WO2008000146A1 - Procédé et dispositif destinés à réguler la puissance d'une cellule - Google Patents

Procédé et dispositif destinés à réguler la puissance d'une cellule Download PDF

Info

Publication number
WO2008000146A1
WO2008000146A1 PCT/CN2007/001905 CN2007001905W WO2008000146A1 WO 2008000146 A1 WO2008000146 A1 WO 2008000146A1 CN 2007001905 W CN2007001905 W CN 2007001905W WO 2008000146 A1 WO2008000146 A1 WO 2008000146A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
cell
change
adjusting
power change
Prior art date
Application number
PCT/CN2007/001905
Other languages
English (en)
French (fr)
Inventor
Jie Yao
Jie Gong
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP07721478A priority Critical patent/EP2026592A4/en
Publication of WO2008000146A1 publication Critical patent/WO2008000146A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • H04W16/08Load shedding arrangements

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a method and apparatus for controlling cell power during a cell power change process.
  • the mobile communication system is a continuous network of cells, forming a cellular coverage, that is, a cellular network. If a cell in the cellular network changes from the running state to the closed state due to maintenance needs, etc., according to the cell breathing principle, the signal of the neighboring cell will cover the cell, especially in some places where the urban station is small, this cell Most of the areas may be covered by signals of neighboring cells, and the user terminals in the signal coverage area of the neighboring cells can perform services such as voice data normally.
  • the cell respiration function means that the coverage area of each cell is dynamic.
  • the heavily loaded cell reduces the pilot transmission power, so that the user terminal at the edge of the cell is The pilot power intensity is insufficient to switch to the neighboring cell, so that the load of the heavy load cell is shared, thereby increasing the capacity of the system.
  • the user terminal in the cell that is in the service connection state does not reach the soft switch branch cut-in entry limit due to the neighbor cell branch signal, resulting in no available branch in the active set.
  • the call is dropped.
  • the user terminal in the idle state in the cell may also drop the network.
  • the user terminal in the neighboring cell that is in the service connection state cannot establish a soft handover branch on the cell in time, and the signal of the cell is equivalent to one.
  • Strong co-channel interference for example, the quality of service of the user terminal in the neighboring cell is Ec/Io (the total energy in the chip energy/reception bandwidth), and when the cell is established, the quality of the user terminal becomes Ec/ (Io+ receives the transmit power of this cell), it can be seen that the stronger the received transmit power of the cell, the worse the signal quality received by the user terminal, the more serious the call quality is affected, and even the call drop will be caused. .
  • the cell will initiate registration after receiving the cell signal, and perform random access according to the random access principle. Since the time for receiving the cell signal is almost the same for each user terminal, when the number of user terminals is relatively large, the access collision probability is relatively high, and some user terminals continuously increase the transmission power, resulting in the cell receiving the band noise boosting port.
  • the adjustment means also instantaneously adjusts the power of the cell from the original power to the new power, or the cell power is abrupt, which also affects the user terminal in the service connection state. Communication quality.
  • the third-generation mobile communication (such as WCDMA) system provides far greater service capabilities than the second-generation mobile communication (such as GSM) system, and the WCDMA system uses code division multiple access technology.
  • the number of channels provided by the base station is far more than the number of channels provided by the base station of the GSM system. Therefore, when the power of the cell changes, especially for the power mutation in the hotspot area, the user terminal needs to be properly processed to reduce the impact on the user terminal and the communication system. .
  • the embodiments of the present invention provide a method and a device for controlling cell power in a cell power change process, so as to prevent a cell power mutation from affecting a communication bandwidth of a user terminal.
  • a method for controlling cell power comprising:
  • the cell power is gradually adjusted according to the power change reference amount.
  • a device for controlling cell power comprising:
  • a setting unit configured to set a power change reference amount
  • an adjusting unit configured to gradually adjust the cell power according to the power change reference quantity.
  • the embodiment of the present invention provides a power change reference quantity, which is used to control the cell power by means of gradually adjusting the cell power in the process of changing the cell power.
  • the signal quality of the cell received by the user terminal is gradually changed. It avoids the impact of cell power mutation on the communication quality of the user terminal.
  • FIG. 1 is a flowchart of a first embodiment of a method for controlling cell power in a cell establishment process according to the present invention
  • 2 is a flowchart of a second embodiment of a method for controlling cell power in a cell establishment process according to the present invention
  • FIG. 3 is a flowchart of a first embodiment of a method for controlling cell power in a cell deletion process according to the present invention
  • FIG. 5 is a schematic structural diagram of a first embodiment of a device for controlling a cell power according to the present invention
  • FIG. 6 is a schematic structural diagram of a second embodiment of a control unit power device according to the present invention.
  • the cell establishment includes a de-blocking cell
  • the cell deletion includes an occlusion cell.
  • the method for controlling the cell power in the cell power variation process provided by the embodiment of the present invention is to gradually adjust the cell power, so that users in the cell can smoothly access, exit the cell, or implement inter-cell handover. Since the cell power is gradually adjusted, it is necessary to operate according to certain indicators. To this end, the power variation reference quantity is set in the embodiment of the present invention, and the cell power is adjusted according to the reference quantity.
  • the reference quantity is variable, and may be a power change step size and/or a power change frequency.
  • the power change step size refers to a power change amplitude, and the unit may be dBm (decibel milliwatt), and the power change frequency is Refers to the number of power changes per unit time, the unit can be Hz (hertz), of course, you can also change the power change frequency to the power change interval time, the unit can be ms (milliseconds) or s (seconds), the rate change reference amount
  • the power change step is the power change reference
  • the power change interval is determined or changed according to the actual situation.
  • the specified power change frequency is the power change reference
  • the power change step is also based on the actual situation. Determine or change.
  • the cell power should be changed from zero power to the actual cell power. If the cell power is gradually adjusted, the cell power should be gradually increased, but For some special reasons, the cell power may be reduced by one or more times, and then decreased.
  • the embodiment of the present invention allows the cell power to be reduced one or more times in the process of gradually increasing. Similarly, the cell power is gradually reduced. Increase one or more times during the process.
  • the cell power can vary between zero power and actual cell power.
  • the cell power can be adjusted by adjusting the attenuation gain of the radio frequency channel attenuator, adjusting the static power level of the baseband cell, and adjusting the pilot channel power.
  • any two or three modes can be adopted simultaneously.
  • the combined form achieves adjustment of cell power.
  • the WCDMA base station can control the power of the cell by controlling the power of the pilot channel.
  • the CDMA2000 base station can control the power of the cell by controlling the static power level of the baseband cell, that is, the cell gain, and by controlling the RF channel attenuator.
  • the attenuation gain of the RF portion channel attenuator refers to the power variation in the radio frequency portion of the base station
  • the change of the base station cell static power level refers to the change power in the baseband processing portion of the base station
  • the changed pilot channel power refers to the BSC (base station control). (or) or varying power in the base station.
  • 1 is a flow chart of an embodiment of controlling cell power during cell establishment.
  • step S101 all power change step sizes and power change interval times in the cell establishment process are set. That is to say, the amplitude and the interval time of each change can be set according to the target value, and the number of changes is determined.
  • the target value is the actual working power, that is, the actual power.
  • the power of the cell can be increased four times, and the first power change step is set to 5 dBm, and the power change can be performed at the base station. It can be directly implemented at startup. It does not need any interval time, and an interval time can also be set. In this embodiment, no interval time is set for the first power change; the second power change step is set to 10 dBm, and the base station starts 10s. After the implementation; set the third power change step size to 15dBm, 10s after the second power change; set the fourth power change step size to 7dBm, 10s after the third power change.
  • the first power change step size should not be too large, and the subsequent power change steps can be gradually increased, so that the user terminal is not strong. Quick access or switch to this case in case of interference Community.
  • the BSC or the base station increases the cell power in four times according to the total power change step size and the power change interval time set in step S101, and finally reaches the actual cell power, that is, 37 dBm, and ends the process of controlling the cell power.
  • step S101 of the above embodiment the power change step and time of the four times have been set before the power change starts. In fact, it is completely possible to set only the step and time of the latest power change, after completing the last power change. , then set the step and time of the next power change.
  • FIG. 2 is a flow chart of still another embodiment of controlling cell power during cell establishment.
  • step S201 the step size and interval time of the first or most recent power change are set. That is to say, the amplitude of each change can be set according to the target value and the current system environment.
  • the target value is the actual working power, that is, the actual power.
  • the BSC or the base station adjusts the cell power according to the step size and the interval time of the first or last power change set in step S201.
  • step S203 determines whether the actual power of the cell is reached. If yes, the process of controlling the power of the cell ends. Otherwise, after the interval time has elapsed, the process returns to step S201.
  • the total power of the base station is 37 dBm
  • the cell power in the 30 s is required to reach 37 dBm.
  • the step size of the first power change can be set to 5 dBm
  • the interval time is 0 s. If it does not reach 37dBm, it is necessary to continue to set the step and interval of the second power change, and so on. As long as the cell power does not reach 37dBm, continue to set the step and time of the last power change until the cell. The power reaches 37dBm.
  • the step size can also be set to a negative number according to the actual situation, that is, the power is reduced when the next power change, but whether the power is increased or the power is reduced, To ensure that the cell power reaches 37dBm within 30s.
  • 30s is only an embodiment.
  • the completion time can be set according to actual needs.
  • the above two embodiments adopt a method of gradually increasing the power of the cell to complete the transition process of the cell power from zero power to the actual power when the cell is established, and gradually increase the cell power corresponding to the coverage radius of the cell signal, and gradually increase in the cell and adjacent
  • the user terminal in the cell overlapping coverage area receives the signal of the cell in succession, and the measured signal quantity of the cell is gradually increased.
  • the cell branch is added to the user terminal. Activate the set, establish a soft switch branch, The purpose of absorbing the user terminal under the premise of not affecting the communication volume is achieved.
  • the terminals at different locations receive the cell signal successively from the cell center to the cell edge direction, and thus Registration is performed to achieve access discretization and reduce access collisions.
  • the soft handover refers to that when the user terminal needs to perform handover, it first communicates with the base station of the new cell, and then disconnects from the base station of the original cell. In the handover process, the base station of the original cell and the base station of the new cell are simultaneously users of the over-the-area. Terminal services, soft handoff function can improve the reliability of handoff.
  • the communication link between the terminal and multiple cells is a soft handover branch.
  • the soft switch branch cut-in entry limit means that when the user terminal detects that the received energy of a branch reaches the threshold, it indicates that the branch has the condition of joining the active set.
  • An active set is a collection of different soft branches that simultaneously provide services to a user terminal.
  • the foregoing two embodiments are descriptions of a method for controlling cell power in a cell establishment process. Now, two methods are used to describe a method for controlling cell power in a zone deletion process.
  • FIG. 3 is a flow chart of a first embodiment of controlling cell power during cell deletion.
  • step S301 all power change step sizes and power change interval times in the cell deletion process are set. That is to say, the amplitude and interval time of each change can be set according to the target value, and the number of changes is determined.
  • the target value is zero power.
  • the power of the cell can be reduced in four times, and the first power change step is set to 5 dBm. This power change may not be needed.
  • an interval time may also be set. In this embodiment, no interval time is set for the power change of the first time; the power step of the second power is set to 10 dBm, and the first power change is implemented after 10s; The power step of the three times is set to 15dBm, which is achieved after 10s of the secondary power change; the fourth power change step is set to 7dBm, and the third power change is implemented after 10s.
  • the power step size of the power supply should not be too large, and the power step size of the subsequent power changes may be gradually increased, so that the user terminal is in communication quality. If you are weakly affected or have no influence, you can quickly exit the cell and switch to the neighboring cell.
  • the BSC or the base station reduces the cell power in four times according to the total power change step size and the power change interval time set in step S301, and finally changes the cell power to zero power, and ends the process of controlling the cell power.
  • the power change step and time of the four times have been set before the power change starts. In fact, it is completely possible to set only the step and time of the latest power change, after completing the last power change. , then set the step and time of the next power change.
  • FIG. 4 is a flow chart of a second embodiment of controlling cell power during cell deletion.
  • step S401 the step size and interval time of the first or most recent power change are set. That is to say, the magnitude of each change can be set according to the target value and the current system environment, and the target value in this embodiment is zero power.
  • the BSC or the base station adjusts the cell power according to the step size and the interval time of the first or last power change set in step S401.
  • step S403 determines whether the power of the cell becomes zero power. If yes, the process of controlling the power of the cell ends. Otherwise, after the interval time has elapsed, the process returns to step S401.
  • the total power of the base station is 37 dBm, and the power of the cell in the 30s is required to be zero power.
  • the step size of the first power change can be set to 5 dBm, and the interval time is 0 s. After the first power change The power of the cell obviously does not become zero power, so it is necessary to continue to set the step and interval time of the second power change, and so on, as long as the power of the cell does not become zero power, continue to set the last time and the next power. The step size and time of change until the power of the cell becomes zero power.
  • the step size and time of the power change are set before each power change, the step size can also be set to a negative number according to the actual situation, that is, the power is increased when the next power change, but whether the power is reduced or the power is increased, It is necessary to ensure that the cell power is changed from 37dBm to zero power within 30s.
  • the above two embodiments adopt a method of gradually reducing the cell power to complete the process of changing the cell power from the actual power to the zero power when the cell is deleted, and gradually reducing the cell power is equivalent to gradually decreasing the coverage radius of the cell, and the cell and the adjacent cell are in the cell.
  • the signal quality of the cell measured by the user terminal in the overlay coverage area is gradually reduced.
  • the branch strength of the neighboring cell is relatively enhanced.
  • the user The terminal adds the neighboring cell to the active set.
  • the user terminal deletes the cell from the active set, so that the cell does not affect or weakly affect the user.
  • the purpose of gradually withdrawing from each user terminal is achieved.
  • the idle handover is also gradually initiated according to the change of the cell radius to switch to the neighboring cell.
  • the process of improving the cell power from zero power to the actual power may take 60s-120s, and the frequency of the power change may be relatively large.
  • the interval between each power increase may be ms.
  • the step size of each power change is also very small, and may be consistent, but the method of the embodiment of the present invention can be applied under these conditions.
  • the foregoing four embodiments are described by using the cell establishment or deletion process as an example, and the method of the embodiment of the present invention is described.
  • the power of the cell is increased from zero power to actual power or The actual power is reduced to zero power, and those skilled in the art should also know that in practical applications, the cell power needs to be changed from one actual power to another actual power for some reasons, for example, 37 dBm is mentioned by 20 dBm, or It is reduced from 35 dBm to 25 dBm, but the method of the embodiment of the present invention can be applied in the above-mentioned cell power variation process, and the means for controlling the cell power is still to gradually adjust the cell power.
  • the embodiment of the present invention not only provides a method for controlling the power of the cell in the process of changing the power of the cell, but also provides a device for controlling the power of the cell.
  • the device provided by the embodiment of the present invention will now be described with reference to FIG. 5 and FIG.
  • the device 501 for controlling cell power includes a setting unit 5011 for setting and/or adjusting a power change reference quantity, and an adjusting unit 5012 for gradually adjusting the cell power according to the power change reference quantity.
  • the adjusting unit 5012 needs to adjust the cell power, it actively requests the power change reference quantity from the setting unit 5011.
  • the setting unit 5011 notifies the adjusting unit of the new power change reference quantity every time the power change reference quantity is set or adjusted. 5012.
  • the device 601 for controlling the power of the cell includes a setting unit 6011 and an adjusting unit 6012.
  • the setting unit 6011 further includes a step setting module 60111 and a frequency setting module 60112.
  • the step setting module 60111 is configured to set and/or The power change step size is adjusted, and the frequency setting module 60112 is used to set and/or adjust the power change frequency.
  • the adjusting unit 6012 adjusts the cell power in a range between the zero power and the actual cell power, and includes a power increasing module 60121 and a power reducing module 60122, configured to increase and decrease the cell power and power according to the power change reference quantity provided by the setting unit 6011.
  • the change reference amount includes a power change step size provided by the step size setting module 60111 and a power change frequency provided by the frequency setting module 60112.
  • the setting unit 6011 may include only one of the step setting module 60111 and the frequency setting module 60112.
  • the adjusting unit 6012 in the cell power device 601 may only include the power improving module 60121 during cell establishment.
  • the adjusting unit 6012 in the control cell power device 601 during the cell deletion process may include only the power drop module.
  • the adjusting unit 6012 may include the following units:
  • An attenuation gain adjustment unit for adjusting an attenuation gain of the RF partial channel attenuator; and/or a power level adjustment unit for adjusting a baseband cell static power level; and/or
  • a pilot channel power adjustment unit is configured to adjust pilot channel power.
  • the power boosting module 60121 can include the following modules:
  • An attenuation gain module for increasing the attenuation gain of the RF partial channel attenuator; and/or an improved power level module for increasing the static power level of the baseband cell; and/or
  • the pilot channel power module is increased for improving pilot channel power.
  • the power reduction module 60122 can include the following modules:
  • a reduced attenuation gain module for reducing the attenuation gain of the RF partial channel attenuator; and/or a reduced power level module for reducing the baseband cell static power level; and/or
  • the pilot channel power module is reduced to reduce the pilot channel power.
  • the embodiment of the present invention controls the cell power by means of gradually adjusting the cell power in the process of changing the cell power.
  • the signal quality of the cell received by the user terminal is gradually changed.
  • the impact of the improvement of the cell power on the communication quality is relatively slow, and when the measured signal quality of the cell is increased to a certain extent, The user terminal can be handed over to the cell by the neighboring cell.
  • the stepwise improvement of the cell power does not cause great interference to the user terminal; for the user terminal in the dropped state, the cell signal is received and the registration is initiated.
  • Random access to the cell if the cell power is slowly increased, the coverage radius of the cell signal is also slowly increased, which avoids the defect that the cell power mutation causes a large number of user terminals to simultaneously access the collision.
  • the impact of the power reduction of the cell on the communication quality is relatively slow.
  • the user terminal may The cell is switched to the neighboring cell, and in general, the stepwise reduction of the cell power does not cause the user terminal to drop the call; In the idle user terminal, the gradual reduction of the cell power does not cause the network to fall.
  • the step of adjusting the cell power must have a reference index.
  • the embodiment of the present invention not only proposes this index, but also proposes that the indicator is variable in the power variation process.
  • the process of adjusting the cell power may include improving the cell power, and
  • the embodiments of the present invention further provide various means for adjusting the power of the cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

控制小区功率的方法及装置
本申请要求于 2006 年 6 月 20 日提交中国专利局、 申请号为 200610093617.8、 发明名称为"小区功率变化过程中控制小区功率的方法及装 置"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信技术,尤其涉及小区功率变化过程中控制小区功率的 方法及装置。
背景技术
移动通信系统都是小区连续组网, 形成蜂窝式覆盖, 即蜂窝网络。 如果蜂 窝网络中的一个小区由于维护需要等原因由运行状态变更为关闭状态,才艮据小 区呼吸原理,相邻小区的信号会覆盖到这个小区, 尤其在一些城区站距小的地 方,这个小区的大部分区域都可能被相邻小区的信号覆盖,被相邻小区信号覆 盖区域中的用户终端可以正常进行语音数据等业务。其中, 小区呼吸功能是指 各个小区的覆盖区域大小是动态的, 当相邻的两个小区负荷一轻一重时, 负荷 重的小区通过减小导频发射功率,使本小区边缘的用户终端由于导频功率强度 不够而切换到相邻小区,使重负荷小区的负荷得到分担,从而增加了系统的容 量。
但是,如果某个小区的功率由实际发射功率突然变更为零功率, 则该小区 内原处于业务连接状态的用户终端由于相邻小区分支信号没有达到软切换分 支切入门限, 导致激活集中没有可用分支, 进而导致掉话, 另外, 该小区内处 于空闲状态的用户终端也会掉网。
如果某个小区的功率由零功率直接变更为实际发射功率,则相邻小区中处 于业务连接状态的用户终端因不能及时在这个小区上建立软切换分支,就会导 致这个小区的信号相当于一个很强的同频干扰,例如,用户终端在相邻小区的 业务质量为 Ec/Io (码片能量 /接收带宽内的总能量), 则这个小区建立时, 用 户终端的业务质量变为 Ec/ ( Io+接收到这个小区的发射功率), 由此可知, 当 接收到这个小区的发射功率越强时,用户终端接收的信号质量越差,影响用户 通话质量也就越严重,甚至会导致掉话。对于这个小区内原处于掉网状态的用 户终端, 其接收到小区信号后会发起登记, 按照随机接入原理进行随机接入, 由于各个用户终端接收到小区信号的时间几乎相同, 当用户终端比较多时,接 入碰撞概率就比较高,部分用户终端不断的提高发射功率,导致小区接收频段 噪声增力口。
另外, 由于某些特殊原因需要调整小区功率时,调整的手段也是将小区的 功率由原功率瞬间调整到新功率, 或者说, 小区功率是突变的, 这也会影响处 于业务连接状态的用户终端的通信质量。
随着无线接入技术的发展, 第三代移动通信(如 WCDMA ) 系统提供的 业务能力远远大于第二代移动通信(如 GSM )系统提供的业务能力, WCDMA 系统采用码分多址技术, 其基站提供的信道数远多于 GSM系统基站提供的信 道数, 因此, 当小区功率变化时, 特别是对于热点地区的功率突变, 需要妥善 处理用户终端, 以降低对用户终端及通信系统的影响。
由上述可知,在目前的小区功率变化过程中,包括小区建立或删除过程中, 小区功率的突变会影响用户终端的通信质量。
发明内容
本发明实施例提供一种小区功率变化过程中控制小区功率的方法及装置, 以避免小区功率突变对用户终端的通信盾量造成影响。
本发明实施例技术方案包括:
一种控制小区功率的方法, 包括:
设置功率变化参考量;
根据所述功率变化参考量逐步调整小区功率。
一种控制小区功率的装置, 包括:
设置单元, 用于设置功率变化参考量;
调整单元, 用于根据所述功率变化参考量逐步调整小区功率。
本发明实施例提供了功率变化参考量,用于在小区功率变化过程中采取逐 步调整小区功率的手段控制小区功率,这种情况下,用户终端接收到此小区的 信号质量是逐步变化的, 因此,避免了小区功率突变对用户终端的通信质量造 成影响。
附图说明
图 1为本发明小区建立过程中控制小区功率方法的第一实施例的流程图; 图 2为本发明小区建立过程中控制小区功率方法的第二实施例的流程图; 图 3为本发明小区删除过程中控制小区功率方法的第一实施例的流程图; 图 4为本发明小区删除过程中控制小区功率方法的第二实施例的流程图; 图 5为本发明控制小区功率装置的第一实施例结构示意图;
图 6为本发明控制小区功率装置的第二实施例结构示意图。
具体实施方式
下面结合附图,对本发明的最佳实施方案进行详细描述。首先要指出的是, 本发明实施例中用到的术语、字词及权利要求的含义不能仅仅限于其字面和普 通的含义去理解,还包括与本发明的技术相符的含义和概念,这是因为作为发 明者, 要适当地给出术语的定义, 以便对本发明实施例进行最恰当的描述。 因 此, 本说明和附图中给出的配置, 只是本发明的首选实施方案, 而不是要列举 本发明实施例的所有技术特性。要认识到,还有各种各样的可以取代本发明实 施例的同等方案或修改方案。
首先需要说明的是,本发明实施例中所述的小区建立包括解闭塞小区, 小 区删除包括闭塞小区。本发明实施例提供的小区功率变化过程中控制小区功率 的方法, 在于逐步调整小区功率, 以使小区内的用户可以平滑的接入、 退出此 小区或实现小区间的切换。既然是逐步调整小区功率, 则必然要根据一定的指 标进行操作, 为此, 本发明实施例设置了功率变化参考量, 调整小区功率就是 才艮据所述参考量进行的。
其中, 所述参考量是可变的, 其可以为功率变化步长和 /或功率变化频率, 功率变化步长是指功率变化的幅度, 单位可以为 dBm (分贝毫瓦), 功率变化 频率是指在单位时间内功率变化的次数, 单位可以为 Hz (赫兹), 当然, 也可 以将功率变化频率改为功率变化间隔时间, 单位可以为 ms (毫秒)或 s (秒), 率变化参考量, 例如, 指定功率变化步长为功率变化参考量时, 功率变化间隔 时间根据实际情况确定或变更,同理,指定功率变化频率为功率变化参考量时, 功率变化步长也^^据实际情况确定或变更。
一般来说,在小区建立过程中, 小区功率应该由零功率变更为实际的小区 功率, 如果是逐步调整小区功率, 也应该是逐步提高小区功率, 但是, 由于某 些特殊原因, 小区功率可能皮要求降低一次或多次, 降低之后再提高, 本发明 实施例允许小区功率在逐步提高的过程中降低一次或多次, 同理,也允许小区 功率在逐步降低的过程中提高一次或多次。
小区功率可以在零功率及实际小区功率之间的范围内变化。
本发明实施例可以通过调整射频部分通道衰减器的衰减增益、调整基带小 区静态功率等级、调整导频信道功率等三种方式实现调整小区功率, 当然, 还 可以同时采取任意两种或三种方式的组合形式实现调整小区功率。 例如,
WCDMA 基站可以采用控制导频信道功率的方式实现控制小区功率, CDMA2000基站可以通过控制基带小区静态功率等级即小区增益的方式, 及 通过控制射频部分通道衰减器的方式实现控制小区功率。其中, 变化射频部分 通道衰减器的衰减增益是指在基站的射频部分变化功率,变化基带小区静态功 率等级是指在基站的基带处理部分变化功率, 变化导频信道功率是指在 BSC (基站控制器)或基站中变化功率。
现在通过实施例,对小区功率变化过程中控制小区功率的方法分别进行说 明。
图 1为小区建立过程中控制小区功率的实施例的流程图。
如图 1所示, 在步骤 S101中, 设置小区建立过程中的全部功率变化步长 及功率变化间隔时间。也就是说,可以根据目标值设置每次变化的幅度及间隔 时间, 决定了变化的次数, 本实施例中, 所述目标值是实际工作功率即实际功 率。
例如, 如果基站的总功率为 37dBm, 要求 30s 内达到小区的实际功率, 则可以分四次提高小区的功率,将第一次的功率变化步长设置为 5 dBm, 这次 功率变化可以在基站启动时直接实现, 不需任何间隔时间,也可以设置一个间 隔时间,本实施例对第一次的功率变化不设置间隔时间; 将第二次的功率变化 步长设置为 10 dBm, 基站启动 10s后实现; 将第三次的功率变化步长设置为 15dBm, 第二次功率变化后 10s实现;将第四次的功率变化步长设置为 7dBm, 第三次功率变化后 10s实现。为避免对处在业务连接状态的用户终端造成强干 扰, 一般来说, 第一次的功率变化步长不宜过大, 之后的几次功率变化步长可 逐渐增加,这样,用户终端在没有强干扰的情况下可以快速的接入或切换到本 小区。
进入步骤 S102, BSC或者基站根据步骤 S101设置的全部功率变化步长及 功率变化间隔时间, 分四次提高小区功率, 最后达到实际的小区功率, 即 37dBm, 结束控制小区功率的过程。
在上述实施例的步骤 S101中, 四次的功率变化步长及时间已在功率变化 开始前设置完成, 实际上, 完全可以只设置最近一次功率变化的步长及时间, 完成最近一次功率变化后, 再设置下一次功率变化的步长及时间。
图 2为小区建立过程中控制小区功率的又一实施例的流程图。
如图 2所示, 在步骤 S201中, 设置第一次或最近一次功率变化的步长及 间隔时间。 也就是说, 可以根据目标值及当前系统环境设置每次变化的幅度, 本实施例中所述目标值是实际工作功率即实际功率。
进入步骤 S202, BSC或者基站根据步骤 S201设置的第一次或最近一次功 率变化的步长及间隔时间调整小区功率。
进入步骤 S203, 判断是否达到小区的实际功率, 如果是, 结束控制小区 功率的过程, 否则, 在间隔时间到达后, 返回步骤 S201。
以基站的总功率为 37dBm、 要求 30s内小区功率达到 37dBm为例, 本实 施例可以将第一次功率变化的步长设置为 5 dBm, 间隔时间为 0s,第一次功率 变化后小区功率显然没有达到 37dBm, 所以还要继续设置第二次功率变化的 步长及间隔时间, 以此类推, 只要小区功率没有达到 37dBm, 就继续设置最 近一次即下一次功率变化的步长及时间, 直到小区功率达到 37dBm为止。
由于功率变化的步长及时间是在每次功率变化前设置的,所以也可以根据 实际情况将步长设置为负数, 即下一次功率变化时降低功率,但无论是提高功 率还是降低功率, 都要保证小区功率在 30s内达到 37dBm。 当然, 30s只是一 实施例而已, 在应用中可才艮据实际需要设置完成时间。
上述两个实施例采用逐步提高小区功率的方法完成小区建立时小区功率 由零功率到实际功率的转变过程,逐步提高小区功率相当于此小区信号的覆盖 半径逐步增大,处于此小区和相邻小区交叠覆盖区域的用户终端就会先后接收 到此小区的信号,并且测量到的此小区的信号廣量会逐渐增加, 当达到了软切 换分支切入门限时, 此小区分支加入到用户终端的激活集, 建立软切换分支, 达到了不影响通信廣量的前提下吸收用户终端的目的。对于此小区覆盖规划范 围内处于掉网状态的用户终端, 随着此小区信号的覆盖半径的逐渐增加, 沿着 从小区中心到小区边缘方向, 不同位置的终端先后收到小区信号, 因此也先后 进行登记, 从而实现了接入离散化, 减少了接入碰撞。
其中, 软切换是指当用户终端需要切换时, 先与新小区的基站连通, 再与 原来小区的基站切断联系,在切换过程中,原小区的基站和新小区的基站同时 为过区的用户终端服务,软切换功能可以使过区切换的可靠性提高。终端与多 个小区之间的通信链路即为软切换分支。软切换分支切入门限是指当用户终端 检测到某一分支的接收能量达到该门限时,说明该分支具备了加入激活集的条 件。 激活集是指同时给用户终端提供服务的不同软分支的集合。
上述两个实施例是对小区建立过程中控制小区功率方法的说明,现在通过 两个实施例对 d、区删除过程中控制小区功率的方法进行说明。
图 3为小区删除过程中控制小区功率的第一实施例的流程图。
如图 3所示, 在步骤 S301中, 设置小区删除过程中的全部功率变化步长 及功率变化间隔时间。也就是说,可以根据目标值设置每次变化的幅度及间隔 时间, 决定了变化的次数, 本实施例中, 所述目标值是零功率。
如果基站的总功率为 37dBm, 要求 30s 内使小区功率变为零功率, 则可 以分四次降低小区的功率, 将第一次的功率变化步长设置为 5 dBm, 这次功率 变化可以不需任何间隔时间,也可以设置一个间隔时间,本实施例对笫一次的 功率变化不设置间隔时间; 将笫二次的功率变化步长设置为 10 dBm, 第一次 功率变化 10s后实现;将第三次的功率变化步长设置为 15dBm,笫二次功率变 化后 10s实现;将第四次的功率变化步长设置为 7dBm,第三次功率变化后 10s 实现。 为避免严重影响处在业务连接状态的用户终端的通信质量, 一般来说, 笫一次的功率变化步长不宜过大,之后的几次功率变化步长可逐渐增加,这样, 用户终端在通信质量受到微弱影响或没有影响的情况下可以快速的退出本小 区、 切换到相邻小区。
进入步驟 S302, BSC或者基站根据步骤 S301设置的全部功率变化步长及 功率变化间隔时间, 分四次降低小区功率, 最后使小区功率变为零功率, 结束 控制小区功率的过程。 在上述实施例的步骤 S301中, 四次的功率变化步长及时间已在功率变化 开始前设置完成, 实际上, 完全可以只设置最近一次功率变化的步长及时间, 完成最近一次功率变化后, 再设置下一次功率变化的步长及时间。
图 4为小区删除过程中控制小区功率的第二实施例的流程图。
如图 4所示, 在步骤 S401中, 设置第一次或最近一次功率变化的步长及 间隔时间。 也就是说, 可以根据目标值及当前系统环境设置每次变化的幅度, 本实施例中所述目标值是零功率。
进入步骤 S402, BSC或者基站根据步骤 S401设置的第一次或最近一次功 率变化的步长及间隔时间调整小区功率。
进入步骤 S403 , 判断小区的功率是否变为零功率, 如果是, 结束控制小 区功率的过程, 否则, 在间隔时间到达后返回步骤 S401。
以基站的总功率为 37dBm、 要求 30s 内小区的功率变为零功率为例, 本 实施例可以将第一次功率变化的步长设置为 5 dBm, 间隔时间为 0s,第一次功 率变化后小区的功率显然没有变为零功率,所以还要继续设置第二次功率变化 的步长及间隔时间, 以此类推, 只要小区的功率没有变为零功率, 就继续设置 最近一次即下一次功率变化的步长及时间, 直到小区的功率变为零功率为止。
由于功率变化的步长及时间是在每次功率变化前设置的,所以也可以根据 实际情况将步长设置为负数, 即下一次功率变化时提高功率,但无论是降低功 率还是提高功率, 都要保证小区功率在 30s内由 37dBm变为零功率。
上述两个实施例采用逐步降低小区功率的方法完成小区删除时小区功率 由实际功率到零功率的转变过程,逐步降低小区功率相当于此小区覆盖半径逐 渐减小,处于此小区和相邻小区交叠覆盖区域的用户终端测量到的此小区的信 号质量会逐渐降低, ^^据动态软切换原理, 相邻小区分支强度相对增强, 当相 邻小区的信号质量达到了软切换切入门限时, 用户终端将相邻小区加入激活 集,随着此小区信号质量进一步下降,达到软切换删除门限并满足删除条件时, 用户终端将此小区从激活集中删除,这样,此小区在不影响或微弱影响用户终 端的通信质量的前提下, 达到了逐步退出各个用户终端的目的。对于处于空闲 状态的用户终端,也会根据小区半径的变化逐渐发起空闲切换, 以切换到相邻 小区。 需要说明的是,在实际应用中, 小区功率由零功率提高到实际功率的过程 可能需要 60s-120s的时间, 功率变化的频率可能比较大, 例如,每提高一次功 率的间隔时间可能是 ms级的, 当然, 每次功率变化的步长也十分小, 而且可 能是一致的, 但本发明实施例的方法完全可以在这些条件下应用。
还需要说明的是,上述四个实施例是以小区建立或删除过程为例,对本发 明实施例的方法进行说明的,小区建立或删除过程中小区的功率是由零功率提 高到实际功率或者由实际功率降低到零功率, 本领域普通技术人员还应该知 道,在实际应用中, 由于某些原因小区功率还需要由某一实际功率改变为另一 实际功率, 例如, 由 20dBm提到 37dBm, 或者由 35dBm降低到 25dBm, 但 本发明实施例的方法完全可以在上述的小区功率变化过程中应用,控制小区功 率的手段仍然是逐步调整小区功率。
本发明实施例不仅提供了小区功率变化过程中控制小区功率的方法,还提 供了控制小区功率的装置, 现在分别结合图 5及图 6, 对本发明实施例提供的 装置进行说明。
请参见图 5, 控制小区功率的装置 501 包括设置单元 5011 , 用于设置和 / 或调整功率变化参考量; 调整单元 5012, 用于根据功率变化参考量逐步调整 小区功率。其中,当调整单元 5012需要调整小区功率时,主动向设置单元 5011 请求功率变化参考量, 当然, 设置单元 5011每次设置或调整功率变化参考量 后, 将新的功率变化参考量通知给调整单元 5012。
图 5 所公开的两个单元是实现本发明实施例提供的装置所必不可少的单 元, 现在结合图 6, 对本发明实施例提供的优选装置进行说明。
如图 6所示, 控制小区功率的装置 601 包括设置单元 6011及调整单元 6012,其中,设置单元 6011还包括步长设置模块 60111及频率设置模块 60112, 步长设置模块 60111 用于设置和 /或调整功率变化步长, 频率设置模块 60112 用于设置和 /或调整功率变化频率。
调整单元 6012在零功率及实际小区功率之间的范围内调整小区功率, 其 包括功率提高模块 60121及功率降低模块 60122, 用于根据设置单元 6011提 供的功率变化参考量提高及降低小区功率,功率变化参考量包括步长设置模块 60111提供的功率变化步长、 及频率设置模块 60112提供的功率变化频率。 需要说明的是, 设置单元 6011可以只包括步长设置模块 60111及频率设 置模块 60112中的任意一个模块, 对于小区建立过程中控制小区功率装置 601 中的调整单元 6012可以只包括功率提高模块 60121 , 同理, 对于小区删除过 程中控制小区功率装置 601 中的调整单元 6012 可以只包括功率降 4氐模块 另外, 调整单元 6012可以包括如下单元:
衰减增益调整单元, 用于调整射频部分通道衰减器的衰减增益; 和 /或 功率等级调整单元, 用于调整基带小区静态功率等级; 和 /或
导频信道功率调整单元, 用于调整导频信道功率。
相应的, 功率提高模块 60121可以包括如下模块:
提高衰减增益模块, 用于提高射频部分通道衰减器的衰减增益; 和 /或 提高功率等级模块, 用于提高基带小区静态功率等级; 和 /或
提高导频信道功率模块, 用于提高导频信道功率。
功率降低模块 60122可以包括如下模块:
降低衰减增益模块, 用于降低射频部分通道衰减器的衰减增益; 和 /或 降低功率等级模块, 用于降低基带小区静态功率等级; 和 /或
降低导频信道功率模块, 用于降低导频信道功率。
由上述可知,本发明实施例在小区功率变化过程中采取逐步调整小区功率 的手段控制小区功率,这种情况下, 用户终端接收到此小区的信号质量是逐步 变化的。特别的,在小区建立过程中,对于处于业务连接状态的用户终端而言, 此小区功率的提高对通信质量的影响是相对緩慢的,当测量到的此小区的信号 质量提高到一定程度时, 用户终端可以由邻小区切换到此小区, 总体来说, 小 区功率逐步的提高不会对用户终端造成很大的干扰;对于处于掉网状态的用户 终端, 接收到小区信号后会发起登记, 之后随机接入此小区, 如果小区功率是 緩慢提高的, 则小区信号的覆盖半径也是緩慢增大的,这就避免了小区功率突 变引起大量用户终端同时接入产生碰撞的缺陷。在小区删除过程中,对于处于 业务连接状态的用户终端而言,此小区功率的降低对通信质量的影响是相对緩 慢的, 当测量到的此小区的信号质量降低到一定程度时, 用户终端可以由此小 区切换到邻小区, 总体来说, 小区功率逐步的降低不会导致用户终端掉话; 对 于空闲状态的用户终端, 小区功率逐步的降低不会导致掉网。
逐步调整小区功率必然要有一个参考指标,本发明实施例不仅提出了这个 指标, 还提出这个指标在功率变化过程中是可变的, 另外, 调整小区功率的过 程可以既包括提高小区功率, 又包括降低小区功率, 此外, 本发明实施例还提 供了调整小区功率的各种手段,上述技术特征或技术手段不仅仅是本领域普通 技术人员实施本发明的多种选择方式,还是在实际应用中处理各种特殊情况或 突发事件的有效解决手段。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1.一种控制小区功率的方法, 其特征在于包括:
设置功率变化参考量;
根据所述功率变化参考量逐步调整小区功率。
2.如权利要求 1所述的方法, 其特征在于: 所述功率变化参考量包括: 根 据目标值确定的每次变化的幅度、 及两次变化之间的间隔时间;
根据所述功率变化参考量逐步调整小区功率的过程包括:
根据已设置的变化幅度、及两次变化之间的间隔时间,逐步调整小区功率。
3.如权利要求 1所述的方法, 其特征在于: 所述设置功率变化参考量的过 程包括:
01 )才艮据目标值及当前系统环境设置当前变化的幅度、及变化的间隔时间; 根据所述功率变化参考量逐步调整小区功率的过程包括:
02 )根据已设置的变化幅度调整小区功率;
03 )判断调整后的小区功率是否达到目标值, 若是, 则调整完毕, 否贝 ij , 在变化的间隔时间到达后, 重新执行步骤 01 )。
4.如权利要求 1所述的方法, 其特征在于: 所述功率变化参考量为根据目 标值确定的功率变化步长和 /或功率变化频率。
5.如权利要求 1所述的方法, 其特征在于: 所述调整小区功率包括提高或 降低小区功率。
6.如权利要求 2或 3或 4所述的方法, 其特征在于: 所述目标值包括: 实 际工作功率或零功率。
7.如权利要求 1所述的方法,其特征在于:所述调整小区功率的方式包括: 调整射频部分通道衰减器的衰减增益; 和 /或
调整基带小区静态功率等级; 和 /或
调整导频信道功率。
8.—种控制小区功率的装置, 其特征在于包括:
设置单元, 用于设置功率变化参考量;
调整单元, 用于根据所述功率变化参考量逐步调整小区功率。
9.如权利要求 8所述的装置, 其特征在于: 所述设置单元还包括: 步长设置模块, 用于设置功率变化步长; 和 /或
频率设置模块, 用于设置功率变化频率。
10.如权利要求 8所述的装置, 其特征在于: 所述调整单元还包括: 功率提高模块, 用于根据所述功率变化参考量提高小区功率; 和 /或 功率降低模块, 用于根据所述功率变化参考量降低小区功率。
11.如权利要求 8所述的装置, 其特征在于: 所述调整单元包括: 衰减增益调整单元, 用于调整射频部分通道衰减器的衰减增益; 和 /或 功率等级调整单元, 用于调整基带小区静态功率等级; 和 /或 导频信道功率调整单元, 用于调整导频信道功率。
PCT/CN2007/001905 2006-06-20 2007-06-18 Procédé et dispositif destinés à réguler la puissance d'une cellule WO2008000146A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07721478A EP2026592A4 (en) 2006-06-20 2007-06-18 METHOD AND DEVICE FOR CONTROLLING CELL PERFORMANCE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006100936178A CN1968039B (zh) 2006-06-20 2006-06-20 小区功率变化过程中控制小区功率的方法及装置
CN200610093617.8 2006-06-20

Publications (1)

Publication Number Publication Date
WO2008000146A1 true WO2008000146A1 (fr) 2008-01-03

Family

ID=38076622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001905 WO2008000146A1 (fr) 2006-06-20 2007-06-18 Procédé et dispositif destinés à réguler la puissance d'une cellule

Country Status (3)

Country Link
EP (1) EP2026592A4 (zh)
CN (1) CN1968039B (zh)
WO (1) WO2008000146A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102802195A (zh) * 2011-05-27 2012-11-28 华为技术有限公司 用于小区重选的方法、基站收发器、基站控制器及其系统
CN102984726A (zh) * 2011-09-07 2013-03-20 普天信息技术研究院有限公司 一种pci重配方法
CN103428750B (zh) * 2012-05-17 2016-05-11 中兴通讯股份有限公司 一种降低新建小区对周边小区干扰的方法及装置
US9848384B2 (en) * 2016-02-11 2017-12-19 Imagination Technologies Receiver deactivation based on dynamic measurements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178043A (zh) * 1996-01-19 1998-04-01 诺基亚电信公司 一种控制发射功率的方法和一种无线系统
CN1285093A (zh) * 1997-12-15 2001-02-21 艾利森电话股份有限公司 Cdma蜂窝电话系统中的基站发射功率控制

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475870A (en) * 1994-09-12 1995-12-12 Qualcomm Incorporated Apparatus and method for adding and removing a base station from a cellular communications system
JP2926578B1 (ja) * 1998-05-13 1999-07-28 埼玉日本電気株式会社 移動通信システム及び移動通信システムにおける基地局送信電力制御方法
US7162250B2 (en) * 2003-05-16 2007-01-09 International Business Machines Corporation Method and apparatus for load sharing in wireless access networks based on dynamic transmission power adjustment of access points

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178043A (zh) * 1996-01-19 1998-04-01 诺基亚电信公司 一种控制发射功率的方法和一种无线系统
CN1285093A (zh) * 1997-12-15 2001-02-21 艾利森电话股份有限公司 Cdma蜂窝电话系统中的基站发射功率控制

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2026592A4 *

Also Published As

Publication number Publication date
EP2026592A1 (en) 2009-02-18
CN1968039A (zh) 2007-05-23
EP2026592A4 (en) 2009-12-23
CN1968039B (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
EP2132949B1 (en) Selection of an uplink carrier frequency corresponding to one of co-sited cells having different coverage areas and supporting different uplink data rates
EP0883251B1 (en) Power control of mobile station transmission during handoff in a cellular system
JP4818669B2 (ja) 無線ネットワークにおける伝送電力を制御する方法および装置
EP1393590B1 (en) Method and system of WCDMA coverage based handover triggering
EP2186374B1 (en) Method and system for determining access during inter-technologies handoff
JP3543323B2 (ja) 基地局送信制御方法、セルラシステム及び基地局
US6173188B1 (en) Method of a forward power control using an erasure indicator bit
EP0887948A2 (en) Power control and data services in CDMA networks
US6826402B1 (en) Pilot beacon trigger enhancement with hysterisis
US7215962B2 (en) Method for an intersystem connection handover
US6654608B1 (en) Tailored power levels at handoff and call setup
JP2005524358A (ja) 複数のダウンリンク搬送波を使用するセルラー・システムでダウンリンク搬送波を選択するための方法および装置
CN105103615A (zh) 对于切换的增强解决方案
US20180192366A1 (en) Inter-cell power coordination for energy efficient cellular network
CN102469480A (zh) 优化的无线资源控制管理方法和系统
WO2001001720A1 (en) Network-evaluated handover assisted by both mobile and base-stations
WO2008000146A1 (fr) Procédé et dispositif destinés à réguler la puissance d'une cellule
EP1180314B1 (en) Method for cell extension in a tdma cellular telephone system
US7277707B2 (en) Radio telecommunications network, and a method of selecting base station antennas for connection with a mobile user terminal
EP1377101B1 (en) Method and controller for updating an active set of a subscriber terminal in a cellular radio system
KR100433898B1 (ko) 부호분할다중접속 이동통신시스템에서 소프트 핸드오버결정장치 및 방법
US8588837B2 (en) Power control for handoffs between voice over internet protocol and circuit switched calls
CN100441021C (zh) 移动台小区切换方法
CN111279759B (zh) 在载波聚合操作中控制终端输出的方法及其设备
KR20000013751A (ko) Cdma 시스템에서 소프트 핸드 오프시 이동국의 송신 전력제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007721478

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU