WO2007142194A1 - Communication system, transmission device, reception device, and synchronization method - Google Patents

Communication system, transmission device, reception device, and synchronization method Download PDF

Info

Publication number
WO2007142194A1
WO2007142194A1 PCT/JP2007/061297 JP2007061297W WO2007142194A1 WO 2007142194 A1 WO2007142194 A1 WO 2007142194A1 JP 2007061297 W JP2007061297 W JP 2007061297W WO 2007142194 A1 WO2007142194 A1 WO 2007142194A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
synchronization signal
transmission
synchronization
reception
Prior art date
Application number
PCT/JP2007/061297
Other languages
French (fr)
Japanese (ja)
Inventor
Mariko Matsumoto
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2008520563A priority Critical patent/JPWO2007142194A1/en
Priority to US12/304,113 priority patent/US8489133B2/en
Publication of WO2007142194A1 publication Critical patent/WO2007142194A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0071Control of loops
    • H04L2027/0079Switching between loops
    • H04L2027/0081Switching between loops between loops of different bandwidths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals

Definitions

  • the present invention relates to a communication system, a transmission device, a reception device, and a synchronization detection method for detecting an effective frequency for transmitting and receiving information from a plurality of candidate frequencies.
  • a plurality of frequencies are defined as frequencies of a downlink signal transmitted from a base station to a mobile station. Then, one or more of these multiple frequencies are selected, and the downlink signal is transmitted using the selected frequencies.
  • FIG. 1 is a diagram schematically showing a frequency domain in order to explain a band search that is a conventional frequency domain search.
  • Fig. 1 For example, in 3GPP (3rd Generation Partnership Project), which is a W-CDMA (Wideband Code Division Multiple Access) standard, as shown in Fig. 1, 2.5 MHz at both ends between 2110 MHz and 2170 MHz. In the frequency range excluding, 276 frequencies called rasters are set at intervals of 200 kHz. Then, an effective frequency is selected from the set frequencies, and a downlink signal is transmitted using a transmission band centered on the selected effective frequency. Raster is defined as the smallest unit that places the center frequency in the transmission band of the system.
  • 3GPP 3rd Generation Partnership Project
  • W-CDMA Wideband Code Division Multiple Access
  • the mobile station detects an effective frequency from candidate frequencies when power is turned on or when out-of-service is detected, and further establishes synchronization with the base station.
  • This process of detecting the effective frequency is called a band search process.
  • a known signal called a synchronization signal may be used to detect the effective frequency.
  • a method of speeding up the band search process a method of blocking a plurality of adjacent frequencies has been proposed (see, for example, Japanese Patent Publication No. 2003-244083).
  • the center frequencies of the plurality of bandwidths are matched, and the center frequency is an integral multiple of the raster, and the synchronization signal CH (Synchronization channel) is the center.
  • CH Synchronization channel
  • the presence / absence of an effective wave is sequentially searched using a large number of set candidate frequencies, so that band search processing for detecting an effective frequency is performed. There is a problem that it takes a long time.
  • an object of the present invention is to provide a communication system, a transmission device, a reception device, and a synchronization detection method capable of realizing effective frequency detection processing at high speed.
  • the present invention provides:
  • a communication system comprising: a transmission device that transmits a synchronization signal for establishing synchronization; and a reception device that establishes synchronization by detecting the synchronization signal;
  • the receiving device sequentially switches from the thinned thinned interval to the non-thinned one for performing the detection of the synchronization signal
  • the transmitter is set to transmit the synchronization signal at an interval that is roughly thinned out by the receiver.
  • the synchronization is frequency synchronization
  • the synchronization establishment is detection of an effective communication frequency
  • the receiving apparatus sequentially switches a preset frequency change amount from a large value to a small value, calculates a reception-side candidate frequency for detecting the synchronization signal based on the frequency change amount, The synchronization signal is detected using the calculated reception candidate frequency,
  • the transmitter is calculated based on a system bandwidth for performing communication of the communication system.
  • the transmission frequency The side candidate frequency is determined as a synchronization signal frequency for transmitting the synchronization signal.
  • the receiving apparatus adds an offset to an integral multiple of the reception-side frequency change amount to obtain the reception-side candidate frequency
  • the transmission apparatus is characterized in that an offset is added to an integral multiple of the transmission-side frequency change amount to obtain the transmission-side candidate frequency.
  • the receiving apparatus sets the offset to 0,
  • the transmitting apparatus sets the offset to 0.
  • the transmission device transmits a known signal as the synchronization signal
  • the receiving apparatus detects a match between the reception-side candidate frequency and the known signal, or a match between the known signal and a replica signal calculated using IFFT or FFT.
  • the calculated replica signal is stored.
  • the transmission device transmits a signal repeating the same pattern as the synchronization signal.
  • the receiving apparatus detects the synchronization signal by delay detection.
  • the transmission apparatus is characterized in that the transmission side frequency change amount is set to an integral multiple of a minimum arrangement unit of a center frequency of the system band.
  • the receiving apparatus is characterized in that the receiving side frequency change amount is set to an integral multiple of a minimum arrangement unit of a center frequency of the system band.
  • a transmission device that transmits a synchronization signal for synchronization within a system frequency band to a reception device
  • a transmission-side candidate frequency that is a frequency candidate for transmitting the synchronization signal is calculated, and the transmission-side candidate frequency is calculated. Is present in the system frequency band, the transmission side candidate frequency is determined as a synchronization signal frequency for transmitting the synchronization signal.
  • an offset is added to an integral multiple of the transmission-side frequency change amount to obtain the transmission-side candidate frequency.
  • the offset is set to 0.
  • a receiving device that receives the synchronization signal transmitted from the transmitting device
  • the reception side frequency change amount set in advance is sequentially switched from a large value to a small value, and the reception side candidate frequency for detecting the synchronization signal is calculated based on the reception side frequency change amount.
  • the synchronization signal is detected using the calculated candidate frequency on the receiving side.
  • an offset is added to an integral multiple of the reception-side frequency change amount to obtain the reception-side candidate frequency.
  • the offset is set to 0.
  • synchronization in a communication system including a transmission device that transmits a synchronization signal for synchronization within the system frequency band and a reception device that detects the synchronization signal within the system frequency band.
  • the receiving device a process of switching a preset frequency change amount from a large value to a small value sequentially step by step,
  • the transmission device includes a process of transmitting the synchronization signal to the reception device using the synchronization signal frequency.
  • reception-side frequency change amount and the transmission-side frequency change amount include the same value.
  • a synchronization signal for synchronization within the system frequency band is transmitted by the transmission device, and the frequency at which the reception device attempts to detect the synchronization signal is determined. Roughly thinning out and switching from thin to thin bow I kana sequentially, the synchronization signal is detected within the system frequency band.
  • a synchronizing signal for synchronizing within the system frequency band is transmitted by the transmitting device, and the frequency at which the receiving device attempts to detect the synchronizing signal is coarsened.
  • Switching from thinned out to non-thinned one by one, and configured to detect the synchronization signal within the system frequency band, and the transmitting device has set the synchronizing signal transmission frequency so that it can be detected early by the receiving device. To achieve high speed Togashi.
  • FIG. 1 is a diagram schematically showing a frequency domain in order to explain a band search that is a conventional frequency domain search.
  • FIG. 2 is a diagram showing an embodiment of a communication system of the present invention.
  • FIG. 3A is a diagram schematically showing a first-stage frequency region in order to explain a step-by-step search for synchronization channels in the configuration shown in FIG.
  • FIG. 3B is a diagram schematically showing a second-stage frequency region in order to explain a step-by-step search of the synchronization channel in the form shown in FIG.
  • FIG. 3C is a diagram schematically showing a third-stage frequency region in order to explain the step-by-step search of the synchronization channel in the configuration shown in FIG.
  • FIG. 4 is a diagram showing the effect of the band search fast key of the present invention.
  • FIG. 5 is a flowchart for explaining a synchronization detection method in the receiver of the communication system shown in FIG. 2.
  • FIG. 6 is a flowchart illustrating the flowchart shown in FIG. 5 in more detail.
  • FIG. 7A is a diagram schematically illustrating the first step of the stepwise band search process described with reference to the flowchart shown in FIG.
  • FIG. 7B is a diagram schematically showing the second stage processing of the stepwise band search processing described using the flowchart shown in FIG.
  • FIG. 7C is a diagram schematically illustrating the third step of the stepwise band search process described using the flowchart shown in FIG.
  • FIG. 7 (d) is a diagram schematically illustrating the fifth stage process of the stepwise band search process described with reference to the flowchart shown in FIG.
  • FIG. 8 is a flowchart for explaining a procedure for determining a transmission frequency of a synchronization signal in the transmitter of the communication system shown in FIG.
  • FIG. 9 is a flowchart for explaining another determination method according to the procedure for determining the transmission frequency of the synchronization signal in the transmitter of the communication system shown in FIG. 2.
  • FIG. 10 (a) The transmission band in the frequency domain of the synchronization signal in the present invention is TBW-si This is a diagram schematically showing V in a system for transmitting an OFDM signal composed of 301 subcarriers with 5 MHz.
  • FIG. 11 is a diagram schematically showing a time domain and a frequency domain of a general subcarrier in 3GPP LTE.
  • FIG. 12 is a diagram schematically showing a time domain and a frequency domain of subcarriers in the present invention.
  • FIG. 13 is a diagram schematically showing the time domain and frequency domain of subcarriers in a system that does not require DC subcarriers.
  • FIG. 14 is a diagram schematically showing subcarriers on the frequency axis when a synchronization signal is transmitted in a system provided with DC subcarriers.
  • FIG. 15 is a diagram schematically showing subcarriers on the frequency axis when transmitting a synchronization signal in a system in which it is not necessary to provide DC subcarriers.
  • FIG. 16 is a diagram showing an embodiment when the communication system of the present invention is applied to a wireless communication system using a wireless communication system.
  • FIG. 17A is a diagram showing a first form when another configuration is used for the part shown by a broken line in the form shown in FIG.
  • FIG. 17B is a diagram showing a second form in the case where another configuration is used in the part shown by a broken line in the form shown in FIG.
  • FIG. 2 is a diagram showing an embodiment of a communication system according to the present invention.
  • the present embodiment includes a transmitter 1 that is a transmission device and a receiver 2 that is a reception device that communicates with the transmitter 1.
  • the transmitter 1 includes a synchronization signal generation unit 3 and a synchronization signal transmission unit 4.
  • the receiver 2 includes a synchronization signal detection unit 5 and a frequency control unit 6.
  • Synchronization signal generator 3 is connected between transmitter 1 and receiver 2.
  • a synchronization signal for synchronization is generated in between.
  • the synchronization signal transmission unit 4 transmits the synchronization signal generated by the synchronization signal generation unit 3 to the receiver 2.
  • the frequency control unit 6 outputs a frequency for detecting the synchronization signal transmitted from the transmitter 1 to the synchronization signal detection unit 5.
  • the synchronization signal detection unit 5 detects the synchronization signal using the frequency output from the frequency control unit 6 and notifies the frequency control unit 6 of the detection result.
  • FIG. 3 is a diagram schematically showing a frequency domain in order to explain the stepwise search of the synchronization channel in the form shown in FIG.
  • the frequency control unit 6 of the receiver 2 changes the candidate frequency for detecting the synchronization signal from a coarsely thinned out predetermined frequency band to a non-thinned one. Output while switching step by step.
  • (a) shows the candidate frequencies to be tried in the first stage of synchronization detection.
  • the transmission frequency of the synchronization signal transmission unit 4 is set so that the synchronization signal is placed on an earlier frequency output by the frequency control unit 6 of the receiver 2.
  • FIG. 4 is a diagram showing the effect of speeding up the band search of the present invention.
  • the synchronization signal generated by the synchronization signal generation unit 3 of the transmitter 1 may be one that repeats the same pattern on the time axis or a signal that is known between transmission and reception. Also receiver
  • the synchronization signal detection unit 2 of 2 detects the synchronization signal by delay detection when the same pattern is repeated on the time axis, and attempts detection by synchronization detection if the synchronization signal is a known pattern. Further, the configuration of the synchronization signal and its detection unit may be any method that does not limit the effect of the present invention.
  • FIG. 5 is a flowchart for explaining a synchronization detection method in receiver 2 of the communication system shown in FIG. 2
  • BSS—UE (k) is defined as the reception side frequency change amount (band search step) in the k-th search step, as shown in Table 1.
  • step 1 the variable k is set to 0, which is an initial value, and synchronization detection of an effective frequency that is a candidate frequency on the receiving side is performed in step 2 by band search of BSS—UE (0) width. Is called. Whether the effective frequency is detected or not is determined in step 3, and if it is detected, the process ends.
  • step 4 it is determined in step 4 whether or not there is a next candidate frequency on the receiving side by a band search of BSS-UE (0) width.
  • the search frequency band power for effective frequency synchronization detection is 2000 MHz to 2005 MHz
  • the candidate frequency force for which synchronization detection was first performed is 2003. 2 MHz.
  • the BSS—UE (O) width is 3.2 MHz
  • the next candidate frequency is 2006. 4 MHz, which exceeds the frequency band, and the next candidate frequency does not exist.
  • the example given here uses a set value for convenience of explanation, and is not a value actually used.
  • step 4 When it is determined in step 4 that the next candidate frequency exists by the band search of BSS—UE (0) width, the next candidate frequency force S is set in step 5 and synchronized in step 2. Detection is performed.
  • step 4 when it is determined that there is no next candidate frequency by the band search of BSS—UE (0) width, that is, the effective frequency by the band search of BSS—UE (O) width. If it is determined that the wave number detection process has been completed, the BSS—UE (0) value is compared with the raster value in step 6.
  • the raster value is 200 kHz.
  • BSS U The value of E (k) is an integer multiple of the raster value.
  • the process is the same as the process in BSS-UE (O) from step 2 for the next stage BSS-UE (1).
  • steps 2 to 7 are performed until the value of BSS-UE (k) becomes equal to or less than the raster value.
  • the frequency change on the receiving side is switched from a large value to a small value, that is, the candidate frequency is gradually switched from a coarsely thinned out frequency within a predetermined frequency band to a non-thinned one.
  • synchronization detection is performed. If the effective frequency is not detected even if the value of BSS—UE (k) falls below the raster value, it is determined that there is no effective frequency in the search band.
  • FIG. 6 is a flowchart that further embodies the flowchart shown in FIG.
  • the bandwidth of the synchronization signal is SCH-BW.
  • the lower limit frequency of the search frequency band for detecting the effective frequency is f-L, and the upper limit frequency is f-H.
  • step 11 the variable k is set to 0, which is an initial value, and synchronization detection is started from the maximum band search step BSS-UE (0).
  • Ntmp is calculated using Equation 2.
  • [] shall be rounded down to the next decimal place.
  • step 13 (f_L + SCH- BW / 2) and (Ntmp X BSS
  • step 13 If it is determined in step 13 that (f_L + SCH ⁇ BWZ2) and (NtmpXBSS_UE (k)) are not equal, calculation of equation 4 is performed in step 14.
  • Equation 4 +1 ... (Equation 4)
  • Equation 4 if there is a value less than the decimal point in [] of Equation 2, rounding up operation I do.
  • H SCH_BW / 2 N tmp X BSS ⁇ UE (k)... (Formula 5)
  • step 14 If it is determined in step 13 that (f_L + SCH-BWZ2) and (Ntmp X BSS_UE (k)) are equal, step 14 is not performed and step 15 is performed. Is called.
  • step 15 If it is determined in step 15 that the (NtmpXBSS—UE (k)) force S (f—H—SCH—BWZ2) or less, the candidate frequency f (k , Ntmp) is calculated.
  • step 17 synchronization detection is performed in step 17 for the candidate frequency f (k, Ntmp) calculated according to Equation 6, and whether or not synchronization is detected is determined and detected in step 18. If it is found, the band search process ends.
  • step 15 If it is determined in step 15 that (Ntmp X BSS_UE (k)) is greater than (f_H—SCH—BWZ2), step 6 and step 7 described in FIG.
  • the band search process is executed by increasing k by 1 in step 21 until it is determined in step 20 that k has exceeded the maximum value (4 in this example).
  • FIG. 7 is a diagram schematically showing the stepwise band search process described using the flowchart shown in FIG.
  • Figure 7 (a) shows the candidate frequencies for which synchronization detection is performed in the first stage of the stepwise band search.
  • the candidate frequencies f (0, 0) and f (0, 0, Synchronization detection with 1) is performed.
  • the difference between f (0, 1) and f (0, 0) is BSS—UE (O).
  • FIG. 7 (b) shows candidate frequencies for which synchronization detection is performed in the second stage.
  • four candidate frequencies f (1, 0) to f (1, 3) exist within the search frequency band for BSS—UE (1). Since f (l, 1) and f (l, 3) have already attempted synchronization detection in the first stage and are not detected, the synchronization detection process is not performed again.
  • FIG. 7 (c) shows candidate frequencies for which synchronization detection is performed in the third stage.
  • the third stage there are eight candidate frequencies f (2, 0) to f (2, 7) in the search frequency band for BSS—UE (2), and f (2, 0), f (2, 2), f (2, 4), f (2, 6) have already attempted synchronization detection in the first and second stages, and because of the strong frequencies that have not been detected, The synchronization detection process is not performed again.
  • FIG. 7 (d) shows candidate frequencies for which synchronization detection is performed in the fifth stage.
  • BSS-UE (4) is equal to Raster, all band searches can be executed with raster accuracy as in the past.
  • FIG. 8 shows the transmission frequency of the synchronization signal in transmitter 1 of the communication system shown in FIG. It is a flowchart for demonstrating the procedure to set.
  • the frequency at which the synchronization signal detection is attempted is determined by changing the step size step by step.
  • transmitter 1 sets the frequency fp—si for transmitting the synchronization signal within the transmission band of the system (fL—sl to fH—si) (SCH—BW). To ensure the maximum band search step.
  • the maximum band search step cut 31 is set so that the frequency is most thinned out.
  • a synchronization signal frequency for inserting a synchronization signal is calculated as a transmission-side candidate frequency by a predetermined formula using the set band search step.
  • the band search step is set to a small value sequentially in step 33, that is, it is changed to one that is not thinned out.
  • the transmission side candidate frequency is calculated again using the changed band search step. It is determined whether the synchronization signal can be transmitted at the calculated transmission-side candidate frequency. If it is determined that transmission is possible, the transmission-side candidate frequency is determined as the synchronization signal frequency in step 34.
  • FIG. 9 is a flowchart for explaining another determination method in accordance with the procedure for determining the transmission frequency of the synchronization signal in transmitter 1 of the communication system shown in FIG.
  • BSS-tmp is defined as a variable for obtaining the maximum band search step BSS-si which is the maximum transmission side frequency change amount.
  • the minimum value of the band search step is set. That is, the raster value Raster is set as shown in Equation 8 in step 41 as the initial value of the band search step.
  • the minimum value of the preset band search step is set.
  • Step 42 NL-tmp is calculated using Equation 9. Where mouth is the value in the mouth Shall be rounded down.
  • N L _ tap [(f L _s ⁇ SCH_BW / 2) / BSS_ tmp]... (Equation 9)
  • step 43 (fL-si) and (NL-tmpXBSS-tmp) are compared by Equation 10.
  • step 43 If it is determined in step 43 that (fL-si) and (NL_tmpXBSS_tmp) are not equal, calculation of equation 11 is performed in step 44.
  • step 45 the variable NH-tmp is calculated according to Equation 12. If it is determined in step 43 that fL-si and (NL-tmpXBSS-tmp) are equal, step 44 is not performed and step 45 is performed.
  • N H tap [ ⁇ f H sl + SCH_BW / 2) / BSS—tmp]... (Formula 1 2)
  • Step 46 NL-tmp and NH-tmp are compared by Equation 13.
  • the determination of the frequency at which the synchronization signal is transmitted on the transmission side is made by changing the band search step from a small value to a small value, or from a small value to a large value. It can be obtained regardless.
  • FIG. 10 is a diagram schematically showing the arrangement of the synchronization signals in the frequency domain according to the present invention.
  • an OFDM signal is assumed.
  • Fc-si is the center frequency of system si.
  • the band SCH-BW of the synchronization signal SCH is set to 1.25 MHz, and the center frequency fp-si of the synchronization signal can be set independently of the system center frequency fc-si.
  • TBW si is larger than SCH BW, so the raster is sufficiently small.
  • a large BSS-si can be selected in the processing described with reference to the flowchart of FIG. 8 or FIG.
  • fL_sl 2130. 9MHz
  • fc_sl 2133. 4MHz
  • fH_sl 213 5.
  • Raster 200kHz
  • the maximum value of the band search step is 6.4MHz
  • the subcarrier spacing ⁇ ⁇ 15kHz
  • the maximum value force of the band search step will be described with the band search step sequentially reduced.
  • the band search step is set to 3.2 MHz in the next stage, and it is determined whether or not there is a synchronization signal frequency that is an integer multiple of the band search step 3.2 MHz between the band 2131.525 MHz and 2135.275 MHz.
  • 213.4 MHz exists as a candidate.
  • 2134. 4MHz has a difference of 1MHz from fc-si and is not divisible by 15kHz which is ⁇ . This means that this frequency is not a subcarrier frequency, so the subcarrier where the synchronization signal is placed does not match the subcarrier frequency of the system, so it is determined that setting to fp-si is inappropriate.
  • the band search step is set to 1.6 MHz in the next stage. Between 2131. 525 MHz and 2135. 275 MHz, there are two candidates for the sync signal frequency that is an integer multiple of 1.6 MHz for the node search step: 2112.8 MHz and 2134.4 MHz.
  • the transmission bandwidth of the system TBW s2 l. It is assumed that an OFDM signal having subcarrier power is transmitted.
  • Fc-s2 is the center frequency of system s2.
  • the band SCH-BW of the synchronization signal SCH is 1.25 MHz.
  • Equation 6 and Equation 17 the power obtained by setting the frequency of the synchronization signal to an integer multiple of the band search step may be added to the integer multiple of the band search step to obtain Equation 18 and Equation 19. .
  • Equation 19 Equation 2 in the processing described with reference to the flowchart shown in FIG. 6, Equation 3 in Equation 21, Equation 21 in Equation 5, Equation 5 in Equation 22, 6 can be replaced by Equation 19.
  • Equation 21 N tap BSS_UK ⁇ k)... (Equation 2 1) [0123] [Equation 22] f _H ⁇ f offset- SCH_BW! 2: N tap X BSS— UK (k)... (Equation 2 2)
  • FIG. 11 is a diagram schematically illustrating a time domain and a frequency domain of a general subcarrier in 3GPP LTE.
  • the DC (Direct Current) component of the receiver For the simple configuration of the cut, the subcarriers at the center frequency of the system band are defined as DC subcarriers and subcarriers different from normal subcarriers. No data is transmitted on the defined subcarrier.
  • System s3 is configured with normal data transmission subcarriers 133, 135, 139, 141 and DC subcarriers 134, 140 that do not transmit data of the system band TBW—s3 center frequency fc—s3 .
  • subcarriers 130, 132, 136, and 138 of the synchronization signal in the band SCH-BW are inserted at a predetermined synchronization signal insertion period, and the center frequency regions 131 and 137 are regions in which the synchronization signal is not transmitted.
  • FIG. 12 is a diagram schematically showing the time domain and frequency domain of subcarriers in the present invention.
  • the system s4 includes normal data transmission subcarriers 145, 147, 151, and 153, and a DC subcarrier that does not transmit data of the center frequency fc—s4 of the system band TBW—s4. , 152 and force.
  • subcarriers 142, 144, 148, 150 of the synchronization signal shifted from the center frequency fc—s4 are inserted at a predetermined synchronization signal insertion period, and the subcarriers having the center frequency region 143,149 of the center frequency fp—s4 are inserted.
  • the carrier does not transmit a synchronization signal like DC subcarriers 146 and 152.
  • the configuration for not including data in the center frequency fc of the system is that the center frequency fc is subcarrier. It can be realized by setting the frequency between.
  • Fig. 13 is a diagram schematically showing the time domain and frequency domain of subcarriers in a system that does not require the provision of DC subcarriers.
  • the system s5 is composed of normal data transmission subcarriers 157, 159, 163, and 165, and the center frequency fc—s5 of the system band TBW—s5 is the data communication subcarrier. Frequency regions 158 and 164 between 157 and 163 and the data communication subcarriers 159 and 165 are obtained. Also, synchronization signal subcarriers 154, 156, 160, and 162 shifted from the center frequency fc—s5 are inserted at a predetermined synchronization signal insertion period, and the center frequency fp—s5 is the synchronization signal subcarrier 154. , 160 and the subcarriers 156, 162 of the synchronization signal become frequency regions 155, 161.
  • FIG. 14 shows the frequency at the time of synchronization signal transmission in a system with DC subcarriers.
  • FIG. 6 is a diagram schematically showing a subcarrier on an axis.
  • the synchronization signal is also composed of subcarriers 170 and 172 including the synchronization signal, and DC subcarrier 171.
  • DC subcarrier 171 is arranged at the center frequency fp of the synchronization signal and does not include the synchronization signal.
  • the configuration for not including the synchronization signal in the center frequency fp of the synchronization signal is to set fp to the frequency between the subcarriers including the synchronization signal.
  • FIG. 15 is a diagram schematically showing subcarriers on the frequency axis at the time of synchronization signal transmission in a system in which it is not necessary to provide DC subcarriers.
  • the synchronization signal is composed of subcarriers 173 and 174 including the synchronization signal. Then, the center frequency fp of the synchronization signal is set to be a frequency between the subcarrier 173 including the synchronization signal and the subcarrier 174 including the synchronization signal.
  • Fig. 16 is a diagram showing an embodiment when the communication system of the present invention is applied to a wireless communication system using a wireless communication system.
  • this embodiment includes a base station 101 and a mobile station 112. Communication is realized by transmitting and receiving radio wave 111 between base station 101 and mobile station 112.
  • Base station 101 further includes network communication unit 102, radio modulation unit 103, synchronization signal insertion unit 104, synchronization signal generation unit 105, base station radio unit 109, and base station antenna 110. ing.
  • mobile station 112 is synchronized with mobile station antenna 113, mobile station radio section 114, band search step generation section 115, band search step change section 116, and synchronization frequency candidate calculation section 117.
  • the detection unit 118, the radio demodulation unit 119, the decoding unit 120, and the output unit 121 are configured.
  • the network communication unit 102 receives a signal received by the network.
  • Radio modulation section 103 performs, for example, IFFT (Inverse Fast Fourier Transform) or IF (Fast Fourier Transform) modulation on the signal received by network communication section 102 by, for example, OFDM communication.
  • the synchronization signal generator 105 is used to synchronize with the mobile station 112. Generates a synchronous signal that can be delayed or repeats the same pattern on the time axis, or a known signal that can be synchronously detected.
  • the synchronization signal insertion unit 104 inserts the synchronization signal generated by the synchronization signal generation unit 105 around the frequency at which the mobile station 112 can detect the synchronization signal in the largest possible band search step.
  • Base station radio section 109 includes a transmitter and an amplifier, and transmits the output signal of synchronization signal insertion section 104 as radio wave 111 from base station antenna 110.
  • Mobile station radio section 114 includes a receiver and an amplifier, and receives radio wave 111 transmitted from base station antenna 110 via mobile station antenna 113.
  • the band search step generator 115 generates and stores a plurality of band search steps.
  • Band search step changing section 116 selects one band search step from a plurality of band search steps. At this time, a large value is first selected, and then a small value is selected step by step.
  • the synchronization signal frequency candidate calculation unit 117 calculates a synchronization signal candidate frequency using a predetermined calculation formula of the band search step force selected by the band search step change unit 116.
  • the synchronization detection unit 118 detects whether there is a synchronization signal at the candidate frequency by using delay detection or synchronization detection.
  • Radio demodulation section 119 performs FFT or IFFT for OFDM demodulation using the timing at which synchronization is detected by synchronization detection section 118.
  • Decoding section 120 decodes the signal demodulated by radio demodulation section 119.
  • the output unit 121 displays the signal decoded by the decoding unit 120 or outputs sound from a speaker.
  • synchronization signal frequency candidate calculation section 117 designates the next candidate frequency for the same band search step force as before according to a predetermined formula, and synchronization detection section 118 The synchronization detection is performed again.
  • the band search step changing unit 116 selects the next band search step, and the synchronization signal frequency candidate calculating unit.
  • a candidate frequency is designated according to a predetermined formula from a new band search step, and synchronization detection is performed again in synchronization detection unit 118.
  • the radio modulation unit 103 and the radio demodulation unit 119 are not limited to OFDM, but may be MC-CDMA (Multi-Carrier Code Division Multiple Access) or FDMA (Fr A communication method such as (equency division multiple access) may be used. In addition to the wireless communication method, a wired communication method may be used.
  • FIG. 17 is a diagram showing a form in which another configuration is used for the part shown by a broken line in the form shown in FIG.
  • the present embodiment is different from the portion shown by the broken line in the form shown in FIG. 16 in that the mobile station radio unit 122, the synchronization signal frequency candidate calculation unit 123, The configuration of the synchronization detection unit 126 is different.
  • the n-th stage synchronization signal candidate frequency is fpch—c (n)
  • the radio frequency specified by down-conversion in the mobile station radio unit 122 at this timing n is fradio (n)
  • fpch_c (n) becomes as shown in Equation 23.
  • the data delay from the mobile station radio unit 122 to the synchronization detection unit 126 is taken into consideration.
  • a signal centered on fpch—c (n) is input to the synchronization detection unit 126.
  • the synchronization detection unit 126 always performs synchronization detection around the same OHz or intermediate frequency.
  • the present embodiment is different in the configuration of mobile station radio section 124 from the portion shown in broken lines in the configuration shown in Fig. 16.
  • the radio section frequency specified by frequency down-conversion at timing n is fradio (n)
  • the digital frequency specified digitally by synchronization detection section 118 is fdig (n). Then, their relationship is as shown in Equation 28. However, in this case, the data delay from the mobile station radio unit 124 to the synchronization detection unit 118 is not considered.
  • the method of specifying the digital frequency fdig (n) by the synchronization detection unit 118 generally includes a method of multiplying the received signal by a sin, cos signal.
  • delay detection a method of changing the filter through which the received signal passes can be used.
  • a method of changing the filter through which the received signal passes can be used.
  • synchronous detection using a replica signal there is a method of detecting coincidence by shifting the frequency axis and converting the frequency axis to the time axis in replica generation (IFFT, FFT).
  • IFFT, FFT replica generation
  • the synchronization detection at this time detects a match with a known signal.
  • a match with a replica signal calculated from the known signal using IFFT or FFT is detected.
  • a plurality of signal forces shifted on the frequency axis may be generated, and the generated replica signals may be stored and used.
  • Equation 29 f radio (nl) -f dig / 2 ⁇ f pch _ c in) ⁇ f radia (n- ⁇ ) + f djg / 2... (Equation 29 )

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

A receiver (2) successively and stepwise switches a preset frequency change amount from a large value to a small value. According to a reception side frequency change amount, a reception side frequency candidate for detecting a synchronous signal is calculated. A synchronous signal detection unit (5) detects a synchronous signal transmitted from a transmission device by using the calculated reception side frequency candidate. Moreover, a transmitter (1) calculates a transmission side frequency candidate as a frequency candidate for transmitting the synchronous signal according to the greatest frequency change amount calculated according to the band width of the synchronous signal. When the calculated transmission side frequency candidate exists in the system frequency band, the calculated transmission side frequency candidate is decided to be a synchronous signal frequency for transmission of the synchronous signal and the synchronous signal is transmitted from a synchronous signal transmission unit (4) to the receiver (2).

Description

明 細 書  Specification
通信システム、送信装置、受信装置及び同期検出方法  COMMUNICATION SYSTEM, TRANSMISSION DEVICE, RECEPTION DEVICE, AND SYNCHRONIZATION DETECTION METHOD
技術分野  Technical field
[0001] 本発明は、情報を送受信するための有効な周波数を複数の候補周波数の中から 検出する通信システム、送信装置、受信装置及び同期検出方法に関する。  The present invention relates to a communication system, a transmission device, a reception device, and a synchronization detection method for detecting an effective frequency for transmitting and receiving information from a plurality of candidate frequencies.
背景技術  Background art
[0002] 従来より、携帯端末等の移動局を用いた通信システムにおいては、基地局から移 動局へ送信される下り信号の周波数として複数の周波数が定義される。そして、これ ら複数の周波数の中から 1つ、あるいは複数が選択され、選択された周波数を用いて 下り信号が送信される。  Conventionally, in a communication system using a mobile station such as a mobile terminal, a plurality of frequencies are defined as frequencies of a downlink signal transmitted from a base station to a mobile station. Then, one or more of these multiple frequencies are selected, and the downlink signal is transmitted using the selected frequencies.
[0003] 図 1は、従来の周波数領域検索であるバンドサーチを説明するために周波数領域 を模式的に示す図である。  FIG. 1 is a diagram schematically showing a frequency domain in order to explain a band search that is a conventional frequency domain search.
[0004] 例えば、 W— CDMA (Wideband Code Division Multiple Access)方式の規格であ る 3GPP (3rd Generation Partnership Project)においては、図 1に示すように、 2110 MHzから 2170MHzの間の両端の 2. 5MHzを除いた周波数領域にて 200kHz間 隔でラスター(Raster)と呼ばれる 276個の周波数が設定される。そして、設定された 周波数の中から有効周波数が選択され、選択された有効周波数を中心とする送信 帯域を用いて下り信号が送信される。なお、ラスターは、システムの送信帯域の中に 中心周波数を配置する最小単位として定義されている。  [0004] For example, in 3GPP (3rd Generation Partnership Project), which is a W-CDMA (Wideband Code Division Multiple Access) standard, as shown in Fig. 1, 2.5 MHz at both ends between 2110 MHz and 2170 MHz. In the frequency range excluding, 276 frequencies called rasters are set at intervals of 200 kHz. Then, an effective frequency is selected from the set frequencies, and a downlink signal is transmitted using a transmission band centered on the selected effective frequency. Raster is defined as the smallest unit that places the center frequency in the transmission band of the system.
[0005] また、移動局は、電源投入時あるいは圏外検出時に、候補となる周波数から有効 周波数を検出し、さらに基地局との間にて同期を確立する。この有効周波数を検出 する処理はバンドサーチ処理と呼ばれている。有効周波数の検出には、同期信号と 呼ばれる既知の信号を用いる場合がある。このバンドサーチ処理を高速化する方法 として、隣接する複数の周波数をブロック化する方法が提案されている(例えば、特 許公開 2003 - 244083号公報参照)。  [0005] In addition, the mobile station detects an effective frequency from candidate frequencies when power is turned on or when out-of-service is detected, and further establishes synchronization with the base station. This process of detecting the effective frequency is called a band search process. A known signal called a synchronization signal may be used to detect the effective frequency. As a method of speeding up the band search process, a method of blocking a plurality of adjacent frequencies has been proposed (see, for example, Japanese Patent Publication No. 2003-244083).
[0006] また、 3GPPの Release7では、オペレータが所有する周波数帯域内で、狭帯域か ら広帯域まで複数の送信帯域幅(1. 25, 2. 5, 5, 10, 15, 20MHz)を設定可能と することが検討されている(例えば、 3GPP TR 25.814.V1.1.1 (2006-2) Physical Layer Aspects for Evolved UTRA (Release 7) 7.1.1章参照)。 [0006] In 3GPP Release7, multiple transmission bandwidths (1.25, 2.5, 5, 5, 10, 15, 20MHz) can be set from narrow to wide within the frequency band owned by the operator. When (See, for example, 3GPP TR 25.814.V1.1.1 (2006-2) Physical Layer Aspects for Evolved UTRA (Release 7) 7.1.1).
[0007] さらに、このような複数の帯域幅を設定可能なシステムに関して、複数の帯域幅の 中心周波数を一致させ、且つその中心周波数はラスターの整数倍とし、同期信号 CH : Synchronization channel)を中心の帯域に配置することが提案されている(例え ば、 3GPP Rl-060311 SCH Structure and Cell Search Method for E— UTRA Downlin k参照。)。 [0007] Further, regarding such a system in which a plurality of bandwidths can be set, the center frequencies of the plurality of bandwidths are matched, and the center frequency is an integral multiple of the raster, and the synchronization signal CH (Synchronization channel) is the center. (For example, see 3GPP Rl-060311 SCH Structure and Cell Search Method for E—UTRA Downlink).
[0008] 一方で、 3GPPの Release7、 3GPP Long Term Evolution (LTE)ゝ WiMAX も含めて近年、マルチパス而性の優れた OFDM (Orthogonal Frequency Division M ultiplexing) / OFDM A (Orthogonal Frequency Division Multiplexing Access)力; 動通信で用いられる傾向にある。その際、サブキャリア間隔などのパラメータはフエ一 ジング耐性を考慮して設定されるため、サブキャリア間隔がラスターの整数倍になら ないこともあり、バンドサーチ処理や同期処理の簡略ィ匕が困難となる。  [0008] On the other hand, in recent years, including 3GPP Release7, 3GPP Long Term Evolution (LTE) ゝ WiMAX, OFDM (Orthogonal Frequency Division Multiplexing) / OFDM A (Orthogonal Frequency Division Multiplexing Access) Tend to be used in mobile communications. At that time, parameters such as the subcarrier interval are set in consideration of fading resistance, so the subcarrier interval may not be an integer multiple of the raster, and it is difficult to simplify the band search processing and synchronization processing. It becomes.
[0009] し力しながら、上述した方法にぉ 、ては、設定された多数の候補周波数にっ 、て有 効波の有無を順次検索しているため、有効周波数を検出するバンドサーチ処理に要 する時間が長くなつてしまうという問題点がある。  However, according to the above-described method, the presence / absence of an effective wave is sequentially searched using a large number of set candidate frequencies, so that band search processing for detecting an effective frequency is performed. There is a problem that it takes a long time.
[0010] また、多数の周波数について有効波の有無を順次検索するのに演算量が多く必要 であり、さらに伝送方式として OFDMを用いる場合、サブキャリア間隔がラスターの整 数倍でないと、候補となる周波数ごとの演算において中間結果などを相互に参照で きないため、演算量を削減できず、それにより、バンドサーチ処理に要する消費電力 が大きくなつてしまうという問題点がある。  [0010] In addition, a large amount of computation is required to sequentially search for the presence or absence of effective waves for a large number of frequencies. Further, when OFDM is used as the transmission method, if the subcarrier interval is not an integer multiple of the raster, a candidate and In the calculation for each frequency, the intermediate results cannot be referred to each other, so that the amount of calculation cannot be reduced, thereby increasing the power consumption required for the band search process.
発明の開示  Disclosure of the invention
[0011] 本発明は、上述した課題を解決するため、有効な周波数検出処理を高速に実現す ることができる通信システム、送信装置、受信装置及び同期検出方法を提供すること を目的とする。  In order to solve the above-described problem, an object of the present invention is to provide a communication system, a transmission device, a reception device, and a synchronization detection method capable of realizing effective frequency detection processing at high speed.
[0012] 上記目的を達成するために本発明は、  [0012] To achieve the above object, the present invention provides:
同期確立するための同期信号を送信する送信装置と、前記同期信号を検出する事 によって同期確立する受信装置とを有してなる通信システムにおいて、 前記受信装置は、前記同期信号の検出の試行を行う間隔を粗く間引いたものから 間引かないものへ順次切り替え、 In a communication system comprising: a transmission device that transmits a synchronization signal for establishing synchronization; and a reception device that establishes synchronization by detecting the synchronization signal; The receiving device sequentially switches from the thinned thinned interval to the non-thinned one for performing the detection of the synchronization signal,
前記送信装置は、前記同期信号を前記受信装置の粗く間引いた間隔にて送信す るように設定することを特徴とする。  The transmitter is set to transmit the synchronization signal at an interval that is roughly thinned out by the receiver.
[0013] また、前記同期は周波数同期であり、前記同期確立は、有効な通信周波数の検出 であり、  [0013] Further, the synchronization is frequency synchronization, and the synchronization establishment is detection of an effective communication frequency,
前記受信装置は、予め設定された周波数変更量を大きな値から小さな値へ順次段 階的に切り替えて、前記周波数変更量に基づいて前記同期信号を検出するための 受信側候補周波数を計算し、前記計算された受信側候補周波数を用いて前記同期 信号を検出し、  The receiving apparatus sequentially switches a preset frequency change amount from a large value to a small value, calculates a reception-side candidate frequency for detecting the synchronization signal based on the frequency change amount, The synchronization signal is detected using the calculated reception candidate frequency,
前記送信装置は、前記通信システムの通信を行うシステム帯域幅に基づ 、て計算 された  The transmitter is calculated based on a system bandwidth for performing communication of the communication system.
できるだけ大きな前記周波数変更量に基づいて前記同期信号を送信するための周 波数の候補となる送信側候補周波数を計算し、前記送信側候補周波数が前記シス テム周波数帯域内に存在する場合、前記送信側候補周波数を前記同期信号を送信 するための同期信号周波数として決定することを特徴とする。  When a transmission-side candidate frequency that is a frequency candidate for transmitting the synchronization signal is calculated based on the frequency change amount that is as large as possible, and the transmission-side candidate frequency exists in the system frequency band, the transmission frequency The side candidate frequency is determined as a synchronization signal frequency for transmitting the synchronization signal.
[0014] また、前記受信装置は、前記受信側周波数変更量の整数倍にオフセットを加算し て前記受信側候補周波数とし、 [0014] Further, the receiving apparatus adds an offset to an integral multiple of the reception-side frequency change amount to obtain the reception-side candidate frequency,
前記送信装置は、前記送信側周波数変更量の整数倍にオフセットを加算して前記 送信側候補周波数とすることを特徴とする。  The transmission apparatus is characterized in that an offset is added to an integral multiple of the transmission-side frequency change amount to obtain the transmission-side candidate frequency.
[0015] また、前記受信装置は、前記オフセットを 0とし、 [0015] Further, the receiving apparatus sets the offset to 0,
前記送信装置は、前記オフセットを 0とすることを特徴とする。  The transmitting apparatus sets the offset to 0.
[0016] また、前記送信装置は、前記同期信号として既知信号を送信し、 [0016] Further, the transmission device transmits a known signal as the synchronization signal,
前記受信装置は、前記受信側候補周波数と、前記既知信号との一致、または前記 既知信号から IFFTもしくは FFTを用いて計算されたレプリカ信号との一致を検出し The receiving apparatus detects a match between the reception-side candidate frequency and the known signal, or a match between the known signal and a replica signal calculated using IFFT or FFT.
、前記計算されたレプリカ信号を記憶することを特徴とする。 The calculated replica signal is stored.
[0017] また、前記送信装置は、前記同期信号として同じパターンを繰り返す信号を送信し 前記受信装置は、遅延検波により前記同期信号を検出することを特徴とする。 [0017] Further, the transmission device transmits a signal repeating the same pattern as the synchronization signal. The receiving apparatus detects the synchronization signal by delay detection.
[0018] また、前記送信装置は、前記送信側周波数変更量を前記システム帯域の中心周 波数の最小配置単位の整数倍に設定することを特徴とする。  [0018] Further, the transmission apparatus is characterized in that the transmission side frequency change amount is set to an integral multiple of a minimum arrangement unit of a center frequency of the system band.
[0019] また、前記受信装置は、前記受信側周波数変更量を前記システム帯域の中心周 波数の最小配置単位の整数倍に設定することを特徴とする。 [0019] Further, the receiving apparatus is characterized in that the receiving side frequency change amount is set to an integral multiple of a minimum arrangement unit of a center frequency of the system band.
[0020] また、システム周波数帯域内にて同期をとるための同期信号を受信装置へ送信す る送信装置であって、 [0020] Further, a transmission device that transmits a synchronization signal for synchronization within a system frequency band to a reception device,
前記同期信号の帯域幅に基づいて計算されたできるだけ大きな送信側周波数変 更量に基づいて前記同期信号を送信するための周波数の候補となる送信側候補周 波数を計算し、前記送信側候補周波数が前記システム周波数帯域内に存在する場 合、前記送信側候補周波数を前記同期信号を送信するための同期信号周波数とし て決定する。  Based on the largest possible transmission-side frequency change amount calculated based on the bandwidth of the synchronization signal, a transmission-side candidate frequency that is a frequency candidate for transmitting the synchronization signal is calculated, and the transmission-side candidate frequency is calculated. Is present in the system frequency band, the transmission side candidate frequency is determined as a synchronization signal frequency for transmitting the synchronization signal.
[0021] また、前記送信側周波数変更量の整数倍にオフセットを加算して前記送信側候補 周波数とすることを特徴とする。  [0021] Furthermore, an offset is added to an integral multiple of the transmission-side frequency change amount to obtain the transmission-side candidate frequency.
[0022] また、前記オフセットを 0とすることを特徴とする。 [0022] Further, the offset is set to 0.
[0023] また、送信装置から送信された同期信号を受信する受信装置であって、  [0023] Also, a receiving device that receives the synchronization signal transmitted from the transmitting device,
予め設定された受信側周波数変更量を大きな値から小さな値へ順次段階的に切り 替えて、前記受信側周波数変更量に基づいて前記同期信号を検出するための受信 側候補周波数を計算し、前記計算された受信側候補周波数を用いて前記同期信号 を検出する。  The reception side frequency change amount set in advance is sequentially switched from a large value to a small value, and the reception side candidate frequency for detecting the synchronization signal is calculated based on the reception side frequency change amount. The synchronization signal is detected using the calculated candidate frequency on the receiving side.
[0024] また、前記受信側周波数変更量の整数倍にオフセットを加算して前記受信側候補 周波数とすることを特徴とする。  [0024] In addition, an offset is added to an integral multiple of the reception-side frequency change amount to obtain the reception-side candidate frequency.
[0025] また、前記オフセットを 0とすることを特徴とする。 [0025] Further, the offset is set to 0.
[0026] また、システム周波数帯域内にて同期をとるための同期信号を送信する送信装置と 、前記システム周波数帯域内で前記同期信号を検出する受信装置とを有してなる通 信システムにおける同期検出方法であって、  [0026] Further, synchronization in a communication system including a transmission device that transmits a synchronization signal for synchronization within the system frequency band and a reception device that detects the synchronization signal within the system frequency band. A detection method,
前記受信装置が、前記同期信号の検出の試行を行う間隔を粗く間引いたものから 間引かないものへ順次切り替える処理と、 前記送信装置が、前記同期信号を前記受信装置の粗く間引いた間隔にて検出さ れるように送信設定する処理とを有する。 A process of sequentially switching the reception device from performing the synchronization signal detection trial to a non-thinned one roughly And a process of setting the transmission so that the synchronization signal is detected at an interval obtained by roughly thinning out the synchronization signal of the reception device.
[0027] また、前記受信装置が、予め設定された周波数変更量を大きな値から小さな値へ 順次段階的に切り替える処理と、  [0027] In addition, the receiving device, a process of switching a preset frequency change amount from a large value to a small value sequentially step by step,
前記受信装置が、前記受信側周波数変更量に基づいて前記同期信号を検出する ための受信側候補周波数を計算する処理と、  A process in which the receiving apparatus calculates a receiving-side candidate frequency for detecting the synchronization signal based on the receiving-side frequency change amount;
前記受信装置が、前記計算された受信側候補周波数を用いて前記同期信号を検 出する処理と、  A process in which the receiving device detects the synchronization signal using the calculated reception candidate frequency;
前記送信装置が、前記同期信号の帯域幅に基づいて計算されたできるだけ大きな 前記周波数変更量に基づいて前記同期信号を送信するための周波数の候補となる 送信側候補周波数を計算する処理と、  A process of calculating a transmission-side candidate frequency that is a frequency candidate for transmitting the synchronization signal based on the frequency change amount that is as large as possible calculated based on the bandwidth of the synchronization signal;
前記送信装置が、前記送信側候補周波数が前記システム周波数帯域内に存在す る場合、前記送信側候補周波数を前記同期信号を送信するための同期信号周波数 として決定する処理と、  A process in which the transmission device determines the transmission-side candidate frequency as a synchronization signal frequency for transmitting the synchronization signal when the transmission-side candidate frequency is present in the system frequency band;
前記送信装置が、前記同期信号周波数を用いて前記同期信号を前記受信装置へ 送信する処理とを有する。  The transmission device includes a process of transmitting the synchronization signal to the reception device using the synchronization signal frequency.
[0028] また、前記受信側周波数変更量と前記送信側周波数変更量は、同じ値を含む。  [0028] The reception-side frequency change amount and the transmission-side frequency change amount include the same value.
[0029] 上記のように構成された本発明においては、システム周波数帯域内にて同期をとる ための同期信号が送信装置力 送信され、受信装置にて、同期信号の検出の試行 を行う周波数が粗く間引 、たものから間弓 Iかな 、ものへ順次切り替えられ、システム 周波数帯域内で同期信号が検出される。  [0029] In the present invention configured as described above, a synchronization signal for synchronization within the system frequency band is transmitted by the transmission device, and the frequency at which the reception device attempts to detect the synchronization signal is determined. Roughly thinning out and switching from thin to thin bow I kana sequentially, the synchronization signal is detected within the system frequency band.
[0030] これにより、複数の周波数の候補の中から有効な周波数を検出する処理の高速ィ匕 、及び当該処理に要する消費電力の削減を実現することができる。  Accordingly, it is possible to realize a high-speed processing for detecting an effective frequency from among a plurality of frequency candidates and a reduction in power consumption required for the processing.
[0031] 以上説明したように本発明においては、システム周波数帯域内にて同期をとるため の同期信号を送信装置力 送信し、受信装置にて、同期信号の検出の試行を行う周 波数を粗く間引いたものから間引かないものへ順次切り替え、システム周波数帯域 内で同期信号を検出する構成とし、送信装置では受信装置で早く検出されるように 同期信号送信周波数を設定したため、有効な周波数検出処理を高速に実現するこ とがでさる。 [0031] As described above, in the present invention, a synchronizing signal for synchronizing within the system frequency band is transmitted by the transmitting device, and the frequency at which the receiving device attempts to detect the synchronizing signal is coarsened. Switching from thinned out to non-thinned one by one, and configured to detect the synchronization signal within the system frequency band, and the transmitting device has set the synchronizing signal transmission frequency so that it can be detected early by the receiving device. To achieve high speed Togashi.
図面の簡単な説明 Brief Description of Drawings
[図 1]従来の周波数領域検索であるバンドサーチを説明するために周波数領域を模 式的に示す図である。 FIG. 1 is a diagram schematically showing a frequency domain in order to explain a band search that is a conventional frequency domain search.
[図 2]本発明の通信システムの実施の一形態を示す図である。  FIG. 2 is a diagram showing an embodiment of a communication system of the present invention.
[図 3(a)]図 2に示した形態における同期チャネルの段階的サーチを説明するために 第 1段階目の周波数領域を模式的に示す図である。  [FIG. 3 (a)] FIG. 3A is a diagram schematically showing a first-stage frequency region in order to explain a step-by-step search for synchronization channels in the configuration shown in FIG.
[図 3(b)]図 2に示した形態における同期チャネルの段階的サーチを説明するために 第 2段階目の周波数領域を模式的に示す図である。  [FIG. 3 (b)] FIG. 3B is a diagram schematically showing a second-stage frequency region in order to explain a step-by-step search of the synchronization channel in the form shown in FIG.
[図 3(c)]図 2に示した形態における同期チャネルの段階的サーチを説明するために 第 3段階目の周波数領域を模式的に示す図である。  [FIG. 3 (c)] FIG. 3C is a diagram schematically showing a third-stage frequency region in order to explain the step-by-step search of the synchronization channel in the configuration shown in FIG.
[図 4]本発明のバンドサーチ高速ィ匕の効果を示す図である。  FIG. 4 is a diagram showing the effect of the band search fast key of the present invention.
[図 5]図 2に示した通信システムの受信機における同期検出方法を説明するためのフ ローチャートである。  FIG. 5 is a flowchart for explaining a synchronization detection method in the receiver of the communication system shown in FIG. 2.
[図 6]図 5に示したフローチャートをさらに具体ィ匕したフローチャートである。 FIG. 6 is a flowchart illustrating the flowchart shown in FIG. 5 in more detail.
[図 7(a)]図 6に示したフローチャートを用いて説明した段階的バンドサーチ処理の 1段 階目の処理を模式ィ匕した図である。  [FIG. 7 (a)] FIG. 7A is a diagram schematically illustrating the first step of the stepwise band search process described with reference to the flowchart shown in FIG.
[図 7(b)]図 6に示したフローチャートを用いて説明した段階的バンドサーチ処理の 2段 階目の処理を模式ィ匕した図である。  [FIG. 7 (b)] FIG. 7B is a diagram schematically showing the second stage processing of the stepwise band search processing described using the flowchart shown in FIG.
[図 7(c)]図 6に示したフローチャートを用いて説明した段階的バンドサーチ処理の 3段 階目の処理を模式ィ匕した図である。  [FIG. 7 (c)] FIG. 7C is a diagram schematically illustrating the third step of the stepwise band search process described using the flowchart shown in FIG.
[図 7(d)]図 6に示したフローチャートを用いて説明した段階的バンドサーチ処理の 5段 階目の処理を模式ィ匕した図である。  [FIG. 7 (d)] FIG. 7 (d) is a diagram schematically illustrating the fifth stage process of the stepwise band search process described with reference to the flowchart shown in FIG.
[図 8]図 2に示した通信システムの送信機における同期信号の送信周波数を決定す る手順を説明するためのフローチャートである。  8 is a flowchart for explaining a procedure for determining a transmission frequency of a synchronization signal in the transmitter of the communication system shown in FIG.
[図 9]図 2に示した通信システムの送信機における同期信号の送信周波数を決定す る手順にっ 、て、他の決定方法を説明するためのフローチャートである。  FIG. 9 is a flowchart for explaining another determination method according to the procedure for determining the transmission frequency of the synchronization signal in the transmitter of the communication system shown in FIG. 2.
[図 10(a)]本発明における同期信号の周波数領域での配置を送信帯域が TBW— si = 5MHzであり、 301個のサブキャリアから成る OFDM信号を送信するシステムにお V、て模式的に示す図である。 [Fig. 10 (a)] The transmission band in the frequency domain of the synchronization signal in the present invention is TBW-si This is a diagram schematically showing V in a system for transmitting an OFDM signal composed of 301 subcarriers with 5 MHz.
[図 10(b)]本発明における同期信号の周波数領域での配置を送信帯域が TBW—S2 = 1. 25MHzであり、 705個のサブキャリアから成る OFDM信号を送信するシステム にお 、て模式的に示す図である。  [Fig. 10 (b)] The arrangement of the synchronization signal in the frequency domain according to the present invention is schematically shown in a system in which the transmission band is TBW—S2 = 1.25 MHz and an OFDM signal composed of 705 subcarriers is transmitted. FIG.
[図 11]3GPPの LTEにおける一般的なサブキャリアの時間領域及び周波数領域を模 式ィ匕した図である。  FIG. 11 is a diagram schematically showing a time domain and a frequency domain of a general subcarrier in 3GPP LTE.
[図 12]本発明におけるサブキャリアの時間領域及び周波数領域を模式ィ匕した図であ る。  FIG. 12 is a diagram schematically showing a time domain and a frequency domain of subcarriers in the present invention.
[図 13]DCサブキャリアを設けることが不要なシステムにおけるサブキャリアの時間領 域及び周波数領域を模式ィ匕した図である。  FIG. 13 is a diagram schematically showing the time domain and frequency domain of subcarriers in a system that does not require DC subcarriers.
[図 14]DCサブキャリアが設けられたシステムにおける同期信号送信時の周波数軸上 のサブキャリアを模式ィ匕した図である。  FIG. 14 is a diagram schematically showing subcarriers on the frequency axis when a synchronization signal is transmitted in a system provided with DC subcarriers.
[図 15]DCサブキャリアを設けることが不要なシステムにおける同期信号送信時の周 波数軸上のサブキャリアを模式ィ匕した図である。  FIG. 15 is a diagram schematically showing subcarriers on the frequency axis when transmitting a synchronization signal in a system in which it is not necessary to provide DC subcarriers.
[図 16]本発明の通信システムを無線通信方式を用 、た無線通信システムに適用した 場合の一形態を示す図である。  FIG. 16 is a diagram showing an embodiment when the communication system of the present invention is applied to a wireless communication system using a wireless communication system.
[図 17(a)]図 16に示した形態のうち破線で示した部分について、他の構成を用いた場 合の第 1の形態を示す図である。  [FIG. 17 (a)] FIG. 17A is a diagram showing a first form when another configuration is used for the part shown by a broken line in the form shown in FIG.
[図 17(b)]図 16に示した形態のうち破線で示した部分にっ 、て、他の構成を用 ヽた場 合の第 2の形態を示す図である。  [FIG. 17 (b)] FIG. 17B is a diagram showing a second form in the case where another configuration is used in the part shown by a broken line in the form shown in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 以下に、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0034] 図 2は、本発明の通信システムの実施の一形態を示す図である。 FIG. 2 is a diagram showing an embodiment of a communication system according to the present invention.
[0035] 本形態は図 2に示すように、送信装置である送信機 1と、送信機 1と通信を行う受信 装置である受信機 2とから構成されている。さらに、送信機 1は、同期信号生成部 3と 、同期信号送信部 4とから構成されている。また、受信機 2は、同期信号検出部 5と、 周波数制御部 6とから構成されている。同期信号生成部 3は、送信機 1と受信機 2との 間にて同期をとるための同期信号を生成する。同期信号送信部 4は、同期信号生成 部 3にて生成された同期信号を受信機 2へ送信する。周波数制御部 6は、送信機 1か ら送信された同期信号を検出するための周波数を同期信号検出部 5へ出力する。同 期信号検出部 5は、周波数制御部 6から出力された周波数を用いて同期信号を検出 し、その検出結果を周波数制御部 6へ通知する。 As shown in FIG. 2, the present embodiment includes a transmitter 1 that is a transmission device and a receiver 2 that is a reception device that communicates with the transmitter 1. Further, the transmitter 1 includes a synchronization signal generation unit 3 and a synchronization signal transmission unit 4. The receiver 2 includes a synchronization signal detection unit 5 and a frequency control unit 6. Synchronization signal generator 3 is connected between transmitter 1 and receiver 2. A synchronization signal for synchronization is generated in between. The synchronization signal transmission unit 4 transmits the synchronization signal generated by the synchronization signal generation unit 3 to the receiver 2. The frequency control unit 6 outputs a frequency for detecting the synchronization signal transmitted from the transmitter 1 to the synchronization signal detection unit 5. The synchronization signal detection unit 5 detects the synchronization signal using the frequency output from the frequency control unit 6 and notifies the frequency control unit 6 of the detection result.
[0036] 図 3は、図 2に示した形態における同期チャネルの段階的サーチを説明するために 周波数領域を模式的に示す図である。 FIG. 3 is a diagram schematically showing a frequency domain in order to explain the stepwise search of the synchronization channel in the form shown in FIG.
[0037] 図 3に示すように、受信機 2の周波数制御部 6は、同期信号の検出を行うための候 補周波数を、既定の周波数帯域の内で粗く間引いたものから間引かないものへ順次 段階的に切り替えながら出力する。 [0037] As shown in FIG. 3, the frequency control unit 6 of the receiver 2 changes the candidate frequency for detecting the synchronization signal from a coarsely thinned out predetermined frequency band to a non-thinned one. Output while switching step by step.
[0038] 図 3において、(a)は同期検出の第 1段階目で試行を行う候補周波数を示し、以降[0038] In Fig. 3, (a) shows the candidate frequencies to be tried in the first stage of synchronization detection.
、(b)は第 2段階目、(c)は第 3段階目の候補周波数を示す。段階が進むほど候補周 波数の間隔は狭くなる。 (B) shows the second stage candidate frequency, and (c) shows the third stage candidate frequency. As the stage progresses, the interval between candidate frequencies becomes smaller.
[0039] 送信機 1においては、受信機 2の周波数制御部 6が出力する周波数の早い段階の ものに同期信号を乗せるように同期信号送信部 4の送信周波数が設定される。 In the transmitter 1, the transmission frequency of the synchronization signal transmission unit 4 is set so that the synchronization signal is placed on an earlier frequency output by the frequency control unit 6 of the receiver 2.
[0040] 図 4は、本発明のバンドサーチ高速化の効果を示す図である。 FIG. 4 is a diagram showing the effect of speeding up the band search of the present invention.
[0041] 図 4に示すように、従来法と比べて上述した本発明における処理の方がバンドサ一 チの試行の早 、段階で高!、検出確率を得ることができる。 [0041] As shown in FIG. 4, the process according to the present invention described above is higher in the stage of the band search and the detection probability can be obtained in comparison with the conventional method.
[0042] また、送信機 1の同期信号生成部 3にて生成される同期信号は、時間軸上で同じパ ターンを繰り返すものか、または送受信間で既知の信号であれば良い。また、受信機[0042] The synchronization signal generated by the synchronization signal generation unit 3 of the transmitter 1 may be one that repeats the same pattern on the time axis or a signal that is known between transmission and reception. Also receiver
2の同期信号検出部 5は、同期信号が時間軸上で同じパターンが繰り返される場合、 遅延検波により検出し、同期信号が既知のパターンであれば同期検波により検出を 試みる。また、同期信号およびその検出部の構成は、本発明の効果を限定するもの ではなぐどのような方法であってもかまわない。 The synchronization signal detection unit 2 of 2 detects the synchronization signal by delay detection when the same pattern is repeated on the time axis, and attempts detection by synchronization detection if the synchronization signal is a known pattern. Further, the configuration of the synchronization signal and its detection unit may be any method that does not limit the effect of the present invention.
[0043] また、特許公開 2003— 244083号公報に記載されているように、サーチ周波数帯 域を複数のブロックに分けて電力検出を行い、電力検出された帯域に絞って本発明 の方法でバンドサーチ処理を行っても良!、。 [0043] Further, as described in Japanese Patent Publication No. 2003-244083, power is detected by dividing the search frequency band into a plurality of blocks, and the band of the power is detected by the method of the present invention. You can do the search process!
[0044] 以下に、図 2に示した通信システムにおける同期検出方法について説明する。 [0045] 図 5は、図 2に示した通信システムの受信機 2における同期検出方法を説明するた めのフローチャートである。 [0044] Hereinafter, a synchronization detection method in the communication system shown in FIG. 2 will be described. FIG. 5 is a flowchart for explaining a synchronization detection method in receiver 2 of the communication system shown in FIG.
[0046] ここで、 BSS— UE (k)を k回目のサーチステップにおける受信側周波数変更量 (バ ンドサーチステップ)とし、表 1に示すように定義する。  [0046] Here, BSS—UE (k) is defined as the reception side frequency change amount (band search step) in the k-th search step, as shown in Table 1.
[0047] [表 1]
Figure imgf000011_0001
[0047] [Table 1]
Figure imgf000011_0001
[0048] まず、ステップ 1にて、変数 kが初期値である 0に設定され、 BSS— UE (0)幅のバン ドサーチによる受信側候補周波数である有効周波数の同期検出がステップ 2にて行 われる。有効周波数が検出された力どうかがステップ 3にて判断され、検出された場 合、処理は終了する。 [0048] First, in step 1, the variable k is set to 0, which is an initial value, and synchronization detection of an effective frequency that is a candidate frequency on the receiving side is performed in step 2 by band search of BSS—UE (0) width. Is called. Whether the effective frequency is detected or not is determined in step 3, and if it is detected, the process ends.
[0049] 一方、有効周波数が検出されな 、場合、 BSS— UE (0)幅のバンドサーチによる次 の受信側候補周波数が存在するかどうかがステップ 4にて判断される。つまり、簡単 な例を挙げて具体的に説明すると、有効周波数の同期検出を行うサーチ周波数帯 域力 2000MHz〜2005MHzである場合、最初に同期検出を行った候補周波数 力 2003. 2MHzであるとすると、 BSS— UE (O)幅は 3. 2MHzであるため、次の候 補周波数が 2006. 4MHzとなり、周波数帯域を超えてしまい、次の候補周波数が存 在しないこととなる。なお、ここで挙げた例は、説明の便宜上、設定した値を使用して おり、現実に用いられる値ではない。  [0049] On the other hand, if an effective frequency is not detected, it is determined in step 4 whether or not there is a next candidate frequency on the receiving side by a band search of BSS-UE (0) width. In other words, with a simple example, the search frequency band power for effective frequency synchronization detection is 2000 MHz to 2005 MHz, and the candidate frequency force for which synchronization detection was first performed is 2003. 2 MHz. Since the BSS—UE (O) width is 3.2 MHz, the next candidate frequency is 2006. 4 MHz, which exceeds the frequency band, and the next candidate frequency does not exist. The example given here uses a set value for convenience of explanation, and is not a value actually used.
[0050] ステップ 4にて、 BSS— UE (0)幅のバンドサーチによる次の候補周波数が存在す ると判断された場合、次の候補周波数力 Sステップ 5にて設定され、ステップ 2の同期検 出が行われる。  [0050] When it is determined in step 4 that the next candidate frequency exists by the band search of BSS—UE (0) width, the next candidate frequency force S is set in step 5 and synchronized in step 2. Detection is performed.
[0051] また、ステップ 4にて、 BSS— UE (0)幅のバンドサーチによる次の候補周波数が存 在しないと判断された場合、つまり、 BSS— UE (O)幅のバンドサーチによる有効周 波数の検出処理が終了したと判断された場合、ステップ 6にて BSS— UE (0)の値と ラスターの値とが比較される。ここでラスターの値は、 200kHzとする。また、 BSS U E (k)の値は、ラスターの値の整数倍となっている。 [0051] Also, in step 4, when it is determined that there is no next candidate frequency by the band search of BSS—UE (0) width, that is, the effective frequency by the band search of BSS—UE (O) width. If it is determined that the wave number detection process has been completed, the BSS—UE (0) value is compared with the raster value in step 6. Here, the raster value is 200 kHz. Also, BSS U The value of E (k) is an integer multiple of the raster value.
[0052] BSS— UE (0)の値がラスターの値よりも大きな値であるため、ステップ 7にて k=k  [0052] BSS— Since the value of UE (0) is larger than the raster value, in step 7, k = k
+ 1とし、次段階である BSS— UE (1)についてステップ 2から BSS— UE (O)におけ る処理と同様の処理が行われる。  The process is the same as the process in BSS-UE (O) from step 2 for the next stage BSS-UE (1).
[0053] いずれ力の BSS— UE (k)において有効周波数が検出されない限り、 BSS— UE ( k)の値がラスターの値以下になるまでステップ 2〜7の処理が行われる。図 3にて説 明したように、受信側周波数変更量を大きな値から小さな値へ、つまり、候補周波数 を既定の周波数帯域の内で粗く間引いたものから間引かないものへ順次段階的に 切り替えながら、同期検出が行われることとなる。 BSS— UE (k)の値がラスターの値 以下になっても有効周波数が検出されない場合は、サーチ帯域内に有効周波数が 存在しないと判断される。  [0053] Unless an effective frequency is detected in any power of BSS-UE (k), steps 2 to 7 are performed until the value of BSS-UE (k) becomes equal to or less than the raster value. As explained in Fig. 3, the frequency change on the receiving side is switched from a large value to a small value, that is, the candidate frequency is gradually switched from a coarsely thinned out frequency within a predetermined frequency band to a non-thinned one. However, synchronization detection is performed. If the effective frequency is not detected even if the value of BSS—UE (k) falls below the raster value, it is determined that there is no effective frequency in the search band.
[0054] 図 6は、図 5に示したフローチャートをさらに具体化したフローチャートである。  FIG. 6 is a flowchart that further embodies the flowchart shown in FIG.
[0055] ここで、同期信号の帯域幅を SCH— BWとする。また、有効周波数を検出するサー チ周波数帯域の下限周波数を f—Lとし、上限周波数を f—Hとする。  [0055] Here, the bandwidth of the synchronization signal is SCH-BW. The lower limit frequency of the search frequency band for detecting the effective frequency is f-L, and the upper limit frequency is f-H.
[0056] まず、式 1に示すように、ステップ 11にて変数 kが初期値である 0に設定され、最大 バンドサーチステップ BSS—UE (0)から同期検出が開始される。  [0056] First, as shown in Equation 1, in step 11, the variable k is set to 0, which is an initial value, and synchronization detection is started from the maximum band search step BSS-UE (0).
[0057] [数 1] k:Q ■■■ (式 1 )  [0057] [Equation 1] k: Q ■■■ (Formula 1)
[0058] ステップ 12にて、式 2を用いて Ntmpが計算される。ここで []は口内の値の小数点以 下を切り捨てるものとする。 [0058] In step 12, Ntmp is calculated using Equation 2. Here, [] shall be rounded down to the next decimal place.
[0059] [数 2] L+SCH_BW/2) JBSSJJE (k) ] … (式 2 ) [0059] [Equation 2] L + SCH_BW / 2) JBSSJJE (k)] (Formula 2)
[0060] そして、ステップ 13にて、式 3によって、(f_L + SCH— BW/2)と(Ntmp X BSS[0060] In step 13, (f_L + SCH- BW / 2) and (Ntmp X BSS
_UE (k) )とが比較される。 _UE (k)) is compared.
[0061] [数 3] f_ L +SOI_Bf/2 --Ntap BSS_UE {k) … (式 3 ) [0061] [Equation 3] f_ L + SOI_Bf / 2 --N tap BSS_UE (k)… (Formula 3)
[0062] ステップ 13にて、(f_L + SCH— BWZ2)と(NtmpXBSS_UE(k))とが等しく はないと判断された場合、ステップ 14にて、式 4の計算が行われる。 If it is determined in step 13 that (f_L + SCH−BWZ2) and (NtmpXBSS_UE (k)) are not equal, calculation of equation 4 is performed in step 14.
[0063] [数 4] +1 … (式 4) ここで、式 2、式 3及び式 4の計算の結果、式 2の []内に少数点以下の値が存在す る場合、切り上げる動作を行う。 [0063] [Equation 4] +1 ... (Equation 4) Here, as a result of calculation of Equation 2, Equation 3, and Equation 4, if there is a value less than the decimal point in [] of Equation 2, rounding up operation I do.
[0064] そして、式 5によって、(f一 H— SCH— BWZ2)と(Ntmp X BSS_UE (k) )とが比 較され、バンドサーチを行う候補周波数力 f— Hに対して SCH— BWZ2の余裕を 持つ値以下かどうかがステップ 15にて判断される。 [0064] Then, (f 1 H—SCH—BWZ2) and (Ntmp X BSS_UE (k)) are compared by Equation 5, and the candidate frequency force f—H for performing the band search is compared with SCH—BWZ2 In step 15, it is determined whether the value is less than the margin.
[0065] [数 5] [0065] [Equation 5]
HSCH_BW/2: Ntmp X BSS^UE (k) … (式 5 ) H SCH_BW / 2: N tmp X BSS ^ UE (k)… (Formula 5)
[0066] また、ステップ 13にて、(f_L+SCH— BWZ2)と(Ntmp X BSS_UE (k) )とが 等しいと判断された場合は、ステップ 14の処理は行われず、ステップ 15の処理が行 われる。 [0066] If it is determined in step 13 that (f_L + SCH-BWZ2) and (Ntmp X BSS_UE (k)) are equal, step 14 is not performed and step 15 is performed. Is called.
[0067] ステップ 15にて、(NtmpXBSS— UE(k))力 S(f— H— SCH— BWZ2)以下であ ると判断された場合、式 6にしたがってステップ 16にて候補周波数 f(k, Ntmp)が計 算される。  [0067] If it is determined in step 15 that the (NtmpXBSS—UE (k)) force S (f—H—SCH—BWZ2) or less, the candidate frequency f (k , Ntmp) is calculated.
[0068] [数 6] f{k, NtBp)=BSS_UE{k) XNtap … (式 6) [0068] [ Equation 6] f {k, N tBp ) = BSS_UE {k) XN tap (Equation 6)
[0069] そして、式 6にしたがって計算された候補周波数 f (k, Ntmp)に対してステップ 17 にて同期検出が行われ、同期が検出されたかどうかがステップ 18にて判断され、検 出された場合、バンドサーチ処理は終了する。 [0069] Then, synchronization detection is performed in step 17 for the candidate frequency f (k, Ntmp) calculated according to Equation 6, and whether or not synchronization is detected is determined and detected in step 18. If it is found, the band search process ends.
[0070] 一方、ステップ 18にて同期が検出されな力つた場合は、ステップ 19にて式 7にした がって Ntmpの値を 1増加させ、再度ステップ 15の処理が行われる。 [0071] [数 7] On the other hand, if no synchronization is detected in step 18, Ntmp is incremented by 1 according to equation 7 in step 19, and the process of step 15 is performed again. [0071] [Equation 7]
Ntmp=Ntap+l … (式 7 ) N tmp = N tap + l… (Formula 7)
[0072] また、ステップ 15にて、(Ntmp X BSS_UE (k) )が(f_H— SCH— BWZ2)より も大きな値であると判断された場合は、図 5にて説明したステップ 6及びステップ 7の 処理と同様に、ステップ 20にて kが最大値 (本例では 4)を超えたと判断されるまで、 ステップ 21にて kを 1ずつ増加させ、バンドサーチ処理が実行される。 [0072] If it is determined in step 15 that (Ntmp X BSS_UE (k)) is greater than (f_H—SCH—BWZ2), step 6 and step 7 described in FIG. In the same way as the above process, the band search process is executed by increasing k by 1 in step 21 until it is determined in step 20 that k has exceeded the maximum value (4 in this example).
[0073] kが最大値を超えても同期が検出されない場合は、サーチ帯域内に有効周波数は 存在しないと判断される。  [0073] If synchronization is not detected even if k exceeds the maximum value, it is determined that there is no effective frequency within the search band.
[0074] 図 7は、図 6に示したフローチャートを用いて説明した段階的バンドサーチ処理を模 式ィ匕した図である。  FIG. 7 is a diagram schematically showing the stepwise band search process described using the flowchart shown in FIG.
[0075] 図 7 (a)は段階的バンドサーチの 1段階目において同期検出が行われる候補周波 数を示す。 1段階目は、サーチ周波数帯域 (f— L〜f— H)の上限と下限とにそれぞ れ SCH_BWZ2の余裕を持った範囲内に存在する候補周波数 f (0, 0)と f (0, 1)と の同期検出が行われる。この時、 f (0, 1)と f (0, 0)の差は BSS— UE (O)である。  [0075] Figure 7 (a) shows the candidate frequencies for which synchronization detection is performed in the first stage of the stepwise band search. In the first stage, the candidate frequencies f (0, 0) and f (0, 0, Synchronization detection with 1) is performed. At this time, the difference between f (0, 1) and f (0, 0) is BSS—UE (O).
[0076] 図 7 (b)は 2段階目にお 、て同期検出が行われる候補周波数を示す。 2段階目で は、 BSS— UE (1)分、離れた候補周波数はサーチ周波数帯域内に、 f (1, 0)〜f (1 , 3)の 4個が存在するが、破線矢印で示す f (l, 1)及び f (l, 3)は 1段階目で既に同 期検出を試み、検出されな力つた周波数のため、再度同期検出処理は行われない。  FIG. 7 (b) shows candidate frequencies for which synchronization detection is performed in the second stage. In the second stage, four candidate frequencies f (1, 0) to f (1, 3) exist within the search frequency band for BSS—UE (1). Since f (l, 1) and f (l, 3) have already attempted synchronization detection in the first stage and are not detected, the synchronization detection process is not performed again.
[0077] 同様に、図 7 (c)は 3段階目において同期検出が行われる候補周波数を示す。 3段 階目では、 BSS— UE (2)分、離れた候補周波数はサーチ周波数帯域内に、 f (2, 0 )〜f (2, 7)の 8個が存在する力 破線矢印で示す f (2, 0)、f (2, 2)、f (2, 4)、f (2, 6)は 1段階目及び 2段階目で既に同期検出を試み、検出されな力つた周波数のため 、再度同期検出処理は行われない。  Similarly, FIG. 7 (c) shows candidate frequencies for which synchronization detection is performed in the third stage. In the third stage, there are eight candidate frequencies f (2, 0) to f (2, 7) in the search frequency band for BSS—UE (2), and f (2, 0), f (2, 2), f (2, 4), f (2, 6) have already attempted synchronization detection in the first and second stages, and because of the strong frequencies that have not been detected, The synchronization detection process is not performed again.
[0078] 同様に、図 7 (d)は 5段階目において同期検出が行われる候補周波数を示す。この とき、 BSS— UE (4)は Rasterと等しいため、従来と同様にラスターの精度でバンドサ ーチをすベて実行することができる。  Similarly, FIG. 7 (d) shows candidate frequencies for which synchronization detection is performed in the fifth stage. At this time, since BSS-UE (4) is equal to Raster, all band searches can be executed with raster accuracy as in the past.
[0079] 図 8は、図 2に示した通信システムの送信機 1における同期信号の送信周波数を決 定する手順を説明するためのフローチャートである。 FIG. 8 shows the transmission frequency of the synchronization signal in transmitter 1 of the communication system shown in FIG. It is a flowchart for demonstrating the procedure to set.
[0080] 受信機 2ではバンドサーチを行うときに、同期信号検出を試行する周波数を、段階 的にステップサイズを変えて決定するものとする。一方、送信機 1では、複数のバンド サーチステップのうち、同期信号を送信する周波数 fp— siを、システムの送信帯域 内(fL— sl〜fH— si)に同期信号の帯域(SCH— BW)を確保しながら、バンドサ一 チステップが最大になるように決定する。  [0080] When the band search is performed in the receiver 2, the frequency at which the synchronization signal detection is attempted is determined by changing the step size step by step. On the other hand, among the multiple band search steps, transmitter 1 sets the frequency fp—si for transmitting the synchronization signal within the transmission band of the system (fL—sl to fH—si) (SCH—BW). To ensure the maximum band search step.
[0081] まず、周波数を最も粗く間引いた状態となるような最大バンドサーチステップカ^テ ップ 31にて設定される。設定されたバンドサーチステップを用いて所定の式によって 同期信号を挿入する同期信号周波数が送信側候補周波数として計算される。計算さ れた送信側候補周波数で同期信号を送信可能かどうか、つまり当該送信側候補周 波数がシステム周波数帯域内に存在するかどうかがステップ 32にて判断される。  First, the maximum band search step cut 31 is set so that the frequency is most thinned out. A synchronization signal frequency for inserting a synchronization signal is calculated as a transmission-side candidate frequency by a predetermined formula using the set band search step. In step 32, it is determined whether the synchronization signal can be transmitted at the calculated transmission-side candidate frequency, that is, whether the transmission-side candidate frequency is present in the system frequency band.
[0082] 送信可能でないと判断された場合、ステップ 33にて順次段階的にバンドサーチス テツプを小さな値に設定して、つまり間引かないものに変更する。変更されたバンドサ ーチステップを用いて再度送信側候補周波数が計算される。計算された送信側候補 周波数で同期信号が送信可能かが判断され、送信可能であると判断された場合に、 ステップ 34にて当該送信側候補周波数が同期信号周波数として決定される。  [0082] If it is determined that transmission is not possible, the band search step is set to a small value sequentially in step 33, that is, it is changed to one that is not thinned out. The transmission side candidate frequency is calculated again using the changed band search step. It is determined whether the synchronization signal can be transmitted at the calculated transmission-side candidate frequency. If it is determined that transmission is possible, the transmission-side candidate frequency is determined as the synchronization signal frequency in step 34.
[0083] 図 9は、図 2に示した通信システムの送信機 1における同期信号の送信周波数を決 定する手順にっ 、て、他の決定方法を説明するためのフローチャートである。  FIG. 9 is a flowchart for explaining another determination method in accordance with the procedure for determining the transmission frequency of the synchronization signal in transmitter 1 of the communication system shown in FIG.
[0084] ここで、 BSS— tmpは、最大送信側周波数変更量である最大バンドサーチステップ BSS— siを求める変数であると定義する。  Here, BSS-tmp is defined as a variable for obtaining the maximum band search step BSS-si which is the maximum transmission side frequency change amount.
[0085] まず、バンドサーチステップの最小値が設定される。すなわち、ラスターの値 Raster がバンドサーチステップの初期値として、ステップ 41にて式 8のように設定される。  First, the minimum value of the band search step is set. That is, the raster value Raster is set as shown in Equation 8 in step 41 as the initial value of the band search step.
[0086] [数 8]  [0086] [Equation 8]
BSS—ttnp Raster … (式 8 ) BSS—ttnp Raster… (Formula 8)
[0087] このとき、ラスターが定義されて ヽな 、場合は、予め設定されたバンドサーチステツ プの最小値が設定される。 At this time, if the raster is defined, the minimum value of the preset band search step is set.
[0088] そして、ステップ 42にて、式 9を用いて NL— tmpが計算される。ここで口は口内の値 の小数点以下を切り捨てるものとする。 [0088] Then, in Step 42, NL-tmp is calculated using Equation 9. Where mouth is the value in the mouth Shall be rounded down.
[0089] [数 9]  [0089] [Equation 9]
NL_ tap = [ (fL_s ^SCH_BW/2) /BSS_ tmp ] … (式 9) N L _ tap = [(f L _s ^ SCH_BW / 2) / BSS_ tmp]… (Equation 9)
[0090] そして、ステップ 43にて、式 10によって、(fL— si)と(NL— tmpXBSS— tmp)と が比較される。 [0090] Then, in step 43, (fL-si) and (NL-tmpXBSS-tmp) are compared by Equation 10.
[0091] [数 10] fL_3l-NL tap .BSS_twp … (式 1 0) [0091] [number 10] f L _ 3l -N L tap .BSS_twp ... ( Equation 1 0)
[0092] ステップ 43にて、(fL— si)と(NL_tmpXBSS_tmp)とが等しくはないと判断さ れた場合、ステップ 44にて式 11の計算が行われる。 [0092] If it is determined in step 43 that (fL-si) and (NL_tmpXBSS_tmp) are not equal, calculation of equation 11 is performed in step 44.
[0093] [数 11] [0093] [Equation 11]
NL_tw-NL_tm^\ … (式 1 1) N L _ tw -N L _ tm ^ \… (Formula 1 1)
[0094] ここで、式 9、式 10及び式 11の計算の結果、式 9の []内の除算に少数点以下に値 が存在する場合、その値を切り上げる動作が行われる。 [0094] Here, as a result of the calculations of Expressions 9, 10, and 11, if there is a value below the decimal point in the division in [9] of Expression 9, an operation of rounding up the value is performed.
[0095] そして、ステップ 45にて式 12にしたがって、変数 NH— tmpが計算される。また、ス テツプ 43にて、 fL— siと(NL— tmpXBSS— tmp)とが等しいと判断された場合は、 ステップ 44の処理は行われず、ステップ 45の処理が行われる。  [0095] Then, in step 45, the variable NH-tmp is calculated according to Equation 12. If it is determined in step 43 that fL-si and (NL-tmpXBSS-tmp) are equal, step 44 is not performed and step 45 is performed.
[0096] [数 12]  [0096] [Equation 12]
NH tap=[{fH sl+SCH_BW/2) /BSS—tmp] … (式 1 2 ) N H tap = [{f H sl + SCH_BW / 2) / BSS—tmp]… (Formula 1 2)
[0097] その後、ステップ 46にて式 13によって、 NL— tmpと NH— tmpとが比較される。 [0097] After that, in Step 46, NL-tmp and NH-tmp are compared by Equation 13.
[0098] [数 13] [0098] [Equation 13]
NL_tmp-NH_tmp … (式 1 3) N L _ tmp -N H _ tmp … (Formula 1 3)
[0099] NL— tmpと NH— tmpとが等しくはないと判断された場合、 BSS— tmpは最大値 に達していないため、ステップ 47にて式 14にしたがってバンドサーチステップ BSS —tmpの値が大きな値に計算される。そして、再度ステップ 42〜45の処理が行われ る。 [0099] If it is determined that NL—tmp and NH—tmp are not equal, BSS—tmp has not reached the maximum value. The value of —tmp is calculated to a large value. Then, the processing of steps 42 to 45 is performed again.
[0100] [数 14]  [0100] [Equation 14]
BSS_ tmp=BSS_ tmp ^ 2 … (式 1 4 ) BSS_tmp = BSS_tmp ^ 2… (Formula 14)
[0101] 一方、 NL— tmpと NH— tmpとが等しいと判断された場合は、 BSS— tmpは最大 値に達しているため、式 15、式 16、及び式 17にしたがって同期信号を送信する周波 数 f p— s 1がステップ 48にて決定される。 [0101] On the other hand, if it is determined that NL—tmp is equal to NH—tmp, BSS—tmp has reached the maximum value, and a synchronization signal is transmitted according to Equations 15, 16, and 17. The frequency fp—s 1 is determined in step 48.
[0102] [数 15]  [0102] [Equation 15]
H tap … (式 1 5 ) [0103] [数 16] H tap … (Equation 1 5) [0103] [Equation 16]
BSS_s \:BSS一 tmp … (式 1 6 ) BSS_s \: BSS one tmp ... (Formula 16)
[0104] [数 17] fn s l=Ns i X BSS_s l … (式 1 7 ) [ Equation 17] f nsl = N si X BSS_s l… (Equation 1 7)
[0105] このように、送信側における同期信号を送信する周波数の決定は、バンドサーチス テツプを大き ヽ値カも小さ 、値に変更するか、小さ 、値から大き 、値に変更するかに 関わらず求めることが出来る。 Thus, the determination of the frequency at which the synchronization signal is transmitted on the transmission side is made by changing the band search step from a small value to a small value, or from a small value to a large value. It can be obtained regardless.
[0106] 図 10は、本発明における同期信号の周波数領域での配置を模式的に示す図であ る。ここでは、 OFDM信号を想定している。  FIG. 10 is a diagram schematically showing the arrangement of the synchronization signals in the frequency domain according to the present invention. Here, an OFDM signal is assumed.
[0107] 図 10 (a)では、システムの送信帯域 TBW— sl = 5MHzであり、 301個のサブキヤ リアから成る OFDM信号を送信するものとする。また、 fc— siはシステム siの中心周 波数である。また、同期信号 SCHの帯域 SCH— BWは 1. 25MHzとし、同期信号の 中心周波数 fp— siはシステムの中心周波数 fc— siとは独立に設定可能であるもの とする。  In FIG. 10 (a), it is assumed that the transmission band of the system is TBW—sl = 5 MHz, and an OFDM signal composed of 301 subcarriers is transmitted. Fc-si is the center frequency of system si. The band SCH-BW of the synchronization signal SCH is set to 1.25 MHz, and the center frequency fp-si of the synchronization signal can be set independently of the system center frequency fc-si.
[0108] このとき、 TBW siは SCH BWよりも大きいため、ラスターが十分小さな値であ る場合、図 8あるいは図 9のフローチャートを用いて説明した処理において、大きな B SS— siを選択できる。 [0108] At this time, TBW si is larger than SCH BW, so the raster is sufficiently small. In this case, a large BSS-si can be selected in the processing described with reference to the flowchart of FIG. 8 or FIG.
[0109] 以下に、具体的な数値の例を挙げて説明する。 [0109] Hereinafter, specific numerical examples will be described.
[0110] 具体例として、 fL_sl = 2130. 9MHz、 fc_sl = 2133. 4MHz、 fH_sl = 213 5. 9MHz、 Raster = 200kHz、バンドサーチステップの最大値を 6. 4MHz、及び、 サブキャリア間隔 Δ ί= 15kHzとする。ここでは、図 8に示したフローチャートに従い、 バンドサーチステップの最大値力も順次バンドサーチステップを小さくして説明する。  [0110] As a specific example, fL_sl = 2130. 9MHz, fc_sl = 2133. 4MHz, fH_sl = 213 5. 9MHz, Raster = 200kHz, the maximum value of the band search step is 6.4MHz, and the subcarrier spacing Δ ί = 15kHz And Here, according to the flowchart shown in FIG. 8, the maximum value force of the band search step will be described with the band search step sequentially reduced.
[0111] まず、最大のバンドサーチステップ 6. 4MHzにおいて、送信帯域内に SCH— BW の余裕を取った帯域 2131. 525MHz〜2135. 275MHzf¾【こ、ノ ンドサーチステツ プ 6. 4MHzの整数倍となる同期信号周波数が存在するかどうかが判断される。ここ では、バンドサーチステップ 6. 4MHzの整数倍となる同期信号周波数は存在しない  [0111] First, in the maximum band search step 6.4 MHz, a band with a margin of SCH-BW in the transmission band 2131. 525 MHz to 2135. 275 MHz f¾ [this, node search step 6. An integer multiple of 4 MHz and It is determined whether or not a synchronization signal frequency exists. Here, there is no sync signal frequency that is an integer multiple of 4 MHz in the band search step.
[0112] そのため、バンドサーチステップを次段階の 3. 2MHzとし、帯域 2131. 525MHz 〜2135. 275MHz間に、バンドサーチステップ 3. 2MHzの整数倍となる同期信号 周波数が存在するかどうかが判断される。このとき、候補として、 2134. 4MHzが存 在する。 [0112] Therefore, the band search step is set to 3.2 MHz in the next stage, and it is determined whether or not there is a synchronization signal frequency that is an integer multiple of the band search step 3.2 MHz between the band 2131.525 MHz and 2135.275 MHz. The In this case, 213.4 MHz exists as a candidate.
[0113] し力し、 2134. 4MHzは、 fc— siとの差が 1MHzであり、 Δ ίである 15kHzで割り 切れない。これは、この周波数がサブキャリア周波数でないことを意味するため、同 期信号を配置するサブキャリアがシステムのサブキャリア周波数と一致しなくなるため 、 fp— siに設定することが不適切であると判断され、さらに、バンドサーチステップを 次段階の 1. 6MHzとする。帯域 2131. 525MHz~2135. 275MHz間に、ノ ンド サーチステップ 1. 6MHzの整数倍となる同期信号周波数は、 2132. 8MHzと, 213 4. 4MHzとの 2つの候補が存在する。  [0113] However, 2134. 4MHz has a difference of 1MHz from fc-si and is not divisible by 15kHz which is Δί. This means that this frequency is not a subcarrier frequency, so the subcarrier where the synchronization signal is placed does not match the subcarrier frequency of the system, so it is determined that setting to fp-si is inappropriate. In addition, the band search step is set to 1.6 MHz in the next stage. Between 2131. 525 MHz and 2135. 275 MHz, there are two candidates for the sync signal frequency that is an integer multiple of 1.6 MHz for the node search step: 2112.8 MHz and 2134.4 MHz.
[0114] ここで、 2132. 8MHzは fc— siとの差が 600kHzであり、 Δ ίで割り切れるため、同 期信号を配置するサブキャリアはシステムのサブキャリア周波数と一致すると判断さ れ、 fp— si = 2132. 8MHzとされる。このとき、 fp— siはサブキャリア番号 111であ る。  [0114] Here, the difference from fc-si at 2123.8 MHz is 600 kHz, and since it is divisible by Δί, it is determined that the subcarrier on which the synchronization signal is placed matches the subcarrier frequency of the system. si = 2132. 8 MHz. At this time, fp-si is subcarrier number 111.
[0115] 次に、図 10 (b)では、システムの送信帯域 TBW s2= l. 25MHzであり、 75個の サブキャリア力も成る OFDM信号を送信するものとする。また、 fc— s2はシステム s2 の中心周波数である。また、同期信号 SCHの帯域 SCH— BWは 1. 25MHzとする。 [0115] Next, in Fig. 10 (b), the transmission bandwidth of the system TBW s2 = l. It is assumed that an OFDM signal having subcarrier power is transmitted. Fc-s2 is the center frequency of system s2. The band SCH-BW of the synchronization signal SCH is 1.25 MHz.
[0116] 例えば、図 9に示したフローチャートを用いて説明した処理においては、 TBW— s2 [0116] For example, in the processing described using the flowchart shown in FIG. 9, TBW-s2
= SCH— BWのため、 BSS— s2=Rasterとなり、 fp— s2 = fc— s2となる。  = Because SCH—BW, BSS—s2 = Raster, and fp—s2 = fc—s2.
[0117] 以上の説明においては、式 6及び式 17において、同期信号の周波数をバンドサ一 チステップの整数倍とした力 バンドサーチステップの整数倍にオフセットを加算して 式 18及び式 19としてもよい。 [0117] In the above description, in Equation 6 and Equation 17, the power obtained by setting the frequency of the synchronization signal to an integer multiple of the band search step may be added to the integer multiple of the band search step to obtain Equation 18 and Equation 19. .
[0118] [数 18] fp_s
Figure imgf000019_0001
… (式 1 8 ) [0119] [数 19] f offset (ん Ntap)二 foffset BSS_UK、k、 X Ntap … (式 1 9 )
[0118] [Equation 18] fp_ s
Figure imgf000019_0001
… (Equation 1 8) [0119] [Equation 19] f offset (n N tap ) 2 f offset BSS_UK, k, XN tap … (Equation 1 9)
[0120] 式 18及び式 19に伴い、図 6に示したフローチャートを用いて説明した処理におけ る式 2は式 20に、また式 3は式 21に、また式 5は式 22に、式 6を式 19に置き換えられ る。 [0120] In accordance with Equation 18 and Equation 19, Equation 2 in the processing described with reference to the flowchart shown in FIG. 6, Equation 3 in Equation 21, Equation 21 in Equation 5, Equation 5 in Equation 22, 6 can be replaced by Equation 19.
[0121] [数 20]  [0121] [Equation 20]
Ντα = [ {f_L -foffset+SCH_BW/2) /BSS_UK (k) l … (式 2 0 ) [0122] [数 21]
Figure imgf000019_0002
Ntap BSS_UK{k) … (式 2 1 ) [0123] [数 22] f _H~f offset- SCH_BW!2: Ntap X BSS— UK (k) … (式 2 2 )
Ν τα = [(f_ L -f offset + SCH_BW / 2) / BSS_UK (k) l… (Equation 2 0) [0122] [Equation 21]
Figure imgf000019_0002
N tap BSS_UK {k)… (Equation 2 1) [0123] [Equation 22] f _H ~ f offset- SCH_BW! 2: N tap X BSS— UK (k)… (Equation 2 2)
[0124] 図 11は、 3GPPの LTEにおける一般的なサブキャリアの時間領域及び周波数領域 を模式ィ匕した図である。 [0124] FIG. 11 is a diagram schematically illustrating a time domain and a frequency domain of a general subcarrier in 3GPP LTE.
[0125] 図 11に示すように、 3GPPの LTEでは、受信機の DC (Direct Current:直流)成分 カットの簡易構成のために、システム帯域の中心周波数のサブキャリアは、 DCサブ キャリアと 、う通常のサブキャリアとは異なるサブキャリアを定義する。定義されたサブ キャリアにおいては、データ送信しない。システム s3は、通常のデータ送信サブキヤリ ァ 133, 135, 139, 141と、そのシステム帯域 TBW— s3の中心周波数 fc— s3のデ ータを送信しない DCサブキャリア 134, 140と力 構成されている。また、帯域 SCH —BWの同期信号のサブキャリア 130, 132, 136, 138を所定の同期信号挿入周期 で挿入し、その中心周波数領域 131, 137は同期信号を送信しない領域となる。 [0125] As shown in Figure 11, in 3GPP LTE, the DC (Direct Current) component of the receiver For the simple configuration of the cut, the subcarriers at the center frequency of the system band are defined as DC subcarriers and subcarriers different from normal subcarriers. No data is transmitted on the defined subcarrier. System s3 is configured with normal data transmission subcarriers 133, 135, 139, 141 and DC subcarriers 134, 140 that do not transmit data of the system band TBW—s3 center frequency fc—s3 . Further, subcarriers 130, 132, 136, and 138 of the synchronization signal in the band SCH-BW are inserted at a predetermined synchronization signal insertion period, and the center frequency regions 131 and 137 are regions in which the synchronization signal is not transmitted.
[0126] 図 12は、本発明におけるサブキャリアの時間領域及び周波数領域を模式ィ匕した図 である。 FIG. 12 is a diagram schematically showing the time domain and frequency domain of subcarriers in the present invention.
[0127] 図 12に示すように、システム s4は、通常のデータ送信サブキャリア 145, 147, 151 , 153と、そのシステム帯域 TBW— s4の中心周波数 fc— s4のデータを送信しない D Cサブキャリア 146, 152と力ら構成されている。また、中心周波数 fc— s4からずらし た同期信号のサブキャリア 142, 144, 148, 150を所定の同期信号挿入周期で挿 入し、その中心周波数 fp—s4の中心周波数領域 143, 149であるサブキャリアは DC サブキャリア 146, 152と同様に同期信号を送信しない。  [0127] As shown in FIG. 12, the system s4 includes normal data transmission subcarriers 145, 147, 151, and 153, and a DC subcarrier that does not transmit data of the center frequency fc—s4 of the system band TBW—s4. , 152 and force. In addition, subcarriers 142, 144, 148, 150 of the synchronization signal shifted from the center frequency fc—s4 are inserted at a predetermined synchronization signal insertion period, and the subcarriers having the center frequency region 143,149 of the center frequency fp—s4 are inserted. The carrier does not transmit a synchronization signal like DC subcarriers 146 and 152.
[0128] また、サブキャリア間隔と受信機との関係において、 DCサブキャリアを設けることが 不要なシステムでは、システムの中心周波数 fcにデータを含まな ヽための構成は、 中心周波数 fcをサブキャリア間の周波数に設定することで実現することができる。  [0128] Also, in a system in which it is not necessary to provide a DC subcarrier in the relationship between the subcarrier interval and the receiver, the configuration for not including data in the center frequency fc of the system is that the center frequency fc is subcarrier. It can be realized by setting the frequency between.
[0129] 図 13は、 DCサブキャリアを設けることが不要なシステムにおけるサブキャリアの時 間領域及び周波数領域を模式化した図である。  [0129] Fig. 13 is a diagram schematically showing the time domain and frequency domain of subcarriers in a system that does not require the provision of DC subcarriers.
[0130] 図 13に示すように、システム s5は、通常のデータ送信サブキャリア 157, 159, 163 , 165から構成され、そのシステム帯域 TBW— s5の中心周波数 fc— s5は、データ通 信サブキャリア 157, 163とデータ通信サブキャリア 159, 165との間の周波数領域 1 58, 164となる。また、中心周波数 fc—s5からずらした同期信号のサブキャリア 154, 156, 160, 162を所定の同期信号挿入周期で挿入し、その中心周波数 fp— s5がそ れぞれ同期信号のサブキャリア 154, 160と同期信号のサブキャリア 156, 162との 間の周波数領域 155, 161となる。  [0130] As shown in FIG. 13, the system s5 is composed of normal data transmission subcarriers 157, 159, 163, and 165, and the center frequency fc—s5 of the system band TBW—s5 is the data communication subcarrier. Frequency regions 158 and 164 between 157 and 163 and the data communication subcarriers 159 and 165 are obtained. Also, synchronization signal subcarriers 154, 156, 160, and 162 shifted from the center frequency fc—s5 are inserted at a predetermined synchronization signal insertion period, and the center frequency fp—s5 is the synchronization signal subcarrier 154. , 160 and the subcarriers 156, 162 of the synchronization signal become frequency regions 155, 161.
[0131] 図 14は、 DCサブキャリアが設けられたシステムにおける同期信号送信時の周波数 軸上のサブキャリアを模式ィ匕した図である。 [0131] Figure 14 shows the frequency at the time of synchronization signal transmission in a system with DC subcarriers. FIG. 6 is a diagram schematically showing a subcarrier on an axis.
[0132] 図 14に示すように同期信号は、同期信号を含むサブキャリア 170, 172と、 DCサ ブキャリア 171と力も構成されている。 DCサブキャリア 171は、同期信号の中心周波 数 fpに配置され同期信号を含まない。  [0132] As shown in FIG. 14, the synchronization signal is also composed of subcarriers 170 and 172 including the synchronization signal, and DC subcarrier 171. DC subcarrier 171 is arranged at the center frequency fp of the synchronization signal and does not include the synchronization signal.
[0133] また、 DCサブキャリアを設けることが不要なシステムにおいては、同期信号の中心 周波数 fpに同期信号を含まないための構成は、 fpを同期信号を含むサブキャリア間 の周波数に設定することで実現することができる。 [0133] Also, in a system that does not require the provision of DC subcarriers, the configuration for not including the synchronization signal in the center frequency fp of the synchronization signal is to set fp to the frequency between the subcarriers including the synchronization signal. Can be realized.
[0134] 図 15は、 DCサブキャリアを設けることが不要なシステムにおける同期信号送信時 の周波数軸上のサブキャリアを模式ィ匕した図である。 FIG. 15 is a diagram schematically showing subcarriers on the frequency axis at the time of synchronization signal transmission in a system in which it is not necessary to provide DC subcarriers.
[0135] 図 15に示すように同期信号は、同期信号を含むサブキャリア 173, 174から構成さ れている。そして、同期信号の中心周波数 fpを同期信号を含むサブキャリア 173と同 期信号を含むサブキャリア 174との間の周波数になるように設定する。 As shown in FIG. 15, the synchronization signal is composed of subcarriers 173 and 174 including the synchronization signal. Then, the center frequency fp of the synchronization signal is set to be a frequency between the subcarrier 173 including the synchronization signal and the subcarrier 174 including the synchronization signal.
[0136] 図 16は、本発明の通信システムを無線通信方式を用いた無線通信システムに適 用した場合の一形態を示す図である。 [0136] Fig. 16 is a diagram showing an embodiment when the communication system of the present invention is applied to a wireless communication system using a wireless communication system.
[0137] 本形態は図 16に示すように、基地局 101と、移動局 112とから構成されている。基 地局 101と、移動局 112との間にて、電波 111が送受信され、通信が実現されている As shown in FIG. 16, this embodiment includes a base station 101 and a mobile station 112. Communication is realized by transmitting and receiving radio wave 111 between base station 101 and mobile station 112.
[0138] さらに基地局 101は、ネットワーク通信部 102と、無線変調部 103と、同期信号挿入 部 104と、同期信号発生部 105と、基地局無線部 109と、基地局アンテナ 110とから 構成されている。 Base station 101 further includes network communication unit 102, radio modulation unit 103, synchronization signal insertion unit 104, synchronization signal generation unit 105, base station radio unit 109, and base station antenna 110. ing.
[0139] また、移動局 112は、移動局アンテナ 113と、移動局無線部 114と、バンドサーチス テツプ発生部 115と、バンドサーチステップ変更部 116と、同期周波数候補計算部 1 17と、同期検出部 118と、無線復調部 119と、復号部 120と、出力部 121とから構成 されている。  [0139] In addition, mobile station 112 is synchronized with mobile station antenna 113, mobile station radio section 114, band search step generation section 115, band search step change section 116, and synchronization frequency candidate calculation section 117. The detection unit 118, the radio demodulation unit 119, the decoding unit 120, and the output unit 121 are configured.
[0140] ネットワーク通信部 102は、ネットワーク力 受けた信号を受信する。無線変調部 10 3は、ネットワーク通信部 102にて受信された信号に対して、例えば OFDM通信を行 つ 7こめ IFFT (Inverse Fast Fourier Transform) ¾しく ίま FFT (Fast Fourier Transform) などの変調を行う。同期信号発生部 105は、移動局 112との間にて同期をとるために 時間軸上で同じパターンを繰り返す遅延検波可能な信号、もしくは同期検波可能な 既知信号である同期信号を発生する。同期信号挿入部 104は、移動局 112ができる だけ大きなバンドサーチステップで同期信号を検出できる周波数を中心として同期 信号発生部 105にて発生された同期信号を挿入する。基地局無線部 109は、発信 器や増幅器を含み、同期信号挿入部 104の出力信号を基地局アンテナ 110から電 波 111として送信する。 [0140] The network communication unit 102 receives a signal received by the network. Radio modulation section 103 performs, for example, IFFT (Inverse Fast Fourier Transform) or IF (Fast Fourier Transform) modulation on the signal received by network communication section 102 by, for example, OFDM communication. Do. The synchronization signal generator 105 is used to synchronize with the mobile station 112. Generates a synchronous signal that can be delayed or repeats the same pattern on the time axis, or a known signal that can be synchronously detected. The synchronization signal insertion unit 104 inserts the synchronization signal generated by the synchronization signal generation unit 105 around the frequency at which the mobile station 112 can detect the synchronization signal in the largest possible band search step. Base station radio section 109 includes a transmitter and an amplifier, and transmits the output signal of synchronization signal insertion section 104 as radio wave 111 from base station antenna 110.
[0141] 移動局無線部 114は、受信器や増幅器を含み、基地局アンテナ 110から発信され た電波 111を移動局アンテナ 113を介して受信する。バンドサーチステップ発生部 1 15は、複数のバンドサーチステップを記憶もしくは生成して発生する。バンドサーチ ステップ変更部 116は、複数のバンドサーチステップから 1つのバンドサーチステップ を選択する。このとき、最初は大きな値を、そして順次段階的に小さな値を選択する。 同期信号周波数候補計算部 117は、バンドサーチステップ変更部 116にて選択され たバンドサーチステップ力 所定の計算式を用いて同期信号の候補周波数を計算す る。同期検出部 118は、その候補周波数に同期信号があるかどうかを遅延検波もしく は同期検波によって検出する。無線復調部 119は、同期検出部 118にて同期が検 出されたタイミングを用いて、 OFDM復調のための FFT¾しくは IFFT等を行う。復号 部 120は、無線復調部 119にて復調された信号を復号する。出力部 121は、復号部 120にて復号された信号を、表示もしくはスピーカからの音声出力などを行う。  Mobile station radio section 114 includes a receiver and an amplifier, and receives radio wave 111 transmitted from base station antenna 110 via mobile station antenna 113. The band search step generator 115 generates and stores a plurality of band search steps. Band search step changing section 116 selects one band search step from a plurality of band search steps. At this time, a large value is first selected, and then a small value is selected step by step. The synchronization signal frequency candidate calculation unit 117 calculates a synchronization signal candidate frequency using a predetermined calculation formula of the band search step force selected by the band search step change unit 116. The synchronization detection unit 118 detects whether there is a synchronization signal at the candidate frequency by using delay detection or synchronization detection. Radio demodulation section 119 performs FFT or IFFT for OFDM demodulation using the timing at which synchronization is detected by synchronization detection section 118. Decoding section 120 decodes the signal demodulated by radio demodulation section 119. The output unit 121 displays the signal decoded by the decoding unit 120 or outputs sound from a speaker.
[0142] ここで、同期検出部 118にて同期検出が失敗すると、同期信号周波数候補計算部 117によって、先と同じバンドサーチステップ力も所定の式に従って次の候補周波数 が指定され、同期検出部 118にて再び同期検出が行われる。  Here, when synchronization detection fails in synchronization detection section 118, synchronization signal frequency candidate calculation section 117 designates the next candidate frequency for the same band search step force as before according to a predetermined formula, and synchronization detection section 118 The synchronization detection is performed again.
[0143] サーチ帯域内に、同じバンドサーチステップから計算される候補周波数が存在しな くなると、バンドサーチステップ変更部 116にて、次のバンドサーチステップが選択さ れ、同期信号周波数候補計算部 117にて、新しいバンドサーチステップから所定の 式に従って候補周波数が指定され、同期検出部 118にて再び同期検出が行われる  [0143] When there is no candidate frequency calculated from the same band search step in the search band, the band search step changing unit 116 selects the next band search step, and the synchronization signal frequency candidate calculating unit. In 117, a candidate frequency is designated according to a predetermined formula from a new band search step, and synchronization detection is performed again in synchronization detection unit 118.
[0144] 図 16に示した形態において、無線変調部 103及び無線復調部 119は、 OFDM以 外にも、 MC— CDMA (Multi— Carrier Code Division Multiple Access)や FDMA (Fr equency Division Multiple Access)などの通信方式であってもよい。また、無線通信 方式以外に有線通信方式であっても良い。 [0144] In the configuration shown in FIG. 16, the radio modulation unit 103 and the radio demodulation unit 119 are not limited to OFDM, but may be MC-CDMA (Multi-Carrier Code Division Multiple Access) or FDMA (Fr A communication method such as (equency division multiple access) may be used. In addition to the wireless communication method, a wired communication method may be used.
[0145] 図 17は、図 16に示した形態のうち破線で示した部分について、他の構成を用いた 場合の形態を示す図である。 [0145] FIG. 17 is a diagram showing a form in which another configuration is used for the part shown by a broken line in the form shown in FIG.
[0146] 図 17 (a)に示すように本形態は、図 16に示した形態のうち破線で示した部分と比 ベて、移動局無線部 122と、同期信号周波数候補計算部 123と、同期検出部 126と の構成が異なっている。 As shown in FIG. 17 (a), the present embodiment is different from the portion shown by the broken line in the form shown in FIG. 16 in that the mobile station radio unit 122, the synchronization signal frequency candidate calculation unit 123, The configuration of the synchronization detection unit 126 is different.
[0147] 同期信号周波数候補計算部 123は、スーパーヘテロダインやダイレクトコンパージ ヨンで構成される移動局無線部 122の発振器を制御し、同期信号候補周波数が、ベ ースバンド周波数(= 0Hz)、もしくは一定の中間周波数となって同期検出部 126に 入るように制御する。  [0147] The synchronization signal frequency candidate calculation unit 123 controls the oscillator of the mobile station radio unit 122 composed of superheterodyne and direct convergence, and the synchronization signal candidate frequency is the baseband frequency (= 0Hz) or constant. And control to enter the synchronization detection unit 126.
[0148] すなわち、第 n段階目の同期信号候補周波数を fpch— c (n)とし、また、このタイミ ング nの移動局無線部 122におけるダウンコンバージョンによって指定する無線部周 波数を fradio (n)とすると、 fpch_c (n)は式 23に示すようになる。ただし、この場合、 移動局無線部 122から同期検出部 126へのデータ遅延は考慮して 、な 、。  That is, the n-th stage synchronization signal candidate frequency is fpch—c (n), and the radio frequency specified by down-conversion in the mobile station radio unit 122 at this timing n is fradio (n) Then, fpch_c (n) becomes as shown in Equation 23. However, in this case, the data delay from the mobile station radio unit 122 to the synchronization detection unit 126 is taken into consideration.
[0149] [数 23]
Figure imgf000023_0001
[0149] [Equation 23]
Figure imgf000023_0001
[0150] また、図 7 (a)〜(d)に示した関数 f (k, Ntmp)との関係は、式 24、式 25、式 26、及 び、式 27のようになる。 [0150] The relationship with the function f (k, Ntmp) shown in Figs. 7 (a) to 7 (d) is as shown in Equation 24, Equation 25, Equation 26, and Equation 27.
[0151] [数 24] fpch_c (0) = (0, 0) … (式 2 4 ) [0151] [Equation 24] f pch _ c (0) = (0, 0)… (Formula 2 4)
[0152] [数 25] [0152] [Equation 25]
/•pcA c (l) =/-(0, 1) … (式 2 5 ) [0153] [数 26] A c (2) = (l,0) … (式 2 6 ) [0154] [数 27] fpch_c (3) = (l, 2) … (式 2 7 ) / • pcA c (l) = /-(0, 1)… (Equation 2 5) [0153] [Equation 26] A c (2) = (l, 0)… (Equation 2 6) [0154] [Equation 27] f pch _ c (3) = (l, 2)… (Equation 2 7)
[0155] 従って、 f (k, Ntmp)と同様に、 fpch— c (n)を中心とした信号が同期検出部 126 に入力される。同期検出部 126は、常に同じ OHzもしくは、中間周波数を中心として 同期検出を行う。 Therefore, similarly to f (k, Ntmp), a signal centered on fpch—c (n) is input to the synchronization detection unit 126. The synchronization detection unit 126 always performs synchronization detection around the same OHz or intermediate frequency.
[0156] また、図 17 (b)に示すように本形態は、図 16に示した形態のうち破線で示した部分 と比べて、移動局無線部 124の構成が異なっている。  [0156] Also, as shown in Fig. 17 (b), the present embodiment is different in the configuration of mobile station radio section 124 from the portion shown in broken lines in the configuration shown in Fig. 16.
[0157] 移動機無線部 124において、タイミング nにおける周波数のダウンコンバージョンに よって指定する無線部周波数を fradio (n)とし、また、同期検出部 118でデジタルで 指定するデジタル周波数を fdig (n)とすると、それらの関係は式 28のようになる。ただ し、この場合、移動局無線部 124から同期検出部 118へのデータ遅延は考慮してい ない。  [0157] In mobile radio section 124, the radio section frequency specified by frequency down-conversion at timing n is fradio (n), and the digital frequency specified digitally by synchronization detection section 118 is fdig (n). Then, their relationship is as shown in Equation 28. However, in this case, the data delay from the mobile station radio unit 124 to the synchronization detection unit 118 is not considered.
[0158] [数 28] fpch—Λ 二 fradio n) f dig、r^ · · · (式 2 8 ) [0158] [Equation 28] fpch—Λ 2 fradio n) f dig , r ^ · · · (Equation 2 8)
[0159] 移動局無線部 124に指定する無線部周波数 fradio (n)はアナログであるため、そ れを変更すると周波数安定に時間を要するため、頻繁に変更すると時間が力かる。 [0159] Since the radio frequency fradio (n) specified for the mobile station radio unit 124 is analog, changing it requires time to stabilize the frequency.
[0160] 一方、同期検出部 118によるデジタル周波数 fdig (n)の指定方法は、一般的には 、受信信号に sin, cos信号を掛ける方法がある。また、遅延検波を用いる場合は、受 信信号を通すフィルタを変更する方法を用いることができる。レプリカ信号を用いて同 期検波する場合は、レプリカ生成における周波数軸から時間軸への変換 (IFFT, F FT)において、周波数軸でシフトさせて変換して一致を検出する方法がある。このと きの同期検出は、既知信号との一致を検出する。または、既知信号から IFFTや FFT 等を用いて計算されたレプリカ信号との一致を検出する。そして、周波数軸上でシフ トした複数の信号力 複数のレプリカ信号を生成し、生成されたレプリカ信号を記憶 して用いても良い。  On the other hand, the method of specifying the digital frequency fdig (n) by the synchronization detection unit 118 generally includes a method of multiplying the received signal by a sin, cos signal. When using delay detection, a method of changing the filter through which the received signal passes can be used. In the case of synchronous detection using a replica signal, there is a method of detecting coincidence by shifting the frequency axis and converting the frequency axis to the time axis in replica generation (IFFT, FFT). The synchronization detection at this time detects a match with a known signal. Alternatively, a match with a replica signal calculated from the known signal using IFFT or FFT is detected. Then, a plurality of signal forces shifted on the frequency axis may be generated, and the generated replica signals may be stored and used.
[0161] この際、複数の予め演算されて記憶されたレプリカを用いて行うには記憶容量が問 題になる。 [0161] At this time, in order to use a plurality of pre-computed and stored replicas, the storage capacity is not sufficient. It becomes a title.
[0162] そのため、デジタル周波数のみの変更で対応可能な範囲を Δ fdigとすると、計算さ れた fpch— c (n)力 式 29を満たす場合は、同期検出部のみを制御して周波数を指 定する。また、満たさない場合は、移動局無線部 124を制御、もしくは、移動局無線 部 124と同期検出部 118との双方を制御して周波数を指定する方法を用いることが できる。  [0162] Therefore, assuming that the range that can be handled by changing only the digital frequency is Δ fdig, if the calculated fpch—c (n) force equation 29 is satisfied, only the synchronization detector is controlled to specify the frequency. Determine. If not satisfied, a method can be used in which the mobile station radio unit 124 is controlled, or both the mobile station radio unit 124 and the synchronization detection unit 118 are controlled to specify the frequency.
[0163] [数 29] fradio (n-l) -fdig/2<fpch_c in) <fradia {n-\) +fdjg/2 … (式 2 9 ) [0163] [ Equation 29] f radio (nl) -f dig / 2 <f pch _ c in) <f radia (n- \) + f djg / 2… (Equation 29 )

Claims

請求の範囲 The scope of the claims
[1] 同期確立するための同期信号を送信する送信装置と、前記同期信号を検出する事 によって同期確立する受信装置とを有してなる通信システムにおいて、  [1] In a communication system including a transmission device that transmits a synchronization signal for establishing synchronization and a reception device that establishes synchronization by detecting the synchronization signal,
前記受信装置は、前記同期信号の検出の試行を行う間隔を粗く間引いたものから 間引かないものへ順次切り替え、  The receiving device sequentially switches from the thinned thinned interval to the non-thinned one for performing the detection of the synchronization signal,
前記送信装置は、前記同期信号を前記受信装置の粗く間引いた間隔にて送信す るように設定することを特徴とする通信システム。  The communication apparatus is configured to transmit the synchronization signal at an interval that is roughly thinned out by the reception apparatus.
[2] 請求項 1に記載の通信システムにおいて、  [2] In the communication system according to claim 1,
前記同期は周波数同期であり、前記同期確立は、有効な通信周波数の検出であり 前記受信装置は、予め設定された周波数変更量を大きな値から小さな値へ順次段 階的に切り替えて、前記周波数変更量に基づいて前記同期信号を検出するための 受信側候補周波数を計算し、前記計算された受信側候補周波数を用いて前記同期 信号を検出し、  The synchronization is frequency synchronization, and the establishment of synchronization is detection of an effective communication frequency.The reception device sequentially switches a preset frequency change amount from a large value to a small value, and the frequency is set. Calculating a reception-side candidate frequency for detecting the synchronization signal based on a change amount, detecting the synchronization signal using the calculated reception-side candidate frequency;
前記送信装置は、前記通信システムの通信を行うシステム帯域幅に基づ 、て計算 された  The transmitter is calculated based on a system bandwidth for performing communication of the communication system.
できるだけ大きな前記周波数変更量に基づいて前記同期信号を送信するための周 波数の候補となる送信側候補周波数を計算し、前記送信側候補周波数が前記シス テム周波数帯域内に存在する場合、前記送信側候補周波数を前記同期信号を送信 するための同期信号周波数として決定することを特徴とする通信システム。  When a transmission-side candidate frequency that is a frequency candidate for transmitting the synchronization signal is calculated based on the frequency change amount that is as large as possible, and the transmission-side candidate frequency exists in the system frequency band, the transmission frequency A communication system, wherein a side candidate frequency is determined as a synchronization signal frequency for transmitting the synchronization signal.
[3] 請求項 1または請求項 2に記載の通信システムにお ヽて、 [3] In the communication system according to claim 1 or claim 2,
前記受信装置は、前記受信側周波数変更量の整数倍にオフセットを加算して前記 受信側候補周波数とし、  The reception device adds an offset to an integral multiple of the reception-side frequency change amount to obtain the reception-side candidate frequency,
前記送信装置は、前記送信側周波数変更量の整数倍にオフセットを加算して前記 送信側候補周波数とすることを特徴とする通信システム。  The transmission apparatus adds the offset to an integral multiple of the transmission-side frequency change amount to obtain the transmission-side candidate frequency.
[4] 請求項 3に記載の通信システムにおいて、 [4] In the communication system according to claim 3,
前記受信装置は、前記オフセットを 0とし、  The receiver sets the offset to 0,
前記送信装置は、前記オフセットを 0とすることを特徴とする通信システム。 The communication apparatus, wherein the transmission device sets the offset to zero.
[5] 請求項 1乃至 4のいずれか 1項に記載の通信システムにおいて、 [5] In the communication system according to any one of claims 1 to 4,
前記送信装置は、前記同期信号として既知信号を送信し、  The transmitter transmits a known signal as the synchronization signal;
前記受信装置は、前記受信側候補周波数と、前記既知信号との一致、または前記 既知信号から IFFTもしくは FFTを用いて計算されたレプリカ信号との一致を検出し 、前記計算されたレプリカ信号を記憶することを特徴とする通信システム。  The receiving device detects a match between the reception-side candidate frequency and the known signal, or a match between the known signal and a replica signal calculated using IFFT or FFT, and stores the calculated replica signal A communication system.
[6] 請求項 1乃至 4のいずれか 1項に記載の通信システムにおいて、 [6] In the communication system according to any one of claims 1 to 4,
前記送信装置は、前記同期信号として同じパターンを繰り返す信号を送信し、 前記受信装置は、遅延検波により前記同期信号を検出することを特徴とする通信 システム。  The transmission apparatus transmits a signal that repeats the same pattern as the synchronization signal, and the reception apparatus detects the synchronization signal by delay detection.
[7] 請求項 1乃至 6のいずれか 1項に記載の通信システムにおいて、  [7] In the communication system according to any one of claims 1 to 6,
前記送信装置は、前記送信側周波数変更量を前記システム帯域の中心周波数の 最小配置単位の整数倍に設定することを特徴とする通信システム。  The transmission device sets the transmission side frequency change amount to an integral multiple of a minimum arrangement unit of a center frequency of the system band.
[8] 請求項 1乃至 7のいずれか 1項に記載の通信システムにおいて、 [8] In the communication system according to any one of claims 1 to 7,
前記受信装置は、前記受信側周波数変更量を前記システム帯域の中心周波数の 最小配置単位の整数倍に設定することを特徴とする通信システム。  The receiving apparatus sets the amount of frequency change on the receiving side to an integral multiple of a minimum arrangement unit of a center frequency of the system band.
[9] システム周波数帯域内にて同期をとるための同期信号を受信装置へ送信する送信 装置であって、 [9] A transmission device that transmits a synchronization signal for synchronization within a system frequency band to a reception device,
前記同期信号の帯域幅に基づいて計算されたできるだけ大きな送信側周波数変 更量に基づいて前記同期信号を送信するための周波数の候補となる送信側候補周 波数を計算し、前記送信側候補周波数が前記システム周波数帯域内に存在する場 合、前記送信側候補周波数を前記同期信号を送信するための同期信号周波数とし て決定する送信装置。  Based on the largest possible transmission-side frequency change amount calculated based on the bandwidth of the synchronization signal, a transmission-side candidate frequency that is a frequency candidate for transmitting the synchronization signal is calculated, and the transmission-side candidate frequency is calculated. Is present in the system frequency band, the transmission side candidate frequency is determined as a synchronization signal frequency for transmitting the synchronization signal.
[10] 請求項 9に記載の送信装置において、 [10] In the transmission device according to claim 9,
前記送信側周波数変更量の整数倍にオフセットを加算して前記送信側候補周波 数とすることを特徴とする送信装置。  A transmission apparatus characterized by adding an offset to an integral multiple of the transmission side frequency change amount to obtain the transmission side candidate frequency.
[11] 請求項 10に記載の送信装置において、 [11] In the transmission device according to claim 10,
前記オフセットを 0とすることを特徴とする送信装置。  A transmission apparatus characterized in that the offset is 0.
[12] 送信装置から送信された同期信号を受信する受信装置であって、 予め設定された受信側周波数変更量を大きな値から小さな値へ順次段階的に切り 替えて、前記受信側周波数変更量に基づいて前記同期信号を検出するための受信 側候補周波数を計算し、前記計算された受信側候補周波数を用いて前記同期信号 を検出する受信装置。 [12] A receiver that receives a synchronization signal transmitted from a transmitter, The reception side frequency change amount set in advance is sequentially switched from a large value to a small value, and the reception side candidate frequency for detecting the synchronization signal is calculated based on the reception side frequency change amount. A receiving apparatus that detects the synchronization signal using the calculated reception-side candidate frequency.
[13] 請求項 12に記載の受信装置において、  [13] The receiving device according to claim 12,
前記受信側周波数変更量の整数倍にオフセットを加算して前記受信側候補周波 数とすることを特徴とする受信装置。  A receiving apparatus, wherein an offset is added to an integer multiple of the receiving side frequency change amount to obtain the receiving side candidate frequency.
[14] 請求項 13に記載の受信装置において、 [14] The receiving device according to claim 13,
前記オフセットを 0とすることを特徴とする受信装置。  A receiving apparatus, wherein the offset is 0.
[15] システム周波数帯域内にて同期をとるための同期信号を送信する送信装置と、前 記システム周波数帯域内で前記同期信号を検出する受信装置とを有してなる通信シ ステムにおける同期検出方法であって、 [15] Synchronization detection in a communication system having a transmission device that transmits a synchronization signal for synchronization within the system frequency band and a reception device that detects the synchronization signal within the system frequency band A method,
前記受信装置が、前記同期信号の検出の試行を行う間隔を粗く間引いたものから 間引かないものへ順次切り替える処理と、  A process of sequentially switching the reception device from performing the synchronization signal detection trial to a non-thinned one roughly
前記送信装置が、前記同期信号を前記受信装置の粗く間引いた間隔にて検出さ れるように送信設定する処理とを有する同期検出方法。  A synchronization detection method comprising: a process of setting transmission so that the transmission device is detected at an interval obtained by roughly thinning out the synchronization signal of the reception device.
[16] 請求項 15に記載の同期検出方法において、 [16] In the synchronization detection method according to claim 15,
前記受信装置が、予め設定された周波数変更量を大きな値から小さな値へ順次段 階的に切り替える処理と、  A process in which the receiving device sequentially switches a preset frequency change amount from a large value to a small value;
前記受信装置が、前記受信側周波数変更量に基づいて前記同期信号を検出する ための受信側候補周波数を計算する処理と、  A process in which the receiving apparatus calculates a receiving-side candidate frequency for detecting the synchronization signal based on the receiving-side frequency change amount;
前記受信装置が、前記計算された受信側候補周波数を用いて前記同期信号を検 出する処理と、  A process in which the receiving device detects the synchronization signal using the calculated reception candidate frequency;
前記送信装置が、前記同期信号の帯域幅に基づいて計算されたできるだけ大きな 前記周波数変更量に基づいて前記同期信号を送信するための周波数の候補となる 送信側候補周波数を計算する処理と、  A process of calculating a transmission-side candidate frequency that is a frequency candidate for transmitting the synchronization signal based on the frequency change amount that is as large as possible calculated based on the bandwidth of the synchronization signal;
前記送信装置が、前記送信側候補周波数が前記システム周波数帯域内に存在す る場合、前記送信側候補周波数を前記同期信号を送信するための同期信号周波数 として決定する処理と、 When the transmission side candidate frequency is present in the system frequency band, the transmission device uses the transmission side candidate frequency as a synchronization signal frequency for transmitting the synchronization signal. Process to determine as
前記送信装置が、前記同期信号周波数を用いて前記同期信号を前記受信装置へ 送信する処理とを有する同期検出方法。  A synchronization detection method comprising: a process in which the transmission device transmits the synchronization signal to the reception device using the synchronization signal frequency.
PCT/JP2007/061297 2006-06-09 2007-06-04 Communication system, transmission device, reception device, and synchronization method WO2007142194A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008520563A JPWO2007142194A1 (en) 2006-06-09 2007-06-04 COMMUNICATION SYSTEM, TRANSMISSION DEVICE, RECEPTION DEVICE, AND SYNCHRONIZATION DETECTION METHOD
US12/304,113 US8489133B2 (en) 2006-06-09 2007-06-04 Communication system, transmission device, reception device, and synchronization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-161058 2006-06-09
JP2006161058 2006-06-09

Publications (1)

Publication Number Publication Date
WO2007142194A1 true WO2007142194A1 (en) 2007-12-13

Family

ID=38801445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061297 WO2007142194A1 (en) 2006-06-09 2007-06-04 Communication system, transmission device, reception device, and synchronization method

Country Status (5)

Country Link
US (1) US8489133B2 (en)
JP (1) JPWO2007142194A1 (en)
KR (1) KR20090018959A (en)
CN (1) CN101467373A (en)
WO (1) WO2007142194A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523331A (en) * 2008-06-09 2011-08-04 クゥアルコム・インコーポレイテッド Interference reduction between OFDM carriers by frequency offset optimization
JP2011530962A (en) * 2008-08-12 2011-12-22 クゥアルコム・インコーポレイテッド Simultaneous synchronization channel search
WO2019028882A1 (en) * 2017-08-11 2019-02-14 Nec Corporation Methods and apparatuses for synchronization signal transmission
JP2020511074A (en) * 2017-08-10 2020-04-09 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Sending device, receiving device, and methods thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007142194A1 (en) * 2006-06-09 2009-10-22 日本電気株式会社 COMMUNICATION SYSTEM, TRANSMISSION DEVICE, RECEPTION DEVICE, AND SYNCHRONIZATION DETECTION METHOD
EP3361793B1 (en) * 2015-11-06 2021-03-03 Huawei Technologies Co., Ltd. Frequency determining method and device
US9787508B2 (en) 2015-12-02 2017-10-10 Samsung Electronics Co., Ltd. Computing system with communication link mechanism and method of operation thereof
CN110460418B (en) 2016-10-10 2020-08-07 华为技术有限公司 Method and device for sending and receiving synchronization signal
US11856540B2 (en) 2020-02-10 2023-12-26 Nec Corporation Methods and apparatuses for synchronization signal transmission
CN107749787A (en) * 2017-09-27 2018-03-02 全球能源互联网研究院有限公司 Synchronizing signal generating method, apparatus and system
CN115225444A (en) 2017-10-31 2022-10-21 瑞典爱立信有限公司 Method and apparatus for indication of subcarrier spacing parameter set

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313285A (en) * 1997-05-13 1998-11-24 Mitsubishi Electric Corp Digital sound broadcast receiver
JP2000151554A (en) * 1998-10-30 2000-05-30 Mitsubishi Electric Inf Technol Center Europ Bv Method for deciding frequency deviation, method for tuning image receiver to multiplex carrier wave signal and multiplex carrier wave broadcasting signal image receiver
EP1445907A2 (en) * 2003-01-30 2004-08-11 Agere Systems Inc. Estimation of subcarrier attentuations
WO2005022797A2 (en) * 2003-09-02 2005-03-10 Qualcomm, Incorporated Synchronization in a broadcast ofdm system using time division multiplexed pilots
WO2005101711A1 (en) * 2004-04-14 2005-10-27 Matsushita Electric Industrial Co., Ltd. Reception device
JP2006129307A (en) * 2004-10-29 2006-05-18 Nippon Telegr & Teleph Corp <Ntt> Circuit and method for multi-carrier signal demodulation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324290B1 (en) * 1994-03-08 2001-11-27 Bridgestone Corporation Method and apparatus for diagnosing sound source and sound vibration source
JP3889457B2 (en) * 1996-03-13 2007-03-07 パイオニア株式会社 Rotation control device and rotation control method
DE19733825A1 (en) 1997-08-05 1999-02-11 Siemens Ag Method and arrangement for combined measurement of the start of a data block and the carrier frequency offset in a multicarrier transmission system for irregular transmission of data blocks
JP2961105B1 (en) 1998-06-19 1999-10-12 株式会社次世代デジタルテレビジョン放送システム研究所 OFDM receiver
KR100378058B1 (en) * 1998-09-28 2003-03-29 마쯔시다덴기산교 가부시키가이샤 Vsb receiver
US20050075125A1 (en) 2002-01-21 2005-04-07 Bada Anna Marina Method and mobile station to perform the initial cell search in time slotted systems
JP3973921B2 (en) 2002-02-14 2007-09-12 三菱電機株式会社 Frequency selection method and receiver
JP3940414B2 (en) 2002-08-28 2007-07-04 富士通株式会社 Reception apparatus and frame timing detection method thereof
US7327811B2 (en) * 2003-04-01 2008-02-05 Telefonaktiebolaget L M Ericsson Method and apparatus for facilitating signal discrimination in a wireless network by applying known frequency offsets
US7065163B2 (en) * 2003-10-08 2006-06-20 Qualcomm, Incorporated Frequency error estimation using multiple integration lengths
JP4190406B2 (en) * 2003-12-25 2008-12-03 三洋電機株式会社 Frequency offset estimation method and frequency offset correction apparatus using the same
KR100585155B1 (en) * 2004-08-19 2006-05-30 삼성전자주식회사 A Method of frequency domain channel estimation using a transform domain complex filter for a DVB-T Receiver
JPWO2007142194A1 (en) * 2006-06-09 2009-10-22 日本電気株式会社 COMMUNICATION SYSTEM, TRANSMISSION DEVICE, RECEPTION DEVICE, AND SYNCHRONIZATION DETECTION METHOD
WO2011025426A1 (en) * 2009-08-31 2011-03-03 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for allocating scheduling request resources in a wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313285A (en) * 1997-05-13 1998-11-24 Mitsubishi Electric Corp Digital sound broadcast receiver
JP2000151554A (en) * 1998-10-30 2000-05-30 Mitsubishi Electric Inf Technol Center Europ Bv Method for deciding frequency deviation, method for tuning image receiver to multiplex carrier wave signal and multiplex carrier wave broadcasting signal image receiver
EP1445907A2 (en) * 2003-01-30 2004-08-11 Agere Systems Inc. Estimation of subcarrier attentuations
WO2005022797A2 (en) * 2003-09-02 2005-03-10 Qualcomm, Incorporated Synchronization in a broadcast ofdm system using time division multiplexed pilots
WO2005101711A1 (en) * 2004-04-14 2005-10-27 Matsushita Electric Industrial Co., Ltd. Reception device
JP2006129307A (en) * 2004-10-29 2006-05-18 Nippon Telegr & Teleph Corp <Ntt> Circuit and method for multi-carrier signal demodulation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523331A (en) * 2008-06-09 2011-08-04 クゥアルコム・インコーポレイテッド Interference reduction between OFDM carriers by frequency offset optimization
US8494065B2 (en) 2008-06-09 2013-07-23 Qualcomm Incorporated Interference reduction between OFDM carriers by frequency offset optimization
JP2011530962A (en) * 2008-08-12 2011-12-22 クゥアルコム・インコーポレイテッド Simultaneous synchronization channel search
JP2020511074A (en) * 2017-08-10 2020-04-09 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Sending device, receiving device, and methods thereof
US11290314B2 (en) 2017-08-10 2022-03-29 Huawei Technologies Co., Ltd. Transmitting device, receiving device and methods thereof
JP7106562B2 (en) 2017-08-10 2022-07-26 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Sending Devices, Receiving Devices, and Their Methods
WO2019028882A1 (en) * 2017-08-11 2019-02-14 Nec Corporation Methods and apparatuses for synchronization signal transmission

Also Published As

Publication number Publication date
JPWO2007142194A1 (en) 2009-10-22
CN101467373A (en) 2009-06-24
US8489133B2 (en) 2013-07-16
US20100178877A1 (en) 2010-07-15
KR20090018959A (en) 2009-02-24

Similar Documents

Publication Publication Date Title
WO2007142194A1 (en) Communication system, transmission device, reception device, and synchronization method
CN101283563B (en) Method and apparatus for accelerated super 3G cell search
RU2462817C1 (en) Method to send pilot signal, basic station, mobile station and cellular communication system, where such method is applied
EP2611059B1 (en) Cell search method, forward link frame transmission method, apparatus using the same and forward link frame structure
JP4440895B2 (en) Transmitting apparatus and transmitting method
KR100827064B1 (en) Method and Apparatus for transmitting synchronization signal in OFDM based cellular communication systems
KR101384503B1 (en) Secondary synchronization sequences for cell group detection in a cellular communications system
RU2464721C2 (en) Methods and devices for synchronisation and detection in wireless communication systems
KR101330795B1 (en) Cell search method in OFDM cellular system, frame transmissin method thereof, and forward link frame structure thereof
US7430193B2 (en) Method and apparatus for embodying and synchronizing downlink signal in mobile communication system and method for searching cell using the same
EP2518961A1 (en) Method and device for detecting primary synchronization signal and generating sequence in long term evolution (lte) system
WO2007069329A1 (en) Transmission processing method and base station in mobile communication system
WO2007074525A1 (en) Radio communication method, transmitter, and receiver
WO2007079680A1 (en) Frequency offset correction method for wideband time division duplex cell communication system and method for cell first searching
WO2006112179A1 (en) Communication terminal, base station, and receiving method
WO2012062088A1 (en) Method and equipment for decoding up-link control channel
JP2009005156A (en) Communication system, reception device and synchronization detecting method
US8223742B2 (en) Multicarrier transmitting apparatus
KR101162216B1 (en) Method For Transmitting and Receiving Signal In The Communication System Using Variable Length Cyclic Prefix, And Basestation and User Equipment Doing The Same
EP2151933A1 (en) Multicarrier transmitter and multicarrier receiver
JP2008167304A (en) Receiver, mobile station and base station
RU2427083C2 (en) Pilot signal transmission method, base station, mobile station and cellular communication system using said method
JP5154517B2 (en) Receiving apparatus, receiving method, and communication system
CN103647578A (en) A mobile communication system and a base station therein

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021486.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520563

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12304113

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087030607

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07744657

Country of ref document: EP

Kind code of ref document: A1