶層材料であるカルコゲナイドは、高抵抗のァモルファ ス状態において準安定相となるため、高温環境では結晶化 (低抵抗化)が急速に進 行してしまうという問題がある。  [0014] However, chalcogenide, which is a storage layer material for phase change memory, becomes a metastable phase in a high-resistance amorphous state, so that crystallization (low resistance) proceeds rapidly in a high-temperature environment. There is a problem of end.
[0015] 例えば本発明者らは、相変ィ匕メモリの記憶層材料として、 Ge— Sb— Teからなる 3 元系カルコゲナイドの使用を検討して来た力 Ge Sb Teの場合は、 140°C程度の  [0015] For example, the present inventors have studied the use of a ternary chalcogenide composed of Ge—Sb—Te as a storage layer material of a phase change memory. In the case of Ge Sb Te, 140 ° About C
2 2 5  2 2 5
高温環境に晒されると、数時間でアモルファス状態力 結晶状態に変化してデータ が失われてしまうので、実用に適さない。そこで、本発明者らは、高温環境下におい ても優れたデータ保持特性を発揮する相変化メモリを実現するために、記憶層材料 として GeSbTeよりも耐熱性の高い InGeSbTeの使用を検討した。  When exposed to a high temperature environment, the data changes to an amorphous state force crystal state within a few hours and data is lost. Therefore, the present inventors examined the use of InGeSbTe, which has higher heat resistance than GeSbTe, as the storage layer material in order to realize a phase change memory that exhibits excellent data retention characteristics even in a high temperature environment.
[0016] 通常、光ディスクや半導体ウェハの表面にカルコゲナイド膜を形成するには、スパ ッタリング法が用いられる。従って、スパッタリング法で InGeSbTe膜を成膜するため には、 InGeSbTeのターゲットが必要となる。ところが、 Inは GeSbTe中に全固溶しな いので、 InGeSbTeのターゲットを製造すると、例えば Ge Sb Teという組成の結晶 [0016] Usually, a sputtering method is used to form a chalcogenide film on the surface of an optical disk or a semiconductor wafer. Therefore, an InGeSbTe target is required to form an InGeSbTe film by sputtering. However, since In does not completely dissolve in GeSbTe, when an InGeSbTe target is manufactured, for example, a crystal having a composition of Ge Sb Te is formed.
2 2 5  2 2 5
粒と In Teという組成の結晶粒とが混在した相分離状態のターゲットが得られる。  A phase-separated target in which grains and crystal grains having a composition of InTe are mixed is obtained.
2 3  twenty three
[0017] ここで、 Ge Sb Te力 なる組成のターゲットを用いたときの成膜速度は、 In Teか  [0017] Here, when a target having a composition of Ge Sb Te force is used, the deposition rate is In Te or
2 2 5 2 3 らなる糸且成のターゲットを用いたときの 2倍程度速いことから、 Ge Sb Teのスパッタリ  Since it is about twice as fast as using a 2 2 5 2 3 threaded target, the sputtering of Ge Sb Te
2 2 5 ング率は、 In Teに比べて 2倍程度大きいと考えられる。そのため、組成の異なる結 晶粒が混在した単一の InGeSbTeターゲットを使用して成膜を行うと、 InGeSbTeの 化学量論的な組成が局所的にばらついたり、経時的に変動したりすることになる。 The 2 25 5 rate is estimated to be about twice as large as In Te. As a result, the result is a different composition. When a single InGeSbTe target with mixed grains is used for film formation, the stoichiometric composition of InGeSbTe varies locally or changes over time.
[0018] 特に、光の屈折率の違いによって信号を読み出す光ディスクとは異なり、相変化に 伴う抵抗値の違いによって信号を読み出す相変化メモリの場合は、上記したような記 憶層の組成の変動やばらつきが僅かに生じただけでも、電気特性の劣化、ひいては 製造歩留まりおよび信頼性の低下を引き起こす原因となる。 [0018] In particular, in the case of a phase change memory that reads a signal by a difference in resistance value accompanying a phase change, unlike the optical disk that reads a signal by a difference in the refractive index of light, the above-described change in the composition of the storage layer Even slight variations can cause degradation of electrical characteristics and, in turn, manufacturing yield and reliability.
[0019] 本発明の目的は、高温環境下にお ヽても優れたデータ保持特性を発揮する相変 ィ匕メモリの製造技術を提供することにある。 An object of the present invention is to provide a technology for manufacturing a phase change memory that exhibits excellent data retention characteristics even in a high temperature environment.
[0020] 本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述および添付 図面から明らかになるであろう。 [0020] The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
課題を解決するための手段  Means for solving the problem
[0021] 本願において開示される発明のうち、代表的なものおよびそれによつて得られる効 果を簡単に説明すれば以下のとおりである。 [0021] Among the inventions disclosed in the present application, typical ones and effects obtained thereby will be briefly described as follows.
(1)本願の一発明は、相変化に伴う電気抵抗値の差によって情報を記憶する記憶層 を半導体基板上に成膜する工程を備えた半導体記憶装置の製造方法であって、前 記記憶層は、インジウム、ゲルマニウム、アンチモンおよびテルル力 なるカルコゲナ イド膜からなり、前記カルコゲナイド膜は、それぞれが安定組成を有する化合物から なる複数種類のターゲットを用いたスパッタリング法を用いて成膜するものである。 (1) An invention of the present application is a method for manufacturing a semiconductor memory device, comprising a step of forming a memory layer for storing information on a semiconductor substrate by a difference in electrical resistance value associated with a phase change. The layer is composed of a chalcogenide film having indium, germanium, antimony, and tellurium force, and the chalcogenide film is formed by sputtering using a plurality of types of targets each composed of a compound having a stable composition. .
(2)本願の一発明は、半導体基板の主面に形成されたメモリセル選択用 MISFETと 、前記メモリセル選択用 MISFETに電気的に接続され、相変化に伴う電気抵抗値の 差によって情報を記憶する記憶層とを有する半導体記憶装置の製造方法であって、 前記記憶層は、前記メモリセル選択用 MISFETを覆う層間絶縁膜上に形成されたィ ンジゥム、ゲルマニウム、アンチモンおよびテルル力もなるカルコゲナイド膜からなり、 前記記憶層を形成する工程は、以下の工程 (a)〜(c)を含んでいる。 (2) One invention of the present application is that a memory cell selecting MISFET formed on a main surface of a semiconductor substrate is electrically connected to the memory cell selecting MISFET, and information is obtained by a difference in electric resistance value accompanying a phase change. A method for manufacturing a semiconductor memory device having a memory layer for storing, wherein the memory layer is an indium, germanium, antimony, and tellurium force chalcogenide film formed on an interlayer insulating film covering the memory cell selecting MISFET The step of forming the memory layer includes the following steps (a) to (c).
(a)それぞれが安定組成を有する化合物からなる複数種類のターゲットを用いたスパ ッタリング法を用いて前記層間絶縁膜上に前記カルコゲナイド膜を成膜する工程、 (a) forming the chalcogenide film on the interlayer insulating film using a sputtering method using a plurality of types of targets each composed of a compound having a stable composition;
(b)前記カルコゲナイド膜上に上部電極用の導電膜を成膜する工程、 (b) forming a conductive film for the upper electrode on the chalcogenide film,
(c)前記導電膜および前記カルコゲナイド膜をパターユングすることによって、前記 導電膜からなる前記上部電極と、前記カルコゲナイド膜からなる記憶層とを形成する 工程。 (c) by patterning the conductive film and the chalcogenide film, Forming the upper electrode made of a conductive film and the memory layer made of the chalcogenide film.
[0022] なお、本願にお!ヽて「安定組成」とは、化合物を高温環境下に長時間保持しても、 組成や結晶相の異なる結晶粒に分離することがな 、組成のことを指す。化学量論組 成、平衡組成、化合物組成と表現できるものは安定組成となり得る。安定組成からな るターゲットを用いれば、ターゲットを構成する結晶粒の結晶相や組成の均一性を高 くすることがでさる。  In the present application, the term “stable composition” refers to a composition in which a compound is not separated into crystal grains having different compositions and crystal phases even if the compound is kept in a high temperature environment for a long time. Point to. What can be expressed as stoichiometric composition, equilibrium composition, and compound composition can be a stable composition. If a target having a stable composition is used, the uniformity of the crystal phase and composition of the crystal grains constituting the target can be increased.
[0023] 例えば Ge— Sb— Teからなる 3元系の場合は、 2種の Te化合物(GeTeおよび Sb  [0023] For example, in the case of a ternary system composed of Ge—Sb—Te, two kinds of Te compounds (GeTe and Sb
2 2
Te )を整数比で混合すれば安定組成となる。つまり、 (GeSb) (Sb Te ) (0<XIf Te) is mixed in an integer ratio, a stable composition is obtained. That is, (GeSb) (Sb Te) (0 <X
3 X 2 3 X- l3 X 2 3 X- l
< 1)で表記できる組成のターゲットを用いればょ 、。 <Use a composition target that can be expressed in 1).
[0024] また、図 20の状態図に示すように、 GeTeと Sb Teとを結ぶ線上に少なくとも 3種の [0024] As shown in the state diagram of FIG. 20, at least three kinds of lines are connected on the line connecting GeTe and Sb Te.
2 3  twenty three
化合物組成が存在する。 GeTeと Sb Teを擬似二元系と考えると、 GeTeが 33. 3原  There is a compound composition. GeTe and Sb Te are considered pseudo-binary systems.
2 3  twenty three
子%で Sb Te力 6. 6原子%の組成比で構成されると(GeSb Te )、 870Kまで安  When it is composed of a composition ratio of 6.6 atomic percent of Sb Te force (GeSb Te), it is as low as 870K.
2 3 4 7 定であり、 GeTeが 50原子%で Sb Te力 ¾0原子%の組成比で構成されると(GeSb  2 3 4 7 When the composition ratio of GeTe is 50 atomic% and Sb Te force is ¾0 atomic% (GeSb
2 3 2 2 3 2
Te )、 888Kまで安定であり、 GeTe力 6. 6原子%で Sb Te力 ¾3. 3原子%の組Te), stable up to 888K, GeTe force 6.6 atomic% and Sb Te force ¾3.3 atomic%
4 2 3 4 2 3
成比で構成されると(Ge Sb Te )、 903Kまで安定である。また、 Ge SbTeも安定  When constructed with a composition ratio (Ge Sb Te), it is stable up to 903K. Ge SbTe is also stable
2 2 5 4 5 なィ匕合物糸且成として知られている。つまり、 GeSb Te、 GeSb Te、 Ge Sb Te、 Ge  It is known as 2 2 5 4 5 That is, GeSb Te, GeSb Te, Ge Sb Te, Ge
4 7 2 4 2 2 5 4 7 2 4 2 2 5
SbTeで表記できる組成のターゲットを用いれば、結晶粒の結晶相や組成の均一If a target with a composition that can be expressed in SbTe is used, the crystal phase and composition of the crystal grains are uniform.
4 5 4 5
性をさらに高くすることができる。なお、 Geと Sbと Teの組成は ± 2%のばらつきまで 許容できる。  The sex can be further increased. The composition of Ge, Sb, and Te is acceptable up to ± 2% variation.
[0025] 例えば Ge— Teからなる二元系の場合は、 Geが 50原子%で Teが 50原子%の組 成比で構成されると、 430°Cまで安定である。つまり、 GeSbで表記できる組成のター ゲットを用いればよい。なお、 Geと Teの組成は ± 2%のばらつきまで許容できる。例 えば、 Sb— Teからなる二元系の場合は、 Sbが 40原子%で Teが 60原子%の組成比 で構成されると、 617°Cまで安定である。つまり、 Sb Teで表記できる組成のターゲ  [0025] For example, in the case of a binary system composed of Ge-Te, the composition is stable up to 430 ° C when the composition ratio of Ge is 50 atomic% and Te is 50 atomic%. In other words, a target with a composition that can be expressed in GeSb may be used. The composition of Ge and Te is acceptable up to ± 2% variation. For example, a binary system composed of Sb—Te is stable up to 617 ° C when it is composed of a composition ratio of 40 atomic% Sb and 60 atomic% Te. In other words, a target with a composition that can be expressed in Sb Te.
2 3  twenty three
ットを用いればよい。なお、 Sbと Teの組成は ± 2%のばらつきまで許容できる。例え ば、 In— Teからなる二元系の場合は、 Inが 57. 1原子%で Teが 42. 9原子%の組成 比で構成されると、 462°Cまで安定であり、 Inが 50原子%で Teが 50原子%の組成 比で構成されると、 696°Cまで安定であり、 In力 2. 9原子%で Teが 57. 1原子%の 組成比で構成されると、 649°Cまで安定であり、 In力 0原子%で Teが 60原子%の 組成比で構成されると、 605°Cまで安定であり、 In力 7. 5原子%で Teが 62. 5原子 %の組成比で構成されると、 625°Cまで安定であり、 Inが 71. 4原子%で Teが 28. 6 原子%の組成比で構成されると、 467°Cまで安定である。つまり、 In Te、 InTe (組 It may be used. Note that the composition of Sb and Te can tolerate a variation of ± 2%. For example, a binary system composed of In—Te is stable up to 462 ° C when In is composed of 57.1 atomic% and Te is 42.9 atomic%. Composition with atomic% and Te 50 atomic% The composition is stable up to 696 ° C, and the composition is stable up to 649 ° C with an In force of 2.9 atomic% and Te of 57.1 atomic%. If the composition ratio of Te is 60 atomic% at atomic%, the composition is stable up to 605 ° C. If the composition ratio of Te is 7.5 atomic% and Te is 62.5 atomic%, 625 It is stable up to ° C, and it is stable up to 467 ° C when it is composed of a composition ratio of 71.4 atomic% In and 28.6 atomic% In. In Te, InTe (pair
4 3 成比 = 1: 1)、 In Te、 In Te、 In Te、 In Teで表記できる組成のターゲットを用  4 3 Composition ratio = 1: 1) Use target with composition that can be expressed as In Te, In Te, In Te, In Te
3 4 2 3 3 5 2 5  3 4 2 3 3 5 2 5
いればよい。なお、 Inと Teの組成は ± 2%のばらつきまで許容できる。  It only has to be. It should be noted that the composition of In and Te can tolerate a variation of ± 2%.
発明の効果  The invention's effect
[0026] 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に 説明すれば以下のとおりである。  [0026] The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
[0027] 電気特性が良好で、かつ耐熱性の高いカルコゲナイド膜を製造することができるの で、高温環境下にお!/ヽても優れたデータ保持特性を発揮する相変化メモリを歩留ま り良く製造することができる。 [0027] Since a chalcogenide film with good electrical properties and high heat resistance can be produced, it can be used in a high temperature environment! / A phase change memory that exhibits excellent data retention characteristics can be manufactured with good yield.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]本発明の一実施の形態である相変化メモリの製造方法を示す断面図である。  FIG. 1 is a cross-sectional view showing a method of manufacturing a phase change memory according to an embodiment of the present invention.
[図 2]図 1に続く相変化メモリの製造方法を示す断面図である。  FIG. 2 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 1.
[図 3]図 2に続く相変化メモリの製造方法を示す断面図である。  FIG. 3 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 2.
[図 4]図 3に続く相変化メモリの製造方法を示す断面図である。  FIG. 4 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 3.
[図 5]図 4に続く相変化メモリの製造方法を示す断面図である。  FIG. 5 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 4.
[図 6]図 5に続く相変化メモリの製造方法を示す断面図である。  FIG. 6 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 5.
[図 7]図 6に続く相変化メモリの製造方法を示す断面図である。  FIG. 7 is a cross-sectional view showing a method for manufacturing the phase change memory following FIG. 6.
[図 8]相変化メモリの製造に用いるスパッタリング装置の一例を示す概略構成図であ る。  FIG. 8 is a schematic configuration diagram showing an example of a sputtering apparatus used for manufacturing a phase change memory.
[図 9]図 8に示すスパッタリング装置のスパッタチャンバを示す概略構成図である。  9 is a schematic configuration diagram showing a sputtering chamber of the sputtering apparatus shown in FIG.
[図 10]図 6に続く相変化メモリの製造方法を示す要部断面図である。  FIG. 10 is a sectional view of a key portion showing the method for manufacturing the phase change memory following FIG. 6.
[図 11]図 10に続く相変化メモリの製造方法を示す要部断面図である。  FIG. 11 is a sectional view of a key portion showing a method for manufacturing the phase change memory following FIG. 10.
[図 12]図 11に続く相変化メモリの製造方法を示す要部断面図である。  12 is a sectional view of the substantial part showing the production method of the phase change memory following FIG. 11. FIG.
[図 13]図 12に続く相変化メモリの製造方法を示す要部断面図である。 [図 14]図 13に続く相変化メモリの製造方法を示す要部断面図である。 13 is a sectional view of the substantial part showing the production method of the phase change memory following FIG. 12. FIG. 14 is a fragmentary cross-sectional view showing the manufacturing method of the phase change memory following FIG. 13.
[図 15]図 14に続く相変化メモリの製造方法を示す要部断面図である。  FIG. 15 is a cross sectional view for a main portion showing the method for manufacturing the phase change memory following FIG. 14.
[図 16]図 15に続く相変化メモリの製造方法を示す要部断面図である。  FIG. 16 is a cross sectional view for a main portion showing the method for manufacturing the phase change memory following FIG. 15.
[図 17]図 16に続く相変化メモリの製造方法を示す要部断面図である。  17 is a fragmentary cross-sectional view showing the manufacturing method of the phase change memory following FIG. 16. FIG.
[図 18]相変化メモリの製造に用いるスパッタリング装置の他の例を示す概略構成図で ある。  FIG. 18 is a schematic configuration diagram showing another example of a sputtering apparatus used for manufacturing a phase change memory.
[図 19]本発明の一実施の形態である相変化メモリの動作原理を説明する図である。  FIG. 19 is a diagram for explaining the operation principle of the phase change memory according to the embodiment of the present invention.
[図 20]Ge— Sb—Te系カルコゲナイドの状態図である。  FIG. 20 is a phase diagram of Ge—Sb—Te chalcogenide.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態 を説明するための全図において、同一の部材には原則として同一の符号を付し、そ の繰り返しの説明は省略する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
[0030] (実施の形態 1)  [0030] (Embodiment 1)
図 1〜図 18を用いて、本実施の形態による相変化メモリの製造方法を工程順に説 明する。まず、図 1に示すように、面方位(100)の単結晶シリコン力もなる p型の半導 体基板 (以下、基板という) 1を用意する。基板 1としては、単結晶シリコン基板以外の 半導体基板、例えば SOI(Silicon On Insulator)基板、単結晶 Ge基板、 GOI(Ge On I nsulator)基板、結晶に歪み応力を加えた歪みシリコン基板などを用いても差し支えな い。  A method of manufacturing a phase change memory according to the present embodiment will be described in the order of steps with reference to FIGS. First, as shown in FIG. 1, a p-type semiconductor substrate (hereinafter referred to as a substrate) 1 having a single crystal silicon force with a plane orientation (100) is prepared. As the substrate 1, a semiconductor substrate other than the single crystal silicon substrate, for example, an SOI (Silicon On Insulator) substrate, a single crystal Ge substrate, a GOI (Ge On Insulator) substrate, a strained silicon substrate in which strain stress is applied to the crystal, or the like is used. There is no problem.
[0031] 次に、窒化シリコン膜をマスクとして用いたドライエッチングによって基板 1に開口を 形成した後、この開口内に酸ィ匕シリコン膜を埋め込む。続いて、化学的機械的研磨( Chemical Mechanical Polishing, CMP)法によって基板 1の表面を平坦ィ匕し、素子分 離溝 2を形成することにより、トランジスタが形成される活性領域を画定する。  Next, after an opening is formed in the substrate 1 by dry etching using the silicon nitride film as a mask, an oxide silicon film is embedded in the opening. Subsequently, the surface of the substrate 1 is flattened by a chemical mechanical polishing (CMP) method, and an element isolation groove 2 is formed, thereby defining an active region in which a transistor is formed.
[0032] 次に、基板濃度調整用のイオン注入と引き延ばし熱処理、およびしきい値電圧調 整用のイオン注入と活性化熱処理を行う。続いて、基板 1の表面を希釈フッ酸水溶液 によって洗浄した後、熱酸化処理を行うことにより、基板 1の表面に膜厚 3nm程度の 酸ィ匕シリコン膜からなるゲート絶縁膜 3を形成する。ゲート絶縁膜 3としては、酸化シリ コン膜以外の絶縁膜、例えば表面付近を窒化処理した酸窒化シリコン膜 (SiON膜) や種々の金属を酸ィ匕または窒化処理した high— k膜、あるいはこれらの積層膜など を用いても差し支えない。 Next, ion implantation and stretching heat treatment for adjusting the substrate concentration, and ion implantation and activation heat treatment for adjusting the threshold voltage are performed. Subsequently, after the surface of the substrate 1 is washed with a dilute hydrofluoric acid aqueous solution, thermal oxidation is performed to form the gate insulating film 3 made of an oxide silicon film having a thickness of about 3 nm on the surface of the substrate 1. As the gate insulating film 3, an insulating film other than a silicon oxide film, for example, a silicon oxynitride film (SiON film) whose surface is nitrided is used. Alternatively, a high-k film obtained by oxidizing or nitriding various metals, or a laminated film of these may be used.
[0033] 次に、図 2に示すように、ゲート絶縁膜 3上に CVD法で多結晶シリコン膜 4nを堆積 した後、多結晶シリコン膜 4n上に CVD法で酸ィ匕シリコン膜からなるキャップ絶縁膜 5 を堆積する。多結晶シリコン膜 4nには、その導電型を n型にするために、成膜中にリ ンまたはヒ素を導入する。多結晶シリコン膜 4nは、ゲート電極材料となるものであるが 、多結晶シリコン膜 4n以外のゲート電極材料、例えばシリサイド膜や金属膜などを用 いても差し支えない。  Next, as shown in FIG. 2, after a polycrystalline silicon film 4n is deposited on the gate insulating film 3 by the CVD method, a cap made of an oxide silicon film is deposited on the polycrystalline silicon film 4n by the CVD method. Insulating film 5 is deposited. In order to make the polycrystalline silicon film 4n have n-type conductivity, phosphorus or arsenic is introduced during the film formation. The polycrystalline silicon film 4n serves as a gate electrode material, but a gate electrode material other than the polycrystalline silicon film 4n, such as a silicide film or a metal film, may be used.
[0034] 次に、図 3に示すように、フォトレジスト膜をマスクに用いたドライエッチングでキヤッ プ絶縁膜 5と多結晶シリコン膜 4nとをパターユングしてゲート電極 4を形成し、続、て 、基板 1にリンまたはヒ素をイオン注入して n_型拡散層 6を形成する。  Next, as shown in FIG. 3, the gate insulating film 5 and the polycrystalline silicon film 4n are patterned by dry etching using a photoresist film as a mask to form the gate electrode 4, followed by Then, phosphorus or arsenic is ion-implanted into the substrate 1 to form the n_ type diffusion layer 6.
[0035] 次に、図 4に示すように、基板 1上に CVD法で堆積した窒化シリコン膜を異方性ェ ツチングしてゲート電極 4の側壁にサイドウォールスぺーサ 7を形成し、続いて、基板 1にヒ素をイオン注入した後、活性ィ匕熱処理を行うことにより、ソース、ドレインを構成 する n+拡散層 8を形成する。ここまでの工程により、 nチャネル型のメモリセル選択用 MISFETが完成する。なお、上記ゲート電極 4は、ダミーゲートプロセスによって形成 することもできる。ダミーゲートプロセスでは、まずゲート絶縁膜上に堆積したダミーゲ ート用の導電膜 (多結晶シリコン膜など)を加工してダミーゲート電極を形成し、続い てソースおよびドレインを形成した後、ゲート絶縁膜およびダミーゲート電極を除去す る。次に、ゲート絶縁膜を再度形成し、続いてその上部にゲート用の導電膜 (金属膜 など)を堆積した後、この導電膜を加工してゲート電極を形成する。ダミーゲートプロ セスを用いた場合は、結晶化温度の低 ヽ high— k材料を用いてゲート絶縁膜を形成 することちでさる。  Next, as shown in FIG. 4, a sidewall spacer 7 is formed on the side wall of the gate electrode 4 by anisotropically etching a silicon nitride film deposited on the substrate 1 by the CVD method, followed by Then, after ion implantation of arsenic into the substrate 1, an n + diffusion layer 8 constituting the source and drain is formed by performing an active heat treatment. The n-channel type memory cell selection MISFET is completed through the above steps. The gate electrode 4 can also be formed by a dummy gate process. In the dummy gate process, a dummy gate conductive film (such as a polycrystalline silicon film) deposited on the gate insulating film is first processed to form a dummy gate electrode, followed by formation of a source and drain, and then gate insulation. The film and dummy gate electrode are removed. Next, a gate insulating film is formed again, and a conductive film for a gate (such as a metal film) is deposited thereon, and then the conductive film is processed to form a gate electrode. When a dummy gate process is used, the gate insulating film is formed by using a high-k material having a low crystallization temperature.
[0036] 次に、図 5に示すように、基板 1上に CVD法で酸ィ匕シリコン膜からなる層間絶縁膜 1 0を堆積し、続いてその表面をィ匕学的機械研磨法で平坦ィ匕した後、 n+拡散層 8 (ソー ス、ドレイン)の上部の層間絶縁膜 10にコンタクトホール 11を形成し、コンタクトホー ル 11の内部にプラグ 12を形成する。プラグ 12は、次の工程で層間絶縁膜 10上に形 成する記憶層と下層のメモリセル選択用 MISFETとを電気的に接続する役割をする もので、例えば TiN膜と W膜との積層膜で構成する。 Next, as shown in FIG. 5, an interlayer insulating film 10 made of an oxide silicon film is deposited on the substrate 1 by the CVD method, and then the surface is flattened by the mechanical mechanical polishing method. After contact, a contact hole 11 is formed in the interlayer insulating film 10 above the n + diffusion layer 8 (source and drain), and a plug 12 is formed inside the contact hole 11. The plug 12 serves to electrically connect the memory layer formed on the interlayer insulating film 10 and the MISFET for selecting the lower memory cell in the next process. For example, it is composed of a laminated film of a TiN film and a W film.
[0037] 次に、図 6に示すように、層間絶縁膜 10の上部に、第 1層目の配線 13を形成する。 Next, as shown in FIG. 6, a first-layer wiring 13 is formed on the interlayer insulating film 10.
配線 13は、例えば層間絶縁膜 10の上部にスパッタリング法で W膜を堆積した後、フ オトレジスト膜をマスクにしたドライエッチングでこの W膜をパターユングすることによつ て形成する。配線 13は、コンタクトホール 11の内部のプラグ 12を介して n+拡散層 8と 電気的に接続される。  The wiring 13 is formed, for example, by depositing a W film on the interlayer insulating film 10 by sputtering and patterning the W film by dry etching using a photoresist film as a mask. The wiring 13 is electrically connected to the n + diffusion layer 8 through the plug 12 inside the contact hole 11.
[0038] 次に、図 7に示すように、基板 1上に CVD法で酸ィ匕シリコン膜からなる層間絶縁膜 1 4を堆積し、続いてその表面をィ匕学的機械研磨法で平坦ィ匕した後、前記コンタクトホ ール 11およびプラグ 12を形成した方法と同様の方法により、配線 13の上部の層間 絶縁膜 14にスルーホール 15およびプラグ 16を形成する。  Next, as shown in FIG. 7, an interlayer insulating film 14 made of an oxide silicon film is deposited on the substrate 1 by the CVD method, and then the surface is flattened by the mechanical mechanical polishing method. Then, through holes 15 and plugs 16 are formed in the interlayer insulating film 14 above the wirings 13 by a method similar to the method of forming the contact holes 11 and the plugs 12.
[0039] 次に、以下の方法を用いて、層間絶縁膜 14の上部に酸ィ匕タンタル (Ta O )膜から  Next, an oxide tantalum (Ta 2 O 3) film is formed on the interlayer insulating film 14 using the following method.
2 5 なる界面層 18、記憶層材料である InGeSbTe膜 19aおよび上部電極材料である W 膜 20aを堆積する。  An interface layer 18 consisting of 2 5, an InGeSbTe film 19a as a memory layer material, and a W film 20a as an upper electrode material are deposited.
[0040] 図 8は、上記界面層 18、 InGeSbTe膜 19aおよび W膜 20aの成膜に用いるマルチ チャンバ方式のスパッタリング装置を示す概略構成図である。このスパッタリング装置 100は、スパッタチャンバ 101、熱処理チャンバ 102などを含む複数のチャンバと、こ れら複数のチャンバに基板 1 (ウエノ、)を搬送するロボットハンド 103と、ローダ 104お よびアンローダ 105とを備え、成膜と熱処理を装置の内部で連続して行うことができる 構成になっている。  FIG. 8 is a schematic configuration diagram showing a multi-chamber type sputtering apparatus used for forming the interface layer 18, the InGeSbTe film 19a, and the W film 20a. The sputtering apparatus 100 includes a plurality of chambers including a sputtering chamber 101 and a heat treatment chamber 102, a robot hand 103 that transports the substrate 1 (Ueno) to the plurality of chambers, a loader 104, and an unloader 105. It is configured so that film formation and heat treatment can be performed continuously inside the apparatus.
[0041] 図 9は、図 8に示すスパッタリング装置 100のスパッタチャンバ 101を示す概略構成 図である。スパッタチャンバ 101の中央には、一方の電極を兼ねたウェハステージ 10 6が設置されており、ウェハステージ 106の上には基板 1 (ウェハ)が位置決めされて いる。ウェハステージ 106の上方には、ターゲットホルダを兼ねた 4個の力ソード電極 108a, 108b, 108c, 108d力 S設置されており、力ソード電極 108aに ίま GeSbTeター ゲット 109a、力ソード電極 108bには Wターゲット 109b、力ソード電極 108cには Taタ 一ゲット 109c、力ソード電極 108dには InTeターゲット 109dがそれぞれ取り付けられ ている。また、力ソード電極 108a〜108dのそれぞれには、ターゲット(109a〜109d )に磁界を印加するためのマグネット 107a、 107b, 107c, 107dが設置されている。 すなわち、このスパッタリング装置 100は、 4個の力ソード電極(108a〜108d)に取り 付けた 4種類のターゲット(109a〜109d)を使って成膜を行うマルチ力ソード方式の マグネトロンスパッタリング装置である。 FIG. 9 is a schematic configuration diagram showing the sputtering chamber 101 of the sputtering apparatus 100 shown in FIG. At the center of the sputter chamber 101, a wafer stage 106 serving also as one electrode is installed, and a substrate 1 (wafer) is positioned on the wafer stage 106. Above the wafer stage 106, four force sword electrodes 108a, 108b, 108c, 108d force S, which also serve as target holders, are installed. The Ta target 109c is attached to the W target 109b, the force sword electrode 108c, and the InTe target 109d is attached to the force sword electrode 108d. Further, magnets 107a, 107b, 107c, and 107d for applying a magnetic field to the targets (109a to 109d) are installed on the force sword electrodes 108a to 108d, respectively. That is, the sputtering apparatus 100 is a multi-force sword type magnetron sputtering apparatus that performs film formation using four types of targets (109a to 109d) attached to four force sword electrodes (108a to 108d).
[0042] ここで、上記 GeSbTeターゲット 109aは、安定組成を有する GeSbTe化合物、例え ば Ge Sb Teで構成されている。同様に、 InTeターゲット 109dは、安定組成を有す [0042] Here, the GeSbTe target 109a is composed of a GeSbTe compound having a stable composition, for example, Ge Sb Te. Similarly, InTe target 109d has a stable composition
2 2 5 2 2 5
る InTe化合物、例えば In Teで構成されている。前述したように、安定組成とは、化  InTe compounds such as InTe are used. As mentioned above, the stable composition is
2 3  twenty three
合物を高温環境下に長時間保持しても、組成や結晶相の異なる結晶粒に分離する ことがな!、組成のことを指して!/、る。  Even if the compound is kept in a high temperature environment for a long time, it cannot be separated into crystal grains with different compositions and crystal phases! Point to the composition! /
[0043] 上記スパッタリング装置 100を使って成膜を行うには、まずスパッタチャンバ 101内 に Arガスを導入し、基板 1 (ウェハ)が搭載されたウェハステージ 106を毎分 60回転 程度の速度で水平方向に回転する。続いて、 Taターゲット 109cを保持する力ソード 電極 108cとウェハステージ 106とに所定の DCパワーを印加することによって、両者 の間に所定の電圧を印加する。また、マグネチックコイル 107aを使って、 Taターゲッ ト 109cに所定の磁界を印加する。  In order to form a film using the sputtering apparatus 100, first, Ar gas is introduced into the sputtering chamber 101, and the wafer stage 106 on which the substrate 1 (wafer) is mounted is rotated at a rate of about 60 revolutions per minute. Rotate horizontally. Subsequently, a predetermined voltage is applied between the force sword electrode 108c holding the Ta target 109c and the wafer stage 106 by applying a predetermined DC power. A predetermined magnetic field is applied to the Ta target 109c using the magnetic coil 107a.
[0044] これにより、力ソード電極 108cとウェハステージ 106との間にプラズマが形成され、 Arガスが Ar+イオンに解離する。解離した Ar+イオンは、力ソード電極 108cに保持さ れた Taターゲット 109cに衝突し、基板 1 (ウェハ)の表面に Ta膜 18aが形成される ( 図 10)。次に、基板 1を図 8に示す熱処理チャンバ 102に移し、 Ta膜 18aをラジカル 酸ィ匕することによって、酸化タンタル (Ta O )膜からなる界面層 18を形成する(図 11  Thereby, a plasma is formed between the force sword electrode 108c and the wafer stage 106, and the Ar gas is dissociated into Ar + ions. The dissociated Ar + ions collide with the Ta target 109c held by the force sword electrode 108c, and a Ta film 18a is formed on the surface of the substrate 1 (wafer) (FIG. 10). Next, the substrate 1 is transferred to the heat treatment chamber 102 shown in FIG. 8, and the Ta film 18a is radical-oxidized to form an interface layer 18 made of a tantalum oxide (Ta 2 O 3) film (FIG. 11).
2 5  twenty five
)。界面層 18は、層間絶縁膜 14とその上部に形成する記憶層材料 (InGeSbTe膜 1 9a)との剥離を防止する接着層としての役割と、情報の書き換え時にジュール熱が記 憶層力もプラグ 16に逃げるのを抑制する熱抵抗層としての役割を兼ねている。なお、 図 10およびそれ以降の断面図では、図面を見易くするために、配線 13よりも下層の 部分の図示を省略している。  ). The interface layer 18 functions as an adhesive layer that prevents the interlayer insulating film 14 and the memory layer material (InGeSbTe film 19a) formed thereon from being peeled off. It also serves as a heat resistance layer that suppresses escape. In FIG. 10 and subsequent cross-sectional views, illustration of the portion below the wiring 13 is omitted for easy understanding of the drawing.
[0045] 次に、基板 1を再びスパッタチャンバ 101に戻した後、スパッタチャンバ 101内に Ar ガスを導入し、基板 1が搭載されたウェハステージ 106を回転させる。続いて、 GeSb Teターゲット 109aを保持する力ソード電極 108a、 InTeターゲット 109dを保持する 力ソード電極 108dおよびウェハステージ 106に所定の RFパワーを印加すると共に、 マグネチックコイル 107aと 107dを使って GeSbTeターゲット 109aと InTeターゲット 1 09dにそれぞれに対応した所定の磁界を印加する。 Next, after returning the substrate 1 to the sputtering chamber 101 again, Ar gas is introduced into the sputtering chamber 101 and the wafer stage 106 on which the substrate 1 is mounted is rotated. Subsequently, a predetermined RF power is applied to the force sword electrode 108a holding the GeSb Te target 109a, the force sword electrode 108d holding the InTe target 109d, and the wafer stage 106, A predetermined magnetic field corresponding to each of GeSbTe target 109a and InTe target 109d is applied using magnetic coils 107a and 107d.
[0046] これにより、力ソード電極 108a、 108dとウェハステージ 106との間にプラズマが形 成され、 Arガスが Ar+イオンに解離する。そして、解離した Ar+イオンは、力ソード電 極 108aに保持された GeSbTeターゲット 109aおよび力ソード電極 108dに保持され た InTeターゲット 109dに衝突し、界面層 18の上に InGeSbTe膜 19aが形成される( 図 12)。続いて、力ソード電極 108a、 108dを OFFにした後、 Wターゲット 109bを保 持する力ソード電極 108bを ONにして InGeSbTe膜 19aの上に W膜 20aを堆積する (図 13)。 [0046] Thereby, plasma is formed between the force sword electrodes 108a and 108d and the wafer stage 106, and Ar gas is dissociated into Ar + ions. The dissociated Ar + ions collide with the GeSbTe target 109a held by the force sword electrode 108a and the InTe target 109d held by the force sword electrode 108d, and an InGeSbTe film 19a is formed on the interface layer 18 ( (Figure 12). Subsequently, the force sword electrodes 108a and 108d are turned off, and then the force sword electrode 108b holding the W target 109b is turned on to deposit the W film 20a on the InGeSbTe film 19a (FIG. 13).
[0047] 上記の方法で成膜された InGeSbTe膜 19aは、使用した 2種類のターゲット(GeSb Teターゲット 109aおよび InTeターゲット 109d)がいずれも安定糸且成を有するので、 化学量論的な組成が局所的にばらついたり、経時的に変動したりすることが抑制され る結果、単一の InGeSbTeターゲットを使用して成膜した InGeSbTe膜に比べて結 晶粒の結晶相や組成の均一性が高 、膜となる。  [0047] The InGeSbTe film 19a formed by the above-described method has a stoichiometric composition because the two types of targets used (GeSb Te target 109a and InTe target 109d) both have stable yarns. As a result of suppressing local variation and fluctuation over time, the crystal phase and composition uniformity of the crystal grains are higher than those of InGeSbTe films formed using a single InGeSbTe target. It becomes a film.
[0048] 次に、図 14に示すように、 W膜 20aの上に CVD法で酸ィ匕シリコン膜を堆積した後、 フォトレジスト膜をマスクにしたドライエッチングでこの酸ィ匕シリコン膜をパターユング することにより、ハードマスク 21を形成する。続いて、図 15に示すように、ハードマスク 21をマスクにしたドライエッチングで W膜 20aをパターユングすることにより、上部電 極 20を形成する。  Next, as shown in FIG. 14, after an oxide silicon film is deposited on the W film 20a by a CVD method, the oxide silicon film is patterned by dry etching using a photoresist film as a mask. The hard mask 21 is formed by Jung. Subsequently, as shown in FIG. 15, the upper electrode 20 is formed by patterning the W film 20a by dry etching using the hard mask 21 as a mask.
[0049] 次に、ハードマスク 21を除去した後、図 16に示すように、上部電極 20をマスクにし たドライエッチングで InGeSbTe膜 19aをパターユングし、続、て InGeSbTe膜 19a の下層の界面層 18をパターユングする。ここまでの工程により、層間絶縁膜 14の上 部に InGeSbTe膜 19aからなる記憶層 19が形成される。  Next, after removing the hard mask 21, as shown in FIG. 16, the InGeSbTe film 19 a is patterned by dry etching using the upper electrode 20 as a mask, and then the interface layer under the InGeSbTe film 19 a is formed. Patter 18 Through the steps so far, the memory layer 19 made of the InGeSbTe film 19a is formed on the interlayer insulating film.
[0050] 次に、図 17に示すように、上部電極 20の上部に CVD法で酸ィ匕シリコン膜からなる 層間絶縁膜 22を堆積し、続いてその表面をィ匕学的機械研磨法で平坦ィ匕した後、前 記スルーホール 15およびプラグ 16を形成した方法と同様の方法により、上部電極 2 0の上部の層間絶縁膜 22にスルーホール 23およびプラグ 24を形成する。次に、前 記第 1層目の配線 13を形成した方法と同様の方法により、層間絶縁膜 22の上に第 2 層目の配線 25を形成する。配線 25は、スルーホール 23の内部のプラグ 24を介して 上部電極 20と電気的に接続される。 Next, as shown in FIG. 17, an interlayer insulating film 22 made of an oxide silicon film is deposited on the upper electrode 20 by a CVD method, and then the surface is subjected to an electrochemical mechanical polishing method. After flattening, the through hole 23 and the plug 24 are formed in the interlayer insulating film 22 on the upper electrode 20 by the same method as the method for forming the through hole 15 and the plug 16 described above. Next, the second layer 13 is formed on the interlayer insulating film 22 by a method similar to the method for forming the first layer wiring 13. A layer of wiring 25 is formed. The wiring 25 is electrically connected to the upper electrode 20 via the plug 24 inside the through hole 23.
[0051] このように、本実施の形態では、安定組成を有する 2種類のターゲット(GeSbTeタ 一ゲット 109aおよび InTeターゲット 109d)を同時にスパッタして InGeSbTe膜 19aを 形成するので、 InGeSbTe膜 19aの化学量論的な組成が局所的にばらついたり、経 時的に変動したりすることが抑制される。これにより、結晶粒の結晶相や組成の均一 性が高い InGeSbTe膜 19aが得られるので、電気的特性が良好で、かつ耐熱性が 高い記憶層 19が得られる。従って、高温環境下においても優れたデータ保持特性を 発揮する相変化メモリを歩留まり良く製造することが可能となる。また、半導体基板 1 を載せるウェハステージ 106を回転させるため、複数のターゲットを同時にスパッタし ても、半導体基板 1の面内における膜厚の均一性を高めることができる。  Thus, in this embodiment, since two types of targets (GeSbTe target 109a and InTe target 109d) having a stable composition are sputtered simultaneously to form InGeSbTe film 19a, the chemistry of InGeSbTe film 19a Local variations in stoichiometric composition and fluctuations over time are suppressed. As a result, an InGeSbTe film 19a having a high crystal phase and composition uniformity of crystal grains can be obtained, so that a memory layer 19 having good electrical characteristics and high heat resistance can be obtained. Therefore, a phase change memory that exhibits excellent data retention characteristics even in a high temperature environment can be manufactured with high yield. In addition, since the wafer stage 106 on which the semiconductor substrate 1 is placed is rotated, the uniformity of the film thickness within the surface of the semiconductor substrate 1 can be improved even if a plurality of targets are sputtered simultaneously.
[0052] なお、 InGeSbTe膜 19aを成膜する際には、 2種類のターゲット(GeSbTeターゲッ ト 109aおよび InTeターゲット 109d)を同時にスパッタする代わりに、 GeSbTeターゲ ット 109aを保持する力ソード電極 108aと、 InTeターゲット 109dを保持する力ソード 電極 108dに交互に RFパワーを印加し、 GeSbTe膜の成膜と InTe膜の成膜とを交 互に繰り返してもよい。この場合は、結晶粒の結晶相や組成の均一性を確保するた めに、 2個の力ソード電極 108a、 108dに印加する RFパワーの切り替えを短時間で 行うことが望ましい。  [0052] When forming the InGeSbTe film 19a, instead of simultaneously sputtering two types of targets (GeSbTe target 109a and InTe target 109d), a force sword electrode 108a holding the GeSbTe target 109a and Alternatively, RF power may be alternately applied to the force sword electrode 108d that holds the InTe target 109d, and the GeSbTe film formation and the InTe film formation may be alternately repeated. In this case, it is desirable to switch the RF power applied to the two force sword electrodes 108a and 108d in a short time in order to ensure the uniformity of the crystal phase and composition of the crystal grains.
[0053] また、 InGeSbTe膜 19aを成膜する際に用いる 2種類のターゲット(GeSbTeターゲ ット 109aおよび InTeターゲット 109d)の組み合わせは、 Ge Sb Teで表記できる組  [0053] The combination of two types of targets (GeSbTe target 109a and InTe target 109d) used when forming the InGeSbTe film 19a is a set that can be expressed by Ge Sb Te.
2 2 5  2 2 5
成の化合物と In Teで表記できる組成の化合物との組み合わせに限定されるもので  The combination of the compound and the compound having a composition that can be expressed by In Te is limited.
2 3  twenty three
はない。すなわち、 GeSbTeターゲット 109aとしては、安定糸且成を有する他の GeSb Te化合物、例えば GeSb Te、 GeSb Teまたは Ge SbTeで表記できる組成の化  There is no. That is, the GeSbTe target 109a has a composition that can be expressed by another GeSb Te compound having a stable yarn, for example, GeSb Te, GeSb Te, or Ge SbTe.
4 7 2 4 4 5  4 7 2 4 4 5
合物を用いることができる。この場合、 GeSbTeィ匕合物中の Geと Sbと Teの組成比は 、 ± 2%のばらつきまで許容できる。  A compound can be used. In this case, the composition ratio of Ge, Sb, and Te in the GeSbTe composite can be allowed up to ± 2% variation.
[0054] 同様に、 InTeターゲット 109dとしては、安定組成を有する他の InTe化合物、例え ば In Te、 InTe (組成比 = 1: 1)、 In Te、 In Te、 In Teで表記できる組成の化合[0054] Similarly, as the InTe target 109d, other InTe compounds having a stable composition, for example, In Te, InTe (composition ratio = 1: 1), a combination of compositions that can be expressed as In Te, In Te, and In Te are used.
4 3 3 4 3 5 2 5 4 3 3 4 3 5 2 5
物を用いることができる。この場合も、 InTeィ匕合物中の Inと Teの組成比は、 ± 2%の ばらつきまで許容できる。 Can be used. Also in this case, the composition ratio of In and Te in the InTe compound is ± 2%. Variations can be tolerated.
[0055] また、本実施の形態では、安定組成を有する 2種類のターゲット(GeSbTeターゲッ ト 109aおよび InTeターゲット 109d)を同時スパッタして InGeSbTe膜 19aを成膜し た力 安定組成を有する 3種類以上のターゲットを同時スパッタして InGeSbTe膜 19 aを成膜することちでさる。  Further, in this embodiment, two or more types having a stable composition are formed by simultaneously sputtering two types of targets having a stable composition (GeSbTe target 109a and InTe target 109d) to form an InGeSbTe film 19a. The InGeSbTe film 19a is formed by simultaneously sputtering the target.
[0056] 一例を挙げると、 GeTe化合物で構成される第 1のターゲットと、 SbTe化合物で構 成される第 2のターゲットと、 InTe化合物で構成される第 3のターゲットを同時スパッ タして InGeSbTe膜 19aを成膜することもできる。この場合は、安定組成を有する Ge Te化合物として、 GeTe (組成比 = 1 : 1)で表記できる組成の化合物を使用する。ま た、安定組成を有する SbTe化合物として、 Sb Teで表記できる組成の化合物を使  [0056] As an example, a first target composed of a GeTe compound, a second target composed of an SbTe compound, and a third target composed of an InTe compound are simultaneously sputtered, and InGeSbTe The film 19a can also be formed. In this case, a compound having a composition that can be expressed as GeTe (composition ratio = 1: 1) is used as a GeTe compound having a stable composition. In addition, as a SbTe compound having a stable composition, a compound having a composition that can be expressed by Sb Te is used.
2 3  twenty three
用する。安定組成を有する InTe化合物としては、前掲の化合物 (In Te、 In Te、 I  Use. Examples of InTe compounds having a stable composition include the above compounds (In Te, In Te, I
2 3 4 3 nTe、 In Te、 In Te、 In Te )を用いることができる。  2 3 4 3 nTe, In Te, In Te, In Te) can be used.
3 4 3 5 2 5  3 4 3 5 2 5
[0057] 上記した第 1〜第 3のターゲットを図 9に示すスパッタチャンノ 101の 3個の力ソード 電極 (例えば 108a〜108c)に取り付ける場合は、残った 1個の力ソード電極 (例えば 108d)に Wターゲット 109bまたは Taターゲット 109cのいずれかを取り付けて成膜を 行う。例えば残った 1個の力ソード電極に Wターゲット 109bを取り付ける場合、界面 層 18を構成する酸ィ匕タンタル (Ta O )膜は、別のスパッタチャンバを使って成膜す  [0057] When the above first to third targets are attached to the three force sword electrodes (for example, 108a to 108c) of the sputter channel 101 shown in FIG. 9, the remaining one force sword electrode (for example, 108d) Attach either W target 109b or Ta target 109c to the film. For example, when the W target 109b is attached to the remaining one force sword electrode, the oxide tantalum (Ta 2 O 3) film constituting the interface layer 18 is formed using a separate sputtering chamber.
2 5  twenty five
ればよい。  Just do it.
[0058] また、図 18に示すように、スパッタチャンバ 101内に 3個の力ソード電極(108a、 10 8b、 108c)を備えたスパッタリング装置を使って InGeSbTe膜 19aを成膜することも できる。この場合は、前述した安定組成を有する第 1〜第 3のターゲット (InTeターゲ ット 109d、 GeTeターゲット 109e、 SbTeターゲット 109f)を力ソード電極(108a、 10 8b、 108c)に取り付けて同時にスパッタする。あるいは、安定組成を有する 2種類の ターゲット(GeSbTeターゲット 109aおよび InTeターゲット 109d)を 2個の力ソード電 極に取り付け、残った 1個の力ソード電極に Wターゲット 109bまたは Taターゲット 10 9cの 、ずれかを取り付けて成膜を行うこともできる。  Further, as shown in FIG. 18, the InGeSbTe film 19a can be formed using a sputtering apparatus provided with three force sword electrodes (108a, 108b, 108c) in the sputtering chamber 101. In this case, the first to third targets (InTe target 109d, GeTe target 109e, SbTe target 109f) having the above-described stable composition are attached to the force sword electrodes (108a, 108b, 108c) and sputtered simultaneously. . Alternatively, two types of targets with stable composition (GeSbTe target 109a and InTe target 109d) are attached to two force sword electrodes, and the remaining one of the force sword electrodes is displaced by W target 109b or Ta target 109c. It is also possible to carry out film formation by attaching these.
[0059] 組成の異なる複数個のターゲットを用いて InGeSbTe膜 19aを成膜する本実施の 形態によれば、使用するターゲットの数や組み合わせを変えることによって、 InGeSb Te膜 19aを構成する 4種類の原子 (In、 Ge、 Sbおよび Te)の組成比を最適化するこ とが可能である。また、ターゲットの数と組み合わせを一定にしたまま、それぞれの力 ソード電極に印加する RFパワーを制御することによって、 InGeSbTe膜 19aを構成 する 4種類の原子の組成比を最適化することも可能である。さらに、成膜の途中で力 ソード電極に印加する RFパワーを変化させることにより、 InGeSbTe膜 19aの膜厚方 向に沿った原子の組成比を変化させることができるので、記憶層 19の電気特性をそ の膜厚方向に沿って制御することも可能である。 [0059] According to the present embodiment in which the InGeSbTe film 19a is formed using a plurality of targets having different compositions, by changing the number and combination of the targets used, the InGeSbTe It is possible to optimize the composition ratio of the four types of atoms (In, Ge, Sb and Te) constituting the Te film 19a. It is also possible to optimize the composition ratio of the four types of atoms that make up the InGeSbTe film 19a by controlling the RF power applied to each force sword electrode while keeping the number and combination of targets constant. is there. Furthermore, by changing the RF power applied to the force sword electrode during film formation, the composition ratio of atoms along the film thickness direction of the InGeSbTe film 19a can be changed. Can be controlled along the film thickness direction.
[0060] 図 9および図 18ではターゲットの表面と半導体基板の表面が平行になるように配置 しているが、これに限らず、ターゲットの表面が半導体基板の中心を向くように斜めに 配置してもよい。この場合、成膜速度が増大すると同時に、膜厚や組成の均一性が 向上する。また、図面では、それぞれのターゲットが横一列に並んで配置されている ように記載されている力 これに限るものではない。例えば、半導体基板 1の中心から 夫々のターゲットが等距離になるように配置すると膜厚や組成の均一性が向上する。  In FIG. 9 and FIG. 18, the target surface and the semiconductor substrate surface are arranged parallel to each other. However, the present invention is not limited to this, and the target surface is arranged obliquely so as to face the center of the semiconductor substrate. May be. In this case, the film formation rate increases and at the same time the film thickness and composition uniformity improve. Further, in the drawing, the force is described as each target is arranged in a horizontal row. However, the present invention is not limited to this. For example, when the targets are arranged at equal distances from the center of the semiconductor substrate 1, the uniformity of the film thickness and composition is improved.
[0061] 次に、図 19を用いて本実施の形態の製造方法により得られた相変化メモリの動作 原理について説明する。カルコゲナイド材料を非晶質化させる場合、カルコゲナイド 材料の温度を融点以上に熱して力 急冷するようなリセットパルスを印加する。融点 は、例えば 600°Cである。急冷する時間 (tl)は、例えば 2nsecである。カルコゲナイド 材料を結晶化させる場合、カルコゲナイド材料の温度を結晶化温度以上融点以下に 保持するようなセットパルスを印加する。結晶化温度は、例えば 400°Cである。結晶 ィ匕に要する時間 (t2)は、例えば 50nsecである。  Next, the operation principle of the phase change memory obtained by the manufacturing method of the present embodiment will be described with reference to FIG. When the chalcogenide material is made amorphous, a reset pulse is applied so that the temperature of the chalcogenide material is heated above the melting point to rapidly cool it. The melting point is, for example, 600 ° C. The rapid cooling time (tl) is, for example, 2 nsec. When the chalcogenide material is crystallized, a set pulse is applied so that the temperature of the chalcogenide material is maintained above the crystallization temperature and below the melting point. The crystallization temperature is, for example, 400 ° C. The time (t2) required for crystallization is 50 nsec, for example.
[0062] 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが 、本発明は前記実施の形態に限定されるものではなぐその要旨を逸脱しない範囲 で種々変更可能であることは 、うまでもな!/、。  [0062] While the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. There's nothing wrong!
産業上の利用可能性  Industrial applicability
[0063] 本発明は、記憶層としてカルコゲナイド膜を用いる相変化メモリの製造に適用する ことができる。 [0063] The present invention can be applied to the manufacture of a phase change memory using a chalcogenide film as a storage layer.

Claims

請求の範囲 The scope of the claims
[1] 相変化に伴う電気抵抗値の差によって情報を記憶する記憶層を半導体基板上に 成膜する工程を備えた半導体記憶装置の製造方法であって、  [1] A method of manufacturing a semiconductor memory device comprising a step of forming a memory layer for storing information on a semiconductor substrate by a difference in electrical resistance value accompanying a phase change,
前記記憶層は、インジウム、ゲルマニウム、アンチモンおよびテルル力もなるカルコ ゲナイド膜からなり、  The memory layer is composed of a chalcogenide film having indium, germanium, antimony and tellurium force,
前記カルコゲナイド膜は、それぞれが安定組成を有する化合物からなる複数種類 のターゲットを用いたスパッタリング法を用いて成膜することを特徴とする半導体記憶 装置の製造方法。  The method of manufacturing a semiconductor memory device, wherein the chalcogenide film is formed by sputtering using a plurality of types of targets each composed of a compound having a stable composition.
[2] 安定組成を有するインジウム一テルルイ匕合物力もなる第 1のターゲットと、安定組成 を有するゲルマニウム アンチモン テルル化合物からなる第 2のターゲットを用い ることを特徴とする請求項 1記載の半導体記憶装置の製造方法。  [2] The semiconductor memory according to [1], wherein a first target having a stable composition of indium-tellurium compound and a second target made of a germanium antimony tellurium compound having a stable composition are used. Device manufacturing method.
[3] 安定組成を有するインジウム一テルルイ匕合物力もなる第 1のターゲットと、安定組成 を有するゲルマニウム一テルルイ匕合物力 なる第 2のターゲットと、安定組成を有する アンチモン一テルルイ匕合物力もなる第 3のターゲットを用いることを特徴とする請求項 1記載の半導体記憶装置の製造方法。  [3] A first target that has a stable composition of indium and tellurium, a second target that has a stable composition of germanium and tellurium, and an antimony and tellurium compound that has a stable composition. 2. The method of manufacturing a semiconductor memory device according to claim 1, wherein a third target is used.
[4] 半導体基板の主面に形成されたメモリセル選択用 MISFETと、  [4] MISFET for memory cell selection formed on the main surface of the semiconductor substrate;
前記メモリセル選択用 MISFETに電気的に接続され、相変化に伴う電気抵抗値の 差によって情報を記憶する記憶層とを有する半導体記憶装置の製造方法であって、 前記記憶層は、前記メモリセル選択用 MISFETを覆う層間絶縁膜上に形成された インジウム、ゲルマニウム、アンチモンおよびテルル力もなるカルコゲナイド膜からなり 前記記憶層を形成する工程は、  A method of manufacturing a semiconductor memory device, comprising: a memory layer electrically connected to the memory cell selection MISFET and storing information by a difference in electrical resistance value associated with a phase change, wherein the memory layer comprises the memory cell The step of forming the memory layer comprising a chalcogenide film also having indium, germanium, antimony and tellurium force formed on an interlayer insulating film covering the selection MISFET,
(a)それぞれが安定組成を有する化合物からなる複数種類のターゲットを用いたスパ ッタリング法を用いて前記層間絶縁膜上に前記カルコゲナイド膜を成膜する工程、 (a) forming the chalcogenide film on the interlayer insulating film using a sputtering method using a plurality of types of targets each composed of a compound having a stable composition;
(b)前記カルコゲナイド膜上に上部電極用の導電膜を成膜する工程、 (b) forming a conductive film for the upper electrode on the chalcogenide film,
(c)前記導電膜および前記カルコゲナイド膜をパターユングすることによって、前記 導電膜からなる前記上部電極と、前記カルコゲナイド膜からなる記憶層とを形成する 工程、 を含むことを特徴とする半導体記憶装置の製造方法。 (c) forming the upper electrode made of the conductive film and the memory layer made of the chalcogenide film by patterning the conductive film and the chalcogenide film; A method for manufacturing a semiconductor memory device, comprising:
[5] 安定組成を有するインジウム一テルルイ匕合物力もなる第 1のターゲットと、安定組成 を有するゲルマニウム アンチモン テルル化合物からなる第 2のターゲットを用い ることを特徴とする請求項 4記載の半導体記憶装置の製造方法。 [5] The semiconductor memory according to claim 4, wherein the first target having a stable composition of indium / tellurium compound and the second target made of a germanium antimony tellurium compound having a stable composition are used. Device manufacturing method.
[6] 安定組成を有するインジウム一テルルイ匕合物力もなる第 1のターゲットと、安定組成 を有するゲルマニウム一テルルイ匕合物力 なる第 2のターゲットと、安定組成を有する アンチモン一テルルイ匕合物力もなる第 3のターゲットを用いることを特徴とする請求項[6] A first target with a stable composition of indium and tellurium, a second target with a stable composition of germanium and tellurium, and an antimony and tellurium compound with stable composition. A third target is used.
4記載の半導体記憶装置の製造方法。 4. A method of manufacturing a semiconductor memory device according to 4.
[7] 前記導電膜は、タングステン膜からなることを特徴とする請求項 4記載の半導体記 憶装置の製造方法。 7. The method for manufacturing a semiconductor memory device according to claim 4, wherein the conductive film is made of a tungsten film.
[8] 前記導電膜および前記カルコゲナイド膜をパターユングする工程は、 [8] The step of patterning the conductive film and the chalcogenide film includes:
(c— 1)前記導電膜上に酸ィ匕シリコン膜を成膜した後、前記酸ィ匕シリコン膜をパター ユングする工程、  (c-1) forming a silicon oxide film on the conductive film and then patterning the silicon oxide film;
(c - 2)パターユングされた前記酸ィ匕シリコン膜をマスクに用いて前記導電膜をバタ 一-ングする工程、  (c-2) patterning the conductive film using the patterned silicon oxide film as a mask;
(c 3)パターユングされた前記導電膜をマスクに用いて前記カルコゲナイド膜をパ ターニングする工程、  (c 3) patterning the chalcogenide film using the patterned conductive film as a mask;
を含むことを特徴とする請求項 7記載の半導体記憶装置の製造方法。  The method of manufacturing a semiconductor memory device according to claim 7, comprising:
[9] 半導体基板の主面に形成されたメモリセル選択用 MISFETと、 [9] MISFET for memory cell selection formed on the main surface of the semiconductor substrate;
前記メモリセル選択用 MISFETに電気的に接続され、相変化に伴う電気抵抗値の 差によって情報を記憶する記憶層とを有する半導体記憶装置の製造方法であって、 前記記憶層は、前記メモリセル選択用 MISFETを覆う層間絶縁膜上に形成された インジウム、ゲルマニウム、アンチモンおよびテルル力もなるカルコゲナイド膜からなり 前記記憶層を形成する工程は、  A method of manufacturing a semiconductor memory device, comprising: a memory layer electrically connected to the memory cell selection MISFET and storing information by a difference in electrical resistance value associated with a phase change, wherein the memory layer comprises the memory cell The step of forming the memory layer comprising a chalcogenide film also having indium, germanium, antimony and tellurium force formed on an interlayer insulating film covering the selection MISFET,
(a)前記層間絶縁膜上に、前記層間絶縁膜と前記カルコゲナイド膜との剥離を防止 する接着層としての役割と、前記記憶層から熱が逃げるのを抑制する熱抵抗層として の役割とを兼ねた界面層を成膜する工程、 (b)それぞれが安定組成を有する化合物からなる複数種類のターゲットを用いたスパ ッタリング法を用いて前記界面層上に前記カルコゲナイド膜を成膜する工程、(a) On the interlayer insulating film, a role as an adhesive layer for preventing peeling between the interlayer insulating film and the chalcogenide film and a role as a thermal resistance layer for suppressing heat escape from the memory layer. A step of forming an interfacial layer, (b) forming the chalcogenide film on the interface layer using a sputtering method using a plurality of types of targets each composed of a compound having a stable composition;
(c)前記カルコゲナイド膜上に上部電極用の導電膜を成膜する工程、 (c) forming a conductive film for the upper electrode on the chalcogenide film,
(d)前記導電膜、前記カルコゲナイド膜および前記界面層をパターユングすることに よって、前記導電膜からなる前記上部電極と、前記カルコゲナイド膜からなる記憶層 とを形成する工程、  (d) forming the upper electrode made of the conductive film and the memory layer made of the chalcogenide film by patterning the conductive film, the chalcogenide film, and the interface layer;
を含むことを特徴とする半導体記憶装置の製造方法。  A method for manufacturing a semiconductor memory device, comprising:
[10] 安定組成を有するインジウム一テルルイ匕合物力もなる第 1のターゲットと、安定組成 を有するゲルマニウム アンチモン テルル化合物からなる第 2のターゲットを用い ることを特徴とする請求項 9記載の半導体記憶装置の製造方法。 10. The semiconductor memory according to claim 9, wherein the first target having a stable composition of indium / tellurium compound and a second target made of a germanium antimony tellurium compound having a stable composition are used. Device manufacturing method.
[11] 安定組成を有するインジウム一テルルイ匕合物力もなる第 1のターゲットと、安定組成 を有するゲルマニウム一テルルイ匕合物力 なる第 2のターゲットと、安定組成を有する アンチモン一テルルイ匕合物力もなる第 3のターゲットを用いることを特徴とする請求項[11] A first target with a stable composition of indium and tellurium, a second target with a stable composition of germanium and tellurium, and an antimony and tellurium compound with a stable composition A third target is used.
9記載の半導体記憶装置の製造方法。 9. A method for manufacturing a semiconductor memory device according to 9.
[12] 前記工程 (d)にお 、て、前記カルコゲナイド膜および前記界面層を連続してパター ニングすることを特徴とする請求項 9記載の半導体記憶装置の製造方法。 12. The method of manufacturing a semiconductor memory device according to claim 9, wherein in the step (d), the chalcogenide film and the interface layer are continuously patterned.
[13] 前記界面層は、酸化タンタル膜からなることを特徴とする請求項 9記載の半導体記 憶装置の製造方法。 13. The method for manufacturing a semiconductor memory device according to claim 9, wherein the interface layer is made of a tantalum oxide film.
[14] 前記酸ィ匕タンタル膜を形成する工程は、前記層間絶縁膜上にスパッタリング法でタ ンタル膜を成膜する工程と、前記タンタル膜を酸化する工程とを含み、  [14] The step of forming the oxide-tantalum tantalum film includes a step of forming a tantalum film on the interlayer insulating film by a sputtering method, and a step of oxidizing the tantalum film,
前記タンタル膜の成膜と前記カルコゲナイド膜の成膜とを、同一スパッタリング装置 を使って行うことを特徴とする請求項 13記載の半導体記憶装置の製造方法。  14. The method of manufacturing a semiconductor memory device according to claim 13, wherein the formation of the tantalum film and the formation of the chalcogenide film are performed using the same sputtering apparatus.
[15] 前記タンタル膜の成膜と、前記カルコゲナイド膜の成膜と、前記導電膜の成膜とを、 同一スパッタリング装置を使って行うことを特徴とする請求項 14記載の半導体記憶装 置の製造方法。 15. The semiconductor memory device according to claim 14, wherein the film formation of the tantalum film, the film formation of the chalcogenide film, and the film formation of the conductive film are performed using the same sputtering apparatus. Production method.
PCT/JP2006/312594 2006-06-23 2006-06-23 Process for producing semiconductor memory device WO2008001411A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008522217A JPWO2008001411A1 (en) 2006-06-23 2006-06-23 Manufacturing method of semiconductor memory device
PCT/JP2006/312594 WO2008001411A1 (en) 2006-06-23 2006-06-23 Process for producing semiconductor memory device
TW096119969A TW200814382A (en) 2006-06-23 2007-06-04 Process for producing semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/312594 WO2008001411A1 (en) 2006-06-23 2006-06-23 Process for producing semiconductor memory device

Publications (1)

Publication Number Publication Date
WO2008001411A1 true WO2008001411A1 (en) 2008-01-03

Family

ID=38845190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312594 WO2008001411A1 (en) 2006-06-23 2006-06-23 Process for producing semiconductor memory device

Country Status (3)

Country Link
JP (1) JPWO2008001411A1 (en)
TW (1) TW200814382A (en)
WO (1) WO2008001411A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050118A1 (en) * 2008-10-30 2010-05-06 独立行政法人産業技術総合研究所 Solid-state memory manufacturing method
JP2012219330A (en) * 2011-04-08 2012-11-12 Ulvac Japan Ltd Apparatus of forming phase change memory and method of forming phase change memory
CN105070826A (en) * 2015-07-15 2015-11-18 同济大学 Low-power-consumption phase change film material for multistage phase change storage, and reparation method and application thereof
CN111463345A (en) * 2020-03-26 2020-07-28 中国科学院上海微系统与信息技术研究所 Ta-Ge-Sb-Te phase-change material, preparation method thereof and phase-change memory unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238882A (en) * 1990-02-16 1991-10-24 Hitachi Ltd Device for storage of information
JPH0516528A (en) * 1990-11-29 1993-01-26 Fuji Xerox Co Ltd Optical recording medium
WO2005112118A1 (en) * 2004-05-14 2005-11-24 Renesas Technology Corp. Semiconductor memory
JP2006140395A (en) * 2004-11-15 2006-06-01 Renesas Technology Corp Semiconductor memory and method for manufacturing the same
JP2006156886A (en) * 2004-12-01 2006-06-15 Renesas Technology Corp Semiconductor integrated circuit device and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238882A (en) * 1990-02-16 1991-10-24 Hitachi Ltd Device for storage of information
JPH0516528A (en) * 1990-11-29 1993-01-26 Fuji Xerox Co Ltd Optical recording medium
WO2005112118A1 (en) * 2004-05-14 2005-11-24 Renesas Technology Corp. Semiconductor memory
JP2006140395A (en) * 2004-11-15 2006-06-01 Renesas Technology Corp Semiconductor memory and method for manufacturing the same
JP2006156886A (en) * 2004-12-01 2006-06-15 Renesas Technology Corp Semiconductor integrated circuit device and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050118A1 (en) * 2008-10-30 2010-05-06 独立行政法人産業技術総合研究所 Solid-state memory manufacturing method
JP2010109177A (en) * 2008-10-30 2010-05-13 National Institute Of Advanced Industrial Science & Technology Solid-state memory manufacturing method
US8530314B2 (en) 2008-10-30 2013-09-10 National Institute Of Advanced Industrial Science And Technology Solid-state memory manufacturing method
JP2012219330A (en) * 2011-04-08 2012-11-12 Ulvac Japan Ltd Apparatus of forming phase change memory and method of forming phase change memory
CN105070826A (en) * 2015-07-15 2015-11-18 同济大学 Low-power-consumption phase change film material for multistage phase change storage, and reparation method and application thereof
CN111463345A (en) * 2020-03-26 2020-07-28 中国科学院上海微系统与信息技术研究所 Ta-Ge-Sb-Te phase-change material, preparation method thereof and phase-change memory unit
CN111463345B (en) * 2020-03-26 2022-09-23 中国科学院上海微系统与信息技术研究所 Ta-Ge-Sb-Te phase-change material, preparation method thereof and phase-change memory unit

Also Published As

Publication number Publication date
TW200814382A (en) 2008-03-16
JPWO2008001411A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
US7696506B2 (en) Memory cell with memory material insulation and manufacturing method
US7569844B2 (en) Memory cell sidewall contacting side electrode
US7863655B2 (en) Phase change memory cells with dual access devices
US7910906B2 (en) Memory cell device with circumferentially-extending memory element
US7682868B2 (en) Method for making a keyhole opening during the manufacture of a memory cell
US7476587B2 (en) Method for making a self-converged memory material element for memory cell
US7473576B2 (en) Method for making a self-converged void and bottom electrode for memory cell
US7879645B2 (en) Fill-in etching free pore device
TWI385790B (en) Polysilicon plug bipolar transistor for phase change memory
KR100873878B1 (en) Manufacturing method of phase change memory unit and manufacturing method of phase change memory device using same
JP2006352082A (en) Semiconductor memory device and its manufacturing method
US8518790B2 (en) Method of forming memory device
JP2013008948A (en) Ge-RICH GST-212 PHASE CHANGE MATERIALS
US20110049454A1 (en) Semiconductor device
US8233317B2 (en) Phase change memory device suitable for high temperature operation
JP5043044B2 (en) Manufacturing method of semiconductor memory device
WO2008001411A1 (en) Process for producing semiconductor memory device
JP5061113B2 (en) Manufacturing method of semiconductor memory device
US8796102B1 (en) Device structure for a RRAM and method
JP2012064965A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06767243

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522217

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A FROM 06.04.2009

122 Ep: pct application non-entry in european phase

Ref document number: 06767243

Country of ref document: EP

Kind code of ref document: A1