WO2008000666A1 - Verfahren zur acylierung von cellulose mit gezieltem durchschnittlichen polymerisationsgrad - Google Patents
Verfahren zur acylierung von cellulose mit gezieltem durchschnittlichen polymerisationsgrad Download PDFInfo
- Publication number
- WO2008000666A1 WO2008000666A1 PCT/EP2007/056105 EP2007056105W WO2008000666A1 WO 2008000666 A1 WO2008000666 A1 WO 2008000666A1 EP 2007056105 W EP2007056105 W EP 2007056105W WO 2008000666 A1 WO2008000666 A1 WO 2008000666A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- general formula
- formula
- alkyl
- radicals
- Prior art date
Links
- 0 CC1(*)C(*)=**(*)(CC*)C1(*)* Chemical compound CC1(*)C(*)=**(*)(CC*)C1(*)* 0.000 description 2
- XVHXRGOONYQMJK-UHFFFAOYSA-N CCS(NC(C)=O)(=O)=O Chemical compound CCS(NC(C)=O)(=O)=O XVHXRGOONYQMJK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B1/00—Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
- C08B1/003—Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/02—Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B3/00—Preparation of cellulose esters of organic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B3/00—Preparation of cellulose esters of organic acids
- C08B3/06—Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
Definitions
- the present invention describes a process for the acylation of cellulose with a targeted average degree of polymerization (DP) by subjecting cellulose in a first step to targeted degradation and in a second step to acylation.
- DP targeted average degree of polymerization
- Cellulose is the most important renewable raw material and represents an important starting material for, for example, the textile, paper and nonwoven industries. It also serves as a raw material for derivatives and modifications of cellulose, to which cellulose ethers, e.g. Methylcellulose and carboxymethylcellulose, cellulose esters based on organic acids, e.g. Cellulose acetate, cellulose butyrate, and cellulose esters based on inorganic acids, e.g. Cellulose nitrate, and others count. These derivatives and modifications find a variety of applications, for example in the textile, food, construction and paint industries. Of particular interest here is cellulose acetate.
- cellulose ethers e.g. Methylcellulose and carboxymethylcellulose
- cellulose esters based on organic acids e.g. Cellulose acetate, cellulose butyrate
- inorganic acids e.g. Cellulose nitrate
- the disadvantage here is that initially a heterogeneous mixture is present in this process, which passes over in the course of the reaction into a more or less homogeneous mixture.
- the handling of such mixtures has very high technical requirements.
- the DP of the resulting cellulose acetate strongly depends on the quality of the cellulose used and the reaction conditions.
- step A A process has now been found for the preparation of acylated celluloses with a targeted DP and a defined DS by dissolving cellulose in an ionic liquid, and the resulting solution in a first step (step A). treated with an acid (optionally with the addition of water) or at elevated temperature (optionally in the presence of water) and in a second step (step B) the resulting cellulose whose DP is lower than that used in step A. Cellulose, reacted with an acylating agent. 5
- n 1, 2, 3 or 4
- [A] + is a quaternary ammonium cation, an oxonium cation, a sulfonium cation or a phosphonium cation
- [Y] n is a one, two or more -, tri- or tetravalent anion stands 15
- the ionic liquids have a melting point of less than 180 ° C. More preferably, the melting point is in a range of -50 ° C to 150 ° C, more preferably in the range of -20 ° C to 120 ° C, and most preferably below 100 ° C. 30
- the ionic liquids of the invention are organic compounds, i. in that at least one cation or anion of the ionic liquid contains an organic radical.
- Such compounds may contain oxygen, phosphorus, sulfur or in particular nitrogen atoms, for example at least one nitrogen atom, preferably 1 to 10 nitrogen atoms, more preferably 1 to 5, most preferably 1 to 3 and especially 1 to
- nitrogen atom is a suitable carrier of the positive charge in the cation of the ionic liquid, of which then, in equilibrium, a proton or an alkyl group can be transferred to the anion to form an electrically neutral molecule.
- a cation in the synthesis of the ionic liquids a cation can first be generated by quaternization on the nitrogen atom of, for example, an amine or nitrogen heterocycle.
- the quaternization can be carried out by alkylation of the nitrogen atom.
- salts with different anions are obtained.
- this can be done in a further synthesis step.
- the halide can be reacted with a Lewis acid to form a complex anion from halide and Lewis acid.
- replacement of a halide ion with the desired anion is possible. This can be done by adding a metal salt with precipitation of the metal halide formed, via an ion exchanger or by displacement of the halide ion by a strong acid (with liberation of the hydrohalic acid). Suitable methods are, for example, in Angew. Chem. 2000, 12, pp. 3926-3945 and the literature cited therein.
- Suitable alkyl radicals with which the nitrogen atom in the amines or nitrogen heterocycles may be quaternized are C 1 -C 6 -alkyl, preferably C 1 -C 10 -alkyl, particularly preferably C 1 -C 6 -alkyl and very particularly preferably methyl.
- the alkyl group may be unsubstituted or have one or more identical or different substituents.
- aromatic heterocycles are particularly preferred.
- Particularly preferred compounds are those which have a molecular weight below 1000 g / mol, very particularly preferably below 500 g / mol and in particular below 350 g / mol.
- radical R is hydrogen, a carbon-containing organic, saturated or unsaturated, acyclic or cyclic, aliphatic, aromatic or araliphatic, unsubstituted or interrupted by 1 to 5 heteroatoms or functional groups radical having 1 to 20 carbon atoms;
- radicals R 1 to R 9 independently represent hydrogen, a sulfo
- radicals R 1 to R 9 which in the abovementioned formulas (III) to a carbon atom (and not to a heteroatom) may additionally be also halogen or a functional group; or
- the carbon-containing group contains heteroatoms, oxygen, nitrogen, sulfur, phosphorus and silicon are preferable.
- the radicals R 1 to R 9 may in the cases in which they are bonded in the abovementioned formulas (III) to a carbon atom (and not to a heteroatom) also be bonded directly via the heteroatom.
- Fractional groups and heteroatoms may also be directly adjacent so that combinations of several adjacent atoms, such as -O- (ether), -S- (thioether), -COO- (ester), -CONH- (secondary amide ) or -CONR'- (tertiary amide), are included, for example, di (Ci-C4-alkyl) amino, Ci-C4-alkyloxycarbonyl or Ci-C4-alkyloxy.
- the R 'radicals are the remainder of the carbon-containing radical.
- Halogens are fluorine, chlorine, bromine and iodine.
- the radical R preferably stands for
- C 1 -C 20 -alkyl having a total of 1 to 20 carbon atoms such as methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 1-pentyl, 2-pentyl, 3-pentyl, 2 Methyl 1-butyl, 3-methyl-1-butyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2,2-dimethyl-1-propyl, 1-hexyl, 2-hexyl, 3-hexyl , 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2 Methyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2 Methyl, 2-methyl-2-pentyl,
- R A O- (CH 2 CH 2 CH 2 CH 2 ⁇ ) m -CH 2 CH 2 CH 2 CH 2 - with R A and R B is preferably hydrogen, methyl or ethyl and m is preferably 0 to 3, in particular 3-oxabutyl, 3-oxapentyl, 3,6-dioxaheptyl, 3,6 Dioxaoctyl, 3,6,9-trioxadecyl, 3,6,9-trioxa-undecyl, 3,6,9,12-tetraoxatridecyl and 3,6,9,12-tetraoxatetradecyl;
- N, N-di-Ci-C ⁇ -alkyl-amino such as N, N-dimethylamino and N 1 N-diethylamino.
- radicals R 1 to R 9 are preferably each independently
- aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles substituted and / or interrupted by one or more oxygen and / or sulfur atoms and / or one or more substituted or unsubstituted imino groups cis alkenyl;
- aryl optionally substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles substituted C6-Ci2-aryl;
- aryl optionally substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles substituted C5-Ci2-cycloalkyl;
- aryl optionally substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles substituted C5-Ci2-cycloalkenyl; or
- Heterocycles substituted and optionally interrupted by one or more oxygen and / or sulfur atoms and / or one or more substituted or unsubstituted imino groups ring.
- Ci-cis-alkyl is preferably methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2- Butyl, 2-methyl-1-propyl (isobutyl), 2-methyl-2-propyl (tert-butyl), 1-pentyl, 2-pentyl, 3-pentyl, 2-methyl-1-butyl, 3-methyl 1-butyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2,2-dimethyl-1-propyl, 1-hexyl, 2-hexyl, 3-hexyl, 2-methyl-1-pentyl , 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2-methyl-3-pentyl, 3 -
- aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles is preferably phenyl, ToIyI, XyIyI, ⁇ -naphthyl, ß-naphthyl, 4-diphenylyl, Chlorophenyl, dichlorophenyl, trichlorophenyl, difluorophenyl, methylphenyl, dimethylphenyl, trimethylphenyl, ethylphenyl, diethylphenyl, isopropylphenyl, tert-butylphenyl, dodecylphenyl, methoxyphenyl, dimethoxyphenyl, ethoxyphenyl, hexyloxyphenyl, methylnaphthyl, isopropylnaphthyl, chloronaphth
- C 5 -C 12 -cycloalkyl optionally substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles is preferably cyclopentyl, cyclohexyl, cyclooctyl, cyclododecyl, methylcyclopentyl, dimethylcyclopentyl, methylcyclohexyl, dimethylcyclohexyl, Diethylcyclohe- xyl, butylcyclohexyl, methoxycyclohexyl, Dimethoxycyclohexyl, Diethoxycyclohexyl, Butylthiocyclohexyl, chlorocyclohexyl, dichlorocyclohexyl, dichlorocyclopentyl, C m F2 (m -a) - (ib) H2a-b in the ⁇ 30, 0 ⁇ a ⁇ m
- An optionally substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles substituted five to six-membered, oxygen, nitrogen and / or sulfur atoms containing heterocycle is preferably furyl, thiophenyl, Pyrryl, pyridyl, indolyl, benzoxazolyl, dioxolyl, dioxo, benzimidazolyl, benzothiazolyl, dimethylpyridyl, methylquinolyl, dimethylpyrryl, methoxyfuryl, dimethoxypyridyl or difluoropyridyl.
- Two adjacent radicals together form an unsaturated, saturated or aromatic, optionally substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles and optionally substituted by one or more oxygen and / or sulfur atoms and / or one or more several substituted or unsubstituted imino groups interrupted ring, it is preferably 1, 3-propylene, 1, 4-butylene, 1, 5-pentylene, 2-oxa-1, 3-propylene, 1-oxa-1, 3- propylene, 2-oxa-1, 3-propylene, 1-oxa-1, 3-propenylene, 3-oxa-1, 5-pentylene, 1-aza-1, 3-propenylene, 1-Ci-C4-alkyl 1-aza-1, 3-propenylene, 1,4-butan-1, 3-dienylene, 1-az-1, 4-buta-1,3-dienylene or 2-aza-1,4-buta-1, 3-dienylene.
- the abovementioned radicals contain oxygen and / or sulfur atoms and / or substituted or unsubstituted imino groups
- the number of oxygen and / or sulfur atoms and / or imino groups is not restricted. As a rule, it is not more than 5 in the remainder, preferably not more than 4 and very particularly preferably not more than 3.
- radicals contain heteroatoms, then between two heteroatoms there are generally at least one carbon atom, preferably at least two carbon atoms.
- radicals R 1 to R 9 are each independently
- Ci-Cis-alkyl having a total of 1 to 20 carbon atoms, such as methyl, ethyl, 1-propyl , 2-propyl, 1-butyl, 2-butyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 1-pentyl, 2-pentyl, 3-pentyl, 2-methyl-1-butyl, 3 -methyl-1-butyl,
- Glycols, butylene glycols and their oligomers having 1 to 100 units and a hydrogen or a C 1 to C 1 alkyl as end group, such as R A O- (CHR B -CH 2 -O) m -CHR B -CH 2 - or
- R A O- (CH 2 CH 2 CH 2 CH 2 ⁇ ) m -CH 2 CH 2 CH 2 CH 2 - with R A and R B preferably hydrogen, methyl or ethyl and n preferably 0 to 3, in particular 3-oxabutyl, 3-oxapentyl, 3,6-dioxaheptyl, 3,6 Dioxaoctyl, 3,6,9-trioxadecyl, 3,6,9-trioxa-undecyl, 3,6,9,12-tetraoxatridecyl and 3,6,9,12-tetraoxatetradecyl;
- N, N-di-C 1 -C 6 -alkyl-amino such as N, N-dimethylamino and N, N-diethylamino.
- the radicals R 1 to R 9 are each independently hydrogen or Ci-Cis-alkyl, such as methyl, ethyl, 1-butyl, 1-pentyl, 1-hexyl, 1-heptyl, 1-octyl, phenyl for 2-hydroxyethyl, for 2-cyanoethyl, for 2- (methoxycarbonyl) ethyl, for 2- (ethoxycarbonyl) ethyl, for 2- (n-butoxycarbonyl) ethyl, for N, N-dimethylamino, for N, N-diethylamino , for chlorine as well as for CH3O-
- radicals R 1 to R 5 are methyl, ethyl or chlorine and the remaining radicals R 1 to R 5 are hydrogen;
- R 3 is dimethylamino and the remaining radicals R 1 , R 2 , R 4 and R 5 are hydrogen;
- R 2 is carboxy or carboxamide and the remaining radicals R 1 , R 2 , R 4 and R 5 are hydrogen; or
- R 1 and R 2 or R 2 and R 3 are 1, 4-buta-1, 3-dienylene and the remaining R 1 , R 2 , R 4 and R 5 are hydrogen;
- R 1 to R 5 are hydrogen
- radicals R 1 to R 5 are methyl or ethyl and the remaining radicals R 1 to R 5 are hydrogen.
- pyridinium ions (IIIa) which may be mentioned are 1-methylpyridinium, 1-ethylpyridinium, 1- (1-butyl) pyridinium, 1- (1-hexyl) pyridinium, 1- (1-octyl) -pyridinium, 1 (1-Hexyl) pyridinium, 1- (1-octyl) pyridinium, 1- (1-dodecyl) pyridinium, 1- (1-tetradecyl) pyridinium, 1- (1-hexadecyl) pyridinium, 1, 2-dimethylpyridinium,
- MIb very particularly preferred pyridazinium ions
- R 1 to R 4 are hydrogen
- radicals R 1 to R 4 are methyl or ethyl and the remaining radicals R 1 to R 4 are hydrogen.
- MIc very particularly preferred pyrimidinium ions
- R 1 is hydrogen, methyl or ethyl and R 2 to R 4 are independently hydrogen or methyl; or
- R 1 is hydrogen, methyl or ethyl
- R 2 and R 4 are methyl and R 3 is hydrogen.
- R 1 is hydrogen, methyl or ethyl and R 2 to R 4 are independently hydrogen or methyl;
- R 1 is hydrogen, methyl or ethyl, R 2 and R 4 are methyl and R 3 is hydrogen;
- R 1 to R 4 are methyl
- R 1 to R 4 are methyl hydrogen.
- Imidazoliumionen are those in which R 1 is hydrogen, methyl, ethyl, 1-propyl, 1-butyl, 1-pentyl, 1-hexyl, 1-octyl, 1-propen-3-yl, 2-hydroxyethyl or 2-cyanoethyl and R 2 to R 4 independently of one another are hydrogen, methyl or ethyl.
- MIe Very particularly preferred imidazolium ions which may be mentioned are 1-methylimidazolium, 1-ethylimidazolium, 1- (1-butyl) -imidazolium, 1- (1-octyl) -imidazolium, 1- (1-dodecyl) -imidazolium, 1- (1-tetradecyl) imidazolium, 1- (1-hexadecyl) -imidazolium, 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1- (1-butyl) -3-methylimidazolium, 1- (1-Butyl) -3-ethylimidazolium, 1- (1-hexyl) -3-methylimidazolium, 1- (1-hexyl) -3-ethylimidazolium, 1- (1-hexyl) -3-butyl imidazolium, 1- (1-octyl)
- MIf very particularly preferred pyrazolium ions
- R 1 is hydrogen, methyl or ethyl and R 2 to R 4 are independently hydrogen or methyl.
- MIh very particularly preferred pyrazolium ions
- R 1 to R 4 are independently hydrogen or methyl.
- R 1 to R 6 are hydrogen or methyl.
- IMj 2-pyrazolinium
- MIj ' 2-pyrazolinium
- R 1 is hydrogen, methyl, ethyl or phenyl and R 2 to R 6 are independently of one another hydrogen or methyl.
- MIk 3-pyrazolinium
- IMk ' 3-pyrazolinium
- R 1 and R 2 are independently hydrogen, methyl, ethyl or phenyl and R 3 to R 6 are independently hydrogen or methyl.
- IUI imidazolinium ions
- R 1 and R 2 are independently hydrogen, methyl, ethyl, 1-butyl or phenyl, R 3 and R 4 are independently hydrogen, methyl or ethyl, and R 5 and R 6 are independently hydrogen or methyl.
- Imidazoliniumionen (Ulm) or (MIm ') are those in which
- R 1 and R 2 are independently hydrogen, methyl or ethyl and R 3 to R 6 are independently hydrogen or methyl.
- R 1 to R 3 are independently hydrogen, methyl or ethyl and R 4 to R 6 are independently hydrogen or methyl.
- MIo thiazolium ions
- MIo ' thiazolium ions
- MIp oxazolium ions
- R 1 is hydrogen, methyl, ethyl or phenyl and R 2 and R 3 are independently hydrogen or methyl.
- MIq 1,2,4-triazolium ions
- MIq ' 1,2,4-triazolium ions
- MIq 1,2,4-triazolium ions
- R 1 and R 2 are independently hydrogen, methyl, ethyl or phenyl and R 3 is hydrogen, methyl or phenyl.
- Sir 1,3,3-triazolium ions
- IMr ' 1,3,3-triazolium ions
- MIr 1,3,3-triazolium ions
- R 1 is hydrogen, methyl or ethyl and R 2 and R 3 are independently hydrogen or methyl, or R 2 and R 3 together are 1, 4-buta-1, 3-dienylene.
- MIs very particularly preferred pyrrolidinium ions
- R 1 is hydrogen, methyl, ethyl or phenyl and R 2 to R 9 are independently hydrogen or methyl.
- R 1 and R 4 are independently hydrogen, methyl, ethyl or phenyl and R 2 and R 3 and R 5 to R 8 are independently hydrogen or methyl.
- MIu ammonium ions
- R 1 to R 3 are independently of each other Ci-Cis-alkyl
- R 1 and R 2 together are 1, 5-pentylene or 3-oxa-1, 5-pentylene and R 3 is Ci-Cis-alkyl, 2-hydroxyethyl or 2-cyanoethyl.
- ammonium ions may be mentioned methyl tri (1-butyl) -ammonium, N, N-dimethylpiperidinium and N, N-dimethylmorpholinium.
- tertiary amines of which the quaternary ammonium ions of the general formula (IMu) are derived by quaternization with the radicals R mentioned are diethyl-n-butylamine, diethyl-tert-butylamine, diethyl-n-pentylamine, diethyl hexylamine, diethyloctylamine, diethyl (2-ethylhexyl) amine, di-n-propylbutylamine, di-n-propyl-n-pentylamine, di-n-propylhexylamine, di-n-propyloctylamine, di-n-propyl (2 ethylhexyl) amine, di-isopropylethylamine, di-isopropyl-n-propylamine, di-isopropyl-butylamine, di-isopropylpentylamine, di-iso-propyle
- Preferred quaternary ammonium ions of the general formula (MIu) are those which are derived from the following tertiary amines by quaternization with the abovementioned radicals R, such as diisopropylethylamine, diethyl-tert-butylamine, diisobutylbutylamine, di-isopropylamine n-butyl-n-pentylamine, N, N-di-n-butylcyclohexylamine and tertiary amines of pentyl isomers.
- R such as diisopropylethylamine, diethyl-tert-butylamine, diisobutylbutylamine, di-isopropylamine n-butyl-n-pentylamine, N, N-di-n-butylcyclohexylamine and tertiary amines of pentyl isomers.
- tertiary amines are di-n-butyl-n-pentylamine and tertiary amines of pentyl isomers.
- Another preferred tertiary amine having three identical residues is triallylamine.
- MIv guanidinium ions
- R 1 to R 5 are methyl.
- guanidinium ion N, N, N ', N', N ", N" - hexamethylguanidinium.
- MIw cholinium ions
- R 1 and R 2 are independently methyl, ethyl, 1-butyl or 1-octyl and R 3 is hydrogen, methyl, ethyl, acetyl, -SO 2 OH or -PO (OH) 2 ;
- R 1 is methyl, ethyl, 1-butyl or 1-octyl
- R 2 is a -CH 2 -CH 2 -OR 4 group and R 3 and R 4 are independently hydrogen, methyl, ethyl, acetyl, -SO 2 OH or -PO (OH) 2 ; or
- R 1 is a -CH 2 -CH 2 -OR 4 group
- R 2 is a -CH 2 -CH 2 -OR 5 group
- R 3 to R 5 are independently hydrogen, methyl, ethyl, acetyl, -SO 2 OH or -PO (OH) 2 are.
- cholinium are those wherein R 3 is selected from hydrogen, methyl, ethyl, acetyl, 5-methoxy-3-oxa-pentyl, 8-methoxy-3,6- dioxo-octyl, 1-methoxy-3,6,9-trioxa-undecyl, 7-methoxy-4-oxa-heptyl, 1-methoxy-4,8-dioxa-undecyl, 15-methoxy-4,8, 12-trioxa-pentadecyl, 9-methoxy-5-oxa-nonyl, 14-methoxy-5,10-oxa-tetradecyl, 5-ethoxy-3-oxa-pentyl, 8-ethoxy-3,6-dioxa-octyl, 11-ethoxy-3,6,9-trioxa-undecyl, 7-ethoxy-4-oxa-h
- MIx phosphonium ions
- R 1 to R 3 are independently C 1 -C 6 -alkyl, in particular butyl, isobutyl, 1-hexyl or 1-octyl.
- the pyridinium ions, pyrazolinium, pyrazolium ions and imidazolinium and imidazole ions are preferred.
- ammonium ions are preferred.
- the anion [Y] n - the ionic liquid is for example selected from
- R 3 SiO 3 3 " R a R b Si0 2 2 -, R a R b R c SiC-, R a R b R c Si0 3 -, R a R b R c Si0 2 -, R a R b Si0 3 2 "
- R a , R b , R c and R d independently of one another are each hydrogen, C 1 -C 30 -alkyl, if appropriate by one or more non-adjacent oxygen and / or sulfur atoms and / or one or more substituted or unsubstituted Te imino groups interrupted C2-Ci8-alkyl, C6-Ci 4 -aryl, C5-Ci2-cycloalkyl or a five- to six-membered, oxygen, nitrogen and / or sulfur-containing heterocycle, wherein two of them together an unsaturated, saturated or aromatic, optionally interrupted by one or more oxygen and / or sulfur atoms and / or one or more unsubstituted or substituted imino groups interrupted ring, said radicals each additionally by functional groups, aryl, alkyl, aryloxy, alkoxy, halogen, heteroatoms and / or heterocycles can be substituted.
- Ci-cis-alkyl for example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, Pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, 2,4,4-trimethylpentyl, decyl, dodecyl, tetradecyl, heptadyl, octadecyl, 1,1-dimethylpropyl, 1,1-dimethylbutyl, 1,1,3, 3-tetramethylbutyl, benzyl, 1-phenylethyl, ⁇ , ⁇ -dimethylbenzyl, benzhydryl, p-tolylmethyl, 1- (p-cis-alkyl), for example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert
- C2-Ci8-alkyl for example, 5-hydroxy-3-oxapentyl, 8-hydroxy-3,6- dioxaoctyl, 11-hydroxy-3,6,9-trioxaundecyl, 7-hydroxy-4-oxaheptyl, 1-hydroxy-4,8-dioxaundecyl, 15-hydroxy-4,8,12-trioxapentadecyl, 9-hydroxy-5 oxa-nonyl, 14-hydroxy-5,10-oxatetradecyl, 5-methoxy-3-oxapentyl, 8-methoxy-3,6-dioxa-octyl, 1-methoxy-3,6,9-trioxaundecyl, 7- Methoxy-4-oxaheptyl, 11-meth
- radicals can be taken together, for example, as fused building block 1, 3-propylene, 1,4-butylene, 2-oxa-1,3-propylene, 1-oxa-1,3-propylene, 2-oxa -1, 3-propenylene, 1-aza-1, 3-propenylene, 1-C 1 -C 4 -alkyl-1-aza-1, 3-propenylene, 1, 4-buta-1, 3-dienylene, 1-aza -1, 4-buta-1, 3-dienylene or 2-aza-1,4-buta-1,3-dienylene.
- the number of non-adjacent oxygen and / or sulfur atoms and / or imino groups is basically not limited, or is automatically limited by the size of the remainder or of the ring building block. As a rule, it is not more than 5 in the respective radical, preferably not more than 4 or very particularly preferably not more than 3. Furthermore, at least one, preferably at least two, carbon atoms (e) are generally present between two heteroatoms.
- Substituted and unsubstituted imino groups may be, for example, imino, methylimino, iso-propylimino, n-butylimino or tert-butylimino.
- the term "functional groups" is to be understood as meaning, for example, the following: carboxy, carboxamide, hydroxy, di- (C 1 -C 4 -alkyl) -amino, C 1 -C 4 -alkyloxy-carbonyl, cyano or C 1 -C 4 -alkoxy C 1 -C 4 -alkyl methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl or tert-butyl.
- C6-C4-aryl substituted by functional groups are, for example, phenyl, ToIyI, XyIyI, ⁇ -naphthyl, ⁇ -naphthyl, 4-diphenylyl, chlorophenyl, dichlorophenyl nyl, trichlorophenyl, difluorophenyl, methylphenyl, dimethylphenyl, trimethylphenyl, ethylphenyl, diethylphenyl, iso-propylphenyl, tert-butylphenyl, dodecylphenyl, methoxyphenyl, dimethoxyphenyl, ethoxyphenyl, hexyloxyphenyl, methylnaphthyl, isopropylsaphthyl, chlor
- C5-C12-cycloalkyl which is substituted by functional groups, aryl, alkyl, aryloxy, halogen, heteroatoms and / or heterocycles are, for example, cyclopentyl, cyclohexyl, cyclooctyl, cyclododecyl, methylcyclopentyl, dimethylcyclopentyl, methylcyclohexyl, dimethylcyclohexyl, diethylcyclohexyl, butylcyclohexyl, methoxycyclohexyl, Dimethoxycyclohexyl, diethoxycyclohexyl, butylthiocyclohexyl, chlorocyclohexyl, dichlorocyclohexyl, dichlorocyclopentyl and a saturated or unsaturated bicyclic system such as norbornyl or norbornenyl.
- a five- to six-membered, oxygen, nitrogen and / or sulfur-containing heterocycle is, for example, furyl, thiophenyl, pyrryl, pyridyl, indolyl, benzoxazolyl, dioxolyl, dioxy, benzimidazolyl, benzthiazolyl, dimethylpyridyl, methylquinolyl, dimethylpyrryl, methoxyfuryl, dimethoxypyridyl , Difluoropyridyl, methylthiophenyl, isopropylthiophenyl or tert-butylthiophenyl.
- Preferred anions are selected from the group of halides, the group of halogen-containing compounds and pseudohalides, the group of sulfates, sulfites and sulfonates, the group of phosphates, and the group of carboxylic acids, in particular from the group of halides, the group of halogen-containing compounds. compounds and the pseudohalogens, the group of carboxylic acids, the group containing SO 4 2 " , SO 3 2" , R 3 OSO 3 " and R 3 SO 3 -, and the group containing PO 4 3" and R 3 R 0 PO 4 -.
- Particularly preferred anions are chloride, bromide, iodide, SCN, OCN, CN, acetate, propionate, benzoate, C 1 -C 4 -alkyl sulfates, R 3 -CO 2 " , R 3 SO 3 -, R 3 R b PO 4 , Methanesulfonate, tosylate or di- (Ci-C 4 -alkyl) phosphates.
- Particularly preferred anions are Ch, CH 3 COO, C 2 H 5 COO, C 6 H 5 COO, CH 3 SO 3 " , (CH 3 O) 2 PO 2 - or (C 2 H 5 O) 2 PO 2 -
- ionic liquids are used whose anions are selected from the group of halogen-containing compounds and pseudohalogens, the group of sulfates, sulfites and sulfonates, the group of phosphates, and the group of carboxylic acids, in particular from the group of carboxylic acids, the group containing SO 4 2 " , SO 3 2" , R 3 OSO 3 - and R 3 SO 3 -, and the group containing PO 4 3 " and R 3 R b PO 4 -.
- preferred anions are SCN, OCN, CN, acetate, propionate, benzoate, C 1 -C 4 -alkyl sulfates, R 3 -C00 " , R 3 SO 3 -, R 3 R b PO 4 -, methanesulfonate, Tosylate or di- (Ci-C 4 -alkyl) phosphates.
- Particularly preferred anions are CH 3 COO, C 2 H 5 COO, C 6 H 5 COO, CH 3 SO 3 " , (CH 3 O) 2 PO 2 - or (C 2 H 5 O) 2 PO 2 -
- ionic liquids are used whose anions are selected from the group of halides.
- Preferred anion is in particular chloride.
- ionic liquids are used whose anions are selected from the group comprising HSO 4 " , HPO 4 2" , H 2 PO 4 " and HR 3 PO 4 -, in particular HSO 4 -.
- an ionic liquid of the formula I is used or a mixture of ionic liquids of the formula I, preferably an ionic liquid of the formula I is used.
- step A) the targeted degradation of the cellulose is carried out in the presence of an acid, optionally with the addition of water (step A1) or at elevated temperature, if appropriate in the presence of water (step A2).
- step A1 acids, inorganic acids, organic acids or mixtures thereof can be used as acids.
- inorganic acids are hydrogen halides, such as HF, HCl, HBr or Hl, perhalogenic acids such as HCIO 4 , halogen acids such as HCIO3, sulfur-containing acids such as HaSO 4 , polysulfuric acid or H2SO3, nitrogen-containing acids such as HNO3, or Phosphorus-containing acids, such as
- HaPO 4 polyphosphoric acid or H 3 PO 3
- hydrogen halide acids such as HCl or HBr, HaSO 4 , HN ⁇ 3 ⁇ der HsPO 4 are used, in particular HCl, H 2 SO 4 or H 3 PO 4 .
- organic acids are carboxylic acids, such as C 1 -C 6 -alkanecarboxylic acids, for example acetic acid, propionic acid, n-butanecarboxylic acid or pivalic acid,
- Polycarboxylic acids for example succinic acid, maleic acid or fumaric acid,
- Hydroxycarboxylic acids for example hydroxyacetic acid, lactic acid, malic acid or citric acid,
- Halogenated carboxylic acids for example Ci-C ⁇ -haloalkanecarboxylic acids, e.g. Fluoroacetic acid, chloroacetic acid, bromoacetic acid, difluoroacetic acid, dichloroacetic acid, chlorofluoroacetic acid, trifluoroacetic acid, trichloroacetic acid, 2-chloropropionic acid, perfluoropropionic acid or perfluorobutane carboxylic acid,
- Ci-C ⁇ -haloalkanecarboxylic acids e.g. Fluoroacetic acid, chloroacetic acid, bromoacetic acid, difluoroacetic acid, dichloroacetic acid, chlorofluoroacetic acid, trifluoroacetic acid, trichloroacetic acid, 2-chloropropionic acid, perfluoropropionic acid or perfluorobutane carboxylic acid,
- Aromatic carboxylic acids for example arylcarboxylic acids, such as benzoic acid;
- C 1 -C 6 -alkanesulfonic acids for example methanesulfonic acid or ethanesulfonic acid,
- Halogenated sulfonic acids for example C 1 -C 8 -haloalkanesulfonic acids, such as trifluoromethanesulfonic acid,
- Aromatic sulfonic acids for example arylsulfonic acids, such as benzenesulfonic acid or 4-methylphenylsulfonic acid.
- C 1 -C 6 -alkanecarboxylic acids for example acetic acid or propionic acid
- halogenated carboxylic acids for example C 1 -C 6 -haloalkanecarboxylic acids, e.g.
- Fluoroacetic acid chloroacetic acid, difluoroacetic acid, dichloroacetic acid, chlorofluoroacetic acid, trifluoroacetic acid, trichloroacetic acid or perfluoropropionic acid, or sulfonic acids, such as C 1 -C 6 alkanesulfonic acids, for example methanesulfonic acid or ethanesulfonic acid, halogenated sulfonic acids, for example C 1 -C 6 -haloalkanesulfonic acids, such as trifluoromethanesulfonic acid, or arylsulfonic acids, such as benzenesulfonic acid or 4-Methylphenylsulfonklad.
- sulfonic acids such as C 1 -C 6 alkanesulfonic acids, for example methanesulfonic acid or ethanesulfonic acid, halogenated sulfonic acids, for example C 1 -
- acetic acid chlorofluoroacetic acid, trifluoroacetic acid, perfluoropropionic acid, methanesulfonic acid, trifluoromethanesulfonic acid or 4-methyl-phenylsulfonic acid are used.
- the acid used is sulfuric acid, acetic acid, trifluoroacetic acid, methanesulfonic acid or 4-methylphenyl used sulfonic acid. If 4-methylphenylsulfonic acid monohydrate is used, there is already one equivalent of water present.
- ionic liquids and acids are used whose anions are identical.
- these anions are acetate, trifluoroacetate, chloride or bromide; especially preferred acetate; also particularly preferred chloride.
- ionic liquids and acids are used whose anions are not identical.
- step B acylating agents are used.
- Acylating agents in the context of the present invention are carboxylic acid derivatives and also ketenes and diketenes.
- Carboxylic acid derivatives in the context of the present invention are carboxylic acid derivatives of the formula IV
- R x , R x ' H d-Cao-alkyl, C 2 -C 3 o-alkenyl, C 2 -C 3 O-Al kinyl, C 3 -C 2 -cycloalkyl, C 5 -C 2 -cycloalkenyl, aryl or heterocyclyl, where these seven latter radicals may be optionally substituted;
- X is halogen, imidazol-1-yl or O-COR x ' .
- Ketenes for the purposes of the present invention are ketylenes of the formula Va and diketenes for the purposes of the present invention are diketenes of the formula Vb1 or mixed diketenes of the formula Vb2,
- R y, R y ', R z, R z' is hydrogen, Ci-C 3 -alkyl, C 2 -C 3 -alkenyl, C 2 -C 3 -alkynyl, C 3 -C 2 - cycloalkyl, C5 -Ci 2 -cycloalkenyl, aryl or heterocyclyl, where the seven last-mentioned radicals may optionally be substituted;
- alkyl radicals for R x, R x ', y R, y R', R z and R are substituted Ci-C z 'in particular, unsubstituted Ci-C 3 -alkyl groups or by functional groups, Aryl, alkyl, aryloxy, alkyloxy, cycloalkyl, halogen, heteroatoms and / or heterocycles substituted Ci-C 3 o-alkyl radicals, preferably Ci-C 3 o-alkyl radicals, such as methyl, ethyl, 1- Propyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 1-pentyl, 2-pentyl, 3-pentyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2,2-dimethyl-1-propyl, 1-hexyl, 2-hexyl, 2-he
- Methoxy-4,8-dioxa-undecyl 15-methoxy-4,8,12-trioxa-pentadecyl, 9-methoxy-5-oxo-nonyl, 14-methoxy-5,10-dioxa-tetradecyl, 5-ethoxy 3-oxa-pentyl, 8-ethoxy-3,6-dioxo-octyl, 1-ethoxy-3,6,9-trioxa-undecyl, 7-ethoxy-4-oxa-heptyl, 1-ethoxy-4, 8-dioxa- undecyl, 15-ethoxy-4,8,12-trioxa-pentadecyl, 9-ethoxy-5-oxa-nonyl or 14-ethoxy-5,10-oxa-tetradecyl.
- C 2 -C 3 o-alkenyl radicals for R x , R x ' , R y , R y' , R z or R z ' are in particular unsubstituted C 2 -C 30 -alkenyl radicals or by functional groups, Aryl, alkyl, aryloxy, alkyloxy, cycloalkyl, halogen, heteroatoms and / or heterocycles substituted C2-C3o-alkenyl radicals, preferably C2-C3o-alkenyl radicals, such as vinyl, 2-propenyl, 3-butenyl, cis- 2-butenyl or trans-2-butenyl, more preferably vinyl or 2-propenyl; or C 2 -C 30 -alkenyl radicals which are preferably substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, cycloalkyl, halogen, heteroatoms and / or
- C 2 -C 3 o-alkynyl radicals for R x , R x ' , R y , R y' , R z or R z ' are in particular unsubstituted C 2 -C 30 -alkynyl radicals or by functional groups, Aryl, alkyl, aryloxy, alkyloxy, cycloalkyl, halogen, heteroatoms and / or
- C2-C3o-alkynyl radicals called, preferably C2-C3o-alkynyl radicals, such as ethynyl, 1-propyn-3-yl, 1-
- R z ' are in particular unsubstituted Cs-C ⁇ -cycloalkyl radicals or by functional Ie groups, aryl, alkyl, aryloxy, alkyloxy, cycloalkyl, halogen, heteroatoms and / or heterocycles called substituted C3-Ci2-cycloalkyl radicals, preferably C3-Ci2-cycloalkyl radicals, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl , Cyclododecyl, methylcyclopentyl, dimethylcyclopentyl, methylcyclohexyl, dimethylcyclohexyl, diethylcyclohexyl or butylcyclohexyl, and bicyclic systems such as norbornyl, preferably cyclopentyl or cyclohexyl; or preferably substituted by functional groups, aryl, al
- C 5 -C 2 -cycloalkenyl radicals for R x , R x ' , R y , R y' , R z and R z ' are in particular unsubstituted Ca-C ⁇ -cycloalkenyl radicals or by functional groups, aryl , Alkyl, aryloxy, alkyloxy, cycloalkyl, halogen, heteroatoms and / or heterocycles called substituted Ca-Cs-cycloalkenyl radicals, preferably Ca-Cs-cycloalkenyl radicals, such as 3-cyclopentenyl, 2-cyclohexenyl, 3-cyclohexenyl, 2 , 5-Cyclohexadienyl, and bicyclic system such as norbornyl, more preferably 3-cyclopentenyl, 2-cyclohexenyl or 3-cyclohexenyl; or preferably Ca-C ⁇ -cycloalkenyl substituted by functional groups
- aryl radicals for R x , R x ' , R y , R y' , R z or R z ' are in particular unsubstituted C6-Ci2-aryl radicals or by functional groups, aryl, alkyl, aryloxy, alkyloxy , Cycloalkyl, halogen, heteroatoms and / or heterocycles are called substituted C6-Ci2-aryl radicals, preferably C6-Ci2-aryl radicals, such as phenyl, ⁇ -naphthyl or ß-naphthyl, more preferably phenyl; or preferably C6-C12-aryl radicals substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, cycloalkyl, halogen, heteroatoms and / or heterocycles, such as ToIyI, XyIyI, 4-diphenylyl, chloropheny
- heterocyclyl radicals which may be mentioned are unsubstituted heteroaryl radicals or heteroaryl radicals which are substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, cycloalkyl, halogen, heteroatoms and / or heterocycles, preferably 5- or 6-membered heteroaryl Radicals which contain oxygen, nitrogen and / or sulfur atoms, such as furyl, thiophenyl, pyrryl, pyridyl, indolyl, benzoxazolyl, dioxolyl, dioxyl, benzimidazolyl or benzothiazolyl; or preferably by functional groups, aryl, alkyl, aryloxy, alkyloxy, cycloalkyl, halogen, heteroatoms and / or heterocycles substituted 5- or 6-membered heteroaryl radicals having oxygen, nitrogen and / or sulfur atoms, such as methylpyridy , Di
- carboxylic acid derivatives of the formula IV are used.
- carboxylic acid derivatives of the formula IV are used, where the radicals have the following meanings:
- R x , R x ' are hydrogen or C 1 -C 30 -alkyl
- X is halogen or O-COR X ' .
- R x is hydrogen or C 1 -C 6 -alkyl, preferably hydrogen or C 1 -C 6 -alkyl; particularly preferably methyl, ethyl or butyl; X is halogen, preferably chloride.
- carboxylic acid derivatives of the formula IV are used, the radicals having the following meanings:
- R x is 1-decyl, 1-dodecyl, 1-tetradecyl or 1-hexadecyl;
- X is halogen, preferably chloride.
- R x ., R x ' is hydrogen or C 1 -C 6 -alkyl, preferably hydrogen or C 1 -C 6 -alkyl; particularly preferably methyl, ethyl or butyl;
- carboxylic acid derivatives of the formula IV are used, the radicals having the following meanings:
- R x is 1-decyl, 1-dodecyl, 1-tetradecyl or 1-hexadecyl;
- ketenes of the formula Va are used.
- ketenes of the formula Va are used, where the radicals have the following meanings:
- R y is hydrogen or C 1 -C 6 -alkyl, preferably hydrogen or C 1 -C 6 -alkyl; particularly preferably hydrogen, methyl or ethyl; most preferably hydrogen; R z is hydrogen.
- ketenes of the formula Va are used, where the radicals have the following meanings:
- R y is 1-decyl, 1-dodecyl, 1-tetradecyl or 1-hexadecyl;
- R z is hydrogen
- diketenes of the formula Vb1 are used.
- diketenes of the formula Vb1 are used, where the radicals have the following meanings:
- R y is hydrogen or C 1 -C 6 -alkyl, preferably hydrogen or C 1 -C 6 -alkyl, particularly preferably hydrogen, methyl or ethyl, in particular hydrogen;
- R z is hydrogen
- diketenes of the formula Vb1 where the radicals have the following meanings:
- R y is 1-decyl, 1-dodecyl, 1-tetradecyl or 1-hexadecyl;
- R z is hydrogen
- mixed diketenes of the formula Vb2 are used.
- mixed diketenes of the formula Vb2 are used, where the radicals have the following meanings:
- R y , R y is hydrogen or C 1 -C 6 -alkyl, preferably hydrogen, methyl or ethyl, in particular hydrogen;
- R z , R z ' is hydrogen.
- diketenes of the formula Vb2 be used, where the radicals have the following meanings: R y , R y 'is 1-decyl, 1-dodecyl, 1-tetradecyl or 1-hexadecyl
- R z , R z ' is hydrogen.
- Celluloses from a variety of sources such as e.g. cotton, flax, ramie, straw, bacteria etc., or wood or bagasse, in the cellulose-enriched form.
- cellulose in the process according to the invention, however, not only cellulose can be used, but generally a poly- or an oligosaccharide.
- polysaccharides besides cellulose and hemicellulose, include starch, glycogen, dextran and tunicin.
- these include the polycondensates of D-fructose, such as inulin, and u.a. Chitin and alginic acid. The corresponding explanations apply accordingly.
- a polysaccharide e.g. Cellulose, hemicellulose, starch, glycogen, dextran, tunicin, inulin, chitin or alginic acid, preferably cellulose.
- a solution of cellulose in ionic liquid is prepared.
- concentration of cellulose can be varied within wide ranges. Usually, it is in the range of 0.1 to 50 wt .-%, based on the total weight of the solution, preferably 0.2 to 40 wt .-%, particularly preferably 0.3 to 30 wt .-% and particularly preferably at 0.5 to 20% by weight.
- This dissolution process can be carried out at room temperature or under heating, but above the melting or softening temperature of the ionic liquid, usually at a temperature of 0 to 200 ° C, preferably at 20 to 180 ° C, particularly preferably at 50 to 150 ° C. , But it is also possible to accelerate the dissolution process by intensive stirring or mixing and by entry of microwave or ultrasonic energy or by combining them.
- step A1) This solution is now used in step A1) or in step A2).
- step A1) the targeted degradation in the presence of an acid, optionally carried out with the addition of water.
- acids inorganic acids, organic acids or mixtures thereof are used, as described above.
- ionic liquids and acids are used whose anions are identical.
- these anions are acetate, trifluoroacetate, chloride or bromide.
- ionic liquids and acids are used whose anions are not identical.
- the cellulose is dissolved in the ionic liquid.
- the acid and optionally water is added.
- the addition of water may be necessary if the adhering to the cellulose used water is not sufficient to achieve the desired degree of degradation.
- the proportion of water in conventional cellulose is in the range from 5 to 10% by weight, based on the total weight of the cellulose used (cellulose per se + adhering water).
- the corresponding stoichiometrically necessary amounts of water and acid are added, which are necessary to achieve a corresponding DP value.
- the ionic liquid, acid and possibly water are premixed and the cellulose is dissolved in this mixture.
- Suitable solvents are those which do not adversely affect the solubility of the cellulose, such as aprotic-dipolar solvents, for example dimethyl sulfoxide, dimethylformamide, dimethylacetamide or sulfolane.
- the reaction mixture contains less than 5 wt .-%, preferably less than 2 wt .-%, in particular less than 0.1 wt .-% of other solvents, based on the total weight of the reaction mixture.
- the hydrolysis is usually carried out at a temperature of the melting point of ionic liquid to 200 ° C, preferably from 20 to 180 ° C, in particular from 50 to 150 ° C.
- reaction is carried out at ambient pressure.
- overpressure especially when volatile acids are used.
- the reaction is carried out in air. But it is also possible under inert gas, so for example under N2, a noble gas or a mixture thereof to work.
- the amount of acid used, the water to be added if necessary, in each case in relation to the cellulose used, the reaction time and optionally the reaction temperature is set.
- the amount of water used and acid used is usually adjusted in accordance with the degree of degradation ( ⁇ A ⁇ - hydroglucose units / acid> 1). J ⁇ greater than the quotient nAnhydroglucoseechen / nSaure is, d ⁇ StO lower will be under otherwise the same reaction conditions and the same reaction time, the average degradation of cellulose. The larger the quotient nAnhydrogiu ⁇ seem- omme / nwasser, the lower will be under otherwise the same reaction conditions and the same reaction time, the average degradation of cellulose.
- Suitable bases include both inorganic bases, e.g. Alkali hydroxides, carbonates, hydrogen carbonates, but also organic bases such as e.g. Amines, which are used in stoichiometric ratio to the acid or in excess.
- a hydroxide can be used as the base, which is characterized in that its cation corresponds to that of the ionic liquid used.
- step A2) can also be carried out.
- the cellulose is optionally treated with the addition of water at elevated temperature.
- the degradation is usually carried out at temperatures of 50 ° C to 200 ° C, preferably from 80 to 180 ° C, in particular from 50 to 150 ° C.
- Suitable ionic liquids are those whose anions are selected from the group of halides, the group of halogen-containing compounds, the group of carboxylic acids, the group containing SO 4 2 " , SO 3 2" , R a " OSO 3 - and R 3 SO 3 " , as well as the group containing PO 4 3" and R a R b PO 4 " .
- Preferred anions here are chloride, bromide, iodide, SCN “, OCN", CN “, acetate, C 1 -C 4 -alkyl sulfates, R a -COO " , R 3 SO 3 " , R a R b PO 4 " , Methanesulfonate, tosylate or C 1 -C 4 -dialkylphosphates; and particularly preferred anions are Cl “, CH 3 COO,” C2H5COO ", C 6 H 5 COO,” CH 3 SO 3 ", (CH 3 O) 2 PO 2 - or (C 2 H 5 O) 2 PO 2 -
- ionic liquids which have acidic character, then it is also possible to lower the reaction temperature. Particular preference is given here to ionic liquids whose anions are selected from the group comprising HSO 4 -, HPO 4 2 " , H 2 PO 4 - and HR 3 PO 4 -, in particular HSO 4 -.
- reactions in these ionic liquids are carried out at a temperature of from 0 to 150 ° C., preferably from 20 to 150 ° C., in particular from 50 to 150 ° C.
- the preparation of the reaction solution and the degradation are carried out at the same temperature.
- the preparation of the reaction solution and the degradation are carried out at different temperatures.
- reaction is carried out in air. But it is also possible under inert gas, so for example, under N 2 , a noble gases or mixtures thereof, to work.
- reaction time and the reaction temperature are adjusted.
- water is added, preferably in substoichiometric amounts, or an excess of water is used and the reaction is stopped.
- the amounts of water used are usually adjusted in accordance with the degree of degradation (n-anhydroglucose units) > 1).
- Suitable solvents are those which do not adversely affect the solubility of the cellulose, such as aprotic dipolar solvents, for example dimethyl sulfoxide, dimethylformamide, dimethylacetamide or sulfolane.
- the reaction mixture contains less than 5 wt .-%, preferably less than 2 wt .-%, in particular less than 0.1 wt .-% of other solvents, based on the total weight of the reaction mixture.
- step B The solution thus obtained is now used in step B).
- the acylating agent is added to the solution obtained from step A).
- the carboxylic acid derivative of the formula IV or the ketene of the formula V can be added in bulk, dissolved in an ionic liquid or in a suitable solvent.
- suitable solvents are, for example, ethers, such as diethyl ether, methyl tert-butyl ether, terahydrofuran or dioxane, or ketones, such as dimethyl ketone, or halogenated hydrocarbons, such as dichloromethane, trichloromethane or dichloroethane.
- the amount of solvent used to dissolve the carboxylic acid derivative of formula IV or the ketene of formula V should be such that no precipitation of the cellulose occurs upon addition.
- ionic liquid is preferably the one in which the cellulose itself - as described above - is dissolved.
- carboxylic acid derivative of the formula IV or the ketene of the formula V is gaseous, this can be gassed into the solution of cellulose in the ionic liquid.
- the carboxylic acid derivative of the formula IV or the ketene of the formula V is added in substance.
- the carboxylic acid derivative of the formula IV or the ketene of the formula V is added dissolved in an ionic liquid, with particular preference being given to using the ionic liquid which is also used to dissolve the cellulose.
- Suitable solvents are those solvents which do not adversely affect the solubility of the cellulose, such as aprotic dipolar solvents, for example dimethyl sulfoxide, dimethylformamide, dimethylacetamide or sulfolane.
- aprotic dipolar solvents for example dimethyl sulfoxide, dimethylformamide, dimethylacetamide or sulfolane.
- nitrogen-containing bases such as pyridine, etc., can also be added.
- the reaction mixture in addition to the ionic liquid and optionally the solvent in which the carboxylic acid derivative of the formula IV or the ketene of the formula V is dissolved, contains less than 5% by weight, preferably less than 2% by weight, in particular less than 0.1% by weight, based on the total weight of the reaction mixture, of further solvents and / or additional nitrogen-containing bases.
- the teriary amine, the aromatic nitrogen base or the mixtures thereof are usually used in a stoichiometric ratio. On a case-by-case basis, an excess or a deficit can also be beneficial.
- ketenes of the formula V are used as the acylating agent, it is also possible to carry out the acylation according to the invention in the presence of a catalyst.
- a catalyst Suitable for this purpose are the alkali metal or alkaline earth metal salts of C 1 -C 4 -alkane carboxylic acids or of benzoic acid. Examples of these are sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium benzoate or potassium benzoate, preferably sodium acetate.
- the acids themselves ie the C 1 -C 4 -alkanecarboxylic acids or benzoic acid.
- the catalyst is usually used in amounts of up to 10 mol%, preferably up to 8 mol%, based on the ketene of the formula V.
- the reaction is usually carried out at a temperature of the melting point of the ionic liquid up to 200 ° C., preferably from 20 to 180 ° C., in particular 50 up to 150 ° C performed.
- the reaction is usually carried out at ambient pressure. However, it may also be advantageous on a case-by-case basis to work at overpressure, in particular when a volatile carboxylic acid derivative of the formula IV or ketene of the formula V is used. As a rule, the reaction is carried out in air. But it is also possible under inert gas, so for example under N2, a noble gas or mixtures thereof, to work.
- the amount of acylating agent used - in each case in relation to the cellulose used - the reaction time and optionally the reaction temperature is set.
- the amount of acylating agent used is usually adjusted (acylating agent / anhydrogucose units ⁇ 3). The smaller the quotient of the acylating agent (s) anhydroglucose units, the lower will be the average degree of substitution of the acylated cellulose under otherwise identical conditions and the same reaction time.
- acylated cellulose it is possible to terminate the acylation reaction when the desired degree of acylation is achieved by separating the acylated cellulose from the reaction mixture.
- This can be achieved, for example, by adding an excess of water or other suitable solvent in which the acylated cellulose is not soluble but the ionic liquid is readily soluble, e.g. a lower alcohol, such as methanol, ethanol, propanol or butanol, or with a ketone, for example diethyl ketone, etc., or mixtures thereof.
- suitable solvent is also determined by the particular degree of substitution and the substituents of the cellulose.
- an excess of water or methanol is used.
- the work-up of the reaction mixture is usually carried out by precipitating the acylated cellulose as described above and filtering off the acylated cellulose. But it is also possible to carry out the separation by centrifugation. From the filtrate or the centrifugate can be recovered by conventional methods, the ionic liquid keits by the volatile components, such. the precipitant, or excess acylating agent (or reaction products and / or hydrolysis products of the acylating agent), etc. are distilled off. The remaining ionic liquid can be reused in the process according to the invention.
- reaction mixture in water or in another suitable solvent in which the acylated cellulose is insoluble, the ionic Liquid, however, is slightly soluble, such as a lower alcohol, such as methanol, ethanol, propanol or butanol, or a ketone, such as diethyl ketone, etc., or mixtures thereof, initiate and depending on the embodiment, for example, fibers to obtain films of acylated cellulose.
- the choice of the suitable solvent is also determined by the respective degree of substitution and the substituents of the cellulose.
- the filtrate is worked up as described above.
- the termination of the acylation reaction can also be carried out in such a way that acylating agent still present at a given time is removed from the reaction mixture by distillation, stripping or extraction with a solvent which forms two phases with the ionic liquid.
- two or more acylating agents are used.
- a mixture of two (or more) carboxylic acid derivatives of the formula IV or ketenes of the formula V can be used in analogy to the above procedure.
- acylated celluloses are obtained which carry two (or more) different acyl groups (depending on the acylating agent used).
- the ionic liquid is recycled, in one embodiment the ionic liquid is purified, for example, freed from the precipitant, optionally added further solvents, hydrolysis and degradation products of the acylating agent, etc., and used again in step A) , in a further embodiment, the ionic liquid, which can be up to 15
- Wt .-% preferably up to 10 wt .-%, in particular up to 5 wt .-% of precipitant (s), etc. as described above contains, are used in step A). This may, however, be necessary on a case-by-case basis, for example if the precipitant carries free hydroxy groups, the solution obtained in step A), before it is used in step B), is freed from precipitants still present, for example by still adding existing precipitant, etc. is distilled off, or it is a corresponding excess of acylating agent used.
- the process can be carried out batchwise, semicontinuously or continuously.
- silicates and silicic acid esters of the general formula: SiO 4 4 " , HSiO 4 3" , H 2 SiO 4 2 -, H 3 SiO 4 -, R 3 SiO 4 3 " , R 3 R b Si0 4 2 -, R 3 R b R c Si0 4 -, HR 3 SiO 4 2 " , H 2 R 3 SiO 4 " , HR 3 R b Si0 4 -
- the ionic liquids were dried overnight at 120 ° C and 0.05 mbar with stirring.
- Linters DP 3250
- BMIM Cl BMIM Cl
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Die vorliegende Erfindung beschreibt ein Verfahren zur zur Acylierung von Poly- oder Oligosacchariden, indem man ein Poly- oder Oligosaccharid, in mindestens einer ionischen Flüssigkeit löst und in Schritt A) mit mindestens einer Säure, ggf. unter Zugabe von Wasser, (Schritt A1), oder ggf. unter Zugabe von Wasser, bei erhöhter Temperatur (Schritt A2), behandelt und in Schritt B) das so erhaltene Poly- oder Oligosaccharid, dessen DP niedriger ist als das des eingesetzten Poly- oder Oligosaccharids, mit einem Acylierungsmittel umgesetzt.
Description
Verfahren zur Acylierung von Cellulose mit gezieltem durchschnittlichen Polymerisationsgrad
Die vorliegende Erfindung beschreibt ein Verfahren zur Acylierung von Cellulose mit gezieltem durchschnittlichen Polymerisationsgrad (DP), indem man in einer ionischen Flüssigkeit Cellulose in einem ersten Schritt einem gezielten Abbau und in einem zweiten Schritt einer Acylierung unterwirft.
Cellulose ist der bedeutendste nachwachsende Rohstoff und stellt ein wichtiges Ausgangsmaterial für beispielsweise die Textil-, Papier- und Vliesstoffindustrie dar. Sie dient ferner als Rohstoff für Derivate und Modifizierungen von Cellulose, zu denen Celluloseether, wie z.B. Methylcellulose und Carboxymethylcellulose, Cellulose- ester basierend auf organischen Säuren, wie z.B. Celluloseacetat, Cellulosebutyrat, sowie Celluloseester basierend auf anorganischen Säuren, wie z.B. Cellulosenitrat, und andere zählen. Diese Derivate und Modifizierungen finden vielfältige Anwendung, beispielsweise in der Textil-, Lebensmittel-, Bau- und Lackindustrie. Von besonderem Interesse ist hierbei Celluloseacetat.
Bei der industriellen Herstellung von Celluloseacetat werden Baumwoll-Linters oder aufbereiteter Holzzellstoff mit Acetanhydrid in Gegenwart von Schwefelsäure oder Perchlorsäure als Katalysator umgesetzt. Bei dieser Verfahrensweise tritt sowohl eine Abnahme des DP ein als auch eine Acylierung der Hydroxyfunktionen der An- hydroglucaneinheiten der Cellulose ein. Die Abnahme der Kettenlänge des CeIIuIo- segrundkörpers wird auf eine hydrolytische Spaltung der glycosidischen Bindungen, als Konsequenz der stark sauren Reaktionsbedingungen, zurückgeführt. Weiterhin hat das so erhaltene Celluloseacetat einen Substitutionsgrad (DS) von 3 (= CeIIuIo- setriacetat). Für die Verspinnung ist allerdings ein DS von etwa 2,5 notwendig. Daher wird Cellulosetriacetat einer partiellen Deacylierung unterworfen. Nachteilig ist hierbei, dass bei diesem Verfahren anfänglich ein heterogenes Gemisch vorliegt, welches im Laufe der Umsetzung in ein mehr oder minder homogenes Gemisch ü- bergeht. Die Handhabung derartiger Gemische stellt sehr hohe technische Anforderungen. Ebenso ist es von Nachteil, dass primär ein Celluloseacetat erhalten wird, welches einen DS von 3 hat. Weiterhin hängt der DP des erhaltenen Celluloseace- tats stark von der Qualität der eingesetzten Cellulose und den Umsetzungsbedin- gungen ab.
Somit besteht ein Bedarf, ein einfaches Verfahren zur gezielten Darstellung von acy- lierten Cellulosen mit einem gezielten DP und einem definierten DS bereitzustellen.
Es wurde nun ein Verfahren zur Darstellung von acylierten Cellulosen mit einem gezielten DP und einer definierten DS gefunden, indem man Cellulose in einer ionischen Flüssigkeit löst, und die so erhaltene Lösung in einem ersten Schritt (Schritt A)
mit einer Säure (ggf. unter Zugabe von Wasser) oder bei erhöhter Temperatur (ggf. in Gegenwart von Wasser) behandelt und in einem zweiten Schritt (Schritt B) die so erhaltene Cellulose, deren DP niedriger ist, als der der in Schritt A eingesetzten CeI- lulose, mit einem Acylierungsmittel umgesetzt. 5
Ionische Flüssigkeiten im Sinne der vorliegenden Erfindung sind vorzugsweise
(A) Salze der allgemeinen Formel (I)
i o [A]; [YΓ (I),
in der n für 1 , 2, 3 oder 4 steht, [A]+ für ein quartäres Ammonium-Kation, ein Oxonium-Kation, ein Sulfonium-Kation oder ein Phosphonium-Kation und [Y]n" für ein ein-, zwei-, drei- oder vierwertiges Anion steht; 15
(B) gemischte Salze der allgemeinen Formeln (II)
[A1J+[A2J+ [Y]n- (IIa), wobei n = 2;
[A1]+[A2]+[A3]+ [Y]n- (IIb), wobei n = 3; oder 20 [A1]+[A2]+[A3]+[A4]+ [Y]n- (Mc), wobei n = 4 und
wobei [A1]+, [A2]+, [A3]+ und [A4]+ unabhängig voneinander aus den für [A]+ genannten Gruppen ausgewählt sind und [Y]π" die unter (A) genannte Bedeutung besitzt. 25
Vorzugsweise besitzen die ionischen Flüssigkeiten einen Schmelzpunkt von weniger als 180°C. Besonders bevorzugt liegt der Schmelzpunkt in einem Bereich von -50°C bis 150°C, insbesondere bevorzugt im Bereich von -20°C bis 120°C und außerordentlich bevorzugt unter 100°C. 30
Bei den erfindungsgemäßen ionischen Flüssigkeiten handelt es sich um organische Verbindungen, d.h. dass mindestens ein Kation oder ein Anion der ionischen Flüssigkeit einen organischen Rest enthält.
35 Verbindungen, die sich zur Bildung des Kations [A]+ von ionischen Flüssigkeiten eignen, sind z.B. aus DE 102 02 838 A1 bekannt. So können solche Verbindungen Sauerstoff-, Phosphor-, Schwefel- oder insbesondere Stickstoffatome enthalten, beispielsweise mindestens ein Stickstoffatom, bevorzugt 1 bis 10 Stickstoffatome, besonders bevorzugt 1 bis 5, ganz besonders bevorzugt 1 bis 3 und insbesondere 1 bis
40 2 Stickstoffatome. Gegebenenfalls können auch weitere Heteroatome wie Sauerstoff-, Schwefel- oder Phosphoratome enthalten sein. Das Stickstoffatom ist ein geeigneter Träger der positiven Ladung im Kation der ionischen Flüssigkeit, von dem
im Gleichgewicht dann ein Proton bzw. ein Alkylrest auf das Anion übergehen kann, um ein elektrisch neutrales Molekül zu erzeugen.
Für den Fall, dass das Stickstoffatom der Träger der positiven Ladung im Kation der ionischen Flüssigkeit ist, kann bei der Synthese der ionischen Flüssigkeiten zunächst durch Quarternisierung am Stickstoffatom etwa eines Amins oder Stickstoff-Hetero- cyclus' ein Kation erzeugt werden. Die Quarternisierung kann durch Alkylierung des Stickstoffatoms erfolgen. Je nach verwendetem Alkylierungsreagens werden Salze mit unterschiedlichen Anionen erhalten. In Fällen, in denen es nicht möglich ist, das gewünschte Anion bereits bei der Quarternisierung zu bilden, kann dies in einem weiteren Syntheseschritt erfolgen. Ausgehend beispielsweise von einem Ammoni- umhalogenid kann das Halogenid mit einer Lewissäure umgesetzt werden, wobei aus Halogenid und Lewissäure ein komplexes Anion gebildet wird. Alternativ dazu ist der Austausch eines Halogenidions gegen das gewünschte Anion möglich. Dies kann durch Zugabe eines Metallsalzes unter Ausfällung des gebildeten Metallhalo- genids, über einen Ionenaustauscher oder durch Verdrängung des Halogenidions durch eine starke Säure (unter Freisetzung der Halogenwasserstoffsäure) geschehen. Geeignete Verfahren sind beispielsweise in Angew. Chem. 2000, 1 12, S. 3926 - 3945 und der darin zitierten Literatur beschrieben.
Geeignete Alkylreste, mit denen das Stickstoffatom in den Aminen oder Stickstoff- Heterocyclen beispielsweise quarternisiert sein kann, sind Ci-Cis-Alkyl, bevorzugt Ci-Cio-Alkyl, besonders bevorzugt Ci-Cβ-Alkyl und ganz besonders bevorzugt Methyl. Die Alkylgruppe kann unsubstituiert sein oder einen oder mehrere gleiche oder verschiedene Substituenten aufweisen.
Bevorzugt sind solche Verbindungen, die mindestens einen fünf- bis sechsgliedrigen Heterocyclus, insbesondere einen fünfgliedrigen Heterocyclus, enthalten, der mindestens ein Stickstoffatom sowie gegebenenfalls ein Sauerstoff- oder Schwefelatom aufweist. Ebenfalls inbesonders bevorzugt sind solche Verbindungen, die mindestens einen fünf- bis sechsgliedrigen Heterocyclus enthalten, der ein, zwei oder drei Stickstoffatome und ein Schwefel- oder ein Sauerstoffatom aufweist, ganz besonders bevorzugt solche mit zwei Stickstoffatomen. Weiterhin bevorzugt sind aromatische Heterocyclen.
Besonders bevorzugte Verbindungen sind solche, die ein Molgewicht unter 1000 g/mol aufweisen, ganz besonders bevorzugt unter 500 g/mol und insbesondere unter 350 g/mol.
Weiterhin sind solche Kationen bevorzugt, die ausgewählt sind aus den Verbindungen der Formeln (lila) bis (MIw),
(MIu) (MIv) (MIw)
sowie Oligomere, die diese Strukturen enthalten.
Weitere geeignete Kationen sind Verbindungen der allgemeinen Formel (MIx) und (MIy)
R2 R2
3 1 -H 1 I + 1
R— P-R S-R
I I
R R
(MIx) (MIy)
sowie Oligomere, die diese Strukturen enthalten.
In den oben genannten Formeln (MIa) bis (IMy) stehen
• der Rest R für Wasserstoff, einen Kohlenstoff enthaltenden organischen, gesät- tigten oder ungesättigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten oder durch 1 bis 5 Heteroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 20 Kohlenstoffatomen; und
• die Reste R1 bis R9 unabhängig voneinander für Wasserstoff, eine Sulfo-
Gruppe oder einen Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder ar-
aliphatischen, unsubstituierten oder durch 1 bis 5 Heteroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 20 Kohlenstoffatomen, wobei die Reste R1 bis R9, welche in den oben genannten Formeln (III) an ein Kohlenstoffatom (und nicht an ein Heteroatom) gebunden sind, zusätz- lieh auch für Halogen oder eine funktionelle Gruppe stehen können; oder
zwei benachbarte Reste aus der Reihe R1 bis R9 zusammen auch für einen zweibindigen, Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, aeyclischen oder cyclischen, aliphatischen, aromatischen oder aralipha- tischen, unsubstituierten oder durch 1 bis 5 Heteroatome oder funktionelle
Gruppen unterbrochenen oder substituierten Rest mit 1 bis 30 Kohlenstoffatomen.
Als Heteroatome kommen bei der Definition der Reste R und R1 bis R9 prinzipiell alle Heteroatome in Frage, welche in der Lage sind, formell eine -CH2-, eine -CH=, eine -C≡ oder eine =C= -Gruppe zu ersetzen. Enthält der Kohlenstoff enthaltende Rest Heteroatome, so sind Sauerstoff, Stickstoff, Schwefel, Phosphor und Silizium bevorzugt. Als bevorzugte Gruppen seien insbesondere -O-, -S-, -SO-, -SO2-, -NR'-, -N=, - PR'-, -PR'3 und -SiRV genannt, wobei es sich bei den Resten R' um den verbleiben- den Teil des Kohlenstoff enthaltenden Rests handelt. Die Reste R1 bis R9 können dabei in den Fällen, in denen diese in den oben genannten Formeln (IM) an ein Kohlenstoffatom (und nicht an ein Heteroatom) gebunden sind, auch direkt über das Heteroatom gebunden sein.
Als funktionelle Gruppen kommen prinzipiell alle funktionellen Gruppen in Frage, welche an ein Kohlenstoffatom oder ein Heteroatom gebunden sein können. Als geeignete Beispiele seien -OH (Hydroxy), =0 (insbesondere als Carbonylgruppe), -NH2 (Amino), -NHR', -NR2', =NH (Imino), =NR', -COOH (Carboxy), -CONH2 (Carboxa- mid), -SO3H (Sulfo) und -CN (Cyano) genannt. Fuktionelle Gruppen und Heteroato- me können auch direkt benachbart sein, so dass auch Kombinationen aus mehreren benachbarten Atomen, wie etwa -O- (Ether), -S- (Thioether), -COO- (Ester), -CONH- (sekundäres Amid) oder -CONR'- (tertiäres Amid), mit umfasst sind, beispielsweise Di-(Ci-C4-Alkyl)-amino, Ci-C4-Alkyloxycarbonyl oder Ci-C4-Alkyloxy. Bei den Resten R' handelt es sich um den verbleibenden Teil des Kohlenstoff enthaltenden Rests.
Als Halogene seien Fluor, Chlor, Brom und lod genannt.
Bevorzugt steht der Rest R für
• unverzweigtes oder verzweigtes, unsubstituiertes oder ein bis mehrfach mit
Hydroxy, Halogen, Phenyl, Cyano, Ci-Cδ-Alkoxycarbonyl und/oder SO3H substituiertes Ci-Ci8-Alkyl mit insgesamt 1 bis 20 Kohlenstoffatomen, wie beispiels-
weise Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 2-Methyl-1-propyl, 2- Methyl-2-propyl, 1-Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1-butyl, 3-Methyl-1-butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Dimethyl1-propyl, 1-Hexyl, 2-Hexyl, 3- Hexyl, 2-Methyl-1-pentyl, 3-Methyl-1-pentyl, 4-Methyl-1-pentyl, 2-Methyl-2- pentyl, 3-Methyl-2-pentyl, 4-Methyl-2-pentyl, 2-Methyl-3-pentyl, 3-Methyl-3- pentyl, 2,2-Dimethyl-1-butyl, 2,3-Dimethyl-1-butyl, 3,3-Dimethyl-1-butyl, 2-Ethyl- 1-butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, 1-Heptyl, 1-Octyl, 1-Nonyl, 1-Decyl, 1-Undecyl, 1-Dodecyl, 1-Tetradecyl, 1-Hexadecyl, 1-Octadecyl, 2- Hydroxyethyl, Benzyl, 3-Phenylpropyl, 2-Cyanoethyl, 2-(Methoxycarbonyl)- ethyl, 2-(Ethoxycarbonyl)-ethyl, 2-(n-Butoxy-carbonyl)-ethyl, Trifluormethyl,
Difluormethyl, Fluormethyl, Pentafluorethyl, Heptafluorpropyl, Heptafluorisopro- pyl, Nonafluorbutyl, Nonafluorisobutyl, Undecylfluorpentyl, Undecylfluorisopen- tyl, 6-Hydroxyhexyl und Propylsulfonsäure;
• Glykole, Butylenglykole und deren Oligomere mit 1 bis 100 Einheiten und einem Wasserstoff oder einem Ci-Cβ-Alkyl als Endgruppe, wie beispielsweise RAO-(CHRB-CH2-O)m-CHRB-CH2- oder
RAO-(CH2CH2CH2CH2θ)m-CH2CH2CH2CH2- mit RA und RB bevorzugt Wasserstoff, Methyl oder Ethyl und m bevorzugt 0 bis 3, insbesondere 3-Oxabutyl, 3-Oxapentyl, 3,6-Dioxaheptyl, 3,6-Dioxaoctyl, 3,6,9-Trioxadecyl, 3,6,9-Trioxa- undecyl, 3,6,9,12-Tetraoxatridecyl und 3,6,9, 12-Tetraoxatetradecyl;
• Vinyl;
• 1-Propen-1-yl, 1-Propen-2-yl und 1-Propen-3-yl; und
• N.N-Di-Ci-Cδ-alkyl-amino, wie beispielsweise N,N-Dimethylamino und N1N- Diethylamino.
Besonders bevorzugt steht der Rest R für unverzweigtes und unsubstituiertes d- Ci8-Alkyl, wie beispielsweise Methyl, Ethyl, 1-Propyl, 1-Butyl, 1 -Pentyl, 1-Hexyl, 1-Heptyl, 1-Octyl, 1-Decyl, 1-Dodecyl, 1-Tetradecyl, 1-Hexadecyl, 1-Octadecyl, 1- Propen-3-yl, insbesondere für Methyl, Ethyl, 1-Butyl und 1-Octyl sowie für CH3O- (CH2CH2θ)m-CH2CH2- und CH3CH2θ-(CH2CH2θ)m-CH2CH2- mit m gleich 0 bis 3.
Bevorzugt stehen die Reste R1 bis R9 unabhängig voneinander für
• Wasserstoff;
• Halogen;
• eine funktionelle Gruppe;
• gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes und/oder durch ein o- der mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes Ci-Cis-Alkyl;
• gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes und/oder durch ein o- der mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes C2-Cis-Alkenyl;
• gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C6-Ci2-Aryl;
• gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C5-Ci2-Cycloalkyl;
• gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C5-Ci2-Cycloalkenyl; oder
• einen gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituierten fünf- bis sechs- gliedrigen, Sauerstoff-, Stickstoff- und/oder Schwefelatome aufweisenden Hete- rocyclus bedeuten; oder
zwei benachbarte Reste zusammen für
• einen ungesättigten, gesättigten oder aromatischen, gegebenenfalls durch funk- tionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder
Heterocyclen substituierten und gegebenenfalls durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenen Ring.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertem Ci-Cis-Alkyl handelt es sich bevorzugt um Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 2-Methyl-1-propyl (Isobutyl), 2-Methyl-2-propyl (tert.-Butyl), 1-Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1- butyl, 3-Methyl-1-butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Dimethyl-1-propyl, 1- Hexyl, 2-Hexyl, 3-Hexyl, 2-Methyl-1-pentyl, 3-Methyl-1-pentyl, 4-Methyl-1-pentyl, 2- Methyl-2-pentyl, 3-Methyl-2-pentyl, 4-Methyl-2-pentyl, 2-Methyl-3-pentyl, 3-Methyl-3- pentyl, 2,2-Dimethyl-1-butyl, 2,3-Dimethyl-1-butyl, 3,3-Dimethyl-1-butyl, 2-Ethyl-1-
butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, Heptyl, Octyl, 2-Etylhexyl, 2,4,4- Trimethylpentyl, 1 ,1 ,3,3-Tetramethylbutyl, 1-Nonyl, 1-Decyl, 1-Undecyl, 1-Dodecyl, 1- Tridecyl, 1-Tetradecyl, 1-Pentadecyl, 1-Hexadecyl, 1-Heptadecyl, 1-Octadecyl, Cyc- lopentylmethyl, 2-Cyclopentylethyl, 3-Cyclopentylpropyl, Cyclohexylmethyl, 2-Cyclo- hexylethyl, 3-Cyclohexylpropyl, Benzyl (Phenylmethyl), Diphenylmethyl (Benzhydryl), Triphenylmethyl, 1-Phenylethyl, 2-Phenylethyl, 3-Phenylpropyl, α,α-Dimethylbenzyl, p-Tolylmethyl, 1-(p-Butylphenyl)-ethyl, p-Chlorbenzyl, 2,4-Dichlorbenzyl, p-Methoxy- benzyl, m-Ethoxybenzyl, 2-Cyanoethyl, 2-Cyanopropyl, 2-Methoxycarbonylethyl, 2- Ethoxycarbonylethyl, 2-Butoxycarbonylpropyl, 1 ,2-Di-(methoxycarbonyl)-ethyl, Me- thoxy, Ethoxy, Formyl, 1 ,3-Dioxolan-2-yl, 1 ,3-Dioxan-2-yl, 2-Methyl-1 ,3-dioxolan-2-yl, 4-Methyl-1 ,3-dioxolan-2-yl, 2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, A- Hydroxybutyl, 6-Hydroxyhexyl, 2-Aminoethyl, 2-Aminopropyl, 3-Aminopropyl, A- Aminobutyl, 6-Aminohexyl, 2-Methylaminoethyl, 2-Methylaminopropyl, 3-Methyl- aminopropyl, 4-Methylaminobutyl, 6-Methylaminohexyl, 2-Dimethylaminoethyl, 2- Dimethylaminopropyl, 3-Dimethylaminopropyl, 4-Dimethylaminobutyl, 6-Dimethyl- aminohexyl, 2-Hydroxy-2,2-dimethylethyl, 2-Phenoxyethyl, 2-Phenoxypropyl, 3- Phenoxypropyl, 4-Phenoxybutyl, 6-Phenoxyhexyl, 2-Methoxyethyl, 2-Methoxypropyl, 3-Methoxypropyl, 4-Methoxybutyl, 6-Methoxyhexyl, 2-Ethoxyethyl, 2-Ethoxypropyl, 3- Ethoxypropyl, 4-Ethoxybutyl, 6-Ethoxyhexyl, Acetyl, CmF2(m-a)+(i-b)H2a+b mit m gleich 1 bis 30, 0 < a < m und b = 0 oder 1 (beispielsweise CF3, C2F5, CH2CH2-C(m-2)F2(m-2)+i, C6Fi3, C8Fi7, C10F21, Ci2F25), Chlormethyl, 2-Chlorethyl, Trichlormethyl, 1 ,1-Dimethyl- 2-chlorethyl, Methoxymethyl, 2-Butoxyethyl, Diethoxymethyl, Diethoxyethyl, 2-lso- propoxyethyl, 2-Butoxypropyl, 2-Octyloxyethyl, 2-Methoxyisopropyl, 2-(Methoxy- carbonyl)-ethyl, 2-(Ethoxycarbonyl)-ethyl, 2-(n-Butoxycarbonyl)-ethyl, Butylthio- methyl, 2-Dodecylthioethyl, 2-Phenylthioethyl, 5-Hydroxy-3-oxa-pentyl, 8-Hydroxy- 3,6-dioxa-octyl, 11-Hydroxy-3,6,9-trioxa-undecyl, 7-Hydroxy-4-oxa-heptyl, 1 1- Hydroxy-4,8-dioxa-undecyl, 15-Hydroxy-4,8,12-trioxa-pentadecyl, 9-Hydroxy-5-oxa- nonyl, 14-Hydroxy-5,10-dioxa-tetradecyl, 5-Methoxy-3-oxa-pentyl, 8-Methoxy-3,6- dioxa-octyl, 1 1-Methoxy-3,6,9-trioxa-undecyl, 7-Methoxy-4-oxa-heptyl, 1 1 -Methoxy- 4,8-dioxa-undecyl, 15-Methoxy-4,8,12-trioxa-pentadecyl, 9-Methoxy-5-oxa-nonyl, 14- Methoxy-5,10-dioxa-tetradecyl, 5-Ethoxy-3-oxa-pentyl, 8-Ethoxy-3,6-dioxa-octyl, 11- Ethoxy-3,6,9-trioxa-undecyl, 7-Ethoxy-4-oxa-heptyl, 11-Ethoxy-4,8-dioxa-undecyl, 15-Ethoxy-4,8,12-trioxa-pentadecyl, 9-Ethoxy-5-oxa-nonyl oder 14-Ethoxy-5,10-oxa- tetradecyl.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes und/oder durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes C2-Cis-Alkenyl handelt es sich bevorzugt um Vinyl, 2-Propenyl, 3-Butenyl, cis-2-Butenyl, trans-2-Butenyl oder CmF2(m-a)-(i-b)H2a-b mit im < 30, 0 < a < m und b = 0 oder 1.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C6-Ci2-Aryl handelt es sich bevorzugt um Phenyl, ToIyI, XyIyI, α-Naphthyl, ß-Naphthyl, 4-Diphenylyl, Chlorphe- nyl, Dichlorphenyl, Trichlorphenyl, Difluorphenyl, Methylphenyl, Dimethylphenyl, Tri- methylphenyl, Ethylphenyl, Diethylphenyl, iso-Propylphenyl, tert.-Butylphenyl, Dode- cylphenyl, Methoxyphenyl, Dimethoxyphenyl, Ethoxyphenyl, Hexyloxyphenyl, Me- thylnaphthyl, Isopropylnaphthyl, Chlornaphthyl, Ethoxynaphthyl, 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 2,6-Dimethoxyphenyl, 2,6-Dichlorphenyl, 4-Bromphenyl, 2- Nitrophenyl, 4-Nitrophenyl, 2,4-Dinitrophenyl, 2,6-Dinitrophenyl, 4-Dimethyl- aminophenyl, 4-Acetyl phenyl, Methoxyethylphenyl, Ethoxymethylphenyl, Methylthio- phenyl, Isopropylthiophenyl oder tert.-Butylthiophenyl oder C6F(5-a)Ha mit 0 < a < 5.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C5-Ci2-Cycloalkyl handelt es sich bevorzugt um Cyclopentyl, Cyclohexyl, Cyclooctyl, Cyclododecyl, Methylcyclo- pentyl, Dimethylcyclopentyl, Methylcyclohexyl, Dimethylcyclohexyl, Diethylcyclohe- xyl, Butylcyclohexyl, Methoxycyclohexyl, Dimethoxycyclohexyl, Diethoxycyclohexyl, Butylthiocyclohexyl, Chlorcyclohexyl, Dichlorcyclohexyl, Dichlorcyclopentyl, CmF2(m-a)- (i-b)H2a-b mit im < 30, 0 < a < m und b = 0 oder 1 sowie ein gesättigtes oder ungesättig- tes bicyclisches System wie z.B. Norbornyl oder Norbornenyl.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C5-Ci2-Cycloalkenyl handelt es sich bevorzugt um 3-Cyclopentenyl, 2-Cyclohexenyl, 3-Cyclohexenyl, 2,5-Cyclo- hexadienyl oder CnF2(m-a)-3(i-b)H2a-3b mit im < 30, 0 < a < m und b = 0 oder 1.
Bei einen gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituierten fünf- bis sechsgliedri- gen, Sauerstoff-, Stickstoff- und/oder Schwefelatome aufweisenden Heterocyclus handelt es sich bevorzugt um Furyl, Thiophenyl, Pyrryl, Pyridyl, Indolyl, Benzoxazol- yl, Dioxolyl, Dioxyl, Benzimidazolyl, Benzthiazolyl, Dimethylpyridyl, Methylchinolyl, Dimethylpyrryl, Methoxyfuryl, Dimethoxypyridyl oder Difluorpyridyl.
Bilden zwei benachbarte Reste gemeinsam einen ungesättigten, gesättigten oder aromatischen, gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituierten und gegebenenfalls durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenen Ring, so handelt es sich bevorzugt um 1 ,3-Propylen, 1 ,4-Butylen, 1 ,5-Pentylen, 2-Oxa-1 ,3- propylen, 1-Oxa-1 ,3-propylen, 2-Oxa-1 ,3-propylen, 1-Oxa-1 ,3-propenylen, 3-Oxa- 1 ,5-pentylen, 1-Aza-1 ,3-propenylen, 1-Ci-C4-Alkyl-1-aza-1 ,3-propenylen, 1 ,4-Buta- 1 ,3-dienylen, 1 -Aza-1 ,4-buta-1 ,3-dienylen oder 2-Aza-1 ,4-buta-1 ,3-dienylen.
Enthalten die oben genannten Reste Sauerstoff- und/oder Schwefelatome und/oder substituierte oder unsubstituierte Iminogruppen, so ist die Anzahl der Sauerstoff- und/oder Schwefelatome und/oder Iminogruppen nicht beschränkt. In der Regel be- trägt sie nicht mehr als 5 in dem Rest, bevorzugt nicht mehr als 4 und ganz besonders bevorzugt nicht mehr als 3.
Enthalten die oben genannten Reste Heteroatome, so befinden sich zwischen zwei Heteroatomen in der Regel mindestens ein Kohlenstoffatom, bevorzugt mindestens zwei Kohlenstoffatome.
Besonders bevorzugt stehen die Reste R1 bis R9 unabhängig voneinander für
• Wasserstoff;
• unverzweigtes oder verzweigtes, unsubstituiertes oder ein bis mehrfach mit Hydroxy, Halogen, Phenyl, Cyano, Ci-Cδ-Alkoxycarbonyl und/oder SO3H substituiertes Ci-Cis-Alkyl mit insgesamt 1 bis 20 Kohlenstoffatomen, wie beispielsweise Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 2-Methyl-1-propyl, 2- Methyl-2-propyl, 1-Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1-butyl, 3-Methyl-1-butyl,
2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Dimethyl-1-propyl, 1-Hexyl, 2-Hexyl, 3- Hexyl, 2-Methyl-1-pentyl, 3-Methyl-1-pentyl, 4-Methyl-1-pentyl, 2-Methyl-2- pentyl, 3-Methyl-2-pentyl, 4-Methyl-2-pentyl, 2-Methyl-3-pentyl, 3-Methyl-3- pentyl, 2,2-Dimethyl-1-butyl, 2,3-Dimethyl-1-butyl, 3,3-Dimethyl-1-butyl, 2-Ethyl- 1-butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, 1-Heptyl, 1-Octyl, 1-Nonyl,
1-Decyl, 1-Undecyl, 1-Dodecyl, 1-Tetradecyl, 1-Hexadecyl, 1-Octadecyl, 2- Hydroxyethyl, Benzyl, 3-Phenylpropyl, 2-Cyanoethyl, 2-(Methoxycarbonyl)- ethyl, 2-(Ethoxycarbonyl)-ethyl, 2-(n-Butoxy-carbonyl)-ethyl, Trifluormethyl, Difluormethyl, Fluormethyl, Pentafluorethyl, Heptafluorpropyl, Heptafluorisopro- pyl, Nonafluorbutyl, Nonafluorisobutyl, Undecylfluorpentyl, Undecylfluorisopen- tyl, 6-Hydroxyhexyl und Propylsulfonsäure;
• Glykole, Butylenglykole und deren Oligomere mit 1 bis 100 Einheiten und einem Wasserstoff oder einem d- bis Cs-Alkyl als Endgruppe, wie beispielsweise RAO-(CHRB-CH2-O)m-CHRB-CH2- oder
RAO-(CH2CH2CH2CH2θ)m-CH2CH2CH2CH2- mit RA und RB bevorzugt Wasserstoff, Methyl oder Ethyl und n bevorzugt 0 bis 3, insbesondere 3-Oxabutyl, 3-Oxapentyl, 3,6-Dioxaheptyl, 3,6-Dioxaoctyl, 3,6,9-Trioxadecyl, 3,6,9-Trioxa- undecyl, 3,6,9,12-Tetraoxatridecyl und 3,6,9, 12-Tetraoxatetradecyl;
• Vinyl;
• 1-Propen-1-yl, 1 -Propen-2-yl und 1-Propen-3-yl; und
• N,N-Di-Ci-C6-alkyl-amino, wie beispielsweise N,N-Dimethylamino und N1N- Diethylamino.
Ganz besonders bevorzugt stehen die Reste R1 bis R9 unabhängig voneinander für Wasserstoff oder Ci-Cis-Alkyl, wie beispielsweise Methyl, Ethyl, 1-Butyl, 1-Pentyl, 1- Hexyl, 1-Heptyl, 1-Octyl, für Phenyl, für 2-Hydroxyethyl, für 2-Cyanoethyl, für 2-(Methoxycarbonyl)ethyl, für 2-(Ethoxycarbonyl)ethyl, für 2-(n-Butoxycarbonyl)ethyl, für N,N-Dimethylamino, für N,N-Diethylamino, für Chlor sowie für CH3O-
(CH2CH2θ)m-CH2CH2- und CH3CH2θ-(CH2CH2θ)m-CH2CH2- mit m gleich 0 bis 3.
Ganz besonders bevorzugt setzt man als Pyridiniumionen (Ulla) solche ein, bei denen
• einer der Reste R1 bis R5 Methyl, Ethyl oder Chlor ist und die verbleibenden Reste R1 bis R5 Wasserstoff sind;
• R3 Dimethylamino ist und die verbleibenden Reste R1, R2, R4 und R5 Wasser- stoff sind;
• alle Reste R1 bis R5 Wasserstoff sind;
• R2 Carboxy oder Carboxamid ist und die verbleibenden Reste R1, R2, R4 und R5 Wasserstoff sind; oder
• R1 und R2 oder R2 und R3 1 ,4-Buta-1 ,3-dienylen ist und die verbleibenden Reste R1, R2, R4 und R5 Wasserstoff sind;
und insbesondere solche, bei denen
• R1 bis R5 Wasserstoff sind; oder
• einer der Reste R1 bis R5 Methyl oder Ethyl ist und die verbleibenden Reste R1 bis R5 Wasserstoff sind.
Als ganz besonders bevorzugte Pyridiniumionen (lila) seien genannt 1-Methylpyridi- nium, 1-Ethylpyridinium, 1-(1-Butyl)pyridinium, 1-(1-Hexyl)pyridinium, 1-(1-0ctyl)- pyridinium, 1-(1-Hexyl)-pyridinium, 1-(1-Octyl)-pyridinium, 1-(1-Dodecyl)-pyridinium, 1-(1-Tetradecyl)-pyridinium, 1-(1-Hexadecyl)-pyridinium, 1 ,2-Dimethylpyridinium,
1 -Ethyl-2-methylpyridinium, 1 -(1 -Butyl)-2-methylpyridinium, 1 -(1 -Hexyl)-2-methylpyri- dinium, 1-(1-Octyl)-2-methylpyridinium, 1-(1-Dodecyl)-2-methylpyridinium, 1-(1 -Tetra-
decyl)-2-methylpyridinium, 1 -(1 -Hexadecyl)-2-methylpyridinium, 1 -Methyl-2-ethylpyri- dinium, 1 ,2-Diethylpyridinium, 1-(1-Butyl)-2-ethylpyridinium, 1-(1-Hexyl)-2-ethylpyridi- nium, 1-(1-0ctyl)-2-ethylpyridinium, 1-(1-Dodecyl)-2-ethylpyridinium, 1-(1-Tetra- decyl)-2-ethylpyridinium, 1-(1-Hexadecyl)-2-ethylpyridinium, 1 ,2-Dimethyl-5-ethyl- pyridinium, 1 ,5-Diethyl-2-methyl-pyridinium, 1-(1-Butyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Hexyl)-2-methyl-3-ethyl-pyridinium und 1 -(1 -Octyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Dodecyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Tetradecyl)-2-methyl-3-ethyl- pyridinium und 1-(1-Hexadecyl)-2-methyl-3-ethyl-pyridinium.
Ganz besonders bevorzugt setzt man als Pyridaziniumionen (MIb) solche ein, bei denen
• R1 bis R4 Wasserstoff sind; oder
• einer der Reste R1 bis R4 Methyl oder Ethyl ist und die verbleibenden Reste R1 bis R4 Wasserstoff sind.
Ganz besonders bevorzugt setzt man als Pyrimidiniumionen (MIc) solche ein, bei denen
• R1 Wasserstoff, Methyl oder Ethyl ist und R2 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind; oder
• R1 Wasserstoff, Methyl oder Ethyl ist, R2 und R4 Methyl sind und R3 Wasserstoff ist.
Ganz besonders bevorzugt setzt man als Pyraziniumionen (IMd) solche ein, bei denen
• R1 Wasserstoff, Methyl oder Ethyl ist und R2 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind;
• R1 Wasserstoff, Methyl oder Ethyl ist, R2 und R4 Methyl sind und R3 Wasserstoff ist;
• R1 bis R4 Methyl sind; oder
• R1 bis R4 Methyl Wasserstoff sind.
Ganz besonders bevorzugt setzt man als Imidazoliumionen (Nie) solche ein, bei denen
• R1 Wasserstoff, Methyl, Ethyl, 1-Propyl, 1-Butyl, 1-Pentyl, 1-Hexyl, 1-Octyl, 1- Propen-3-yl, 2-Hydroxyethyl oder 2-Cyanoethyl und R2 bis R4 unabhängig voneinander Wasserstoff, Methyl oder Ethyl sind.
Als ganz besonders bevorzugte Imidazoliumionen (MIe) seien genannt 1-Methylimi- dazolium, 1-Ethylimidazolium, 1-(1-Butyl)-imidazolium, 1-(1-Octyl)-imidazolium, 1-(1- Dodecyl)-imidazolium, 1 -(1 -Tetradecyl)-imidazolium, 1 -(1 -Hexadecyl)-imidazolium, 1 ,3-Dimethylimidazolium, 1-Ethyl-3-methylimidazolium, 1-(1-Butyl)-3-methyl- imidazolium, 1-(1-Butyl)-3-ethylimidazolium, 1-(1-Hexyl)-3-methyl-imidazolium, 1-(1- Hexyl)-3-ethyl-imidazolium, 1-(1-Hexyl)-3-butyl-imidazolium, 1-(1-Octyl)-3-methyl- imidazolium, 1-(1-Octyl)-3-ethylimidazolium, 1-(1-Octyl)-3-butylimidazolium, 1-(1- Dodecyl)-3-methylimidazolium, 1 -(1 -Dodecyl)-3-ethylimidazolium, 1 -(1 -Dodecyl)-3- butylimidazolium, 1 -(1 -Dodecyl)-3-octylimidazolium, 1 -(1 -Tetradecyl)-3-methyl- imidazolium, 1 -(1 -Tetradecyl)-3-ethylimidazolium, 1 -(1 -Tetradecyl)-3-butyl- imidazolium, 1-(1-Tetradecyl)-3-octylimidazolium, 1-(1-Hexadecyl)-3-methyl- imidazolium, 1 -(1 -Hexadecyl)-3-ethylimidazolium, 1 -(1 -Hexadecyl)-3-butyl- imidazolium, 1-(1-Hexadecyl)-3-octylimidazolium, 1 ,2-Dimethylimidazolium, 1 ,2,3- Trimethylimidazolium, 1 -Ethyl-2,3-dimethylimidazolium, 1 -(1 -Butyl)-2,3-dimethyl- imidazolium, 1 -(1 -Hexyl)-2,3-dimethyl-imidazolium, 1 -(1 -Octyl)-2,3-dimethyl- imidazolium, 1 ,4-Dimethylimidazolium, 1 ,3,4-Trimethylimidazolium, 1 ,4-Dimethyl-3- ethylimidazolium, 1 ,4-Dimethyl-3-butylimidazolium, 1 ,4-Dimethyl-3-octylimidazolium, 1 ,4,5-Trimethylimidazolium, 1 ,3,4,5-Tetramethylimidazolium, 1 ,4,5-Trimethyl-3-ethyl- imidazolium, 1 ,4,5-Trimethyl-3-butylimidazolium, 1 ,4,5-Trimethyl-3-octylimidazolium und 1 -(Prop-1 -en-3-yl)-3-methylimidazolium.
Ganz besonders bevorzugt setzt man als Pyrazoliumionen (MIf), (MIg) beziehungsweise (MIg') solche ein, bei denen
• R1 Wasserstoff, Methyl oder Ethyl ist und R2 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Pyrazoliumionen (MIh) solche ein, bei denen
• R1 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als 1-Pyrazoliniumionen (Uli) solche ein, bei denen
• unabhängig voneinander R1 bis R6 Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als 2-Pyrazoliniumionen (IMj) beziehungsweise (MIj') solche ein, bei denen
• R1 Wasserstoff, Methyl, Ethyl oder Phenyl ist und R2 bis R6 unabhängig vonein- ander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als 3-Pyrazoliniumionen (MIk) beziehungsweise (IMk') solche ein, bei denen
• R1 und R2 unabhängig voneinander Wasserstoff, Methyl, Ethyl oder Phenyl sind und R3 bis R6 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Imidazoliniumionen (IUI) solche ein, bei denen
• R1 und R2 unabhängig voneinander Wasserstoff, Methyl, Ethyl, 1-Butyl oder Phenyl sind, R3 und R4 unabhängig voneinander Wasserstoff, Methyl oder Ethyl sind und R5 und R6 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Imidazoliniumionen (Ulm) beziehungsweise (MIm') solche ein, bei denen
• R1 und R2 unabhängig voneinander Wasserstoff, Methyl oder Ethyl sind und R3 bis R6 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Imidazoliniumionen (IMn) beziehungsweise (MIn') solche ein, bei denen
• R1 bis R3 unabhängig voneinander Wasserstoff, Methyl oder Ethyl sind und R4 bis R6 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Thiazoliumionen (MIo) beziehungsweise (MIo') sowie als Oxazoliumionen (MIp) solche ein, bei denen
• R1 Wasserstoff, Methyl, Ethyl oder Phenyl ist und R2 und R3 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als 1 ,2,4-Triazoliumionen (MIq), (MIq') beziehungsweise (MIq") solche ein, bei denen
• R1 und R2 unabhängig voneinander Wasserstoff, Methyl, Ethyl oder Phenyl sind und R3 Wasserstoff, Methyl oder Phenyl ist.
Ganz besonders bevorzugt setzt man als 1 ,2,3-Triazoliumionen (Mir), (IMr') beziehungsweise (MIr") solche ein, bei denen
• R1 Wasserstoff, Methyl oder Ethyl ist und R2 und R3 unabhängig voneinander Wasserstoff oder Methyl sind, oder R2 und R3 zusammen 1 ,4-Buta-1 ,3-dienylen ist.
Ganz besonders bevorzugt setzt man als Pyrrolidiniumionen (MIs) solche ein, bei denen
• R1 Wasserstoff, Methyl, Ethyl oder Phenyl ist und R2 bis R9 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Imidazolidiniumionen (Mit) solche ein, bei denen
• R1 und R4 unabhängig voneinander Wasserstoff, Methyl, Ethyl oder Phenyl sind und R2 und R3 sowie R5 bis R8 unabhängig voneinander Wasserstoff oder Me- thyl sind.
Ganz besonders bevorzugt setzt man als Ammoniumionen (MIu) solche ein, bei denen
• R1 bis R3 unabhängig voneinander Ci-Cis-Alkyl sind; oder
• R1 und R2 zusammen 1 ,5-Pentylen oder 3-Oxa-1 ,5-pentylen sind und R3 Ci-Cis-Alkyl, 2-Hydroxyethyl oder 2-Cyanoethyl ist.
Als ganz besonders bevorzugte Ammoniumionen (MIu) seien genannt Methyl-tri-(1- butyl)-ammonium, N,N-Dimethylpiperidinium und N,N-Dimethylmorpholinium.
Beispiele für die tertiären Amine, von denen sich die quartären Ammoniumionen der allgemeinen Formel (IMu) durch Quarternisierung mit den genannten Resten R ablei- ten, sind Diethyl-n-butylamin, Diethyl-tert-butylamin, Diethyl-n-pentylamin, Diethyl- hexylamin, Diethyloctylamin, Diethyl-(2-ethylhexyl)-amin, Di-n-propylbutylamin, Di-n- propyl-n-pentylamin, Di-n-propylhexylamin, Di-n-propyloctylamin, Di-n-propyl-(2- ethylhexyl)-amin, Di-isopropylethylamin, Di-iso-propyl-n-propylamin, Di-isopropyl- butylamin, Di-isopropylpentylamin, Di-iso-propylhexylamin, Di-isopropyloctylamin, Di- iso-propyl-(2-ethylhexyl)-amin, Di-n-butylethylamin, Di-n-butyl-n-propylamin, Di-n- butyl-n-pentylamin, Di-n-butylhexylamin, Di-n-butyloctylamin, Di-n-butyl-(2-ethyl- hexyl)-amin, N-n-Butyl-pyrrolidin, N-sek-Butylpyrrodidin, N-tert-Butylpyrrolidin, N-n-
Pentylpyrrolidin, N.N-Dimethylcyclohexylamin, N,N-Diethylcyclohexylamin, N,N-Di-n- butylcyclohexylamin, N-n-Propylpiperidin, N-iso-Propylpiperidin, N-n-Butyl-piperidin, N-sek-Butylpiperidin, N-tert-Butylpiperidin, N-n-Pentylpiperidin, N-n-Butylmorpholin, N-sek-Butylmorpholin, N-tert-Butylmorpholin, N-n-Pentylmorpholin, N-Benzyl-N- ethylanilin, N-Benzyl-N-n-propylanilin, N-Benzyl-N-iso-propylanilin, N-Benzyl-N-n- butylanilin, N,N-Dimethyl-p-toluidin, N,N-Diethyl-p-toluidin, N,N-Di-n-butyl-p-toluidin, Diethylbenzylamin, Di-n-propylbenzylamin, Di-n-butylbenzylamin, Diethylphenylamin, Di-n-Propylphenylamin und Di-n-Butylphenylamin.
Bevorzugte quartären Ammoniumionen der allgemeinen Formel (MIu) sind solche, die sich von folgenden tertiären Aminen durch Quarternisierung mit den genannten Resten R ableiten, lassen, wie Di-iso-propylethylamin, Diethyl-tert-butylamin, Di-iso- propylbutylamin, Di-n-butyl-n-pentylamin, N,N-Di-n-butylcyclohexylamin sowie tertiäre Amine aus Pentylisomeren.
Besonders bevorzugte tertiäre Amine sind Di-n-butyl-n-pentylamin und tertiäre Amine aus Pentylisomeren. Ein weiteres bevorzugtes tertiäres Amin, das drei identische Reste aufweist, ist Triallylamin.
Ganz besonders bevorzugt setzt man als Guanidiniumionen (MIv) solche ein, bei denen
• R1 bis R5 Methyl sind.
Als ganz besonders bevorzugtes Guanidiniumion (MIv) sei genannt N, N, N', N', N", N"- Hexamethylguanidinium.
Ganz besonders bevorzugt setzt man als Choliniumionen (MIw) solche ein, bei denen
• R1 und R2 unabhängig voneinander Methyl, Ethyl, 1-Butyl oder 1-Octyl sind und R3 Wasserstoff, Methyl, Ethyl, Acetyl, -SO2OH oder -PO(OH)2 ist;
• R1 Methyl, Ethyl, 1-Butyl oder 1-Octyl ist, R2 eine -CH2-CH2-OR4-Gruppe ist und R3 und R4 unabhängig voneinander Wasserstoff, Methyl, Ethyl, Acetyl, -SO2OH oder -PO(OH)2 sind; oder
• R1 eine -CH2-CH2-OR4-Gruppe ist, R2 eine -CH2-CH2-OR5-Gruppe ist und R3 bis R5 unabhängig voneinander Wasserstoff, Methyl, Ethyl, Acetyl, -SO2OH o- der -PO(OH)2 sind.
Besonders bevorzugte Choliniumionen (MIw) sind solche, bei denen R3 ausgewählt ist aus Wasserstoff, Methyl, Ethyl, Acetyl, 5-Methoxy-3-oxa-pentyl, 8-Methoxy-3,6-
dioxa-octyl, 1 1-Methoxy-3,6,9-trioxa-undecyl, 7-Methoxy-4-oxa-heptyl, 1 1 -Methoxy- 4,8-dioxa-undecyl, 15-Methoxy-4,8,12-trioxa-pentadecyl, 9-Methoxy-5-oxa-nonyl, 14- Methoxy-5,10-oxa-tetradecyl, 5-Ethoxy-3-oxa-pentyl, 8-Ethoxy-3,6-dioxa-octyl, 11- Ethoxy-3,6,9-trioxa-undecyl, 7-Ethoxy-4-oxa-heptyl, 11-Ethoxy-4,8-dioxa-undecyl, 15-Ethoxy-4,8,12-tιϊoxa-pentadecyl, 9-Ethoxy-5-oxa-nonyl oder 14-Ethoxy-5,10-oxa- tetradecyl.
Ganz besonders bevorzugt setzt man als Phosphoniumionen (MIx) solche ein, bei denen
• R1 bis R3 unabhängig voneinander Ci-Cis-Alkyl, insbesondere Butyl, Isobutyl, 1-Hexyl oder 1-Octyl sind.
Unter den vorstehend genannten heterocyclischen Kationen sind die Pyridinium- ionen, Pyrazolinium-, Pyrazoliumionen und die Imidazolinium- sowie die Imidazol- iumionen bevorzugt. Weiterhin sind Ammoniumionen bevorzugt.
Insbesondere bevorzugt sind 1-Methylpyridinium, 1-Ethylpyridinium, 1-(1-Butyl)pyri- dinium, 1-(1-Hexyl)pyridinium, 1-(1-Octyl)pyridinium, 1-(1-Hexyl)-pyridinium, 1-(1- Octyl)-pyridinium, 1-(1-Dodecyl)-pyridinium, 1-(1-Tetradecyl)-pyridinium, 1-(1-Hexa- decyl)-pyridinium, 1 ,2-Dimethylpyridinium, 1-Ethyl-2-methylpyridinium, 1-(1-Butyl)-2- methylpyridinium, 1-(1-Hexyl)-2-methylpyridinium, 1-(1-Octyl)-2-methylpyridinium, 1- (1 -Dodecyl)-2-methylpyridinium, 1 -(1 -Tetradecyl)-2-methylpyridinium, 1 -(1 -Hexa- decyl)-2-methylpyridinium, 1-Methyl-2-ethylpyridinium, 1 ,2-Diethylpyridinium, 1-(1- Butyl)-2-ethylpyridinium, 1-(1-Hexyl)-2-ethylpyridinium, 1-(1-Octyl)-2-ethylpyridinium, 1 -(1 -Dodecyl)-2-ethylpyridinium, 1 -(1 -Tetradecyl)-2-ethylpyridinium, 1 -(1 -Hexadecyl)- 2-ethylpyridinium, 1 ,2-Dimethyl-5-ethyl-pyridinium, 1 ,5-Diethyl-2-methyl-pyridinium, 1 -(1 -Butyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Hexyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 - Octyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Dodecyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 - Tetradecyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Hexadecyl)-2-methyl-3-ethyl-pyri- dinium, 1-Methylimidazolium, 1-Ethylimidazolium, 1-(1-Butyl)-imidazolium, 1-(1- Octyl)-imidazolium, 1-(1-Dodecyl)-imidazolium, 1-(1-Tetradecyl)-imidazolium, 1-(1- Hexadecyl)-imidazolium, 1 ,3-Dimethylimidazolium, 1-Ethyl-3-methylimidazolium, 1- (1 -Butyl)-3-methylimidazolium, 1 -(1 -Hexyl)-3-methyl-imidazolium, 1 -(1 -Octyl)-3- methylimidazolium, 1-(1-Dodecyl)-3-methylimidazolium, 1-(1-Tetradecyl)-3-methyl- imidazolium, 1-(1-Hexadecyl)-3-methylimidazolium, 1 ,2-Dimethylimidazolium, 1 ,2,3- Trimethylimidazolium, 1 -Ethyl-2,3-dimethylimidazolium, 1 -(1 -Butyl)-2,3-dimethyl- imidazolium, 1-(1-Hexyl)-2,3-dimethyl-imidazolium und 1-(1-Octyl)-2,3-dimethyl- imidazolium, 1 ,4-Dimethylimidazolium, 1 ,3,4-Trimethylimidazolium, 1 ,4-Dimethyl-3- ethylimidazolium, 3-Butylimidazolium, 1 ,4-Dimethyl-3-octylimidazolium, 1 ,4,5-Tri- methylimidazolium, 1 ,3,4,5-Tetramethylimidazolium, 1 ,4,5-Trimethyl-3-ethyl-
imidazolium, 1 ,4,5-Trimethyl-3-butylimidazolium,1 ,4,5-Trimethyl-3-octylimidazolium und 1 -(Prop-1 -en-3-yl)-3-methylimidazolium.
Als Anionen sind prinzipiell alle Anionen einsetzbar.
Das Anion [Y]n- der ionischen Flüssigkeit ist beispielsweise ausgewählt aus
• der Gruppe der Halogenide der Formel: F-, Cl-, Br, I-
• der Gruppe der halogenhaltigen Verbindungen und der Pseudohalogenide der Formel:
BF4 ", PF6 ", CF3SO3-, (CF3SOs)2N-, CF3CO2-, CCI3CO2-, CN", SCN", OCN"
• der Gruppe der Sulfate, Sulfite und Sulfonate der allgemeinen Formel: SO4 2", HSO4-, SO3 2", HSO3-, R3OSO3-, R3SO3-
• der Gruppe der Phosphate der allgemeinen Formel PO4 3", HPO4 2", H2PO4-, R3PO4 2", HR3PO4-, R3RbPO4-
• der Gruppe der Phosphonate und Phosphinate der allgemeinen Formel: R3H PO3-, R3RbPO2-, R3RbPO3-
• der Gruppe der Phosphite der allgemeinen Formel: PO3 3", HPO3 2", H2PO3-, R3PO3 2", R3HPO3-, R3RbPO3-
• der Gruppe der Phosphonite und Phosphinite der allgemeinen Formel: R3RbPO2-, R3HPO2-, R3RbPO-, R3HPO"
• der Gruppe der Carbonsäuren der allgemeinen Formel: R3COO-
• der Gruppe der Borate der allgemeinen Formel:
BO3 3", HBO3 2", H2BO3-, R3RbBO3-, R3HBO3-, R3BO3 2", B(0R3)(0Rb)(0Rc)(0Rd)", B(HSO4)", B(R3SO4)-
• der Gruppe der Boronate der allgemeinen Formel: R3BO2 2-, R3RbBO-
• der Gruppe der Silikate und Kieselsäuresäureester der allgemeinen Formel:
SiO4 4-, HSiO4 3-, H2SiO4 2-, H3SiO4-, R3SiO4 3", R3RbSi04 2", R3RbR^SiO4-, HR3SiO4 2", H2R3SiO4 ", HR3RbSiO4-
• der Gruppe der Alkyl- bzw. Arylsilan-Salze der allgemeinen Formel:
R3SiO3 3", RaRbSi02 2-, RaRbRcSiC-, RaRbRcSi03-, RaRbRcSi02-, RaRbSi03 2"
• der Gruppe der Carbonsäureimide, Bis(sulfonyl)imide und Sulfonylimide der allgemeinen Formel:
• der Gruppe der Methide der allgemeinen Formel:
SO2-R3
Rb-O2S' SO,-RC
Darin bedeuten Ra, Rb, Rc und Rd unabhängig voneinander jeweils Wasserstoff, Ci- C3o-Alkyl, gegebenenfalls durch ein oder mehrere nicht-benachbarte Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituier- te Iminogruppen unterbrochenes C2-Ci8-Alkyl, C6-Ci4-Aryl, C5-Ci2-Cycloalkyl oder einen fünf- bis sechsgliedrigen, Sauerstoff-, Stickstoff- und/oder Schwefelatome aufweisenden Heterocyclus, wobei zwei von ihnen gemeinsam einen ungesättigten, gesättigten oder aromatischen, gegebenenfalls durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere unsubstituierte oder substituierte Iminogruppen unterbrochenen Ring bilden können, wobei die genannten Reste jeweils zusätzlich durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiert sein können.
Darin sind gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes Ci-Cis-Alkyl beispielsweise Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, sec-Butyl, tert.-Butyl, Pentyl, Hexyl, Heptyl, Octyl, 2-Ethylhexyl, 2,4,4-Trimethylpentyl, Decyl, Dodecyl, Tetradecyl, Heta- decyl, Octadecyl, 1 ,1-Dimethylpropyl, 1 ,1-Dimethylbutyl, 1 ,1 ,3,3-Tetramethylbutyl, Benzyl, 1-Phenylethyl, α,α-Dimethylbenzyl, Benzhydryl, p-Tolylmethyl, 1-(p-Butyl- phenyl)-ethyl, p-Chlorbenzyl, 2,4-Dichlorbenzyl, p-Methoxybenzyl, m-Ethoxybenzyl, 2-Cyanoethyl, 2-Cyanopropyl, 2-Methoxycarbonethyl, 2-Ethoxycarbonylethyl, 2-But- oxycarbonylpropyl, 1 ,2-Di-(methoxycarbonyl)-ethyl, 2-Methoxyethyl, 2-Ethoxyethyl, 2-Butoxyethyl, Diethoxymethyl, Diethoxyethyl, 1 ,3-Dioxolan-2-yl, 1 ,3-Dioxan-2-yl, 2-
Methyl-1 ,3-dioxolan-2-yl, 4-Methyl-1 ,3-dioxolan-2-yl, 2-lsopropoxyethyl, 2-Butoxy- propyl, 2-Octyloxyethyl, Chlormethyl, Trichlormethyl, Trifluormethyl, 1 ,1-Dimethyl-2- chlorethyl, 2-Methoxyisopropyl, 2-Ethoxyethyl, Butylthiomethyl, 2-Dodecylthioethyl, 2-Phenlythioethyl, 2,2,2-Trifluorethyl, 2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxy- propyl, 4-Hydroxybutyl, 6-Hydroxyhexyl, 2-Aminoethyl, 2-Aminopropyl, 4-Aminobutyl, 6-Aminohexyl, 2-Methylaminoethyl, 2-Methylaminopropyl, 3-Methylaminopropyl, A- Methylaminobutyl, 6-Methylaminohexyl, 2-Dimethylaminoethyl, 2-Dimethylamino- propyl, 3-Dimethylaminopropyl, 4-Dimethylaminobutyl, 6-Dimethylaminohexyl, 2- Hydroxy-2,2-dimethylethyl, 2-Phenoxyethyl, 2-Phenoxypropyl, 3-Phenoxypropyl, A- Phenoxybutyl, 6-Phenoxyhexyl, 2-Methoxyethyl, 2-Methoxypropyl, 3-Methoxypropyl, 4-Methoxybutyl, 6-Methoxyhexyl, 2-Ethoxyethyl, 2-Ethoxypropyl, 3-Ethoxypropyl, A- Ethoxybutyl oder 6-Ethoxyhexyl.
Gegebenenfalls durch ein oder mehrere nicht-benachbarte Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituierte Imi- nogruppen unterbrochenes C2-Ci8-Alkyl sind beispielsweise 5-Hydroxy-3-oxapentyl, 8-Hydroxy-3,6-dioxaoctyl, 11-Hydroxy-3,6,9-trioxaundecyl, 7-Hydroxy-4-oxaheptyl, 1 1-Hydroxy-4,8-dioxaundecyl, 15-Hydroxy-4,8,12-trioxapentadecyl, 9-Hydroxy-5- oxa-nonyl, 14-Hydroxy-5,10-oxatetradecyl, 5-Methoxy-3-oxapentyl, 8-Methoxy-3,6- dioxa-octyl, 1 1-Methoxy-3,6,9-trioxaundecyl, 7-Methoxy-4-oxaheptyl, 11 -Methoxy- 4,8-dioxa-undecyl, 15-Methoxy-4,8,12-trioxapentadecyl, 9-Methoxy-5-oxanonyl, 14- Methoxy-5,10-oxatetradecyl, 5-Ethoxy-3-oxapentyl, 8-Ethoxy-3,6-dioxaoctyl, 1 1- Ethoxy-3,6,9-trioxaundecyl, 7-Ethoxy-4-oxaheptyl, 1 1-Ethoxy-4,8-dioxaundecyl, 15- Ethoxy-4,8,12-trioxapentadecyl, 9-Ethoxy-5-oxanonyl oder 14-Ethoxy-5,10- oxatetradecyl.
Bilden zwei Reste einen Ring, so können diese Reste gemeinsam beispielsweise als anellierter Baustein 1 ,3-Propylen, 1 ,4-Butylen, 2-Oxa-1 ,3-propylen, 1-Oxa-1 ,3- propylen, 2-Oxa-1 ,3-propenylen, 1-Aza-1 ,3-propenylen, 1-Ci-C4-Alkyl-1-aza-1 ,3- propenylen, 1 ,4-Buta-1 ,3-dienylen, 1-Aza-1 ,4-buta-1 ,3-dienylen oder 2-Aza-1 ,4-buta- 1 ,3-dienylen bedeuten.
Die Anzahl der nicht-benachbarten Sauerstoff- und/oder Schwefelatome und/oder Iminogruppen ist grundsätzlich nicht beschränkt, bzw. beschränkt sich automatisch durch die Größe des Rests oder des Ringbausteins. In der Regel beträgt sie nicht mehr als 5 in dem jeweiligen Rest, bevorzugt nicht mehr als 4 oder ganz besonders bevorzugt nicht mehr als 3. Weiterhin befinden sich zwischen zwei Heteroatomen in der Regel mindestens ein, bevorzugt mindestens zwei Kohlenstoffatom(e).
Substituierte und unsubstituierte Iminogruppen können beispielsweise Imino-, Methylimino-, iso-Propylimino, n-Butylimino oder tert-Butylimino sein.
Unter dem Begriff „funktionelle Gruppen" sind beispielsweise die folgenden zu verstehen: Carboxy, Carboxamid, Hydroxy, Di-(Ci-C4-Alkyl)-amino, Ci-C4-Alkyloxy- carbonyl, Cyano oder CrC4-AIkOXy. Dabei ist Ci-C4-AIkVl Methyl, Ethyl, Propyl, I- sopropyl, n-Butyl, sec-Butyl oder tert.-Butyl.
Gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C6-Ci4-Aryl sind beispielsweise Phenyl, ToIyI, XyIyI, α-Naphthyl, ß-Naphthyl, 4-Diphenylyl, Chlorphenyl, Dichlorphe- nyl, Trichlorphenyl, Difluorphenyl, Methylphenyl, Dimethylphenyl, Trimethylphenyl, Ethylphenyl, Diethylphenyl, iso-Propylphenyl, tert.-Butylphenyl, Dodecylphenyl, Me- thoxyphenyl, Dimethoxyphenyl, Ethoxyphenyl, Hexyloxyphenyl, Methylnaphthyl, I- sopropylnaphthyl, Chlornaphthyl, Ethoxynaphthyl, 2,6-Dimethylphenyl, 2,4,6-Tri- methylphenyl, 2,6-Dimethoxyphenyl, 2,6-Dichlorphenyl, 4-Bromphenyl, 2- oder 4- Nitrophenyl, 2,4- oder 2,6-Dinitrophenyl, 4-Dimethylaminophenyl, 4-Acetyl phenyl, Methoxyethyl phenyl oder Ethoxymethylphenyl.
Gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Halogen, Heteroatome und/oder Heterocyclen substituiertes C5-Ci2-Cycloalkyl sind beispielsweise Cyclopentyl, Cyclohexyl, Cyclooctyl, Cyclododecyl, Methylcyclopentyl, Dimethylcyc- lopentyl, Methylcyclohexyl, Dimethylcyclohexyl, Diethylcyclohexyl, Butylcyclohexyl, Methoxycyclohexyl, Dimethoxycyclohexyl, Diethoxycyclohexyl, Butylthiocyclohexyl, Chlorcyclohexyl, Dichlorcyclohexyl, Dichlorcyclopentyl sowie ein gesättigtes oder ungesättigtes bicyclisches System wie Norbornyl oder Norbornenyl.
Ein fünf- bis sechsgliedriger, Sauerstoff-, Stickstoff- und/oder Schwefelatome aufweisender Heterocyclus ist beispielsweise Furyl , Thiophenyl, Pyrryl, Pyridyl, Indolyl, Benzoxazolyl, Dioxolyl, Dioxyl, Benzimidazolyl, Benzthiazolyl, Dimethylpyridyl, Me- thylchinolyl, Dimethylpyrryl, Methoxyfuryl, Dimethoxypyridyl, Difluorpyridyl, Methylthi- ophenyl, Isopropylthiophenyl oder tert.-Butylthiophenyl.
Bevorzugte Anionen sind ausgewählt aus der Gruppe der Halogenide, der Gruppe halogenhaltigen Verbindungen und Pseudohalogenide, der Gruppe der Sulfate, Sulfite und Sulfonate, der Gruppe der Phosphate, sowie der Gruppe der Carbonsäuren, insbesondere aus der Gruppe der Halogenide, der Gruppe der halogenhaltigen Ver- bindungen und der Pseudohalogene, der Gruppe der Carbonsäuren, der Gruppe enthaltend SO4 2", SO3 2", R3OSO3 " und R3SO3-, sowie der Gruppe enthaltend PO4 3" und R3R0PO4-.
Bevorzugte Anionen sind insbesondere Chlorid, Bromid, lodid, SCN-, OCN-, CN-, Acetat, Propionat, Benzoat, Ci-C4-Alkylsulfate, R3-C00", R3SO3-, R3RbPO4-, Methan- sulfonat, Tosylat oder Di-(Ci-C4-alkyl)phosphate.
Besonders bevorzugte Anionen sind Ch, CH3COO-, C2H5COO-, C6H5COO-, CH3SO3 " , (CH3O)2PO2- oder (C2H5O)2PO2-
In einer weiteren bevorzugten Ausführungsform werden ionische Flüssigkeiten der Formel I mit
[A]n + 1-Methylimidazolium, 1-Ethylimidazolium, 1-(1-Butyl)-imidazolium, 1-(1-0ctyl)- imidazolium, 1-(1-Dodecyl)-imidazolium, 1-(1-Tetradecyl)-imidazolium, 1-(1- Hexadecyl)-imidazolium, 1 ,3-Dimethylimidazolium, 1-Ethyl-3-methyl- imidazolium, 1-(1-Butyl)-3-methylimidazolium, 1-(1-Butyl)-3-ethylimidazolium,
1 -(1 -Hexyl)-3-methyl-imidazolium, 1 -(1 -Hexyl)-3-ethyl-imidazolium, 1 -(1 - Hexyl)-3-butyl-imidazolium, 1 -(1 -Octyl)-3-methylimidazolium, 1 -(1 -Octyl)-3- ethylimidazolium, 1 -(1 -Octyl)-3-butylimidazolium, 1 -(1 -Dodecyl)-3-methyl- imidazolium, 1 -(1 -Dodecyl)-3-ethylimidazolium, 1 -(1 -Dodecyl)-3-butyl- imidazolium, 1-(1-Dodecyl)-3-octylimidazolium, 1-(1-Tetradecyl)-3-methyl- imidazolium, 1 -(1 -Tetradecyl)-3-ethylimidazolium, 1 -(1 -Tetradecyl)-3-butyl- imidazolium, 1 -(1 -Tetradecyl)-3-octylimidazolium, 1 -(1 -Hexadecyl)-3-methyl- imidazolium, 1 -(1 -Hexadecyl)-3-ethylimidazolium, 1 -(1 -Hexadecyl)-3-butyl- imidazolium, 1 -(1 -Hexadecyl)-3-octylimidazolium, 1 ,2-Dimethylimidazolium, 1 ,2,3-Trimethylimidazolium, 1 -Ethyl-2,3-dimethylimidazolium, 1 -(1 -Butyl)-2,3- dimethylimidazolium, 1 -(1 -Hexyl)-2,3-dimethyl-imidazolium, 1 -(1 -Octyl)-2,3-di- methylimidazolium, 1 ,4-Dimethylimidazolium, 1 ,3,4-Trimethylimidazolium, 1 ,4- Dimethyl-3-ethylimidazolium, 1 ,4-Dimethyl-3-butylimidazolium, 1 ,4-Dimethyl-3- octylimidazolium, 1 ,4,5-Trimethylimidazolium, 1 ,3,4,5-Tetramethylimidazolium, 1 ,4,5-Trimethyl-3-ethylimidazolium, 1 ,4,5-Trimethyl-3-butylimidazolium, 1 ,4,5-
Trimethyl-3-octylimidazolium oder 1-(Prop-1-en-3-yl)-3-methylimidazolium; und
[Y]n+ Cl-, CH3COO-, C2H5COO-, C6H5COO-, CH3SO3- , (CH3O)2PO2- oder
(C2H5O)2PO2-,
eingesetzt.
In einer weiteren besonders bevorzugten Ausführungsform werden ionische Flüssigkeiten eingesetzt, deren Anionen ausgewählt sind aus der Gruppe der halogenhalti- gen Verbindungen und Pseudohalogene, der Gruppe der Sulfate, Sulfite und Sulfo- nate, der Gruppe der Phosphate, sowie der Gruppe der Carbonsäuren, insbesondere aus der Gruppe der Carbonsäuren, der Gruppe enthaltend SO4 2", SO3 2", R3OSO3- und R3SO3-, sowie der Gruppe enthaltend PO4 3" und R3RbPO4-.
Bevorzugte Anionen sind insbesondere SCN-, OCN-, CN-, Acetat, Propionat, Benzo- at, Ci-C4-Alkylsulfate, R3-C00", R3SO3-, R3RbPO4-, Methansulfonat, Tosylat oder Di- (Ci-C4-alkyl)phosphate.
Besonders bevorzugte Anionen sind CH3COO-, C2H5COO-, C6H5COO-, CH3SO3 " , (CH3O)2PO2- oder (C2H5O)2PO2-
In einer weiteren besonders bevorzugten Ausführungsform werden ionische Flüssigkeiten der Formel I mit
[A]n + 1-Methylimidazolium, 1-Ethylimidazolium, 1-(1-Butyl)-imidazolium, 1-(1-0ctyl)- imidazolium, 1-(1-Dodecyl)-imidazolium, 1-(1-Tetradecyl)-imidazolium, 1-(1- Hexadecyl)-imidazolium, 1 ,3-Dimethylimidazolium, 1-Ethyl-3-methyl- imidazolium, 1-(1-Butyl)-3-methylimidazolium, 1-(1-Butyl)-3-ethylimidazolium, 1 -(1 -Hexyl)-3-methyl-imidazolium, 1 -(1 -Hexyl)-3-ethyl-imidazolium, 1 -(1 - Hexyl)-3-butyl-imidazolium, 1 -(1 -Octyl)-3-methylimidazolium, 1 -(1 -Octyl)-3- ethylimidazolium, 1 -(1 -Octyl)-3-butylimidazolium, 1 -(1 -Dodecyl)-3-methyl- imidazolium, 1-(1-Dodecyl)-3-ethylimidazolium, 1-(1-Dodecyl)-3-butyl- imidazolium, 1 -(1 -Dodecyl)-3-octylimidazolium, 1 -(1 -Tetradecyl)-3-methyl- imidazolium, 1 -(1 -Tetradecyl)-3-ethylimidazolium, 1 -(1 -Tetradecyl)-3-butyl- imidazolium, 1 -(1 -Tetradecyl)-3-octylimidazolium, 1 -(1 -Hexadecyl)-3-methyl- imidazolium, 1 -(1 -Hexadecyl)-3-ethylimidazolium, 1 -(1 -Hexadecyl)-3-butyl- imidazolium, 1-(1-Hexadecyl)-3-octylimidazolium, 1 ,2-Dimethylimidazolium,
1 ,2,3-Trimethylimidazolium, 1-Ethyl-2,3-dimethylimidazolium, 1-(1-Butyl)-2,3- dimethylimidazolium, 1 -(1 -Hexyl)-2,3-dimethyl-imidazolium, 1 -(1 -Octyl)-2,3-di- methylimidazolium, 1 ,4-Dimethylimidazolium, 1 ,3,4-Trimethylimidazolium, 1 ,4- Dimethyl-3-ethylimidazolium, 1 ,4-Dimethyl-3-butylimidazolium, 1 ,4-Dimethyl-3- octylimidazolium, 1 ,4,5-Trimethylimidazolium, 1 ,3,4,5-Tetramethylimidazolium,
1 ,4,5-Trimethyl-3-ethylimidazolium, 1 ,4,5-Trimethyl-3-butylimidazolium, 1 ,4,5- Trimethyl-3-octylimidazolium oder 1-(Prop-1-en-3-yl)-3-methylimidazolium; und
[Y]n+ CH3COO-, C2H5COO-, C6H5COO-, CH3SO3- , (CH3O)2PO2- oder (C2H5O)2PO2-,
eingesetzt.
In einer weiteren besonders bevorzugten Ausführungsform werden ionische Flüssigkeiten eingesetzt, deren Anionen ausgewählt sind aus der Gruppe der Halogenide.
Bevorzugtes Anion ist insbesondere Chlorid.
In einer weiteren besonders bevorzugten Ausführungsform werden ionische Flüssigkeiten der Formel I mit
[A]n + 1-Methylimidazolium, 1-Ethylimidazolium, 1-(1-Butyl)-imidazolium, 1-(1 -Octylimidazolium, 1-(1-Dodecyl)-imidazolium, 1-(1-Tetradecyl)-imidazolium, 1-(1-
Hexadecyl)-imidazolium, 1 ,3-Dimethylimidazolium, 1-Ethyl-3-methyl- imidazolium, 1-(1-Butyl)-3-methylimidazolium, 1-(1-Butyl)-3-ethylimidazolium, 1 -(1 -Hexyl)-3-methyl-imidazolium, 1 -(1 -Hexyl)-3-ethyl-imidazolium, 1 -(1 - Hexyl)-3-butyl-imidazolium, 1 -(1 -Octyl)-3-methylimidazolium, 1 -(1 -Octyl)-3- ethylimidazolium, 1-(1-Octyl)-3-butylimidazolium, 1-(1-Dodecyl)-3-methyl- imidazolium, 1 -(1 -Dodecyl)-3-ethylimidazolium, 1 -(1 -Dodecyl)-3-butyl- imidazolium, 1 -(1 -Dodecy^-S-octylimidazolium, 1 -(1 -Tetradecyl)-3-methyl- imidazolium, 1 -(1 -Tetradecy^-S-ethylimidazolium, 1 -(1 -Tetradecyl)-3-butyl- imidazolium, 1 -(1 -TetradecylJ-S-octylimidazolium, 1 -(1 -Hexadecyl)-3-methyl- imidazolium, 1-(1-Hexadecyl)-3-ethylimidazolium, 1-(1-Hexadecyl)-3-butyl- imidazolium, 1 -(1 -HexadecylJ-S-octylimidazolium, 1 ,2-Dimethylimidazolium, 1 ,2,3-Trimethylimidazolium, 1-Ethyl-2,3-dimethylimidazolium, 1-(1-Butyl)-2,3- dimethylimidazolium, 1 -(1 -Hexyl)-2,3-dimethyl-imidazolium, 1 -(1 -Octyl)-2,3-di- methylimidazolium, 1 ,4-Dimethylimidazolium, 1 ,3,4-Trimethylimidazolium, 1 ,4- Dimethyl-3-ethylimidazolium, 1 ,4-Dimethyl-3-butylimidazolium, 1 ,4-Dimethyl-3- octylimidazolium, 1 ,4,5-Trimethylimidazolium, 1 ,3,4,5-Tetramethylimidazolium, 1 ,4,5-Trimethyl-3-ethylimidazolium, 1 ,4,5-Trimethyl-3-butylimidazolium, 1 ,4,5- Trimethyl-3-octylimidazolium oder 1-(Prop-1-en-3-yl)-3-methylimidazolium; und
[Y]n+ Cl-;
eingesetzt.
In einer weiteren bevorzugten Ausführungsform werden ionische Flüssigkeiten ein- gesetzt, deren Anionen ausgewählt sind aus der Gruppe enthaltend HSO4 ", HPO4 2", H2PO4 " und HR3PO4-; insbesondere HSO4-.
Insbesondere werden ionische Flüssigkeiten der Formel I mit
[A]n + 1-Methylimidazolium, 1 -Ethylimidazolium, 1-(1-Butyl)-imidazolium, 1-(1-0ctyl)- imidazolium, 1-(1-Dodecyl)-imidazolium, 1-(1-Tetradecyl)-imidazolium, 1-(1- Hexadecyl)-imidazolium, 1 ,3-Dimethylimidazolium, 1-Ethyl-3-methyl- imidazolium, 1-(1-Butyl)-3-methylimidazolium, 1-(1-Butyl)-3-ethylimidazolium, 1 -(1 -Hexyl)-3-methyl-imidazolium, 1 -(1 -Hexyl)-3-ethyl-imidazolium, 1 -(1 - Hexyl)-3-butyl-imidazolium, 1-(1-Octyl)-3-methylimidazolium, 1-(1-0ctyl)-3- ethylimidazolium, 1 -(1 -Octyl)-3-butylimidazolium, 1 -(1 -Dodecyl)-3-methyl- imidazolium, 1 -(1 -Dodecyl)-3-ethylimidazolium, 1 -(1 -Dodecyl)-3-butyl- imidazolium, 1 -(1 -Dodecyl)-3-octylimidazolium, 1 -(1 -Tetradecyl)-3-methyl- imidazolium, 1 -(1 -Tetradecyl)-3-ethylimidazolium, 1 -(1 -Tetradecyl)-3-butyl- imidazolium, 1-(1-Tetradecyl)-3-octylimidazolium, 1-(1-Hexadecyl)-3-methyl- imidazolium, 1 -(1 -Hexadecyl)-3-ethylimidazolium, 1 -(1 -Hexadecyl)-3-butyl- imidazolium, 1 -(1 -Hexadecyl)-3-octylimidazolium, 1 ,2-Dimethylimidazolium,
1 ,2,3-Trimethylimidazolium, 1-Ethyl-2,3-dimethylimidazolium, 1-(1-Butyl)-2,3- dimethylimidazolium, 1 -(1 -Hexyl)-2,3-dimethyl-imidazolium, 1 -(1 -Octyl)-2,3-di- methylimidazolium, 1 ,4-Dimethylimidazolium, 1 ,3,4-Trimethylimidazolium, 1 ,4- Dimethyl-3-ethylimidazolium, 1 ,4-Dimethyl-3-butylimidazolium, 1 ,4-Dimethyl-3- octylimidazolium, 1 ,4,5-Trimethylimidazolium, 1 ,3,4,5-Tetramethylimidazolium,
1 ,4,5-Trimethyl-3-ethylimidazolium, 1 ,4,5-Trimethyl-3-butylimidazolium, 1 ,4,5- Trimethyl-3-octylimidazolium oder 1-(Prop-1-en-3-yl)-3-methylimidazolium; und
[Y]n+ HSO4-,
eingesetzt.
In dem erfindungsgemäßen Verfahren wird eine ionische Flüssigkeit der Formel I verwendet oder ein Gemisch von ionischen Flüssigkeiten der Formel I, vorzugsweise wird eine ionische Flüssigkeit der Formel I eingesetzt.
In einer weiteren erfindungsgemäßen Ausführungsform ist es möglich eine ionische Flüssigkeit der Formel Il zu verwenden oder ein Gemisch von ionischen Flüssigkeiten der Formel II, vorzugsweise wird eine ionische Flüssigkeit der Formel Il einge- setzt.
In einer weiteren erfindungsgemäßen Ausführungsform ist es möglich ein Gemisch von ionischen Flüssigkeiten der Formeln I und Il zu verwenden.
In dem erfindungsgemäßen Verfahren wird in Schritt A) der gezielte Abbau der CeI- lulose in Gegenwart einer Säure, ggf. unter Zugabe von Wasser (Schritt A1) oder bei erhöhter Temperatur, ggf. in Gegenwart von Wasser (Schritt A2) durchgeführt.
In Schritt A1 können als Säuren anorganische Säuren, organische Säuren oder Ge- mische hiervon eingesetzt werden.
Beispiele für anorganische Säuren sind Halogenwasserstoffsäuren, wie z.B. HF, HCl, HBr oder Hl, Perhalogensäuren, wie z.B. HCIO4, Halogensäuren, wie z.B. HCIO3, schwefelhaltige Säuren, wie z.B. HaSO4, Polyschwefelsäure oder H2SO3, stickstoffhaltige Säuren, wie z.B. HNO3, oder phosphorhaltige Säuren, wie z.B.
HaPO4, Polyphosphorsäure oder H3PO3 Vorzugsweise werden Halogenwasserstoffsäuren, wie z.B. HCl oder HBr, HaSO4, HNθ3 θder HsPO4 eingesetzt, insbesondere HCl, H2SO4 oder H3PO4.
Beispiele für organische Säuren sind Carbonsäuren, wie
• Ci-Cδ-Alkancarbonsäuren, beispielsweise Essigsäure, Propionsäure, n- Butancarbonsäure oder Pivalinsäure,
• Di-bzw. Polycarbonsäuren, beispielsweise Bernsternsäure, Maleinsäure oder Fumarsäure,
• Hydroxycarbonsäuren, beispielsweise Hydroxyessigsäure, Milchsäure, Äpfelsäure oder Citronensäure,
• halogenierte Carbonsäuren, beispielsweise Ci-Cδ-Halogenalkancarbonsäuren, z.B. Fluoressigsäure, Chloressigsäure, Bromessigsäure, Difluoressigsäure, Dichloressigsäure, Chlorfluoressigsäure, Trifluoressigsäure, Trichloressigsäure, 2-Chlorpropionsäure, Perfluorpropionsäure oder Perfluorbutancarbonsäure,
• aromatische Carbonsäuren, beipielsweise Arylcarbonsäuren, wie Benzoesäure;
oder Sulfonsäuren, wie
• Ci-Cδ-Alkansulfonsäuren, beispielsweise Methansulfonsäure oder Ethansulfon- säure,
• halogenierte Sulfonsäuren, beispielsweise Ci-Cδ-Halogenalkansulfonsäuren, wie Trifluormethansulfonsäure,
• aromatische Sulfonsäuren, beispielsweise Arylsulfonsäuren, wie Benzolsulfon- säure oder 4-Methylphenylsulfonsäure.
Vorzugsweise werden als organische Säuren Ci-Cδ-Alkancarbonsäuren, beispielsweise Essigsäure oder Propionsäure, halogenierte Carbonsäuren, beispielsweise d- Cδ-Halogenalkancarbonsäuren z.B. Fluoressigsäure, Chloressigsäure, Difluoressigsäure, Dichloressigsäure, Chlorfluoressigsäure, Trifluoressigsäure, Trichloressigsäure oder Perfluorpropionsäure, oder Sulfonsäuren, wie Ci-Cδ-Alkansulfonsäuren, beispielsweise Methansulfonsäure oder Ethansulfonsäure, halogenierte Sulfonsäuren, beispielsweise Ci-Cδ-Halogenalkansulfonsäuren, wie Trifluormethansulfonsäure, oder Arylsulfonsäuren, wie Benzolsulfonsäure oder 4-Methylphenylsulfonsäure, eingesetzt. Vorzugsweise werden Essigsäure, Chlorfluoressigsäure, Trifluoressigsäure, Perfluorpropionsäure, Methansulfonsäure, Trifluormethansulfonsäure oder 4-Methyl- phenylsulfonsäure, verwendet.
In einer besonderen erfindungsgemäßen Ausgestaltung werden als Säure Schwefelsäure, Essigsäure, Trifluoressigsäure, Methansulfonsäure oder 4-Methylphenyl-
sulfonsäure eingesetzt. Für den Fall, dass 4-Methylphenylsulfonsäure-Monohydrat eingesetzt wird, liegt bereits ein Äquivalent Wasser mit vor.
In einer besonderen Ausführungsform werden ionische Flüssigkeiten und Säuren eingesetzt, deren Anionen identisch sind. Vorzugsweise sind diese Anionen Acetat, Trifluoracetat, Chlorid oder Bromid; insbesondere bevorzugt Acetat; ebenso insbesondere bevorzugt Chlorid.
In einer weiteren besonderen Ausführungsform werden ionische Flüssigkeiten und Säuren eingesetzt, deren Anionen nicht identisch sind.
In Schritt B werden Acylierungsmittel eingesetzt. Acylierungsmittel im Sinne der vorliegenden Erfindung sind Carbonsäurederivate sowie Ketene und Diketene.
Carbonsäurederivate im Sinne der vorliegenden Erfindung sind Carbonsäurederivate der Formel IV
O
R X (IV)
wobei die Reste folgende Bedeutung haben:
Rx, Rx' H, d-Cao-Alkyl, C2-C3o-Alkenyl, C2-C3O-AI kinyl, C3-Ci2-Cycloalkyl, C5-Ci2- Cycloalkenyl, Aryl oder Heterocyclyl, wobei diese sieben letztgenannten Reste ggf. substituiert sein können;
X Halogen, lmidazol-1-yl oder O-CORx'.
Ketene im Sinne der vorliegenden Erfindung (Verbindungen der Formel V) sind Ke- tene der Formel Va und Diketene im Sinne der vorliegenden Erfindungen sind Diketene der Formel Vb1 oder gemischte Diketene der Formel Vb2,
Va Vh 1 Vb2
wobei die Reste folgende Bedeutung haben:
Ry, Ry', Rz, Rz' Wasserstoff, Ci-C3o-Alkyl, C2-C3o-Alkenyl, C2-C3o-Alkinyl, C3-Ci2- Cycloalkyl, C5-Ci2-Cycloalkenyl, Aryl oder Heterocyclyl, wobei die sieben letztgenannten Reste ggf. substituiert sein können;
oder
Ry und Rz bzw. Ry' und Rz' bilden gemeinsam eine ggf. substituierte -YO-(CH2)P-, -(CH2Jq -Y-(CH2Jr oder eine -CH=CH-CH=CH- -Kette, wobei
Y O, S, S(=O), S(=O)2, NH oder NCi-C6-Alkyl; o O oder i ; p 2, 3, 4, 5, 6, 7 oder 8; q, r 1 ,2, 3, 4, 5 oder 6;
bedeuten.
Als gegebenenfalls substituierte Ci-C30-Alkyl-Reste für Rx, Rx', Ry, Ry', Rz bzw. Rz' seien insbesondere unsubstituierte Ci-C3o-Alkyl-Reste oder durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Hete- rocyclen substituierte Ci-C3o-Alkyl-Reste genannt, vorzugsweise Ci-C3o-Alkyl-Reste, wie beispielsweise Methyl, Ethyl, 1-Propyl, 2- Propyl, 1-Butyl, 2-Butyl, 2-Methyl-1-propyl, 2-Methyl-2-propyl, 1-Pentyl, 2-Pentyl, 3- Pentyl, 2-Methyl-1-butyl, 3-Methyl-1-butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2- Dimethyl-1-propyl, 1-Hexyl, 2-Hexyl, 3-Hexyl, 2-Methyl-1-pentyl, 3-Methyl-1-pentyl, 4-Methyl-1-pentyl, 2-Methyl-2-pentyl, 3-Methyl-2-pentyl, 4-Methyl-2-pentyl, 2-Methyl- 3-pentyl, 3-Methyl-3-pentyl, 2,2-Dimethyl-1-butyl, 2,3-Dimethyl-1-butyl, 3,3-Dimethyl- 1-butyl, 2-Ethyl-1-butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, Heptyl, Octyl, 2- Etylhexyl, 2,4,4-Trimethylpentyl, 1 ,1 ,3,3-Tetramethylbutyl, 1-Nonyl, 1-Decyl, 1- Undecyl, 1-Dodecyl, 1-Tridecyl, 1-Tetradecyl, 1-Pentadecyl, 1-Hexadecyl, 1- Heptadecyl, 1-Octadecyl und 1-Eicosan-yl genannt, besonders bevorzugt Methyl, Ethyl, 1-Propyl, 1-Butyl, 1-Decyl, 1-Dodecyl, 1-Tetradecyl oder 1-Hexadecyl; oder vorzugsweise durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Heterocyclen substituierte Ci-C3o-Alkyl-Reste, wie beispielsweise Cyanomethyl, 2-Cyanoethyl, 2-Cyanopropyl, Methoxycarbonylmethyl, 2-Methoxycarbonylethyl, Ethoxycarbonylmethyl, 2-Ethoxycarbonylethyl, 2-(Butoxy- carbonyl)-ethyl, 2-Butoxycarbonylpropyl, 1 ,2-Di-(methoxycarbonyl)-ethyl, Formyl, Hydroxymethyl, 2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, 4-Hydroxybutyl, 6-Hydroxyhexyl, 2-Hydroxy-2,2-dimethylethyl, Aminomethyl, 2-Aminoethyl, 2-Amino- propyl, 3-Aminopropyl, 4-Aminobutyl, 6-Aminohexyl, Methylaminomethyl, 2-Methyl- aminoethyl, 2-Methylaminopropyl, 3-Methylaminopropyl, 4-Methylaminobutyl, 6- Methylaminohexyl, Dimethylaminomethyl, 2-Dimethylaminoethyl, 2-Dimethylamino-
propyl, 3-Dimethylaminopropyl, 4-Dimethylaminobutyl, 6-Dimethylaminohexyl, Phe- noxymethyl, 2-Phenoxyethyl, 2-Phenoxypropyl, 3-Phenoxypropyl, 4-Phenoxybutyl, 6-Phenoxyhexyl, Methoxymethyl, 2-Methoxyethyl, 2-Methoxypropyl, 3-Methoxy- propyl, 4-Methoxybutyl, 6-Methoxyhexyl, Ethoxymethyl, 2-Ethoxyethyl, 2-Ethoxy- propyl, 3-Ethoxypropyl, 4-Ethoxybutyl, 6-Ethoxyhexyl, 2-Butoxyethyl, 2-lsoprop- oxyethyl, 2-Butoxypropyl, 2-Octyloxyethyl, 2-Methoxyisopropyl, Dimethoxymethyl, Diethoxymethyl, 2,2-Diethoxymethyl, 2,2-Diethoxyethyl, Acetyl, Propionyl, CmF2(m- a)+(i-b)H2a+b mit m gleich 1 bis 30, 0 < a < m und b = 0 oder 1 (beispielsweise CF3, C2F5, CH2CH2-C(m-2)F2(m-2)+i, C6Fi3, C8Fi7, C10F21, Ci2F25), Chlormethyl, 2-Chlorethyl, Trichlormethyl, 1 ,1-Dimethyl-2-chlorethyl, Methylthiomethyl, Ethylthiomethyl, Bu- tylthiomethyl, 2-Dodecylthioethyl, 2-Phenylthioethyl, 5-Hydroxy-3-oxa-pentyl, 8- Hydroxy-3,6-dioxa-octyl, 1 1-Hydroxy-3,6,9-trioxa-undecyl, 7-Hydroxy-4-oxa-heptyl, 1 1-Hydroxy-4,8-dioxa-undecyl, 15-Hydroxy-4,8,12-trioxa-pentadecyl, 9-Hydroxy-5- oxa-nonyl, 14-Hydroxy-5,10-dioxa-tetradecyl, 5-Methoxy-3-oxa-pentyl, 8-Methoxy- 3,6-dioxa-octyl, 11-Methoxy-3,6,9-trioxa-undecyl, 7-Methoxy-4-oxa-heptyl, 1 1-
Methoxy-4,8-dioxa-undecyl, 15-Methoxy-4,8,12-trioxa-pentadecyl, 9-Methoxy-5-oxa- nonyl, 14-Methoxy-5,10-dioxa-tetradecyl, 5-Ethoxy-3-oxa-pentyl, 8-Ethoxy-3,6-dioxa- octyl, 1 1-Ethoxy-3,6,9-trioxa-undecyl, 7-Ethoxy-4-oxa-heptyl, 1 1-Ethoxy-4,8-dioxa- undecyl, 15-Ethoxy-4,8,12-trioxa-pentadecyl, 9-Ethoxy-5-oxa-nonyl oder 14-Ethoxy- 5,10-oxa-tetradecyl.
Als gegebenenfalls substituierte C2-C3o-Alkenyl-Reste für Rx, Rx', Ry, Ry', Rz bzw. Rz' seien insbesondere unsubstituierte C2-C3o-Alkenyl-Reste oder durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Heterocyclen substituierte C2-C3o-Alkenyl-Reste genannt, vorzugsweise C2-C3o-Alkenyl-Reste, wie beispielsweise Vinyl, 2-Propenyl, 3-Butenyl, cis-2-Butenyl oder trans-2-Butenyl, besonders bevorzugt Vinyl oder 2-Propenyl; oder vorzugsweise durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Heterocyclen substituierte C2-C3o-Alkenyl-Reste, wie beispielsweise CmF2(m-a)-(i-b)H2a-b mit im < 30, 0 < a < m und b = 0 oder 1.
Als gegebenenfalls substituierte C2-C3o-Alkinyl-Reste für Rx, Rx', Ry, Ry', Rz bzw. Rz' seien insbesondere unsubstituierte C2-C3o-Alkinyl-Reste oder durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder
Heterocyclen substituierte C2-C3o-Alkinyl-Reste genannt, vorzugsweise C2-C3o-Alkinyl-Reste, wie beispielsweise Ethinyl, 1-Propin-3-yl, 1-
Propin-1-yl oder 3-Methyl-1-propin-3-yl, besonders bevorzugt Ethinyl oder 1-Propin-
3-yl. Als gegebenenfalls substituierte C3-Ci2-Cycloalkyl-Reste für Rx, Rx', Ry, Ry', Rz bzw.
Rz' seien insbesondere unsubstituierte Cs-Cβ-Cycloalkyl-Reste oder durch funktionel-
Ie Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Heterocyclen substituierte C3-Ci2-Cycloalkyl-Reste genannt, vorzugsweise C3-Ci2-Cycloalkyl-Reste, wie beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclooctyl, Cyclododecyl, Methylcyclopentyl, Dimethyl- cyclopentyl, Methylcyclohexyl, Dimethylcyclohexyl, Diethylcyclohexyl oder Butylcyc- lohexyl, sowie bicyclische System wie z.B. Norbornyl, vorzugsweise Cyclopentyl o- der Cyclohexyl; oder vorzugsweise durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Heterocyclen substituiert C3-Ci2-Cycloalkyl-Reste, wie beispielsweise Methoxycyclohexyl, Dimethoxycyclohexyl, Diethoxycyclohexyl, Butylthiocyclohexyl, Chlorcyclohexyl, Dichlorcyclohexyl, Dichlorcyclopentyl, CmF2(m-a)- (i-b)H2a-b mit m < 30, 0 < a < m und b = 0 oder 1.
Als gegebenenfalls substituierte C5-Ci2-Cycloalkenyl-Reste für Rx, Rx', Ry, Ry', Rz bzw. Rz' seien insbesondere unsubstituierte Ca-Cβ-Cycloalkenyl-Reste oder durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Heterocyclen substituierte Ca-Cs-Cycloalkenyl-Reste genannt, vorzugsweise Ca-Cs-Cycloalkenyl-Reste, wie beispielsweise 3-Cyclopentenyl, 2- Cyclohexenyl, 3-Cyclohexenyl, 2,5-Cyclohexadienyl, sowie bicyclische System wie z.B. Norbornyl, besonders bevorzugt 3-Cyclopentenyl, 2-Cyclohexenyl oder 3-Cyclo- hexenyl; oder vorzugsweise durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Heterocyclen substituierte Ca-Cβ-Cycloalkenyl-
Reste, wie beispielsweise CnF2(m-a)-3(i-b)H2a-3b mit im < 12, 0 < a < m und b = 0 oder 1.
Als gegebenenfalls substituierte Aryl-Reste für Rx, Rx', Ry, Ry', Rz bzw. Rz' seien insbesondere unsubstituierte C6-Ci2-Aryl-Reste oder durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Heterocyclen substituierte C6-Ci2-Aryl-Reste genannt, vorzugsweise C6-Ci2-Aryl-Reste, wie beispielsweise Phenyl, α-Naphthyl oder ß- Naphthyl, besonders bevorzugt Phenyl; oder vorzugsweise durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Heterocyclen substituierte C6-Ci2-Aryl-Reste, wie ToIyI, XyIyI, 4-Diphenylyl, Chlorphenyl, Dichlorphenyl, Trichlorphenyl, Difluorphenyl, Methylphenyl, Dimethylphenyl, Trimethylphenyl, Ethylphenyl, Diethylphenyl, iso- Propylphenyl, tert.-Butylphenyl, Dodecylphenyl, Methoxyphenyl, Dimethoxyphenyl, Ethoxyphenyl, Hexyloxyphenyl, Methylnaphthyl, Isopropylnaphthyl, Chlornaphthyl, Ethoxynaphthyl, 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 2,6-Dimethoxyphenyl, 2,6-Dichlorphenyl, 4-Bromphenyl, 2-Nitrophenyl, 4-Nitrophenyl, 2,4-Dinitrophenyl,
2,6-Dinitrophenyl, 4-Dimethylaminophenyl, 4-Acetylphenyl, Methoxyethylphenyl, Eth- oxymethylphenyl, Methylthiophenyl, Isopropylthiophenyl oder tert.-Butylthiophenyl oder C6F(5-a)Ha mit 0 < a < 5, besonders bevorzugt 4-ToIyI.
Als gegebenenfalls substituierte Heterocyclyl-Reste seien insbesondere unsubstitu- ierte Heteroaryl-Reste oder durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Heterocyclen substituierte Heteroaryl- Reste genannt, vorzugsweise 5- oder 6-gliedrige Heteroaryl-Reste, welche Sauerstoff-, Stickstoff- und/oder Schwefelatome aufweisen, wie Furyl, Thiophenyl, Pyrryl, Pyridyl, Indolyl, Benzoxazolyl, Dioxolyl, Dioxyl, Benzimidazolyl oder Benzthiazolyl; oder vorzugsweise durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Cycloalkyl, Halogen, Heteroatome und/oder Heterocyclen substituierte 5- oder 6-gliedrige Hete- roaryl-Reste, welche Sauerstoff-, Stickstoff- und/oder Schwefelatome aufweisen, wie Methylpyridy, Dimethylpyridyl, Methylchinolyl, Dimethylpyrryl, Methoxyfuryl, Di- methoxypyridyl, Chlorpyridyl, oder Difluorpyridyl.
Falls Ry und Rz bzw. Ry' und Rz' gemeinsam eine ggf. substituierte -Y0-(CH2)P-, -(CH2)q-Y-(CH2)r oder eine -CH=CH-CH=CH- -Kette bilden, kommen vorzugsweise eine -Yo-(CH2)P-, -(CH2)q-Y-(CH2)r oder eine -CH=CH-CH=CH- -Kette, besonders
-(CH2)S-, -(CH2)6- oder -CH=CH-CH=CH-, insbesondere -(CH2)5- oder -(CH2)6-, in
Betracht, oder eine durch Ci-C4-Alkyl-substituierte -YO-(CH2)P-, -(CH2)q-Y-(CH2)r oder eine durch
Ci-C4-Alkyl-substituierte -CH=CH-CH=CH- -Kette, in Betracht.
In einer Ausführungsform der vorliegenden Erfindung werden Carbonsäurederivate der Formel IV eingesetzt.
Insbesondere werden Carbonsäurederivate der Formel IV eingesetzt, wobei die Reste folgende Bedeutungen haben:
Rx, Rx' Wasserstoff oder Ci-C3o-Alkyl;
X Halogen oder O-CORX'.
Insbesondere bevorzugt werden Carbonsäurederivate der Formel IV eingesetzt, wobei die Reste folgende Bedeutungen haben:
Rx Wasserstoff oder Ci-Cis-Alkyl, vorzugsweise Wasserstoff oder Ci-Cβ-Alkyl; besonders bevorzugt Methyl, Ethyl oder Butyl;
X Halogen, vorzugsweise Chlorid.
Ebenso insbesondere bevorzugt werden Carbonsäurederivate der Formel IV einge- setzt, wobei die Reste folgende Bedeutungen haben:
Rx 1-Decyl, 1-Dodecyl, 1-Tetradecyl oder 1-Hexadecyl;
X Halogen, vorzugsweise Chlorid.
Insbesondere bevorzugt werden Carbonsäurederivate der Formel IV eingesetzt, wobei die Reste folgende Bedeutungen haben:
Rx., Rx' Wasserstoff oder Ci-Cis-Alkyl, vorzugsweise Wasserstoff oder Ci-Cβ- Alkyl; besonders bevorzugt Methyl, Ethyl oder Butyl;
X OCORx'.
Außerordentlich bevorzugt werden Carbonsäurederivate der Formel IV eingesetzt, wobei die Reste Rx und Rx' die gleiche Bedeutung haben („symmetrische Carbonsäureanhydride").
Ebenso insbesondere bevorzugt werden Carbonsäurederivate der Formel IV eingesetzt, wobei die Reste folgende Bedeutungen haben:
Rx 1-Decyl, 1-Dodecyl, 1-Tetradecyl oder 1-Hexadecyl;
X OCORX.
Außerordentlich bevorzugt werden Carbonsäurederivate der Formel IV eingesetzt, wobei die Reste Rx und Rx' die gleiche Bedeutung haben („symmetrische Carbonsäureanhydride").
In einer weiteren Ausführungsform der vorliegenden Erfindung werden Ketene der Formel Va eingesetzt.
Insbesondere werden Ketene der Formel Va eingesetzt, wobei die Reste folgende Bedeutungen haben:
Ry Wasserstoff oder Ci-Cis-Alkyl, vorzugsweise Wasserstoff oder Ci-Cβ-Alkyl; besonders bevorzugt Wasserstoff, Methyl oder Ethyl; außerordentlich bevorzugt Wasserstoff;
Rz Wasserstoff.
Ebenso insbesondere werden Ketene der Formel Va eingesetzt, wobei die Reste folgende Bedeutungen haben:
Ry 1-Decyl, 1-Dodecyl, 1-Tetradecyl oder 1-Hexadecyl;
Rz Wasserstoff.
In einer weiteren Ausführungsform der vorliegenden Erfindung werden Diketene der Formel Vb1 eingesetzt.
Insbesondere werden Diketene der Formel Vb1 eingesetzt, wobei die Reste folgende Bedeutungen haben:
Ry Wasserstoff oder Ci-Cis-Alkyl, vorzugsweise Wasserstoff oder Ci-Cβ Alkyl, besonders bevorzugt Wasserstoff, Methyl oder Ethyl, insbesondere Wasserstoff;
Rz Wasserstoff.
Ebenso insbesondere bevorzugt sind Diketene der Formel Vb1 , wobei die Reste folgende Bedeutungen haben:
Ry 1-Decyl, 1-Dodecyl, 1-Tetradecyl oder 1-Hexadecyl;
Rz Wasserstoff.
In einer weiteren Ausführungsform der vorliegenden Erfindung werden gemischte Diketene der Formel Vb2 eingesetzt.
Insbesondere werden gemischte Diketene der Formel Vb2 eingesetzt, wobei die Reste folgende Bedeutungen haben:
Ry, Ry Wasserstoff oder Ci-Cδ-Alkyl, vorzugsweise Wasserstoff, Methyl oder Ethyl, insbesondere Wasserstoff;
Rz, Rz' Wasserstoff.
Ebenso insbesondere werden Diketene der Formel Vb2 eingesetzt, wobei die Reste folgende Bedeutungen haben:
Ry, Ry' 1-Decyl, 1-Dodecyl, 1-Tetradecyl oder 1-Hexadecyl
Rz, Rz' Wasserstoff.
Für das erfindungsgemäße Verfahren können Cellulosen aus den unterschiedlichsten Quellen verwendet werden, wie z.B. aus Baumwolle, Flachs, Ramie, Stroh, Bakterien etc., oder aus Holz oder Bagasse, in der celluloseangereicherten Form.
In das erfindungsgemäße Verfahren kann aber nicht nur Cellulose eingesetzt werden, sondern generell ein PoIy- oder ein Oligosaccharid.. Als Beispiele für Polysaccharide sind neben Cellulose und Hemicellulose, Stärke, Glycogen, Dextran und Tunicin zu nennen. Ebenso zählen hierzu die Polykondensate der D-Fructose, wie Inulin, sowie u.a. Chitin und Alginsäure. Die entsprechenden Ausführungen gelten hier entsprechend.
In einer Ausführungsform der vorliegenden Erfindung wird nach dem erfindungsgemäßen Verfahren ein Polysaccharid, wie z.B. Cellulose, Hemicellulose, Stärke, GIy- cogen, Dextran, Tunicin, Inulin, Chitin oder Alginsäure, vorzugsweise Cellulose, umgesetzt.
Bei dem erfindungsgemäßen Verfahren wird eine Lösung von Cellulose in ionischer Flüssigkeit, hergestellt. Die Konzentration an Cellulose kann hierbei in großen Bereichen variiert werden. Üblicherweise liegt sie im Bereich von 0,1 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Lösung, bevorzugt bei 0,2 bis 40 Gew.-%, besonders bevorzugt bei 0,3 bis 30 Gew.-% und insbesondere bevorzugt bei 0,5 bis 20% Gew.-%.
Dieser Lösungsvorgang kann bei Raumtemperatur oder unter Erwärmung durchgeführt werden, jedoch oberhalb der Schmelz- bzw. Erweichungstemperatur der ionischen Flüssigkeit, üblicherweise bei einer Temperatur von 0 bis 200 °C, bevorzugt bei 20 bis 180 °C, besonders bevorzugt bei 50 bis 150 °C. Es ist aber auch möglich den Lösevorgang durch intensives Rühren bzw. Mischen sowie durch Eintrag von Mikrowellen- oder Ultraschallenergie oder durch Kombination derselben zu beschleunigen.
Diese Lösung wird nun in Schritt A1) oder in Schritt A2) eingesetzt.
In dem erfindungsgemäßen Schritt A1 ) wird der gezielte Abbau in Gegenwart einer Säure, ggf. unter Zugabe von Wasser durchgeführt.
Als Säuren werden anorganische Säuren, organische Säuren oder Gemische hier- von eingesetzt, wie voranstehend beschrieben.
In einer besonderen Ausführungsform werden ionische Flüssigkeiten und Säuren eingesetzt, deren Anionen identisch sind. Vorzugsweise sind diese Anionen Acetat, Trifluoracetat, Chlorid oder Bromid.
In einer weiteren besonderen Ausführungsform werden ionische Flüssigkeiten und Säuren eingesetzt, deren Anionen nicht identisch sind.
Wie bereits voranstehend beschrieben wird die Cellulose in der ionischen Flüssigkeit gelöst. Zu dieser so erhaltenen Lösung wird nun die Säure und ggf. Wasser zugegeben. Die Zugabe von Wasser kann notwendig werden, wenn das an der eingesetzten Cellulose anhaftende Wasser nicht ausreichend ist, den gewünschten Abbaugrad zu erreichen. In der Regel liegt der Wasseranteil bei üblicher Cellulose in Bereich von 5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der eingesetzten CeIIu- lose (Cellulose an sich + anhaftendes Wasser). Für einen partiellen Abbau der Cellulose werden die entsprechend stöchiometrisch notwendigen Mengen an Wasser und Säure zugegeben, die notwendig sind um einen entsprechenden DP-Wert zu erreichen. Es ist aber auch möglich Wasser und Säure im Überschuß einzusetzen und die Reaktion abzubrechen, wenn der gewünschte Abbaugrad errreicht ist.
In einer anderen Ausführungsform werden die ionische Flüssigkeit, Säure und ggf. Wasser vorgemischt und die Cellulose in dieser Mischung gelöst.
Es besteht auch die Möglichkeit, dass ein oder mehrere weitere Lösungsmittel zu dem Reaktionsgemisch gegeben werden oder bereits mit der ionischen Flüssigkeit und/oder der Säure und/oder ggf. dem Wasser zugefügt werden. Als Lösungsmittel kommen hierbei solche in Frage, welche die Löslichkeit der Cellulose nicht negativ beeinträchtigen, wie aprotisch-dipolare Lösungsmittel, beispielsweise Dimethylsulfo- xid, Dimethylformamid, Dimethylacetamid oder Sulfolan.
In einer besonderen Ausführungsform enthält das Reaktionsgemisch weniger als 5 Gew.-%, bevorzugt weniger als 2-Gew.-%, insbesondere weniger als 0,1 Gew.-% an weiteren Lösungsmitteln, bezogen auf das Gesamtgewicht des Reaktionsgemisches.
Die Hydrolyse wird in Abhängigkeit von der eingesetzten ionischen Flüssigkeit und der eingesetzten Säure üblicherweise bei einer Temperatur vom Schmelzpunkt der
ionischen Flüssigkeit bis 200 °C, bevorzugt von 20 bis 180 °C, insbesondere von 50 bis 150 °C durchgeführt.
Üblicherweise erfolgt die Umsetzung bei Umgebungsdruck. Es kann von Fall zu Fall aber auch von Vorteil sein, bei Überdruck zu arbeiten, insbesondere dann, wenn leichtflüchtige Säuren eingesetzt werden.
In der Regel wird die Umsetzung an Luft durchgeführt. Es ist aber auch möglich unter Inertgas, also beispielsweise unter N2, einem Edelgas oder einem Gemisch hier- von zu arbeiten.
In Abhängigkeit von dem gewünschten Abbaugrad wird die Menge an eingesetzter Säure, das ggf. zuzusetzende Wasser, -jeweils im Verhältnis zu der eingesetzten Cellulose - die Reaktionszeit und ggf. die Reaktionstemperatur eingestellt.
Wenn es gewünscht wird, die Cellulose, welche im Durchschnitt aus x Anhydroglu- coseeinheiten aufgebaut ist, in eine Cellulose überzuführen, deren Anzahl an An- hydroglucoseeinheiten kleiner x ist, so wird üblicherweise die Menge an eingesetztem Wasser und eingesetzter Säure entsprechend dem Abbaugrad angepasst (ΠAΠ- hydroglucoseemheiten/nsaure > 1 ). Jβ größer der Quotient nAnhydroglucoseeinheiten/nSaure ist, dβStO geringer wird unter sonst gleichen Reaktionsbedingungen und gleicher Reaktionszeit der durchschnittliche Abbau an Cellulose sein. Je größer der Quotient nAnhydrogiu∞seem- heiten/nwasser ist, desto geringer wird unter sonst gleichen Reaktionsbedingungen und gleicher Reaktionszeit der durchschnittliche Abbau an Cellulose sein.
Es ist auch möglich die Hydrolysereaktion abzubrechen, wenn der gewünschte Grad an Abbau erreicht ist, indem die Säure mit einer Base abgefangen wird. Als Basen eignen sich sowohl anorganische Basen, wie z.B. Alkalihydroxide, -carbonate, -hy- drogencarbonate, aber auch organische Basen wie z.B. Amine, die im stöchiometri- sehen Verhältnis zur Säure oder im Überschuss eingesetzt werden. In einer weiteren Ausführungsform kann als Base ein Hydroxid eingesetzt werden, das dadurch gekennzeichnet ist, dass dessen Kation dem der eingesetzten ionischen Flüssigkeit entspricht.
Es ist auch möglich, die Abbaureaktion abzubrechen, wenn der gewünschte Grad an Abbau erreicht ist, indem entsprechende Mengen an Acylierungsmittel zugesetzt werden, welche mit dem noch vorhandenen Wasser abreagieren.
Diese so erhaltene Lösung wird nun in Schritt B) eingesetzt.
Alternativ zu dem Schritt A1 ) kann auch der Schritt A2) durchgeführt werden.
In dem erfindungsgemäßen Schritt A2) wird die Cellulose ggf. unter Zugabe von Wasser bei erhöhter Temperatur behandelt.
Falls ionische Flüssigkeiten eingesetzt werden, die keinen aciden Charakter besitzen, dann wird der Abbau üblicherweise bei Temperaturen von 50 °C bis 200 °C, bevorzugt von 80 bis 180 °C, insbesondere von 50 bis 150 °C durchgeführt.
Als ionische Flüssigkeiten kommen hierbei solche in Betracht, deren Anionen aus- gewählt sind aus der Gruppe der Halogenide, der Gruppe der halogenhaltigen Verbindungen, der Gruppe der Carbonsäuren, der Gruppe enthaltend SO4 2", SO32", Ra" OSO3- und R3SO3 ", sowie der Gruppe enthaltend PO4 3" und RaRbPO4 ". Bevorzugte Anionen sind hierbei Chlorid, Bromid, lodid, SCN", OCN", CN", Acetat, Ci-C4-Alkyl- sulfate, Ra-COO", R3SO3 ", RaRbPO4 ", Methansulfonat, Tosylat oder Ci-C4-Dialkyl- phosphate; und besonders bevorzugte Anionen sind Cl", CH3COO", C2H5COO", C6H5COO", CH3SO3 ", (CH3O)2PO2- oder (C2H5O)2PO2-
FaIIs ionische Flüssigkeiten eingesetzt werden, die aciden Charakter besitzen, dann ist es auch möglich, die Reaktionstemperatur abzusenken. Hierbei kommen insbe- sondere ionische Flüssigkeiten in Betracht, deren Anionen ausgewählt sind aus der Gruppe enthaltend HSO4-, HPO4 2", H2PO4- und HR3PO4-; insbesondere HSO4-.
Vorzugsweise werden Umsetzungen in diesen ionischen Flüssigkeiten bei einer Temperatur von O bis 150 °C, bevorzugt von 20 bis 150 °C, insbesondere von 50 bis 150 °C durchgeführt.
In einer Ausführungsform werden die Herstellung der Reaktionslösung und der Abbau bei der gleichen Temperatur durchgeführt.
In einer weiteren Ausgestaltungsform werden die Herstellung der Reaktionslösung und der Abbau bei verschiedenen Temperaturen durchgeführt.
Von Fall zu Fall ist es auch möglich, dass schon während der Herstellung der Reaktionslösung ein Abbau der Cellulose stattfindet. In einer speziellen Ausgestaltungs- form finden der Löse- und der Abbauprozess quasi parallel statt.
In der Regel wird die Umsetzung an Luft durchgeführt. Es ist aber auch möglich unter Inertgas, also beispielsweise unter N2, einem Edelgase oder auch Gemischen hiervon, zu arbeiten.
In Abhängigkeit von dem gewünschten Abbaugrad wird die Reaktionszeit und die Reaktionstemperatur eingestellt.
In einer Ausführungsform wird Wasser zugegeben, vorzugsweise in unterstöchio- metrischen Mengen, oder es wird ein Überschuss an Wasser eingesetzt und die Reaktion wird abgebrochen.
Wenn der Abbau in Gegenwart von Wasser durchgeführt wird ist es möglich die ionische Flüssigkeit und das Wasser vorzumischen und die Cellulose in dieser Mischung zu lösen. Es ist aber auch möglich das Wasser zu der Lösung von ionischer Flüssigkeit und Cellulose zugeben.
Wenn es gewünscht wird, die Cellulose, welche im Durchschnitt aus x Anhydroglu- coseeinheiten aufgebaut ist, in eine Cellulose überzuführen, deren Anzahl an An- hydroglucoseeinheiten kleiner x ist, so wird üblicherweise die Mengen an eingesetztem Wasser entsprechend dem Abbaugrad angepasst (nAnhydrogiucoseemheιten/nwasser > 1 ). Je größer der Quotient nAnhydrogiu∞seemheiten/nwasser ist, desto geringer wird unter sonst gleichen Reaktionsbedingungen und gleicher Reaktionszeit der durchschnittliche Abbau an Cellulose sein und desto höher der DP der abgebauten Cellulose (der natürlich kleiner sein wird als der DP der eingesetzten Cellulose).
In einer anderen Ausführungsform wird ohne Zusatz von Wasser gearbeitet. Dies ist in der Regel dann der Fall, wenn die eingesetzte ionische Flüssigkeit geringe Mengen an Wasser enthält und/oder wenn an der eingesetzten Cellulose Wasser anhaftet. Der Wasseranteil bei üblicher Cellulose kann bis zu 10 Gew.-%, bezogen auf das Gesamtgewicht der eingesetzten Cellulose, liegen. Die voranstehenden Ausführun- gen gelten entsprechend.
Es besteht auch die Möglichkeit, dass ein oder mehrere weitere Lösungsmittel zu dem Reaktionsgemisch oder dem Wasser - soweit dieses zugegeben wurde - zugefügt werden. Als Lösungsmittel kommen hierbei solche in Frage, welche die Löslichkeit der Cellulose nicht negativ beeinträchtigen, wie aprotisch dipolare Lösungsmittel, beispielsweise Dimethylsulfoxid, Dimethylformamid, Dimethylacetamid oder Sulfolan.
In einer besonderen Ausführungsform enthält das Reaktionsgemisch weniger als 5 Gew.-%, bevorzugt weniger als 2-Gew.-%, insbesondere weniger als 0,1 Gew.-% an weiteren Lösungsmitteln, bezogen auf das Gesamtgewicht des Reaktionsgemisches.
Weiterhin ist es möglich die Abbaureaktion abzubrechen, wenn der gewünschte Grad an Abbau erreicht ist, indem entsprechende Mengen an Acylierungsmittel zu- gegeben werden, welche mit noch vorhandenem Wasser abreagieren.
Die so erhaltene Lösung wird nun in Schritt B) eingesetzt.
Zu der aus Schritt A) erhaltenen Lösung wird nun das Acylierungsmittel gegeben.
Das Carbonsäurederivat der Formel IV bzw. das Keten der Formel V kann in Substanz, in einer ionischen Flüssigkeit oder in einem geeigneten Lösungsmittel gelöst zugegeben werden. Als Lösungsmittel eignen sich beispielsweise Ether, wie Diethy- lether, Methyl-tert.butyl-ether, Terahydrofuran oder Dioxan, oder Ketone, wie Dime- thylketon, oder halogenierte Kohlenwasserstoffe, wie Dichlormethan, Trichlormethan oder Dichlorethan. Die Menge an Lösungsmittel, die verwendetet wird um das Carbonsäurederivat der Formel IV bzw. das Keten der Formel V zu lösen, sollte so bemessen werden, dass keine Ausfällung der Cellulose bei der Zugabe eintritt. Als ionische Flüssigkeit kommt vorzugsweise diejenige in Betracht, in welcher die Cellulose selbst - wie voranstehend beschrieben - gelöst wird.
Falls das Carbonsäurederivat der Formel IV bzw. das Keten der Formel V gasförmig ist, so kann dieses in die Lösung von Cellulose in der ionischen Flüssigkeit eingegast werden.
In einer besonderen Ausführungsform wird das Carbonsäurederivat der Formel IV bzw. das Keten der Formel V in Substanz zugegeben.
In einer weiteren besonderen Ausführungsform wird das Carbonsäurederivat der Formel IV bzw. das Keten der Formel V in einer ionischen Flüssigkeit gelöst zugege- ben, wobei besonders bevorzugt die ionische Flüssigkeit verwendet wird, die auch zur Lösung der Cellulose verwendet wird.
Es besteht auch die Möglichkeit, dass ein oder mehrere weitere Lösungsmittel, zu dem Reaktionsgemisch gegeben werden, oder bereits mit der aus Schritt A) erhalte- nen Lösung oder dem Carbonsäurederivat der Formel IV bzw. dem Keten der Formel V zugeführt werden. Als Lösungsmittel kommen hierbei solche Lösungsmittel in Frage, welche die Löslichkeit der Cellulose nicht negativ beeinträchtigen, wie aproti- sche dipolare Lösungsmittel, beispielsweise Dimethylsulfoxid, Dimethylformamid, Dimethylacetamid oder Sulfolan. Weiterhin können auch stickstoffhaltige Basen, wie Pyridin etc., zusätzlich zugegeben werden.
In einer besonderen Ausführungsform enthält das Reaktionsgemisch neben der ionischen Flüssigkeit und ggf. dem Lösungsmittel, in dem das Carbonsäurederivat der Formel IV bzw. das Keten der Formel V gelöst ist, weniger als 5 Gew.%, bevorzugt weniger als 2 Gew.%, insbesondere weniger als 0,1 Gew.%, bezogen auf das Gesamtgewicht des Reaktionsgemisches, an weiteren Lösungsmitteln und/oder zusätzlichen stickstoffhaltigen Basen.
Für den Fall, dass als Acylierungsmittel Carbonsäurederivate der Formel IV mit X = HaI oder OCORX' eingesetzt werden kann es aber auch zweckmäßig sein die Acylie- rung in Gegenwart eines tertiären Amins, wie z.B. Triethylamin, einer aromatischen Stickstoffbase, wie z.B. Pyridin, oder Gemischen hiervon, durchzuführen. Das teriäre Amin, die aromatische Stickstoffbase oder die Gemische hiervon werden üblicherweise im stöchiometrischen Verhältnis eingesetzt. Von Fall zu Fall kann auch ein Über- oder ein Unterschuss von Vorteil sein.
Für den Fall, dass als Acylierungsmittel Ketene der Formel V eingesetzt werden ist auch möglich die erfindungsgemäße Acylierung in Gegenwart eines Katalysators durchzuführen. Hierfür eignen sich die Alkali- oder Erdalkalisalze der Ci-C4-Alkan- carbonsäuren oder der Benzoesäure. Beispiele hierfür sind Natriumacetat, Kalium- acetat, Natriumpropionat, Kaliumpropionat, Natriumbenzoat oder Kaliumbenzoat, vorzugsweise Natriumacetat. Es ist aber auch möglich die Säuren selbst, also die Ci-C4-Alkancarbonsäuren oder Benzoesäure, einzusetzen. Der Katalysator wird üblicherweise in Mengen bis zu 10 Mol-%, vorzugsweise bis zu 8 Mol-% bezogen auf das Keten der Formel V eingesetzt.
Die Umsetzung wird in Abhängigkeit von der eingesetzten ionischen Flüssigkeit und dem eingesetzten Carbonsäurederivats der Formel IV bzw. des eingesetzten Ketens der Formel V üblicherweise bei einer Temperatur von Schmelzpunkt der ionischen Flüssigkeit bis 200 °C, bevorzugt von 20 bis 180 °C, insbesondere von 50 bis 150 °C durchgeführt.
Bei Carbonsäurederivaten der Formel IV bzw. Ketenen der Formel V, die bei der Reaktionstemperatur flüssig oder fest sind, erfolgt üblicherweise die Umsetzung bei Umgebungsdruck. Es kann von Fall zu Fall aber auch von Vorteil sein, bei Überdruck zu arbeiten, insbesondere dann, wenn ein leichtflüchtiges Carbonsäurederivat der Formel IV oder Keten der Formel V eingesetzt wird. In der Regel wird die Umsetzung an Luft durchgeführt. Es ist aber auch möglich unter Inertgas, also beispielsweise unter N2, einem Edelgas oder Gemischen hiervon, zu arbeiten.
Bei Carbonsäurederivaten der Formel IV bzw. Ketenen der Formel V, die bei der Reaktionstemperatur gasförmig sind, kann es von Vorteil sein, die Reaktion unter dem Eigendruck des Reaktionsgemisches bei der gewünschten Reaktionstemperatur durchzuführen oder bei einem Druck der höher ist, als der Eigendruck des Reaktionssystems.
Es kann aber auch von Vorteil sein, die Umsetzung mit einem Carbonsäurederivat der Formel IV oder einen Keten der Formel V, das bei der Reaktionstemperatur gas-
förmig ist, unter Umgebungsdruck durchzuführen und das gasförmige Carbonsäurederivat der Formel IV bzw. das Keten der Formel V im Überschuss zu verwenden.
In Abhängigkeit von dem gewünschten Substitutionsgrad der Cellulose wird die Menge an eingesetztem Acylierungsmittel - jeweils im Verhältnis zu der eingesetzten Cellulose - die Reaktionszeit und ggf. die Reaktionstemperatur eingestellt.
Wenn es beispielsweise gewünscht ist, die Cellulose, welche im Durchschnitt aus u Anhydroglucoseeinheiten aufgebaut ist, vollständig zu acylieren, so werden 3u Äqui- valente Acylierungsmittel benötigt. Vorzugsweise wird hierbei die stöchiometrische Menge an Acylierungsmittel (nAcyiierungsmittei/nAnhydrogiucoseeinheiten = 3) oder ein Überschuß eingesetzt, vorzugsweise ein Überschuß von bis zu 1000 mol-% bezogen auf u. Wenn es gewünscht wird, die Cellulose, welche im Durchschnitt aus u Anhydroglucoseeinheiten aufgebaut ist, partiell zu acylieren, so werden üblicherweise die Men- ge an eingesetztem Acylierungsmittel angepasst (nAcyiierungsmittei/nAnhydrogiucoseeinheiten < 3). Je kleiner der Quotient nAcyiierungsmittei/nAnhydrogiucoseeinheiten ist, desto geringerwird unter sonst gleichen Bedingungen und gleicher Reaktionszeit der durchschnittliche Substitutionsgrad der acylierten Cellulose sein.
Weiterhin ist es möglich die Acylierungsreaktion abzubrechen, wenn der gewünschte Grad an Acylierung erreicht ist, indem die acylierte Cellulose aus dem Reaktionsgemisch abgetrennt wird. Dies kann beispielsweise durch Zugabe von einem Überschuss an Wasser oder einem anderen geeigneten Lösungsmittel, in dem die acylierte Cellulose nicht löslich, die ionische Flüssigkeit jedoch leicht löslich ist, wie z.B. einem niedrigen Alkohol, wie Methanol Ethanol, Propanol oder Butanol, oder mit einem Keton, beispielsweise Diethylketon etc., oder Gemischen hiervon, erfolgen. Die Wahl des geeigneten Lösungsmittels wird auch durch den jeweiligen Substitutionsgrad und den Substituenten der Cellulose bestimmt. Vorzugsweise wird ein Ü- berschuss an Wasser oder Methanol verwendet.
Die Aufarbeitung des Reaktionsgemisches erfolgt üblicherweise indem die acylierte Cellulose, wie oben beschrieben ausgefällt wird und die acylierte Cellulose abfiltriert wird. Es ist aber auch möglich die Trennung per Zentrifugation durchzuführen. Aus dem Filtrat bzw. dem Zentrifugat kann nach üblichen Methoden die ionische Flüssig- keit wiedergewonnen werden, indem die leichtflüchtigen Komponenten, wie z.B. das Fällmittel, oder überschüssiges Acylierungsmittel (bzw. Umsetzungsprodukte und/oder Hydrolyseprodukte des Acylierungsmittel) etc. abdestilliert werden. Die zurückbleibende ionische Flüssigkeit kann wieder in das erfindungsgemäße Verfahren eingesetzt werden.
Es ist aber auch möglich das Reaktionsgemisch in Wasser oder in ein anderes geeignetes Lösungsmittel, in dem die acylierte Cellulose nicht löslich, die ionische
Flüssigkeit jedoch leicht löslich ist, wie z.B. einem niedrigen Alkohol, wie Methanol Ethanol, Propanol oder Butanol, oder einem Keton, beispielsweise Diethylketon etc. oder Gemischen hiervon, einzuleiten und je nach Ausgestaltungsform beispielsweise Fasern, Folien von acylierter Cellulose zu erhalten. Die Wahl des geeigneten Lösu- sungsmittels wird auch durch den jeweiligen Substitutionsgrad und den Substituen- ten der Cellulose bestimmt. Das Filtrat wird wie voranstehend beschrieben aufgearbeitet.
Weiterhin ist es möglich die Acylierungsreaktion abzubrechen, wenn der gewünschte Grad an Acylierung erreicht ist, indem man das Reaktionsgemisch abkühlt und aufarbeitet. Die Aufarbeitung kann nach den voranstehen geschilderten Methoden erfolgen.
Der Abbruch der Acylierungsreaktion kann auch so erfolgen, dass zu einem gegebe- nen Zeitpunkt noch vorhandenes Acylierungsmittel aus dem Reaktionsgemisch durch Destillation, Strippen oder Extrahieren mit einem Lösemittel, das mit der ionischen Flüssigkeit zwei Phasen bildet, entfernt wird.
In einer weiteren Ausgestaltungsform der vorliegenden Erfindung werden zwei oder mehrere Acylierungsmittel eingesetzt. Hierbei kann ein Gemisch von zwei (oder mehreren) Carbonsäurederivaten der Formel IV bzw. Ketenen der Formel V in Analogie zu dem voranstehenden Procedere eingesetzt werden. Es ist aber auch möglich zuerst mit dem ersten Acylierungsmittel die Umsetzung bis zu einem DS = a (<3) durchzuführen und dann mit einem zweiten Acylierungsmittel die Umsetzung bis zu einem DS = b, wobei a < b < 3, durchzuführen.
Bei dieser Ausgestaltungsform werden acylierte Cellulosen erhalten, welche zwei (oder mehrere) unterschiedliche Acylreste (in Abhängigkeit von den eingesetzten Acylierungsmittel) tragen.
Für den Fall, dass die ionische Flüssigkeit in Kreislauffahrweise geführt wird, wird in einer Ausgestaltungsform die ionsche Flüssigkeit aufgereinigt, beispielsweise von dem Fällmittel, ggf. zugesetzten weiteren Lösungsmitteln, Hydrolyse- und Abbauprodukten des Acylierungsmittels etc. befreit, und wieder in Schritt A) eingesetzt. In ei- ner weiteren Ausgestaltungsform kann die ionische Flüssigkeit, welche bis zu 15
Gew.-%, bevorzugt bis zu 10 Gew.-%, insbesondere bis zu 5 Gew.-% an Fällmittel(n) etc. wie voranstehend beschrieben, enthält, in Schritt A) eingesetzt werden. Hierbei kann es allerdings von Fall zu Fall notwendig werden, beispielsweise wenn das Fällmittel freie Hydroxygruppen trägt, die in Schritt A) erhaltene Lösung, bevor diese in Schritt B) eingesetzt wird, von noch vorhandenem Fällmittel etc. zu befreien, beispielsweise, indem das noch vorhandene Fällmittel etc. abdestilliert wird, öder es wird ein entsprechender Überschuß an Acylierungsmittel eingesetzt.
Das Verfahren kann diskontinuierlich, semikontinuierlich oder kontinuierlich, durchgeführt werden.
Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Acylierung von Cellulose mit Carbonsäurederivaten der Formel IV, wie voranstehend definiert, in einer ionischen Flüssigkeit der Formel I ([A]+ [Y]""), oder der Formeln IIa, b, oder c ([A1]+[A2]+ [Y]n-, mit n = 2; [A1]+[A2]+[A3]+ [Y]"-), mit n = 3; oder [A1J+[A2J+ [A3J+[A4J+ [Y]n-, mit n = 4), wobei [A]n +, [A1J+, [ [A2J+, [ [A3J+, [A3J+, [A4J+ wie voranstehend definiert sind und [wobei [Y]p- ausgewählt sein kann aus
• der Gruppe der halogenhaltigen Verbindungen und der Pseudohalogenide der Formel:
BF4 ", PF6 ", CF3SO3-, (CF3SOs)2N-, CF3CO2-, CCI3CO2-, CN", SCN", OCN"
• der Gruppe der Sulfate, Sulfite und Sulfonate der allgemeinen Formel: SO4 2", HSO4-, SO3 2", HSO3-, R3OSO3-, R3SO3-
• der Gruppe der Phosphate der allgemeinen Formel PO4 3", HPO4 2", H2PO4-, R3PO4 2", HR3PO4-, R3RbPO4-
• der Gruppe der Phosphonate und Phosphinate der allgemeinen Formel: R3H PO3-, R3RbPO2-, R3RbPO3-
• der Gruppe der Phosphite der allgemeinen Formel: PO3 3", HPO3 2", H2PO3-, R3PO3 2", R3HPO3-, R3RbPO3-
• der Gruppe der Phosphonite und Phosphinite der allgemeinen Formel: R3RbPO2-, R3HPO2-, R3RbPO-, R3HPO"
• der Gruppe der Carbonsäuren der allgemeinen Formel: R3COO-
• der Gruppe der Borate der allgemeinen Formel: BO3 3", HBO3 2", H2BO3-, R3RbBO3-, R3HBO3-, R3BO3 2", B(0R3)(0Rb)(0Rc)(0Rd)-,
B(HSO4)-, B(R3SO4)-
• der Gruppe der Boronate der allgemeinen Formel: R3BO2 2-, R3RbBO-
• der Gruppe der Silikate und Kieselsäuresäureester der allgemeinen Formel:
SiO4 4", HSiO4 3", H2SiO4 2-, H3SiO4-, R3SiO4 3", R3RbSi04 2-, R3RbRcSi04-, HR3SiO4 2", H2R3SiO4 ", HR3RbSi04-
• der Gruppe der Alkyl- bzw. Arylsilan-Salze der allgemeinen Formel: R3SiO3 3", R3RbSi02 2-, R3RbRcSi0", R3RbRcSiO3-, R3RbRcSi02-, R3RbSi03 2-
• der Gruppe der Carbonsäureimide, Bis(sulfonyl)imide und Sulfonylimide der allgemeinen Formel:
der Gruppe der Methide der allgemeinen Formel:
SO2-R3
Rb-O2S SO2-RC
Die Bedeutung der Variablen ist wie voranstehend definiert. Ebenso gelten hier die voranstehend beschriebenen Ausgestaltungsformen und Verfahrensweisen analog.
Die nachfolgenden Beispiele dienen zur Veranschaulichung der Erfindung.
Vorbemerkung:
Avicel PH 101 bzw. Linters wurden über Nacht bei 80 °C bzw. 105 °C und jeweils 0,05 mbar getrocknet.
Die ionische Flüssigkeiten wurden über Nacht bei 120 °C und 0,05 mbar unter Rühren getrocknet.
Abkürzungen: BMIM CI 1-Butyl-3-methylimidazolium Chlorid
BMIM Ac 1-Butyl-3-methylimidazolium ChloridDS durchschnittlicher Substitutionsgrad
Beispiel 1 :
In einem 25 ml-Kolben mit Magnetrührer und Rückflusskühler wurden bei 120 °C 0,5 g Linters (DP 3250) in 9,5 g BMIM Cl eingetragen und unter Stickstoff 2 Stunden gerührt, bis eine klare Lösung entstanden ist. Nach Zugabe von 5,90 mg p-Toluol- sulfonsäure-Monohydrat wurde 6 Stunden bei 100 °C gerührt. Zu dem Gemisch wurden dann 3,0 g Essigsäureanhydrid gegeben und weitere 16 Stunden bei 100 °C gerührt. Nach Abkühlen auf Raumtemperatur wurde das Gemisch in 200 ml Methanol eingetragen, das ausgefallene Reaktionsprodukt abgesaugt, dreimal mit 20 ml Methanol gewaschen und bei 60°C und 0,05 mbar 16 Stunden bis zur Gewichtskonstanz getrocknet.
Man erhielt 0,85 g (90 % d.Th.) eines weißen Produktes mit einem dem durchschnittlichen Substitutionsgrad von 2,9 (1H-NMR spektroskopisch bestimmt) und einem durchschnittlichen Polymerisationsgrad von 180.
Beispiel 2:
In einem 100 ml-Kolben mit Magnetrührer und Rückflusskühler wurden unter Argon bei 100 °C 1 ,072 g Avicel PH 101 in 1 1 ml BMIM Ac eingetragen und 2 Stunden ge- rührt, bis eine klare Lösung entstanden ist. Nach Zugabe von 4,0 g Acetanhydrid wurde 16 Stunden bei 100 °C gerührt. Nach Abkühlen auf Raumtemperatur wurde das Gemisch in 200 ml Methanol eingetragen, das ausgefallene Reaktionsprodukt abgesaugt, dreimal mit 20 ml Methanol gewaschen und bei 60°C und 0,05 mbar 16 Stunden bis zur Gewichtskonstanz getrocknet. Man erhielt 1 ,708 g (91 % d.Th.) eines beigen Feststoffes mit einem dem durchschnittlichen Substitutionsgrad von 2,9 (1H-NMR spektroskopisch bestimmt).
Claims
Patentansprüche
1. Verfahren zur Acylierung von PoIy- oder Oligosacchariden, dadurch gekennzeichnet, dass man ein PoIy- oder Oligosaccharid, in mindestens einer ionischen Flüssigkeit löst und in
Schritt A) mit mindestens einer Säure, ggf. unter Zugabe von Wasser, (Schritt A1), oder ggf. unter Zugabe von Wasser, bei erhöhter Temperatur (Schritt A2), behandelt und in Schritt B) das so erhaltene PoIy- oder Oligosaccharid, dessen DP niedriger ist als das des eingesetzten PoIy- oder Oligosaccharids, mit einem Acylierungsmittel umgesetzt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man als PoIy- oder Ologosaccharid ein Polysaccharid einsetzt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man als Polysaccharid Cellulose einsetzt.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die ionische Flüssigkeit, oder Gemische hiervon, ausgewählt sind unter den Verbindungen der Formeln I,
[A]; [Y]n- (I),
wobei n für 1 , 2, 3 oder 4;
[A]+ für ein quartäres Ammonium-Kation, ein Oxonium-Kation, ein Sulfonium-
Kation oder ein Phosphonium-Kation; und [Y]n" für ein ein-, zwei-, drei- oder vierwertiges Anion; stehen;
oder
den Verbindungen der Formel Il
[A1]+[A2]+ [Y]"- (IIa), wobei n = 2;
[A1]+[A2]+[A3]+ [Y]n- (IIb), wobei n = 3; oder [A1]+[A2]+[A3]+[A4]+ [Y]n-(llc), wobei n = 4 und
wobei
[A1]+, [A2]+, [A3]+ und [A4]+ unabhängig voneinander aus den für [A]+ genannten
Gruppen ausgewählt sind; und [Y]n- die oben genannte Bedeutung besitzen.
Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass [A]+ für ein Kation ausgewählt aus den Verbindungen der Formeln (lila) bis (MIy)
(HIq") (Mir) (MIr')
(MIr") (MIs) (Mit)
(MIu) (MIv) (MIw)
Rz Rz
3 I + 1 I +
R—P-R S-R I R R
Ix) (MIy)
sowie Oligomere, die diese Struktur enthalten, steht, wobei
der Rest R für Wasserstoff, einen Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten oder durch 1 bis 5 He- teroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 20 Kohlenstoffatomen; und
die Reste R1 bis R9 unabhängig voneinander für Wasserstoff, eine Sulfo- Gruppe oder einen Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten oder durch 1 bis 5 Heteroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 20
Kohlenstoffatomen, wobei die Reste R1 bis R9, welche in den oben genannten Formeln (IM) an ein Kohlenstoffatom (und nicht an ein Heteroatom) gebunden sind, zusätzlich auch für Halogen oder eine funktionelle Gruppe stehen können; oder
zwei benachbarte Reste aus der Reihe R1 bis R9 zusammen auch für einen zweibindigen, Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten oder durch 1 bis 5 Heteroatome oder funktionelle Grup- pen unterbrochenen oder substituierten Rest mit 1 bis 30 Kohlenstoffatomen, stehen können.
6. Verfahren nach den Ansprüchen 4 oder 5, dadurch gekennzeichnet, dass [Y]n" für ein Anion ausgewählt aus
der Gruppe der Halogenide: F-, Cl-, Br, I-
• Gruppe der halogenhaltigen Verbindungen der Formel: F-, Cl-, Br, h, BF4 ", PF6 ", CF3SO3 ", (CF3SOs)2N-, CF3CO2-, CCI3CO2-, CN",
SCN-, OCN-
• der Gruppe der Sulfate, Sulfite und Sulfonate der allgemeinen Formel: SO4 2", HSO4-, SO3 2", HSO3-, R3OSO3-, R3SO3-
• der Gruppe der Phosphate der allgemeinen Formel PO4 3", HPO4 2", H2PO4-, R3PO4 2", HR3PO4-, R3RbPO4-
der Gruppe der Phosphonate und Phosphinate der allgemeinen Formel: R3H PO3-, R3RbPO2-, R3RbPO3-
der Gruppe der Phosphite der allgemeinen Formel: PO3 3", HPO3 2", H2PO3-, R3PO3 2", R3HPO3-, R3RbPO3-
• der Gruppe der Phosphonite und Phosphinite der allgemeinen Formel:
R3RbPO2-, R3HPO2-, R3RbP0-, R3HPO"
der Gruppe der Carbonsäuren der allgemeinen Formel: R3COO-
der Gruppe der Borate der allgemeinen Formel: BO3 3", HBO3 2", H2BO3-, R3RbBO3-, R3HBO3-, R3BO3 2",
B(0R3)(0Rb)(0Rc)(0Rd)-, B(HSO4)", B(R3SO4)"
der Gruppe der Boronate der allgemeinen Formel: R3BO2 2", R3RbB0-
• der Gruppe der Silikate und Kieselsäuresäureester der allgemeinen Formel: SiO4 4-, HSiO4 3-, H2SiO4 2-, H3SiO4-, R3SiO4 3", R3RbSi04 2", R3RbRcSi04-, HR3- SiO4 2", H2R3SiO4 ", HR3RbSi04-
• der Gruppe der Alkyl- bzw. Arylsilan-Salze der allgemeinen Formel:
R3SiO3 3-, R3RbSi02 2-, R3RbRcSi0", R3RbRcSiO3-, R3RbRcSi02-, R3RbSi03 2-
der Gruppe der Carbonsäureimide, Bis(sulfonyl)imide und Sulfonylimide der allgemeinen Formel:
der Gruppe der Methide der allgemeinen Formel:
SO2-R3
Rb-O2S SO2-RC
wobei die Reste R3, Rb, Rc und Rd unabhängig voneinander jeweils für Wasserstoff, Ci-C3o-Alkyl, gegebenenfalls durch ein oder mehrere nicht-benachbarte Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes C2-Ci8-Alkyl, C6-Ci4-Aryl, Cs-
Ci2-Cycloalkyl oder einen fünf- bis sechsgliedrigen, Sauerstoff-, Stickstoff- und/oder Schwefelatome aufweisenden Heterocyclus, wobei zwei von ihnen gemeinsam einen ungesättigten, gesättigten oder aromatischen, gegebenenfalls durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere unsubstituierte oder substituierte Iminogruppen unterbrochenen Ring
bilden können, wobei die genannten Reste jeweils zusätzlich durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Hetero- cyclen substituiert sein können;
steht.
7. Verfahren nach den Ansprüchen 4 bis 6, dadurch gekennzeichnet, dass [A]+ für ein Kation ausgewählt aus der Gruppe der Verbindungen IMa, Nie, MIf; IMg, IMg', MIh, Uli, MIj, MIj', MIk, IMk', IUI, Ulm, Ulm', IMn oder IMn' steht.
8. Verfahren nach den Ansprüchen 4 bis 7, dadurch gekennzeichnet, dass [A]+ für ein Kation ausgewählt aus der Gruppe der Verbindungen IMa, IMe oder IMf steht.
9. Verfahren nach den Ansprüchen 4 bis 8, dadurch gekennzeichnet, dass [Y]n"für ein Anion ausgewählt aus der Gruppe der Halogenide, Gruppe der halogen- haltigen Verbindungen, der Gruppe der Carbonsäuren, der Gruppe enthaltend SO4 2", SO3 2", R3OSO3- und R3SO3-, sowie der Gruppe enthaltend PO4 3" und R3RbPO4-, steht.
10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass als Schritt A) Schritt A1) durchgeführt wird.
1 1. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass als Säure eine anorganische Säure, eine organische Säure oder Gemische hiervon verwendet werden.
12. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass als Schritt A) Schritt A2) durchgeführt wird.
13. Verfahren nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, dass in Schritt B) als Acylierungsmittel ein Carbonsäurederivat der Formel IV
wobei die Reste folgende Bedeutung haben:
Rx, Rx' H, Ci-C30-Alkyl, C2-C30-Alkenyl, C2-C30-Al kinyl, C3-Ci2-Cycloalkyl, C5- Ci2-Cycloalkenyl, Aryl oder Heterocyclyl, wobei diese sieben letztgenannten Reste ggf. substituiert sein können;
X Halogen, lmidazol-1-yl oder O-CORX';
oder
ein Keten der Formel Va oder ein Diketen der Formel Vb1 oder ein gemischtes Diketen der Formel Vb2
Va Vb1 Vb2
wobei die Reste folgende Bedeutung haben:
Ry, Ry', Rz, Rz' Wasserstoff, Ci-C3o-Alkyl, C2-C3o-Alkenyl, C2-C3O-AI kinyl C3-Ci2- Cycloalkyl, C5-Ci2-Cycloalkenyl, Aryl oder Heterocyclyl, wobei die sieben letztgenannten Reste ggf. substituiert sein können;
oder
Ry und Rz bzw. Ry' und Rz' bilden gemeinsam eine ggf. substituierte -YO-(CH2)P-, (CH2)q -Y-(CH2Jr oder eine -CH=CH-CH=CH- -Kette, wobei
Y O, S, S(O), S(O)2, NH oder NCi-C6-Alkyl; o O oder 1 ; p 2, 3, 4, 5, 6, 7 oder 8; q, r 1 ,2, 3, 4, 5 oder 6;
bedeuten;
einsetzt.
14. Verfahren nach Anspruch 13, dadurchgekennzeichnet, dass man als Acylie- rungsmittel ein Carbonsäurederivat der Formel IV einsetzt.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man als Acylie- rungsmittel ein Carbonsäurederivat der Formel IV mit X = Halogen, vorzugswei- se Chlorid einsetzt.
16. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man als Acylie- rungsmittel ein Carbonsäurederivat der Formel IV mit X = OCORX', vorzugsweise mit OCORX einsetzt.
17. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass man als Acylie- rungsmittel ein Keten der Formel V einsetzt.
18. Verfahren nach den Ansprüchen 1 bis 17, dadurch gekennzeichnet, dass die Anfangskonzentration an PoIy- oder Oligosaccharid, in ionischer Flüssigkeit in einem Bereich von 0,1 bis 50 Gew.-% bezogen auf das Gesamtgewicht der Lösung liegt.
19. Verfahren nach den Ansprüchen 1 bis 18, dadurch gekennzeichnet, dass die Schritte A und B bei einer Temperatur vom Schmelzpunkt der ionischen Flüssig- keit bis 200 °C durchgeführt wird.
20. Verfahren nach den Ansprüchen 1 bis 19, dadurch gekennzeichnet, dass man das bei der Acylierung in Schritt B) erhaltene acylierte PoIy- oder Oligosaccharid durch Zugabe von einem Lösungsmittel, in dem das acylierte Polysaccharids nicht löslich sind, quencht.
21. Verfahren zur Acylierung von PoIy- oder Oligosacchariden, dadurch gekennzeichnet, dass man das PoIy- oder Oligosaccharid in mindestens einer ionischen Flüssigkeit der Formel I, IIa, IIb oder Mc, wobei [A]n +, [A1]+, [A2]+, [A3]+ und [A4]+ die in Anspruch 4 genannte Bedeutung haben und [Y]n"für ein Anion ausgewählt aus
der Gruppe der Halogenide: F-, Cl-, Br, I-
• Gruppe der halogenhaltigen Verbindungen der Formel:
F-, Cl-, Br, I-, BF4 ", PF6 ", CF3SO3 ", (CF3SOs)2N-, CF3CO2-, CCI3CO2-, CN", SCN-, OCN-
der Gruppe der Sulfate, Sulfite und Sulfonate der allgemeinen Formel: SO4 2", HSO4-, SO3 2", HSO3-, R3OSO3-, R3SO3-
der Gruppe der Phosphate der allgemeinen Formel PO4 3", HPO4 2", H2PO4-, R3PO4 2", HR3PO4-, R3RbPO4-
• der Gruppe der Phosphonate und Phosphinate der allgemeinen Formel:
R3H PO3-, R3RbPO2-, R3RbPO3-
der Gruppe der Phosphite der allgemeinen Formel: PO3 3", HPO3 2", H2PO3-, R3PO3 2", R3HPO3-, R3RbPO3-
der Gruppe der Phosphonite und Phosphinite der allgemeinen Formel: R3RbPO2-, R3HPO2-, R3RbP0", R3HPO"
der Gruppe der Carbonsäuren der allgemeinen Formel: R3COO-
• der Gruppe der Borate der allgemeinen Formel:
BO3 3", HBO3 2", H2BO3-, R3RbBO3-, R3HBO3-, R3BO3 2", B(0R3)(0Rb)(0Rc)(0Rd)-, B(HSO4)", B(R3SO4)"
• der Gruppe der Boronate der allgemeinen Formel: R3BO2 2", R3RbB0"
der Gruppe der Silikate und Kieselsäuresäureester der allgemeinen Formel: SiO4 4", HSiO4 3", H2SiO4 2", H3SiO4 ", R3SiO4 3", R3RbSi04 2", R3RbRcSi04-, HR3- SiO4 2", H2R3SiO4 ", HR3RbSi04-
der Gruppe der Alkyl- bzw. Arylsilan-Salze der allgemeinen Formel: R3SiO3 3-, R3RbSi02 2-, R3RbRcSi0-, R3RbRcSi03-, R3RbRcSi02-, R3RbSi03 2-
• der Gruppe der Carbonsäureimide, Bis(sulfonyl)imide und Sulfonylimide der allgemeinen Formel:
der Gruppe der Methide der allgemeinen Formel:
SO2-R3
Rb-O9S' SO,-RC
wobei die Reste R3, Rb, Rc und Rd unabhängig voneinander jeweils für Wasserstoff, Ci-C3o-Alkyl, gegebenenfalls durch ein oder mehrere nicht-benachbarte Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte
oder unsubstituierte Iminogruppen unterbrochenes C2-Ci8-Alkyl, C6-Ci4-Aryl, Cs- Ci2-Cycloalkyl oder einen fünf- bis sechsgliedrigen, Sauerstoff-, Stickstoff- und/oder Schwefelatome aufweisenden Heterocyclus, wobei zwei von ihnen gemeinsam einen ungesättigten, gesättigten oder aromatischen, gegebenenfalls durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere unsubstituierte oder substituierte Iminogruppen unterbrochenen Ring bilden können, wobei die genannten Reste jeweils zusätzlich durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Hetero- cyclen substituiert sein können;
steht;
mit einem Carbonsäurederivat der Formel IV, wie in Anspruch 13 beschrieben, umsetzt.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/305,004 US20090182138A1 (en) | 2006-06-30 | 2007-06-20 | Method for acylating cellulose with a specific average degree of polymerization |
EP07730255A EP2038307A1 (de) | 2006-06-30 | 2007-06-20 | Verfahren zur acylierung von cellulose mit gezieltem durchschnittlichen polymerisationsgrad |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610030696 DE102006030696A1 (de) | 2006-06-30 | 2006-06-30 | Verfahren zur Acylierung von Cellulose mit gezieltem durchschnittlichen Polymerisationsgrad |
DE102006030696.1 | 2006-06-30 | ||
DE200610042892 DE102006042892A1 (de) | 2006-09-09 | 2006-09-09 | Verfahren zur Acylierung von Cellulose mit gezieltem durchschnittlichen Polymerisationsgrad |
DE102006042892.7 | 2006-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008000666A1 true WO2008000666A1 (de) | 2008-01-03 |
Family
ID=38330105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/056105 WO2008000666A1 (de) | 2006-06-30 | 2007-06-20 | Verfahren zur acylierung von cellulose mit gezieltem durchschnittlichen polymerisationsgrad |
Country Status (3)
Country | Link |
---|---|
US (1) | US20090182138A1 (de) |
EP (1) | EP2038307A1 (de) |
WO (1) | WO2008000666A1 (de) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008098037A2 (en) * | 2007-02-06 | 2008-08-14 | North Carolina State University | Polymer derivatives and composites from the dissolution of lignocellulosics in ionic liquids |
WO2008100566A1 (en) * | 2007-02-14 | 2008-08-21 | Eastman Chemical Company | Cellulose esters and their production in carboxylated ionic liquids |
WO2009102306A1 (en) * | 2008-02-13 | 2009-08-20 | Eastman Chemical Company | Cellulose esters and their production in halogenated ionic liquids |
WO2009102307A1 (en) * | 2008-02-13 | 2009-08-20 | Eastman Chemical Company | Production of cellulose esters in the presence of a cosolvent |
WO2009102305A1 (en) * | 2008-02-13 | 2009-08-20 | Eastman Chemical Company | Treatment of cellulose esters |
WO2010019245A1 (en) * | 2008-08-13 | 2010-02-18 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom |
WO2010019244A1 (en) * | 2008-08-13 | 2010-02-18 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom |
US7959765B2 (en) | 2007-02-06 | 2011-06-14 | North Carolina State Universtiy | Product preparation and recovery from thermolysis of lignocellulosics in ionic liquids |
WO2011086082A1 (en) | 2010-01-15 | 2011-07-21 | Basf Se | Method of chlorinating polysaccharides or oligosaccharides |
US8067488B2 (en) | 2009-04-15 | 2011-11-29 | Eastman Chemical Company | Cellulose solutions comprising tetraalkylammonium alkylphosphate and products produced therefrom |
US8182557B2 (en) | 2007-02-06 | 2012-05-22 | North Carolina State University | Use of lignocellulosics solvated in ionic liquids for production of biofuels |
US8729253B2 (en) | 2011-04-13 | 2014-05-20 | Eastman Chemical Company | Cellulose ester optical films |
US8884003B2 (en) | 2010-01-15 | 2014-11-11 | Basf Se | Method of chlorinating polysaccharides or oligosaccharides |
CN106835784A (zh) * | 2016-12-21 | 2017-06-13 | 齐鲁工业大学 | 一种在AmimCl体系中制备纳米纤维素的方法 |
US9777074B2 (en) | 2008-02-13 | 2017-10-03 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom |
US10174129B2 (en) | 2007-02-14 | 2019-01-08 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0806912A2 (pt) * | 2007-01-23 | 2014-04-29 | Basf Se | Processos para preparar glicose a partir de um material celulósico, e para preparar um produto de metabolismo microbiano tendo pelo menos dois átomos de carbono |
WO2009087184A1 (de) * | 2008-01-09 | 2009-07-16 | Basf Se | Verfahren zur aufarbeitung ionischer flüssigkeiten |
US8980050B2 (en) | 2012-08-20 | 2015-03-17 | Celanese International Corporation | Methods for removing hemicellulose |
US8986501B2 (en) | 2012-08-20 | 2015-03-24 | Celanese International Corporation | Methods for removing hemicellulose |
CN105461815A (zh) * | 2016-01-13 | 2016-04-06 | 江苏科技大学 | 离子液体中纤维素材料接枝酸酐制备羧基纤维素的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1924238A (en) * | 1930-09-27 | 1933-08-29 | Chem Ind Basel | Cellulose solution and cellulose derivative and process of making same |
US1943176A (en) * | 1930-09-27 | 1934-01-09 | Chem Ind Basel | Cellulose solution |
WO2005023873A1 (en) * | 2003-09-11 | 2005-03-17 | Kemira Oyj | Starch esterification method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9410883D0 (en) * | 1994-05-31 | 1994-07-20 | Flour Milling & Baking Res | Modified flour |
US5750677A (en) * | 1994-12-30 | 1998-05-12 | Eastman Chemical Company | Direct process for the production of cellulose esters |
GB0123595D0 (en) * | 2001-10-02 | 2001-11-21 | Univ Belfast | Zeolite reactions |
US8148518B2 (en) * | 2007-02-14 | 2012-04-03 | Eastman Chemical Company | Cellulose esters and their production in carboxylated ionic liquids |
-
2007
- 2007-06-20 WO PCT/EP2007/056105 patent/WO2008000666A1/de active Application Filing
- 2007-06-20 EP EP07730255A patent/EP2038307A1/de not_active Withdrawn
- 2007-06-20 US US12/305,004 patent/US20090182138A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1924238A (en) * | 1930-09-27 | 1933-08-29 | Chem Ind Basel | Cellulose solution and cellulose derivative and process of making same |
US1943176A (en) * | 1930-09-27 | 1934-01-09 | Chem Ind Basel | Cellulose solution |
WO2005023873A1 (en) * | 2003-09-11 | 2005-03-17 | Kemira Oyj | Starch esterification method |
Non-Patent Citations (6)
Title |
---|
BISWAS ET AL: "Ionic liquids as solvents for biopolymers: Acylation of starch and zein protein", CARBOHYDRATE POLYMERS, APPLIED SCIENCE PUBLISHERS, LTD. BARKING, GB, vol. 66, no. 4, 30 May 2006 (2006-05-30), pages 546 - 550, XP005845594, ISSN: 0144-8617 * |
FISCHER S ET AL: "Inorganic molten salts as solvents for cellulose", CELLULOSE, vol. 10, 2003, pages 227 - 236, XP002310360 * |
HEINZE T ET AL: "Ionic Liquids as Reaction Medium in Cellulose Functionalization", MACROMOLECULAR BIOSCIENCE, WILEY VCH VERLAG, WEINHEIM, DE, vol. 5, 2005, pages 520 - 525, XP002432049, ISSN: 1616-5187 * |
HUSEMAN E ET AL: "N-AETHYL-PYRIDINIUM-CHLORID ALS LOESUNGSMITTEL UND REAKTIONSMEDIUM FUER CELLULOSE", MAKROMOLEKULARE CHEMIE, HUETHIG UND WEPF, BASEL, CH, vol. 128, no. 1, 17 October 1969 (1969-10-17), pages 288 - 291, XP009073037, ISSN: 0025-116X * |
J. WU ET AL.: "Homogeneous Acetylation of Cellulose in a New Ionic Liquid", BIOMACROMOLECULES, vol. 5, 2004, pages 266 - 268, XP002446815 * |
M. AVALOS ET AL.: ""Grünere" Medien für chemische Synthesen und Verfahren", ANGEWANDTE CHEMIE, vol. 118, 19 May 2006 (2006-05-19), pages 4008 - 4012, XP002446816 * |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008098037A3 (en) * | 2007-02-06 | 2008-12-11 | Univ North Carolina State | Polymer derivatives and composites from the dissolution of lignocellulosics in ionic liquids |
WO2008098037A2 (en) * | 2007-02-06 | 2008-08-14 | North Carolina State University | Polymer derivatives and composites from the dissolution of lignocellulosics in ionic liquids |
US8182557B2 (en) | 2007-02-06 | 2012-05-22 | North Carolina State University | Use of lignocellulosics solvated in ionic liquids for production of biofuels |
US7959765B2 (en) | 2007-02-06 | 2011-06-14 | North Carolina State Universtiy | Product preparation and recovery from thermolysis of lignocellulosics in ionic liquids |
US8148518B2 (en) | 2007-02-14 | 2012-04-03 | Eastman Chemical Company | Cellulose esters and their production in carboxylated ionic liquids |
WO2008100566A1 (en) * | 2007-02-14 | 2008-08-21 | Eastman Chemical Company | Cellulose esters and their production in carboxylated ionic liquids |
US10174129B2 (en) | 2007-02-14 | 2019-01-08 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom |
US9834516B2 (en) | 2007-02-14 | 2017-12-05 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom |
KR101551500B1 (ko) | 2007-02-14 | 2015-09-08 | 이스트만 케미칼 캄파니 | 셀룰로스 에스터 및 카복실화된 이온성 액체에서의 이의 제조 |
US7919631B2 (en) | 2007-02-14 | 2011-04-05 | Eastman Chemical Company | Production of ionic liquids |
US8153782B2 (en) | 2007-02-14 | 2012-04-10 | Eastman Chemical Company | Reformation of ionic liquids |
US8354525B2 (en) | 2008-02-13 | 2013-01-15 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom |
WO2009102305A1 (en) * | 2008-02-13 | 2009-08-20 | Eastman Chemical Company | Treatment of cellulose esters |
WO2009102306A1 (en) * | 2008-02-13 | 2009-08-20 | Eastman Chemical Company | Cellulose esters and their production in halogenated ionic liquids |
US8158777B2 (en) | 2008-02-13 | 2012-04-17 | Eastman Chemical Company | Cellulose esters and their production in halogenated ionic liquids |
WO2009102307A1 (en) * | 2008-02-13 | 2009-08-20 | Eastman Chemical Company | Production of cellulose esters in the presence of a cosolvent |
US8188267B2 (en) | 2008-02-13 | 2012-05-29 | Eastman Chemical Company | Treatment of cellulose esters |
US8273872B2 (en) | 2008-02-13 | 2012-09-25 | Eastman Chemical Company | Cellulose esters and their production in halogenated ionic liquids |
US9777074B2 (en) | 2008-02-13 | 2017-10-03 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom |
US9175096B2 (en) | 2008-02-13 | 2015-11-03 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom |
US9156918B2 (en) | 2008-02-13 | 2015-10-13 | Eastman Chemical Company | Treatment of cellulose esters |
WO2010019245A1 (en) * | 2008-08-13 | 2010-02-18 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom |
EP3239179A1 (de) * | 2008-08-13 | 2017-11-01 | Eastman Chemical Company | Anhand eines verfahrens unter verwendung von carboxylierten ionischen flüssigkeiten erzeugte regioselektiv substituierte celluloseester und daraus hergestellte produkte |
WO2010019244A1 (en) * | 2008-08-13 | 2010-02-18 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom |
US8871924B2 (en) | 2009-04-15 | 2014-10-28 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a tetraalkylammonium alkylphosphate ionic liquid process and products produced therefrom |
US9926384B2 (en) | 2009-04-15 | 2018-03-27 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a tetraalkylammonium alkylphosphate ionic liquid process and products produced therefrom |
US8524887B2 (en) | 2009-04-15 | 2013-09-03 | Eastman Chemical Company | Regioselectively substituted cellulose esters produced in a tetraalkylammonium alkylphosphate ionic liquid process and products produced therefrom |
EP3216806A1 (de) * | 2009-04-15 | 2017-09-13 | Eastman Chemical Company | In einem verfahren unter verwendung von tetraalkylammoniumalkylphosphat als ionischer flüssigkeit erzeugte, regioselektiv substituierte celluloseester und daraus hergestellte produkte |
US8067488B2 (en) | 2009-04-15 | 2011-11-29 | Eastman Chemical Company | Cellulose solutions comprising tetraalkylammonium alkylphosphate and products produced therefrom |
WO2011086082A1 (en) | 2010-01-15 | 2011-07-21 | Basf Se | Method of chlorinating polysaccharides or oligosaccharides |
US8884003B2 (en) | 2010-01-15 | 2014-11-11 | Basf Se | Method of chlorinating polysaccharides or oligosaccharides |
US9796791B2 (en) | 2011-04-13 | 2017-10-24 | Eastman Chemical Company | Cellulose ester optical films |
US8729253B2 (en) | 2011-04-13 | 2014-05-20 | Eastman Chemical Company | Cellulose ester optical films |
US9975967B2 (en) | 2011-04-13 | 2018-05-22 | Eastman Chemical Company | Cellulose ester optical films |
US9096691B2 (en) | 2011-04-13 | 2015-08-04 | Eastman Chemical Company | Cellulose ester optical films |
US10494447B2 (en) | 2011-04-13 | 2019-12-03 | Eastman Chemical Company | Cellulose ester optical films |
US10836835B2 (en) | 2011-04-13 | 2020-11-17 | Eastman Chemical Company | Cellulose ester optical films |
CN106835784A (zh) * | 2016-12-21 | 2017-06-13 | 齐鲁工业大学 | 一种在AmimCl体系中制备纳米纤维素的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20090182138A1 (en) | 2009-07-16 |
EP2038307A1 (de) | 2009-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008000666A1 (de) | Verfahren zur acylierung von cellulose mit gezieltem durchschnittlichen polymerisationsgrad | |
EP2035458A1 (de) | Verfahren zur acylierung von cellulose | |
WO2007101811A1 (de) | Verfahren zum abbau von cellulose in lösung | |
WO2007101812A1 (de) | Verfahren zum abbau von cellulose | |
EP2035460A1 (de) | Verfahren zur silylierung von cellulose | |
EP1994058A1 (de) | Verfahren zum abbau von cellulose mit nucleophilen | |
EP1893651B1 (de) | Löslichkeit von cellulose in ionischen flüssigkeiten unter zugabe von aminbase | |
EP2041183A1 (de) | Verfahren zur darstellung von celluloseacetalen | |
EP1881994B1 (de) | Lösungen von cellulose in ionischen flüssigkeiten | |
DE102005062608A1 (de) | Lösungssystem auf der Basis geschmolzener ionischer Flüssigkeiten ein Verfahren zu dessen Herstellung sowie zur Herstellung regenerierter Kohlenydrate | |
DE102006035830A9 (de) | Lösungssystem auf der Basis geschmolzener ionischer Flüssigkeiten, dessen Herstellung sowie Verwendung zur Herstellung regenerierter Kohlenhydrate | |
DE102006011076A1 (de) | Verfahren zum Abbau von Cellulose | |
DE102006029306A1 (de) | Verfahren zur Silylierung von Cellulose | |
DE102006031810A1 (de) | Verfahren zur Darstellung von Celluloseacetalen | |
DE102006042892A1 (de) | Verfahren zur Acylierung von Cellulose mit gezieltem durchschnittlichen Polymerisationsgrad | |
DE102006030696A1 (de) | Verfahren zur Acylierung von Cellulose mit gezieltem durchschnittlichen Polymerisationsgrad | |
DE102006054213A1 (de) | Verfahren zur Darstellung von Celluloseacetalen | |
DE102006054233A1 (de) | Verfahren zur Silylierung von Cellulose | |
DE102006042891A1 (de) | Verfahren zum Abbau von Cellulose | |
DE102006032569A1 (de) | Verfahren zur Silylierung von Cellulose | |
DE102006042890A1 (de) | Verfahren zur Silylierung von Cellulose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07730255 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007730255 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12305004 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |