WO2007145147A1 - Method for producing iron-containing carbon material - Google Patents

Method for producing iron-containing carbon material Download PDF

Info

Publication number
WO2007145147A1
WO2007145147A1 PCT/JP2007/061661 JP2007061661W WO2007145147A1 WO 2007145147 A1 WO2007145147 A1 WO 2007145147A1 JP 2007061661 W JP2007061661 W JP 2007061661W WO 2007145147 A1 WO2007145147 A1 WO 2007145147A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
carbon material
electrode
oxygen reduction
containing carbon
Prior art date
Application number
PCT/JP2007/061661
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Maruyama
Ikuo Abe
Junji Okamura
Kuninori Miyazaki
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Publication of WO2007145147A1 publication Critical patent/WO2007145147A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Fuel cells are attracting attention as highly efficient power generation systems that are in harmony with the environment.
  • solid polymer electrolyte fuel cells that use a fluorinated ion exchange membrane as the electrolyte can operate at normal temperatures and have a high output density. It is expected to be used widely as a system power supply.
  • the present inventors have developed a method for heat-treating an iron-containing natural compound such as power talase or hemoglobin in an inert atmosphere as a method for producing an iron-containing carbon material having such a catalytic action.
  • Japanese Unexamined Patent Application Publication No. 2004-217507 Japanese Unexamined Patent Application Publication No. 2004-217507
  • phthalocyanines or dibenzotetraazanulenes containing iron and kononoret are not used.
  • a method of thermal decomposition in an active atmosphere is described.
  • carbon materials that contain iron instead of expensive platinum have been known as carbon materials that can be used as a catalyst for an oxygen reduction electrode of a solid polymer electrolyte fuel cell.
  • conventional iron-containing carbon materials cannot be easily and inexpensively manufactured because they use natural organic compounds as materials, or require special carbon materials to be prepared in advance.
  • an object of the present invention is to provide a method for easily producing an inexpensive carbon material having high catalytic activity.
  • Another object of the present invention is to provide an oxygen reduction electrode containing the iron-containing carbon material produced by the method, and a polymer electrolyte fuel cell having the oxygen reduction electrode.
  • the method for producing an iron-containing carbon material according to the present invention includes a step of mixing an iron salt, a nitrogen-containing compound and a carbohydrate, and a step of heat-treating the mixture in an inert atmosphere. To do.
  • the iron-containing carbon material of the present invention is manufactured by the above-described method of the present invention.
  • the oxygen reduction electrode of the present invention is characterized by including an iron-containing carbon material produced by the above method, and the solidified polymer fuel cell of the present invention has the oxygen reduction electrode. .
  • FIG. 1 is a graph showing the relationship between current I and electrode potential E, which is an index of oxygen reduction activity of the electrode catalyst layers formed in Examples 1, 2, 3 and Comparative Example 1.
  • FIG. 2 is a diagram showing the relationship between current I and electrode potential E, which are indicators of the oxygen reduction activity of the electrode catalyst layers formed in Examples 4 and 5 and Comparative Example 2.
  • a method for producing an iron-containing carbon material according to the present invention includes a step of mixing an iron salt, a nitrogen-containing compound and a carbohydrate, and a step of heat-treating the mixture in an inert atmosphere. To do.
  • the method of the present invention will be described.
  • iron salt in addition to the iron salt, other inexpensive metal salts may be used. There is a possibility that the catalytic performance of carbon materials can be improved by further adding inexpensive metal salts other than iron salts.
  • metal salts include, for example, halides of copper, nickel, cobalt, chromium, manganese, and vanadium, such as fluorides, chlorides, bromides, iodides; nitrates, sulfates, phosphates, etc.
  • Carbohydrates used in the present invention have a role of sufficiently supplying carbon that tends to be deficient with only nitrogen-containing compounds.
  • Carbohydrate is sometimes used as an alternative name for sugar, but in the present invention, the term carbohydrate is used to exclude nitrogen-containing amino sugars such as darcosamine from the range and distinguish them from nitrogen-containing compounds. Therefore, in general, the carbohydrate may be interpreted as including an amino sugar, but the carbohydrate of the present invention is composed of a carbon atom, a hydrogen atom, and an oxygen atom.
  • the carbohydrates of the present invention are not limited to those represented by the general formula: (CH0), and sugar alcohols not represented by (CH0)
  • the amount of the nitrogen-containing compound used is usually preferably 1 part by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the carbohydrate. If the amount of the nitrogen-containing compound is 1 part by mass or more with respect to 100 parts by mass of carbohydrates, the ratio of nitrogen atoms in the carbon material is sufficient, and a sufficient amount of iron can be bound. If so, the amount of nitrogen atoms in the carbon material will not be excessive.
  • a more preferable use amount of the nitrogen-containing compound is 10 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the carbohydrate.
  • the amount of the iron salt used or the total amount of the iron salt and other metal salt is usually 0.01 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the total of the nitrogen-containing compound and the carbohydrate. Part or less.
  • the carbon material according to the present invention exhibits a catalytic action.
  • the amount of iron can be secured sufficiently, and if it is 100 parts by mass or less, the amount of iron in the carbon material is not considered to be a square IJ.
  • a more preferable amount of the iron salt used is 0.1 parts by mass or more and 10 parts by mass or less based on 100 parts by mass of the total of the nitrogen-containing compound and the carbonate.
  • the iron salt, nitrogen-containing compound and carbohydrate to be used are preferably pulverized before or after mixing. This is because each component is finer and heat treatment efficiency is higher.
  • a reducing atmosphere comprising a reducing gas such as hydrogen
  • the inert gas and the reducing gas may be used alone or in combination of two or more as the inert atmosphere.
  • an activation effect is also obtained, so that a carbon material having a larger specific surface area than that obtained by heat treatment in another atmosphere can be obtained.
  • the heat treatment temperature is not particularly limited, but is usually about 400 to 1500 ° C, preferably about 600 to 1000 ° C. If the heat treatment temperature is too low, the carbon structure is undeveloped and the electrical conductivity required as an electrode catalyst is low, and if the heat treatment temperature is too high, the yield is poor.
  • the heat treatment may be performed.
  • the pre-carbonization temperature is usually preferably about 100-400 ° C, more preferably about 150-350 ° C. If the pre-carbonization temperature is too low, a suitable pre-carbide may not be formed, whereas if the pre-carbonization temperature is too high, carbonization may proceed excessively and a suitable pre-carbide may not be obtained. In addition, the yield may decrease There is power S.
  • the heat treatment time can be appropriately set according to the temperature condition, but is usually about 30 minutes to 5 hours, preferably about 1 to 3 hours. However, the heat treatment time can be appropriately adjusted according to the amount and type of raw materials such as iron salt, nitrogen-containing compound and carbohydrate, and is not necessarily limited to the above range.
  • the carbon material in which iron is bonded via a nitrogen atom is obtained.
  • the carbon material may be activated by a known activation method such as a steam activation method after the heat treatment.
  • a known activation method such as a steam activation method after the heat treatment.
  • blend well-known activators such as salt ⁇ zinc and sodium carbonate
  • the iron-containing carbon material of the present invention can be applied to various applications by virtue of the feature that iron atoms are stably bonded to the surface of the carbon material.
  • examples thereof include oxygen reduction electrode materials and electrode catalyst materials for oxygen reduction electrodes of solid polymer electrolyte fuel cells. These typical applications are described below.
  • the iron-containing carbon material of the present invention is useful as a material for an oxygen reduction electrode.
  • the manufacturing method of the oxygen reduction electrode using the iron-containing carbon material of the present invention is not particularly limited, and a known method can be used.
  • the iron-containing carbon material of the present invention and a known binder such as tetrafluoroethylene can be mixed and then compression molded to obtain oxygen reduction electrodes of various shapes.
  • a metal component may be added as necessary. If the metal component is a metal Any one may be used, but platinum or a platinum alloy is preferable. Further, the carbon material of the present invention can be used as a carrier such as platinum, or an electrode catalyst. However, even when platinum or the like is combined, since the iron-containing carbon material of the present invention has an excellent catalytic action, the amount of platinum or the like used can be significantly reduced as compared with the conventional platinum electrode catalyst.
  • the iron-containing carbon material of the present invention is particularly useful as an electrode catalyst material for an oxygen reduction electrode of a solid polymer electrolyte fuel cell.
  • the iron-containing carbon material of the present invention can be used as a catalyst as it is, and other components can be added depending on circumstances. For example, there is a case where a conductive agent such as carbon black is added for the purpose of improving conductivity. Further, the iron-containing carbon material of the present invention can be used as a carrier having catalytic activity, and a metal or a noble metal can be further supported.
  • the method for forming the oxygen reduction electrode of the solid polymer electrolyte fuel cell using the iron-containing carbon material of the present invention is not particularly limited, and can be formed according to a conventional method.
  • the iron-containing carbon material of the present invention can be used as a catalyst, and this can be applied to a solid polymer electrolyte membrane made of a proton conductive material or an anion conductive material to form an electrode.
  • An example of manufacturing an electrode using a proton conductive material is shown below, but other conventional manufacturing methods are not excluded depending on the performance and form of the electrode.
  • the carbon material of the present invention and a proton conductive material are mixed in a medium to form a paste-like electrode catalyst layer forming material, which is directly applied to the proton conductive film and then applied.
  • the oxygen reduction electrode can also be formed by drying.
  • the proton conductive substance can be used without particular limitation as long as it can transmit protons.
  • fluorine-containing ion exchange resins having a sulfonic acid group such as naphthion (manufactured by DuPont), Flemion (manufactured by Asahi Glass), and Aciplex (manufactured by Asahi Kasei).
  • the proton conductive membrane it is possible to use the same material as the proton conductive material used as the electrode catalyst layer forming material, that is, a membrane formed of a fluorine-based resin having a sulfonic acid group. it can.
  • the carbon material of the present invention a known conductive agent such as carbon black, and a proton conductive material
  • the oxygen reduction electrode can also be formed by mixing the material in a medium to obtain a paste-like electrode catalyst layer forming material, which is directly applied to the proton conductive membrane and drying the applied layer.
  • the method for forming the electrode catalyst layer is as follows: 1) Only the method (coating method) of applying the paste-like electrode catalyst layer forming material directly on the surface of the proton conductive membrane 2) A method of transferring the electrode catalyst layer to the proton conductive membrane side after applying the paste-like electrode catalyst layer forming material on a sheet-like substrate such as a tetrafluoroethylene sheet to form the electrode catalyst layer (transfer Law) etc. can also be used.
  • an oxygen reduction electrode of a solid polymer electrolyte fuel cell can be produced by bonding the formed electrode catalyst layer and a porous conductive sheet-like substrate such as carbon paper.
  • a porous conductive sheet-like substrate such as carbon paper.
  • the method of joining the surface of the electrode catalyst layer to the proton conductive membrane is adopted. Also good.
  • Iron lactate (II) trihydrate was used as the iron salt, glycine, which is an amino acid as the nitrogen-containing compound, and gnolecose as the carbohydrate, and these were mixed and powdered in a mortar.
  • the molar ratio of glycine to gnoleose was 1: 1, and the iron content in the mixture was 1% by weight.
  • Dehydration, often performed before carbonization of common sugars, was carried out by holding in air at 150 ° C for 24 hours.
  • the obtained precursor was powdered, heated in an inert gas argon at 1000 ° C. at a heating rate of 5 ° C./min, and then heat-treated at 1000 ° C. for 2 hours. Yield was obtained from mass change before and after heat treatment.
  • the obtained iron-containing carbon material was pulverized and then treated in boiling sulfuric acid aqueous solution to remove unnecessary soluble iron.
  • the atomic ratio of carbon, nitrogen, oxygen, and iron on the surface of the obtained iron-containing carbon material was determined by X-ray photoelectron spectroscopy. These results are shown in Table 1 below.
  • the catalyst paste 2 ⁇ 1 was applied to a rotating glass one carbon disk electrode at an application area of 0.071 cm 2 and sufficiently dried to form an electrode catalyst layer.
  • the rotating electrode on which the electrode catalyst layer was formed was immersed in a 0.1 mol / perchloric acid aqueous solution saturated with oxygen, and the relationship between the oxygen reduction current and the electrode potential was measured using the reversible hydrogen electrode (RHE) as a reference electrode. Examined. Figure 1 shows the relationship.
  • An iron-containing carbon material was produced in the same manner as in Example 1 except that adenine, which is a purine base, was used in place of glycine as the nitrogen-containing compound. Yield was obtained from mass change before and after heat treatment. The obtained iron-containing carbon material was pulverized and then treated in boiling sulfuric acid aqueous solution to remove unnecessary soluble iron. The atomic ratio of carbon, nitrogen, oxygen, and iron on the surface of the obtained iron-containing carbon material was determined by X-ray photoelectron spectroscopy. These results are shown in Table 1 below.
  • An electrode catalyst layer was formed in the same manner as in Example 1.
  • Table 2 shows the number of reaction electrons per molecule of oxygen.
  • Example 2 except that iron (II) lactate is used instead of iron (II) lactate as the iron salt, and copper (II) is used as the compound containing copper.
  • a metal-containing carbon material was produced.
  • the molar ratio of iron (II) dalconate dihydrate to copper dalconate was 1: 1, and the metal content in the starting material mixture was 1% by weight.
  • the yield was determined from the mass change before and after the heat treatment.
  • the obtained metal-containing carbon material was pulverized and then treated in boiling sulfuric acid solution to remove unnecessary soluble metal components. Obtained iron-containing carbon material table
  • the atomic ratio of carbon, nitrogen, oxygen, iron and copper on the surface was determined by X-ray photoelectron spectroscopy. These results are shown in Table 1 below.
  • An electrode catalyst layer was formed in the same manner as in Example 1.
  • Table 2 shows the number of reaction electrons per molecule of oxygen.
  • Carbon black (trade name “Vulcan XC-72R” manufactured by Cabot) 10 mg of 5 wt% perfluorosulfonic acid resin solution (Aldrich) Catalyst paste by placing in lml and dispersing by ultrasound was prepared.
  • Example 4 In the same manner as in Example 1, the relationship between the oxygen reduction current and the electrode potential was examined for the rotating electrode on which the electrode catalyst layer was formed. Figure 1 shows the relationship. [0061] Example 4
  • the iron-containing carbon material lOmg obtained in Example 2 was added to a 2.5% by weight anion exchange resin solution together with lmg of carbon black (trade name “Vulcan XC-72R” manufactured by Cabot Corporation), and dispersed by ultrasonic to form a catalyst.
  • a paste was prepared.
  • the catalyst paste was applied to a single bon disc electrode with a rotating glass, and dried sufficiently at room temperature to form an electrode catalyst layer.
  • the rotating electrode on which the electrode catalyst layer was formed was immersed in an lmol / 1 potassium hydroxide aqueous solution saturated with oxygen, and the relationship between the oxygen reduction current and the electrode potential was investigated using the reversible hydrogen electrode (RHE) as a reference electrode. It was. Figure 2 shows this relationship. Table 3 shows the number of reaction electrons per oxygen molecule.
  • Ag-based catalyst E-TEK, Ag loading: 60% by mass, support: carbon black Vulcan XC-72
  • lOmg is added to a 2.5 wt% anion exchange resin solution and dispersed by ultrasound.
  • a catalyst paste was prepared. The catalyst paste was applied to a rotating glass / carbon disk electrode and sufficiently dried at room temperature to form an electrode catalyst layer.
  • the rotating electrode on which the electrocatalyst layer was formed was immersed in an lmol / 1 potassium hydroxide aqueous solution saturated with oxygen, and the relationship between the oxygen reduction current and the electrode potential using a reversible hydrogen electrode (RHE) as a reference electrode. I checked the staff. Figure 2 shows this relationship. Table 3 shows the number of reaction electrons per oxygen molecule.
  • RHE reversible hydrogen electrode
  • the iron-containing carbon material of the present invention is mostly carbon, but has functional groups containing oxygen atoms on its surface, and further, iron and nitrogen atoms exist on the surface and are active. It is suggested that this is a point.
  • Table 2 shows that the iron-containing carbon material of the present invention is used in comparison with the number of reaction electrons per molecule of oxygen in an acidic environment is 4, which is the number of reaction electrons when directly reduced to water. It can be seen that the oxygen reduction electrode has the ability to reduce oxygen directly to water with little production of hydrogen peroxide, an intermediate equivalent to 2 reaction electrons.
  • Table 3 shows that when the iron-containing carbon material of the present invention is used as a material for an oxygen reduction electrode, the number of reaction electrons per molecule of oxygen is higher than that of a commercially available Ag-based catalyst. It can be seen that the contained carbon material has excellent catalytic ability to reduce oxygen directly to water.
  • the electrode catalyst layer containing the iron-containing carbon material of the present invention has excellent oxygen reduction performance in an acidic environment.
  • FIG. 2 shows that the electrode catalyst layer containing the iron-containing carbon material of the present invention has excellent oxygen reduction performance even in an alkaline environment.
  • the iron-containing carbon material obtained by the production method of the present invention is preferably a material for an oxygen reduction electrode in which iron and nitrogen atoms are incorporated into the carbon material during heat treatment to form a stable active site for an oxygen reduction reaction. It becomes.
  • the oxygen reduction electrode containing the carbon material of the present invention exhibits high activity for the oxygen reduction reaction.
  • the iron-containing carbon material of the present invention when used as a material for an oxygen reduction electrode, produces a low amount of hydrogen peroxide, which is an intermediate that can cause a decrease in battery efficiency and deterioration of the material. It ’s also excellent in terms.
  • Such an oxygen reduction electrode is useful as an electrode of, for example, an alkaline fuel cell or a phosphoric acid fuel cell. That In addition, it is also useful as a component of a salt electrolysis layer, an air zinc battery, or the like.
  • the iron-containing carbon material of the present invention is particularly useful as an electrode catalyst material for an oxygen reduction electrode of a solid polymer electrolyte fuel cell.
  • An oxygen reduction electrode of a solid polymer electrolyte fuel cell using the carbon material of the present invention as an electrode catalyst exhibits high activity for an oxygen reduction reaction even if platinum which has been conventionally used as an electrode catalyst material is not included.
  • it has the ability to directly reduce oxygen to water, as well as an electrode using platinum, which produces a small amount of hydrogen peroxide, which is an intermediate that can cause fuel cell efficiency degradation and material degradation. Very good.
  • excellent oxygen reduction performance can be exhibited, for example, in a solid polymer fuel cell using an anion exchange type solid polymer electrolyte.
  • the above iron-containing carbon material can be produced inexpensively and easily without using an expensive raw material or a raw material that requires labor for preparation. Therefore, the present invention is extremely useful industrially as being able to contribute to the practical use of fuel cells.

Abstract

Disclosed is a method for easily producing a low-cost carbon material having high catalytic activity which can be used in place of a platinum carbon material, or enables to significantly reduce the amount of platinum conventionally used in electrode catalyst material for solid polymer electrolyte fuel cells. Also disclosed are an oxygen reduction electrode containing an iron-containing carbon material produced by the method, and a solid polymer fuel cell having such an oxygen reduction electrode. Specifically disclosed is a method for producing an iron-containing carbon material, which comprises a step for mixing an iron salt, a nitrogen-containing compound and a carbohydrate, and a step for heat-treating the mixture in an inert atmosphere.

Description

明 細 書  Specification
鉄含有炭素材料の製造方法  Method for producing iron-containing carbon material
技術分野  Technical field
[0001] 本発明は、鉄を含有する炭素材料の製造方法、並びに当該鉄含有炭素材料を構 成成分とする酸素還元電極および固体化高分子形燃料電池に関するものである。 背景技術  The present invention relates to a method for producing a carbon material containing iron, and an oxygen reduction electrode and a solidified polymer fuel cell comprising the iron-containing carbon material as constituent components. Background art
[0002] 燃料電池は、環境に調和した高効率な発電システムとして注目を集めている。特に フッ素系イオン交換膜を電解質として使用する固体高分子電解質形燃料電池は、常 温での作動が可能であり且つ高出力密度であるため、排気ガスフリーの電気自動車 用電源や家庭用電熱併給システムの電源等として幅広レ、実用化が期待されてレ、る。  [0002] Fuel cells are attracting attention as highly efficient power generation systems that are in harmony with the environment. In particular, solid polymer electrolyte fuel cells that use a fluorinated ion exchange membrane as the electrolyte can operate at normal temperatures and have a high output density. It is expected to be used widely as a system power supply.
[0003] このような燃料電池の実用化と普及のためには、低コスト化が大きな課題となってい る。既存の固体高分子電解質形燃料電池では、一般に電極触媒の成分に高価な白 金を含むため、低コスト化のためには白金使用量を低減する工夫が求められる。また 、白金の埋蔵量や生産量にも限りがあり、将来的に普及が進んだ場合には白金価格 が高騰することも予想されるため、白金を用いない安価な電極触媒材料の開発も課 題となっている。  [0003] For the practical use and widespread use of such fuel cells, cost reduction has become a major issue. Existing solid polymer electrolyte fuel cells generally contain expensive white metal as a component of the electrode catalyst. Therefore, a device for reducing the amount of platinum used is required for cost reduction. In addition, platinum reserves and production volumes are limited, and it is expected that the price of platinum will rise in the future when it spreads widely. Therefore, it is also necessary to develop inexpensive electrocatalyst materials that do not use platinum. It has become a problem.
[0004] 白金を用いない有望な正極触媒材料のひとつに、資源的に豊富な鉄を利用した触 媒が挙げられる。この触媒は、窒素原子を介して鉄原子が炭素材料表面上に結合し た構造を有し、この部分が触媒の活性点として機能する。  [0004] One promising positive electrode catalyst material that does not use platinum is a catalyst that uses resource-rich iron. This catalyst has a structure in which iron atoms are bonded on the surface of a carbon material through nitrogen atoms, and this part functions as an active point of the catalyst.
[0005] 本発明者らは、この様な触媒作用を有する鉄含有炭素材料の製造方法として、力 タラーゼゃヘモグロビンなど鉄を含有する天然化合物を不活性雰囲気下で熱処理 する方法を開発している(特開 2004— 217507号公報)。また、 A. van der Putt enら, J. Electroanal. Chem. , 205,第 233〜244頁(1986年) ίこ fま、鉄やコノ ノレ トを含むフタロシアニンまたはジベンゾテトラァザァヌレンを不活性雰囲気下で熱分 解する方法が記載されている。しかし、鉄を含有するこれら天然物については、燃料 電池の普及に必要と考えられる大規模な入手経路が現時点では未だ確立されてい ない。 [0006] その他、 S. Guptaら, J. Appl. Electrochem. , 19,第 19〜27頁(1989年)に は、ポリアクリロニトリルとコバルト塩または鉄塩、および広表面積カーボンを熱処理 する炭素材料の製造方法が開示されている。また、 G. Lalandeら, Electrochim. Acta, 42,第 1379〜1388頁(1987年)(こ fま、鉄を含むポリヒ、、ニノレフエロセン等を カーボンブラック上に担持し、ァセトニトリル蒸気中で熱分解する炭素材料の製造方 法が記載されている。さらに M. Lefevreら, J. Phys. Chem. B 106,第 8705〜8 713 (2002年)には、ペリレンテトラカルボン酸無水物を熱分解することにより得た炭 素材料へ鉄の酢酸塩または鉄—ポルフィリンを担持し、熱分解するという炭素材料の 製造方法が開示されている。しかし、これら方法では事前に特別な炭素材料を調製 しなければならず、コストや手間力 Sかかる。 [0005] The present inventors have developed a method for heat-treating an iron-containing natural compound such as power talase or hemoglobin in an inert atmosphere as a method for producing an iron-containing carbon material having such a catalytic action. (Japanese Unexamined Patent Application Publication No. 2004-217507). In addition, A. van der Putten et al., J. Electroanal. Chem., 205, pp. 233-244 (1986). Also, phthalocyanines or dibenzotetraazanulenes containing iron and kononoret are not used. A method of thermal decomposition in an active atmosphere is described. However, for these natural products containing iron, a large-scale acquisition route that is considered necessary for the spread of fuel cells has not been established yet. [0006] In addition, S. Gupta et al., J. Appl. Electrochem., 19, pp. 19-27 (1989) include polyacrylonitrile and cobalt salts or iron salts, and carbon materials for heat treatment of large surface area carbon. A manufacturing method is disclosed. G. Lalande et al., Electrochim. Acta, 42, pp. 1379-1388 (1987) (Polymer containing iron, ninoleferrocene, etc. are supported on carbon black and thermally decomposed in acetonitrile vapor. In addition, M. Lefevre et al., J. Phys. Chem. B 106, Nos. 8705-8713 (2002) describe the pyrolysis of perylenetetracarboxylic anhydride. However, it is disclosed that carbon materials obtained by the above method are loaded with iron acetate or iron-porphyrin and thermally decomposed, but in these methods, a special carbon material must be prepared in advance. It takes cost and effort S.
発明の開示  Disclosure of the invention
[0007] 上述した様に、従来、固体高分子電解質形燃料電池の酸素還元電極用の触媒と して用いることができる炭素材料として、高価な白金の代わりに鉄を含むものは知ら れていた。しかし、従来の鉄含有炭素材料は天然有機化合物を材料とするものであ つたり、或いは事前に特殊な炭素材料の調製を要するものであるなど、安価で簡便 に製造できるものではなかった。  [0007] As described above, conventionally, carbon materials that contain iron instead of expensive platinum have been known as carbon materials that can be used as a catalyst for an oxygen reduction electrode of a solid polymer electrolyte fuel cell. . However, conventional iron-containing carbon materials cannot be easily and inexpensively manufactured because they use natural organic compounds as materials, or require special carbon materials to be prepared in advance.
[0008] そこで本発明が解決すべき課題は、固体高分子電解質形燃料電池の電極触媒材 料として従来用いられている白金の使用量を著しく低減でき、または白金炭素材料 に代えて使用できるものであり、触媒活性が高く且つ安価な炭素材料を簡便に製造 できる方法を提供することにある。また、本発明は、当該方法で製造した鉄含有炭素 材料を含む酸素還元電極、および当該酸素還元電極を有する固体高分子形燃料電 池を提供することも目的とする。  Accordingly, the problem to be solved by the present invention is that the amount of platinum conventionally used as an electrode catalyst material for a solid polymer electrolyte fuel cell can be remarkably reduced, or can be used in place of a platinum carbon material. Therefore, an object of the present invention is to provide a method for easily producing an inexpensive carbon material having high catalytic activity. Another object of the present invention is to provide an oxygen reduction electrode containing the iron-containing carbon material produced by the method, and a polymer electrolyte fuel cell having the oxygen reduction electrode.
[0009] 本発明者らは上記課題を解決すべく鋭意研究を重ねた。その結果、使用する材料 を工夫すれば、天然有機化合物や特殊な炭素材料などの高価な材料を使用せずと も高い触媒作用を有する炭素材料を製造できることを見出して本発明を完成した。  [0009] The present inventors have intensively studied to solve the above problems. As a result, the inventors have found that if a material to be used is devised, a carbon material having a high catalytic action can be produced without using an expensive material such as a natural organic compound or a special carbon material, and the present invention has been completed.
[0010] 本発明に係る鉄含有炭素材料の製造方法は、鉄塩、窒素含有化合物および炭水 化物を混合する工程;および、不活性雰囲気で混合物を熱処理する工程;を含むこ とを特徴とする。 [0011] 本発明の鉄含有炭素材料は、上記本発明方法により製造されたことを特徴とする。 また、本発明の酸素還元電極は、上記方法により製造された鉄含有炭素材料を含む ことを特徴とし、本発明の固体化高分子形燃料電池は、当該酸素還元電極を有する ことを特徴とする。 [0010] The method for producing an iron-containing carbon material according to the present invention includes a step of mixing an iron salt, a nitrogen-containing compound and a carbohydrate, and a step of heat-treating the mixture in an inert atmosphere. To do. [0011] The iron-containing carbon material of the present invention is manufactured by the above-described method of the present invention. Further, the oxygen reduction electrode of the present invention is characterized by including an iron-containing carbon material produced by the above method, and the solidified polymer fuel cell of the present invention has the oxygen reduction electrode. .
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]実施例 1、 2、 3および比較例 1で形成した電極触媒層の酸素還元活性の指標 となる電流 Iと電極電位 Eの関係を示す図である。  [0012] FIG. 1 is a graph showing the relationship between current I and electrode potential E, which is an index of oxygen reduction activity of the electrode catalyst layers formed in Examples 1, 2, 3 and Comparative Example 1.
K  K
[図 2]実施例 4、 5及び比較例 2で形成した電極触媒層の酸素還元活性の指標となる 電流 Iと電極電位 Eの関係を示す図である。  FIG. 2 is a diagram showing the relationship between current I and electrode potential E, which are indicators of the oxygen reduction activity of the electrode catalyst layers formed in Examples 4 and 5 and Comparative Example 2.
K  K
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明に係る鉄含有炭素材料の製造方法は、鉄塩、窒素含有化合物および炭水 化物を混合する工程;および、不活性雰囲気で混合物を熱処理する工程;を含むこ とを特徴とする。以下、実施の順番に従って、本発明方法につき説明する。  [0013] A method for producing an iron-containing carbon material according to the present invention includes a step of mixing an iron salt, a nitrogen-containing compound and a carbohydrate, and a step of heat-treating the mixture in an inert atmosphere. To do. Hereinafter, according to the order of implementation, the method of the present invention will be described.
[0014] 本発明方法で原材料として用いる鉄塩は、本発明に係る炭素材料中で白金の代わ りに触媒作用を発揮する鉄の供給源として重要である。その種類は特に制限されず 、二価鉄の塩、三価鉄の塩のいずれも用いることができる。例えば、二価鉄の塩また は三価鉄の塩の区別なぐフッ化鉄、塩化鉄、臭化鉄、ヨウ化鉄などの鉄のハロゲン 化物;硝酸鉄、硫酸鉄、リン酸鉄などの鉄の無機酸塩;酢酸鉄、クェン酸鉄、ダルコン 酸鉄、シユウ酸鉄、乳酸鉄などの鉄の有機酸塩を用いることができる。また、鉄塩は 1 種を選択して用いてもよいし、 2種以上を混合して用いてもよい。好適には、乳酸鉄 (I I)またはダルコン酸鉄(II)を用いる。  [0014] The iron salt used as a raw material in the method of the present invention is important as a supply source of iron that exhibits a catalytic action instead of platinum in the carbon material according to the present invention. The type is not particularly limited, and either a divalent iron salt or a trivalent iron salt can be used. For example, iron halides such as iron fluoride, iron chloride, iron bromide, iron iodide, and the like; iron such as iron nitrate, iron sulfate, iron phosphate, etc. An inorganic acid salt of iron; an organic acid salt of iron such as iron acetate, iron citrate, iron dalconate, iron oxalate, and iron lactate can be used. In addition, one type of iron salt may be selected and used, or two or more types may be mixed and used. Preferably, iron lactate (I I) or iron (II) dulconate is used.
[0015] また、鉄塩に加えて、その他の安価な金属塩を用いてもよい。鉄塩以外の安価な金 属塩をさらに加えることによって、炭素材料の触媒性能を改良できる可能性がある。 その様な金属塩としては、例えば、銅、ニッケル、コバルト、クロム、マンガン、および バナジウムの、フッ化物、塩化物、臭化物、ヨウ化物などのハロゲン化物;硝酸塩、硫 酸塩、リン酸塩などの無機酸塩;酢酸塩、クェン酸塩、ダルコン酸塩、シユウ酸塩、乳 酸塩などの有機酸塩を挙げることができる。  [0015] In addition to the iron salt, other inexpensive metal salts may be used. There is a possibility that the catalytic performance of carbon materials can be improved by further adding inexpensive metal salts other than iron salts. Such metal salts include, for example, halides of copper, nickel, cobalt, chromium, manganese, and vanadium, such as fluorides, chlorides, bromides, iodides; nitrates, sulfates, phosphates, etc. Inorganic acid salts; organic acid salts such as acetates, citrates, dalconates, oxalates, and lactates.
[0016] 本発明で用いる窒素含有化合物は、本発明に係る炭素材料中で鉄を捕捉するた めの窒素原子を供給するものとして重要である。力かる窒素含有化合物の種類は特 に制限されないが、本発明では安価で簡便に鉄含有炭素材料を製造することを目的 としていることから、例えばタンパク質などのように精製にコストや手間が力かったり、 元来高価である化合物は用いないことが好ましい。窒素含有化合物としては、例えば アミノ酸;アデニンゃグァニン等のプリン塩基;ゥラシル、チミン、シトシンなどのピリミジ ン塩基を挙げることができる。 [0016] The nitrogen-containing compound used in the present invention captures iron in the carbon material according to the present invention. It is important as a supply of nitrogen atoms. The type of nitrogen-containing compound that can be used is not particularly limited, but the present invention aims to produce an iron-containing carbon material inexpensively and easily, and therefore, purification and cost such as protein are laborious. It is preferable not to use a compound that is originally expensive. Examples of nitrogen-containing compounds include amino acids; purine bases such as adenine and guanine; and pyrimidin bases such as uracil, thymine, and cytosine.
[0017] 本発明で用いる炭水化物は、窒素含有化合物のみでは不足しがちな炭素を十分 に供給するという役割を有する。炭水化物は糖の別名として用いられることもあるが、 本発明では、ダルコサミンなど窒素を含むアミノ糖を範囲から除外して窒素含有化合 物と区別する意図で、炭水化物の語を用いることとした。よって、一般的には炭水化 物にはアミノ糖も含まれると解釈される場合もあるが、本発明の炭水化物は、炭素原 子、水素原子および酸素原子で構成されるものとする。但し、本発明の炭水化物は 一般式:(CH〇)で表されるものに限定されず、 (CH〇)では表されない糖アルコ  [0017] Carbohydrates used in the present invention have a role of sufficiently supplying carbon that tends to be deficient with only nitrogen-containing compounds. Carbohydrate is sometimes used as an alternative name for sugar, but in the present invention, the term carbohydrate is used to exclude nitrogen-containing amino sugars such as darcosamine from the range and distinguish them from nitrogen-containing compounds. Therefore, in general, the carbohydrate may be interpreted as including an amino sugar, but the carbohydrate of the present invention is composed of a carbon atom, a hydrogen atom, and an oxygen atom. However, the carbohydrates of the present invention are not limited to those represented by the general formula: (CH0), and sugar alcohols not represented by (CH0)
2 n 2 n  2 n 2 n
ールなども含むものとする。力かる炭水化物としては、例えば、フルクトースゃグノレコ ースなどの単糖類;スクロース、マルトース、ラタトースなどのオリゴ糖類;ソルビトール やキシリトールなどの糖アルコール類;グルクロン酸などの糖酸類を挙げることができ る。これらの中では、安価であるなどの理由からグルコースが好適である。  It also includes the rules. Examples of strong carbohydrates include monosaccharides such as fructose and gnoleose; oligosaccharides such as sucrose, maltose, and ratatose; sugar alcohols such as sorbitol and xylitol; and sugar acids such as glucuronic acid. Among these, glucose is preferable because it is inexpensive.
[0018] 窒素含有化合物の使用量は、炭水化物 100質量部に対して通常は 1質量部以上 、 1000質量部以下とすることが好ましい。窒素含有化合物量が炭水化物 100質量 部に対して 1質量部以上であれば、炭素材料における窒素原子の割合が十分であつ て十分量の鉄を結合することができ、また、 1000質量部以下であれば、炭素材料に 占める窒素原子の量が過剰になることはないと考えられる。窒素含有化合物のより好 適な使用量は、炭水化物 100質量部に対して 10質量部以上、 500質量部以下であ る。 [0018] The amount of the nitrogen-containing compound used is usually preferably 1 part by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the carbohydrate. If the amount of the nitrogen-containing compound is 1 part by mass or more with respect to 100 parts by mass of carbohydrates, the ratio of nitrogen atoms in the carbon material is sufficient, and a sufficient amount of iron can be bound. If so, the amount of nitrogen atoms in the carbon material will not be excessive. A more preferable use amount of the nitrogen-containing compound is 10 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the carbohydrate.
[0019] 鉄塩の使用量または鉄塩と他の金属塩との合計使用量は、窒素含有化合物と炭水 化物の合計の 100質量部に対して通常は 0. 01質量部以上、 100質量部以下とする ことが好ましい。鉄塩量が窒素含有化合物と炭水化物の合計の 100質量部に対して 0. 01質量部以上であれば、本発明に係る炭素材料において触媒作用を発揮する 鉄の量は十分に確保でき、 100質量部以下であれば炭素材料における鉄の量が過 乗 IJになることはないと考えられる。鉄塩のより好適な使用量は、窒素含有化合物と炭 水化物の合計の 100質量部に対して 0. 1質量部以上、 10質量部以下である。 [0019] The amount of the iron salt used or the total amount of the iron salt and other metal salt is usually 0.01 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the total of the nitrogen-containing compound and the carbohydrate. Part or less. When the iron salt amount is 0.01 parts by mass or more with respect to 100 parts by mass of the total of the nitrogen-containing compound and the carbohydrate, the carbon material according to the present invention exhibits a catalytic action. The amount of iron can be secured sufficiently, and if it is 100 parts by mass or less, the amount of iron in the carbon material is not considered to be a square IJ. A more preferable amount of the iron salt used is 0.1 parts by mass or more and 10 parts by mass or less based on 100 parts by mass of the total of the nitrogen-containing compound and the carbonate.
[0020] 使用する鉄塩、窒素含有化合物および炭水化物は、混合前或いは混合後に関わ らず粉砕することが好ましレ、。各成分が細かレ、方が熱処理効率は高まるからである。 [0020] The iron salt, nitrogen-containing compound and carbohydrate to be used are preferably pulverized before or after mixing. This is because each component is finer and heat treatment efficiency is higher.
[0021] 鉄塩、窒素含有化合物および炭水化物を混合した後は、当該混合物を不活性雰 囲気で熱処理する。不活性雰囲気とは、原料における炭素が酸化されてしまう程度 の量の酸素を含まない雰囲気をいう。力、かる不活性雰囲気としては特に限定されな いが、例えば、下記 (i)〜(v)のような雰囲気が挙げられる:  [0021] After mixing the iron salt, nitrogen-containing compound and carbohydrate, the mixture is heat-treated in an inert atmosphere. An inert atmosphere refers to an atmosphere that does not contain oxygen in such an amount that carbon in the raw material is oxidized. The inert atmosphere is not particularly limited, and examples thereof include the following atmospheres (i) to (v):
(i)アルゴン、窒素等の不活性ガスからなる不活性雰囲気、  (i) an inert atmosphere comprising an inert gas such as argon or nitrogen,
(ii)水素等の還元性ガスからなる還元性雰囲気、  (ii) a reducing atmosphere comprising a reducing gas such as hydrogen;
(iii)一般に活性炭の賦活処理に用いられる雰囲気であって、窒素やアルゴン等の 不活性ガス中に水蒸気や二酸化炭素等を加えた雰囲気、  (iii) An atmosphere generally used for activation treatment of activated carbon, in which water vapor or carbon dioxide is added to an inert gas such as nitrogen or argon,
(iv)一般に活性炭の賦活処理に用いられる上記 (iii)以外の雰囲気であって、有機 天然物を燃焼させない程度まで酸素量を制限した雰囲気、  (iv) An atmosphere other than the above (iii) that is generally used for activation treatment of activated carbon, wherein the amount of oxygen is limited to such an extent that organic natural products are not burned,
(V)—般の蒸し焼き時の雰囲気。  (V) —The atmosphere during general steaming.
[0022] 上記不活性ガス及び還元性ガスについては、単独又は 2種以上を混合し上記不活 性雰囲気として使用することもできる。特に、上記 (iii)又は (iv)の雰囲気で熱処理す る場合には賦活効果も得られるため、他の雰囲気で熱処理するよりも比表面積の大 きな炭素材料が得られる。  [0022] The inert gas and the reducing gas may be used alone or in combination of two or more as the inert atmosphere. In particular, when the heat treatment is performed in the above atmosphere (iii) or (iv), an activation effect is also obtained, so that a carbon material having a larger specific surface area than that obtained by heat treatment in another atmosphere can be obtained.
[0023] 熱処理温度は特に限定されなレ、が、通常 400〜: 1500°C、好ましくは 600〜: 1000 °C程度である。熱処理温度が低過ぎると炭素構造が未発達で電極触媒として必要な 電気伝導性が低くなり、熱処理温度が高過ぎると収率が悪くなる。  [0023] The heat treatment temperature is not particularly limited, but is usually about 400 to 1500 ° C, preferably about 600 to 1000 ° C. If the heat treatment temperature is too low, the carbon structure is undeveloped and the electrical conductivity required as an electrode catalyst is low, and if the heat treatment temperature is too high, the yield is poor.
[0024] 予め低温での予備炭化処理を行って予備炭化物を形成した後に、上記熱処理を 行ってもよレ、。予備炭化処理温度は、通常は 100〜400°C程度が好ましぐ 150〜3 50°C程度がより好ましレ、。予備炭化処理温度が低過ぎると適切な予備炭化物が形 成されない場合がある一方で、予備炭化処理温度が高過ぎると炭化が過剰に進行し て適切な予備炭化物が得られない可能性があることに加え、収率が低下するおそれ 力 Sある。 [0024] After the preliminary carbonization treatment at a low temperature in advance to form the preliminary carbide, the heat treatment may be performed. The pre-carbonization temperature is usually preferably about 100-400 ° C, more preferably about 150-350 ° C. If the pre-carbonization temperature is too low, a suitable pre-carbide may not be formed, whereas if the pre-carbonization temperature is too high, carbonization may proceed excessively and a suitable pre-carbide may not be obtained. In addition, the yield may decrease There is power S.
[0025] 熱処理時間は温度条件に応じて適宜設定できるが、通常は 30分〜 5時間、好まし くは 1〜3時間程度である。但し、熱処理時間は原料である鉄塩、窒素含有化合物お よび炭水化物の量や種類などに応じて適宜調整でき、必ずしも上記範囲に限定され ない。  [0025] The heat treatment time can be appropriately set according to the temperature condition, but is usually about 30 minutes to 5 hours, preferably about 1 to 3 hours. However, the heat treatment time can be appropriately adjusted according to the amount and type of raw materials such as iron salt, nitrogen-containing compound and carbohydrate, and is not necessarily limited to the above range.
[0026] 上記熱処理の結果、窒素原子を介して鉄が結合している炭素材料が得られる。な お本発明の製造方法では、上記熱処理後に水蒸気賦活法などの公知の賦活法によ り炭素材料を賦活処理してもよい。また原料である鉄塩、窒素含有化合物および炭 水化物へ、予め塩ィ匕亜鉛や炭酸ナトリウムなど公知の賦活剤を配合してもよい。これ により、得られる炭素材料の比表面積をより一層増大し、触媒としての性能をさらに高 めること力できる。  [0026] As a result of the heat treatment, a carbon material in which iron is bonded via a nitrogen atom is obtained. In the production method of the present invention, the carbon material may be activated by a known activation method such as a steam activation method after the heat treatment. Moreover, you may mix | blend well-known activators, such as salt 匕 zinc and sodium carbonate, with the iron salt which is a raw material, a nitrogen containing compound, and a carbohydrate. As a result, the specific surface area of the obtained carbon material can be further increased, and the performance as a catalyst can be further enhanced.
[0027] 本発明の鉄含有炭素材料は、鉄原子が炭素材料表面に安定に結合している特徴 を活力して各種用途に適用できる。例えば、酸素還元電極の材料や固体高分子電 解質形燃料電池の酸素還元電極の電極触媒材料などが挙げられる。以下、これらの 代表的な用途について説明する。  [0027] The iron-containing carbon material of the present invention can be applied to various applications by virtue of the feature that iron atoms are stably bonded to the surface of the carbon material. Examples thereof include oxygen reduction electrode materials and electrode catalyst materials for oxygen reduction electrodes of solid polymer electrolyte fuel cells. These typical applications are described below.
[0028] ·酸素還元電極の材料  [0028] Material of oxygen reduction electrode
本発明の鉄含有炭素材料は、酸素還元電極の材料として有用である。本発明の鉄 含有炭素材料を用いた酸素還元電極の製造方法は特に限定されず、公知の方法を 用いることができる。例えば、本発明の鉄含有炭素材料とテトラフルォロエチレン等の 公知のバインダー等を混合した後、圧縮成形等して各種形状の酸素還元電極を得る こと力 Sできる。  The iron-containing carbon material of the present invention is useful as a material for an oxygen reduction electrode. The manufacturing method of the oxygen reduction electrode using the iron-containing carbon material of the present invention is not particularly limited, and a known method can be used. For example, the iron-containing carbon material of the present invention and a known binder such as tetrafluoroethylene can be mixed and then compression molded to obtain oxygen reduction electrodes of various shapes.
[0029] また、本発明の鉄含有炭素材料に導電剤などを加えて電極活性を高め、酸素還元 電極とすることもできる。上記導電剤としては、一般にカーボンブラックが用いられる。 カーボンブラックとしては、好ましくはその平均粒子径が 70nm以下、より好ましくは 1 0〜60nm程度のものを用いることができる。導電剤の使用量は特に限定されないが 、炭素材料 100重量部に対して通常は:!〜 200重量部、より好ましくは 5〜: 100重量 部程度とする。  [0029] In addition, a conductive agent or the like may be added to the iron-containing carbon material of the present invention to increase electrode activity, thereby forming an oxygen reduction electrode. Carbon black is generally used as the conductive agent. Carbon black having an average particle size of preferably 70 nm or less, more preferably about 10 to 60 nm can be used. The amount of the conductive agent is not particularly limited, but is usually about:! To 200 parts by weight, more preferably about 5 to about 100 parts by weight with respect to 100 parts by weight of the carbon material.
[0030] なお、必要に応じて金属成分を添加することもできる。金属成分とは金属であれば 何れのものであってもよいが、好ましくは白金や白金合金である。また、本発明の炭 素材料を白金等の担体として用レ、、電極触媒とすることもできる。但し、白金等を配 合する場合であっても、本発明の鉄含有炭素材料は優れた触媒作用を有するので、 従来の白金電極触媒に比べて白金等の使用量を顕著に低減できる。 [0030] A metal component may be added as necessary. If the metal component is a metal Any one may be used, but platinum or a platinum alloy is preferable. Further, the carbon material of the present invention can be used as a carrier such as platinum, or an electrode catalyst. However, even when platinum or the like is combined, since the iron-containing carbon material of the present invention has an excellent catalytic action, the amount of platinum or the like used can be significantly reduced as compared with the conventional platinum electrode catalyst.
[0031] ·固体高分子電解質形燃料電池の酸素還元電極の電極触媒材料  [0031] · Electrocatalyst material for oxygen reduction electrode of solid polymer electrolyte fuel cell
本発明の鉄含有炭素材料は、特に固体高分子電解質形燃料電池の酸素還元電 極の電極触媒材料として有用である。本発明の鉄含有炭素材料は、そのままで触媒 として用レ、ることもできる力 場合によっては他の成分を添加することもできる。例えば 、導電性の向上を目的としてカーボンブラックなどの導電剤を添加する場合などであ る。また本発明の鉄含有炭素材料を触媒活性を有する担体として用い、さらに金属 や貴金属を担持することもできる。  The iron-containing carbon material of the present invention is particularly useful as an electrode catalyst material for an oxygen reduction electrode of a solid polymer electrolyte fuel cell. The iron-containing carbon material of the present invention can be used as a catalyst as it is, and other components can be added depending on circumstances. For example, there is a case where a conductive agent such as carbon black is added for the purpose of improving conductivity. Further, the iron-containing carbon material of the present invention can be used as a carrier having catalytic activity, and a metal or a noble metal can be further supported.
[0032] 本発明の鉄含有炭素材料を用いた固体高分子電解質形燃料電池の酸素還元電 極の形成方法は特に限定されず、常法に従って形成できる。例えば、本発明の鉄含 有炭素材料を触媒とし、これをプロトン伝導性物質ゃァニオン伝導性物質からなる固 体高分子電解質膜に塗布して電極とすることができる。以下にプロトン伝導性物質を 用いた電極の製造例を示すが、電極の性能や形態によっては他の常法による製造 方法を排除するものではない。  [0032] The method for forming the oxygen reduction electrode of the solid polymer electrolyte fuel cell using the iron-containing carbon material of the present invention is not particularly limited, and can be formed according to a conventional method. For example, the iron-containing carbon material of the present invention can be used as a catalyst, and this can be applied to a solid polymer electrolyte membrane made of a proton conductive material or an anion conductive material to form an electrode. An example of manufacturing an electrode using a proton conductive material is shown below, but other conventional manufacturing methods are not excluded depending on the performance and form of the electrode.
[0033] (1)本発明の炭素材料とプロトン伝導性物質とを媒体中で混合してペースト状の電 極触媒層形成用材料とし、これをプロトン伝導性膜に直接塗布した後に塗付層を乾 燥させることにより酸素還元電極を形成することもできる。  [0033] (1) The carbon material of the present invention and a proton conductive material are mixed in a medium to form a paste-like electrode catalyst layer forming material, which is directly applied to the proton conductive film and then applied. The oxygen reduction electrode can also be formed by drying.
[0034] 上記のプロトン伝導性物質としてはプロトンを伝達できる材料であれば特に制限な く使用することができる。例えば、ナフイオン (デュポン社製)、フレミオン (旭硝子社製 )、ァシプレックス(旭化成社製)などのスルホン酸基を有する含フッ素系イオン交換 樹脂である。  [0034] The proton conductive substance can be used without particular limitation as long as it can transmit protons. For example, fluorine-containing ion exchange resins having a sulfonic acid group, such as naphthion (manufactured by DuPont), Flemion (manufactured by Asahi Glass), and Aciplex (manufactured by Asahi Kasei).
[0035] プロトン伝導性膜としては、電極触媒層形成用材料として用いるプロトン伝導性物 質と同様の材料、即ちスルホン酸基を有するフッ素系樹脂などから形成された膜を使 用すること力 Sできる。  [0035] As the proton conductive membrane, it is possible to use the same material as the proton conductive material used as the electrode catalyst layer forming material, that is, a membrane formed of a fluorine-based resin having a sulfonic acid group. it can.
[0036] (2)本発明の炭素材料と、カーボンブラック等の公知の導電剤と、プロトン伝導性物 質とを媒体中で混合しペースト状の電極触媒層形成用材料とし、これをプロトン伝導 性膜に直接塗付して塗付層を乾燥させることにより酸素還元電極を形成することもで きる。 [0036] (2) The carbon material of the present invention, a known conductive agent such as carbon black, and a proton conductive material The oxygen reduction electrode can also be formed by mixing the material in a medium to obtain a paste-like electrode catalyst layer forming material, which is directly applied to the proton conductive membrane and drying the applied layer.
[0037] 電極触媒層を形成する方法としては、上記のように、 1)プロトン伝導性膜表面に直 接ペースト状電極触媒層形成用材料を塗付する方法 (塗布法)だけでなぐ 2)テトラ フルォロエチレンシート等のシート状基材上にペースト状電極触媒層形成用材料を 塗布して電極触媒層を形成した後、プロトン伝導性膜側に電極触媒層を転写する方 法 (転写法)等も利用できる。  [0037] As described above, the method for forming the electrode catalyst layer is as follows: 1) Only the method (coating method) of applying the paste-like electrode catalyst layer forming material directly on the surface of the proton conductive membrane 2) A method of transferring the electrode catalyst layer to the proton conductive membrane side after applying the paste-like electrode catalyst layer forming material on a sheet-like substrate such as a tetrafluoroethylene sheet to form the electrode catalyst layer (transfer Law) etc. can also be used.
[0038] 導電剤としては、前記(酸素還元電極の材料)の項目で説明したものが使用できる 。このように導電剤を配合する場合には、より活性を高めることができる。なお、必要 に応じて金属成分を添加することもできる。金属成分とは金属であれば何れのもので あってもよいが、好ましくは白金や白金合金である。また、本発明の炭素材料を白金 等の担体として用い、電極触媒とすることもできる。  [0038] As the conductive agent, those described in the item (Material for oxygen reduction electrode) can be used. Thus, when a electrically conductive agent is mix | blended, activity can be improved more. A metal component can be added as necessary. The metal component may be any metal as long as it is a metal, but is preferably platinum or a platinum alloy. Further, the carbon material of the present invention can be used as a support of platinum or the like to form an electrode catalyst.
[0039] 上記媒体としては、本発明の鉄含有炭素材料やプロトン伝導性物質に対して媒体 として作用するものであれば何れのものであってもよぐ例えば、アルコールや水、ま たはこれらの混合溶液などを使用できる。なお、媒体中で本発明の炭素材料等を均 一組成のペースト状電極触媒層形成用材料を調製するためには、特に超音波振動 撹拌等を行うのが好ましい。  [0039] The medium may be any medium as long as it acts as a medium for the iron-containing carbon material or proton conductive material of the present invention. For example, alcohol, water, or these Can be used. In order to prepare a paste-like electrode catalyst layer forming material having a uniform composition of the carbon material of the present invention in the medium, it is particularly preferable to perform ultrasonic vibration stirring and the like.
[0040] 次いで、形成された電極触媒層とカーボンペーパー等の多孔質導電性シート状基 材とを接合することにより固体高分子電解質形燃料電池の酸素還元電極を作製する ことができる。なお、多孔質導電性シート状基材上にペースト状電極触媒層形成用 材料を塗布して電極触媒層を形成後、電極触媒層の面をプロトン伝導性膜と接合す る方法を採用してもよい。  [0040] Next, an oxygen reduction electrode of a solid polymer electrolyte fuel cell can be produced by bonding the formed electrode catalyst layer and a porous conductive sheet-like substrate such as carbon paper. In addition, after applying the paste-like electrode catalyst layer forming material on the porous conductive sheet-like base material to form the electrode catalyst layer, the method of joining the surface of the electrode catalyst layer to the proton conductive membrane is adopted. Also good.
[0041] このようにして製造された固体高分子電解質形燃料電池の酸素還元電極は、従来 触媒成分として用いられている白金を含まなくても、酸素還元反応に対して高活性を 示す。また、燃料電池の効率の低下、材料の劣化等の原因となり得る中間体の過酸 化水素の生成量が少なぐ白金を用いた電極と同様に酸素を直接水まで還元する能 力を有する点で非常に優れている。特にアルカリ環境下で高い触媒性能を発揮でき るため、例えばァニオン交換型固体高分子電解質を用いた固体高分子形燃料電池 において、優れた酸素還元性能を発揮できる。 [0041] The oxygen reduction electrode of the solid polymer electrolyte fuel cell produced as described above exhibits high activity for the oxygen reduction reaction even if it does not contain platinum which has been conventionally used as a catalyst component. In addition, it has the ability to reduce oxygen directly to water in the same way as an electrode using platinum, which generates a small amount of intermediate hydrogen peroxide, which can cause a decrease in fuel cell efficiency and material deterioration. Is very good at. High catalytic performance especially in alkaline environment Therefore, for example, in a polymer electrolyte fuel cell using an anion exchange type solid polymer electrolyte, excellent oxygen reduction performance can be exhibited.
実施例  Example
[0042] 以下に実施例および比較例を示し、本発明をより具体的に説明する。但し、本発明 は実施例に限定されない。  [0042] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
[0043] 実施例 1 [0043] Example 1
(1)鉄含有炭素材料の製造  (1) Manufacture of iron-containing carbon materials
鉄塩として乳酸鉄 (II) 3水和物、窒素含有化合物としてアミノ酸であるグリシン、炭 水化物としてグノレコースを用い、それらを乳鉢で混合、粉碎した。グリシンとグノレコー スのモル比は 1 : 1とし、混合物中の鉄含有量を 1重量%とした。一般的な糖類の炭化 前にしばしば行われる脱水を、空気中、 150°Cで 24時間保持することにより行った。 得られた前駆体を粉碎後、不活性ガスであるアルゴン中、昇温速度 5°C/minで 10 00°Cまで加熱後、 1000°Cで 2時間熱処理を行った。熱処理前後の質量変化から収 率を求めた。得られた鉄含有炭素材料を粉砕後、沸騰した硫酸水溶液中で処理し、 不要な可溶性の鉄分を除去した。得られた鉄含有炭素材料表面の炭素、窒素、酸 素、鉄の原子数比を X線光電子分光分析法により求めた。これらの結果を下記表 1 に示す。  Iron lactate (II) trihydrate was used as the iron salt, glycine, which is an amino acid as the nitrogen-containing compound, and gnolecose as the carbohydrate, and these were mixed and powdered in a mortar. The molar ratio of glycine to gnoleose was 1: 1, and the iron content in the mixture was 1% by weight. Dehydration, often performed before carbonization of common sugars, was carried out by holding in air at 150 ° C for 24 hours. The obtained precursor was powdered, heated in an inert gas argon at 1000 ° C. at a heating rate of 5 ° C./min, and then heat-treated at 1000 ° C. for 2 hours. Yield was obtained from mass change before and after heat treatment. The obtained iron-containing carbon material was pulverized and then treated in boiling sulfuric acid aqueous solution to remove unnecessary soluble iron. The atomic ratio of carbon, nitrogen, oxygen, and iron on the surface of the obtained iron-containing carbon material was determined by X-ray photoelectron spectroscopy. These results are shown in Table 1 below.
[0044] (2)電極触媒層の形成  [0044] (2) Formation of electrode catalyst layer
鉄を含有する上記炭素材料 50mgを、カーボンブラック(商標名「Vulcan XC— 7 50 mg of the above carbon material containing iron was added to carbon black (trade name “Vulcan XC-7
2R」キャボット社製) 5mgとともに、 5重量0 /0パーフルォロスルホン酸樹脂溶液(アルド リッチ社製) 0. 5mlを超純水で lmlに溶解した溶液に加え、超音波により分散させて 触媒ペーストを調製した。 2R "manufactured by Cabot Corporation) with 5 mg, 5 wt 0/0 per full O b sulfonic acid resin solution (manufactured by Aldo rich Inc.) 0. 5 ml was added to a solution in lml with ultrapure water, and ultrasonically dispersed A catalyst paste was prepared.
[0045] 上記触媒ペースト 2 μ 1を回転グラッシ一カーボンディスク電極に塗布面積: 0. 071 cm2で塗布し、十分に乾燥して電極触媒層を形成した。 [0045] The catalyst paste 2 µ 1 was applied to a rotating glass one carbon disk electrode at an application area of 0.071 cm 2 and sufficiently dried to form an electrode catalyst layer.
[0046] 電極触媒層を形成した回転電極を酸素で飽和した 0. lmol/1過塩素酸水溶液中 に浸漬し、可逆水素電極 (RHE)を参照極として酸素還元電流と電極電位との関係 を調べた。当該関係を図 1に示す。 [0046] The rotating electrode on which the electrode catalyst layer was formed was immersed in a 0.1 mol / perchloric acid aqueous solution saturated with oxygen, and the relationship between the oxygen reduction current and the electrode potential was measured using the reversible hydrogen electrode (RHE) as a reference electrode. Examined. Figure 1 shows the relationship.
[0047] 電極触媒層の酸素還元反応に対する活性評価と酸素 1分子あたりの反応電子数 の測定を、回転電極法に準拠して行った。回転電極法は、例えば「ジャーナル'ォブ[0047] Activity evaluation for oxygen reduction reaction of electrode catalyst layer and number of reaction electrons per molecule of oxygen Was measured according to the rotating electrode method. The rotating electrode method is, for example, “Journal”
'ザ.エレクト口ケミカル.ソサイァティー、第 145卷、 1998年、第 3713頁」や「ジャー ナル 'ォブ 'ザ 'エレクト口ケミカル'ソサイァティー、第 146卷、 1999年、第 1296頁」 等において、固体高分子電解質形燃料電池の電極触媒活性の評価に有効であり、 且つ、燃料電池性能と良好な相関性があることが報告されている。酸素 1分子あたり の反応電子数を下記表 2に示す。 'The Elect Mouth Chemical Society, No. 145, 1998, p. 3713' "and 'Journal' Ob 'The' Elect Mouth Chemical 'Society, p. 146, 1999, p. 1296" It has been reported that it is effective in evaluating the electrocatalytic activity of solid polymer electrolyte fuel cells and has a good correlation with fuel cell performance. The number of reaction electrons per molecule of oxygen is shown in Table 2 below.
[0048] 実施例 2 [0048] Example 2
(1)鉄含有炭素材料の製造  (1) Manufacture of iron-containing carbon materials
窒素含有化合物としてグリシンに代えてプリン塩基であるアデニンを用いた以外は 実施例 1と同様にして、鉄含有炭素材料を製造した。熱処理前後の質量変化から収 率を求めた。得られた鉄含有炭素材料を粉砕後、沸騰した硫酸水溶液中で処理し、 不要な可溶性の鉄分を除去した。得られた鉄含有炭素材料表面の炭素、窒素、酸 素、鉄の原子数比を X線光電子分光分析法により求めた。これらの結果を下記表 1 に示す。  An iron-containing carbon material was produced in the same manner as in Example 1 except that adenine, which is a purine base, was used in place of glycine as the nitrogen-containing compound. Yield was obtained from mass change before and after heat treatment. The obtained iron-containing carbon material was pulverized and then treated in boiling sulfuric acid aqueous solution to remove unnecessary soluble iron. The atomic ratio of carbon, nitrogen, oxygen, and iron on the surface of the obtained iron-containing carbon material was determined by X-ray photoelectron spectroscopy. These results are shown in Table 1 below.
[0049] (2)電極触媒層の形成  [0049] (2) Formation of electrode catalyst layer
実施例 1と同様に電極触媒層を形成した。  An electrode catalyst layer was formed in the same manner as in Example 1.
[0050] 実施例 1と同様にして、電極触媒層を形成した回転電極について酸素還元電流と 電極電位との関係を調べた。当該関係を図 1に示す。 [0050] In the same manner as in Example 1, the relationship between the oxygen reduction current and the electrode potential was examined for the rotating electrode on which the electrode catalyst layer was formed. Figure 1 shows the relationship.
[0051] 実施例 1と同様にして、電極触媒層の酸素 1分子あたりの反応電子数を測定した。 [0051] In the same manner as in Example 1, the number of reaction electrons per oxygen molecule in the electrode catalyst layer was measured.
酸素 1分子あたりの反応電子数を下記表 2に示す。  Table 2 shows the number of reaction electrons per molecule of oxygen.
[0052] 実施例 3 [0052] Example 3
( 1 )金属含有炭素材料の製造  (1) Manufacture of metal-containing carbon materials
鉄塩として乳酸鉄 (II) 3水和物に代えてダルコン酸鉄 (II) 2水和物を用い、さらに銅 を含有する化合物としてダルコン酸銅 (II)を用いた以外は実施例 2と同様にして、金 属含有炭素材料を製造した。ここで、ダルコン酸鉄 (II) 2水和物とダルコン酸銅のモ ル比を 1 : 1とし、出発物質混合物中の金属含有量を 1重量%とした。熱処理前後の 質量変化から収率を求めた。得られた金属含有炭素材料を粉砕後、沸騰した硫酸水 溶液中で処理して不要な可溶性の金属分を除去した。得られた鉄含有炭素材料表 面の炭素、窒素、酸素、鉄、銅の原子数比を X線光電子分光分析法により求めた。こ れらの結果を下記表 1に示す。 Example 2 except that iron (II) lactate is used instead of iron (II) lactate as the iron salt, and copper (II) is used as the compound containing copper. In the same manner, a metal-containing carbon material was produced. Here, the molar ratio of iron (II) dalconate dihydrate to copper dalconate was 1: 1, and the metal content in the starting material mixture was 1% by weight. The yield was determined from the mass change before and after the heat treatment. The obtained metal-containing carbon material was pulverized and then treated in boiling sulfuric acid solution to remove unnecessary soluble metal components. Obtained iron-containing carbon material table The atomic ratio of carbon, nitrogen, oxygen, iron and copper on the surface was determined by X-ray photoelectron spectroscopy. These results are shown in Table 1 below.
[0053] (2)電極触媒層の形成 [0053] (2) Formation of electrode catalyst layer
実施例 1と同様に電極触媒層を形成した。  An electrode catalyst layer was formed in the same manner as in Example 1.
[0054] 実施例 1と同様にして、電極触媒層を形成した回転電極について酸素還元電流と 電極電位との関係を調べた。当該関係を図 1に示す。 [0054] In the same manner as in Example 1, the relationship between the oxygen reduction current and the electrode potential was examined for the rotating electrode on which the electrode catalyst layer was formed. Figure 1 shows the relationship.
[0055] 実施例 1と同様にして、電極触媒層の酸素 1分子あたりの反応電子数を測定した。 [0055] In the same manner as in Example 1, the number of reaction electrons per oxygen molecule in the electrode catalyst layer was measured.
酸素 1分子あたりの反応電子数を下記表 2に示す。  Table 2 shows the number of reaction electrons per molecule of oxygen.
[0056] [表 1] [0056] [Table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0057] [表 2]
Figure imgf000012_0002
[0057] [Table 2]
Figure imgf000012_0002
[0058] 比較例 1  [0058] Comparative Example 1
(1)電極触媒層の形成  (1) Formation of electrode catalyst layer
カーボンブラック(商標名「Vulcan XC— 72R」キャボット社製) 10mgのみを 5重 量%パーフルォロスルホン酸樹脂溶液(アルドリッチ社製) lml中に入れて超音波に より分散させることにより触媒ペーストを調製した。  Carbon black (trade name “Vulcan XC-72R” manufactured by Cabot) 10 mg of 5 wt% perfluorosulfonic acid resin solution (Aldrich) Catalyst paste by placing in lml and dispersing by ultrasound Was prepared.
[0059] 触媒ペースト 1 μ 1を回転グラッシ一カーボンディスク電極に塗布面積 0. 071cm2で 塗布し、十分に乾燥して電極触媒層を形成した。 [0059] 1 μ 1 of the catalyst paste was applied to a rotating glass one carbon disk electrode at an application area of 0.071 cm 2 and sufficiently dried to form an electrode catalyst layer.
[0060] 実施例 1と同様にして、電極触媒層を形成した回転電極について酸素還元電流と 電極電位との関係を調べた。当該関係を図 1に示す。 [0061] 実施例 4 [0060] In the same manner as in Example 1, the relationship between the oxygen reduction current and the electrode potential was examined for the rotating electrode on which the electrode catalyst layer was formed. Figure 1 shows the relationship. [0061] Example 4
(1)電極触媒層の形成  (1) Formation of electrode catalyst layer
実施例 1で得られた鉄含有炭素材料 lOmgを、カーボンブラック(商標名「Vulcan XC— 72R」キャボット社製) lmgとともに 2. 5重量%ァニオン交換樹脂溶液に加え、 超音波により分散させて触媒ペーストを調製した。触媒ペーストを回転グラッシ一力 一ボンディスク電極に塗布し、室温で十分に乾燥して電極触媒層を形成した。  The iron-containing carbon material lOmg obtained in Example 1 was added to a 2.5% by weight anion exchange resin solution together with lmg of carbon black (trade name “Vulcan XC-72R” manufactured by Cabot), and dispersed by an ultrasonic wave to form a catalyst. A paste was prepared. The catalyst paste was applied to a single bon disc electrode with a rotating glass, and dried sufficiently at room temperature to form an electrode catalyst layer.
[0062] 電極触媒層を形成した回転電極を酸素で飽和した lmol/1水酸化カリウム水溶液 中に浸漬し、可逆水素電極 (RHE)を参照極として酸素還元電流と電極電位との関 係を調べた。当該関係を図 2に示す。また、酸素 1分子あたりの反応電子数を表 3に 示す。  [0062] The rotating electrode on which the electrocatalyst layer was formed was immersed in an lmol / 1 potassium hydroxide aqueous solution saturated with oxygen, and the relationship between the oxygen reduction current and the electrode potential was investigated using a reversible hydrogen electrode (RHE) as a reference electrode. It was. Figure 2 shows this relationship. Table 3 shows the number of reaction electrons per oxygen molecule.
[0063] 実施例 5  [0063] Example 5
(1)電極触媒層の形成  (1) Formation of electrode catalyst layer
実施例 2で得られた鉄含有炭素材料 lOmgを、カーボンブラック(商標名「Vulcan XC— 72R」キャボット社製) lmgとともに 2. 5重量%ァニオン交換樹脂溶液に加え、 超音波により分散させて触媒ペーストを調製した。触媒ペーストを回転グラッシ一力 一ボンディスク電極に塗布し、室温で十分に乾燥して電極触媒層を形成した。  The iron-containing carbon material lOmg obtained in Example 2 was added to a 2.5% by weight anion exchange resin solution together with lmg of carbon black (trade name “Vulcan XC-72R” manufactured by Cabot Corporation), and dispersed by ultrasonic to form a catalyst. A paste was prepared. The catalyst paste was applied to a single bon disc electrode with a rotating glass, and dried sufficiently at room temperature to form an electrode catalyst layer.
[0064] 電極触媒層を形成した回転電極を酸素で飽和した lmol/1水酸化カリウム水溶液 中に浸漬し、可逆水素電極 (RHE)を参照極として酸素還元電流と電極電位との関 係を調べた。当該関係を図 2に示す。また、酸素 1分子あたりの反応電子数を表 3に 示す。  [0064] The rotating electrode on which the electrode catalyst layer was formed was immersed in an lmol / 1 potassium hydroxide aqueous solution saturated with oxygen, and the relationship between the oxygen reduction current and the electrode potential was investigated using the reversible hydrogen electrode (RHE) as a reference electrode. It was. Figure 2 shows this relationship. Table 3 shows the number of reaction electrons per oxygen molecule.
[0065] 比較例 2  [0065] Comparative Example 2
(1)電極触媒層の形成  (1) Formation of electrode catalyst layer
市販の Ag系触媒 (E—TEK社製、 Ag担持量: 60質量%、担体:カーボンブラック Vulcan XC— 72) lOmgを 2. 5重量%ァニオン交換樹脂溶液に加え、超音波によ り分散させて触媒ペーストを調製した。触媒ペーストを回転グラッシ一カーボンデイス ク電極に塗布し、室温で十分に乾燥して電極触媒層を形成した。  Commercially available Ag-based catalyst (E-TEK, Ag loading: 60% by mass, support: carbon black Vulcan XC-72) lOmg is added to a 2.5 wt% anion exchange resin solution and dispersed by ultrasound. A catalyst paste was prepared. The catalyst paste was applied to a rotating glass / carbon disk electrode and sufficiently dried at room temperature to form an electrode catalyst layer.
[0066] 電極触媒層を形成した回転電極を酸素で飽和した lmol/1水酸化カリウム水溶液 中に浸漬し、可逆水素電極 (RHE)を参照極として酸素還元電流と電極電位との関 係を調べた。当該関係を図 2に示す。また、酸素 1分子あたりの反応電子数を表 3に 示す。 [0066] The rotating electrode on which the electrocatalyst layer was formed was immersed in an lmol / 1 potassium hydroxide aqueous solution saturated with oxygen, and the relationship between the oxygen reduction current and the electrode potential using a reversible hydrogen electrode (RHE) as a reference electrode. I checked the staff. Figure 2 shows this relationship. Table 3 shows the number of reaction electrons per oxygen molecule.
[0067] [表 3]
Figure imgf000014_0001
[0067] [Table 3]
Figure imgf000014_0001
[0068] 結果の考察  [0068] Discussion of results
表 1からは、本発明の鉄含有炭素材料は、大部分が炭素分であるがその表面に酸 素原子を含む官能基を有し、さらに、表面上に鉄原子と窒素原子が存在し活性点と なっていることが示唆される。  From Table 1, the iron-containing carbon material of the present invention is mostly carbon, but has functional groups containing oxygen atoms on its surface, and further, iron and nitrogen atoms exist on the surface and are active. It is suggested that this is a point.
[0069] 表 2からは、酸性環境下での酸素 1分子あたりの反応電子数が、直接水まで還元さ れる場合の反応電子数である 4と比較すると、本発明の鉄含有炭素材料を用いた酸 素還元電極では、反応電子数 2に相当する中間体の過酸化水素の生成が少なぐ 酸素を直接水まで還元する能力を有していることが分かる。 [0069] Table 2 shows that the iron-containing carbon material of the present invention is used in comparison with the number of reaction electrons per molecule of oxygen in an acidic environment is 4, which is the number of reaction electrons when directly reduced to water. It can be seen that the oxygen reduction electrode has the ability to reduce oxygen directly to water with little production of hydrogen peroxide, an intermediate equivalent to 2 reaction electrons.
[0070] 表 3からは、本発明の鉄含有炭素材料を酸素還元電極の材料として用いた場合、 市販の Ag系触媒よりも酸素 1分子当たりの反応電子数が高いことから、本発明の鉄 含有炭素材料は酸素を直接水まで還元する触媒能力に優れてレ、ることが分かる。 [0070] Table 3 shows that when the iron-containing carbon material of the present invention is used as a material for an oxygen reduction electrode, the number of reaction electrons per molecule of oxygen is higher than that of a commercially available Ag-based catalyst. It can be seen that the contained carbon material has excellent catalytic ability to reduce oxygen directly to water.
[0071] 図 1からは、本発明の鉄含有炭素材料を含む電極触媒層が酸性環境下において 優れた酸素還元性能を有してレ、ることが分かる。 From FIG. 1, it can be seen that the electrode catalyst layer containing the iron-containing carbon material of the present invention has excellent oxygen reduction performance in an acidic environment.
[0072] 図 2からは、本発明の鉄を含有する炭素材料を含む電極触媒層がアルカリ環境下 におレ、ても優れた酸素還元性能を有してレ、ることが分かる。 FIG. 2 shows that the electrode catalyst layer containing the iron-containing carbon material of the present invention has excellent oxygen reduction performance even in an alkaline environment.
産業上の利用可能性  Industrial applicability
[0073] 本発明の製造方法により得られる鉄含有炭素材料は、鉄と窒素原子が熱処理中に 炭素材料中に取り込まれて酸素還元反応に対する安定な活性点を形成し、好ましい 酸素還元電極の材料となる。本発明の炭素材料を含有する酸素還元電極は、酸素 還元反応に対して高活性を示す。また、本発明の鉄含有炭素材料は、酸素還元電 極の材料として用いた場合に、電池効率の低下や材料の劣化等の原因となり得る中 間体である過酸化水素の生成量が少なレ、点でも優れてレ、る。かかる酸素還元電極 は、例えばアルカリ形燃料電池やリン酸形燃料電池等の電極として有用である。その 他、食塩電解層や空気亜鉛電池等の構成要素としても有用である。 [0073] The iron-containing carbon material obtained by the production method of the present invention is preferably a material for an oxygen reduction electrode in which iron and nitrogen atoms are incorporated into the carbon material during heat treatment to form a stable active site for an oxygen reduction reaction. It becomes. The oxygen reduction electrode containing the carbon material of the present invention exhibits high activity for the oxygen reduction reaction. In addition, the iron-containing carbon material of the present invention, when used as a material for an oxygen reduction electrode, produces a low amount of hydrogen peroxide, which is an intermediate that can cause a decrease in battery efficiency and deterioration of the material. It ’s also excellent in terms. Such an oxygen reduction electrode is useful as an electrode of, for example, an alkaline fuel cell or a phosphoric acid fuel cell. That In addition, it is also useful as a component of a salt electrolysis layer, an air zinc battery, or the like.
[0074] 本発明の鉄含有炭素材料は、特に固体高分子電解質形燃料電池の酸素還元電 極の電極触媒材料としても有用である。本発明の炭素材料を電極触媒に用いた固 体高分子形電解質燃料電池の酸素還元電極は、電極触媒材料として従来用いられ ている白金を含まなくても酸素還元反応に対して高活性を示す。また、燃料電池の 効率の低下や材料の劣化などの原因となり得る中間体である過酸化水素の生成量 が少なぐ白金を用いた電極と同様に酸素を水まで直接還元する能力を有する点で 非常に優れている。特にアルカリ環境下で高い触媒性能を発揮できるため、例えば ァニオン交換型固体高分子電解質を用いた固体高分子形燃料電池において、優れ た酸素還元性能を発揮できる。  [0074] The iron-containing carbon material of the present invention is particularly useful as an electrode catalyst material for an oxygen reduction electrode of a solid polymer electrolyte fuel cell. An oxygen reduction electrode of a solid polymer electrolyte fuel cell using the carbon material of the present invention as an electrode catalyst exhibits high activity for an oxygen reduction reaction even if platinum which has been conventionally used as an electrode catalyst material is not included. In addition, it has the ability to directly reduce oxygen to water, as well as an electrode using platinum, which produces a small amount of hydrogen peroxide, which is an intermediate that can cause fuel cell efficiency degradation and material degradation. Very good. In particular, since high catalyst performance can be exhibited in an alkaline environment, excellent oxygen reduction performance can be exhibited, for example, in a solid polymer fuel cell using an anion exchange type solid polymer electrolyte.
[0075] 本発明の製造方法によれば、高価な原料や調製に手間の力かる原料などを用いる ことなぐ安価で簡便に上記の鉄含有炭素材料を製造することができる。従って本発 明は、燃料電池の実用化に寄与できるものとして、産業上極めて有用である。 [0075] According to the production method of the present invention, the above iron-containing carbon material can be produced inexpensively and easily without using an expensive raw material or a raw material that requires labor for preparation. Therefore, the present invention is extremely useful industrially as being able to contribute to the practical use of fuel cells.

Claims

請求の範囲 The scope of the claims
[1] 鉄塩、窒素含有化合物および炭水化物を混合する工程;および  [1] mixing an iron salt, a nitrogen-containing compound and a carbohydrate; and
不活性雰囲気で上記混合物を熱処理する工程;  Heat treating the mixture in an inert atmosphere;
を含むことを特徴とする鉄含有炭素材料の製造方法。  A method for producing an iron-containing carbon material, comprising:
[2] 鉄塩、窒素含有化合物および炭水化物を混合する工程において、鉄塩に加え、さ らに銅塩、ニッケル塩、コバルト塩、クロム塩、マンガン塩、およびバナジウム塩力、らな る群より選択される少なくとも 1種以上を混合する請求項 1に記載の鉄含有炭素材料 の製造方法。  [2] In the process of mixing iron salt, nitrogen-containing compound and carbohydrate, in addition to iron salt, copper salt, nickel salt, cobalt salt, chromium salt, manganese salt, and vanadium salt strength The method for producing an iron-containing carbon material according to claim 1, wherein at least one selected from the above is mixed.
[3] 請求項 1または 2に記載の方法により製造されたことを特徴とする鉄含有炭素材料  [3] An iron-containing carbon material produced by the method according to claim 1 or 2
[4] 請求項 3に記載の鉄含有炭素材料を含むことを特徴とする酸素還元電極。 [4] An oxygen reduction electrode comprising the iron-containing carbon material according to claim 3.
[5] 請求項 4に記載の酸素還元電極を有することを特徴とする固体化高分子形燃料電 池。  [5] A solidified polymer fuel cell comprising the oxygen reduction electrode according to claim 4.
PCT/JP2007/061661 2006-06-16 2007-06-08 Method for producing iron-containing carbon material WO2007145147A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006167695 2006-06-16
JP2006-167695 2006-06-16
JP2007-120566 2007-05-01
JP2007120566A JP5143469B2 (en) 2006-06-16 2007-05-01 Method for producing iron-containing carbon material

Publications (1)

Publication Number Publication Date
WO2007145147A1 true WO2007145147A1 (en) 2007-12-21

Family

ID=38831662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061661 WO2007145147A1 (en) 2006-06-16 2007-06-08 Method for producing iron-containing carbon material

Country Status (2)

Country Link
JP (1) JP5143469B2 (en)
WO (1) WO2007145147A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050714A (en) * 2011-10-17 2013-04-17 中国科学院大连化学物理研究所 Nano carbon doped electrocatalyst for fuel cell, and application of nano carbon doped electrocatalyst
US8536106B2 (en) 2010-04-14 2013-09-17 Ecolab Usa Inc. Ferric hydroxycarboxylate as a builder
WO2014006908A1 (en) * 2012-07-06 2014-01-09 パナソニック株式会社 Carbon-based material, electrode catalyst, electrode, gas diffusion electrode, electrochemical device, fuel battery, and process for producing carbon-based material
EP2742999A1 (en) * 2011-08-08 2014-06-18 Showa Denko K.K. Method for producing redox catalyst and use of redox catalyst
CN114672838A (en) * 2022-04-29 2022-06-28 西南大学 Preparation method of carbon substrate nitrogen coordination metal single atom or cluster catalyst, product and application thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272262A (en) * 2008-05-12 2009-11-19 Nagaoka Univ Of Technology Cathode catalyst for direct alcohol type fuel cell, method of manufacturing the same, and direct alcohol type fuel cell using the same
KR101079126B1 (en) * 2009-04-15 2011-11-03 한국과학기술원 Method For Preparing Modified Catalysts For Cathodic Oxidation Of Polymer Electrolyte Membrane Fuel Cells And Direct Alcohol Fuel Cells
AU2010276171A1 (en) * 2009-07-21 2012-02-09 Battelle Memorial Institute Nickel-cobalt supercapacitors and methods of making same
CA2796644C (en) * 2010-04-20 2018-10-02 Nisshinbo Holdings Inc. Carbon catalyst for direct fuel cell cathode, and direct fuel cell cathode and direct fuel cell using same
JP5759707B2 (en) * 2010-11-30 2015-08-05 住友化学株式会社 Denatured product
US9350025B2 (en) 2011-01-14 2016-05-24 Showa Denko K.K. Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
EP2665118B1 (en) 2011-01-14 2018-04-11 Showa Denko K.K. Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and application thereof
JP4944281B1 (en) * 2011-01-14 2012-05-30 昭和電工株式会社 Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof
ITMI20111206A1 (en) * 2011-06-30 2012-12-31 Fond Cassa Di Risparmio Delle Province Lomba CATALYSTS FREE FROM PRECIOUS METALS SUITABLE FOR ELECTROCHEMICAL REDUCTION OF OXYGEN
CN103718356B (en) * 2011-08-09 2016-10-26 昭和电工株式会社 The manufacture method of electrode catalyst for fuel cell, electrode catalyst for fuel cell and its purposes
JP5837356B2 (en) * 2011-08-09 2015-12-24 昭和電工株式会社 Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof
JP5893305B2 (en) * 2011-09-09 2016-03-23 国立大学法人東京工業大学 Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
KR101424741B1 (en) * 2012-11-15 2014-08-06 국립대학법인 울산과학기술대학교 산학협력단 Complex catalyst for zinc air battery, method of preparing the same, and air electrode for zinc air battery and zinc air battery including the same
JP5843899B2 (en) * 2014-02-07 2016-01-13 株式会社トクヤマ Method for evaluating catalytic activity of electrode catalyst for fuel cell
JP6728776B2 (en) * 2016-03-02 2020-07-22 日立化成株式会社 Catalyst composition, electrode for organic wastewater treatment device, and organic wastewater treatment device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155587A (en) * 1993-12-09 1995-06-20 Mitsubishi Gas Chem Co Inc Highly adsorptive carbon material and its production
JPH07249508A (en) * 1994-03-11 1995-09-26 Agency Of Ind Science & Technol Manufacture of ferromagnetic carbonaceous material
JPH10335189A (en) * 1997-06-05 1998-12-18 Furukawa Co Ltd Electric double-layer capacitor
JP2002362912A (en) * 2001-06-06 2002-12-18 Jeol Ltd Method of removing residual active hydrogen oxide
JP2004217507A (en) * 2002-12-26 2004-08-05 Osaka City Method of producing metal-containing active carbon
JP2005126292A (en) * 2003-10-24 2005-05-19 Araco Corp Manufacturing method of active carbon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155587A (en) * 1993-12-09 1995-06-20 Mitsubishi Gas Chem Co Inc Highly adsorptive carbon material and its production
JPH07249508A (en) * 1994-03-11 1995-09-26 Agency Of Ind Science & Technol Manufacture of ferromagnetic carbonaceous material
JPH10335189A (en) * 1997-06-05 1998-12-18 Furukawa Co Ltd Electric double-layer capacitor
JP2002362912A (en) * 2001-06-06 2002-12-18 Jeol Ltd Method of removing residual active hydrogen oxide
JP2004217507A (en) * 2002-12-26 2004-08-05 Osaka City Method of producing metal-containing active carbon
JP2005126292A (en) * 2003-10-24 2005-05-19 Araco Corp Manufacturing method of active carbon

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LALANDE G. ET AL.: "Is nitrogen important in the formulation of Fe-based catalysts for oxygen reduction in solid polymer fuel cells?", ELECTROCHIMICA ACTA, vol. 42, no. 9, 1997, pages 1379 - 1388, XP004054819 *
MEDARD C. ET AL.: "Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions: Activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports", ELECTROCHIMICA ACTA, vol. 51, no. 16, 10 April 2006 (2006-04-10), pages 3202 - 3213, XP005358158 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536106B2 (en) 2010-04-14 2013-09-17 Ecolab Usa Inc. Ferric hydroxycarboxylate as a builder
US9023780B2 (en) 2010-04-14 2015-05-05 Ecolab Usa Inc. Ferric hydroxycarboxylate as a builder
EP2742999A1 (en) * 2011-08-08 2014-06-18 Showa Denko K.K. Method for producing redox catalyst and use of redox catalyst
EP2742999A4 (en) * 2011-08-08 2015-04-08 Showa Denko Kk Method for producing redox catalyst and use of redox catalyst
CN103050714A (en) * 2011-10-17 2013-04-17 中国科学院大连化学物理研究所 Nano carbon doped electrocatalyst for fuel cell, and application of nano carbon doped electrocatalyst
WO2014006908A1 (en) * 2012-07-06 2014-01-09 パナソニック株式会社 Carbon-based material, electrode catalyst, electrode, gas diffusion electrode, electrochemical device, fuel battery, and process for producing carbon-based material
JPWO2014006908A1 (en) * 2012-07-06 2016-06-02 パナソニックIpマネジメント株式会社 Carbon-based material, electrode catalyst, electrode, gas diffusion electrode, electrochemical device, fuel cell, and method for producing carbon-based material
US9929411B2 (en) 2012-07-06 2018-03-27 Panasonic Intellectual Property Management Co., Ltd. Carbon-based material, electrode catalyst, electrode, gas diffusion electrode, electrochemical device, fuel battery, and process for producing carbon-based material
CN114672838A (en) * 2022-04-29 2022-06-28 西南大学 Preparation method of carbon substrate nitrogen coordination metal single atom or cluster catalyst, product and application thereof

Also Published As

Publication number Publication date
JP2008021638A (en) 2008-01-31
JP5143469B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5143469B2 (en) Method for producing iron-containing carbon material
Yang et al. Recent advances in electrocatalysis with phthalocyanines
TWI289951B (en) Direct alcohol fuel cell and method for producing same
JP5697749B2 (en) Carbon dioxide enrichment device
Maruyama et al. Formation of platinum-free fuel cell cathode catalyst with highly developed nanospace by carbonizing catalase
CN109873175B (en) Preparation method of nitrided three-dimensional carrier supported platinum-cobalt-iridium alloy structure catalyst for low-temperature fuel cell
CN113270597B (en) C 3 N 4 Coated carbon nano tube loaded NiFe dual-functional oxygen electrocatalyst and preparation method thereof
Liu et al. Iron-based single-atom electrocatalysts: synthetic strategies and applications
JP2000268828A (en) Solid highpolymer type fuel cell
CN108598504A (en) A kind of high catalytic activity fuel battery cathod catalyst
JP4555897B2 (en) Method for producing activated carbon containing metal
CN111129524A (en) Ce-Zr bimetallic cluster MOF-based oxygen reduction electrocatalyst and preparation method and application thereof
CN110137509A (en) A kind of CoO/NPC@SnO obtained by metal organic frame2Bifunctional catalyst and preparation method thereof
JP2010270107A (en) Modified metal complex
JP2011230099A (en) Carbon catalyst and method of manufacturing the same
TW201217411A (en) Polymer composite modified product
CN109873174B (en) Preparation method of three-dimensional carrier supported platinum-palladium-cobalt alloy structure catalyst for low-temperature fuel cell
JP5183943B2 (en) Metal-containing carbide and method for producing the same
CN116564574A (en) Graphene/two-dimensional metal organic conductive framework modified three-dimensional electrode material and application thereof
CN115064717A (en) ORR-OER catalyst for zinc-air battery anode and preparation method thereof
JP2005174869A (en) Tungsten carrying electrode catalyst, catalyst carrying electrode using its catalyst and mea
JP4087651B2 (en) Electrocatalyst for solid polymer electrolyte fuel cell
Maruyama et al. Direct synthesis of a carbonaceous fuel cell catalyst from solid containing small organic molecules and metal salts
JP2019172496A (en) Method for producing nitrogen-containing carbon material
JP2005276443A (en) Junction of cation exchange membrane and catalyst electrode for polymer electrolyte fuel cell and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07767082

Country of ref document: EP

Kind code of ref document: A1