WO2007148952A1 - Aparato para transformar la energía de las olas del mar en energía mecánica - Google Patents

Aparato para transformar la energía de las olas del mar en energía mecánica Download PDF

Info

Publication number
WO2007148952A1
WO2007148952A1 PCT/MX2006/000056 MX2006000056W WO2007148952A1 WO 2007148952 A1 WO2007148952 A1 WO 2007148952A1 MX 2006000056 W MX2006000056 W MX 2006000056W WO 2007148952 A1 WO2007148952 A1 WO 2007148952A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
turbine
flow
air chamber
energy
Prior art date
Application number
PCT/MX2006/000056
Other languages
English (en)
French (fr)
Inventor
Julio César RODRIGUEZ MACEDO
Afzal Suleman
Original Assignee
Rodriguez Macedo Julio Cesar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rodriguez Macedo Julio Cesar filed Critical Rodriguez Macedo Julio Cesar
Priority to PCT/MX2006/000056 priority Critical patent/WO2007148952A1/es
Priority to CA002692188A priority patent/CA2692188A1/en
Publication of WO2007148952A1 publication Critical patent/WO2007148952A1/es
Priority to MX2008016461A priority patent/MX2008016461A/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/148Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the static pressure increase due to the wave
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/24Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy to produce a flow of air, e.g. to drive an air turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention discloses an apparatus that uses the potential energy of sea waves to rotate a wind turbine, a movement that can subsequently be used to generate electricity, to pump water, for the production of hydrogen and Oxygen via electrolysis, to desalinate water, or some combination of the above.
  • the object of the present invention is to provide an apparatus for transforming sea wave energy into mechanical energy, easy manufacturing and operation, low cost, zero visual impact, good survival characteristics, and minimal risk of damage to life. Marine; features that will allow you to become a product that is easily marketable, and that is also competitive against other methods of energy transformation.
  • the continuous rise and fall of the water surface level at the bottom of the air chamber creates an air flow that enters and exits through the upper opening of the chamber. Said flow rotates a special turbine designed to admit an oscillatory air flow.
  • the device can be placed on the coast as is the case of the Limpet projects, in the United Kingdom, and Azores, in Portugal, or it can be placed away from the coast as in the case of Mighty Whale projects, in Japan, and Energetech, in Australia.
  • One of the main drawbacks is that these types of devices generate an air flow, which in addition to oscillating is very intermittent, characteristics that impair its performance.
  • the oscillating flow requires a special turbine that is much more complicated and expensive than conventional ones. In the case of devices that need to be on the coast, the number of sites with favorable conditions is limited, and once found, they are hard to reach places where it is not easy to carry the heavy machinery necessary for its construction.
  • Pelamis Another device, and perhaps the most developed one, is the device called Pelamis. It consists of several articulated cylindrical sections that are allowed to float on the sea surface. The waves when passing, induce relative movement between the sections, and said movement, pumps a hydraulic fluid to through motors that generate electricity.
  • Pelamis One of the great advantages of Pelamis is all the research that has been developed around it. In addition, it has excellent characteristics to survive during storms. However, there is still much to do in terms of efficiency and cost.
  • the "Wave Dragon” European Patent 95923202.6-2315, Kunststoff, Germany
  • This device first concentrates the waves, thereby increasing its height, and then makes them hit a ramp where they will rise to a tank that is slightly above sea level.
  • inventions raise the pressure of a fluid to create a flow that subsequently operates a turbine or engine.
  • the following inventions raise the pressure of a fluid to create a flow that subsequently operates a turbine or engine.
  • they use an arrangement of some type of containers or containers with at least one of their flexible walls. In this way, the container is able to increase or decrease its volume and pump the fluid.
  • An example is the device revealed by Lesster, and others, in US Pat. No. 3,989,951 describing an apparatus consisting of a series of adjacent pneumatic underwater cells whose upper wall is flexible.
  • the device operates using the pressure changes created by the passage of the waves to inflate and deflate the pneumatic cells, which use the volume change to pump air through a turbine.
  • the cells use a cover External concrete to protect the flexible material from any damage. With the help of a pair of valves through each cell, the air is always flowed into the circuit in the same direction.
  • One of the disadvantages of this device is the need for an extra wall to protect the cell since this causes an increase in system costs.
  • the outer container has an outward opening where a turbine is placed.
  • the inner container is filled with gas and has a flexible wall that compresses and expands as the wave passes.
  • the volume between the two containers changes as the gas volume changes. Thus, water is forced to pass through the turbine in and out of the containers.
  • One of the drawbacks of this invention is that it requires a turbine for each chamber, which increases the total cost of the arrangement. Also, find a material that can meet the requirements of having such large deformations and at the same time be durable, it will be complicated and expensive.
  • 6,800,954 presents an apparatus that uses a piston that rises and falls due to the action of sea waves, and with this displacement, pumps air from the atmosphere into a pressure chamber. Unlike all of them, the present invention uses an underwater mechanism with zero moving parts, in contact with water, to pump the air.
  • sea wave energy converters are not competitive in applications such as electric power generation because the cost associated with them, is still well above the cost associated with producing an equivalent amount of electricity using a generator powered by fossil fuels.
  • sea wave energy converters In order for sea wave energy converters to be competitive in the market, it is not enough to be a renewable energy source, what is needed for its use to expand, is that the costs of this technology are cheaper . Only then, will it be possible to reduce greenhouse gas emissions.
  • Figure 1 is a three-dimensional view of the apparatus for transforming sea wave energy into mechanical energy, showing a possible configuration of what an apparatus with 6 air chambers would look like.
  • Figure 2 is an exploded three-dimensional view of the apparatus for transforming the energy of sea waves into mechanical energy.
  • Figure 3 is a cross-section of the air chamber in which the principle used by the present invention to pump the air out of the air chamber is exemplified.
  • Figure 4 is a cross-section of the air chamber in which the principle used by the present invention to pump the air into the air chamber is exemplified.
  • Figure 5 is a top view of the apparatus for transforming the energy of sea waves into mechanical energy that is divided into different zones according to the waves at a given time and whose purpose is to show the principle that the present invention uses to have a flow more uniform
  • Figure 6 is a front view of the apparatus for transforming the energy of sea waves into mechanical energy that divides a sea wave into zones in order to indicate which part of the wave, assuming that it moves in the direction shown by The arrow is used by the air chambers to create the supply flow and what part is used to create the return flow.
  • the apparatus for transforming the energy of sea waves into mechanical energy object of the present invention is a device that uses the energy of sea waves to spin a wind turbine (7). It is composed of an array of underwater air chambers (1), connected to a wind turbine (7). Said air chambers (1), are anchored to the seabed by means of the moorings (2) and are partially filled with water and partially with air. In the lower part, each air chamber (1) has an opening that allows the pressure of the fluid outside, in this case the sea water, to act inside the air chamber (1). Likewise, said opening allows water to freely enter or exit the air chamber (1) depending on the relative pressures between the exterior and the interior of the air chamber (1) at a given time. Because the space inside the air chamber (1) is shared by water and air, and that the latter are in contact Directly, the variations of the pressure on the outside, will impact the two faces inside the air chamber (1).
  • the air chambers (1) will be subject to different pressures depending on their position relative to the wave. This difference in pressure between the different air chambers (1) makes possible the flow of air from an air chamber (1) subject to a higher pressure, to another air chamber (1) at a lower pressure. This is the mechanism used by the present invention to create the air flow that rotates the wind turbine (7).
  • each of the air chambers (1) has two ducts, one that transports the air from " inside the air chamber (1) to the supply manifold (5), which is called the supply duct ( 3), and another to bring the air from the return manifold (9) into the air chambers (1), which is called the return duct (10).
  • the air chamber (1) maintains an approximately vertical position thanks to the action of the buoyant force of the air (13) inside and is kept hooked to the ground by the action of the moorings (2) that are located in the part bottom of the air chamber (1).
  • the crest (12) approaches the air chamber (1), the height of the water column above the air chamber (1) increases, thus increasing the surrounding pressure, and the pressure inside same of the air chamber (1), an action that forces the air (13) to move towards other points at lower pressure.
  • the displacement of the air (13) outside the air chamber (1) can be observed in the change of the water level from the position (14b) to position (14a). Since the return valve (11) closes if the flow is directed out of the air chamber (1), the only way available for air to escape is the supply line (3).
  • the supply valve (4) is open during this process since it allows flow in the direction of the supply manifold (5).
  • the flow valves (4 and 11) are arranged in opposite directions, so that they force the air flow to be unidirectional along all the components through which the air flows, which are the supply ducts (3), the return ducts (10), the supply manifold (5), the return manifold (9) and the central duct (6). If the height of the waves is too large with respect to the air chamber (1), the water level (14a) will tend to rise above the opening of the supply ducts (3) and the return ducts (5 ).
  • the float valve (8) is designed to prevent water intrusion into the ducts when the wave height is too high.
  • the supply manifold (5) gathers the flow from all the supply ducts (3) that come from the air chambers (1) and discharges it at the entrance of the central duct (6) through which the air flows unidirectionally and into which the wind turbine (7) is placed. Said air flow is what drives the wind turbine (7). Once the air passes through the wind turbine (7), it flows into the outlet of the central duct (6) that is connected to the return manifold (9) that redistributes the air flow in the different return ducts (10) . Finally the air is returned to the air chambers (1). Once the energy of the sea waves is transformed into mechanical energy, it can be used in the application that is appropriate given the circumstances of the problem.
  • the present invention is modular in nature for two main reasons: 1) to minimize costs, since manufacturing and operating an apparatus by modules is cheaper and simpler than operating a single entity of colossal dimensions, and 2) to minimize intermittence of the flow that reaches the turbine (7).
  • This phenomenon is achieved by superimposing a variety of sinusoidal flows with different wave phase. In this way, the net flow derived from the collective effect of the arrangement is less intermittent.
  • Figure 5 shows that for the same arrangement, the air chambers (1) are in different wave phases. Parameters such as spacing, the number of air chambers (1), and their arrangement, will play an important role in minimizing intermittency.
  • this invention is also functional not only with air, but with any other fluid less dense than seawater.
  • the duct system including the central duct (6), inside which the turbine (7) is located is a closed system that is filled by a fluid less dense than water
  • the central duct (6) can be located either submerged and anchored to the ocean floor, or floating on the surface of the sea, or on land.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

El aparato para transformar la energía de las olas del mar en energía mecánica es un dispositivo que usa la energía de las olas del mar para hacer girar a una turbina de viento. El sistema consiste en un arreglo de cámaras de aire submarinas que están interconectadas y que por la acción de las olas del mar y la ayuda de un par de válvulas de paso por cada cámara de aire, el aire contenido en su interior es hecho circular unidireccionalmente a través de una turbina central. Su diseño sencillo con cero partes móviles en contacto con el agua y su carácter submarino, disminuyen su impacto sobre la vida marina y rutas marítimas. Su naturaleza modular facilita su manejo en general durante manufactura e instalación lo que lo hace atractivo en términos de costo. Algunas aplicaciones son: generación de electricidad, generación de Hidrógeno y Oxígeno, y desalinización del agua de mar.

Description

APARATO PARA TRANSFORMAR LA ENERGÍA DE LAS OLAS DEL MAR
EN ENERGÍA MECÁNICA
CAMPO DE LA INVENCIÓN La presente invención, revela un aparato que usa la energía potencial de las olas del mar para hacer rotar a una turbina de viento, movimiento que posteriormente puede ser usado para generar electricidad, para bombear agua, para la producción de Hidrógeno y Oxígeno vía electrólisis, para desalinizar agua, o alguna combinación de los anteriores.
OBJETO DE LA INVENCIÓN
El objeto de la presente invención, es proveer un aparato para transformar la energía de las olas del mar en energía mecánica, de fácil manufactura y operación, bajo costo, cero impacto visual, buenas características de supervivencia, y mínimo riesgo de dañar a la vida marina; características que le permitirán convertirse en un producto que sea fácilmente comercializable, y que además, sea competitivo frente a otros métodos de transformación de la energía.
ANTECEDENTES DE LAINVENCIÓN Los convertidores de energía de las olas del mar son una tecnología relativamente nueva. En las últimas décadas se han estado investigando de manera más intensa, sin embargo, su uso es aún muy limitado debido a que su costo de producción es todavía muy alto comparado con el de otras formas de generación de energía eléctrica. Existen literalmente cientos de invenciones para transformar la energía de las olas. Entre todos éstos diferentes aparatos, merecen mención especial aquellos que se encuentran más desarrollados y más cercanos a comercializarse. Uno de los conceptos más investigados es el llamado "Columna de Agua Oscilante" (CAO), el cual consiste en una cámara de aire localizada en la superficie del océano, parcialmente sumergida, y que tiene típicamente una apertura en la parte inferior que hace contacto con la superficie del océano, y una apertura en la parte superior en donde se coloca una turbina impulsada por aire. El continuo subir y bajar del nivel de la superficie del agua en la parte inferior de la cámara de aire, crea un flujo de aire que entra y sale por la apertura superior de la cámara. Dicho flujo, hace rotar a una turbina especial diseñada para admitir un flujo de aire oscilatorio. El dispositivo puede ser colocado en la costa como es el caso de los proyectos Limpet, en el Reino Unido, y Azores, en Portugal, o puede ser puesto lejos de la costa como en el caso de los proyectos Mighty Whale, en Japón, y Energetech, en Australia. Uno de los principales inconvenientes es que éste tipo de dispositivos generan un flujo de aire, que además de oscilante es muy intermitente, características que perjudican su desempeño. Además, el flujo oscilante requiere de una turbina especial que es mucho más complicada y cara que las convencionales. En el caso de los dispositivos que necesitan estar en la costa, el número de sitios con condiciones favorables es limitado, y una vez hallados, son sitios de difícil acceso a donde no es sencillo llevar la maquinaria pesada necesaria para su construcción.
Otro aparato, y quizá el que más desarrollado se encuentra en el presente, es el dispositivo llamado Pelamis. Consiste en varias secciones cilindricas articuladas que son dejadas flotar sobre la superficie del mar. Las olas al pasar, inducen movimiento relativo entre las secciones, y dicho movimiento, bombea un fluido hidráulico a través de motores que generan electricidad. Una de las grandes ventajas del Pelamis es toda la investigación que se ha desarrollado alrededor de él. Además, posee excelentes características para sobrevivir durante las tormentas. No obstante, todavía hay mucho por hacer en cuanto a su eficiencia y costo se refiere. El "Wave Dragón" (Patente Europea 95923202.6-2315, Munich, Alemania) es otra de las máquinas que se encuentran bastante desarrolladas. Éste aparato, primero concentra las olas, incrementando con esto su altura, y después las hace chocar contra una rampa por donde subirán hasta un tanque que se encuentra ligeramente por encima del nivel del mar. Una vez allí, aprovechando su energía potencial, el agua se hace pasar por unas turbinas de regreso al mar. Una de las desventajas de éste tipo de convertidor, es que por su naturaleza, sólo funciona para capacidades muy grandes de alrededor de 3MW, es decir, no se puede escalar fácilmente para cubrir necesidades pequeñas. Otro de los artefactos que llevan varios años en desarrollo es el llamado " Arquimedes Wave Swing" que consiste en dos cilindros concéntricos sumergidos y dispuestos de manera vertical sobre el suelo marino. El cilindro externo contiene una masa de aire atrapada en su interior. Cuando las olas pasan, la presión de los alrededores cambia, cambiando la presión del aire en su interior y fuerza al cilindro externo a oscilar axialmente hacia arriba y hacia abajo. El cilindro interno es fijo y sirve de eje y de soporte. Un generador lineal convierte el movimiento en electricidad. Por ser un aparato submarino, resuelve uno de los principales problemas en la industria de los convertidores de energía de las olas, que es la supervivencia del aparato durante las tormentas en el océano. Esto se debe a que la susceptibilidad a las tormentas decrece exponencialmente con la profundidad a la que se encuentra el dispositivo. Lo anterior, junto con el hecho de que el "Wave Swing" tiene sólo una parte móvil, son 2 grandes ventajas del dispositivo. Sin embargo, por ser un dispositivo tan grande, su instalación en el fondo marino ha demostrado ser muy complicada, y el hecho de tener que llevarlo a la superficie para cualquier mantenimiento es un inconveniente grande.
Aún cuando los artefactos ya mencionados son los más desarrollados, ninguno puede competir en precio contra los métodos tradicionales para generar electricidad a base de combustibles fósiles. Además, a excepción de los que usan el concepto CAO, todos ellos tienen partes móviles que pudieran potencialmente dañar la vida marina, hecho que dificulta la obtención de permisos para su instalación. Ambos, son problemas que necesitan ser atendidos.
Por otro lado, existen también otros inventos que, aunque no se han materializado por una o por otra causa, es importante mencionarlos ya que están relacionados con la presente invención. Los siguientes inventos elevan la presión de un fluido para crear un flujo que posteriormente hace funcionar a una turbina o a un motor. Para bombear el fluido, usan un arreglo de algún tipo de recipientes o contenedores con al menos una de sus paredes flexible. De esta manera, el recipiente es capaz de aumentar o disminuir su volumen y bombear el fluido. Un ejemplo es el dispositivo revelado por Lesster, y otros, en la U.S. Pat. No. 3,989,951 que describe un aparato que consiste en una serie de celdas neumáticas submarinas dispuestas adyacentemente cuya pared superior es flexible. El dispositivo opera usando los cambios de presión creados por el paso de las olas para inflar y desinflar las celdas neumáticas, las cuales usan el cambio de volumen para bombear aire a través de una turbina. Las celdas usan una cubierta externa de concreto para proteger el material flexible de cualquier daño. Con la ayuda de un par de válvulas de paso por cada celda, el aire se hace fluir dentro del circuito siempre en el mismo sentido. Una de las desventajas de este aparato es la necesidad de una pared extra para proteger la celda ya que esto ocasiona un incremento en los costos del sistema.
Además, para evitar un flujo intermitente de aire, es necesario que cada celda bombee aire sin interrupciones y de forma secuencial. Tal efecto sólo puede lograrse teniendo un arreglo de tamaño suficiente, generalmente de más de una y media longitud de onda. Debido a que el arreglo propuesto por Lesster usa celdas adyacentes, no hay otra alternativa que construir un sistema de grandes dimensiones ya que las longitudes de onda en el océano son típicamente del orden de los 100 — 200 m. En contraste, la presente invención ocupa un arreglo espaciado de cámaras de aire que permiten que el aparato exceda el tamaño de una longitud de onda típica, logrando un flujo de aire más uniforme. Otro ejemplo de convertidores con componentes flexibles es el de Meyerand U-S. Pat. No. 4,630,440, el cual revela un artefacto que consiste en un arreglo de contenedores concéntricos que contienen agua en el espacio entre ellos. El contenedor exterior tiene una apertura hacia el exterior en donde se coloca una turbina. El contenedor interior está relleno con gas y tiene una pared flexible que se comprime y se expande conforme la ola pasa. El volumen entre los dos contenedores cambia al cambiar el volumen del gas. Así, el agua es forzada a pasar a través de la turbina hacia dentro y hacia fuera de los contenedores.
Uno de los inconvenientes de esta invención es que requiere una turbina por cada cámara, lo cual incrementa el costo total del arreglo. Además, encontrar un material que pueda cumplir los requerimientos de tener deformaciones tan grandes y al mismo tiempo sea duradero, será complicado y costoso.
Semo en su U.S. Pat. No. 3,353,787 describe un aparato sumergido de tubos elongados con la pared superior flexible, la cual se mueve por la acción de las olas. Cuando la pared superior es comprimida, ésta bombea un fluido incomprensible de densidad similar a la del agua hasta un motor localizado en tierra. En esta invención es cuestionable el hecho de elevar el fluido por encima del nivel máximo de las olas hasta el lugar en donde se encuentra el motor. Por otro lado, las paredes submarinas de concreto alrededor del sistema elevarán el costo del mismo y complicarán sil construcción.
Las invenciones que usan paredes flexibles como es el caso de los tres inventos anteriores, no han sido exitosas debido a que los requerimientos del material son muy difíciles de satisfacer y además, son susceptibles a fallar por fatiga ya que el material es flexionado de manera continua. Afortunadamente, las paredes flexibles no son la única manera de bombear un fluido usando las olas del mar. Un ejemplo conocido de dispositivos que bombean a un fluido, es el de los dispositivos que utilizan el concepto de CAO explicado anteriormente. Otra manera es la de los sistemas que bombean aire usando un mecanismo tipo pistón. Graff en su U.S. Pat. No. 4,001,597 muestra un aparato que consiste en una serie de unidades de bisagras gigantes las cuales son presionadas hacia abajo con el paso de las olas. Dicho movimiento presiona un cilindro que bombea al fluido en su interior. Meano en su U.S. Pat. No. 6,800,954 presenta un aparato que usa un pistón que sube y baja por la acción de las olas del mar, y que con dicho desplazamiento, bombea aire desde la atmósfera hacia una cámara de presión. A diferencia de todos ellos, la presente invención, usa un mecanismo submarino con cero partes móviles, en contacto con el agua, para bombear el aire. Actualmente, los convertidores de energía de las olas del mar no son competitivos en aplicaciones como generación de energía eléctrica debido a que el costo asociado con ellos, está todavía muy por encima del costo asociado a producir una cantidad equivalente de electricidad utilizando un generador impulsado por combustibles fósiles. Para fin de que los convertidores de energía de olas del mar sean competitivos en el mercado, no es suficiente con que sean una fuente de energía renovable, lo que se necesita para que su uso se expanda, es que los costos de ésta tecnología se abaraten. Sólo entonces, será posible disminuir las emisiones de gases de efecto invernadero.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 es una vista trimétrica del aparato para transformar la energía de las olas del mar en energía mecánica, que muestra una posible configuración de cómo luciría un aparato con 6 cámaras de aire.
La Figura 2 es una vista trimétrica explotada del aparato para transformar la energía de las olas del mar en energía mecánica.
La Figura 3 es un corte transversal de la cámara de aire en la que se ejemplifica el principio que usa la presente invención para bombear el aire hacia fuera de la cámara de aire.
La Figura 4 es un corte transversal de la cámara de aire en la que se ejemplifica el principio que usa la presente invención para bombear el aire hacia el interior de la cámara de aire. La Figura 5 es una vista superior del aparato para transformar la energía de las olas del mar en energía mecánica que está dividida en diferentes zonas según el oleaje en un instante dado y cuyo fin es mostrar el principio que la presente invención usa para tener un flujo más uniforme. La Figura 6 es una vista frontal del aparato para transformar la energía de las olas del mar en energía mecánica que divide a una ola de mar en zonas con el fin de señalar qué parte de la ola, asumiendo que se desplaza en la dirección mostrada por la flecha, es utilizada por las cámaras de aire para crear el flujo de suministro y qué parte es utilizada para crear el flujo de retorno.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El aparato para transformar la energía de las olas del mar en energía mecánica objeto de la presente invención, es un dispositivo que usa la energía de las olas del mar para hacer girar a una turbina de viento (7). Está compuesto de un arreglo de cámaras de aire (1) submarinas, conectadas a una turbina de viento (7). Dichas cámaras de aire (1), se encuentran ancladas al fondo marino por medio de los amarres (2) y están parcialmente llenas de agua y parcialmente de aire. En la parte inferior, cada cámara de aire (1) tiene una apertura que le permite a la presión del fluido en el exterior, en éste caso el agua de mar, actuar en el interior de la cámara de aire (1). Así mismo, dicha apertura permite al agua entrar o salir libremente de la cámara de aire (1) en función de las presiones relativas entre el exterior y el interior de la cámara de aire (1) en un instante dado. Debido a que el espacio en el interior de la cámara de aire (1) es compartido por el agua y el aire, y que estos últimos se encuentran en contacto directo, las variaciones de la presión en el exterior, impactarán a las dos faces en el interior de la cámara de aire (1).
Debido a que la presión en el fondo marino depende casi exclusivamente de la altura del agua medida respecto al piso, y ésta varía de acuerdo a la altura de las olas, las cámaras de aire (1) estarán sujetas a presiones diferentes dependiendo de su posición relativa con la ola. Ésta diferencia de presiones entre las diferentes cámaras de aire (1), hace posible el flujo de aire desde una cámara de aire (1) sujeta a una presión mayor, hacia otra cámara de aire (1) a menor presión. Éste es el mecanismo utilizado por la presente invención para crear el flujo de aire que hace rotar a la turbina de viento (7).
Así mismo, cada una de las cámaras de aire (1) posee dos conductos, uno que transporta el aire desde "el interior de la cámara de aire (1) hacia el múltiple de suministro (5), que es llamado conducto de suministro (3), y otro para llevar el aire desde el múltiple de retorno (9) hacia el interior de las cámaras de aire (1), que es llamado conducto de retorno (10).
La cámara de aire (1) mantiene una posición aproximadamente vertical gracias a la acción de la fuerza de flotación del aire (13) en su interior y se mantiene enganchada al suelo por la acción de los amarres (2) que se localizan en la parte inferior de la cámara de aire (1). Conforme la cresta (12) se va aproximando sobre la cámara de aire (1), la altura de la columna de agua sobre la cámara de aire (1) aumenta, aumentando así también la presión de los alrededores, y la presión en el interior mismo de la cámara de aire (1), acción que obliga al aire (13) a desplazarse hacia otros puntos a menor presión. El desplazamiento del aire (13) fuera de la cámara de aire (1) se puede observar en el cambio del nivel de agua desde la posición (14b) hasta la posición (14a). Como la válvula de retorno (11) se cierra si el flujo se dirije hacia afuera de la cámara de aire (1), la única vía disponible para que el aire salga, es el conducto de suministro (3). La válvula de suministro (4) está abierta durante éste proceso ya que permite el flujo en dirección hacia el múltiple de suministro (5). Las válvulas de paso (4 y 11) están dispuestas en sentidos opuestos, de manera que obligan a que el flujo de aire sea unidireccional a lo largo de todos los componentes por donde fluye el aire, que son los conductos de suministro (3), los conductos de retorno (10), el múltiple de suministro (5), el múltiple de retorno (9) y el conducto central (6). Si la altura de las olas es demasiado grande con respecto a la cámara de aire (1), el nivel del agua (14a) tenderá a subir por encima de la apertura de los conductos de suministro (3) y los conductos de retorno (5). La válvula flotadora (8) está diseñada para evitar la intrusión de agua a los conductos cuando la altura de las olas sea demasiado alta. Cuando el valle (15) se aproxima a la cámara de aire (1), ocurre el proceso opuesto al explicado anteriormente que es ilustrado en la Figura 3. Cuando ésta situación se presenta, la presión del interior de la cámara de aire (1) comienza gradualmente a decrecer y permite la entrada del aire que viene desde otras cámaras de aire (1) sujetas a una mayor presión. La entrada del aire (13) al interior de la cámara de aire (1) se puede observar en el cambio del nivel del agua desde la posición (14a) hasta la posición (14b). Ya que la válvula de suministro (4) se encuentra cerrada para flujo en dirección hacia la cámara de aire (1), el aire entrante proviene solamente del conducto de retorno (10). La válvula de retorno (11) se encuentra abierta en este momento. El múltiple de suministro (5) reúne el flujo proveniente de todos los conductos de suministro (3) que provienen de las cámaras de aire (1) y lo descarga en la entrada del conducto central (6) por el que fluye el aire unidireccionalmente y dentro del cual es colocada la turbina de viento (7). Dicho flujo de aire, es el que impulsa a la turbina de viento (7). Una vez que el aire pasa por la turbina de viento (7), desemboca en la salida del conducto central (6) que está conectada al múltiple de retorno (9) que redistribuye el flujo del aire en los diferentes conductos de retorno (10). Finalmente el aire es regresado a las cámaras de aire (1). Una vez que la energía de las olas del mar es transformada en energía mecánica, ésta puede ser usada en la aplicación que convenga dadas las circunstancias del problema. Ejemplo de estas aplicaciones son: la generación de electricidad, generación de Hidrógeno y Oxígeno mediante electrólisis, bombeo de agua y desalinización del agua de mar. Es deseable que el flujo de aire que impulsa a la turbina (7) sea lo más uniforme posible, pues la intermitencia afecta directamente de manera negativa la eficiencia de la misma. Sin embargo, el flujo producido por una sola cámara de aire (1) es intermitente por naturaleza, ya que el perfil sinusoidal de la ola, ocasiona un bombeo igualmente sinusoidal. Las Figuras 5 y 6 dividen a la ola en 3 zonas diferentes de acuerdo a la acción que provocan sobre la cámara de aire (1) asumiendo que la ola se desplaza en la dirección mostrada por la flecha en la Figura 6. Las cámaras de aire (1) que en un instante dado estén dentro de la zona A, están suministrando aire a la turbina, las que estén dentro de la zona B, están retornando aire a las cámaras de aire (1) y las que están en la zona T, se encuentran sin bombear aire. La presente invención es de naturaleza modular por dos motivos principales: 1) para minimizar los costos, ya que el manufacturar y manejar un aparato por módulos es más barato y sencillo que manejar una sola entidad de dimensiones colosales, y 2) para minimizar la intermitencia del flujo que llega a la turbina (7). Dicho fenómeno se logra al superponer una variedad de flujos sinusoidales con diferente fase de onda. De ésta manera, el flujo neto derivado del efecto colectivo del arreglo, es menos intermitente. La Figura 5 muestra que para un mismo arreglo, las cámaras de aire (1) se encuentran en fases de onda diferente. Parámetros como el espaciamiento, el número de cámaras de aire (1), y la disposición de las mismas, jugarán un papel importante para minimizar la intermitencia.
Es importante considerar que esta invención también es funcional no sólo con aire, sino con cualquier otro fluido menos denso que el agua de mar. Así mismo, como el sistema de conductos incluyendo al conducto central (6), en cuyo interior se encuentra la turbina (7), es un sistema cerrado que está lleno por un fluido menos denso que el agua, el conducto central (6) puede ser ubicado ya sea o sumergido y anclado al suelo oceánico, o flotando sobre la superficie del mar, o bien, en tierra firme.
La sencillez de su diseño sin partes móviles en contacto con el agua, su carácter submarino, y su naturaleza modular, hacen posible que la presente invención sea un aparato de fácil manufactura y operación, bajo costo, cero impacto visual, buenas características de supervivencia y mínimo riesgo de dañar a la vida marina, permitiendo la posibilidad de tener un producto que pueda competir integralmente contra otras tecnologías.

Claims

REIVINDICACIONES
Habiendo descrito de manera suficiente y clara la invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas: 1. Aparato para transformar la energía de las olas del mar en energía mecánica que comprende: a. al menos dos cámaras de aire submarinas que contienen aire y agua en su interior en proporciones cambiantes de acuerdo con las presiones impuestas por el oleaje en el aparato, cada cámara de aire tiene una apertura en la parte inferior que le permite a la presión del fluido del exterior actuar en el interior de la cámara de aire; b. cada cámara de aire cuenta con amarres que permiten mantener anclada a la cámara de aire al suelo oceánico; c. conductos de suministro de aire que transportan el aire desde el interior de las cámaras de aire, hasta el múltiple de suministro; d. válvula de suministro por cada conducto de suministro que permite fluir al aire sólo en dirección hacia la entrada de la turbina; e. múltiple de suministro que reúne el flujo que viene de dichos conductos de suministro, en un flujo común que alimenta a la turbina; f. conducto central por el que fluye el aire unidireccionalmente y dentro del cuál es colocada la turbina de viento; g. turbina de viento que gira cuando un flujo de aire está presente; h. múltiple de retorno que redistribuye el aire que viene de la turbina de viento hacia los conductos de retorno; i. conductos de retorno que llevan el aire desde el múltiple de retorno hacia el interior de las cámaras de aire; j. válvula de retorno por cada conducto de retorno que permite el flujo del aire sólo en dirección hacia la cámara de aire
2. Aparato para transformar la energía de las olas del mar en energía mecánica de acuerdo a la reivindicación 1, caracterizado porque las válvulas de paso hacen que el flujo dentro de los conductos de suministro, conductos de retorno y conducto central, sea unidireccional.
3. Aparato para transformar la energía de las olas del mar en energía mecánica de acuerdo a la reivindicación 1, caracterizado porque la turbina puede ser impulsada con cualquier fluido menos denso que el agua, no sólo con aire.
4. Aparato para transformar la energía de las olas del mar en energía mecánica de acuerdo a la reivindicación 1, caracterizado porque los conductos de suministro y de retorno en el interior de la cámara de aire, tienen una válvula flotadora que se cierra cuando el nivel del agua dentro de la cámara de aire es muy alto.
5. Aparato para transformar la energía de las olas del mar en energía mecánica de acuerdo a la reivindicación 1, caracterizado porque la turbina es puesta sobre tierra firme.
6. Aparato para transformar la energía de las olas del mar en energía mecánica de acuerdo a la reivindicación 1, caracterizado porque la turbina está sumergida.
PCT/MX2006/000056 2006-06-21 2006-06-21 Aparato para transformar la energía de las olas del mar en energía mecánica WO2007148952A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/MX2006/000056 WO2007148952A1 (es) 2006-06-21 2006-06-21 Aparato para transformar la energía de las olas del mar en energía mecánica
CA002692188A CA2692188A1 (en) 2006-06-21 2006-06-21 Apparatus for converting ocean wave energy into mechanical energy
MX2008016461A MX2008016461A (es) 2006-06-21 2008-12-19 Aparato para transformar la energía de las olas del mar en energía mecánica.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2006/000056 WO2007148952A1 (es) 2006-06-21 2006-06-21 Aparato para transformar la energía de las olas del mar en energía mecánica

Publications (1)

Publication Number Publication Date
WO2007148952A1 true WO2007148952A1 (es) 2007-12-27

Family

ID=38833639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2006/000056 WO2007148952A1 (es) 2006-06-21 2006-06-21 Aparato para transformar la energía de las olas del mar en energía mecánica

Country Status (2)

Country Link
CA (1) CA2692188A1 (es)
WO (1) WO2007148952A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20080100649A (el) * 2008-10-06 2010-05-13 Διονυσιος Χαραλαμπους Χοϊδας Μεθοδος παραγωγης φυσαλιδιων και διαταξεις αξιοποιησης της

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989951A (en) * 1975-04-29 1976-11-02 Westinghouse Electric Corporation Wave energy power generating breakwater
GB2005358A (en) * 1977-10-03 1979-04-19 Hawes R A Utilising wave energy
JPS59162374A (ja) * 1983-03-04 1984-09-13 Takeshi Ijima 消波・発電法
WO1997037122A1 (en) * 1995-03-02 1997-10-09 A.P. Van Den Berg Beheer B.V. Sea waves energy converter
GB2401404A (en) * 2003-05-09 2004-11-10 Jeremy William Whitham Wave powered generator with air driven turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989951A (en) * 1975-04-29 1976-11-02 Westinghouse Electric Corporation Wave energy power generating breakwater
GB2005358A (en) * 1977-10-03 1979-04-19 Hawes R A Utilising wave energy
JPS59162374A (ja) * 1983-03-04 1984-09-13 Takeshi Ijima 消波・発電法
WO1997037122A1 (en) * 1995-03-02 1997-10-09 A.P. Van Den Berg Beheer B.V. Sea waves energy converter
GB2401404A (en) * 2003-05-09 2004-11-10 Jeremy William Whitham Wave powered generator with air driven turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20080100649A (el) * 2008-10-06 2010-05-13 Διονυσιος Χαραλαμπους Χοϊδας Μεθοδος παραγωγης φυσαλιδιων και διαταξεις αξιοποιησης της

Also Published As

Publication number Publication date
CA2692188A1 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
ES2393261T3 (es) Aparato y sistema de control para la generación de energía a partir de energía de las olas
JP6746628B2 (ja) 可変浮力を用いる水力タービン
ES2753885T3 (es) Sistema para la conversión de la energía de las olas en energía eléctrica
ES2256879T3 (es) Extraccion de energia de la olas del oceano.
ES2337312T3 (es) Sistema de multiple captacion y transformacion complementada de energia a partir de la olas del mar.
ES2727655T3 (es) Mejoras en la extracción de energía de olas oceánicas
ES2774929T3 (es) Dispositivo de recuperación de energía sobre espectros amplios de oleajes
KR20090038923A (ko) 벤튜리 펌프로 작용하는 파이프를 이용하여 파도 또는 해류로부터 에너지를 변환하는 장치
ES2338974A1 (es) Central electrica de rotores marinos mecanicos.
ES2791994T3 (es) Infraestructura de protección de costa equipada con medios para recuperar la energía del movimiento de las olas
ES2674268T3 (es) Aparato de conversión de energía de las olas
WO2007148952A1 (es) Aparato para transformar la energía de las olas del mar en energía mecánica
WO2014194438A1 (es) Dispositivo convertidor de energia cinetica de mareas en electrica que posee una hidroturbina de flujo transversal capaz de direccionar los flujos captados de una manera optima redirigiendo y acelerandolos hacia un rodete interno de la h idroturbina y una planta generadora de electr1cidad que ocupa a dicho dispositivo.
AU2019203242A1 (en) Harnessing wave power
ES2549369A1 (es) Dispositivo generador de energía eléctrica a partir de energía undimotriz
ES2592302T3 (es) Central eléctrica
WO2014113899A1 (es) Sistema mejorado para capturar la energia del mar
MX2008016461A (es) Aparato para transformar la energía de las olas del mar en energía mecánica.
GB2459441A (en) Oscillating-water-column wave-energy device having a helical column
ES2354788A1 (es) Unidad capturadora de energía del mar.
WO2012116459A1 (es) Generador undimotriz hidrostático
WO2013093149A2 (es) Dispositivo semi-sumergido para absorber la energía de las olas
ES2387441A1 (es) Generador flexible de potencia a partir de la energía de las olas.
ES2528334B2 (es) Dispositivo sumergible para aprovechamiento energético de la diferencia de nivel de agua, para un sistema y procedimiento de bombeo, almacenamiento y turbinado, con el fin de obtención de energía eléctrica
ES2948017B2 (es) Generador mareomotriz de energía cinética sumergido

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06769368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2008/016461

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06769368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2692188

Country of ref document: CA