WO2007145088A1 - Semiconductor nanoparticle and method for manufacturing same - Google Patents

Semiconductor nanoparticle and method for manufacturing same Download PDF

Info

Publication number
WO2007145088A1
WO2007145088A1 PCT/JP2007/061179 JP2007061179W WO2007145088A1 WO 2007145088 A1 WO2007145088 A1 WO 2007145088A1 JP 2007061179 W JP2007061179 W JP 2007061179W WO 2007145088 A1 WO2007145088 A1 WO 2007145088A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
layer
semiconductor
core
shell
Prior art date
Application number
PCT/JP2007/061179
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuru Sekiguchi
Kazuya Tsukada
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2008521149A priority Critical patent/JPWO2007145088A1/en
Publication of WO2007145088A1 publication Critical patent/WO2007145088A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof

Definitions

  • the present invention relates to hollow semiconductor nanoparticles and a method for producing the same.
  • Nano-sized semiconductors such as semiconductor nanoparticles and semiconductor nanorods are nanometer-sized, and thus exhibit quantum size effects such as increased band gap energy and exciton confinement effects. It is known to exhibit good optical characteristics such as light absorption characteristics and light emission characteristics. Therefore, in recent years, studies on various applications such as displays, biomedicals, and optical communication devices have been promoted as phosphors that can only be actively reported on nano-sized semiconductors.
  • an organic molecule is one of core Z shell type semiconductor nanoparticles, a Si / SiO type semi-conductor
  • the emission wavelength is determined by the size of the bandgap
  • the band gap is determined by the diameter of the core layer. Since the diameter of the core layer was determined, it was difficult to handle because large particles could not be formed.
  • the band gap is 1.12 eV, but if this is a nanoparticle with a diameter of nm, the band gap is 1.52 eV and emits light of about 830 nm, and the nanoparticle with a diameter of 4 nm is 1 It is 700 nm at 76 eV and 3.3 nm for nanoparticles with a diameter of 3.3 nm.
  • the conventional light-emitting nanoparticles are formed by the penetration.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-172429
  • the object of the present invention is to change the emission wavelength without changing the conventional core Z-shell type nano-size.
  • the present invention provides a semiconductor nanoparticle that can be handled larger than a semiconductor particle and that has a larger light emission region and a larger amount of light emission, and a method for producing the same.
  • a semiconductor nanoparticle having a cavity at the center, having a core layer and a shell layer, and having a core layer thickness of 2 to: LOnm the core layer and the shell layer are different from each other
  • the light emission wavelength is not changed, and it is easier to handle than the conventional core Z-shell type nano-sized semiconductor particles. Particles and methods for their production can be provided.
  • FIG. 1 is a production process diagram of SiO 2 ZSiZ hollow nanoparticles with fullerene as a nucleus.
  • FIG. 2 is a production process diagram of SiO 2 ZSiZ hollow nanoparticles with carbon nanotubes as the core.
  • the present inventors have studied the above-mentioned problems, and form fullerene or carbon nanotubes as cores to form hollow core Z-shell nanoparticles that are larger than conventional ones, or fullerenes or carbon nanotubes in a later step.
  • the core Z-shell nanoparticle is enlarged, easy to handle, and the emission intensity per unit
  • the inventors have found that large nanoparticles can be obtained and have completed the present invention.
  • the present invention relates to a fullerene having a diameter of about Im having a hollow structure of about 0.7 nm with no atomic structure inside or a carbon nanotube having a hollow portion of about 0.7 to 50 nm.
  • the fullerene or carbon nanotube layer may be removed in a later step.
  • hollow core Z-shell semiconductor nanoparticles have a substantially spherical shape and a cylindrical shape, and so-called nanowires having a maximum length of several tens / zm. Includes structure.
  • the band gap of the crystal is, for example, Katsuzo Kaminishi, Electronic Device Materials, Nihon Rie Press (2002), p. 62, Hiroshi Kobayashi, Luminescence Physics, Asakura Shoten (2000) p. Indicates the value described in .108.
  • the hollow core Z-shell semiconductor nanoparticles of the present invention are obtained by growing a core layer and a shell layer using a fullerene or carbon nanotube having a hollow structure as a nucleus.
  • the average thickness of the core layer is 2 to: LOnm. Below 2 nm, the structure is a collection of atoms, and a band gap corresponding to the visible light region is generated. This is preferred, and below lOnm, the efficiency of light emission increases dramatically due to the confinement effect of exciton (one electron-hole pair). This is preferable.
  • fullerene or carbon nanotube may be removed by ashing.
  • fullerene or carbon nanotube is used as an example.
  • the core layer and the shell layer may be grown using another substance as a nucleus, and the hollow core Z shell Even after the semiconductor nanoparticles are formed, it is possible to remove the material having the hollow structure as a growth nucleus.
  • the core layer and the shell layer are formed of different crystals.
  • the crystal needs to be selected so that the band gap of the crystal forming the shell layer is larger than the band gap of the crystal forming the core layer.
  • the core Z shell is SiZSiO,
  • the hollow core Z-shell semiconductor nanoparticles of the present invention are larger than conventional core Z-shell semiconductor nanoparticles, the handling and handling of the light-emitting layer per particle is large! / Because of this, the amount of emitted light is large!
  • fullerene or carbon nanotube having a hollow interior is used for producing the hollow layer, but other structures having a hollow structure may be used.
  • Hollow structure For example, a hollow Z-shell layer is grown around the carbon black nanotubes, and the carbon black nanotubes are removed by ashing by heat treatment at about 600 ° C. But ⁇ .
  • a hollow core Z-shell semiconductor nanoparticle manufacturing method consider an example with fullerene as the core.
  • Plasma using SiH gas is placed on a C60 fullerene of lnm diameter with a hollow structure of about 0.7 nm as the core.
  • a 2-5nm Si layer is grown by CVD, and then SiH gas
  • SiO layer of about 0.5 to 20 nm is grown by plasma CVD using 4 4 and N 2 O gas
  • the oxygen remaining in the fullerene reacts with heat treatment at about 600 ° C, or the fullerene surface is partially exposed on the surface of the semiconductor nanoparticles due to defects, etc. Exposed to O plasma at about 200 ° C.
  • Ashing can be performed.
  • the combination of the core and the Z-shell of the semiconductor nanoparticles is Si / SiO, there is a possibility that Si may be oxidized.
  • the core Z shell structure forming method is si
  • ⁇ Method for Producing Hollow Core Z-Shell Semiconductor Nanoparticles with Carbon Nanotubes as the Core> As a method for producing the hollow core Z-shell semiconductor nanoparticles, for example, considering an example with carbon nanotubes as the core, a Si substrate is formed on the Si substrate. Nanoparticles that serve as catalysts such as Co are arranged, and carbon nanotubes with a hollow structure of several nanometers are grown by thermal CVD such as CH using them as nuclei.
  • a SiO layer of about 0.5 to 20 nm is grown by plasma CVD using H gas and N 2 O gas.
  • the power to realize the SiO structure by the CVD method The structure of CdSeZZnS etc.
  • C60 fullerene particles having a hollow structure of 0.7 nm are prepared. Fullerenes can be extracted from Susca by the combustion method, and are currently sold by Frontier Carbon Co., Ltd. (see Electronic Materials, January 2003, p34). In Figure 1 of the example, the particles are separated one by one, but they actually become a mass of particles!
  • fullerene 1 obtained by the above method is dissolved in an organic solvent, and is made into fine droplets by ultrasonic waves using a vaporizer 5.
  • vaporizer 5 fullerene 1 is suspended in He gas
  • fullerene 1 is introduced into the reaction chamber 4 of the CVD apparatus as He gas as a carrier.
  • a source gas, SiH, for forming a Si layer is introduced into the reaction chamber 4.
  • Reaction chamber temperature is 400 ° C
  • pressure is ITo
  • SiZ fullerene nanoparticles 3 are collected by a collector 7 by introducing them into an organic solvent together with He gas. In this way, SiZ fullerene nanoparticles 3 can be obtained.
  • SiZ fullerene nanoparticles 3 are dissolved in an organic solution and vaporized by a carburetor 5 by publishing with He. Introduce fullerene nanoparticles 3 using He gas as a carrier. Next, form a SiO layer in reaction chamber 4.
  • the reaction chamber temperature is 400
  • SiO 2 ZZZ fullerene nanoparticles 9 are formed.
  • the formed SiO 2 / Si / fullerene nanoparticles 9 are collected by a collector 7. [0032] By the above manufacturing method, SiO having a 0.7 nm hollow structure unique to fullerenes.
  • the light of m was irradiated, and the emission intensity was examined with a luminance meter. Compared to SiO ZSi nanoparticles with a Si core that emits the same red light with a diameter of about 4 nm, the emission intensity was about 7 times higher.
  • the diameter may increase in the circumferential direction, and the luminous efficiency per unit volume is considered inferior.
  • SiO ZSiZ fullerene nanoparticles 9 are dissolved in an organic solution and He
  • SiZ fullerene nanoparticles 9 are introduced using He gas as a carrier. Next, O in reaction chamber 4
  • the fullerene is sublimated inside or reacted with o remaining inside the fullerene.
  • sio 2 ZSiZ cavity nanoparticle 10 is formed. Finally, the sio 2 ZSiZ hollow nanoparticles 10 thus formed are collected by the collector 7.
  • the diameter of the child is 5 nm of the conventional SiO shell thickness
  • Co nanoparticles 23 are coated on the Si substrate 21 on which 10 nm of SiO 22 is deposited by the coating method.
  • the substrate with the carbon nanotubes 25 thus obtained is placed in the reaction chamber of the plasma CVD apparatus.
  • a SiH layer is formed in the reaction chamber
  • the reaction chamber temperature is 400 ° C and the pressure is about ITorr.
  • the temperature of the reaction chamber is kept at 400 ° C and the pressure is kept at about lOTorr.
  • a SiO layer of about 5nm is formed on the surface of the SiZ carbon nanotube nanoparticle 28.
  • the nanoparticles were irradiated with 365 nm light, and the emission intensity was examined with a luminance meter. Compared to SiO ZSi nanoparticles that emit the same red light and have a Si core diameter of about 4 nm, about 30 times per particle
  • the emission intensity was shown. This contributes si subvolumes for light emission of the nanoparticles to 34 nm 3 in Sio 2 ZSi nanoparticles, next 6200Nm 3 when the length lOOnm in nanoparticles of the present invention, are for that summer large as about 200 times .
  • the bandgap of carbon nanotubes is small in SU, the confinement effect of exciton is sufficient on one side. There is a fruit and it is thought that the luminous efficiency increased.
  • Co nanoparticles are removed by immersing the plate in a 130 ° C H 2 SO—H 2 O mixture.
  • the carbon nanotubes react with O to be CO and removed. As a result, SiO ZSiZ hollow nanoparticles 31 are formed.
  • SiO ZSiZ hollow nanoparticles having a hollow structure of 30 nm can be formed.
  • SiO ZSi nano that emits the same red light and has a Si core diameter of about 4 nm
  • the emission intensity was about 50 times per particle compared to 2 particles. This removes the carbon nanotube layer with a small band gap, and sandwiches the Si light emitting layer between the air layer and the SiO layer.

Abstract

Provided is a semiconductor nanoparticle which is larger than conventional core/shell type nanosize semiconductor particles, easy to handle and has a large emission quantity due to a larger emission area, with no emission wavelength change. A method for manufacturing such semiconductor nanoparticle is also provided. The semiconductor nanoparticle has a hollow section at the center, and has a core layer and a shell layer. The thickness of the core layer is 2-10nm. The core layer and the shell layer are formed of different types of semiconductors, and a bandgap of the semiconductor forming the shell layer is larger than that of a crystal forming the core layer.

Description

明 細 書  Specification
半導体ナノ粒子及びその製造方法  Semiconductor nanoparticles and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は中空型半導体ナノ粒子及びその製造方法に関する。  The present invention relates to hollow semiconductor nanoparticles and a method for producing the same.
背景技術  Background art
[0002] 半導体ナノ粒子や半導体ナノロッド等のナノサイズの半導体は、その大きさがナノメ 一トルサイズであるため、バンドギャップエネルギーの増大、励起子の閉じ込め効果 等、量子サイズ効果を発現し、例えば、良好な光吸収特性及び発光特性等の光学 特性を示すことが知られている。そのため近年では、ナノサイズの半導体に関する研 究報告が活発になされるだけでなぐ蛍光体としてディスプレー、バイオメディカル及 び光通信素子等、さまざまな用途での検討が進められている。  [0002] Nano-sized semiconductors such as semiconductor nanoparticles and semiconductor nanorods are nanometer-sized, and thus exhibit quantum size effects such as increased band gap energy and exciton confinement effects. It is known to exhibit good optical characteristics such as light absorption characteristics and light emission characteristics. Therefore, in recent years, studies on various applications such as displays, biomedicals, and optical communication devices have been promoted as phosphors that can only be actively reported on nano-sized semiconductors.
[0003] 例えば、有機分子をコア Zシェル型半導体ナノ粒子の一つである、 Si/SiO型半  [0003] For example, an organic molecule is one of core Z shell type semiconductor nanoparticles, a Si / SiO type semi-conductor
2 導体ナノ粒子の表面に結合した生体物質標識剤が検討されている (例えば、特許文 献 1参照)。  2 Biological substance labeling agents bound to the surface of conductive nanoparticles have been studied (for example, see Patent Document 1).
[0004] 従来のコア Zシェル型のナノサイズの半導体においては、発光波長はバンドギヤッ プの大きさで決まり、バンドギャップはコア層の直径で決まることから、ある発光のナノ 粒子を作製しょうとするとコア層の直径が決まってしま、、大きな粒子を形成できな ヽ ため取り扱いが困難であった。例えば、 Siの例を見るとバンドギャップは 1. 12eVで あるが、これ力 nmの直径のナノ粒子となるとバンドギャップが 1. 52eVで約 830nm の光を出し、 4nmの直径のナノ粒子では 1. 76eVで 700nm、 3. 3nmの直径のナノ 粒子では 2. leVで 600nmである。これに 0. 5〜20nm程度の SUりバンドギャップ が 9. OeVと大きい SiOシェル層が存在し、ホール—電子対を閉  [0004] In a conventional core Z-shell nano-sized semiconductor, the emission wavelength is determined by the size of the bandgap, and the band gap is determined by the diameter of the core layer. Since the diameter of the core layer was determined, it was difficult to handle because large particles could not be formed. For example, in the Si example, the band gap is 1.12 eV, but if this is a nanoparticle with a diameter of nm, the band gap is 1.52 eV and emits light of about 830 nm, and the nanoparticle with a diameter of 4 nm is 1 It is 700 nm at 76 eV and 3.3 nm for nanoparticles with a diameter of 3.3 nm. There is an SiO shell layer with a high SU band gap of about 0.5 to 20 nm, 9. OeV, and the hole-electron pair is closed.
2  2
じ込めることで従来の発光型ナノ粒子は形成される。  The conventional light-emitting nanoparticles are formed by the penetration.
特許文献 1 :特開 2005— 172429号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-172429
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明の目的は、発光波長は変更せずに、従来のコア Zシェル型のナノサイズの 半導体粒子よりも大きぐ取り扱いが容易で、発光領域が大きい分、発光量も大きい 半導体ナノ粒子及びその製造方法を提供することである。 [0005] The object of the present invention is to change the emission wavelength without changing the conventional core Z-shell type nano-size. The present invention provides a semiconductor nanoparticle that can be handled larger than a semiconductor particle and that has a larger light emission region and a larger amount of light emission, and a method for producing the same.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の上記課題は、以下の構成により達成される。  [0006] The object of the present invention is achieved by the following constitution.
[0007] 1.中心部に空洞部を有し、コア層とシェル層を有し、該コア層の厚さが 2〜: LOnm の半導体ナノ粒子において、該コア層と該シェル層がそれぞれ異なる半導体で形成 されており、該シェル層を形成する半導体のバンドギャップが、該コア層を形成する 結晶のバンドギャップより大きいことを特徴とする半導体ナノ粒子。  [0007] 1. In a semiconductor nanoparticle having a cavity at the center, having a core layer and a shell layer, and having a core layer thickness of 2 to: LOnm, the core layer and the shell layer are different from each other A semiconductor nanoparticle formed of a semiconductor, wherein a band gap of a semiconductor forming the shell layer is larger than a band gap of a crystal forming the core layer.
[0008] 2.前記空洞部が 0. 7〜50nmの径をもつ球形またはチューブ型であることを特徴 とする前記 1に記載の半導体ナノ粒子。  [0008] 2. The semiconductor nanoparticles as described in 1 above, wherein the hollow portion has a spherical or tube shape having a diameter of 0.7 to 50 nm.
[0009] 3.前記 1または 2に記載の半導体ナノ粒子のコア層とシェル層を、フラーレンまた はカーボンナノチューブを核として成長させることを特徴とする半導体ナノ粒子の製 造方法。  [0009] 3. A method for producing semiconductor nanoparticles, wherein the core layer and the shell layer of the semiconductor nanoparticles described in 1 or 2 are grown using fullerenes or carbon nanotubes as nuclei.
[0010] 4.前記シェル層を形成後、内部の炭素成分を灰化して、中空構造を形成すること を特徴とする前記 3に記載の半導体ナノ粒子の製造方法。  [0010] 4. The method for producing semiconductor nanoparticles as described in 3 above, wherein after the shell layer is formed, the internal carbon component is ashed to form a hollow structure.
[0011] 5.熱処理により内部の炭素成分を灰化することを特徴とする前記 4に記載の半導 体ナノ粒子の製造方法 [0011] 5. The method for producing a semiconductor nanoparticle according to 4 above, wherein the internal carbon component is ashed by heat treatment.
発明の効果  The invention's effect
[0012] 本発明によれば、発光波長は変更せずに、従来のコア Zシェル型のナノサイズの 半導体粒子よりも大きぐ取り扱いが容易で、発光領域が大きい分、発光量も大きい 半導体ナノ粒子及びその製造方法を提供することができる。  [0012] According to the present invention, the light emission wavelength is not changed, and it is easier to handle than the conventional core Z-shell type nano-sized semiconductor particles. Particles and methods for their production can be provided.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]フラーレンを核とした SiO 2 ZSiZ空洞ナノ粒子の製造工程図である。 FIG. 1 is a production process diagram of SiO 2 ZSiZ hollow nanoparticles with fullerene as a nucleus.
[図 2]カーボンナノチューブを核とした SiO 2 ZSiZ空洞ナノ粒子の製造工程図である 符号の説明  FIG. 2 is a production process diagram of SiO 2 ZSiZ hollow nanoparticles with carbon nanotubes as the core.
[0014] 1 フラーレン 2、 27 Si層 [0014] 1 Fullerene 2, 27 Si layer
3 SiZフラーレンナノ粒子  3 SiZ fullerene nanoparticles
4、 24 反応室  4, 24 reaction chamber
5 気化器  5 Vaporizer
6、 26 RF電極  6, 26 RF electrode
7 捕集器  7 Collector
8、 29 SiO層  8, 29 SiO layer
2  2
9 SiO 2 ZSiZフラーレンナノ粒子  9 SiO 2 ZSiZ fullerene nanoparticles
10、 31 SiO 2 ZSiZ空洞ナノ粒子  10, 31 SiO 2 ZSiZ hollow nanoparticles
21 Si基板  21 Si substrate
22 SiO  22 SiO
2  2
23 Coナノ粒子  23 Co nanoparticles
25 カーボンナノチューブ  25 carbon nanotubes
28 SiZカーボンナノチューブナノ粒子  28 SiZ carbon nanotube nanoparticles
30 SiO 2 ZSiZカーボンナノチューブナノ粒子  30 SiO 2 ZSiZ carbon nanotube nanoparticles
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明者らは上記課題を検討し、フラーレンまたはカーボンナノチューブをコアに することにより、従来よりも大きな中空型コア Zシェル型ナノ粒子を形成する、または、 後工程でフラーレンまたはカーボンナノチューブ部を灰化させることにより、より中空 領域を大きくした中空型コア Zシェル型ナノ粒子を形成することにより、コア Zシェル 型ナノ粒子を大型化し、取り扱いが容易で、 1個当たりの発光強度の大きいナノ粒子 が得られることを見出し、本発明を完成させた。  [0015] The present inventors have studied the above-mentioned problems, and form fullerene or carbon nanotubes as cores to form hollow core Z-shell nanoparticles that are larger than conventional ones, or fullerenes or carbon nanotubes in a later step. By forming the hollow core Z-shell nanoparticle with a larger hollow area by ashing the part, the core Z-shell nanoparticle is enlarged, easy to handle, and the emission intensity per unit The inventors have found that large nanoparticles can be obtained and have completed the present invention.
[0016] すなわち、本発明は、内部に原子構造のない 0. 7nm程度の中空構造を有する In m程度の直径のフラーレンまたは 0. 7〜50nm程度の中空部を有するカーボンナノ チューブ上に 2〜: LOnmの半導体層をコア層として成長し、その上にコア層よりバンド ギャップの大きい半導体層をシェル層として成長させた中空型コア Zシェル半導体 ナノ粒子である。また、前記フラーレンまたはカーボンナノチューブ層は後工程で除 去してちょい。 [0017] 以下、本発明について具体的に説明する。 [0016] That is, the present invention relates to a fullerene having a diameter of about Im having a hollow structure of about 0.7 nm with no atomic structure inside or a carbon nanotube having a hollow portion of about 0.7 to 50 nm. : A hollow core Z-shell semiconductor nano-particle that is grown as a core layer and a semiconductor layer having a larger band gap than that of the core layer. The fullerene or carbon nanotube layer may be removed in a later step. [0017] The present invention will be specifically described below.
[0018] なお、本明細書において、中空型コア Zシェル半導体ナノ粒子は形がほぼ球状で あるものと、形が円筒形のものであり、長さが最大数十/ z mに達するいわゆるナノワイ ァ構造も含んでいる。  In the present specification, hollow core Z-shell semiconductor nanoparticles have a substantially spherical shape and a cylindrical shape, and so-called nanowires having a maximum length of several tens / zm. Includes structure.
[0019] また、結晶のバンドギャップとは、例えば、上西勝三著,電子デバイス材料, 日本理 ェ出版会(2002) , p. 62、小林洋史著,発光の物理,朝倉書店 (2000) p. 108に 記載されている値を示す。  [0019] The band gap of the crystal is, for example, Katsuzo Kaminishi, Electronic Device Materials, Nihon Rie Press (2002), p. 62, Hiroshi Kobayashi, Luminescence Physics, Asakura Shoten (2000) p. Indicates the value described in .108.
[0020] 〔中空型コア Zシェル半導体ナノ粒子〕  [Hollow core Z-shell semiconductor nanoparticles]
本発明の中空型コア Zシェル半導体ナノ粒子は、中空構造を有するフラーレンま たはカーボンナノチューブを核として、コア層、シェル層を成長させたものである。コ ァ層の平均厚さは 2〜: LOnmである。 2nm以上では原子が集合した構造になり、可 視光領域に対応するバンドギャップが発生するため好ましぐ lOnm以下ではエキシ トン (電子一正孔ペア)の閉じ込め効果により、発光効率が急に向上するため好まし い。  The hollow core Z-shell semiconductor nanoparticles of the present invention are obtained by growing a core layer and a shell layer using a fullerene or carbon nanotube having a hollow structure as a nucleus. The average thickness of the core layer is 2 to: LOnm. Below 2 nm, the structure is a collection of atoms, and a band gap corresponding to the visible light region is generated. This is preferred, and below lOnm, the efficiency of light emission increases dramatically due to the confinement effect of exciton (one electron-hole pair). This is preferable.
[0021] また、前記フラーレンまたはカーボンナノチューブを灰化処理し、取り除いてもかま わない。また、本発明ではフラーレンまたはカーボンナノチューブを例としたが中空 構造を有する物質であれば、他の物質を核にして、コア層、シェル層を成長してもか なわないし、中空型コア Zシェル半導体ナノ粒子を形成後、成長核とした前記中空 構造を有する物質を除去しても力まわな 、。  [0021] Further, the fullerene or carbon nanotube may be removed by ashing. In the present invention, fullerene or carbon nanotube is used as an example. However, if the substance has a hollow structure, the core layer and the shell layer may be grown using another substance as a nucleus, and the hollow core Z shell Even after the semiconductor nanoparticles are formed, it is possible to remove the material having the hollow structure as a growth nucleus.
[0022] 前記コア層とシェル層とはそれぞれ異なる結晶で形成されている。前記結晶として は、シェル層を形成する結晶のバンドギャップがコア層を形成する結晶のバンドギヤ ップよりも大きくなるように、選択する必要がある。例えば、コア Zシェルが SiZSiO、  [0022] The core layer and the shell layer are formed of different crystals. The crystal needs to be selected so that the band gap of the crystal forming the shell layer is larger than the band gap of the crystal forming the core layer. For example, the core Z shell is SiZSiO,
2 2
ZnS/CdSe, CdSZZnO及び GaPZAlP等が挙げられる。 ZnS / CdSe, CdSZZnO, GaPZAlP, etc. are mentioned.
[0023] 本発明の中空型コア Zシェル半導体ナノ粒子は、従来のコア Zシェル型半導体ナ ノ粒子と比較して大きいため取り扱いやすぐ一個の粒子当たりが有する発光層の体 積が大き!/ヽため、発光量が大き!ヽと!ヽぅ特徴が得られる。 [0023] Since the hollow core Z-shell semiconductor nanoparticles of the present invention are larger than conventional core Z-shell semiconductor nanoparticles, the handling and handling of the light-emitting layer per particle is large! / Because of this, the amount of emitted light is large!
[0024] なお、本発明は、中空層を作製するのに、内部が中空であるフラーレンやカーボン ナノチューブを用いたが、中空構造を有する他の構造体を用いてもよい。中空の構 造体を用いてもょ 、し、例えば中空でな 、カーボンブラックのナノチューブの周りにコ ァ Zシェル層を成長させ、カーボンブラックナノチューブを 600°C程度の熱処理によ り灰化処理で除去してもよ ヽ。 In the present invention, fullerene or carbon nanotube having a hollow interior is used for producing the hollow layer, but other structures having a hollow structure may be used. Hollow structure For example, a hollow Z-shell layer is grown around the carbon black nanotubes, and the carbon black nanotubes are removed by ashing by heat treatment at about 600 ° C. But ヽ.
[0025] 〈フラーレンを核とした中空型コア Zシェル半導体ナノ粒子の製法〉 <Method for producing hollow core Z-shell semiconductor nanoparticles with fullerene as a core>
中空型コア Zシェル半導体ナノ粒子の製法としては、例えばフラーレンを核とした 例を考えると、コアとなる 0. 7nm程度の中空構造を持つ lnm径の C60フラーレン上 に、 SiHガスを用いたプラズマ CVD法で 2〜5nmの Si層を成長し、その後 SiHガス As an example of a hollow core Z-shell semiconductor nanoparticle manufacturing method, consider an example with fullerene as the core. Plasma using SiH gas is placed on a C60 fullerene of lnm diameter with a hollow structure of about 0.7 nm as the core. A 2-5nm Si layer is grown by CVD, and then SiH gas
4 4 と N Oガスを用いたプラズマ CVD法で 0. 5〜20nm程度の SiO層を成長させればIf a SiO layer of about 0.5 to 20 nm is grown by plasma CVD using 4 4 and N 2 O gas
2 2 twenty two
よい。フラーレンを灰化したい場合には、 600°C程度の熱処理によりフラーレン内部 に残っていた酸素とフラーレンを反応させる、または、欠陥等により一部フラーレン表 面が半導体ナノ粒子表面に露出している場合は、 200°C程度で Oのプラズマにさら  Good. When fullerenes are to be incinerated, the oxygen remaining in the fullerene reacts with heat treatment at about 600 ° C, or the fullerene surface is partially exposed on the surface of the semiconductor nanoparticles due to defects, etc. Exposed to O plasma at about 200 ° C.
2  2
すことで灰化を行うことができる。半導体ナノ粒子のコア Zシェルの組み合わせが Si /SiOの場合は Siが酸ィ匕してしまう可能性がある力 ZnSZCdSe等の組み合わせ Ashing can be performed. When the combination of the core and the Z-shell of the semiconductor nanoparticles is Si / SiO, there is a possibility that Si may be oxidized. Combination of ZnSZCdSe, etc.
2 2
であればその心配はな 、と考えられる。本例ではコア Zシェル構造形成方法として si If so, I don't have to worry about that. In this example, the core Z shell structure forming method is si
/SiO構造を CVD法にて実現した力 CdSeZZnS等の構造を逆ミセル法ゃホットForce achieved by CVD method with SiO / SiO structure Reversed micelle method is hot for structures such as CdSeZZnS
2 2
ソープ法を用いて作製することも可能である。  It is also possible to produce using a soap method.
[0026] 〈カーボンナノチューブを核とした中空型コア Zシェル半導体ナノ粒子の製法〉 中空型コア Zシェル半導体ナノ粒子の製法としては、例えばカーボンナノチューブ を核とした例を考えると、 Si基板上に Co等の触媒となるナノ粒子を配置しこれを核と して C H等の熱 CVDで数 nmの中空構造を持つカーボンナノチューブを成長させる<Method for Producing Hollow Core Z-Shell Semiconductor Nanoparticles with Carbon Nanotubes as the Core> As a method for producing the hollow core Z-shell semiconductor nanoparticles, for example, considering an example with carbon nanotubes as the core, a Si substrate is formed on the Si substrate. Nanoparticles that serve as catalysts such as Co are arranged, and carbon nanotubes with a hollow structure of several nanometers are grown by thermal CVD such as CH using them as nuclei.
2 2 twenty two
。その後、 SiHガスを用いたプラズマ CVD法で 2〜5nmの Si層を成長し、その後 Si  . Then, a 2-5nm Si layer is grown by plasma CVD using SiH gas, and then Si
4  Four
Hガスと N Oガスを用いたプラズマ CVD法で 0. 5〜20nm程度の SiO層を成長さ A SiO layer of about 0.5 to 20 nm is grown by plasma CVD using H gas and N 2 O gas.
4 2 2 4 2 2
せればよい。 Coを H SO H O混合液等で溶かして、完成した中空型コア  You can do it. Completed hollow core made by dissolving Co with H SO H O mixed solution etc.
2 4 2 2 Zシェ ル半導体ナノ粒子を Si基板から分離する。  2 4 2 2 Separate Z-shell semiconductor nanoparticles from Si substrate.
[0027] カーボンナノチューブを灰化したい場合には、 Coを除去した面ではカーボンナノチ ユーブが露出しているので、 600°C程度の熱処理、または、 200°C程度の Oのプラ [0027] When carbon nanotubes are to be incinerated, the carbon nanotubes are exposed on the Co-removed surface, so heat treatment at about 600 ° C or oxygen at about 200 ° C
2 ズマにさらすことで灰化を行うことができる。半導体ナノ粒子のコア zシェルの組み合 わせが SiZSiOの場合は Siが酸ィ匕してしまう可能性がある力 ZnSZCdSe等の組 み合わせであればその心配はな!、。本例ではコア Zシェル構造形成方法として siZ2 Ashing can be performed by exposing to zuma. When the combination of the core z-shell of the semiconductor nanoparticles is SiZSiO, there is a possibility that Si may be oxidized. ZnSZCdSe, etc. If it ’s a combination, do n’t worry! In this example, the core Z shell structure forming method is siZ
SiO構造を CVD法にて実現した力 CdSeZZnS等の構造を逆ミセル法ゃホットソThe power to realize the SiO structure by the CVD method The structure of CdSeZZnS etc.
2 2
一プ法を用いて作製することも可能である。  It is also possible to manufacture using a single-chip method.
実施例  Example
[0028] 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定され るものではない。  Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[0029] 実施例 1 [0029] Example 1
まず、 0. 7nmの中空構造を有する C60フラーレン粒子を準備する。フラーレンは 燃焼法でススカゝら抽出することが可能であり、現在フロンティアカーボン社等から巿販 されている(電子材料 2003年 1月 p34参照)。実施例の図 1では、粒子 1つ 1つが分 離されて!/ヽるが、実際には粒子のかたまりとなって!/ヽてもよ!/、。  First, C60 fullerene particles having a hollow structure of 0.7 nm are prepared. Fullerenes can be extracted from Susca by the combustion method, and are currently sold by Frontier Carbon Co., Ltd. (see Electronic Materials, January 2003, p34). In Figure 1 of the example, the particles are separated one by one, but they actually become a mass of particles!
[0030] まず、図 1 a)に示すように、上記方法で得られたフラーレン 1を有機溶媒中に溶 かし、気化器 5を用いて超音波により微小液滴化する。ここに Heガスを通すことにより 気化器 5で気化 (フラーレン 1が Heガス中に浮遊して 、る状態)させ、 CVD装置の反 応室 4中にフラーレン 1を Heガスをキャリアとして導入する。次に、反応室 4に Si層を 形成するための原料ガス、 SiHが導入される。反応室の温度は 400°C、圧力は ITo First, as shown in FIG. 1 a), fullerene 1 obtained by the above method is dissolved in an organic solvent, and is made into fine droplets by ultrasonic waves using a vaporizer 5. By passing He gas therethrough, vaporization is performed in the vaporizer 5 (fullerene 1 is suspended in He gas), and fullerene 1 is introduced into the reaction chamber 4 of the CVD apparatus as He gas as a carrier. Next, a source gas, SiH, for forming a Si layer is introduced into the reaction chamber 4. Reaction chamber temperature is 400 ° C, pressure is ITo
4  Four
rr程度に保たれる。 RF電極 6より 13. 56MHzで 300Wの電力を与えることにより、 4 nm程度の Si層 2を形成した。最後に、このようにして形成された SiZフラーレンナノ 粒子 3を Heガスとともに有機溶剤へ導入することにより捕集器 7で捕集する。このよう にして SiZフラーレンナノ粒子 3を得ることができる。  It is kept at about rr. By applying 300W of power at 13.56MHz from the RF electrode 6, a Si layer 2 of approximately 4 nm was formed. Finally, the SiZ fullerene nanoparticles 3 thus formed are collected by a collector 7 by introducing them into an organic solvent together with He gas. In this way, SiZ fullerene nanoparticles 3 can be obtained.
[0031] 次に、図 1— b)のように、 SiZフラーレンナノ粒子 3を有機溶液中に溶かし、 Heで パブリングをすることにより気化器 5で気化させ、 CVD装置の反応室 4中に SiZフラ 一レンナノ粒子 3を、 Heガスをキャリアとして導入する。次に反応室 4に SiO層を形 [0031] Next, as shown in Fig. 1-b), SiZ fullerene nanoparticles 3 are dissolved in an organic solution and vaporized by a carburetor 5 by publishing with He. Introduce fullerene nanoparticles 3 using He gas as a carrier. Next, form a SiO layer in reaction chamber 4.
2 成するための原料ガス、 SiH、 N Oを流量比 1 : 3で導入する。反応室の温度は 400  2 Introduce raw material gas, SiH, N 2 O at a flow ratio of 1: 3. The reaction chamber temperature is 400
4 2  4 2
°C、圧力は lOTorr程度に保たれる。 RF電極 6より 13. 56MHzで 300Wの電力を与 えることにより、 SiZフラーレンナノ粒子 3表面に 5nm程度の SiO層 8を形成した。こ  ° C and pressure are kept at about lOTorr. By applying 300 W at 13.56 MHz from the RF electrode 6, an SiO layer 8 of about 5 nm was formed on the surface of the SiZ fullerene nanoparticles 3. This
2  2
のようにして SiO ZSiZフラーレンナノ粒子 9が形成される。最後に、このようにして  Thus, SiO 2 ZZZ fullerene nanoparticles 9 are formed. Finally, in this way
2  2
形成された SiO /Si/フラーレンナノ粒子 9を捕集器 7で捕集する。 [0032] 以上の製法により、フラーレン固有の 0. 7nmの中空構造を有する SiO The formed SiO 2 / Si / fullerene nanoparticles 9 are collected by a collector 7. [0032] By the above manufacturing method, SiO having a 0.7 nm hollow structure unique to fullerenes.
2 ZSiZフラ 一レンナノ粒子が形成できた。今回作製した SiO /Si/フラーレンナノ粒子に 365η  2 ZSiZ fullerene nanoparticles were formed. 365η for the SiO / Si / fullerene nanoparticles prepared this time
2  2
mの光を照射し、輝度計で発光強度を調べた。同じ赤色の光を発光する Siコアの直 径が約 4nmの SiO ZSiナノ粒子に比べ、 1個当たり約 7倍の発光強度を示した。こ  The light of m was irradiated, and the emission intensity was examined with a luminance meter. Compared to SiO ZSi nanoparticles with a Si core that emits the same red light with a diameter of about 4 nm, the emission intensity was about 7 times higher. This
2  2
れはナノ粒子の直径が、従来の SiOシェル厚 5nm  This is the diameter of the nanoparticles, the thickness of the conventional SiO shell is 5nm
2 、 Siコア径 4nmのナノ粒子では 5 2, 5 for Si core 4 nm nanoparticles
+ 5+4 = 14nmなのに対し、本発明のナノ粒子では 5 + 5+4+4+ 1 = 19nmと大 きくなつており、特に Si部分の体積力 34nm3から 380nm3に大きくなつているためと 考えられる。ただし、円周方向では径が大きくなつていることもあり、単位体積当たり の発光効率では劣るものと考えられる。 + 5 + 4 = to 14nm of the, in the nanoparticles of the present invention is 5 + 5 + 4 + 4 + 1 = 19 nm and a large KikuNatsu, since in particular summer significantly from body force 34 nm 3 of Si portions 380 nm 3 it is conceivable that. However, the diameter may increase in the circumferential direction, and the luminous efficiency per unit volume is considered inferior.
[0033] 次に図 l— c)のように、 SiO ZSiZフラーレンナノ粒子 9を有機溶液中に溶かし He [0033] Next, as shown in Fig. L-c), SiO ZSiZ fullerene nanoparticles 9 are dissolved in an organic solution and He
2  2
でパブリングをすることにより気化器 5で気化させ、 CVD装置の反応室 4中に SiO /  Is vaporized in the vaporizer 5 by publishing with SiO 2 in the reaction chamber 4 of the CVD apparatus.
2 2
SiZフラーレンナノ粒子 9を、 Heガスをキャリアとして導入する。次に反応室 4に Oを SiZ fullerene nanoparticles 9 are introduced using He gas as a carrier. Next, O in reaction chamber 4
2 導入し 600°C程度に保つことにより、フラーレンを内部で昇華またはフラーレン内部 に残留している oと反応させ  2 By introducing and maintaining the temperature at about 600 ° C, the fullerene is sublimated inside or reacted with o remaining inside the fullerene.
2 co化し除去する。これにより、  2 Co and remove. This
2 sio 2 ZSiZ空洞ナノ粒 子 10が形成される。最後に、このようにして形成された sio 2 ZSiZ空洞ナノ粒子 10 を捕集器 7で捕集する。  2 sio 2 ZSiZ cavity nanoparticle 10 is formed. Finally, the sio 2 ZSiZ hollow nanoparticles 10 thus formed are collected by the collector 7.
[0034] 以上の製法により、フラーレン直径分 lnmの中空構造を有する SiO  [0034] By the above manufacturing method, SiO having a hollow structure with a fullerene diameter of lnm
2 ZSiZ空洞ナ ノ粒子が形成できた。今回作製した SiO  2 ZSiZ cavity nanoparticles were formed. The newly fabricated SiO
2 ZSiZ空洞ナノ粒子に 365nmの光を照射 し、輝度計で発光強度を調べた。同じ赤色の光を発光する Siコアの直径が約 4nmの SiO ZSiナノ粒子に比べ、 1個当たり約 7. 4倍の発光強度を示した。これはナノ粒 2 ZSiZ hollow nanoparticles were irradiated with 365nm light, and the luminescence intensity was examined with a luminance meter. The emission intensity was approximately 7.4 times higher than that of SiO ZSi nanoparticles with a Si core diameter of about 4 nm, which emits the same red light. This is a nanoparticle
2 2
子の直径が、従来の SiOシェル厚 5nm  The diameter of the child is 5 nm of the conventional SiO shell thickness
2 、 Siコア径 4nmのナノ粒子では 5 + 5 +4= 1 2, 5 + 5 +4 = 1 for 4 nm Si core nanoparticles
4nmなのに対し、本発明のナノ粒子では 5 + 5+4+4+ 1 = 19nmと大きくなつてお り、特に Si部分の体積力 34nm3から 380nm3に大きくなつているためと考えられる。 ただし、円周方向では径が大きくなつていることもあり、単位体積当たりの発光効率で は劣るものと考えられる。フラーレン自体はバンドギャップがは SUりも小さいため、ェ キシトンの閉じ込め効果力 Sフラーレン側で損なわれる。そのため、フラーレンを除去す ることで発光強度が上がると考えられたが、本実施例では期待ほどの発光強度は上 昇しな力つた。これは、フラーレン層は原子 1層分であるためその寄与は小さいこと、 フラーレンは安定で壊れにくい分子であり、それ自体が光エネルギーの吸収に寄与 したと 、う効果があった力 ではな 、かと考えられる。 To 4nm of the, in the nanoparticles of the present invention 5 + 5 + 4 + 4 + 1 = 19nm and Ri greatly summer Te Contact be because that particular summer significantly from body force 34 nm 3 of Si portions 380 nm 3. However, since the diameter is increasing in the circumferential direction, the luminous efficiency per unit volume is considered inferior. Since fullerene itself has a small band gap and a small SU, the confinement effect of exciton is impaired on the S fullerene side. For this reason, it was thought that the emission intensity was increased by removing the fullerene. However, in this example, the emission intensity was not increased as expected. This is because the fullerene layer is equivalent to one atomic layer, so its contribution is small. Fullerene is a stable and hard-to-break molecule, and if it contributes to the absorption of light energy, it is thought that it is a force that has an effect.
[0035] 実施例 2  [0035] Example 2
まず、 SiO 22を 10nm堆積した Si基板 21上に Coナノ粒子 23を塗布法にてコート  First, Co nanoparticles 23 are coated on the Si substrate 21 on which 10 nm of SiO 22 is deposited by the coating method.
2  2
する。これを図 2— a)のように、石英チューブからなる反応室 24に置き、 C Hを 30sc  To do. Place this in the reaction chamber 24 made of quartz tube as shown in Fig. 2-a),
2 2 cm程度流し、 850°Cで lOmin.保つ。これにより中空 lOnm壁の厚さ 10nm、長さ数 lOOnmのカーボンナノチューブ 25を形成できる。この場合、カーボンナノチューブ の壁は数原子層のカーボンからなっている。(文献: Y. Huh et al. , Mater. Res . Soc. Symp. Proc. Vol. 788 (2004) L3. 19)  2 Pour about 2 cm and keep lOmin. At 850 ° C. As a result, carbon nanotubes 25 having a hollow lOnm wall thickness of 10 nm and a length of several lOOnm can be formed. In this case, the wall of the carbon nanotube consists of several atomic layers of carbon. (Reference: Y. Huh et al., Mater. Res. Soc. Symp. Proc. Vol. 788 (2004) L3. 19)
次に、図 2—b)のように、このようにして得られたカーボンナノチューブ 25の付着し た基板をプラズマ CVD装置の反応室中に置く。次に、反応室に SiH層を形成する  Next, as shown in FIG. 2B, the substrate with the carbon nanotubes 25 thus obtained is placed in the reaction chamber of the plasma CVD apparatus. Next, a SiH layer is formed in the reaction chamber
4  Four
ための原料ガス、 SiHと Heが導入される。反応室の温度は 400°C、圧力は ITorr程  Raw material gases, SiH and He, are introduced. The reaction chamber temperature is 400 ° C and the pressure is about ITorr.
4  Four
度に保たれる。 RF電極 26より 13. 56MHzで 300Wの電力を与えることにより、 4nm 程度の Si層 27を形成した。こうして Si/カーボンナノチューブ粒子 28を形成する。  Kept at a degree. By applying 300W power at 13.56MHz from the RF electrode 26, a Si layer 27 of about 4nm was formed. Thus, Si / carbon nanotube particles 28 are formed.
[0036] 次に、図 2— c)のように、 SiZカーボンナノチューブ粒子 28が付着した基板に対し 、 CVD装置の反応室中に SiO層を形成するための原料ガス、 SiH、 N Oを流量比 [0036] Next, as shown in Fig. 2-c), the flow rate ratio of SiH, NO, the source gas for forming the SiO layer in the reaction chamber of the CVD apparatus, with respect to the substrate to which the SiZ carbon nanotube particles 28 are adhered.
2 4 2  2 4 2
1 : 3で導入する。反応室の温度は 400°C、圧力は lOTorr程度に保たれる。 RF電極 26より 13. 56MHzで 300Wの電力を与えることにより、 SiZカーボンナノチューブナ ノ粒子 28表面に 5nm程度の SiO層  Introduced at 1: 3. The temperature of the reaction chamber is kept at 400 ° C and the pressure is kept at about lOTorr. By applying 300W at 13.56MHz from the RF electrode 26, a SiO layer of about 5nm is formed on the surface of the SiZ carbon nanotube nanoparticle 28.
2 29を形成した。このようにして SiO  2 29 was formed. In this way SiO
2 ZSiZカー ボンナノチューブナノ粒子 30が形成される。  2 ZSiZ carbon nanotube nanoparticles 30 are formed.
[0037] 以上の製法により、 lOnmの中空構造を有する長さ数 lOOnmの SiO [0037] By the above manufacturing method, SiO having a lOnm hollow structure and a length of lOOnm
2 ZSiZカーボ ンナノチューブナノ粒子が形成できた。今回作製した sio ZSiZカーボンナノチュ  2 ZSiZ carbon nanotube nanoparticles were formed. The sio ZSiZ carbon nanochu fabricated this time
2  2
ーブナノ粒子に 365nmの光を照射し、輝度計で発光強度を調べた。同じ赤色の光 を発光する Siコアの直径が約 4nmの SiO ZSiナノ粒子に比べ、 1個当たり約 30倍  The nanoparticles were irradiated with 365 nm light, and the emission intensity was examined with a luminance meter. Compared to SiO ZSi nanoparticles that emit the same red light and have a Si core diameter of about 4 nm, about 30 times per particle
2  2
の発光強度を示した。これはナノ粒子の発光に寄与する si部分体積が Sio 2 ZSiナノ 粒子では 34nm3に対し、本発明のナノ粒子では長さ lOOnmとすると 6200nm3となり 、約 200倍と大きくなつているためである。ただし、カーボンナノチューブのバンドギヤ ップは SUりも小さ 、ため、エキシトンの閉じ込め効果が片側では十分でな ヽと 、う効 果があり発光効率が上がらな力つたものと考えられる。 The emission intensity was shown. This contributes si subvolumes for light emission of the nanoparticles to 34 nm 3 in Sio 2 ZSi nanoparticles, next 6200Nm 3 when the length lOOnm in nanoparticles of the present invention, are for that summer large as about 200 times . However, because the bandgap of carbon nanotubes is small in SU, the confinement effect of exciton is sufficient on one side. There is a fruit and it is thought that the luminous efficiency increased.
[0038] 次に図 2— d)のように、 SiO ZSiZカーボンナノチューブナノ粒子 30が付着した基  Next, as shown in FIG. 2 d), the group to which the SiO ZSiZ carbon nanotube nanoparticles 30 are attached
2  2
板を 130°Cの H SO— H O混合液に浸漬することにより Coナノ粒子を除去する。 C  Co nanoparticles are removed by immersing the plate in a 130 ° C H 2 SO—H 2 O mixture. C
2 4 2 2  2 4 2 2
oナノ粒子除去面からはカーボンナノチューブの面が露出するため、 Oを lOOsccm  o Since the surface of the carbon nanotube is exposed from the nanoparticle removal surface, O is lOOsccm
2  2
程度導入して 200°Cで 300W程度の RF電力をかけることにより、カーボンナノチュー ブを Oと反応させ CO化し除去する。これにより、 SiO ZSiZ空洞ナノ粒子 31が形 By introducing about 300W and applying RF power of about 300W at 200 ° C, the carbon nanotubes react with O to be CO and removed. As a result, SiO ZSiZ hollow nanoparticles 31 are formed.
2 2 2 2 2 2
成される。  Made.
[0039] 以上の製法により、 30nmの中空構造を有する SiO ZSiZ空洞ナノ粒子が形成で  [0039] By the above manufacturing method, SiO ZSiZ hollow nanoparticles having a hollow structure of 30 nm can be formed.
2  2
きた。今回作製した SiO ZSiZ空洞ナノ粒子に 365nmの光を照射し、輝度計で発  Came. The newly fabricated SiO ZSiZ hollow nanoparticles were irradiated with 365 nm light and emitted by a luminance meter.
2  2
光強度を調べた。同じ赤色の光を発光する Siコアの直径が約 4nmの SiO ZSiナノ  The light intensity was examined. SiO ZSi nano that emits the same red light and has a Si core diameter of about 4 nm
2 粒子に比べ、 1個当たり約 50倍の発光強度を示した。これは SUりもバンドギャップの 小さいカーボンナノチューブ層を除去し、発光層である Siを空気層と SiO層ではさみ  The emission intensity was about 50 times per particle compared to 2 particles. This removes the carbon nanotube layer with a small band gap, and sandwiches the Si light emitting layer between the air layer and the SiO layer.
2 2
、エキシトンの閉じ込め効果を増すことができたためと考えられる。 This is thought to be because the confinement effect of excitons could be increased.

Claims

請求の範囲 The scope of the claims
[1] 中心部に空洞部を有し、コア層とシェル層を有し、該コア層の厚さが 2〜: LOnmの半 導体ナノ粒子において、該コア層と該シェル層がそれぞれ異なる半導体で形成され ており、該シェル層を形成する半導体のバンドギャップ力 該コア層を形成する結晶 のバンドギャップより大きいことを特徴とする半導体ナノ粒子。  [1] A semiconductor having a hollow portion in the center, a core layer and a shell layer, the core layer having a thickness of 2 to: LOnm, and the core layer and the shell layer are different semiconductors A semiconductor nanoparticle characterized by having a band gap force of a semiconductor forming the shell layer, which is larger than a band gap of a crystal forming the core layer.
[2] 前記空洞部が 0. 7〜50nmの径をもつ球形またはチューブ型であることを特徴とす る請求の範囲第 1項に記載の半導体ナノ粒子。  [2] The semiconductor nanoparticle according to claim 1, wherein the hollow portion is spherical or tube-shaped having a diameter of 0.7 to 50 nm.
[3] 請求の範囲第 1項または請求の範囲第 2項に記載の半導体ナノ粒子のコア層とシェ ル層を、フラーレンまたはカーボンナノチューブを核として成長させることを特徴とす る半導体ナノ粒子の製造方法。  [3] A semiconductor nanoparticle characterized in that the core layer and the shell layer of the semiconductor nanoparticle according to claim 1 or 2 are grown using fullerene or carbon nanotube as a nucleus. Production method.
[4] 前記シェル層を形成後、内部の炭素成分を灰化して、中空構造を形成することを特 徴とする請求の範囲第 3項に記載の半導体ナノ粒子の製造方法。  [4] The method for producing semiconductor nanoparticles according to claim 3, wherein after the shell layer is formed, the internal carbon component is ashed to form a hollow structure.
[5] 熱処理により内部の炭素成分を灰化することを特徴とする請求の範囲第 4項に記載 の半導体ナノ粒子の製造方法  [5] The method for producing semiconductor nanoparticles according to claim 4, wherein the internal carbon component is ashed by heat treatment.
PCT/JP2007/061179 2006-06-14 2007-06-01 Semiconductor nanoparticle and method for manufacturing same WO2007145088A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008521149A JPWO2007145088A1 (en) 2006-06-14 2007-06-01 Semiconductor nanoparticles and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006164419 2006-06-14
JP2006-164419 2006-06-14

Publications (1)

Publication Number Publication Date
WO2007145088A1 true WO2007145088A1 (en) 2007-12-21

Family

ID=38831606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061179 WO2007145088A1 (en) 2006-06-14 2007-06-01 Semiconductor nanoparticle and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2007145088A1 (en)
WO (1) WO2007145088A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116408A1 (en) * 2008-03-17 2009-09-24 コニカミノルタエムジー株式会社 Process for producing core/shell-type semiconductor nanoparticles, and core/shell-type semiconductor nanoparticles
JP2012502461A (en) * 2008-09-08 2012-01-26 エスエヌユー アールアンドディービー ファウンデーション Nitride thin film structure and method for forming the same
WO2015190257A1 (en) * 2014-06-11 2015-12-17 コニカミノルタ株式会社 Semiconductor nanoparticle assembly and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004299011A (en) * 2003-03-31 2004-10-28 Japan Science & Technology Agency Core shell structure having nanoparticle composite as core, structure having that as component, and processing method for structure processed from these
JP2005074552A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Illuminant made of core shell structure, molecule marker using the same, optic recording medium, and their preparing methods
JP2005179087A (en) * 2003-12-16 2005-07-07 National Institute For Materials Science Zinc oxide-gallium oxide nanotube and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004299011A (en) * 2003-03-31 2004-10-28 Japan Science & Technology Agency Core shell structure having nanoparticle composite as core, structure having that as component, and processing method for structure processed from these
JP2005074552A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Illuminant made of core shell structure, molecule marker using the same, optic recording medium, and their preparing methods
JP2005179087A (en) * 2003-12-16 2005-07-07 National Institute For Materials Science Zinc oxide-gallium oxide nanotube and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TORIMOTO T., CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 85, no. 1, 11 March 2005 (2005-03-11), pages 213 + ABSTR. NO. 2D1-40, XP003020509 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116408A1 (en) * 2008-03-17 2009-09-24 コニカミノルタエムジー株式会社 Process for producing core/shell-type semiconductor nanoparticles, and core/shell-type semiconductor nanoparticles
JP2012502461A (en) * 2008-09-08 2012-01-26 エスエヌユー アールアンドディービー ファウンデーション Nitride thin film structure and method for forming the same
WO2015190257A1 (en) * 2014-06-11 2015-12-17 コニカミノルタ株式会社 Semiconductor nanoparticle assembly and method for producing same
JPWO2015190257A1 (en) * 2014-06-11 2017-04-20 コニカミノルタ株式会社 Semiconductor nanoparticle assembly and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2007145088A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
US8114518B2 (en) Single-walled carbon nanotube and aligned single-walled carbon nanotube bulk structure, and their production process, production apparatus and application use
Rao et al. Nanotubes and nanowires
US8062702B2 (en) Coated fullerenes, composites and dielectrics made therefrom
JP5169222B2 (en) Three-layer semiconductor nanoparticles and three-layer semiconductor nanorods
Liu et al. Growth of single-walled carbon nanotubes from ceramic particles by alcohol chemical vapor deposition
US20070035226A1 (en) Carbon nanotube hybrid structures
US20070287202A1 (en) Method for Producing Nano-Scale Low-Dimensional Quantum Structure, and Method for Producing Integrated Circuit Using the Method for Producing the Structure
US20010051367A1 (en) Molecular nanowires from single walled carbon nanotubes
KR100519418B1 (en) Carbon nano particle having novel structure and properties
JP2004534662A (en) Method of Making Nanotube-Based Material with Enhanced Electron Field Emission Characteristics (Statement on Research or Development Funded by the Federal Government) At least some aspects of the present invention are directed to a government under contract number N00014-98-1--05907. Supported by The government may have certain rights in the invention.
Rakov Chemistry of carbon nanotubes
WO2007145088A1 (en) Semiconductor nanoparticle and method for manufacturing same
JPWO2007145089A1 (en) Three-layer semiconductor particles
US20080135892A1 (en) Carbon nanotube field effect transistor and method of making thereof
Salhi et al. Synthesis and photoluminescence properties of silicon nanowires treated by high‐pressure water vapor annealing
Qiu et al. Solvent effect on light-emitting property of Si nanocrystals
JP3951181B2 (en) Preparation method of core-shell structure
Dresselhaus et al. Energy-related applications of nanostructured carbons
Qu et al. Tunable assembly of carbon nanospheres on single-walled carbon nanotubes
Tripathi et al. A Detailed Study on Carbon Nanotubes: Properties, Synthesis, and Characterization
Chang et al. Fabrication of nano-electrode arrays of free-standing carbon nanotubes on nano-patterned substrate by imprint method
Yu et al. Growth and photoluminescence of Si-SiOx nanowires by catalyst-free chemical vapor deposition technique
KR100809602B1 (en) Method for etching of insulating layers using carbon nanotubes and formation of nanostructures thereafter
Chang et al. Assembling nanoparticle catalysts with nanospheres for periodic carbon nanotube structure growth
Rao Chemical routes to nanocrystals, nanowires and nanotubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008521149

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744567

Country of ref document: EP

Kind code of ref document: A1