WO2007148450A1 - Acceleration and magnetic direction detecting composite sensor and acceleration and magnetic direction detecting device - Google Patents

Acceleration and magnetic direction detecting composite sensor and acceleration and magnetic direction detecting device Download PDF

Info

Publication number
WO2007148450A1
WO2007148450A1 PCT/JP2007/052278 JP2007052278W WO2007148450A1 WO 2007148450 A1 WO2007148450 A1 WO 2007148450A1 JP 2007052278 W JP2007052278 W JP 2007052278W WO 2007148450 A1 WO2007148450 A1 WO 2007148450A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
acceleration
detection
excitation coil
orientation
Prior art date
Application number
PCT/JP2007/052278
Other languages
French (fr)
Japanese (ja)
Inventor
Kosuke Uga
Takashi Hatanai
Mitsuo Bito
Munemitsu Abe
Tatsumi Fujiyoshi
Nobuaki Haga
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Publication of WO2007148450A1 publication Critical patent/WO2007148450A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses
    • G01C17/30Earth-inductor compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/105Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by magnetically sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Definitions

  • the present invention relates to a composite sensor for detecting acceleration and magnetic orientation, and an acceleration and magnetic orientation detection device using the same.
  • mobile terminal devices such as mobile phones are known in which an acceleration sensor and a geomagnetic sensor are mounted.
  • the acceleration sensor is used, for example, for switching between pedometers and applications, and the geomagnetic sensor is used, for example, for detecting a direction in a navigation system.
  • a permanent magnet is attached to the free end of a cantilever-type rigid body with one end fixed, and a magnetic sensor is installed in an area covered by the magnetic field of the permanent magnet, and is elastic.
  • a sensor that detects changes in the magnetic field due to body deformation with a magnetic sensor (for example, [, Special Article References]), mems, and a support made by using microelectronic mechanical system technology J A beam portion supported by the support portion, a weight portion connected to the beam portion, and a pedestal joined to the support portion, and forming an electrostatic capacity between the support portion and the pedestal.
  • Patent Document 2 There have been proposed ones provided with electrodes to be provided, or ones provided with a piezoelectric element such as a piezo element on the support (for example, see Patent Document 2).
  • a piezoelectric element such as a piezo element on the support
  • Patent Document 1 As a geomagnetic sensor, an amorphous wire and a detection coil wound around the amorphous wire (for example, see Patent Document 1), a sensor using a magnetoresistive element or a Hall element have been proposed. (For example, refer to Patent Document 2.)
  • Patent Documents 1 and 2 also disclose a technique in which an acceleration sensor and a geomagnetic sensor are integrated to form a composite sensor for detecting acceleration and magnetic orientation. .
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-195369
  • Patent Document 2 JP-A-11-160349
  • Patent Documents 1 and 2 have various problems as described below when configuring a composite sensor for detecting acceleration and magnetic orientation. That is, (a) magnetic sensors are required as many as the number of detection axes of acceleration to be detected and the number of detection axes of magnetic azimuth, so that the sensor unit is expensive and large.
  • the present invention has been made to solve the problems of the related art, and its purpose is to increase the acceleration and the magnetic direction which are small and low cost and reduce the burden on the control calculation unit.
  • An object of the present invention is to provide a composite sensor for detecting acceleration and magnetic azimuth that can be accurately detected, and an acceleration and magnetic azimuth detecting device using the same.
  • the present invention relates to a composite sensor for detecting acceleration and magnetic orientation, and applies a magnetic field to one to a plurality of magnetic detection elements and to these one to a plurality of magnetic detection elements.
  • An excitation coil and an elastic beam part that supports the excitation coil are provided.
  • the present invention relates to an acceleration and magnetic azimuth detection device, and supports one or more magnetic detection elements, an excitation coil that applies a magnetic field to these one or more magnetic detection elements, and the excitation coil.
  • the caloric velocity includes one or more magnetic detection elements, an excitation coil that applies a magnetic field to the one or more magnetic detection elements, and an elastic beam portion that supports the excitation coil.
  • the elastic beam part is displaced by the amount corresponding to the magnitude of the acceleration in the direction corresponding to the direction of the acceleration. The posture of the excitation coil supported by the part changes. Therefore
  • the direction and magnitude of the magnetic field generated from the exciting coil with respect to the magnetic detection element changes according to the direction and magnitude of the acceleration.
  • a corresponding level of output can be taken out.
  • the detection range can be easily switched by switching the excitation current.
  • an external magnetic field such as geomagnetism can be calculated as the DC component of the output of the magnetic detection element when the excitation current is applied, and can be obtained as the output value of the magnetic detection element when the excitation current is interrupted.
  • the magnetic orientation can also be detected by using a magnetic detection element used for detecting acceleration.
  • acceleration and magnetic orientation detection algorithms can be made the same, facilitating the development of a computation program and the necessity.
  • the memory capacity can be reduced. Furthermore, since the magnetic field applied by the exciting coil does not become noise when detecting the magnetic orientation, the magnetic orientation can be detected with high accuracy. Since the acceleration detection range can be changed as appropriate by increasing or decreasing the excitation current supplied to the excitation coil, it is not necessary to provide a highly sensitive magnetic detection element, making it less susceptible to external magnetic fields during acceleration detection. Can do.
  • the control calculation unit supplies an excitation current to the excitation coil and generates a current from an output of the magnetic detection element.
  • the velocity and magnetic direction are calculated in parallel.
  • acceleration and magnetic orientation can be measured continuously at the same time, and acceleration that takes a very short time can be detected without omission.
  • the frequency response of the detection device can be improved.
  • the present invention provides the acceleration and magnetic orientation detection device having the above-described configuration, wherein the control calculation unit supplies an AC excitation current to the excitation coil, and calculates an acceleration from an AC component of the output of the magnetic detection element. At the same time, the DC component force is calculated to calculate the magnetic orientation. Thereby, calculation of acceleration and calculation of magnetic direction can be performed using a relatively simple arithmetic program.
  • the control calculation unit calculates an acceleration from an output of the excitation coil when an excitation current is supplied to the excitation coil, and the excitation The magnetic azimuth is calculated from the output of the excitation coil when the supply of excitation current to the coil is cut off. According to such a configuration, since the acceleration and the magnetic direction are calculated separately, there is no interaction between the calculation of the acceleration and the calculation of the magnetic direction, and an inspection apparatus that is resistant to disturbance can be obtained.
  • the magnetic detection element includes three magnetic detection elements having magnetic detection directions directed in three directions orthogonal to each other. I made it.
  • the powerful configuration makes it possible to detect acceleration and magnetic direction in any direction.
  • a magnetic field necessary for acceleration detection is applied to one or a plurality of magnetic detection elements using an exciting coil, so that a magnetic detection element necessary for acceleration detection and a magnetic detection necessary for magnetic orientation detection are applied. It can be shared with the elements, and the acceleration and magnetic direction detection device can be reduced in size and cost. In addition, since the acceleration and magnetic orientation can be calculated with the same detection algorithm, the burden on the control calculation unit can be reduced. Furthermore, by controlling the supply of the excitation current to the excitation coil, the magnetic field generated by the excitation coil force can be adjusted as appropriate, so that the acceleration detection range can be changed as appropriate, and at the time of calculation of acceleration and magnetic direction Eliminate noise effects or Can be reduced.
  • FIG. Fig. 1 is a configuration diagram of the acceleration and magnetic orientation detection device according to the embodiment
  • Fig. 2 is an explanatory diagram showing the direction of the magnetic field generated by the exciting coil and the direction of geomagnetism
  • Fig. 3 is when the acceleration in the X or Y direction is received
  • Fig. 4 is an operation explanatory diagram showing the movement of the composite sensor when it receives acceleration in the Z direction
  • Fig. 5 shows the magnetic field generated by the excitation coil and the output of the magnetic detection element. It is a graph figure to illustrate.
  • the acceleration and magnetic direction detection device of this example includes a base 1, three magnetic detection elements 2, 3, 4 formed on the base 1, and one end.
  • the weight 6 attached to the center (movable part) of the elastic beam 5, and the weight 6
  • the excitation coil 7 formed on the bottom surface and the excitation current supply to the excitation coil 7 are controlled and the outputs of the magnetic detection elements 2, 3, and 4 are input. It consists mainly of a control calculation unit 8 that calculates acceleration and magnetic direction according to the output.
  • the composite sensor for detecting acceleration and magnetic orientation according to the present invention includes a base 1, magnetic detection elements 2, 3, 4, an elastic beam portion 5, a weight portion 6, and an excitation coil 7. This composite sensor can be fabricated by mems technology.
  • the three magnetic detection elements 2, 3, and 4 are oriented in three directions in which the magnetic detection directions are orthogonal to each other, that is, the X direction, the Y direction, and the Z direction in FIGS.
  • a magnetoresistive element or a Hall element can be used as the magnetic detection elements 2, 3, and 4, for example, a magnetoresistive element or a Hall element can be used.
  • the elastic beam portion 5 is formed in a cross shape with a plate material having a constant width, and the weight portion 6 is attached to the center portion thereof. As shown in FIG. 4, when the elastic beam portion 5 is deformed so that the weight portion 6 is inclined with respect to the base body 1 and acceleration in the Z direction is applied, as shown in FIG. The elastic beam part 5 is deformed so that the weight part 6 approaches or separates from 1.
  • the weight portion 6 is formed by deforming the elastic beam portion 5 when subjected to acceleration, and thus the magnetic detection element 2, This is to increase the displacement of the excitation coil 7 with respect to 3 and 4 to a certain extent to increase the detection sensitivity of the acceleration, and can be omitted when the excitation coil 7 having a necessary weight is used.
  • the exciting coil 7 any known coil such as a wire coil or a thin film coil can be used.
  • the exciting coil 7 When energized, the exciting coil 7 generates a magnetic field in the direction of the winding axis of the exciting coil 7 (direction perpendicular to the exciting coil forming surface of the weight portion 6) as shown in FIG.
  • the control calculation unit 8 can calculate the direction and magnitude of the acceleration acting on the weight unit 6 from the change in the output of the magnetic detection elements 2, 3, 4. Further, the control calculation unit 8 can calculate the direction and magnitude of an external magnetic field such as geomagnetism from the DC component of the output of each magnetic detection element 2, 3, 4.
  • the exciting current supplied from the control calculation unit 8 to the exciting coil 7 can be a direct current or an alternating current.
  • the waveform can be a square wave, a triangular wave, a sine wave, or the like.
  • Figure 5 shows the magnetic field generated by the excitation coil 7 and the geomagnetism when the square-wave excitation current is supplied from the control calculation unit 8 to the excitation coil 7, and the combined magnetic field of the magnetic field generated by the excitation coil 7 and the geomagnetism. The output of each magnetic detection element 2, 3 and 4 when receiving each magnetic field is shown.
  • the magnetic field generated by the exciting coil 7 generated by supplying the excitation current and the outputs of the magnetic detection elements 2, 3, and 4 are square waves corresponding to the excitation current waveform, and are generated by the geomagnetism.
  • the output of the generated magnetic detection elements 2, 3, 4 is a constant value.
  • the control calculation unit 8 supplies a square wave excitation current to the excitation coil 7 and generates a magnetic field in the excitation coil 7.
  • a magnetic sensor with sensitivity in the X direction calculates (Xmax—Xmin) Z2 and (Xmax + Xmin) Z2 from its maximum output Xmax and minimum output Xmin, and calculates the AC component Ax and DC component Cx in the X direction. calculate.
  • the magnetic sensing element with sensitivity in the Y direction calculates (Ymax—Ymin) Z2 and (Ymax + Ymin) Z2 from its maximum output Ymax and minimum output Ymin, and the AC component Av and Y in the Y direction are calculated. And DC component Cy is calculated.
  • the control calculation unit 8 adds the X-direction AC correction component Ax to the X-direction gain correction coefficient cx X and the X-direction offset correction coefficient ⁇ X to add the X-direction acceleration A (X).
  • the control calculation unit 8 performs the calculation of Equation 2 using the previously obtained DC component Cx in the X direction and DC component Cy in the Y direction to calculate the geomagnetic direction ⁇ c.
  • the gain correction coefficients ⁇ ⁇ , ay and offset correction coefficients j8 X, j8 y are obtained in advance from the relationship between the acceleration and the displacement of the excitation coil 7. Further, in the flowchart of FIG. 6, gain correction and offset correction are performed in the same manner as in the calculation of force / acceleration in which gain correction and offset correction at the time of azimuth calculation are omitted.
  • the magnitude and direction of acceleration and the azimuth of geomagnetism can be calculated simultaneously, so that the calculation time can be reduced and the frequency response of the detection device can be improved.
  • the magnitude and direction of acceleration and the direction of geomagnetism can be obtained in the X, Y, and Z directions orthogonal to each other, a highly practical detection device that can be applied to, for example, a navigation system. be able to.
  • the calculation procedure of this example is obtained by passing the output of the magnetic detection elements 2, 3, and 4 through a noise-pass filter and a low-pass filter instead of obtaining the AC component and DC component of the output by calculation. .
  • the calculation of the output AC component and DC component can be omitted, so the burden on the control calculation unit 8 can be reduced and the frequency response of the detection device can be further improved. Can do.
  • the calculation procedure of this example is to calculate the magnitude and direction of acceleration while energizing the exciting coil 7 that does not calculate the magnitude and direction of acceleration and the direction of geomagnetism in parallel. It is characterized in that the geomagnetic direction is calculated in the state where the power is not supplied. According to the calculation procedure of this example, acceleration and magnetic direction are calculated separately, so there is no interaction between the calculation of acceleration and magnetic direction, and it is strong against disturbance V and can be an inspection device. .
  • the acceleration and magnetic orientation detection composite sensor and the acceleration and magnetic orientation detection device using the same apply a magnetic field to the magnetic detection elements 2, 3, and 4 using the excitation coil 7.
  • the magnetic detection element necessary for detecting the acceleration and the magnetic detection element required for detecting the magnetic direction can be shared, and the acceleration and magnetic direction detection device can be reduced in size and cost.
  • the burden on the control calculation unit 8 can be reduced.
  • the magnetic field generated from the excitation coil 7 can be adjusted as appropriate, so that the acceleration detection range can be appropriately changed, and the acceleration calculation and magnetic direction can be changed. It is possible to eliminate or reduce the influence of noise when calculating.
  • the elastic beam portion 5 is formed in a cross shape made of a plate material having a constant width, but the shape of the elastic beam portion 5 is not limited to this. As illustrated in Fig. 9, it can have various shapes.
  • Fig. 9 (a) shows an embodiment in which the elastic beam portion 5 is formed in a radial shape extending in three directions around the set position of the weight portion 6, and
  • Fig. 9 (b) shows a cantilever as the elastic beam portion 5.
  • FIG. 9 (c) shows an embodiment in which the elastic beam portion 5 is formed with three linear spring members extending spirally from the set position of the weight portion 6.
  • Fig. 9 (d) shows an embodiment in which the elastic beam portion 5 is formed with four triangular plate members, and Fig.
  • FIG. 9 (e) shows an embodiment in which the elastic beam portion 5 has four sheets.
  • FIG. 9 (f) shows an embodiment in which a rectangular plate material is formed, and
  • FIG. 9 (f) shows a case in which the elastic beam portion 5 is formed with four linear spring materials extending in four directions from the set position of the weight portion 6.
  • FIG. 9 (g) shows an embodiment in which the elastic beam portion 5 is formed with two linear spring members extending in two directions from the set position of the weight portion 6.
  • the three magnetic detection elements 2, 3, and 4 having sensitivity in the X direction, the Y direction, and the Z direction are provided.
  • the present invention is not limited to this, it can be a single-axis type detection device having only one magnetic detection element, or two axes in which two magnetic detection elements are arranged in two directions perpendicular to each other. This is a type detection device.
  • FIG. 1 is a configuration diagram of an acceleration and magnetic orientation detection device according to an embodiment.
  • FIG. 2 is an explanatory diagram showing the direction of the magnetic field generated by the exciting coil and the geomagnetism.
  • FIG. 3 is an operation explanatory diagram showing the movement of the composite sensor when it receives an acceleration in the X direction or the Y direction.
  • FIG. 4 is an operation explanatory diagram showing the movement of the composite sensor when it receives acceleration in the Z direction.
  • FIG. 5 is a graph illustrating the generated magnetic field of the exciting coil and the output of the magnetic detection element.
  • FIG. 6 is a flowchart showing a first example of an acceleration and magnetic orientation detection procedure using the acceleration and magnetic orientation detection device according to the embodiment.
  • FIG. 7 is a flowchart showing a second example of an acceleration and magnetic orientation detection procedure using the acceleration and magnetic orientation detection device according to the embodiment.
  • FIG. 8 is a flowchart showing a third example of the acceleration and magnetic orientation detection procedure using the acceleration and magnetic orientation detection device according to the embodiment.
  • FIG. 9 is a structural diagram showing another example of the composite sensor according to the embodiment.

Abstract

[PROBLEMS] To provide a small, lower-cost sensor for detecting an acceleration and a magnetic direction with high accuracy with small burden on the control computing section and a detecting device. [MEANS FOR SOLVING PROBLEMS] An acceleration and magnetic direction detecting composite sensor device comprises a base (1), three magnetism detecting elements (2, 3, 4) fabricated on the base (1), a cross-shaped elastic beam section (5) fixed at its one end to the base (1) through a fixing section not shown, a weight section (6) attached to the central portion of the elastic beam section (5), and an exciting coil (7) formed on the lower surface of the weight section (6). The device further comprises a control computing section (8) for controlling supply of the exciting current to the exciting coil (7), receiving the outputs of the magnetism detecting elements (2, 3, 4), and computing the acceleration and the magnetism direction according to the outputs of the received magnetism detecting elements (2, 3, 4).

Description

明 細 書  Specification
加速度及び磁気方位検出用複合センサ並びに加速度及び磁気方位検 出装置  Composite sensor for detecting acceleration and magnetic direction, and acceleration and magnetic direction detecting device
技術分野  Technical field
[0001] 本発明は、加速度及び磁気方位検出用の複合センサ並びにこれを用いた加速度 及び磁気方位の検出装置に関する。  The present invention relates to a composite sensor for detecting acceleration and magnetic orientation, and an acceleration and magnetic orientation detection device using the same.
背景技術  Background art
[0002] 近年、例えば携帯電話などの携帯型端末装置には、加速度センサや地磁気セン サが搭載されたものが知られている。加速度センサは、例えば歩数計やアプリケーシ ヨンの切替などに利用され、地磁気センサは、例えばナビゲーシヨンシステムにおけ る方位検出などに利用される。  In recent years, for example, mobile terminal devices such as mobile phones are known in which an acceleration sensor and a geomagnetic sensor are mounted. The acceleration sensor is used, for example, for switching between pedometers and applications, and the geomagnetic sensor is used, for example, for detecting a direction in a navigation system.
[0003] 従来より、この種の加速度センサとしては、一端が固定されたカンチレバー形の弹 性体の自由端に永久磁石を取り付けると共に永久磁石の磁界が及ぶ領域に磁気セ ンサを設置し、弾性体の変形に伴う磁界の変化を磁気センサにて検出するもの (例え 【 、特 §午文献丄 照。 ) 、 mems、micro electronics mechanical systemノ 術を J心用 することにより作製された支持部と、該支持部により支持された梁部と、該梁部に接 続された重り部と、前記支持部に接合された台座とを有し、支持部と台座との間に静 電容量を構成する電極を設けたもの、或いは支持部にピエゾ素子等の圧電素子を 設けたもの (例えば、特許文献 2参照。)が提案されている。また、地磁気センサとして は、アモルファスワイヤとその周囲に卷回された検出コイルと力 なるもの(例えば、特 許文献 1参照。)や、磁気抵抗素子或いはホール素子を利用したものが提案されて いる(例えば、特許文献 2参照。 )0なお、特許文献 1, 2には、加速度センサと地磁気 センサとを一体に構成して、加速度及び磁気方位検出用の複合センサとする技術も 開示されている。 Conventionally, as this type of acceleration sensor, a permanent magnet is attached to the free end of a cantilever-type rigid body with one end fixed, and a magnetic sensor is installed in an area covered by the magnetic field of the permanent magnet, and is elastic. A sensor that detects changes in the magnetic field due to body deformation with a magnetic sensor (for example, [, Special Article References]), mems, and a support made by using microelectronic mechanical system technology J A beam portion supported by the support portion, a weight portion connected to the beam portion, and a pedestal joined to the support portion, and forming an electrostatic capacity between the support portion and the pedestal. There have been proposed ones provided with electrodes to be provided, or ones provided with a piezoelectric element such as a piezo element on the support (for example, see Patent Document 2). In addition, as a geomagnetic sensor, an amorphous wire and a detection coil wound around the amorphous wire (for example, see Patent Document 1), a sensor using a magnetoresistive element or a Hall element have been proposed. (For example, refer to Patent Document 2.) 0 Patent Documents 1 and 2 also disclose a technique in which an acceleration sensor and a geomagnetic sensor are integrated to form a composite sensor for detecting acceleration and magnetic orientation. .
特許文献 1 :特開 2005— 195369号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-195369
特許文献 2:特開平 11― 160349号公報  Patent Document 2: JP-A-11-160349
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0004] し力しながら、特許文献 1, 2に記載の技術は、加速度及び磁気方位検出用の複合 センサを構成する場合、以下に記載するような種々の問題があった。即ち、(a)検出 しょうとする加速度の検出軸及び磁気方位の検出軸の数だけ磁気センサを必要とす るので、センサ部が高コストィ匕及び大形ィ匕する。  However, the techniques described in Patent Documents 1 and 2 have various problems as described below when configuring a composite sensor for detecting acceleration and magnetic orientation. That is, (a) magnetic sensors are required as many as the number of detection axes of acceleration to be detected and the number of detection axes of magnetic azimuth, so that the sensor unit is expensive and large.
[0005] (b)加速度の算出と磁気方位の算出を同一の検出アルゴリズムで計算できないため 、加速度算出用及び磁気方位算出用のセンサ IC又はマイコンが必要となり、演算プ ログラムの開発に要する負担が大きぐかつ大きなメモリ容量を必要とする。  [0005] (b) Since acceleration calculation and magnetic direction calculation cannot be calculated with the same detection algorithm, a sensor IC or microcomputer for calculating acceleration and magnetic direction calculation is required, and the burden required for developing an arithmetic program is increased. Requires a large and large memory capacity.
[0006] (c)加速度センサに永久磁石を備えるタイプの複合センサにおいては、この加速度 センサに備えられた永久磁石の磁界が磁気方位センサの検出精度に悪影響を及ぼ すおそれがあり、磁気方位を高精度に検出するためには、検出信号の補正が必要と なって、演算プログラムが複雑化する。また、永久磁石を用いているためにアプリケー シヨンに応じて加速度検出センサのレンジを変更する等の機能切替を行うことができ ない。  [0006] (c) In a composite sensor of a type in which the acceleration sensor includes a permanent magnet, the magnetic field of the permanent magnet included in the acceleration sensor may adversely affect the detection accuracy of the magnetic orientation sensor. In order to detect with high accuracy, it is necessary to correct the detection signal, which complicates the calculation program. In addition, since permanent magnets are used, it is not possible to switch functions such as changing the range of the acceleration detection sensor according to the application.
[0007] (d)加速度検出用の磁気センサ及び磁気方位検出用の磁気センサとして検出レンジ が同じ磁気センサを利用するタイプの複合センサにおいては、加速度検出用の磁気 センサが高感度になり過ぎるため、外部磁場の影響を受けやすい。加速度検出用の 磁気センサの感度を適正化するためには、検出信号の補正が必要となって、演算プ ログラムが複雑ィ匕する。  [0007] (d) In a composite sensor that uses a magnetic sensor with the same detection range as a magnetic sensor for acceleration detection and a magnetic sensor for magnetic orientation detection, the magnetic sensor for acceleration detection becomes too sensitive. Susceptible to external magnetic fields. In order to optimize the sensitivity of the magnetic sensor for acceleration detection, correction of the detection signal is necessary, and the calculation program is complicated.
[0008] 本発明は、力かる従来技術の問題点を解決するためになされたものであり、その目 的は、小型かつ低コストにして制御演算部の負担が小さぐ加速度及び磁気方位を 高精度に検出可能な加速度及び磁気方位検出用複合センサ並びにこれを用いた 加速度及び磁気方位検出装置を提供することにある。  [0008] The present invention has been made to solve the problems of the related art, and its purpose is to increase the acceleration and the magnetic direction which are small and low cost and reduce the burden on the control calculation unit. An object of the present invention is to provide a composite sensor for detecting acceleration and magnetic azimuth that can be accurately detected, and an acceleration and magnetic azimuth detecting device using the same.
課題を解決するための手段  Means for solving the problem
[0009] 本発明は、上記の課題を解決するため、加速度及び磁気方位検出用複合センサ に関しては、 1乃至複数個の磁気検出素子と、これら 1乃至複数個の磁気検出素子 に磁界を印加する励磁コイルと、当該励磁コイルを支持する弾性梁部とを備えると 、 う構成にした。 [0010] また、本発明は、加速度及び磁気方位検出装置に関しては、 1乃至複数個の磁気 検出素子、これら 1乃至複数個の磁気検出素子に磁界を印加する励磁コイル、当該 励磁コイルを支持する弾性梁部を有する加速度及び磁気方位検出用複合センサと、 前記励磁コイルへの励磁電流の供給を制御すると共に、前記磁気検出素子の出力 を入力し、入力された前記磁気検出素子の出力に応じた加速度の算出及び磁気方 位の算出を行う制御演算部とを備えるという構成にした。 In order to solve the above-mentioned problems, the present invention relates to a composite sensor for detecting acceleration and magnetic orientation, and applies a magnetic field to one to a plurality of magnetic detection elements and to these one to a plurality of magnetic detection elements. An excitation coil and an elastic beam part that supports the excitation coil are provided. [0010] Further, the present invention relates to an acceleration and magnetic azimuth detection device, and supports one or more magnetic detection elements, an excitation coil that applies a magnetic field to these one or more magnetic detection elements, and the excitation coil. A composite sensor for detecting acceleration and magnetic azimuth having an elastic beam portion, and controlling the supply of excitation current to the excitation coil, and inputting the output of the magnetic detection element, and according to the input output of the magnetic detection element And a control arithmetic unit for calculating the acceleration and the magnetic direction.
[0011] このように、 1乃至複数個の磁気検出素子と、これら 1乃至複数個の磁気検出素子 に磁界を印加する励磁コイルと、当該励磁コイルを支持する弾性梁部とを備えたカロ 速度及び磁気方位検出用複合センサは、加速度を受けたとき、弾性梁部が加速度 の向きに応じた方向に加速度の大きさに応じた量だけ変位するので、それに伴って、 磁気検出素子に対する弾性梁部に支持された励磁コイルの姿勢が変化する。よって [0011] In this manner, the caloric velocity includes one or more magnetic detection elements, an excitation coil that applies a magnetic field to the one or more magnetic detection elements, and an elastic beam portion that supports the excitation coil. In addition, when the composite sensor for detecting the magnetic orientation receives the acceleration, the elastic beam part is displaced by the amount corresponding to the magnitude of the acceleration in the direction corresponding to the direction of the acceleration. The posture of the excitation coil supported by the part changes. Therefore
、励磁コイルに励磁電流を通電した状態においては、磁気検出素子に対する励磁コ ィルからの発生磁界の向き及び大きさが加速度の向き及び大きさに応じて変化し、 加速度の向き及び大きさに応じたレベルの出力を取り出すことができる。また、励磁 電流の切り替えにより、検出レンジの切替も容易に行える。一方、地磁気などの外部 磁場は、励磁電流の通電時においては磁気検出素子の出力の直流成分として算出 することができ、励磁電流の遮断時においては磁気検出素子の出力値として求める ことができるので、加速度の検出に利用する磁気検出素子を用 、て磁気方位の検出 も行うことができる。また、同一の磁気検出素子を用いて加速度の検出と磁気方位の 検出とを行うことから、加速度及び磁気方位の検出アルゴリズムを同一にすることが できて、演算プログラムの開発の容易化と必要なメモリ容量の削減とを図ることができ る。さら〖こ、励磁コイルにより印加される磁界が磁気方位の検出時においてノイズとな らないので、磁気方位を高精度に検出できる。カロえて、励磁コイルに供給される励磁 電流を増減することにより加速度の検出レンジを適宜変更できるので、高感度の磁気 検出素子を備える必要がなぐ加速度検出時における外部磁場の影響を受けにくく することができる。 When the exciting coil is energized, the direction and magnitude of the magnetic field generated from the exciting coil with respect to the magnetic detection element changes according to the direction and magnitude of the acceleration. A corresponding level of output can be taken out. The detection range can be easily switched by switching the excitation current. On the other hand, an external magnetic field such as geomagnetism can be calculated as the DC component of the output of the magnetic detection element when the excitation current is applied, and can be obtained as the output value of the magnetic detection element when the excitation current is interrupted. The magnetic orientation can also be detected by using a magnetic detection element used for detecting acceleration. In addition, since acceleration and magnetic orientation are detected using the same magnetic sensing element, the acceleration and magnetic orientation detection algorithms can be made the same, facilitating the development of a computation program and the necessity. The memory capacity can be reduced. Furthermore, since the magnetic field applied by the exciting coil does not become noise when detecting the magnetic orientation, the magnetic orientation can be detected with high accuracy. Since the acceleration detection range can be changed as appropriate by increasing or decreasing the excitation current supplied to the excitation coil, it is not necessary to provide a highly sensitive magnetic detection element, making it less susceptible to external magnetic fields during acceleration detection. Can do.
[0012] また、本発明は、前記構成の加速度及び磁気方位検出装置において、前記制御 演算部は、前記励磁コイルに励磁電流を供給し、前記磁気検出素子の出力からカロ 速度及び磁気方位を並行して算出するという構成にした。力かる構成によると、加速 度及び磁気方位を同時に連続して測定することが可能となり、ごく短時間にかかる加 速度も漏れなく検出することができる。また、演算時間を短縮ィ匕できるので、検出装 置の周波数応答性を良好なものにすることができる。 [0012] Further, according to the present invention, in the acceleration and magnetic orientation detection device having the above-described configuration, the control calculation unit supplies an excitation current to the excitation coil and generates a current from an output of the magnetic detection element. The velocity and magnetic direction are calculated in parallel. According to the powerful configuration, acceleration and magnetic orientation can be measured continuously at the same time, and acceleration that takes a very short time can be detected without omission. In addition, since the calculation time can be reduced, the frequency response of the detection device can be improved.
[0013] また、本発明は、前記構成の加速度及び磁気方位検出装置において、前記制御 演算部は、前記励磁コイルに交流励磁電流を供給し、前記磁気検出素子の出力の 交流成分から加速度を算出すると共に、直流成分力も磁気方位を算出するという構 成にした。これにより、加速度の算出と磁気方位の算出とを比較的簡便な演算プログ ラムを用いて行うことができる。  [0013] Further, the present invention provides the acceleration and magnetic orientation detection device having the above-described configuration, wherein the control calculation unit supplies an AC excitation current to the excitation coil, and calculates an acceleration from an AC component of the output of the magnetic detection element. At the same time, the DC component force is calculated to calculate the magnetic orientation. Thereby, calculation of acceleration and calculation of magnetic direction can be performed using a relatively simple arithmetic program.
[0014] また、本発明は、前記構成の加速度及び磁気方位検出装置において、前記制御 演算部は、前記励磁コイルに励磁電流を供給したときの前記励磁コイルの出力から 加速度を算出し、前記励磁コイルへの励磁電流の供給を遮断したときの前記励磁コ ィルの出力から磁気方位を算出するという構成にした。カゝかる構成によると、加速度と 磁気方位とを切り分けて算出するので、加速度の算出と磁気方位の算出との間に相 互作用が起こらず、外乱に強い検査装置とすることができる。  [0014] Further, according to the present invention, in the acceleration and magnetic orientation detection device having the above-described configuration, the control calculation unit calculates an acceleration from an output of the excitation coil when an excitation current is supplied to the excitation coil, and the excitation The magnetic azimuth is calculated from the output of the excitation coil when the supply of excitation current to the coil is cut off. According to such a configuration, since the acceleration and the magnetic direction are calculated separately, there is no interaction between the calculation of the acceleration and the calculation of the magnetic direction, and an inspection apparatus that is resistant to disturbance can be obtained.
[0015] また、本発明は、前記構成の加速度及び磁気方位検出装置において、前記磁気 検出素子として、磁気検出方位が互いに直交する 3方向に向けられた 3個の磁気検 出素子を備えるという構成にした。力かる構成により、任意の方向の加速度検出と磁 気方位検出が可能になる。  [0015] Further, according to the present invention, in the acceleration and magnetic direction detection device having the above configuration, the magnetic detection element includes three magnetic detection elements having magnetic detection directions directed in three directions orthogonal to each other. I made it. The powerful configuration makes it possible to detect acceleration and magnetic direction in any direction.
発明の効果  The invention's effect
[0016] 本発明によると、励磁コイルを用いて 1乃至複数個の磁気検出素子に加速度検出 に必要な磁界を印加するので、加速度検出に必要な磁気検出素子と磁気方位検出 に必要な磁気検出素子との共用化を図ることができ、加速度及び磁気方位検出装置 の小型化と低コストィ匕を図ることができる。また、加速度の算出と磁気方位の算出とを 同一の検出アルゴリズムで行うことができるので、制御演算部の負担を軽減すること ができる。さらに、励磁コイルへの励磁電流の供給を制御することにより、励磁コイル 力 発生する磁界を適宜調整できるので、加速度の検出レンジを適宜変更できると 共に、加速度の算出時及び磁気方位の算出時におけるノイズの影響を解消若しくは 軽減することができる。 [0016] According to the present invention, a magnetic field necessary for acceleration detection is applied to one or a plurality of magnetic detection elements using an exciting coil, so that a magnetic detection element necessary for acceleration detection and a magnetic detection necessary for magnetic orientation detection are applied. It can be shared with the elements, and the acceleration and magnetic direction detection device can be reduced in size and cost. In addition, since the acceleration and magnetic orientation can be calculated with the same detection algorithm, the burden on the control calculation unit can be reduced. Furthermore, by controlling the supply of the excitation current to the excitation coil, the magnetic field generated by the excitation coil force can be adjusted as appropriate, so that the acceleration detection range can be changed as appropriate, and at the time of calculation of acceleration and magnetic direction Eliminate noise effects or Can be reduced.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明に係る加速度及び磁気方位検出用複合センサ並びにこれを用いた 加速度及び磁気方位検出装置の構成を、図 1乃至図 5を用いて説明する。図 1は実 施形態に係る加速度及び磁気方位検出装置の構成図、図 2は励磁コイルの発生磁 場と地磁気の向きを示す説明図、図 3は X方向又は Y方向の加速度を受けたときの 複合センサの動きを示す動作説明図、図 4は Z方向の加速度を受けたときの複合セ ンサの動きを示す動作説明図、図 5は励磁コイルの発生磁場と磁気検出素子の出力 とを例示するグラフ図である。  Hereinafter, the configuration of the acceleration and magnetic direction detection composite sensor and the acceleration and magnetic direction detection apparatus using the same according to the present invention will be described with reference to FIGS. 1 to 5. FIG. Fig. 1 is a configuration diagram of the acceleration and magnetic orientation detection device according to the embodiment, Fig. 2 is an explanatory diagram showing the direction of the magnetic field generated by the exciting coil and the direction of geomagnetism, and Fig. 3 is when the acceleration in the X or Y direction is received. Fig. 4 is an operation explanatory diagram showing the movement of the composite sensor when it receives acceleration in the Z direction, and Fig. 5 shows the magnetic field generated by the excitation coil and the output of the magnetic detection element. It is a graph figure to illustrate.
[0018] 図 1及び図 2に示すように、本例の加速度及び磁気方位検出装置は、基体 1と、基 体 1上に形成された 3個の磁気検出素子 2, 3, 4と、一端が図示しない固定部を介し て基体 1上に固定された十文字形の弾性梁部 5と、弾性梁部 5の中心部 (可動部分) に取り付けられた重錘部 6と、重錘部 6の下面に形成された励磁コイル 7と、励磁コィ ル 7への励磁電流の供給を制御すると共に、磁気検出素子 2, 3, 4の出力を入力し、 入力された磁気検出素子 2, 3, 4の出力に応じた加速度の算出及び磁気方位の算 出を行う制御演算部 8とから主に構成されている。本発明の加速度及び磁気方位検 出用複合センサは、基体 1、磁気検出素子 2, 3, 4、弾性梁部 5、重錘部 6、及び励 磁コイル 7をもって構成される。この複合センサは、 mems技術により作製することが できる。  As shown in FIGS. 1 and 2, the acceleration and magnetic direction detection device of this example includes a base 1, three magnetic detection elements 2, 3, 4 formed on the base 1, and one end. Of the cross-shaped elastic beam 5 fixed on the base body 1 through a fixing unit (not shown), the weight 6 attached to the center (movable part) of the elastic beam 5, and the weight 6 The excitation coil 7 formed on the bottom surface and the excitation current supply to the excitation coil 7 are controlled and the outputs of the magnetic detection elements 2, 3, and 4 are input. It consists mainly of a control calculation unit 8 that calculates acceleration and magnetic direction according to the output. The composite sensor for detecting acceleration and magnetic orientation according to the present invention includes a base 1, magnetic detection elements 2, 3, 4, an elastic beam portion 5, a weight portion 6, and an excitation coil 7. This composite sensor can be fabricated by mems technology.
[0019] 3個の磁気検出素子 2, 3, 4は、磁気検出方位が互いに直交する 3方向、即ち、図 1及び図 2の X方向、 Y方向及び Z方向にそれぞれ向けられている。なお、磁気検出 素子 2, 3, 4としては、例えば磁気抵抗素子やホール素子などを用いることができる。  The three magnetic detection elements 2, 3, and 4 are oriented in three directions in which the magnetic detection directions are orthogonal to each other, that is, the X direction, the Y direction, and the Z direction in FIGS. As the magnetic detection elements 2, 3, and 4, for example, a magnetoresistive element or a Hall element can be used.
[0020] 弾性梁部 5は、一定幅の板材をもって十文字形に形成され、その中心部に重錘部 6が取り付けられているので、 X方向又は Y方向の加速度を受けた場合には、図 3〖こ 示すように、基体 1に対して重錘部 6が傾斜するように弾性梁部 5が変形し、また、 Z 方向の加速度を受けた場合には、図 4に示すように、基体 1に対して重錘部 6が接近 又は離隔するように弾性梁部 5が変形する。  [0020] The elastic beam portion 5 is formed in a cross shape with a plate material having a constant width, and the weight portion 6 is attached to the center portion thereof. As shown in FIG. 4, when the elastic beam portion 5 is deformed so that the weight portion 6 is inclined with respect to the base body 1 and acceleration in the Z direction is applied, as shown in FIG. The elastic beam part 5 is deformed so that the weight part 6 approaches or separates from 1.
[0021] 重錘部 6は、加速度を受けたときの弾性梁部 5の変形、ひいては磁気検出素子 2, 3, 4に対する励磁コイル 7の変位をある程度大きくして、加速度の検出感度を高める ためのものであり、励磁コイル 7として必要な重量をもつものを用いる場合には、省略 することができる。 [0021] The weight portion 6 is formed by deforming the elastic beam portion 5 when subjected to acceleration, and thus the magnetic detection element 2, This is to increase the displacement of the excitation coil 7 with respect to 3 and 4 to a certain extent to increase the detection sensitivity of the acceleration, and can be omitted when the excitation coil 7 having a necessary weight is used.
[0022] 励磁コイル 7としては、例えば卷線コイルや薄膜コイルなど、公知に属する任意のコ ィルを用いることができる。この励磁コイル 7は、通電時、図 2に示すように、励磁コィ ル 7の巻き軸方向(重錘部 6の励磁コイル形成面と垂直をなす方向)に磁場を発生す る。前記したように、加速度を受けた場合、重錘部 6が加速度の方向に加速度の大き さに応じた量だけ変形するので、各磁気検出素子 2, 3, 4に印加される励磁コイル 7 の発生磁場が変化する。したがって、制御演算部 8は、磁気検出素子 2, 3, 4の出力 の変化から、重錘部 6に作用する加速度の方向及び大きさを算出することができる。 また、制御演算部 8は、各磁気検出素子 2, 3, 4の出力の直流成分から、地磁気など の外部磁場の方向及び大きさを算出することができる。  [0022] As the exciting coil 7, any known coil such as a wire coil or a thin film coil can be used. When energized, the exciting coil 7 generates a magnetic field in the direction of the winding axis of the exciting coil 7 (direction perpendicular to the exciting coil forming surface of the weight portion 6) as shown in FIG. As described above, when the acceleration is received, the weight portion 6 is deformed in the direction of the acceleration by an amount corresponding to the magnitude of the acceleration, so that the excitation coil 7 applied to each magnetic detection element 2, 3, 4 The generated magnetic field changes. Therefore, the control calculation unit 8 can calculate the direction and magnitude of the acceleration acting on the weight unit 6 from the change in the output of the magnetic detection elements 2, 3, 4. Further, the control calculation unit 8 can calculate the direction and magnitude of an external magnetic field such as geomagnetism from the DC component of the output of each magnetic detection element 2, 3, 4.
[0023] 制御演算部 8から励磁コイル 7に供給される励磁電流は、直流電流とすることもでき るし、交流電流とすることもできる。交流電流を供給する場合には、その波形を方形 波、三角波又は正弦波等にすることができる。図 5は、制御演算部 8から励磁コイル 7 に方形波の励磁電流を供給した場合における励磁コイル 7の発生磁場と、地磁気と、 これら励磁コイル 7の発生磁場と地磁気との合成磁場と、これらの各磁場を受けたと きの各磁気検出素子 2, 3, 4の出力とを示している。この図から明らかなように、励磁 電流を供給することによって生じる励磁コイル 7の発生磁場及び各磁気検出素子 2, 3, 4の出力は、励磁電流の波形に対応して方形波となり、地磁気によって生じる磁 気検出素子 2, 3, 4の出力は、一定値となる。  [0023] The exciting current supplied from the control calculation unit 8 to the exciting coil 7 can be a direct current or an alternating current. When an alternating current is supplied, the waveform can be a square wave, a triangular wave, a sine wave, or the like. Figure 5 shows the magnetic field generated by the excitation coil 7 and the geomagnetism when the square-wave excitation current is supplied from the control calculation unit 8 to the excitation coil 7, and the combined magnetic field of the magnetic field generated by the excitation coil 7 and the geomagnetism. The output of each magnetic detection element 2, 3 and 4 when receiving each magnetic field is shown. As is apparent from this figure, the magnetic field generated by the exciting coil 7 generated by supplying the excitation current and the outputs of the magnetic detection elements 2, 3, and 4 are square waves corresponding to the excitation current waveform, and are generated by the geomagnetism. The output of the generated magnetic detection elements 2, 3, 4 is a constant value.
[0024] 以下、制御演算部 8によって行われる加速度及び磁気方位の算出手順の第 1例を 、図 6により説明する。まず、制御演算部 8は、励磁コイル 7に方形波の励磁電流を供 給し、励磁コイル 7に磁場を発生させる。 X方向に感度を持つ磁気検出素子は、その 最大出力 Xmax及び最小出力 Xminから、(Xmax— Xmin)Z2及び(Xmax+Xmi n)Z2を算出し、 X方向の AC成分 Ax及び DC成分 Cxを算出する。これと同時に、 Y 方向に感度を持つ磁気検出素子は、その最大出力 Ymax及び最小出力 Yminから 、(Ymax— Ymin)Z2及び(Ymax+Ymin)Z2を算出し、 Y方向の AC成分 Av及 び DC成分 Cyを算出する。次いで、制御演算部 8は、先に求められた X方向の AC成 分 Axに X方向のゲイン補正係数 cx X及び X方向のオフセット補正係数 β Xを加味し て X方向の加速度 A (X) =Αχ Χ α χ + j8 xを算出すると共〖こ、先に求められた Y方向 の AC成分 Ayに Y方向のゲイン補正係数 a y及び Y方向のオフセット補正係数 β yを 加味して Y方向の加速度 A (y) =Ay X a y + j8 yを算出する。次いで、制御演算部 8 は、先に求められた X方向の加速度 A (X)及び Y方向の加速度 A (y)を用いて数 1の 演算を行い、加速度の大きさ I A Iとその向き Θ aとを算出する。また、これと同時に 、制御演算部 8は、先に求められた X方向の DC成分 Cx及び Y方向の DC成分 Cyを 用いて数 2の演算を行い、地磁気の方位 Θ cを算出する。なお、ゲイン補正係数 α χ , a y及びオフセット補正係数 j8 X, j8 yは、加速度と励磁コイル 7の変位との関係から 、予め求めておく。また、図 6のフロー図では、方位算出時におけるゲイン補正及び オフセット補正が省略されている力 加速度算出時と同様に、ゲイン補正及びオフセ ット補正が行われる。 Hereinafter, a first example of the acceleration and magnetic direction calculation procedure performed by the control calculation unit 8 will be described with reference to FIG. First, the control calculation unit 8 supplies a square wave excitation current to the excitation coil 7 and generates a magnetic field in the excitation coil 7. A magnetic sensor with sensitivity in the X direction calculates (Xmax—Xmin) Z2 and (Xmax + Xmin) Z2 from its maximum output Xmax and minimum output Xmin, and calculates the AC component Ax and DC component Cx in the X direction. calculate. At the same time, the magnetic sensing element with sensitivity in the Y direction calculates (Ymax—Ymin) Z2 and (Ymax + Ymin) Z2 from its maximum output Ymax and minimum output Ymin, and the AC component Av and Y in the Y direction are calculated. And DC component Cy is calculated. Next, the control calculation unit 8 adds the X-direction AC correction component Ax to the X-direction gain correction coefficient cx X and the X-direction offset correction coefficient β X to add the X-direction acceleration A (X). = Αχ Χ α χ + j8 x is calculated together with the Y-direction AC component Ay in addition to the Y-direction gain correction coefficient ay and Y-direction offset correction coefficient βy. Acceleration A (y) = Ay X ay + j8 y is calculated. Next, the control calculation unit 8 performs the calculation of Equation 1 using the acceleration A (X) in the X direction and the acceleration A (y) in the Y direction obtained previously, and the magnitude of the acceleration IAI and its direction Θ a And calculate. At the same time, the control calculation unit 8 performs the calculation of Equation 2 using the previously obtained DC component Cx in the X direction and DC component Cy in the Y direction to calculate the geomagnetic direction Θc. The gain correction coefficients α χ, ay and offset correction coefficients j8 X, j8 y are obtained in advance from the relationship between the acceleration and the displacement of the excitation coil 7. Further, in the flowchart of FIG. 6, gain correction and offset correction are performed in the same manner as in the calculation of force / acceleration in which gain correction and offset correction at the time of azimuth calculation are omitted.
[数 1]  [Number 1]
Θ a= arctani 4 Θ a = arctani 4
Figure imgf000009_0001
Figure imgf000009_0001
[数 2] [Equation 2]
Θ c= arctan Θ c = arctan
C(x)  C (x)
[0025] 本例の算出手順によると、加速度の大きさ及び向きと地磁気の方位を同時に算出 できるので、演算時間を短縮ィ匕でき、検出装置の周波数応答性を良好なものにする ことができる。また、互いに直交する X方向、 Y方向及び Z方向について加速度の大 きさ及び向きと地磁気の方位を求めることができるので、例えばナビゲーシヨンシステ ム等に適用可能な実用性の高い検出装置とすることができる。 [0025] According to the calculation procedure of this example, the magnitude and direction of acceleration and the azimuth of geomagnetism can be calculated simultaneously, so that the calculation time can be reduced and the frequency response of the detection device can be improved. . In addition, since the magnitude and direction of acceleration and the direction of geomagnetism can be obtained in the X, Y, and Z directions orthogonal to each other, a highly practical detection device that can be applied to, for example, a navigation system. be able to.
[0026] 以下、制御演算部 8によって行われる加速度及び磁気方位の算出手順の第 2例を 、図 7により説明する。本例の算出手順は、出力の交流成分及び直流成分を演算に より求めるのではなぐ磁気検出素子 2, 3, 4の出力をノヽィパスフィルタ及びローパス フィルタに通すことにより得ることを特徴とする。本例の算出手順によると、出力の交 流成分及び直流成分の演算を省略できるので、制御演算部 8の負担を軽減すること ができ、検出装置の周波数応答性をさらに良好なものにすることができる。 [0026] Hereinafter, a second example of the acceleration and magnetic direction calculation procedure performed by the control calculation unit 8 will be described. This will be described with reference to FIG. The calculation procedure of this example is obtained by passing the output of the magnetic detection elements 2, 3, and 4 through a noise-pass filter and a low-pass filter instead of obtaining the AC component and DC component of the output by calculation. . According to the calculation procedure of this example, the calculation of the output AC component and DC component can be omitted, so the burden on the control calculation unit 8 can be reduced and the frequency response of the detection device can be further improved. Can do.
[0027] 以下、制御演算部 8によって行われる加速度及び磁気方位の算出手順の第 3例を 、図 8により説明する。本例の算出手順は、加速度の大きさ及び向きと地磁気の方位 とを並行に算出するのではなぐ励磁コイル 7に通電している状態で加速度の大きさ 及び向きを算出し、励磁コイル 7への通電を遮断した状態で地磁気の方位を算出す ることを特徴とする。本例の算出手順によると、加速度と磁気方位とを切り分けて算出 するので、加速度の算出と磁気方位の算出との間に相互作用が起こらず、外乱に強 V、検査装置とすることができる。  Hereinafter, a third example of the acceleration and magnetic orientation calculation procedure performed by the control calculation unit 8 will be described with reference to FIG. The calculation procedure of this example is to calculate the magnitude and direction of acceleration while energizing the exciting coil 7 that does not calculate the magnitude and direction of acceleration and the direction of geomagnetism in parallel. It is characterized in that the geomagnetic direction is calculated in the state where the power is not supplied. According to the calculation procedure of this example, acceleration and magnetic direction are calculated separately, so there is no interaction between the calculation of acceleration and magnetic direction, and it is strong against disturbance V and can be an inspection device. .
[0028] 前記実施形態に係る加速度及び磁気方位検出用複合センサ及びこれを用いた加 速度及び磁気方位検出装置は、励磁コイル 7を用いて磁気検出素子 2, 3, 4に磁界 を印加するので、加速度検出に必要な磁気検出素子と磁気方位検出に必要な磁気 検出素子との共用化を図ることができ、加速度及び磁気方位検出装置の小型化と低 コストィ匕を図ることができる。また、図 6〜図 8に示すように、加速度の算出と磁気方位 の算出とを同一の検出アルゴリズムで行うことができるので、制御演算部 8の負担を 軽減することができる。さらに、励磁コイル 7への励磁電流の供給を制御することによ り、励磁コイル 7から発生する磁界を適宜調整できるので、加速度の検出レンジを適 宜変更できると共に、加速度の算出時及び磁気方位の算出時におけるノイズの影響 を解消若しくは軽減することができる。  [0028] The acceleration and magnetic orientation detection composite sensor and the acceleration and magnetic orientation detection device using the same according to the embodiment apply a magnetic field to the magnetic detection elements 2, 3, and 4 using the excitation coil 7. In addition, the magnetic detection element necessary for detecting the acceleration and the magnetic detection element required for detecting the magnetic direction can be shared, and the acceleration and magnetic direction detection device can be reduced in size and cost. Further, as shown in FIGS. 6 to 8, since the acceleration and the magnetic azimuth can be calculated by the same detection algorithm, the burden on the control calculation unit 8 can be reduced. Furthermore, by controlling the supply of the excitation current to the excitation coil 7, the magnetic field generated from the excitation coil 7 can be adjusted as appropriate, so that the acceleration detection range can be appropriately changed, and the acceleration calculation and magnetic direction can be changed. It is possible to eliminate or reduce the influence of noise when calculating.
[0029] なお、前記実施形態にお!、ては、弾性梁部 5を一定幅の板材からなる十文字形に 形成したが、弾性梁部 5の形状についてはこれに限定されるものではなぐ図 9に例 示するように、種々の形状とすることができる。図 9 (a)は弾性梁部 5を重錘部 6の設 定位置を中心として 3方向に延びる放射状に形成した場合の実施形態であり、図 9 ( b)は弾性梁部 5としてカンチレバーを用いた場合の実施形態であり、図 9 (c)は弾性 梁部 5を重錘部 6の設定位置から渦巻き状に延びる 3本の線状のバネ材をもって形 成した場合の実施形態であり、図 9 (d)は弾性梁部 5を 4枚の三角形の板材をもって 形成した場合の実施形態であり、図 9 (e)は弾性梁部 5を 4枚の四角形の板材をもつ て形成した場合の実施形態であり、図 9 (f)は弾性梁部 5を重錘部 6の設定位置から 4方向に延びる 4本の線状のバネ材をもって形成した場合の実施形態であり、図 9 (g )は弾性梁部 5を重錘部 6の設定位置から 2方向に延びる 2本の線状のバネ材をもつ て形成した場合の実施形態である。 In the above embodiment, the elastic beam portion 5 is formed in a cross shape made of a plate material having a constant width, but the shape of the elastic beam portion 5 is not limited to this. As illustrated in Fig. 9, it can have various shapes. Fig. 9 (a) shows an embodiment in which the elastic beam portion 5 is formed in a radial shape extending in three directions around the set position of the weight portion 6, and Fig. 9 (b) shows a cantilever as the elastic beam portion 5. FIG. 9 (c) shows an embodiment in which the elastic beam portion 5 is formed with three linear spring members extending spirally from the set position of the weight portion 6. Fig. 9 (d) shows an embodiment in which the elastic beam portion 5 is formed with four triangular plate members, and Fig. 9 (e) shows an embodiment in which the elastic beam portion 5 has four sheets. FIG. 9 (f) shows an embodiment in which a rectangular plate material is formed, and FIG. 9 (f) shows a case in which the elastic beam portion 5 is formed with four linear spring materials extending in four directions from the set position of the weight portion 6. FIG. 9 (g) shows an embodiment in which the elastic beam portion 5 is formed with two linear spring members extending in two directions from the set position of the weight portion 6. FIG.
[0030] また、前記実施形態においては、 X方向、 Y方向及び Z方向に感度を持つ 3個の磁 気検出素子 2, 3, 4を備えたが、磁気検出素子 2, 3, 4の個数についてはこれに限 定されるものではなぐ磁気検出素子を 1個のみ備えた 1軸型の検出装置とすることも できるし、 2個の磁気検出素子を互いに直交する 2方向に配置した 2軸型の検出装置 とすることちでさる。  [0030] In the embodiment, the three magnetic detection elements 2, 3, and 4 having sensitivity in the X direction, the Y direction, and the Z direction are provided. However, the present invention is not limited to this, it can be a single-axis type detection device having only one magnetic detection element, or two axes in which two magnetic detection elements are arranged in two directions perpendicular to each other. This is a type detection device.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]実施形態に係る加速度及び磁気方位検出装置の構成図である。  FIG. 1 is a configuration diagram of an acceleration and magnetic orientation detection device according to an embodiment.
[図 2]励磁コイルの発生磁場と地磁気の向きを示す説明図である。  FIG. 2 is an explanatory diagram showing the direction of the magnetic field generated by the exciting coil and the geomagnetism.
[図 3]X方向又は Y方向の加速度を受けたときの複合センサの動きを示す動作説明 図である。  FIG. 3 is an operation explanatory diagram showing the movement of the composite sensor when it receives an acceleration in the X direction or the Y direction.
[図 4]Z方向の加速度を受けたときの複合センサの動きを示す動作説明図である。  FIG. 4 is an operation explanatory diagram showing the movement of the composite sensor when it receives acceleration in the Z direction.
[図 5]励磁コイルの発生磁場と磁気検出素子の出力とを例示するグラフ図である。  FIG. 5 is a graph illustrating the generated magnetic field of the exciting coil and the output of the magnetic detection element.
[図 6]実施形態に係る加速度及び磁気方位検出装置を用いた加速度及び磁気方位 の検出手順の第 1例を示すフロー図である。  FIG. 6 is a flowchart showing a first example of an acceleration and magnetic orientation detection procedure using the acceleration and magnetic orientation detection device according to the embodiment.
[図 7]実施形態に係る加速度及び磁気方位検出装置を用いた加速度及び磁気方位 の検出手順の第 2例を示すフロー図である。  FIG. 7 is a flowchart showing a second example of an acceleration and magnetic orientation detection procedure using the acceleration and magnetic orientation detection device according to the embodiment.
[図 8]実施形態に係る加速度及び磁気方位検出装置を用いた加速度及び磁気方位 の検出手順の第 3例を示すフロー図である。  FIG. 8 is a flowchart showing a third example of the acceleration and magnetic orientation detection procedure using the acceleration and magnetic orientation detection device according to the embodiment.
[図 9]実施形態に係る複合センサの他の例を示す構造図である。  FIG. 9 is a structural diagram showing another example of the composite sensor according to the embodiment.
符号の説明  Explanation of symbols
[0032] 1 基体 [0032] 1 substrate
2, 3, 4 磁気検出素子 弾性梁部 重錘部 励磁コイル 制御演算部 2, 3, 4 Magnetic detector Elastic beam part Weight part Excitation coil Control calculation part

Claims

請求の範囲 The scope of the claims
[1] 1乃至複数個の磁気検出素子と、これら 1乃至複数個の磁気検出素子に磁界を印 加する励磁コイルと、当該励磁コイルを支持する弾性梁部とを備えたことを特徴とす る加速度及び磁気方位検出用複合センサ。  [1] It includes one or more magnetic detection elements, an excitation coil that applies a magnetic field to the one or more magnetic detection elements, and an elastic beam portion that supports the excitation coil. A combined sensor for detecting acceleration and magnetic orientation.
[2] 1乃至複数個の磁気検出素子、これら 1乃至複数個の磁気検出素子に磁界を印加 する励磁コイル、当該励磁コイルを支持する弾性梁部を有する加速度及び磁気方位 検出用複合センサと、前記励磁コイルへの励磁電流の供給を制御すると共に、前記 磁気検出素子の出力を入力し、入力された前記磁気検出素子の出力に応じた加速 度の算出及び磁気方位の算出を行う制御演算部とを備えたことを特徴とする加速度 及び磁気方位検出装置。  [2] one or more magnetic detection elements, an excitation coil for applying a magnetic field to the one or more magnetic detection elements, an acceleration and magnetic orientation detection composite sensor having an elastic beam portion supporting the excitation coil, and A control arithmetic unit that controls the supply of the excitation current to the excitation coil, inputs the output of the magnetic detection element, calculates the acceleration according to the input output of the magnetic detection element, and calculates the magnetic orientation An acceleration and magnetic orientation detection device characterized by comprising:
[3] 前記制御演算部は、前記励磁コイルに励磁電流を供給し、前記磁気検出素子の 出力から加速度及び磁気方位を並行して算出することを特徴とする請求項 2に記載 の加速度及び磁気方位検出装置。  [3] The acceleration and magnetic field according to claim 2, wherein the control calculation unit supplies an excitation current to the excitation coil and calculates an acceleration and a magnetic direction in parallel from an output of the magnetic detection element. Orientation detection device.
[4] 前記制御演算部は、前記励磁コイルに交流励磁電流を供給し、前記磁気検出素 子の出力の交流成分から加速度を算出すると共に、直流成分から磁気方位を算出 することを特徴とする請求項 3に記載の加速度及び磁気方位検出装置。  [4] The control calculation unit supplies an AC excitation current to the excitation coil, calculates acceleration from an AC component of an output of the magnetic detection element, and calculates a magnetic orientation from the DC component. The acceleration and magnetic orientation detection device according to claim 3.
[5] 前記制御演算部は、前記励磁コイルに励磁電流を供給したときの前記磁気検出素 子の出力から加速度を算出し、前記励磁コイルへの励磁電流の供給を遮断したとき の前記磁気検出素子の出力から磁気方位を算出することを特徴とする請求項 2に記 載の加速度及び磁気方位検出装置。  [5] The control calculation unit calculates an acceleration from an output of the magnetic detection element when an excitation current is supplied to the excitation coil, and the magnetic detection when the supply of the excitation current to the excitation coil is cut off. 3. The acceleration and magnetic orientation detection device according to claim 2, wherein the magnetic orientation is calculated from the output of the element.
[6] 前記磁気検出素子として、磁気検出方位が互いに直交する 3方向に向けられた 3 個の磁気検出素子を備えたことを特徴とする請求項 2に記載の加速度及び磁気方位 検出装置。  6. The acceleration and magnetic direction detection device according to claim 2, wherein the magnetic detection element includes three magnetic detection elements whose magnetic detection directions are directed in three directions orthogonal to each other.
PCT/JP2007/052278 2006-06-22 2007-02-08 Acceleration and magnetic direction detecting composite sensor and acceleration and magnetic direction detecting device WO2007148450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-172741 2006-06-22
JP2006172741 2006-06-22

Publications (1)

Publication Number Publication Date
WO2007148450A1 true WO2007148450A1 (en) 2007-12-27

Family

ID=38833194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052278 WO2007148450A1 (en) 2006-06-22 2007-02-08 Acceleration and magnetic direction detecting composite sensor and acceleration and magnetic direction detecting device

Country Status (1)

Country Link
WO (1) WO2007148450A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854339A (en) * 2012-09-07 2013-01-02 中北大学 Micro acceleration transducer based on silicon substrate giant magnetoresistance effect
CN102853826A (en) * 2012-09-07 2013-01-02 中北大学 Silicon base tunneling magnetoresistance micro gyroscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645663A (en) * 1990-11-13 1994-02-18 Sony Tektronix Corp Micromechanical sensor
JPH11160349A (en) * 1997-11-28 1999-06-18 Matsushita Electric Works Ltd Acceleration sensor
JPH11352143A (en) * 1998-04-06 1999-12-24 Matsushita Electric Ind Co Ltd Acceleration sensor
JP2003172633A (en) * 2001-12-07 2003-06-20 Asahi Kasei Corp Integrated azimuth sensor
JP2003255029A (en) * 2002-03-04 2003-09-10 Aichi Micro Intelligent Corp Magnetism detector
JP2005195369A (en) * 2003-12-26 2005-07-21 Aichi Steel Works Ltd Micro inclination detector
JP2007093363A (en) * 2005-09-28 2007-04-12 Yamaha Corp Acceleration sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645663A (en) * 1990-11-13 1994-02-18 Sony Tektronix Corp Micromechanical sensor
JPH11160349A (en) * 1997-11-28 1999-06-18 Matsushita Electric Works Ltd Acceleration sensor
JPH11352143A (en) * 1998-04-06 1999-12-24 Matsushita Electric Ind Co Ltd Acceleration sensor
JP2003172633A (en) * 2001-12-07 2003-06-20 Asahi Kasei Corp Integrated azimuth sensor
JP2003255029A (en) * 2002-03-04 2003-09-10 Aichi Micro Intelligent Corp Magnetism detector
JP2005195369A (en) * 2003-12-26 2005-07-21 Aichi Steel Works Ltd Micro inclination detector
JP2007093363A (en) * 2005-09-28 2007-04-12 Yamaha Corp Acceleration sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854339A (en) * 2012-09-07 2013-01-02 中北大学 Micro acceleration transducer based on silicon substrate giant magnetoresistance effect
CN102853826A (en) * 2012-09-07 2013-01-02 中北大学 Silicon base tunneling magnetoresistance micro gyroscope

Similar Documents

Publication Publication Date Title
KR101154832B1 (en) A magnetic field sensor device and a compass
US7112951B2 (en) MEMS based current sensor using magnetic-to-mechanical conversion and reference components
US6668627B2 (en) Sensor apparatus with magnetically deflected cantilever
JP4604037B2 (en) Resonant magnetometer device
EP2413153B1 (en) Magnetic detection device
US8176780B2 (en) Angular velocity sensor
US8878528B2 (en) MEMS-based magnetic sensor with a Lorentz force actuator used as force feedback
EP2972417B1 (en) Magnetometer using magnetic materials on accelerometer
JP5615383B2 (en) Coriolis gyroscope with correction unit and method for reducing quadrature bias
KR20070032936A (en) Resonant magnetometer device
US7741832B2 (en) Micro-electromechanical system (MEMS) based current and magnetic field sensor using tunneling current sensing
WO1996010184A1 (en) Acceleration sensor using piezoelectric element
JP6969142B2 (en) Magnetic sensor
JPH11352143A (en) Acceleration sensor
JP2009122041A (en) Composite sensor
JP2000329681A (en) Self-exciation and self-detection-type probe and scanning probe device
JP2009128164A (en) Composite sensor for acceleration-angular velocity-magnetic azimuth detection, and device using it
US20090158847A1 (en) Angular Velocity Sensor
WO2007148450A1 (en) Acceleration and magnetic direction detecting composite sensor and acceleration and magnetic direction detecting device
US20230057869A1 (en) Resonant frequency-based magnetic sensor at veering zone and method
US20020190712A1 (en) Method for forming a magnetic sensor that uses a lorentz force and a piezoelectric effect
JP2009139253A (en) Position sensor
JP2003503709A (en) Method and apparatus for detecting a magnetic field using Lorentz force and piezoelectric effect
JP2005043103A (en) Magnetic compass
JP2009139211A (en) Tilt angle sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07708262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP