WO2007142100A1 - Optical system manufacturing method - Google Patents

Optical system manufacturing method Download PDF

Info

Publication number
WO2007142100A1
WO2007142100A1 PCT/JP2007/061016 JP2007061016W WO2007142100A1 WO 2007142100 A1 WO2007142100 A1 WO 2007142100A1 JP 2007061016 W JP2007061016 W JP 2007061016W WO 2007142100 A1 WO2007142100 A1 WO 2007142100A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
approximate
optical system
lens
change
Prior art date
Application number
PCT/JP2007/061016
Other languages
French (fr)
Japanese (ja)
Inventor
Tomokazu Masubuchi
Masayuki Imaoka
Toshiya Takitani
Kohtaro Hayashi
Jun Ishihara
Yasuhiro Matsumoto
Yoshihiro Okumura
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to CN2007800208192A priority Critical patent/CN101460295B/en
Priority to JP2007554377A priority patent/JP4111251B2/en
Publication of WO2007142100A1 publication Critical patent/WO2007142100A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0647Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
    • G02B17/0663Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Definitions

  • the present invention relates to a method for manufacturing an optical system mounted on an image projection apparatus (projector) or the like.
  • optical elements molded with a resin such as plastic have been used in a processing optical system and a laser scanning optical system. This is because such an optical element made of resin is cheaper and lighter than an optical element made of glass, and is superior in mass productivity.
  • a resin optical element is manufactured by a molding method such as injection molding or injection compression molding using a mold (mold member). Therefore, a resin optical element has an advantage that it can easily form a curved surface (optical surface) having an aspherical shape or a free-form surface shape, compared to a glass optical element.
  • Patent Document 1 When an optical element having an optical surface with a complicated shape such as an aspherical shape or a free-form surface is molded with a mold, surface defects occur due to non-uniform cooling and shrinkage on the optical surface. It's easy to do. For this reason, it is generally performed to measure a defective and difficult surface shape and correct the mold based on the measurement result (Patent Document 1).
  • Patent Document 2 is an example of the measurement of the surface shape.
  • the optical surface is aspherically approximated using data obtained by three-dimensional measurement of the optical surface, and the polynomial approximated surface is incorporated into the optical system, so that the optical surface of the optical element is integrated. Performance (change in aberrations). Then, by evaluating the optical performance, the optical surface (optimum shape optical surface) required to exhibit the desired optical performance is found, and the mold is corrected so that it becomes the optimal shape optical surface. It may be processed.
  • Patent Document 1 JP-A-7-60857
  • Patent Document 2 JP 2004-361274 A
  • Patent Document 2 approximates an error between optical surface measurement data (three-dimensional measurement data) and predetermined design value data as a whole surface by a polynomial (error polynomial). Therefore, if there is a local undulation (undulation part) on the measured optical surface, using an approximate expression of higher order to properly represent the undulation part, other than the undulation (non-undulation part) High-order undulation will occur. On the other hand, if the low-order approximation formula is used to properly represent the non-waviness part, the waviness part cannot be represented properly.
  • the optical surface is corrected so that an error between the measurement data on the optical surface that appropriately corrects the waviness portion and the predetermined design value data is offset.
  • the cavity surface of the mold corresponding to is corrected and processed, and the optical element is reshaped.
  • An object of the present invention is to provide a method for manufacturing an optical system (more specifically, an optical system including a plurality of optical elements) in a short time and at a low cost while being efficient.
  • the present invention is a method for manufacturing an optical system including a plurality of optical surfaces by molding using a mold member.
  • an approximate surface of all the optical surfaces of the optical system including the optical surface formed by the initial molding is set, and an approximate surface of all the optical surfaces in the optical system is used.
  • the first optical performance evaluation process for evaluating the optical performance and at least one of the approximate surfaces of all optical surfaces molded by the mold member is a change approximate surface, while the molded member of the approximate surfaces of all the optical surfaces is molded At least one surface that is
  • the amount of change calculation process to obtain the amount of change of the approximated surface when the optimum optical performance of the entire system is exhibited, and the amount of correction processing to the cavity surface of the mold member corresponding to the approximated surface of change based on the amount of change
  • the first correction processing step to create a new cavity surface, and the first molding to mold the optical element using the correction mold member processed in the first correction processing step
  • a second molding step in which the optical element is molded using a mold member other than the correction mold member.
  • an approximate surface is set based on the measurement result of the surface shape of the optical surface corresponding to the new cavity surface in the optical element molded with the mold member having the new cavity surface.
  • a second correction processing step for correcting the new cavity surface so as to cancel out the shape error between the approximate surface of the optical surface corresponding to the new cavity surface and the new cavity surface, and a second correction processing step.
  • the second correction process is performed only on the already corrected cavity surface (new cavity surface). For this reason, the second correction processing is only a light burden compared to the burden of correcting all the cavity surfaces.
  • the optical performance of the optical system falls within an allowable range if correction processing that cancels the shape error is performed with high accuracy. Then, the existence of this lightly burdened second correction process enables the optical system manufacturing method to easily manufacture an optical system that exhibits high optical performance.
  • an approximate surface based on the measurement surface shape of the optical surface formed by the initial molding is set for the optical surface formed by the molding using the mold member. It is desirable.
  • design data of the optical surface is set as the approximate surface on the polished surface.
  • an approximate surface having the largest difference between the approximate surface of each optical surface in the optical system and the design data of the optical surface corresponding to each approximate surface is a change approximate surface.
  • a plane perpendicular to a predetermined reference axis on the optical surface of the optical element is divided into a plurality of spaces, and a plurality of spaces with these divided planes as the bottom are set. It is desirable that a space division setting step is included and an approximate expression having continuity at the boundary between spaces is used.
  • the approximate expression is a function of at least a third order or higher.
  • continuity means that the second derivative of the approximate expression is continuous at the boundary between the divided spaces.
  • An example of such an approximate expression is a spline function.
  • the optical system preferably includes at least one lens and at least one mirror as elements molded by the mold member, and at least the lens surface is used as a change approximation surface. ,.
  • At least one of the lenses and mirrors included in the optical system is formed by glass molding.
  • the optical system includes a non-rotationally symmetric surface, and in the change amount calculating step, an approximate surface corresponding to the non-rotationally symmetric surface is a change approximate surface.
  • the optical system includes at least one lens and at least one mirror as an element molded by the mold member, and at least one lens surface is a non-rotationally symmetric surface and changes.
  • the non-rotationally symmetric surface be a change approximate surface.
  • the optical system includes at least one lens and at least one mirror as optical elements (particularly, at least one of the lenses and mirrors included in the optical system). If one lens is formed by glass molding), it is desirable to use at least one lens surface as the approximate surface.
  • FIG. 1 is a flowchart showing the steps of a method for manufacturing a projection optical system.
  • FIG. 2 is a plan view showing a measurement state of a lens surface in a second lens.
  • FIG. 3 is a plan view showing a divided space on the lens surface.
  • Figure 4 is a spot diagram of the projection optical system including only the initial product.
  • FIG. 5 is a spot diagram of the projection optical system including the reshaped product.
  • FIG. 6 is a spot diagram of a projection optical system that includes a glass optical element and a resin optical element, which are composed only of initial products (however, in the Z-axis direction on the screen surface). Half of the minus side).
  • FIG. 7 is a spot diagram showing the positive half of the Z-axis direction on the screen surface, unlike FIG.
  • FIG. 8 is a spot diagram of a projection optical system that includes a glass optical element and a resin optical element, of which a reconstructed product is included (however, the Z-axis on the screen surface) Half of the negative direction).
  • FIG. 9 is a spot diagram showing the positive half of the Z-axis direction on the screen, unlike Fig. 8.
  • FIG. 10 is a block diagram of an image projection apparatus.
  • FIG. 10 shows a screen SCN, an illumination optical system (not shown), a light modulation element MD that modulates light from the illumination optical system, and light (image light) modulated by the powerful light modulation element MD.
  • An image projection apparatus PDS including a projection optical system PS that leads to an SCN is shown.
  • the image projector PDS is a rear projection type that projects light obliquely from the light modulation element MD (reduction side) toward the back of the screen SC N (enlargement side).
  • the projection optical system PS includes a first mirror (spherical mirror) Ml and a first lens (rotationally asymmetric free-form surface lens) Ll according to the light traveling order from the light modulation element MD to the screen SCN. , 2nd mirror (rotationally symmetric aspherical mirror) M2, 2nd lens (rotationally asymmetric free-form surface lens) L2, 3rd mirror (rotationally asymmetric free-form surface mirror) M3, 4th mirror (rotationally asymmetric free-form surface mirror) M4, And the flat mirror FM is arranged.
  • a protective cover glass CG is disposed on the front surface of the light modulation element MD (emitted surface of the modulated light), and between the first mirror Ml and the first lens L1, there is no light.
  • An optical aperture ST that blocks part of the light is placed.
  • the plane mirror FM is a folding mirror that reflects and reflects the light from the fourth mirror M4 to the screen SCN.
  • the plane mirror FM is not a curved reflecting surface, it is assumed that another manufacturing method is used instead of resin molding which is advantageous for the subsequent curved surface production. In addition, the flat mirror FM is unlikely to have a significant effect on the optical performance, so the subsequent optical performance evaluation Etc., the plane mirror FM is not included in the projection optical system PS.
  • first mirror Ml first lens Ll
  • second mirror M2 second lens L2
  • third mirror M3, and fourth mirror M4 which are optical elements. Is called.
  • the reflecting surface S (M1) of the first mirror Ml that is the optical surface (S), the reduction side lens surface S (Lls) and the enlargement side lens surface S (Lle) of the first lens L1, Reflection surface S (M2) of the second mirror M2, reduction side lens surface S (L2s) and enlargement side lens surface S (L2e) of the second lens L2, reflection surface S (M3) of the third mirror M3, and second
  • the reflection surface S (M4) of the 4-mirror M4 is expressed by a polynomial (the surface expressed in this way may be called the design optical surface).
  • design optical surface is set so that desirable optical performance can be exhibited as the entire projection optical system PS (entire system).
  • the polynomial representing the design optical surface is “F”, and the polynomial F corresponding to each optical surface is listed below. And the design optical surface shown by the polynomial F may be called “design data”.
  • Equation 1 As an example of the polynomial representing the design optical surface, the following equation (Equation 1) using local orthogonal coordinates (X, Y, Z) with the surface vertex of each design optical surface as the origin is given. It is done.
  • Step 2 Mold Design Process for All Optical Elements>
  • molds first mold to eighth mold
  • machining data (Numerical Control Data; NC data) corresponding to the design data of all optical surfaces is created.
  • the processing tool is a diamond cutter with a rounded tip. Therefore, as the shape of the workpiece in the mold changes, the contact point of the diamond cutter tip with respect to the machined surface changes. Therefore, machining data is created by calculating the force point coordinates taking into account the shape of the machining tool.
  • the mold cavity surface (the mold surface for molding the optical surface) is subjected to nickel-containing phosphorous treatment. Therefore, the polished surface is processed with a diamond cutter, and the entire surface of the polished surface is uniformly polished to complete the cavity surface.
  • each mold first mold to eighth mold
  • the polynomial f corresponding to each cavity surface (T) is listed below.
  • the cavity surface represented by the polynomial f may be referred to as “initial cavity surface data”.
  • the molding conditions of the second lens L2 are as follows.
  • the second lens L2 produced under the following molding conditions has a thickness (core thickness) of 3.5 mm and a maximum effective area EA (see Fig. 2 and 3 below) having a diameter of 52 mm. .
  • the equipment for measuring the surface shape is not limited, but examples include ultra-high-precision three-dimensional measuring machine UA3P manufactured by Matsushita Electric Industrial Co., Ltd. and Form Talysurf manufactured by Rank Taylor Hobson.
  • Fig. 2 shows the measurement state (however, Fig. 2 measures the reduction lens surface S (L2s) of the second lens L2).
  • This figure 2 shows a local right-handed Cartesian coordinate system (X, Y, Z) with the surface vertex of the lens surface S (L2s) as the origin and the normal direction of the optical surface as the X axis (reference axis). It is illustrated on the basis of Specifically, a YZ plane (a plane formed by forces in the Y-axis direction and the Z-axis direction) is shown.
  • such a measurement method performs line measurement along one direction (Z-axis direction) on the YZ plane.
  • this measurement method uses line measurement at a pitch interval of 0.15 mm (measurement interval in the Z-axis direction).
  • the measurement interval in the Y-axis direction is 1. Omm, and the measured point may be referred to as “measurement point MP”.
  • the raw data when measuring the optical surface includes the amount of shift of each of the X-axis, ⁇ -axis, and ⁇ -axis in addition to the molding change amount, and the X-axis, ⁇ -axis, and ⁇ -axis. It includes setting errors when measuring the rotation around the axis. Therefore, the measurement data consisting of the measurement point MP is calculated in consideration of these setting errors.
  • the approximate surface of the optical surface in all initial products is set using the measurement data.
  • the YZ surface (plane perpendicular to the X axis) covering the effective area EA is equally divided into 25 (Y axis direction divided into 5 XZ axis directions 5)
  • the optical surface (initial surface) of the initial product is approximated by a polynomial that takes into account a plurality of powerful divided spaces.
  • a function suitable for such approximation is a spline function (B-spline function, etc.). Therefore, in the following, we will explain with spline functions I will do it.
  • a spline function is defined as follows (however, it is a case of a quintic spline function).
  • Equation 2 The basic function of the 8_spline defined in 11 is expressed by the following equation (Equation 2).
  • Equation 3 the surface function f (x, y) of the fifth-order B—spline function is defined by the linear sum of the surface base (n + 5) X (m + 5) spline bases (Equation 4). Is done.
  • the spline function G corresponding to the optical surface of each optical element of the initial product is listed below.
  • the approximate surface indicated by the spline function G may be referred to as “initial surface data”.
  • the optical simulation device evaluates the optical performance of the projection optical system PS.
  • Optical performance evaluation of the initial product type optical system Valuation process (first optical performance evaluation process)]. Therefore, the initial surface data corresponding to all optical surfaces is input to the optical simulation software in the optical simulation device. It has become so.
  • optical simulation apparatuses exist in the past, and are not particularly limited.
  • the optical performance evaluation items are not particularly limited. For example, various aberration evaluations, magnification evaluations, MTF (Modulation Transfer Function) evaluations, or spot diagram evaluations.
  • FIG. 4 shows a spot diagram as an example of optical performance evaluation.
  • the spot diagram in Fig. 4 is a spot diagram calculated from the initial plane data. Over the 25 evaluation points on the screen plane SCN, the spot diagrams for 3 wavelengths (460, 546, 620nm) are superimposed. Shows the imaging characteristics (scale is expressed as ⁇ lmm).
  • the coordinates ( ⁇ , ⁇ ) in the figure are the local coordinates (Y, Z; mm) of the screen surface SCN indicating the projected position of the spot centroid at each evaluation point.
  • the projection optical system PS is an optical system that is plane-symmetric with respect to the XY plane of the screen surface
  • the spot diagram shows only the negative half of the Z axis direction on the screen surface SCN, and the remaining half is omitted. is doing.
  • Step 7 Judgment Process of Optical Performance Evaluation Result of Projection Optical System Consisting of Initial Product.
  • determination of optical performance evaluation result that is, optical performance of projection optical system PS composed of initial product is within an allowable range It is determined whether or not. The subsequent steps are determined based on the determination result.
  • Step 8 Correction amount calculation process for specific optical surface>
  • the initial surface data and design data for each optical element are different. There are many. However, it is not necessary to correct the mold of all optical elements. Projection optical system PS that can achieve sufficient optical performance by newly setting the mold shape of the optical surface (specific optical surface) of a specific optical element PS Can be produced.
  • initial surface data other than the specific optical surface is fixed, the specific optical surface is changed, and the projection optical system PS is redesigned.
  • the specific optical surface may be any surface, and it is desirable that the surface having the largest deviation between the initial surface data and the design data (maximum shape error surface) is the specific optical surface. This is because the initial surface data of the remaining optical surfaces other than the specific optical surface has little deviation from the design data, and as a result of redesigning the specific optical surface, there is little deviation from the design performance of the projection optical system PS. It is.
  • the specific optical surface may be a surface closest to the maximum shape error surface.
  • the specific optical surface may be the surface closest to the maximum shape error surface. This is because the state of the light incident on the surface closest to the maximum shape error surface is close to the state of the light incident on the maximum shape error surface. It is.
  • the specific optical surface is the reduction side lens surface S (L2s) of the second lens L2, and the fifth mold cavity surface T (L2s) corresponding to the reduction side lens surface S (L2s) of the second lens L2 is used.
  • L2s L2s
  • the correction processing to the cavity surface T (L2 s) corresponding to the specific optical surface that is strong may be referred to as “first correction processing”.
  • the new cavity surface data of the cavity surface T (L2s) subjected to the first correction processing is defined as "D" and defined as follows.
  • the coefficients included in the function H (which will be described below as an example of the spline function H) Is determined, the new cavity surface data D will be determined. Therefore, the optical performance evaluation is performed using the initial surface data of the reduction side lens surface S (L2s) of the second lens L2 in consideration of the spline function H, that is, “G [S (L2s)] + H”.
  • the optical simulation device evaluates the optical performance of the projection optical system PS.
  • This optical performance evaluation may be referred to as “search optical performance evaluation”, and the result of this search optical performance evaluation may be referred to as “search result”).
  • the retrieval optical performance evaluation is based on design data (F [S (M1)], F [S (Lls)], F [S (Lle)], F [S (M2) in the projection optical system PS. ], F [S (L2s)], F [S (L2e)], F [S (M3)], F [S (M4)]
  • the shape is changed to optimize.
  • the optimization does not mean finding the best value by searching for a so-called local minimum. Then, the result of the optimization (search result) should have the desired performance.
  • search result should have the desired performance.
  • the spline function H is determined.
  • the initial surface data G [S (L2s)] of the reduction side lens surface S (L2s) of the second lens L2 is changed (that is, G [S (L2s)] + H.
  • the amount of change in the initial surface data G [S (L2s)] of the reduction-side lens surface S (L2s) of the second lens L2 when the optimum performance as the projection optical system PS is exhibited (that is, It can be said that the spline function H) is obtained [change calculation process].
  • optimization may be performed using a correction amount as a variable instead of directly changing the initial plane data G [S (L2s)] to obtain a change amount as a difference.
  • Tables 3 and 4 show coefficients in the spline function H determined thereafter.
  • the correction machining amount to be applied to the cavity surface T (L2s) of the fifth die is also determined according to the coefficient.
  • this first correction process is a correction process for realizing the cavity surface T (L2s) corresponding to the new cavity surface data D.
  • a new second lens L2 is molded (re-molded) with the fifth mold subjected to the first correction processing.
  • the second lens L2 reshaped in this way may be referred to as a “reshaped product”.
  • the reduction-side lens surface S (L2s) of the new second lens L2 is measured with the apparatus for measuring the surface shape.
  • force and measurement data may be referred to as “re-molded product measurement data”.
  • an approximate surface (approximate surface of the specific optical surface) of the reduction-side lens surface S (L2s) in the second lens L2 of the reshaped product is set.
  • the approximate surface of the lens surface S (L2s) set in this way may be referred to as “reformed product surface data” (G ′ [S (L2s)]).
  • the initial plane data (G [S (M1)], G [S (Lls)], G [S (Lle)], G [S (M2)], G [S (L2e)], G [S ( M3)], G [S (M4)]) and the reshaped part surface data (G '[S (L2s)]) Perform performance evaluation [Optical performance evaluation process of remolded product-containing optical system].
  • the optical performance of the optical system PS will be evaluated.
  • the result of the powerful optical performance evaluation is the spot diagram shown in Fig. 5 (Fig. 5 is expressed in the same way as Fig. 4).
  • the projection optical system PS including the reshaped product is out of the allowable range, the projection optical system PS having such a power will have optical performance that cannot be sufficiently satisfied.
  • This The situation where only insufficient optical performance can be achieved is due to the fact that the cavity surface T (L2s) of the 5th mold after the 1st correction processing is processed according to the new cavity surface data D. Or due to non-uniform cooling on the optical surface, shrinkage during cooling of the optical element, and inadequate molding conditions.
  • correction processing (follow-up processing) is performed to offset the shape error between the new cavity surface data D and the reshaped product surface data G '[S (L2s)] determined in STEP 12. 2 correction machining process].
  • the second lens L2 is molded again (increase molding) with the fifth die that has been provided with the cavity surface T (L2s) that has been driven in.
  • the second lens L2 that has been cast in this way may be referred to as “tracking, including the product”.
  • the reduction-side lens surface S (L2s) of the second lens L2, which is a driven-in product is measured with a device that measures the surface shape.
  • Such measurement data may be referred to as “follow-up product measurement data”.
  • the approximate surface of the reduction side lens surface S (L2s) in the second lens L2 of the driven-in product is set using the driven-up product measurement data.
  • the approximate surface of the set lens surface S (L2s) may be referred to as “driven surface data” (G ′ ′ [S (L2s)]).
  • Ku STEP 19 Optical Performance Evaluation Process of Projection Optical System Including Drive-in Product>
  • the initial plane data (G [S (M1)], G [S (Lls)], G [S (Lle)], G [S (M2)], G [S (L2e)], G [S ( M3)], G [S (M4)]) and the driven surface data (G '' [S (L2s)])
  • performs performance evaluation [Optical performance evaluation process for driven-in type optical system]. That is, the projection optical system PS including the first mirror Ml, the first lens Ll, the second mirror M2, the third mirror M3, and the fourth mirror M4, which are initial products, and the second lens L2, which is a driven product, is provided. Optical performance evaluation will be conducted.
  • Ku STEP14 Judgment process of optical performance evaluation result of projection optical system> Then, from the result of the optical performance evaluation of the projection optical system including the driven product, it is determined whether or not the optical performance is within the allowable range (STEP 19 ⁇ STEP 14). If the optical performance of the projection optical system PS including the driven-in product is within an allowable range, the projection optical system PS has sufficiently satisfactory optical performance. Therefore, even if the production is completed (STEP19 ⁇ STEP14 ⁇ STEP20).
  • the surface shape of the second lens L2 (re-push-in product) molded with the fifth die after the re-push-up processing is measured, and an approximate surface is set based on the measurement data, and the optical performance is measured. Evaluation is performed (STEP 16 to STEP 19). Then, based on the results of the force and optical performance evaluation (from the results of optical performance evaluation of the re-entry product-containing optical system), the optical performance of the projection optical system PS including the re-entry product is within the allowable range. For example, the manufacturing may be completed (STEP 19 ⁇ STEP 14).
  • the cavity surface T (L2s) of the fifth mold may be pushed again. That is, the follow-up processing and the like are continued until the optical performance as the projection optical system PS is within the allowable range at STE P14 (STEP 19 ⁇ YES at STEP 14) (STEP 15 to STEP 19 are repeated).
  • a mold capable of forming an optical element having an optical performance within the allowable range as the projection optical system PS in STEP 14 is referred to as a correction mold (correction mold member).
  • the optical system uses the optical element produced by molding using the correction mold (first molding process; STEP20), and the correction mold and mold (molds other than the correction mold).
  • first molding process first molding process
  • correction mold and mold molds other than the correction mold
  • an optical element material is molded with a mold (mold member) to manufacture each optical element (initial product) in the projection optical system PS having a plurality of optical elements.
  • the approximate surface (initial surface data) of each optical surface is set by defining an approximate expression based on the measurement result of the surface shape of the optical surface in each optical element.
  • such a manufacturing method evaluates the optical performance of the entire system from the approximate surface of all the optical surfaces in the projection optical system PS, and further, at least one of the approximate surfaces of the entire optical surface ⁇ for example, The secondary lens L2's reduction-side lens surface S (L2s); referred to as the “change approximation surface” ⁇ is changed to provide the change approximation surface when optimal optical performance is achieved for the entire system.
  • the approximate surface that is not changed is called the non-changeable approximate surface).
  • a correction processing amount for the cavity surface of the mold corresponding to the change approximate surface is obtained and corrected to produce a new cavity surface.
  • This manufacturing method does not correct all the cavity surfaces in all dies.
  • a powerful manufacturing method can perform correction processing by giving priority to the cavity surface corresponding to the maximum shape error surface. Therefore, the number of mold corrections is relatively small, and the projection optical system PS is manufactured in a short time and at a low cost while being efficient.
  • the die is corrected based on the optical performance evaluation as the projection optical system PS.
  • the optical surface having the same data as the optical surface design data F is not subjected to correction processing in order to mold the optical surface.
  • the cavity surface corresponding to the surface ⁇ for example, the cavity surface T (L2s) of the fifth mold ⁇ is corrected and processed.
  • an optical surface corresponding to the new cavity surface is formed in an optical element molded with a mold having a new cavity surface (for example, the second lens L2 which is a remolded product).
  • An approximate surface is set by determining an approximate expression based on the measurement result of the surface shape.
  • this manufacturing method uses a shape error between the approximate surface of the optical surface corresponding to the new cavity surface and the new cavity surface (for example, the reshaped product surface data G '[S (L2s)] and the new cavity surface.
  • the new cavity surface is corrected so as to offset the error with surface data D).
  • the second correction processing to the cavity surface corresponding to the specific optical surface (second correction processing) force If performed accurately, it is formed with a mold having a cavity surface that has been corrected multiple times.
  • the optical performance of the projection optical system PS including the formed optical element (for example, the second lens L2 as a follow-up product) and the optical element (initial product) molded with an existing mold is within an allowable range. Then, the existence of this lightly-burden second correction process makes it possible to manufacture the projection optical system PS that easily exhibits high optical performance by the powerful manufacturing method.
  • the manufacturing method described above is particularly effective for a manufacturing method of a reflection optical system including a plurality of eccentric surfaces, particularly an optical system including a free-form surface.
  • an error during molding tends to generate an asymmetric error (for example, a false component) with respect to a design value. Therefore, if a non-rotationally symmetric surface (especially a free-form surface) that is not a rotationally symmetric surface is a change approximation surface, it is easy to correct the forming error.
  • the eccentric surface means a surface that does not have a rotationally symmetric axis, or a surface in which the symmetric axis is greatly deviated from the center of the effective surface even if it is included.
  • the optical surface of the optical element in the projection optical system PS is approximated.
  • Surfaces initial surface data, remolded surface data, driven surface data, etc.
  • the optical performance is evaluated by a ray tracing simulation using power obtained from the surface shape of the approximate surface. Therefore, how to set the approximate surface becomes important.
  • an approximate surface (initial surface data, reshaped surface data, driven surface data, etc.) of the optical surface can be expressed by a function that can efficiently express the waviness portion of the optical surface, for example, a spline function.
  • a plane YZ plane; see FIG. 3
  • a predetermined reference axis for example, the X axis
  • a plurality of spaces are set, and a spline function having continuity at the boundary between the divided spaces can be mentioned.
  • the order of a powerful spline function or the like is at least 3 or more (in the above description, a 5th-order spline function is listed and explained).
  • a third-order or higher-order spline function it is possible to set an approximate surface corresponding to each divided space using the measurement point MP in the divided space.
  • the second derivative of the approximate expression is continuous at the boundary between the divided spaces, and there is a step on the approximate surface at the boundary of the divided space. This does not occur, and continuity occurs in the power of the approximate surface, enabling ray tracing simulation.
  • the order of the spline function or the like is 4-8. This is because the local undulation that has a large effect on the optical performance of the projector field is expressed by a 4th to 8th order function.
  • a 4th to 8th order function it is possible to express local waviness shapes that greatly affect optical performance, and to remove higher order waviness portions that are less likely to affect optical performance, It can be said that it also functions as a filter function.
  • the optical performance attributed to the reduction side lens surface S (L2s) and the enlargement side lens surface S (L2e) in the second lens L2 is represented by the shape of the reduction side lens surface S (L2s) of the second lens L2.
  • the optical performance caused by the enlargement-side lens surface S (L2e) of the second lens L2 is changed to the shape change of the reduction-side lens surface S (L2s) of the second lens L2 or the reflection surface S (M3) of the third mirror. You may correct by.
  • the optical performance as the projection optical system PS is optimal.
  • the optical performance is effectively improved. Therefore, for example, it can be said that it is desirable to correct the optical performance caused by the enlargement side lens surface S (L2e) of the second lens L2 by the shape change of the reduction side lens surface S (L2s) of the second lens L2.
  • the number of divided spaces is relatively large and the number of points of the measurement data MP is relatively large.
  • it takes a very long time to measure the surface shape resulting in the temperature drift of the measuring instrument due to changes in environmental temperature and humidity, and the change in the optical surface of the initial product over time. Decreases.
  • the measurement efficiency also decreases. [0120] Therefore, it is possible to improve the measurement efficiency while ensuring the approximation accuracy of the local undulation of the optical surface and the approximation accuracy of the optical surface due to the reduction of the measurement point MP in the divided space.
  • the number of division spaces and the number of measurement points in the division space are desirable.
  • One example is the measurement method shown in Fig. 3, in which there are 25 division spaces and five lines are measured for each division space.
  • the line measurement is performed along the Z-axis direction.
  • the line measurement may be performed along the Y-axis direction.
  • line measurement matrix-like measurement
  • both the Y-axis direction and the Z-axis direction may be performed.
  • the measurement efficiency of the matrix-like measurement is reduced, but if it is a line measurement in one direction (Y-axis direction or Z-axis direction), the measurement efficiency is improved compared to the matrix-type measurement.
  • the polynomial representing the design data F and the initial cavity surface data F is not particularly limited, but may be a spline function.
  • the first mirror Ml that is a spherical surface may be a polished product.
  • glass molding may be used instead of resin molding.
  • the first mirror Ml is a glass polished product, a shape almost as designed is obtained, so design data may be used as the approximate surface of the first mirror Ml.
  • Embodiment 3 will be described. Note that members having the same functions as those used in Embodiments 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
  • Examples of materials for optical elements such as mirrors and lenses include various materials (glass, resin, etc.).
  • the temperature required for molding the glass optical element is higher than the temperature required for molding the resin optical element, and thus the glass optical element (particularly the outer shape
  • the molding accuracy of a glass optical element having a relatively large size tends to be lower than that of a resin optical element. For this reason, glass optical elements are not easily formed into the surface shape as designed.
  • the error amount of the surface shape of each surface is the same.
  • the optical performance degradation caused by the surface shape error of the mirror surface is larger than the optical performance degradation caused by the surface shape error of the lens surface (that is, the mirror surface is more sensitive than the lens surface in terms of sensitivity to optical performance). Is also high).
  • the projection optical system PS in which glass optical elements and resin optical elements are mixed, if the glass optical element is a mirror, an error in the surface shape of the mirror is likely to occur, and the projection optical system PS The optical performance is greatly affected.
  • spot diagrams show the projection optics including the first mirror Ml and the second mirror M2 made of glass, and the first lens Ll, the second lens L2, the third mirror M3, and the fourth mirror M4 made of resin. Calculated from initial surface data of system PS. However, the deterioration of the optical performance shown in these spot diagrams is due to the fact that the reflecting surface S (M2) of the second mirror M2 is not formed into a desired surface shape.
  • the spot diagrams in these figures show the imaging characteristics by overlapping spot diagrams of three wavelengths (460nm, 546nm, 620nm) at 45 evaluation points on the screen surface SCN ( The scale is expressed in ⁇ lmm).
  • Fig. 6 shows only the positive half of the Z-axis direction on the screen surface SCN, and
  • Fig. 7 shows the other half, the negative side of the Z-axis direction.
  • the coordinates (Y, Z) in the figure are the same conventions apply as 4 and 5 (Incidentally, "e_ n" in the figure is a "10- n").
  • the manufacturing method described above may be used. That is, an optical element material (glass or resin) is molded with a mold to manufacture each optical element (initial product) in the projection optical system PS having a plurality of optical elements, and each manufactured optical element
  • the approximate surface (initial surface data) of each optical surface is set by determining an approximate expression based on the measurement result of the surface shape of the optical surface in.
  • the optical performance of the entire system is evaluated from the approximate surface of all the optical surfaces, and By changing at least one of the approximate surfaces (change approximate surface), the change amount of the change approximate surface when the optimum optical performance of the entire system is exhibited is obtained, and the change is based on the strong change amount. It is only necessary to calculate the amount of correction for the cavity surface of the mold corresponding to the approximate surface and perform the first correction process to create a new cavity surface.
  • the change approximation surface is used as the change approximation surface.
  • the first correction process is performed based on the amount of change H in the initial surface data
  • the new cavity surface data D is performed with the new cavity surface data D as the target value
  • the new cavity surface data D and re-molding are performed. If a shape error occurs with the surface data G ', the optical performance deteriorates.
  • the lens surface is less sensitive than the mirror surface (mirror reflection surface), the change approximate surface is the lens surface, and the effect on the optical performance is reduced.
  • the reduction-side lens surface S (Lls) of the first lens L1 and the reduction-side lens surface S (L2s) of the second lens L2 are used as the change approximate surfaces, and initial surface data ( The amount of change of G [S (Lls)], G [S (L2s)]) was obtained. Furthermore, based on the amount of change, the amount of correction for the mold cavity surface corresponding to the change approximate surface ⁇ the second mold cavity surface T (Lls), the fifth mold cavity surface T (L2s) ⁇ The first correction process was performed to create a new cavity surface.
  • Figures 8 and 9 show the reshaped part surface data (G '[S (Lls)], G' [S (L2s)]) and the initial surface data (G [S (M1)], G [ S (Lle)], G [S (M2)], G [S (L2e)], G [S (M3)], G [S (M4)]) 8 and 9 are expressed in the same manner as in FIGS. 6 and 7.
  • spot diagrams are the initial mirrors M1, M2, M3, and M4, and the first lens L1 and the reshaped product.
  • the optical performance evaluation of the projection optical system PS including the second lens L2 is shown. And this These optical performance evaluation results could be judged to be within an acceptable range.
  • the second mirror M2 in the projection optical system PS is a glass-made rotationally symmetric aspherical mirror.
  • a rotationally symmetric aspherical mirror by glass molding, it is difficult to form a rotationally symmetric mirror surface due to a relatively low molding accuracy. That is, an error in the asymmetric surface shape is likely to occur on the mirror surface (from the viewpoint of such an asymmetric surface shape error, FIGS. 6 to 9 show the positive side and the negative side in the Z-axis direction on the screen surface SCN. )
  • the fourth mold (glass molding mold) corresponding to the second mirror M2 has a cavity surface. Cavity surfaces ⁇ T (Lls), T of the second and fifth molds (resin molds) corresponding to the first lens L1 and the second lens L2 made of resin, which are not compensated for T (M2) It can be said that it is easy to correct with (L2s) ⁇ .
  • At least one lens surface is a change approximate surface. It's good.
  • the surface shape error of a glass-molded mirror more specifically, the optical performance degradation caused by the surface shape error that occurs on the reflection surface (mirror surface), which is a rotationally symmetric aspheric surface, makes the lens surface a change approximate surface. In this case, it can be said that it is easily corrected.
  • the present invention is not limited to this, and the surface shape error of the lens surface of the glass molded lens, more specifically, the optical performance deterioration caused by the surface shape error generated on the lens surface which is a rotationally symmetric aspheric surface is not limited.
  • the surface preferably the lens surface of a resin lens
  • the lens surface is less sensitive than the mirror surface Therefore, even if a shape error occurs in the remolded product, the influence on the optical performance is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Lenses (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A projection optical system (PS) manufacturing method evaluates an optical performance of an entire system from approximate planes of all the optical planes in the projection optical system (PS) and changes at least one of the approximate planes of all the optical planes (such as a reduction side lens plane (S(L2s)) of a second lens L2 of an initial article referred to as 'a change approximate plane') so as to obtain a change amount of tbe change approximate plane when optimal optical performance is obtained as the entire system. According to the change amount, a correction treatment amount for the cavity plane of a metal mold corresponding to the change approximate plane is obtained to perform correction treatment, thereby manufacturing a new cavity plane.

Description

明 細 書  Specification
光学系の製造方法  Manufacturing method of optical system
技術分野  Technical field
[0001] 本発明は、画像投影装置 (プロジェクタ)等に搭載される光学系の製造方法に関す るものである。  The present invention relates to a method for manufacturing an optical system mounted on an image projection apparatus (projector) or the like.
背景技術  Background art
[0002] 近年、プラスチック等の樹脂で成形されてレ、る光学素子が、プロジヱクシヨン光学系 やレーザ走査光学系光学系に用いられている。なぜなら、このような樹脂製の光学素 子は、ガラス材で作られる光学素子に比べて、安価かつ軽量な上、大量生産性に優 れているためである。  In recent years, optical elements molded with a resin such as plastic have been used in a processing optical system and a laser scanning optical system. This is because such an optical element made of resin is cheaper and lighter than an optical element made of glass, and is superior in mass productivity.
[0003] また、樹脂製の光学素子は、金型 (型部材)を用いた射出成形または射出圧縮成 形等の成形方法により製造される。そのため、樹脂製の光学素子は、ガラス製の光学 素子に比べて、非球面形状や自由曲面形状を有する曲面 (光学面)を作りやすいと レ、う利点も有する。  [0003] Further, a resin optical element is manufactured by a molding method such as injection molding or injection compression molding using a mold (mold member). Therefore, a resin optical element has an advantage that it can easily form a curved surface (optical surface) having an aspherical shape or a free-form surface shape, compared to a glass optical element.
[0004] しかしながら、非球面形状や自由曲面形状等の複雑形状の光学面を有する光学 素子が金型で成形される場合、光学面における不均一な冷却および収縮等のため に、面不良が発生しやすい。そのため、力かる不良な面形状を測定し、その測定結 果に基づいて金型を補正加工することが一般に行われている(特許文献 1)。  However, when an optical element having an optical surface with a complicated shape such as an aspherical shape or a free-form surface is molded with a mold, surface defects occur due to non-uniform cooling and shrinkage on the optical surface. It's easy to do. For this reason, it is generally performed to measure a defective and difficult surface shape and correct the mold based on the measurement result (Patent Document 1).
[0005] そして、面形状の測定の一例としては、特許文献 2が挙げられる。この特許文献 2の 方法は、光学面を 3次元測定したデータを用いて光学面を非球面の多項式近似を行 レ、、さらに、かかる多項式近似面を光学系に組み込むことで、光学素子の光学的性 能 (収差変化)を評価している。すると、光学的性能を評価することで、所望の光学性 能を発揮するために要する光学面 (最適形状光学面)が見つけ出され、その最適形 状光学面になるように、金型が補正加工されてもよい。  [0005] Patent Document 2 is an example of the measurement of the surface shape. In the method of Patent Document 2, the optical surface is aspherically approximated using data obtained by three-dimensional measurement of the optical surface, and the polynomial approximated surface is incorporated into the optical system, so that the optical surface of the optical element is integrated. Performance (change in aberrations). Then, by evaluating the optical performance, the optical surface (optimum shape optical surface) required to exhibit the desired optical performance is found, and the mold is corrected so that it becomes the optimal shape optical surface. It may be processed.
特許文献 1 :特開平 7— 60857号公報  Patent Document 1: JP-A-7-60857
特許文献 2:特開 2004— 361274号公報  Patent Document 2: JP 2004-361274 A
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0006] しかしながら、特許文献 2の評価方法は、光学面の測定データ(3次元測定データ) と予め定まった設計値データとの誤差を面全体として多項式 (誤差多項式)で近似し ている。そのため、測定された光学面に局所的なうねり(うねり部分)が存在する場合 、うねり部分を適切に表現するために高次の次数の近似式を用いると、うねり以外の 箇所 (非うねり部分)に高次のうねりが生じてしまう。逆に、非うねり部分を適切に表現 しょうと低次の次数の近似式を用いると、うねり部分を適切に表現できない。  [0006] However, the evaluation method of Patent Document 2 approximates an error between optical surface measurement data (three-dimensional measurement data) and predetermined design value data as a whole surface by a polynomial (error polynomial). Therefore, if there is a local undulation (undulation part) on the measured optical surface, using an approximate expression of higher order to properly represent the undulation part, other than the undulation (non-undulation part) High-order undulation will occur. On the other hand, if the low-order approximation formula is used to properly represent the non-waviness part, the waviness part cannot be represented properly.
[0007] また、特許文献 1の光学素子の成形方法では、うねり部分を適切に補正すベぐ光 学面の測定データと予め定まった設計値データとの誤差が相殺されるように、光学面 に対応する金型のキヤビティ面を補正加工し、光学素子を再成形してレ、る。  [0007] Further, in the optical element molding method of Patent Document 1, the optical surface is corrected so that an error between the measurement data on the optical surface that appropriately corrects the waviness portion and the predetermined design value data is offset. The cavity surface of the mold corresponding to is corrected and processed, and the optical element is reshaped.
[0008] し力しながら、かかる成形方法では、複数の光学素子を有する光学系の場合、各光 学素子の金型を各々設計値形状狙いで補正する必要が生じる。そのため、少なくと も光学素子の光学面数だけ金型補正回数が必要となり、光学系の製造に極めて時 間を要することになる。  However, in this molding method, in the case of an optical system having a plurality of optical elements, it is necessary to correct the mold of each optical element with the aim of the design value shape. For this reason, at least the number of mold corrections is required by the number of optical surfaces of the optical element, and it takes a very long time to manufacture the optical system.
[0009] 本発明は、上記の状況を鑑みてなされたものである。そして、本発明の目的は、効 率的でありながら短時間かつ安価に、光学系(詳説すると、複数の光学素子を含む 光学系)を製造する方法を提供することにある。  [0009] The present invention has been made in view of the above situation. An object of the present invention is to provide a method for manufacturing an optical system (more specifically, an optical system including a plurality of optical elements) in a short time and at a low cost while being efficient.
課題を解決するための手段  Means for solving the problem
[0010] 本発明は、型部材を用いた成形によって、複数の光学面を含む光学系を製造する 方法である。この光学系の製造方法では、初期成形によって形成される光学面を含 む光学系の全光学面の近似面を設定する工程と、光学系内における全光学面の近 似面から、全系の光学性能を評価する第 1光学性能評価工程と、全光学面の近似面 のうち型部材で成型される少なくとも 1面を変化近似面とする一方、全光学面の近似 面のうち型部材で成型される少なくとも 1面を変化近似面とせずに無変化近似面としThe present invention is a method for manufacturing an optical system including a plurality of optical surfaces by molding using a mold member. In this method of manufacturing an optical system, an approximate surface of all the optical surfaces of the optical system including the optical surface formed by the initial molding is set, and an approximate surface of all the optical surfaces in the optical system is used. The first optical performance evaluation process for evaluating the optical performance and at least one of the approximate surfaces of all optical surfaces molded by the mold member is a change approximate surface, while the molded member of the approximate surfaces of all the optical surfaces is molded At least one surface that is
、全系としての最適な光学性能を発揮する場合の変化近似面の変化量を求める変 化量算出工程と、変化量に基づいて変化近似面に対応する型部材のキヤビティ面へ の補正加工量を求めて補正加工し、新キヤビティ面を作製する第 1補正加工工程と、 第 1補正加工工程で加工された補正型部材を用いて光学素子を成形する第 1成形 工程と、補正型部材以外の型部材を用いて光学素子を成形する第 2成形工程と、が 含まれる。 The amount of change calculation process to obtain the amount of change of the approximated surface when the optimum optical performance of the entire system is exhibited, and the amount of correction processing to the cavity surface of the mold member corresponding to the approximated surface of change based on the amount of change The first correction processing step to create a new cavity surface, and the first molding to mold the optical element using the correction mold member processed in the first correction processing step And a second molding step in which the optical element is molded using a mold member other than the correction mold member.
[0011] この製造方法によると、全型部材における全てのキヤビティ面を補正加工するわけ ではない。すなわち、力かる製造方法は、例えば、所望の光学面を変化近似面とし、 それに対応するキヤビティ面を優先して補正加工できる。そのため、型部材の補正回 数が比較的に少なくなり、効率的でありながら、短時間かつ安価に光学系が製造さ れる。  [0011] According to this manufacturing method, not all the cavity surfaces of all the mold members are corrected. In other words, a powerful manufacturing method can perform correction processing with a desired optical surface as a change approximate surface and priority given to the corresponding cavity surface. Therefore, the number of corrections of the mold member is relatively small, and the optical system is manufactured in a short time and at a low cost while being efficient.
[0012] なお、第 1成形工程は、新キヤビティ面を有する型部材で成形された光学素子にお いて、新キヤビティ面に対応する光学面の面形状の測定結果に基づいて近似面を設 定する工程と、新キヤビティ面に対応する光学面の近似面と、新キヤビティ面との形 状誤差を相殺するように、新キヤビティ面を補正加工する第 2補正加工工程と、第 2 補正加工工程で加工された補正型部材を用いて光学素子を成形する工程と、を含 む。  [0012] In the first molding step, an approximate surface is set based on the measurement result of the surface shape of the optical surface corresponding to the new cavity surface in the optical element molded with the mold member having the new cavity surface. And a second correction processing step for correcting the new cavity surface so as to cancel out the shape error between the approximate surface of the optical surface corresponding to the new cavity surface and the new cavity surface, and a second correction processing step. And a step of molding an optical element using the correction mold member processed in step (b).
[0013] 第 2補正加工は、既に補正加工されたキヤビティ面 (新キヤビティ面)のみに対して 行われるものである。そのため、この第 2補正加工は、全てのキヤビティ面を補正加工 する場合の負担に比べて、軽い負担にしかならない。その上、形状誤差を相殺する 補正加工が精度よく行われていれば、光学系の光学性能が許容範囲内になる。する と、この軽負担の第 2補正加工が存在することで、光学系の製造方法は、容易に高い 光学性能を発揮する光学系を製造できる。  [0013] The second correction process is performed only on the already corrected cavity surface (new cavity surface). For this reason, the second correction processing is only a light burden compared to the burden of correcting all the cavity surfaces. In addition, the optical performance of the optical system falls within an allowable range if correction processing that cancels the shape error is performed with high accuracy. Then, the existence of this lightly burdened second correction process enables the optical system manufacturing method to easily manufacture an optical system that exhibits high optical performance.
[0014] ところで、近似面を設定する工程にあっては、型部材を用いた成形によって形成さ れる光学面には、初期成形によって形成される光学面の測定面形状に基づく近似面 が設定されると望ましい。  Incidentally, in the step of setting the approximate surface, an approximate surface based on the measurement surface shape of the optical surface formed by the initial molding is set for the optical surface formed by the molding using the mold member. It is desirable.
[0015] また、近似面を設定する工程にあっては、光学面が研磨面の場合、研磨面には、 光学面の設計データが近似面として設定されると望ましい。  In the step of setting the approximate surface, when the optical surface is a polished surface, it is preferable that design data of the optical surface is set as the approximate surface on the polished surface.
[0016] また、光学系内の各光学面の近似面と、各近似面に対応する光学面の設計データ との差が最も大きな近似面を変化近似面とすると望ましい。  [0016] It is desirable that an approximate surface having the largest difference between the approximate surface of each optical surface in the optical system and the design data of the optical surface corresponding to each approximate surface is a change approximate surface.
[0017] また、光学系内の各光学面の近似面と、各近似面に対応する光学面の設計データ との差が最も大きな光学面に最も近い光学面の近似面を変化近似面とすると望まし レ、。 [0017] Also, assuming that the approximate surface of the optical surface closest to the optical surface having the largest difference between the approximate surface of each optical surface in the optical system and the design data of the optical surface corresponding to each approximate surface is the change approximate surface. Desired Les.
[0018] また、変化近似面は、多くとも 2面であると望ましい。  [0018] In addition, it is desirable that the change approximation plane is at most two planes.
[0019] また、近似面を設定する工程では、光学素子の光学面における所定の基準軸に対 し垂直な平面を複数に分割し、それらの分割された平面を底とする空間を複数設定 する空間分割設定工程が含まれ、空間同士における境界で連続性を有する近似式 が用いられていると望ましい。  [0019] In addition, in the step of setting the approximate surface, a plane perpendicular to a predetermined reference axis on the optical surface of the optical element is divided into a plurality of spaces, and a plurality of spaces with these divided planes as the bottom are set. It is desirable that a space division setting step is included and an approximate expression having continuity at the boundary between spaces is used.
[0020] また、この製造方法では、近似式が少なくとも 3次以上の関数であると望ましい。な お、連続性とは、近似式の 2次導関数が分割空間同士における境界で連続すること である。そして、かかるような近似式の一例として、スプライン関数が挙げられる。  [0020] In this manufacturing method, it is desirable that the approximate expression is a function of at least a third order or higher. Note that continuity means that the second derivative of the approximate expression is continuous at the boundary between the divided spaces. An example of such an approximate expression is a spline function.
[0021] また、光学系は、型部材で成形される素子として、少なくとも 1個のレンズと少なくと も 1個のミラーとを含み、少なくともレンズ面が、変化近似面として用いられると望まし レ、。  [0021] Further, the optical system preferably includes at least one lens and at least one mirror as elements molded by the mold member, and at least the lens surface is used as a change approximation surface. ,.
[0022] また、光学系内に含まれるレンズおよびミラーのうちの少なくとも 1つ力 S、ガラス成形 によって形成されていると望ましい。  [0022] Further, it is desirable that at least one of the lenses and mirrors included in the optical system is formed by glass molding.
[0023] また、光学系は非回転対称面を含み、変化量算出工程では、非回転対称面に対 応する近似面を、変化近似面としていると望ましい。 [0023] Further, it is desirable that the optical system includes a non-rotationally symmetric surface, and in the change amount calculating step, an approximate surface corresponding to the non-rotationally symmetric surface is a change approximate surface.
[0024] また、光学系は、型部材で成形される素子として、少なくとも 1個のレンズと、少なく とも 1個のミラーとを含み、少なくとも 1つのレンズ面が、非回転対称面であり、変化量 算出工程では、非回転対称面を変化近似面とすると望ましい。 [0024] Further, the optical system includes at least one lens and at least one mirror as an element molded by the mold member, and at least one lens surface is a non-rotationally symmetric surface and changes. In the quantity calculation step, it is desirable that the non-rotationally symmetric surface be a change approximate surface.
[0025] また、光学系内に、少なくとも 1個のレンズと少なくとも 1個のミラーとが光学素子とし て含まれている場合(特に、光学系内の含まれるレンズおよびミラーのうちの少なくと も 1個力 ガラス成形によって形成されている場合)、変化近似面として、少なくとも 1 面のレンズ面が用いられると望ましレ、。 [0025] Further, when the optical system includes at least one lens and at least one mirror as optical elements (particularly, at least one of the lenses and mirrors included in the optical system). If one lens is formed by glass molding), it is desirable to use at least one lens surface as the approximate surface.
発明の効果  The invention's effect
[0026] 本発明の光学系の製造方法によれば、光学性能に影響を及ぼしやすい光学面に 対応するキヤビティ面を優先して補正加工できる。そのため、型部材の補正回数が比 較的に少なくなり、効率的でありながら、短時間かつ安価に光学系が製造される。 図面の簡単な説明 [図 1]は、投影光学系の製造方法の工程を示すフローチャートである。 [0026] According to the method for manufacturing an optical system of the present invention, it is possible to preferentially perform a correction process on a cavity surface corresponding to an optical surface that easily affects optical performance. Therefore, the number of corrections of the mold member is relatively reduced, and the optical system is manufactured in a short time and at a low cost while being efficient. Brief Description of Drawings FIG. 1 is a flowchart showing the steps of a method for manufacturing a projection optical system.
[図 2]は、第 2レンズにおけるレンズ面の測定状況を示す平面図である。 FIG. 2 is a plan view showing a measurement state of a lens surface in a second lens.
[図 3]は、レンズ面における分割空間を示す平面図である。 FIG. 3 is a plan view showing a divided space on the lens surface.
[図 4]は、イニシャル品のみを含む投影光学系のスポットダイアグラムである。 [Figure 4] is a spot diagram of the projection optical system including only the initial product.
[図 5]は、再成形品を含む投影光学系のスポットダイアグラムである。 [Fig. 5] is a spot diagram of the projection optical system including the reshaped product.
[図 6]は、ガラス製の光学素子と樹脂製の光学素子とを含み、かつそれらがィニシャ ル品のみから成る投影光学系のスポットダイアグラムである(ただし、スクリーン面上で の Z軸方向のマイナス側の半分)。 [Fig. 6] is a spot diagram of a projection optical system that includes a glass optical element and a resin optical element, which are composed only of initial products (however, in the Z-axis direction on the screen surface). Half of the minus side).
[図 7]は、図 6とは異なり、スクリーン面上での Z軸方向のプラス側の半分を示すスポッ トダイアグラムである。  [FIG. 7] is a spot diagram showing the positive half of the Z-axis direction on the screen surface, unlike FIG.
[図 8]は、ガラス製の光学素子と樹脂製の光学素子とを含み、かつそれらのうち再成 型品が含まれる投影光学系のスポットダイアグラムである(ただし、スクリーン面上で の Z軸方向のマイナス側の半分)。  [Fig. 8] is a spot diagram of a projection optical system that includes a glass optical element and a resin optical element, of which a reconstructed product is included (however, the Z-axis on the screen surface) Half of the negative direction).
[図 9]は、図 8とは異なり、スクリーン面上での Z軸方向のプラス側の半分を示すスポッ トダイアグラムである。  [Fig. 9] is a spot diagram showing the positive half of the Z-axis direction on the screen, unlike Fig. 8.
[図 10]は、画像投影装置の構成図である。  FIG. 10 is a block diagram of an image projection apparatus.
符号の説明 Explanation of symbols
PS 投影光学系(光学系)  PS Projection optical system (optical system)
Ml 第 1ミラー (光学素子)  Ml 1st mirror (optical element)
L1 第 1レンズ (光学素子)  L1 1st lens (optical element)
M2 第 2ミラー (光学素子)  M2 Second mirror (optical element)
L2 第 2レンズ (光学素子)  L2 Second lens (optical element)
M3 第 3ミラー (光学素子)  M3 3rd mirror (optical element)
M4 第 4ミラー (光学素子)  M4 4th mirror (optical element)
FM 平面ミラー(光学素子)  FM flat mirror (optical element)
SCN スクリーン  SCN screen
PDS 画像投影装置  PDS image projector
F 光学素子の設計値データ f 金型における初期キヤビティ面データ F Optical element design value data f Initial cavity surface data in the mold
G イニシャル品におけるイニシャル面データ  G Initial surface data for initial products
D 新キヤビティ面データ  D New cavity surface data
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] [実施の形態 1] [Embodiment 1]
本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである  An embodiment of the present invention will be described below with reference to the drawings.
[0030] [1.画像投影装置について] [1. About image projection apparatus]
図 10は、スクリーン SCNと、照明光学系(不図示)と、その照明光学系からの光を 変調させる光変調素子 MDと、力かる光変調素子 MDによって変調された光(画像光 )をスクリーン SCNへと導く投影光学系 PSと、を含む画像投影装置 PDSを示してい る。なお、かかる画像投影装置 PDSは、光変調素子 MD (縮小側)からスクリーン SC N (拡大側)の背面に向かって光を斜めに拡大投影する背面投影タイプになっている  FIG. 10 shows a screen SCN, an illumination optical system (not shown), a light modulation element MD that modulates light from the illumination optical system, and light (image light) modulated by the powerful light modulation element MD. An image projection apparatus PDS including a projection optical system PS that leads to an SCN is shown. The image projector PDS is a rear projection type that projects light obliquely from the light modulation element MD (reduction side) toward the back of the screen SC N (enlargement side).
[0031] そして、投影光学系 PSは、光変調素子 MDからスクリーン SCNに至るまでに光の 進行順に応じて、第 1ミラー(球面ミラー) Ml、第 1レンズ(回転非対称自由曲面レン ズ) Ll、第 2ミラー(回転対称非球面ミラー) M2、第 2レンズ(回転非対称自由曲面レ ンズ) L2、第 3ミラー(回転非対称自由曲面ミラー) M3、第 4ミラー(回転非対称自由 曲面ミラー) M4、および平面ミラー FMを配置している。 [0031] The projection optical system PS includes a first mirror (spherical mirror) Ml and a first lens (rotationally asymmetric free-form surface lens) Ll according to the light traveling order from the light modulation element MD to the screen SCN. , 2nd mirror (rotationally symmetric aspherical mirror) M2, 2nd lens (rotationally asymmetric free-form surface lens) L2, 3rd mirror (rotationally asymmetric free-form surface mirror) M3, 4th mirror (rotationally asymmetric free-form surface mirror) M4, And the flat mirror FM is arranged.
[0032] なお、光変調素子 MDの前面(変調光の射出面)には、保護用のカバーガラス CG が配置されており、第 1ミラー Mlと第 1レンズ L1との間には、光の一部を遮光する光 学絞り STが配置されている。また、平面ミラー FMは、第 4ミラー M4からの光を折り返 し反射させて、スクリーン SCNへと導く折り返しミラーになっている。  [0032] Note that a protective cover glass CG is disposed on the front surface of the light modulation element MD (emitted surface of the modulated light), and between the first mirror Ml and the first lens L1, there is no light. An optical aperture ST that blocks part of the light is placed. The plane mirror FM is a folding mirror that reflects and reflects the light from the fourth mirror M4 to the screen SCN.
[0033] [2.投影光学系の製造工程について]  [0033] [2. Production process of projection optical system]
ここで、投影光学系(光学系) PSの製造方法について、図 1のフローチャート(動作 STEP1〜22)を用いて説明する。なお、平面ミラー FMは、曲面の反射面ではないの で、以降の曲面の作製に有利な樹脂成形ではなく他の製法を用いるものとする。また 、平面ミラー FMは、光学性能に大きな影響を与えにくいため、以降の光学性能評価 等でも、投影光学系 PSに平面ミラー FMを含めないものとする。 Here, a method for manufacturing the projection optical system (optical system) PS will be described with reference to the flowchart of FIG. 1 (operations STEP1 to STEP22). Since the plane mirror FM is not a curved reflecting surface, it is assumed that another manufacturing method is used instead of resin molding which is advantageous for the subsequent curved surface production. In addition, the flat mirror FM is unlikely to have a significant effect on the optical performance, so the subsequent optical performance evaluation Etc., the plane mirror FM is not included in the projection optical system PS.
[0034] (STEP1:全光学素子の光学設計工程〉 [0034] (STEP1: Optical design process of all optical elements)
まず、光学素子である第 1ミラー Ml、第 1レンズ Ll、第 2ミラー M2、第 2レンズ L2、 第 3ミラー M3、および第 4ミラー M4に応じた 6個(8面)の光学設計が行われる。  First, six (8 surfaces) optical designs are performed according to the first mirror Ml, first lens Ll, second mirror M2, second lens L2, third mirror M3, and fourth mirror M4, which are optical elements. Is called.
[0035] 具体的には、光学面(S)である第 1ミラー Mlの反射面 S(M1)、第 1レンズ L1の縮小 側レンズ面 S(Lls)および拡大側レンズ面 S(Lle)、第 2ミラー M2の反射面 S(M2)、第 2 レンズ L2の縮小側レンズ面 S(L2s)および拡大側レンズ面 S(L2e)、第 3ミラー M3の反 射面 S(M3)、および第 4ミラー M4の反射面 S(M4)を多項式で表現する(このように表 現された面は設計光学面と称されてもよレ、)。 [0035] Specifically, the reflecting surface S (M1) of the first mirror Ml that is the optical surface (S), the reduction side lens surface S (Lls) and the enlargement side lens surface S (Lle) of the first lens L1, Reflection surface S (M2) of the second mirror M2, reduction side lens surface S (L2s) and enlargement side lens surface S (L2e) of the second lens L2, reflection surface S (M3) of the third mirror M3, and second The reflection surface S (M4) of the 4-mirror M4 is expressed by a polynomial (the surface expressed in this way may be called the design optical surface).
[0036] ただし、かかる設計光学面は、投影光学系 PS全体 (全系)として望ましい光学的性 能を発揮できるように設定されている。なお、設計光学面を現す多項式を「F」とし、以 降に各光学面に対応する多項式 Fを列挙する。そして、多項式 Fで示される設計光 学面は「設計データ」と称されてもよレ、。 However, such a design optical surface is set so that desirable optical performance can be exhibited as the entire projection optical system PS (entire system). The polynomial representing the design optical surface is “F”, and the polynomial F corresponding to each optical surface is listed below. And the design optical surface shown by the polynomial F may be called “design data”.
[0037] ·第 1ミラー Mlの反射面 S(M1)に対応する設計光学面 : F[S(M1)] [0037] · Design optical surface corresponding to reflecting surface S (M1) of first mirror Ml: F [S (M1)]
•第 1レンズ L1の縮小側レンズ面 S(Lls)に対応する設計光学面: F[S(Lls)] •第 1レンズ L1の拡大側レンズ面 S(Lle)に対応する設計光学面: F[S(Lle)] •第 2ミラー M2の反射面 S(M2)に対応する設計光学面 : F[S(M2)] •第 2レンズ L2の縮小側レンズ面 S(L2s)に対応する設計光学面: F[S(L2s)] •第 2レンズ L2の拡大側レンズ面 S(L2e)に対応する設計光学面: F[S(L2e)] •第 3ミラー M3の反射面 S(M3)に対応する設計光学面 : F[S(M3)] •第 4ミラー M4の反射面 S(M4)に対応する設計光学面 : F[S(M4)]  • Design optical surface corresponding to the reduction lens surface S (Lls) of the first lens L1: F [S (Lls)] • Design optical surface corresponding to the magnification lens surface S (Lle) of the first lens L1: F [S (Lle)] • Design optical surface corresponding to reflecting surface S (M2) of second mirror M2: F [S (M2)] • Design corresponding to reduction side lens surface S (L2s) of second lens L2 Optical surface: F [S (L2s)] • Design optical surface corresponding to the magnification side lens surface S (L2e) of the second lens L2: F [S (L2e)] • Reflecting surface S (M3) of the third mirror M3 Design optical surface corresponding to: F [S (M3)] • Design optical surface corresponding to the reflective surface S (M4) of the fourth mirror M4: F [S (M4)]
[0038] なお、設計光学面を表す多項式の一例としては、各設計光学面の面頂点を原点と するローカルな直交座標(X, Y, Z)を用いた以下の式 (数 1)が挙げられる。 [0038] As an example of the polynomial representing the design optical surface, the following equation (Equation 1) using local orthogonal coordinates (X, Y, Z) with the surface vertex of each design optical surface as the origin is given. It is done.
[数 1]  [Number 1]
X = CoH2 1 { 1 + VI - sCo2H2 }+∑ ΑΉ* + JJ GjkYjZk X = CoH 2 1 {1 + VI-sCo 2 H 2 } + ∑ ΑΉ * + J J G jk Y j Z k
> jk ただし、 X :高さ Hの位置での X方向の基準面からの変位量 (面頂点基準) H : X軸に対して垂直な方向の高さ [H= (Y2+Z2)] > jk where X: Displacement from the reference plane in the X direction at the position of height H (plane vertex reference) H: Height in the direction perpendicular to the X axis [H = (Y 2 + Z 2 )]
Co:面頂点での曲率  Co: Curvature at surface apex
ε : 2次曲面パラメータ  ε: quadric surface parameter
Ai: i次の非球面の係数  Ai: i-th order aspheric coefficient
〇」 :丫の』次、 Zの k次の自由曲面の面係数  〇 ”: Surface coefficient of k-th free surface
である。  It is.
[0039] く STEP2 :全光学素子の金型設計工程〉  [0039] Step 2: Mold Design Process for All Optical Elements>
次に、各光学素子に応じた金型 (第 1金型〜第 8金型)が設計される。そのために、 全光学面の設計データに応じた加工データ(Numerical Control Data;NCデータ)が 作成される。ただし、加工工具は、先端を R形状とするダイヤモンドカッターである。そ のため、金型における被カ卩ェ物の形状変化にともなレ、、加工面に対するダイヤモンド カッター先端の当たり点が変化する。したがって、加工工具の形状を考慮した力卩ェ点 座標を計算することで加工データは作成されている。  Next, molds (first mold to eighth mold) corresponding to each optical element are designed. For that purpose, machining data (Numerical Control Data; NC data) corresponding to the design data of all optical surfaces is created. However, the processing tool is a diamond cutter with a rounded tip. Therefore, as the shape of the workpiece in the mold changes, the contact point of the diamond cutter tip with respect to the machined surface changes. Therefore, machining data is created by calculating the force point coordinates taking into account the shape of the machining tool.
[0040] なお、金型のキヤビティ面(光学面を成形するための金型の面)は、リン含有のニッ ケルメツキを施されてレ、る。したがってそのメツキ面がダイヤモンドカッターで加工され 、さらに、メツキ面の全領域を均等に研磨されることで、キヤビティ面は完成する。  [0040] It should be noted that the mold cavity surface (the mold surface for molding the optical surface) is subjected to nickel-containing phosphorous treatment. Therefore, the polished surface is processed with a diamond cutter, and the entire surface of the polished surface is uniformly polished to complete the cavity surface.
[0041] そして、各金型(第 1金型〜第 8金型)のキヤビティ面も、多項式「f」を用いて現す こと力 Sできる。そこで、以降に各キヤビティ面 (T)に対応する多項式 fを列挙する。な お、多項式 fで示されるキヤビティ面は「初期キヤビティ面データ」と称されてもよい。  [0041] The cavity surface of each mold (first mold to eighth mold) can also be expressed using the polynomial "f". Therefore, the polynomial f corresponding to each cavity surface (T) is listed below. The cavity surface represented by the polynomial f may be referred to as “initial cavity surface data”.
[0042] ·第 1ミラー Mlの反射面 S(M1)に対応する第 1金型のキヤビティ面 T(M1)  [0042] · Cavity surface T (M1) of the first mold corresponding to the reflective surface S (M1) of the first mirror Ml
: f[S(Ml)]  : F [S (Ml)]
•第 1レンズ L1の縮小側レンズ面 S(Lls)に対応する第 2金型のキヤビティ面 T(Lls) : f[S(Lls)]  • Cavity surface of the second mold corresponding to the reduction side lens surface S (Lls) of the first lens L1 T (Lls): f [S (Lls)]
•第 1レンズ L1の拡大側レンズ面 S(Lle)に対応する第 3金型のキヤビティ面 T(Lle) : f[S(Lle)]  • Cavity surface T (Lle) of the third mold corresponding to the enlargement side lens surface S (Lle) of the first lens L1: f [S (Lle)]
•第 2ミラー M2の反射面 S(M2)に対応する第 4金型のキヤビティ面 T(M2) : f[S(M2)] '第 2レンズ L2の縮小側レンズ面 S(L2s)に対応する第 5金型のキヤビティ面 T(L2s) : f[S(L2s)] • Cavity surface of the 4th mold corresponding to the reflective surface S (M2) of the second mirror M2 T (M2): f [S (M2)] 'Cavity surface of the fifth mold corresponding to the reduction side lens surface S (L2s) of the second lens L2 T (L2s): f [S (L2s)]
'第 2レンズ L2の拡大側レンズ面 S(L2e)に対応する第 6金型のキヤビティ面 T(L2e) : f[S(L2e)]  'Cavity surface of the 6th mold corresponding to the enlargement side lens surface S (L2e) of the second lens L2 T (L2e): f [S (L2e)]
•第 3ミラー M3の反射面 S(M3)に対応する第 7金型のキヤビティ面 T(M3) : f[S(M3)]  • Cavity surface of the 7th mold corresponding to the reflective surface S (M3) of the third mirror M3 T (M3): f [S (M3)]
•第 4ミラー M4の反射面 S(M4)に対応する第 8金型のキヤビティ面 T(M4) : f[S(M4)]  • Cavity surface of the 8th mold corresponding to the reflective surface S (M4) of the 4th mirror M4 T (M4): f [S (M4)]
[0043] く STEP3:全光学素子のイニシャル成形工程〉  [0043] Ku STEP3: Initial molding process of all optical elements>
そして、光学素子材料である樹脂を第 1金型〜第 8金型を用レ、て射出成形すること で、全ての光学素子が作製される(なお、力、かる初期の光学素子は「イニシャル品」と 称されてもよぐこの成形は「イニシャル成形」と称されてもよい)。  Then, all the optical elements are produced by injection molding the resin, which is the optical element material, using the first to eighth molds (note that the initial optical element is “initial” This molding, which may be referred to as “product”, may also be referred to as “initial molding”).
[0044] ただし、成形された光学面の面精度のバラツキの少ない成形条件で、再現性のあ る成形が行われなくてはならない。そのために、光学素子の材料を溶かす温度 (樹脂 温度)、金型の型温度、光学素子材料を射出する場合の射出速度'射出圧力等の成 形条件 (パラメータ)がいろいろ試されることで、最も再現性の良い成形条件が設定さ れる。  [0044] However, reproducible molding must be performed under molding conditions with little variation in surface accuracy of the molded optical surface. For that purpose, various molding conditions (parameters) such as the temperature at which the optical element material is melted (resin temperature), the mold temperature of the mold, and the injection speed when injecting the optical element material (injection pressure) are tested. Molding conditions with good reproducibility are set.
[0045] 例えば、第 2レンズ L2の成形条件は、以下のようになつている。なお、下記の成形 条件で作製された第 2レンズ L2は、 3. 5mmの厚み(芯厚)と、直径 52mmの最大有 効領域 EA (後述の図 2 · 3参照)とを有するようになる。  [0045] For example, the molding conditions of the second lens L2 are as follows. The second lens L2 produced under the following molding conditions has a thickness (core thickness) of 3.5 mm and a maximum effective area EA (see Fig. 2 and 3 below) having a diameter of 52 mm. .
•樹脂温度: 285°C  • Resin temperature: 285 ° C
•型温度 :135°C  • Mold temperature: 135 ° C
•射出速度: 15mmZs  • Injection speed: 15mmZs
•射出圧力: 1050kgZcm2 • Injection pressure: 1050kgZcm 2
[0046] く STEP4:全イニシャル品の面形状測定工程〉 [0046] Ku STEP 4: Surface shape measurement process for all initial products>
次に、全てのイニシャル品における光学面の形状測定が行われる。なお、面形状の 測定を行う装置は限定されるものではないが、例えば、松下電器産業製の超高精度 三次元測定機 UA3Pやランクテーラーホブソン製のフォームタリサーフ等が挙げられ る。 Next, the shape measurement of the optical surface in all initial products is performed. The equipment for measuring the surface shape is not limited, but examples include ultra-high-precision three-dimensional measuring machine UA3P manufactured by Matsushita Electric Industrial Co., Ltd. and Form Talysurf manufactured by Rank Taylor Hobson. The
[0047] そして、測定状況を示すと図 2のようになる(ただし、図 2は第 2レンズ L2の縮小側レ ンズ面 S(L2s)を測定している)。なお、この図 2は、レンズ面 S(L2s)の面頂点を原点と し、光学面の法線方向を X軸(基準軸)とするローカルな右手系直交座標系(X, Y, Z)に基づいて図示されている。具体的には、 YZ面 (Y軸方向と Z軸方向と力 成る面 )が図示されている。  [0047] Fig. 2 shows the measurement state (however, Fig. 2 measures the reduction lens surface S (L2s) of the second lens L2). This figure 2 shows a local right-handed Cartesian coordinate system (X, Y, Z) with the surface vertex of the lens surface S (L2s) as the origin and the normal direction of the optical surface as the X axis (reference axis). It is illustrated on the basis of Specifically, a YZ plane (a plane formed by forces in the Y-axis direction and the Z-axis direction) is shown.
[0048] そして、かかる測定方法は、 YZ面における一方向(Z軸方向)に沿うライン測定を行 う。ただし、この測定方法は、 0. 15mmのピッチ間隔 (Z軸方向における測定間隔)で ライン測定している。なお、 Y軸方向の測定間隔は 1. Ommになっており、測定され たポイントは「測定ポイント MP」と称されてもよレ、。  [0048] Then, such a measurement method performs line measurement along one direction (Z-axis direction) on the YZ plane. However, this measurement method uses line measurement at a pitch interval of 0.15 mm (measurement interval in the Z-axis direction). The measurement interval in the Y-axis direction is 1. Omm, and the measured point may be referred to as “measurement point MP”.
[0049] また、レンズ面 S(L2s)における光線の通過領域(有効領域 EA)の周辺に、測定ボイ ント MPが存在しないと、後述するイニシャル品の近似面の精度低下が生じる。その ため、有効領域 EAよりも広い領域(例えば、 Y軸方向および Z軸方向において有効 領域 EAよりも 0. 5mm広い範囲)でライン測定は行われている。  [0049] If the measurement point MP is not present around the light ray passage area (effective area EA) on the lens surface S (L2s), the accuracy of the approximate surface of the initial product, which will be described later, is reduced. For this reason, line measurement is performed in an area wider than the effective area EA (for example, a range 0.5 mm wider than the effective area EA in the Y-axis direction and the Z-axis direction).
[0050] なお、光学面を測定した場合の生データは、成形変化量以外に、 X軸 ·Υ軸 ·Ζ軸の 各軸方向へのシフト量、および、 X軸 ·Υ軸 ·ζ軸の軸回りの回転についての測定時の セッティング誤差を含んでいる。そこで、測定ポイント MPから成る測定データは、そ れらのセッティング誤差を考慮した上で算出されるようになっている。  [0050] Note that the raw data when measuring the optical surface includes the amount of shift of each of the X-axis, Υ-axis, and Ζ-axis in addition to the molding change amount, and the X-axis, Υ-axis, and ζ-axis. It includes setting errors when measuring the rotation around the axis. Therefore, the measurement data consisting of the measurement point MP is calculated in consideration of these setting errors.
[0051] く STEP5 :全イニシャル品の近似面設定工程〉  [0051] Ku STEP5: Approximate surface setting process for all initial products>
続いて、測定データを用いて、全てのイニシャル品における光学面の近似面の設 定が行われる。ただし、かかる近似面設定のため、図 3に示すように、有効領域 EAを 覆うような YZ面 (X軸に対して垂直な平面)を均等に 25分割 (Y軸方向 5分割 X Z軸 方向 5分割)し、分割された YZ平面 (分割面 DA)を底とする空間 (X軸方向に分割面 の厚みが延びるようになった空間;分割空間)が複数設定される [空間分割設定工程 Subsequently, the approximate surface of the optical surface in all initial products is set using the measurement data. However, for this approximate surface setting, as shown in Fig. 3, the YZ surface (plane perpendicular to the X axis) covering the effective area EA is equally divided into 25 (Y axis direction divided into 5 XZ axis directions 5) A plurality of spaces (spaces in which the thickness of the divided surface extends in the X-axis direction; divided spaces) with the divided YZ plane (divided surface DA) as the bottom [space division setting process
L L
[0052] そして、力かる複数の分割空間を考慮した多項式で、イニシャル品の光学面 (ィニ シャル面)を近似する。このような近似に適した関数の一例としては、スプライン関数( B—スプライン関数等)が挙げられる。そこで、以降ではスプライン関数を挙げて説明 していく。なお、スプライン関数は、以下のように定義される(ただし、 5次のスプライン 関数の場合である)。 [0052] Then, the optical surface (initial surface) of the initial product is approximated by a polynomial that takes into account a plurality of powerful divided spaces. An example of a function suitable for such approximation is a spline function (B-spline function, etc.). Therefore, in the following, we will explain with spline functions I will do it. A spline function is defined as follows (however, it is a case of a quintic spline function).
区間を任意の X方向に n分割したときの X方向のノットベクトルを (χθ,χθ,χθ,χθ,χθ,χθ, 1, 2 3, 4 -, (11-1), 11 11, 11 11 11 11)とするときに定義される8_スプラィンの基 底関数を下記式 (数 2)とする。  The k-direction vector in the X direction when the interval is divided into n in any X direction is (χθ, χθ, χθ, χθ, χθ, χθ, 1, 2 3, 4-, (11-1), 11 11, 11 11 11 The basic function of the 8_spline defined in 11) is expressed by the following equation (Equation 2).
[数 2]
Figure imgf000013_0001
[Equation 2]
Figure imgf000013_0001
[0054] 同様に、 Υ方向に m分割したときの Υ方向のノットベクトルを (yOyOyOyOyOyOyly 2y3y4 '-' y(m_l),ymymymymym,ym)とするときに定義される B—スプラインの基底 関数を下記式 (数 3)とする。  [0054] Similarly, the basis function of the B-spline defined when the knot vector in the Υ direction when divided into m in the Υ direction is (yOyOyOyOyOyOyly 2y3y4 '-' y (m_l), ymymymymym, ym) is The formula is as follows.
[数 3]
Figure imgf000013_0002
そして、かかる場合に、 5次の B—スプライン関数の面関数 f(x, y)は、面の基底 (n + 5) X (m+ 5)個のスプライン基底の線形和(数 4)で定義される。
[Equation 3]
Figure imgf000013_0002
In such a case, the surface function f (x, y) of the fifth-order B—spline function is defined by the linear sum of the surface base (n + 5) X (m + 5) spline bases (Equation 4). Is done.
[数 4] f(x,y)= ,∑7=0 'AMx)bAy)  [Equation 4] f (x, y) =, ∑7 = 0 'AMx) bAy)
[0056] ただし、 k次の B—スプラインの基底関数 bik(x)は、下記式 (数 5·数 6)で表される 関数で、 [0056] However, the k-th order B—spline basis function bik (x) is a function expressed by the following equation (Equation 5 · Equation 6):
[数 5] (χ = ι(χ>≤ズ< , +1) [ Equation 5] ( χ = ι (χ> ≤z <, +1 )
= 0( otherwise )  = 0 (otherwise)
[数 6] Xi+k Xi Xi+k+l ― Xi+l bi,k (x)は、下記式 (数 7)でのみ値を持ち、それ以外では" 0"である。 [Equation 6] X i + k X i X i + k + l- X i + l bi, k (x) has a value only in the following equation (Equation 7), and is "0" otherwise.
[数 7]  [Equation 7]
i — < Xi+k+\ i — < X i + k + \
[0057] そして、以降にイニシャル品の各光学素子における光学面に対応するスプライン関 数 Gを列挙する。なお、スプライン関数 Gで示される近似面は「イニシャル面データ」と 称されてもよい。 [0057] Then, the spline function G corresponding to the optical surface of each optical element of the initial product is listed below. The approximate surface indicated by the spline function G may be referred to as “initial surface data”.
[0058] 'イニシャル品の第 1ミラー Mlの反射面 S(M1)に対応する近似面  [0058] 'Approximate surface corresponding to reflective surface S (M1) of first mirror Ml of initial product
: G[S(M1)]  : G [S (M1)]
•イニシャル品の第 1レンズ L1の縮小側レンズ面 S(Lls)に対応する近似面 : G[S(Lls)]  • Approximate surface corresponding to the reduction lens surface S (Lls) of the first lens L1 of the initial product: G [S (Lls)]
•イニシャル品の第 1レンズ L1の拡大側レンズ面 S(Lle)に対応する近似面 : G[S(Lle)]  • Approximate surface corresponding to the magnification side lens surface S (Lle) of the first lens L1 of the initial product: G [S (Lle)]
•イニシャル品の第 2ミラー M2の反射面 S(M2)に対応する近似面  • Approximate surface corresponding to the reflective surface S (M2) of the second mirror M2 of the initial product
: G[S(M2)]  : G [S (M2)]
•イニシャル品の第 2レンズ L2の縮小側レンズ面 S(L2s)に対応する近似面 : G[S(L2s)]  • Approximate surface corresponding to the reduction lens surface S (L2s) of the second lens L2 of the initial product: G [S (L2s)]
•イニシャル品の第 2レンズ L2の拡大側レンズ面 S(L2e)に対応する近似面 : G[S(L2e)]  • Approximate surface corresponding to the enlargement side lens surface S (L2e) of the initial second lens L2: G [S (L2e)]
'イニシャル品の第 3ミラー M3の反射面 S(M3)に対応する近似面  'Approximate surface corresponding to the reflective surface S (M3) of the initial third mirror M3
: G[S(M3)]  : G [S (M3)]
'イニシャル品の第 4ミラー M4の反射面 S(M4)に対応する近似面  'Approximate surface corresponding to the reflective surface S (M4) of the initial fourth mirror M4
: G[S(M4)]  : G [S (M4)]
[0059] なお、第 2レンズ L2の拡大側レンズ面 S(L2e)に対応する近似面を示すスプライン関 数 G[S(L2e)]の近似面係数を一例として列挙すると、表 1および表 2のようになる。[0059] Note that a spline function indicating an approximate surface corresponding to the magnification side lens surface S (L2e) of the second lens L2. Table 1 and Table 2 list the approximate surface coefficients of the number G [S (L2e)] as an example.
《ノットベクトルの係数》 《Knot vector coefficient》
[表 1] [table 1]
Figure imgf000015_0001
Figure imgf000015_0001
《面の関数基底の係数》  《Coefficient of function basis of surface》
[表 2] [Table 2]
ャル。 での The In
第 2レンズ L2の拡大側レンズ面 S(L2e)  Magnification side lens surface S (L2e) of the second lens L2
Figure imgf000016_0001
く STEP6 :イニシャル品からなる全系の光学性能評価工程〉
Figure imgf000016_0001
STEP6: Optical performance evaluation process for the entire system consisting of initial products>
そして、イニシャル面データ (G[S(M1)] , G[S(Lls)] , G[S(Lle)] , G[S(M2)], G[S( L2s)] , G[S(L2e)] , G[S(M3)] , G[S(M4)])を参照することで、光学シミュレーション 装置が投影光学系 PSの光学性能評価を行う [イニシャル品型光学系の光学性能評 価工程 (第 1光学性能評価工程) ]。したがって、光学シミュレーション装置内の光学 シミュレーションソフトには、全ての光学面に対応したイニシャル面データが入力され るようになっている。 And initial surface data (G [S (M1)], G [S (Lls)], G [S (Lle)], G [S (M2)], G [S (L2s)], G [S ( L2e)], G [S (M3)], G [S (M4)]), the optical simulation device evaluates the optical performance of the projection optical system PS. [Optical performance evaluation of the initial product type optical system] Valuation process (first optical performance evaluation process)]. Therefore, the initial surface data corresponding to all optical surfaces is input to the optical simulation software in the optical simulation device. It has become so.
[0063] なお、光学シミュレーション装置は、従来から種々存在しており、特に限定するもの ではない。また、光学性能評価の項目も特に限定されるものではなレ、。例えば、種々 の収差評価、倍率評価、 MTF (Modulation Transfer Function)評価、またはスポット ダイアグラム評価であってもよレ、。  [0063] Various optical simulation apparatuses exist in the past, and are not particularly limited. Also, the optical performance evaluation items are not particularly limited. For example, various aberration evaluations, magnification evaluations, MTF (Modulation Transfer Function) evaluations, or spot diagram evaluations.
[0064] そこで、光学性能評価の一例として、図 4にスポットダイアグラムを示す。この図 4の スポットダイアグラムは、イニシャル面データから計算されたスポットダイアグラムであり 、スクリーン面 SCNでの 25個の評価ポイン卜で、 3波長 (460應, 546讓, 620nm) のスポット図を重ねることにより結像特性を示している(目盛りは ± lmmで表記)。な お、図中の座標 (Υ,Ζ)は、各評価ポイントのスポット重心の投影位置を示すスクリー ン面 SCNのローカル座標(Y,Z ;mm)である。また、投影光学系 PSはスクリーン面の XY平面に対して面対称な光学系であるので、スポットダイアグラムはスクリーン面 SC N上での Z軸方向のマイナス側の半分のみを示し、残り半分を省略している。  [0064] FIG. 4 shows a spot diagram as an example of optical performance evaluation. The spot diagram in Fig. 4 is a spot diagram calculated from the initial plane data. Over the 25 evaluation points on the screen plane SCN, the spot diagrams for 3 wavelengths (460, 546, 620nm) are superimposed. Shows the imaging characteristics (scale is expressed as ± lmm). The coordinates (Υ, Ζ) in the figure are the local coordinates (Y, Z; mm) of the screen surface SCN indicating the projected position of the spot centroid at each evaluation point. Also, since the projection optical system PS is an optical system that is plane-symmetric with respect to the XY plane of the screen surface, the spot diagram shows only the negative half of the Z axis direction on the screen surface SCN, and the remaining half is omitted. is doing.
[0065] く STEP7 :イニシャル品から成る投影光学系の光学性能評価結果の判断工程〉 ここで、光学性能評価結果の判断、すなわち、イニシャル品から成る投影光学系 P Sの光学的性能が許容範囲内であるか否かについて判断される。そして、この判断 結果に基づいて以降の工程が決定される。  <Step 7: Judgment Process of Optical Performance Evaluation Result of Projection Optical System Consisting of Initial Product> Here, determination of optical performance evaluation result, that is, optical performance of projection optical system PS composed of initial product is within an allowable range It is determined whether or not. The subsequent steps are determined based on the determination result.
[0066] 例えば、イニシャル品力 成る投影光学系 PSの光学的性能が許容範囲内である 場合、力かる投影光学系 PSは十分に満足し得る光学的性能を有することになる。そ のため、あえて、金型が補正加工されなくてもよい。したがって、投影光学系 PSの製 造力 S完了してちょレ、 (STEP7→STEP20)。  [0066] For example, when the optical performance of the projection optical system PS, which is the initial product strength, is within the allowable range, the powerful projection optical system PS has sufficiently satisfactory optical performance. Therefore, the die does not have to be corrected. Therefore, the manufacturing power S of the projection optical system PS has been completed (STEP 7 → STEP 20).
[0067] 一方、イニシャル品力 成る投影光学系 PSの光学的性能が許容範囲外である場 合、力、かる投影光学系 PSは十分に満足し得ない光学的性能を有することになる。そ のため、金型が補正加工されなくてはならなレ、。そこで、以降に、金型の新たなキヤビ ティ面データ(「新キヤビティ面データ」と称す)を求め、その新キヤビティ面データに 応じた補正加工後の金型で、再成形を行っていく工程について説明していく。  [0067] On the other hand, when the optical performance of the projection optical system PS, which is the initial product strength, is outside the allowable range, the projection optical system PS has an optical performance that cannot be fully satisfied. Therefore, the mold must be corrected. Therefore, the process for obtaining new mold surface data (referred to as “new cavity surface data”) for the mold and performing re-molding with the corrected mold according to the new cavity surface data. I will explain.
[0068] く STEP8 :特定光学面の補正量算出工程〉  [0068] Step 8: Correction amount calculation process for specific optical surface>
通常、各光学素子におけるイニシャル面データと設計データとは異なっていること が多い。しかしながら、すべての光学素子の金型を補正する必要はなぐ特定の光学 素子の光学面 (特定光学面)の金型形状を新たに設定することで、十分な光学性能 を達成できる投影光学系 PSを作製できる。 Normally, the initial surface data and design data for each optical element are different. There are many. However, it is not necessary to correct the mold of all optical elements. Projection optical system PS that can achieve sufficient optical performance by newly setting the mold shape of the optical surface (specific optical surface) of a specific optical element PS Can be produced.
[0069] 具体的には、特定光学面以外のイニシャル面データを固定して、特定光学面を変 ィ匕させて投影光学系 PSの再設計を行う。ただし、特定光学面はいずれの面でもよい 、イニシャル面データと設計データとの乖離の最も大きな面 (最大形状誤差面)を 特定光学面とすると望ましい。なぜなら、特定光学面以外の残りの光学面のィニシャ ル面データは、設計データからの乖離が少ないため、特定光学面の再設計の結果、 投影光学系 PSとしての設計性能からのずれが少ないためである。 Specifically, initial surface data other than the specific optical surface is fixed, the specific optical surface is changed, and the projection optical system PS is redesigned. However, the specific optical surface may be any surface, and it is desirable that the surface having the largest deviation between the initial surface data and the design data (maximum shape error surface) is the specific optical surface. This is because the initial surface data of the remaining optical surfaces other than the specific optical surface has little deviation from the design data, and as a result of redesigning the specific optical surface, there is little deviation from the design performance of the projection optical system PS. It is.
[0070] なお、特定光学面は、最大形状誤差面に最も近い面であってもよい。最大形状誤 差面が、例えば平面の場合等、金型形状を補正したくない場合がある。このような場 合、特定光学面が最大形状誤差面に最も近い面であってもよい。なぜなら、最大形 状誤差面に最も近い面に入射する光線の状態は、最大形状誤差面に入射する光線 の状態と近いため、特定光学面の再設計の結果、設計性能からの変化が少ないた めである。 Note that the specific optical surface may be a surface closest to the maximum shape error surface. There are cases where it is not desired to correct the mold shape, for example, when the maximum shape error surface is a flat surface. In such a case, the specific optical surface may be the surface closest to the maximum shape error surface. This is because the state of the light incident on the surface closest to the maximum shape error surface is close to the state of the light incident on the maximum shape error surface. It is.
[0071] 以降では、特定光学面を第 2レンズ L2の縮小側レンズ面 S (L2s)とし、第 2レンズ L2 の縮小側レンズ面 S (L2s)に対応する第 5金型のキヤビティ面 T (L2s)が補正加工され る場合を一例として説明する。なお、力かる特定光学面に対応するキヤビティ面 T(L2 s)への補正加工は「第 1補正加工」と称されてもよレ、。  [0071] Hereinafter, the specific optical surface is the reduction side lens surface S (L2s) of the second lens L2, and the fifth mold cavity surface T (L2s) corresponding to the reduction side lens surface S (L2s) of the second lens L2 is used. A case where L2s) is corrected will be described as an example. The correction processing to the cavity surface T (L2 s) corresponding to the specific optical surface that is strong may be referred to as “first correction processing”.
[0072] まず、第 1補正加工されるキヤビティ面 T(L2s)の新キヤビティ面データを「D」とし、以 下のように定義する。 [0072] First, the new cavity surface data of the cavity surface T (L2s) subjected to the first correction processing is defined as "D" and defined as follows.
D = f[S(L2s)] + H  D = f [S (L2s)] + H
ただし、  However,
f[S(L2s)]:キヤビティ面 T(L2s)の初期キヤビティ面データ  f [S (L2s)]: Initial cavity surface data of cavity surface T (L2s)
H :既存のキヤビティ面 T(L2s)に対する補正量を示す関数 (例えば H: Function indicating the correction amount for the existing cavity surface T (L2s) (for example,
、スプライン関数) , Spline function)
である。  It is.
[0073] すると、関数 H (以降では一例であるスプライン関数 Hで説明する)に含まれる係数 が決定されれば、新キヤビティ面データ Dが決定されることになる。そこで、スプライン 関数 Hが考慮された第 2レンズ L2の縮小側レンズ面 S(L2s)のイニシャル面データ、 すなわち「G[S(L2s)] + H」を用いて光学性能評価を行う。 [0073] Then, the coefficients included in the function H (which will be described below as an example of the spline function H) Is determined, the new cavity surface data D will be determined. Therefore, the optical performance evaluation is performed using the initial surface data of the reduction side lens surface S (L2s) of the second lens L2 in consideration of the spline function H, that is, “G [S (L2s)] + H”.
[0074] 具体的には、イニシャル面データ (G[S(M1)], G[S(Lls)] , G[S(Lle)] , G[S(M2)] , G[S(L2s)] + H-G[S(L2e)] , G[S(M3)] , G[S(M4)])を参照することで、光学シミュレ ーシヨン装置が投影光学系 PSの光学性能評価を行う (なお、この光学性能評価は「 検索光学性能評価」と称されてもよぐこの検索光学性能評価の結果は「検索結果」 と称されてもよい)。 [0074] Specifically, initial surface data (G [S (M1)], G [S (Lls)], G [S (Lle)], G [S (M2)], G [S (L2s) ] + HG [S (L2e)], G [S (M3)], G [S (M4)]), the optical simulation device evaluates the optical performance of the projection optical system PS. This optical performance evaluation may be referred to as “search optical performance evaluation”, and the result of this search optical performance evaluation may be referred to as “search result”).
[0075] 詳説すると、検索光学性能評価は、投影光学系 PSにおける設計データ (F[S(M1)] , F[S(Lls)], F[S(Lle)] , F[S(M2)], F[S(L2s)], F[S(L2e)] , F[S(M3)], F[S(M4) ])での光学性能 (設計値)に近づくように、特定光学面の形状を変化させて最適化を 行っている。なお、ここでいう最適化とは、いわゆるローカルミニマムを探すことで必ず しも最良の値を求めることではない。そして、最適化を行った結果 (検索結果)が所望 の性能を有してレ、ればよレ、。かかる検索光学性能評価で最適結果が実現した場合、 スプライン関数 Hが決定することになる。  [0075] In detail, the retrieval optical performance evaluation is based on design data (F [S (M1)], F [S (Lls)], F [S (Lle)], F [S (M2) in the projection optical system PS. ], F [S (L2s)], F [S (L2e)], F [S (M3)], F [S (M4)] The shape is changed to optimize. The optimization here does not mean finding the best value by searching for a so-called local minimum. Then, the result of the optimization (search result) should have the desired performance. When the optimum result is realized by such a search optical performance evaluation, the spline function H is determined.
[0076] したがって、第 2レンズ L2の縮小側レンズ面 S(L2s)のイニシャル面データ G[S(L2s)] が変化させられることで(すなわち、 G[S(L2s)] + Hとすることで)、投影光学系 PSとし ての最適な性能を発揮する場合での第 2レンズ L2の縮小側レンズ面 S(L2s)のィニシ ャル面データ G[S(L2s)]の変化量 (すなわちスプライン関数 H)が求まっているといえ る [変化量算出工程]。なお、イニシャル面データ G[S(L2s)]を直接変化させて差分と しての変化量を求めるのではなぐ補正量を変数として最適化を行ってもよい。  [0076] Therefore, the initial surface data G [S (L2s)] of the reduction side lens surface S (L2s) of the second lens L2 is changed (that is, G [S (L2s)] + H. The amount of change in the initial surface data G [S (L2s)] of the reduction-side lens surface S (L2s) of the second lens L2 when the optimum performance as the projection optical system PS is exhibited (that is, It can be said that the spline function H) is obtained [change calculation process]. Note that optimization may be performed using a correction amount as a variable instead of directly changing the initial plane data G [S (L2s)] to obtain a change amount as a difference.
[0077] そして、以降に決定したスプライン関数 Hにおける係数を表 3および表 4に示す。な お、力、かる係数が決定すると、その係数に応じて、第 5金型のキヤビティ面 T(L2s)に 施すべき補正加工量も決定する。  [0077] Tables 3 and 4 show coefficients in the spline function H determined thereafter. When the force and coefficient are determined, the correction machining amount to be applied to the cavity surface T (L2s) of the fifth die is also determined according to the coefficient.
[0078] 《ノットベクトルの係数》  [0078] << Knot Vector Coefficient >>
[表 3] [Table 3]
mi mi
《凝 璨阖 鹿》 [6 00]
Figure imgf000020_0001
《Deer Deer》 [6 00]
Figure imgf000020_0001
lOT90/.OOZdf/X3d 8 ΟΟΐひ動 OAV スプライン関数 H lOT90 / .OOZdf / X3d 8 ΟΟΐ ひ 動 OAV Spline function H
Figure imgf000021_0001
Figure imgf000021_0001
[0080] く STEP9:特定光学面に対応する金型補正加工工程〉  [0080] Ku STEP9: Mold Correction Process for Specific Optical Surfaces>
そして、決定された補正加工量に応じて第 5金型のキヤビティ面 T(L2s)を第 1補正 加工する [第 1補正加工工程]。したがって、この第 1補正加工は、新キヤビティ面デ ータ Dに応じたキヤビティ面 T(L2s)を実現するための補正加工といえる。  Then, the cavity surface T (L2s) of the fifth mold is subjected to the first correction processing according to the determined correction processing amount [first correction processing step]. Therefore, it can be said that this first correction process is a correction process for realizing the cavity surface T (L2s) corresponding to the new cavity surface data D.
[0081] く STEP10 :補正後の金型での成形工程〉 [0081] Ku STEP 10: Molding process with corrected mold>
次に、第 1補正加工された第 5金型で、新たな第 2レンズ L2を成形 (再成形)する。 なお、このように再成形された第 2レンズ L2は「再成形品」と称されてもよい。 Next, a new second lens L2 is molded (re-molded) with the fifth mold subjected to the first correction processing. The second lens L2 reshaped in this way may be referred to as a “reshaped product”.
[0082] (STEP11:再成形品の面形状測定工程〉  [0082] (STEP 11: Surface shape measurement process of remolded product)
続いて、 STEP4同様に、面形状の測定を行う装置で、新たな第 2レンズ L2の縮小 側レンズ面 S(L2s)を測定する。なお、力、かる測定データは「再成形品測定データ」と 称されてもよい。  Subsequently, as in STEP 4, the reduction-side lens surface S (L2s) of the new second lens L2 is measured with the apparatus for measuring the surface shape. Note that force and measurement data may be referred to as “re-molded product measurement data”.
[0083] く STEP12 :再成形品の近似面設定工程〉  [0083] Ku STEP12: Approximate Surface Setting Process of Reformed Product>
さらに、 STEP5同様に、再成形品測定データを用いて、再成形品の第 2レンズ L2に おける縮小側レンズ面 S(L2s)の近似面(特定光学面の近似面)の設定が行われる。 なお、このように設定されたレンズ面 S(L2s)の近似面は「再成形品面データ」 (G' [S( L2s)])と称されてもよレヽ。  Further, as in STEP 5, using the reshaped product measurement data, an approximate surface (approximate surface of the specific optical surface) of the reduction-side lens surface S (L2s) in the second lens L2 of the reshaped product is set. The approximate surface of the lens surface S (L2s) set in this way may be referred to as “reformed product surface data” (G ′ [S (L2s)]).
[0084] (STEP13 :再成形品を含む投影光学系の光学性能評価工程〉  [STEP 13: Optical Performance Evaluation Process of Projection Optical System Including Remolded Product>
そして、イニシャル面データ(G[S(M1)], G[S(Lls)] , G[S(Lle)] , G[S(M2)], G[S (L2e)] , G[S(M3)], G[S(M4)])と、再成形品面データ (G' [S(L2s)])とを参照すること で、 STEP6同様に、光学シミュレーション装置が投影光学系 PSの光学性能評価を行 う [再成形品含有型光学系の光学性能評価工程]。  The initial plane data (G [S (M1)], G [S (Lls)], G [S (Lle)], G [S (M2)], G [S (L2e)], G [S ( M3)], G [S (M4)]) and the reshaped part surface data (G '[S (L2s)]) Perform performance evaluation [Optical performance evaluation process of remolded product-containing optical system].
[0085] すなわち、イニシャル品である第 1ミラー Ml、第 1レンズ Ll、第 2ミラー M2、第 3ミラ 一 M3、および第 4ミラー M4と、再成形品である第 2レンズ L2とを含む投影光学系 P Sの光学性能評価が行われることになる。なお、力かる光学性能評価の結果が、図 5 に示されるスポットダイアグラムになる(この図 5は図 4と同様の表現になっている)。  That is, a projection including the first mirror Ml, the first lens Ll, the second mirror M2, the third mirror M3, the fourth mirror M4, which is the initial product, and the second lens L2, which is a reshaped product. The optical performance of the optical system PS will be evaluated. The result of the powerful optical performance evaluation is the spot diagram shown in Fig. 5 (Fig. 5 is expressed in the same way as Fig. 4).
[0086] (STEP14:投影光学系の光学性能評価結果の判断工程〉  [0086] (STEP 14: Judgment Step of Optical Performance Evaluation Result of Projection Optical System)
そして、再成形品を含む投影光学系 PSの光学性能評価の結果(図 5のスポットダイ アグラム等)が、許容範囲内であるか否かについて判断される。そして、再成形品を 含む投影光学系 PSの光学的性能が許容範囲内である場合、かかる投影光学系 PS は十分に満足し得る光学的性能を有することになる。そのため、製造が完了してもよ レヽ(STEP14→STEP20)。  Then, it is determined whether or not the result of the optical performance evaluation of the projection optical system PS including the reshaped product (spot diagram, etc. in FIG. 5) is within the allowable range. If the optical performance of the projection optical system PS including the reshaped product is within an allowable range, the projection optical system PS has sufficiently satisfactory optical performance. Therefore, manufacturing may be completed (STEP14 → STEP20).
[0087] (STEP15:新キヤビティ面データへの追レ、込み加工工程〉  [0087] (STEP 15: Addition to new cavity surface data, machining process)
しかし、再成形品を含む投影光学系 PSの光学的性能が許容範囲外である場合、 力、かる投影光学系 PSは十分に満足し得ない光学的性能を有することになる。このよ うに不十分な光学性能しか発揮できない事態は、第 1補正加工された第 5金型のキヤ ビティ面 T(L2s)が新キヤビティ面データ Dどおりに加工されてレ、なレ、ことに起因したり 、光学面における不均一な冷却、光学素子の冷却時の収縮、成形条件が最適化さ れていないこと等に起因したりする。 However, if the optical performance of the projection optical system PS including the reshaped product is out of the allowable range, the projection optical system PS having such a power will have optical performance that cannot be sufficiently satisfied. This The situation where only insufficient optical performance can be achieved is due to the fact that the cavity surface T (L2s) of the 5th mold after the 1st correction processing is processed according to the new cavity surface data D. Or due to non-uniform cooling on the optical surface, shrinkage during cooling of the optical element, and inadequate molding conditions.
[0088] そこで、新キヤビティ面データ Dと、 STEP12で定められた再成形品面データ G' [S( L2s)]との形状誤差を相殺するような補正加工(追い込み加工)が行われる [第 2補正 加工工程]。 [0088] Therefore, correction processing (follow-up processing) is performed to offset the shape error between the new cavity surface data D and the reshaped product surface data G '[S (L2s)] determined in STEP 12. 2 correction machining process].
[0089] (STEP16 :追レ、込み加工後の金型での成形工程〉  [0089] (STEP 16: Molding process after die and post-molding)
そして、追い込み加工されたキヤビティ面 T(L2s)を備えることになつた第 5金型で、 再び、第 2レンズ L2を成形(追い込み成形)する。なお、このような追い込み成形され た第 2レンズ L2は、「追レ、込み品」と称されてもよレ、。  Then, the second lens L2 is molded again (increase molding) with the fifth die that has been provided with the cavity surface T (L2s) that has been driven in. Note that the second lens L2 that has been cast in this way may be referred to as “tracking, including the product”.
[0090] (STEP17:追レ、込み品の面形状測定工程〉  [0090] (STEP 17: tracking, process of measuring the shape of the surface of the included product)
続いて、 STEP4同様に、面形状の測定を行う装置で、追い込み品である第 2レンズ L2の縮小側レンズ面 S(L2s)を測定する。なお、かかる測定データは「追い込み品測 定データ」とされてもよい。  Subsequently, as in STEP 4, the reduction-side lens surface S (L2s) of the second lens L2, which is a driven-in product, is measured with a device that measures the surface shape. Such measurement data may be referred to as “follow-up product measurement data”.
[0091] (STEP18 :追レ、込み品の近似面設定工程〉  [0091] (STEP18: Approximate surface setting process for tracking and inclusions)
さらに、 STEP5同様に、追い込み品測定データを用いて、追い込み品の第 2レンズ L2における縮小側レンズ面 S(L2s)の近似面の設定が行われる。なお、設定されたレ ンズ面 S(L2s)の近似面は「追い込み品面データ」(G' ' [S(L2s)])と称されてもよい。  Further, as in STEP 5, the approximate surface of the reduction side lens surface S (L2s) in the second lens L2 of the driven-in product is set using the driven-up product measurement data. The approximate surface of the set lens surface S (L2s) may be referred to as “driven surface data” (G ′ ′ [S (L2s)]).
[0092] く STEP19 :追い込み品を含む投影光学系の光学性能評価工程〉  [0092] Ku STEP 19: Optical Performance Evaluation Process of Projection Optical System Including Drive-in Product>
そして、イニシャル面データ (G[S(M1)] , G[S(Lls)] , G[S(Lle)] , G[S(M2)], G[S( L2e)], G[S(M3)] , G[S(M4)])と、追い込み品面データ(G' ' [S(L2s)])とを参照する ことで、 STEP6同様に、光学シミュレーション装置が投影光学系 PSの光学性能評価 を行う [追い込み品含有型光学系の光学性能評価工程]。すなわち、イニシャル品で ある第 1ミラー Ml、第 1レンズ Ll、第 2ミラー M2、第 3ミラー M3、および第 4ミラー M 4と、追い込み品である第 2レンズ L2とを含む投影光学系 PSの光学性能評価が行わ れることになる。  The initial plane data (G [S (M1)], G [S (Lls)], G [S (Lle)], G [S (M2)], G [S (L2e)], G [S ( M3)], G [S (M4)]) and the driven surface data (G '' [S (L2s)]) Performs performance evaluation [Optical performance evaluation process for driven-in type optical system]. That is, the projection optical system PS including the first mirror Ml, the first lens Ll, the second mirror M2, the third mirror M3, and the fourth mirror M4, which are initial products, and the second lens L2, which is a driven product, is provided. Optical performance evaluation will be conducted.
[0093] く STEP14 :投影光学系の光学性能評価結果の判断工程〉 そして、追い込み品を含む投影光学系の光学性能評価の結果から、光学的性能が 許容範囲内であるか否かについて判断する(STEP19→STEP14)。そして、追い込 み品を含む投影光学系 PSの光学的性能が許容範囲内である場合、かかる投影光 学系 PSは十分に満足し得る光学的性能を有することになる。そのため、製造が完了 してもょレヽ(STEP19→STEP14→STEP20)。 [0093] Ku STEP14: Judgment process of optical performance evaluation result of projection optical system> Then, from the result of the optical performance evaluation of the projection optical system including the driven product, it is determined whether or not the optical performance is within the allowable range (STEP 19 → STEP 14). If the optical performance of the projection optical system PS including the driven-in product is within an allowable range, the projection optical system PS has sufficiently satisfactory optical performance. Therefore, even if the production is completed (STEP19 → STEP14 → STEP20).
[0094] ただし、追い込み品を含む投影光学系 PSの光学的性能が許容範囲外である場合 、力、かる投影光学系 PSは十分に満足し得ない光学的性能を有することになる。した がって、再度、追い込み加工が行われる(再追い込み加工;複数回目の STEP14→S TEP15)。 [0094] However, when the optical performance of the projection optical system PS including the driven-in product is out of the allowable range, the projection optical system PS having such a force has optical performance that cannot be sufficiently satisfied. Therefore, the follow-up process is performed again (re-start process; multiple times STEP14 → STEP15).
[0095] さらに、かかる再追い込み加工後の第 5金型で成形された第 2レンズ L2 (再追い込 み品)の面形状を測定するとともに、その測定データで近似面を設定し、光学性能評 価が行われる(STEP16〜STEP19)。そして、力、かる光学性能評価の結果から(再追 い込み品含有型光学系の光学性能評価の結果から)、再追い込み品を含む投影光 学系 PSの光学的性能が許容範囲内であれば、製造が完了してもよい(STEP19→S TEP14)。  [0095] Further, the surface shape of the second lens L2 (re-push-in product) molded with the fifth die after the re-push-up processing is measured, and an approximate surface is set based on the measurement data, and the optical performance is measured. Evaluation is performed (STEP 16 to STEP 19). Then, based on the results of the force and optical performance evaluation (from the results of optical performance evaluation of the re-entry product-containing optical system), the optical performance of the projection optical system PS including the re-entry product is within the allowable range. For example, the manufacturing may be completed (STEP 19 → STEP 14).
[0096] ただし、再追い込み品を含む投影光学系 PSの光学的性能が許容範囲外であれば 、再々度、第 5金型のキヤビティ面 T(L2s)が追い込み加工されればよレ、。つまり、 STE P14で投影光学系 PSとしての光学性能が許容範囲内になるまで(STEP19→STEP1 4の YESになるまで)、追い込み加工等が続けられる(STEP15〜STEP19が繰り返さ れる)。  [0096] However, if the optical performance of the projection optical system PS including the re-pushing product is out of the allowable range, the cavity surface T (L2s) of the fifth mold may be pushed again. That is, the follow-up processing and the like are continued until the optical performance as the projection optical system PS is within the allowable range at STE P14 (STEP 19 → YES at STEP 14) (STEP 15 to STEP 19 are repeated).
[0097] なお、 STEP14で、投影光学系 PSとしての光学性能を許容範囲内とする光学素子 を成形できる金型を補正金型 (補正型部材)と称する。  Note that a mold capable of forming an optical element having an optical performance within the allowable range as the projection optical system PS in STEP 14 is referred to as a correction mold (correction mold member).
[0098] く STEP20〜22 :光学系の完成〉 [0098] Ku STEP 20-22: Completion of optical system>
最終的に、光学系は、補正金型を用いた成形(第 1成形工程; STEP20)によって作 製された光学素子と、補正しなレ、金型 (補正金型以外の金型)を用いた成形 (第 2成 形工程; STEP21)によって作製された光学素子とを、組み立てることで完成する(ST Finally, the optical system uses the optical element produced by molding using the correction mold (first molding process; STEP20), and the correction mold and mold (molds other than the correction mold). Completed by assembling the optical elements produced by the former molding (2nd molding process; STEP21)
EP22)。 EP22).
[0099] [3.総括] 以上で説明した製造方法は、金型 (型部材)で光学素子材料を成形して、複数の 光学素子を有する投影光学系 PS内の各光学素子 (イニシャル品)を製造するととも に、製造された各光学素子における光学面の面形状の測定結果に基づく近似式を 定めることで各光学面の近似面 (イニシャル面データ)を設定している。 [0099] [3. Summary] In the manufacturing method described above, an optical element material is molded with a mold (mold member) to manufacture each optical element (initial product) in the projection optical system PS having a plurality of optical elements. In addition, the approximate surface (initial surface data) of each optical surface is set by defining an approximate expression based on the measurement result of the surface shape of the optical surface in each optical element.
[0100] その上、かかる製造方法は、投影光学系 PS内における全光学面の近似面から、全 系の光学性能を評価し、さらに、全光学面の近似面のうち少なくとも 1面 {例えば、ィ 二シャル品の第 2レンズ L2の縮小側レンズ面 S(L2s) ;「変化近似面」と称す }を変化さ せることで、全系としての最適な光学性能を発揮する場合の変化近似面の変化量を 求めている(なお、変化させない近似面を無変化近似面と称す)。そして、かかる変化 量に基づいて変化近似面に対応する金型のキヤビティ面に対する補正加工量を求 めて補正加工し、新たなキヤビティ面を作製してレ、る。  [0100] Moreover, such a manufacturing method evaluates the optical performance of the entire system from the approximate surface of all the optical surfaces in the projection optical system PS, and further, at least one of the approximate surfaces of the entire optical surface {for example, The secondary lens L2's reduction-side lens surface S (L2s); referred to as the “change approximation surface”} is changed to provide the change approximation surface when optimal optical performance is achieved for the entire system. (The approximate surface that is not changed is called the non-changeable approximate surface). Then, based on the amount of change, a correction processing amount for the cavity surface of the mold corresponding to the change approximate surface is obtained and corrected to produce a new cavity surface.
[0101] この製造方法は、全金型における全てのキヤビティ面を補正加工するわけではない 。例えば、力かる製造方法は、最大形状誤差面に対応するキヤビティ面を優先して補 正加工できる。そのため、金型補正回数が比較的に少なくなり、効率的でありながら 、短時間かつ安価に投影光学系 PSが製造されることになる。  [0101] This manufacturing method does not correct all the cavity surfaces in all dies. For example, a powerful manufacturing method can perform correction processing by giving priority to the cavity surface corresponding to the maximum shape error surface. Therefore, the number of mold corrections is relatively small, and the projection optical system PS is manufactured in a short time and at a low cost while being efficient.
[0102] さらに、この製造方法は、投影光学系 PSとしての光学性能評価に基いて、金型の 補正加工を行っている。すなわち、光学面の設計データ Fと同一のデータを有する光 学面を成形するためにキヤビティ面が補正加工されるのではなぐ投影光学系 PSとし て最適な光学性能を発揮するために特定の光学面に応じたキヤビティ面 {例えば、 第 5金型のキヤビティ面 T(L2s)}が補正加工されるようになってレ、る。  [0102] Further, in this manufacturing method, the die is corrected based on the optical performance evaluation as the projection optical system PS. In other words, the optical surface having the same data as the optical surface design data F is not subjected to correction processing in order to mold the optical surface. The cavity surface corresponding to the surface {for example, the cavity surface T (L2s) of the fifth mold} is corrected and processed.
[0103] したがって、特定の光学面 {例えば、イニシャル品の第 2レンズ L2の縮小側レンズ 面 S(L2s)}以外の他の光学面に形状誤差 (設計データ Fとの誤差)があったとしても、 特定の光学面が、投影光学系 PSとして最適な光学性能を発揮する面形状になって いれば問題ない。そのため、力かる製造方法は、投影光学系 PS内の各光学面の形 状誤差の影響を受けにくいといえる。なぜなら、光学面の設計データ Fと同一のデー タを有する光学面を成形するためにキヤビティ面が補正加工される場合、投影光学 系 PSの光学性能が最適になるには、全てのキヤビティ面が精度よく補正加工されな くてはいけないためである。 [0104] ただし、特定の光学面に対応するキヤビティ面への 1回目の補正加工(第 1補正加 ェ;新たなキヤビティ面の作製)が、精度よく行われていない場合もある。かかる場合 、新たなキヤビティ面を有する金型で成形された光学素子(例えば、再成形品の第 2 レンズ L2)と、既存の金型で成形された光学素子 (イニシャル品)とを含む投影光学 系 PSの光学性能は、許容範囲外になつてしまう。 [0103] Therefore, it is assumed that there is a shape error (an error with design data F) on a specific optical surface {for example, the reduction-side lens surface S (L2s)} of the initial second lens L2). However, there is no problem if a specific optical surface has a surface shape that exhibits optimum optical performance as the projection optical system PS. For this reason, it can be said that the manufacturing method is difficult to be affected by the shape error of each optical surface in the projection optical system PS. This is because, when a cavity surface is corrected to form an optical surface having the same data as the optical surface design data F, all the cavity surfaces must be accurate so that the optical performance of the projection optical system PS can be optimized. This is because it must be corrected. [0104] However, there is a case where the first correction processing (first correction addition; production of a new cavity surface) on the cavity surface corresponding to a specific optical surface is not performed with high accuracy. In such a case, projection optics including an optical element molded with a mold having a new cavity surface (for example, the second lens L2 as a remolded product) and an optical element molded with an existing mold (initial product). The optical performance of the system PS is out of the acceptable range.
[0105] そこで、かかる製造方法は、新たなキヤビティ面を有する金型で成形された光学素 子 (例えば、再成形品である第 2レンズ L2)において、新たなキヤビティ面に対応する 光学面の面形状の測定結果に基づく近似式を定めることで近似面を設定する。さら に、この製造方法は、新たなキヤビティ面に対応する光学面の近似面と、新たなキヤ ビティ面との形状誤差 (例えば、再成形品面データ G' [S(L2s)]と新キヤビティ面デー タ Dとの誤差)を相殺するように、新たなキヤビティ面を補正加工している。  [0105] Therefore, in this manufacturing method, in an optical element molded with a mold having a new cavity surface (for example, the second lens L2 which is a remolded product), an optical surface corresponding to the new cavity surface is formed. An approximate surface is set by determining an approximate expression based on the measurement result of the surface shape. In addition, this manufacturing method uses a shape error between the approximate surface of the optical surface corresponding to the new cavity surface and the new cavity surface (for example, the reshaped product surface data G '[S (L2s)] and the new cavity surface. The new cavity surface is corrected so as to offset the error with surface data D).
[0106] 力、かる補正加工 [第 2補正加工]は、形状誤差を解消するために行われているが、 既に補正加工されたキヤビティ面(新たなキヤビティ面)のみに対して行われるもので ある。そのため、この第 2補正加工は、全てのキヤビティ面を補正加工する場合の負 担に比べて、軽い負担にしかならない。  [0106] Force / Curve correction processing [Second correction processing] is performed to eliminate the shape error, but it is performed only on the already corrected cavity surface (new cavity surface). is there. For this reason, this second correction processing is only a light burden compared to the burden of correcting all the cavity surfaces.
[0107] しかし、特定光学面に対応するキヤビティ面への 2回目の補正加工(第 2補正加工) 力 精度よく行われていれば、複数回補正加工されたキヤビティ面を有する金型で成 形された光学素子 (例えば、追い込み品の第 2レンズ L2)と、既存の金型で成形され た光学素子 (イニシャル品)とを含む投影光学系 PSの光学性能は、許容範囲内にな る。すると、この軽負担の第 2補正加工が存在することで、力かる製造方法は、容易に 高い光学性能を発揮する投影光学系 PSを製造できる。  [0107] However, the second correction processing to the cavity surface corresponding to the specific optical surface (second correction processing) force If performed accurately, it is formed with a mold having a cavity surface that has been corrected multiple times. The optical performance of the projection optical system PS including the formed optical element (for example, the second lens L2 as a follow-up product) and the optical element (initial product) molded with an existing mold is within an allowable range. Then, the existence of this lightly-burden second correction process makes it possible to manufacture the projection optical system PS that easily exhibits high optical performance by the powerful manufacturing method.
[0108] なお、以上で説明した製造方法は、特に、複数の偏芯面を含む反射光学系、とりわ け自由曲面を含む光学系の製造方法に有効である。通常、成型時のエラーは、設計 値に対して非対称なエラー(例えば、ァス成分)を生じやすい。そのため、回転対称 面ではなぐ非回転対称な面 (特に自由曲面)が変化近似面であれば、成形エラーの 補正は容易となる。なお、偏芯面とは回転対称な軸を有さない面、または有していた としても対称軸が有効面の中心から大きくずれている面を意味する。  Note that the manufacturing method described above is particularly effective for a manufacturing method of a reflection optical system including a plurality of eccentric surfaces, particularly an optical system including a free-form surface. Normally, an error during molding tends to generate an asymmetric error (for example, a false component) with respect to a design value. Therefore, if a non-rotationally symmetric surface (especially a free-form surface) that is not a rotationally symmetric surface is a change approximation surface, it is easy to correct the forming error. The eccentric surface means a surface that does not have a rotationally symmetric axis, or a surface in which the symmetric axis is greatly deviated from the center of the effective surface even if it is included.
[0109] ところで、光学性能評価では、投影光学系 PSにおける光学素子の光学面の近似 面 (イニシャル面データ、再成形品面データ、追い込み品面データ等)が使用される 。具体的には、近似面の面形状から求められるパワーを利用した光線追跡シミュレ一 シヨンによって、光学性能評価が行われる。そのために、近似面の設定の仕方が重 要になってくる。 [0109] By the way, in the optical performance evaluation, the optical surface of the optical element in the projection optical system PS is approximated. Surfaces (initial surface data, remolded surface data, driven surface data, etc.) are used. Specifically, the optical performance is evaluated by a ray tracing simulation using power obtained from the surface shape of the approximate surface. Therefore, how to set the approximate surface becomes important.
[0110] 例えば、測定された光学面に局所的なうねり(うねり部分)が存在する場合、うねり部 分を適切に表現するために高次の次数の近似式を用いると、うねり以外の箇所 (非う ねり部分)に高次のうねりが生じてしまう。逆に、非うねり部分を適切に表現しようと低 次の次数の近似式を用いると、うねり部分を適切に表現できない。  [0110] For example, when local waviness (waviness part) exists on the measured optical surface, if an approximation formula of a higher order is used to appropriately represent the waviness part, a place other than waviness ( High-order undulation will occur in the non-undulation area. On the other hand, if a low-order approximation is used to properly represent the non-swelled part, the swelled part cannot be represented properly.
[0111] そこで、光学面のうねり部分を効率よく表現できる関数、例えばスプライン関数で、 光学面の近似面 (イニシャル面データ、再成形品面データ、追い込み品面データ等) は表されるようになっていると望ましい。そして、その一例として、光学素子の光学面 における所定の基準軸 (例えば、 X軸)に対し垂直な平面 (YZ面;図 3参照)を複数に 分割し、それらの分割された平面を底とする空間(分割空間)を複数設定し、かかる 分割空間同士における境界で連続性を有するスプライン関数が挙げられる。  [0111] Therefore, an approximate surface (initial surface data, reshaped surface data, driven surface data, etc.) of the optical surface can be expressed by a function that can efficiently express the waviness portion of the optical surface, for example, a spline function. It is desirable that As an example, a plane (YZ plane; see FIG. 3) perpendicular to a predetermined reference axis (for example, the X axis) on the optical surface of the optical element is divided into a plurality of parts, and these divided planes are used as bottoms. A plurality of spaces (divided spaces) are set, and a spline function having continuity at the boundary between the divided spaces can be mentioned.
[0112] ただし、力かるスプライン関数等の次数としては、少なくとも 3次以上であることが望 ましい(以上の説明では、 5次のスプライン関数を列挙して説明)。このような 3次以上 のスプライン関数であれば、分割空間内の測定点 MPを用いて、分割空間毎に応じ た近似面を設定できる。特に、少なくとも 3次以上の関数 (例えばスプライン関数)を 用いる場合、近似式の 2次導関数が分割空間同士における境界で連続することにな り、分割空間の境界での近似面に段差等が生じず、近似面のパワーに連続性が生じ ることで、光線追跡シミュレーションが可能となる。  [0112] However, it is desirable that the order of a powerful spline function or the like is at least 3 or more (in the above description, a 5th-order spline function is listed and explained). With such a third-order or higher-order spline function, it is possible to set an approximate surface corresponding to each divided space using the measurement point MP in the divided space. In particular, when using at least a third-order function (for example, a spline function), the second derivative of the approximate expression is continuous at the boundary between the divided spaces, and there is a step on the approximate surface at the boundary of the divided space. This does not occur, and continuity occurs in the power of the approximate surface, enabling ray tracing simulation.
[0113] なお、望ましくは、スプライン関数等の次数としては、 4〜8次であるとよレ、。プロジェ クタ分野の光学性能に大きな影響を及ぼす局所的なうねり部分が、 4〜8次の関数で 表現されるためである。また、 4〜8次の関数で近似面を作成することで、光学性能に 大きく影響を及ぼす局所的なうねり形状を表現でき、さらに光学性能に影響を及ぼし にくい高次のうねり部分を除去し、フィルタ関数としての機能も果たしているといえる。  [0113] Preferably, the order of the spline function or the like is 4-8. This is because the local undulation that has a large effect on the optical performance of the projector field is expressed by a 4th to 8th order function. In addition, by creating an approximate surface with a 4th to 8th order function, it is possible to express local waviness shapes that greatly affect optical performance, and to remove higher order waviness portions that are less likely to affect optical performance, It can be said that it also functions as a filter function.
[0114] [実施の形態 2]  [0114] [Embodiment 2]
なお、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲 で、種々の変更が可能である。 It should be noted that the present invention is not limited to the above-described embodiment and does not depart from the spirit of the present invention. Various modifications are possible.
[0115] 例えば、第 2レンズ L2における縮小側レンズ面 S(L2s)および拡大側レンズ面 S(L2e )に起因する光学的性能を、第 2レンズ L2の縮小側レンズ面 S(L2s)の形状変化によつ て、補正する例が挙がっているものの、これに限定されるものではなレ、。例えば、第 2 レンズ L2の拡大側レンズ面 S(L2e)に起因する光学性能を、第 2レンズ L2の縮小側レ ンズ面 S(L2s)または第 3ミラーの反射面 S(M3)の形状変化で補正してもよい。  [0115] For example, the optical performance attributed to the reduction side lens surface S (L2s) and the enlargement side lens surface S (L2e) in the second lens L2 is represented by the shape of the reduction side lens surface S (L2s) of the second lens L2. Although there are examples of correction due to changes, this is not limited to this. For example, the optical performance caused by the enlargement-side lens surface S (L2e) of the second lens L2 is changed to the shape change of the reduction-side lens surface S (L2s) of the second lens L2 or the reflection surface S (M3) of the third mirror. You may correct by.
[0116] 要は、投影光学系 PSとしての光学性能が最適になるベぐ力かる投影光学系 PSに 含まれる光学面の少なくとも 1面を形状変化するように、金型が補正加工されればよ レ、。ただし、光学性能に影響を与える光学面を通過する光の像高と、ほぼ同等の像 高を有する光が通過する光学面に形状変化を与えると、効果的に光学性能が向上 する。したがって、例えば、第 2レンズ L2の拡大側レンズ面 S(L2e)に起因する光学性 能は、第 2レンズ L2の縮小側レンズ面 S(L2s)の形状変化で補正すると望ましいとい える。  [0116] In short, if the mold is corrected and processed so that the shape of at least one of the optical surfaces included in the projection optical system PS is optimal, the optical performance as the projection optical system PS is optimal. Yo! However, if the image height of light passing through an optical surface that affects the optical performance and a shape change in the optical surface through which light having approximately the same image height passes, the optical performance is effectively improved. Therefore, for example, it can be said that it is desirable to correct the optical performance caused by the enlargement side lens surface S (L2e) of the second lens L2 by the shape change of the reduction side lens surface S (L2s) of the second lens L2.
[0117] また、分割空間を設定する場合 (空間分割工程の場合)、分割空間の個数と、分割 空間内における測定ポイントの点数との関係が重要になる。例えば、分割空間の個 数が比較的少ないにもかかわらず測定データ MPの点数が比較的多くある場合、形 状誤差を面全体の誤差多項式で表現することとほぼ同等になってしまう。すると、局 所的なうねりが近似面に表現されない。  [0117] Further, when setting a divided space (in the case of a space dividing step), the relationship between the number of divided spaces and the number of measurement points in the divided spaces becomes important. For example, if the number of measurement data MP is relatively large even though the number of divided spaces is relatively small, the shape error is almost the same as expressing the error polynomial of the entire surface. Then, local waviness is not expressed on the approximate surface.
[0118] 一方、例えば、分割空間の個数が比較的多いにもかかわらず測定データ MPの点 数が比較的少ない場合、光学面の局所的なうねりが近似されるものの、測定方向に 対する垂直方向の測定データ MP (図 3であれば、 Z軸方向に対して垂直な Y軸方向 の測定データ MP)の点数が分割空間内で少なくなつてしまう。その結果、少なくなつ た測定データ MPの方向(図 3の Y軸方向)の近似精度が低下する。  [0118] On the other hand, for example, when the number of measurement data MP is relatively small although the number of divided spaces is relatively large, the local undulation of the optical surface is approximated, but the direction perpendicular to the measurement direction The number of measurement data MP (in Fig. 3, measurement data MP in the Y-axis direction perpendicular to the Z-axis direction) decreases in the divided space. As a result, the approximate accuracy of the direction of the measurement data MP that has been reduced (the Y-axis direction in Fig. 3) decreases.
[0119] 以上を鑑みると、分割空間の個数が比較的多ぐかつ測定データ MPの点数も比 較的多くすれば望ましいように考えられる。しかし、かかる場合、面形状の測定に非 常に時間がかかり、それに起因して環境温度 ·湿度変化による測定器の温度ドリフト の影響や、イニシャル品の光学面の経時変化により、測定データ MPの精度が低下 する。また、測定データ MPの点数も比較的多いために、測定効率も低下する。 [0120] そのため、光学面の局所的なうねりの近似精度の確保および分割空間内の測定ポ イント MPの減少に起因する光学面の近似精度の確保を図りつつも、測定効率の向 上を図れるような、分割空間の個数と分割空間内における測定ポイントの点数とが望 ましいことになる。その一例として、図 3に示すような、分割空間を 25個とし、分割空 間毎に 5本のライン測定を行う測定方法が挙げられる。 [0119] In view of the above, it is considered desirable if the number of divided spaces is relatively large and the number of points of the measurement data MP is relatively large. However, in such a case, it takes a very long time to measure the surface shape, resulting in the temperature drift of the measuring instrument due to changes in environmental temperature and humidity, and the change in the optical surface of the initial product over time. Decreases. In addition, since the number of measurement data MP is relatively large, the measurement efficiency also decreases. [0120] Therefore, it is possible to improve the measurement efficiency while ensuring the approximation accuracy of the local undulation of the optical surface and the approximation accuracy of the optical surface due to the reduction of the measurement point MP in the divided space. Thus, the number of division spaces and the number of measurement points in the division space are desirable. One example is the measurement method shown in Fig. 3, in which there are 25 division spaces and five lines are measured for each division space.
[0121] なお、近似面を作成する場合、分割空間毎の測定ライン数が多いほど近似精度は よくなる。しかし、例えば、プロジェクタ分野の光学性能に影響がある 5次の関数で近 似面を作成している場合、精度よく近似面を作成するためには、本来ならば分割空 間毎に 5ラインが望ましいが、少なくとも 3ラインあれば精度よく近似面が作成できる。  [0121] When creating an approximate surface, the accuracy of approximation increases as the number of measurement lines in each divided space increases. However, for example, if the approximate surface is created with a fifth-order function that affects the optical performance of the projector field, in order to create an approximate surface with high accuracy, 5 lines are normally used for each divided space. Although it is desirable, an approximate surface can be created accurately if there are at least three lines.
[0122] また、図 3では、 Z軸方向に沿うようにライン測定が行われている力 Y軸方向に沿う ようにライン測定が行われてもよレ、。また、 Y軸方向と Z軸方向との両軸方向に沿うよう なライン測定 (マトリックス状の測定)が行われてもよい。ただし、マトリックス状の測定 は、測定効率が低下してしまうが、一方向(Y軸方向または Z軸方向)のライン測定で あれば、測定効率はマトリックス状の測定に比べて向上する。  [0122] Also, in Fig. 3, the line measurement is performed along the Z-axis direction. The line measurement may be performed along the Y-axis direction. In addition, line measurement (matrix-like measurement) along both the Y-axis direction and the Z-axis direction may be performed. However, the measurement efficiency of the matrix-like measurement is reduced, but if it is a line measurement in one direction (Y-axis direction or Z-axis direction), the measurement efficiency is improved compared to the matrix-type measurement.
[0123] また、設計データ Fや初期キヤビティ面データ Fを現す多項式は、特に限定されるも のではないが、スプライン関数であってもよい。  [0123] The polynomial representing the design data F and the initial cavity surface data F is not particularly limited, but may be a spline function.
[0124] また、全ての光学素子が成形品でなくてもよい。例えば球面である第 1ミラー Mlは 研磨品であってもよい。また、樹脂成形でなくてもガラス成形でもよい。また、全ての 光学素子に対して近似面を求め、全ての光学素子の近似面を用いて光学性能評価 を行わなくてもよい。例えば、第 1ミラー Mlがガラス研磨品の場合、ほぼ設計値どお りの形状が得られるので、第 1ミラー Mlの近似面としては設計データを用いてもよい  [0124] Not all optical elements may be molded articles. For example, the first mirror Ml that is a spherical surface may be a polished product. Further, glass molding may be used instead of resin molding. Further, it is not necessary to obtain approximate surfaces for all optical elements and perform optical performance evaluation using the approximate surfaces of all optical elements. For example, when the first mirror Ml is a glass polished product, a shape almost as designed is obtained, so design data may be used as the approximate surface of the first mirror Ml.
[0125] [実施の形態 3] [0125] [Embodiment 3]
実施の形態 3について説明する。なお、実施の形態 1 · 2で用いた部材と同様の機 能を有する部材については、同一の符号を付記し、その説明を省略する。  Embodiment 3 will be described. Note that members having the same functions as those used in Embodiments 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
[0126] ミラーやレンズ等の光学素子の材料としては、種々の材料 (ガラスや樹脂等)が挙げ られる。ただし、ガラス製光学素子の成形に要する温度は樹脂製光学素子の成形に 要する温度に比べて高ぐその高温に起因して、ガラス製光学素子(特に、外形サイ ズの比較的大きなガラス製光学素子)の成形精度は、樹脂製光学素子の成形精度 に比べて低くなりやすい。そのため、ガラス製光学素子は設計通りの面形状に成形さ れにくい。 [0126] Examples of materials for optical elements such as mirrors and lenses include various materials (glass, resin, etc.). However, the temperature required for molding the glass optical element is higher than the temperature required for molding the resin optical element, and thus the glass optical element (particularly the outer shape The molding accuracy of a glass optical element having a relatively large size tends to be lower than that of a resin optical element. For this reason, glass optical elements are not easily formed into the surface shape as designed.
[0127] また、一般的に、各光学素子の面 (例えばミラー面とレンズ面)に到達した光の有効 光束幅がほぼ同じ場合に、各面の面形状の誤差量が同じであると、ミラー面の面形 状誤差に起因する光学性能の劣化が、レンズ面の面形状誤差に起因する光学性能 の劣化に比べて大きい(すなわち、光学性能に対する感度では、ミラー面のほうがレ ンズ面よりも高い)。そのため、ガラス製光学素子と樹脂製光学素子とが混在している 投影光学系 PSにおいて、ガラス製光学素子がミラーの場合、そのミラーの面形状の 誤差は発生しやすい上、投影光学系 PSの光学性能に大きな影響を及ぼす。  [0127] In general, when the effective luminous flux width of the light reaching the surfaces of the optical elements (for example, the mirror surface and the lens surface) is substantially the same, the error amount of the surface shape of each surface is the same. The optical performance degradation caused by the surface shape error of the mirror surface is larger than the optical performance degradation caused by the surface shape error of the lens surface (that is, the mirror surface is more sensitive than the lens surface in terms of sensitivity to optical performance). Is also high). For this reason, in the projection optical system PS in which glass optical elements and resin optical elements are mixed, if the glass optical element is a mirror, an error in the surface shape of the mirror is likely to occur, and the projection optical system PS The optical performance is greatly affected.
[0128] かかる光学性能の一例として、図 6および図 7のスポットダイアグラムが挙げられる。  [0128] As an example of such optical performance, the spot diagrams of Figs.
これらのスポットダイアグラムは、ガラス製の第 1ミラー Mlおよび第 2ミラー M2と、樹 脂製の第 1レンズ Ll、第 2レンズ L2、第 3ミラー M3、および第 4ミラー M4とを含む投 影光学系 PSのイニシャル面データから計算されている。ただし、これらのスポットダイ アグラムに示される光学性能の劣化は、第 2ミラー M2の反射面 S(M2)が所望の面形 状に成形されていないことに起因している。  These spot diagrams show the projection optics including the first mirror Ml and the second mirror M2 made of glass, and the first lens Ll, the second lens L2, the third mirror M3, and the fourth mirror M4 made of resin. Calculated from initial surface data of system PS. However, the deterioration of the optical performance shown in these spot diagrams is due to the fact that the reflecting surface S (M2) of the second mirror M2 is not formed into a desired surface shape.
[0129] なお、これらの図のスポットダイアグラムは、スクリーン面 SCNでの 45個の評価ポィ ントで、 3波長 (460nm, 546nm, 620nm)のスポット図を重ねることにより結像特性 を示している(目盛りは ± lmmで表記)。また、図 6はスクリーン面 SCN上での Z軸方 向のプラス側の半分のみを、図 7は残り半分である Z軸方向のマイナス側を示し、図 中の座標 (Y,Z)は図 4および図 5と同様の表現になっている(なお、図中の「e_n」は「 10— n」である)。 [0129] The spot diagrams in these figures show the imaging characteristics by overlapping spot diagrams of three wavelengths (460nm, 546nm, 620nm) at 45 evaluation points on the screen surface SCN ( The scale is expressed in ± lmm). Fig. 6 shows only the positive half of the Z-axis direction on the screen surface SCN, and Fig. 7 shows the other half, the negative side of the Z-axis direction. The coordinates (Y, Z) in the figure are the same conventions apply as 4 and 5 (Incidentally, "e_ n" in the figure is a "10- n").
[0130] 図 6および図 7に示すような光学性能劣化を防ぐには、既に説明した製造方法を用 いればよい。すなわち、金型で光学素子材料 (ガラスまたは樹脂)を成形して、複数 の光学素子を有する投影光学系 PS内の各光学素子 (イニシャル品)を製造するとと もに、製造された各光学素子における光学面の面形状の測定結果に基づく近似式 を定めることで各光学面の近似面 (イニシャル面データ)を設定する。  [0130] In order to prevent optical performance deterioration as shown in FIGS. 6 and 7, the manufacturing method described above may be used. That is, an optical element material (glass or resin) is molded with a mold to manufacture each optical element (initial product) in the projection optical system PS having a plurality of optical elements, and each manufactured optical element The approximate surface (initial surface data) of each optical surface is set by determining an approximate expression based on the measurement result of the surface shape of the optical surface in.
[0131] さらに、全光学面の近似面から、全系の光学性能を評価するとともに、全光学面の 近似面のうち少なくとも 1面 (変化近似面)を変化させることで、全系としての最適な光 学性能を発揮する場合の変化近似面の変化量を求め、力かる変化量に基づいて変 化近似面に対応する金型のキヤビティ面に対する補正加工量を求めて第 1補正加工 し、新たなキヤビティ面を作製すればよい。 [0131] Further, the optical performance of the entire system is evaluated from the approximate surface of all the optical surfaces, and By changing at least one of the approximate surfaces (change approximate surface), the change amount of the change approximate surface when the optimum optical performance of the entire system is exhibited is obtained, and the change is based on the strong change amount. It is only necessary to calculate the amount of correction for the cavity surface of the mold corresponding to the approximate surface and perform the first correction process to create a new cavity surface.
[0132] ただし、ミラーおよびレンズを含む投影光学系 PSでは、変化近似面として、少なくと も 1面のレンズ面が用いられるとよレ、。イニシャル面データの変化量 Hに基づレ、て第 1 補正加工が施された後で、新キヤビティ面データ Dを目標値とした再成形が行われた 場合、新キヤビティ面データ Dと再成形品面データ G'との間で形状誤差が生じると、 光学性能は劣化する。し力 ながら、レンズ面はミラー面 (ミラーの反射面)よりも感度 が低いことから、変化近似面がレンズ面であったほうが、光学性能への影響が小さく すむからである。  [0132] However, in the projection optical system PS including the mirror and the lens, at least one lens surface is used as the change approximation surface. After the first correction process is performed based on the amount of change H in the initial surface data, if re-molding is performed with the new cavity surface data D as the target value, the new cavity surface data D and re-molding are performed. If a shape error occurs with the surface data G ', the optical performance deteriorates. However, since the lens surface is less sensitive than the mirror surface (mirror reflection surface), the change approximate surface is the lens surface, and the effect on the optical performance is reduced.
[0133] そこで、投影光学系 PSにおける第 1レンズ L1の縮小側レンズ面 S(Lls)と、第 2レン ズ L2の縮小側レンズ面 S(L2s)とを変化近似面として、イニシャル面データ(G[S(Lls) ], G[S(L2s)])の変化量を求めた。さらに、かかる変化量に基づいて変化近似面に対 応する金型のキヤビティ面 {第 2金型のキヤビティ面 T(Lls),第 5金型のキヤビティ面 T (L2s)}に対する補正加工量を求めて第 1補正加工し、新たなキヤビティ面を作製した  [0133] Thus, in the projection optical system PS, the reduction-side lens surface S (Lls) of the first lens L1 and the reduction-side lens surface S (L2s) of the second lens L2 are used as the change approximate surfaces, and initial surface data ( The amount of change of G [S (Lls)], G [S (L2s)]) was obtained. Furthermore, based on the amount of change, the amount of correction for the mold cavity surface corresponding to the change approximate surface {the second mold cavity surface T (Lls), the fifth mold cavity surface T (L2s)} The first correction process was performed to create a new cavity surface.
[0134] そして、第 1補正加工された第 2金型と第 5金型とで、新たな第 1レンズ L1と第 2レン ズ L2とを再成形した後、新たな第 1レンズ L1の縮小側レンズ面 S(Lls)と第 2レンズ L 2の縮小側レンズ面 S(L2s)との面形状を測定し、さらに、それらの面形状の近似面の データ(再成形品面データ; G' [S(Lls)], G' [S(L2s)])を求めた。 [0134] Then, after reshaping the new first lens L1 and the second lens L2 with the second mold and the fifth mold subjected to the first correction processing, the reduction of the new first lens L1 The surface shape of the side lens surface S (Lls) and the reduction lens surface S (L2s) of the second lens L 2 is measured, and the data of the approximate surface of these surface shapes (reformed product surface data; G ' [S (Lls)], G '[S (L2s)]) were obtained.
[0135] 図 8および図 9は、再成形品面データ(G' [S(Lls)], G' [S(L2s)])と、イニシャル面 データ(G[S(M1)], G[S(Lle)], G[S(M2)] , G[S(L2e)] , G[S(M3)], G[S(M4)])と 力、ら求められたスポットダイアグラムである(なお、この図 8および図 9は図 6および図 7 と同様の表現になっている)。  [0135] Figures 8 and 9 show the reshaped part surface data (G '[S (Lls)], G' [S (L2s)]) and the initial surface data (G [S (M1)], G [ S (Lle)], G [S (M2)], G [S (L2e)], G [S (M3)], G [S (M4)]) 8 and 9 are expressed in the same manner as in FIGS. 6 and 7.
[0136] すなわち、これらのスポットダイアグラムは、イニシャル品である第 1ミラー Ml、第 2ミ ラー M2、第 3ミラー M3、および第 4ミラー M4と、再成形品である第 1レンズ L1およ び第 2レンズ L2とを含む投影光学系 PSの光学性能評価を示している。そして、これ らの光学性能評価の結果は、許容範囲内と判断できた。 [0136] That is, these spot diagrams are the initial mirrors M1, M2, M3, and M4, and the first lens L1 and the reshaped product. The optical performance evaluation of the projection optical system PS including the second lens L2 is shown. And this These optical performance evaluation results could be judged to be within an acceptable range.
[0137] また、特に、投影光学系 PSにおける第 2ミラー M2は、ガラス製で回転対称な非球 面ミラーである。通常、ガラス成形で回転対称な非球面ミラーを成形しょうとする場合 、比較的低い成形精度に起因して、回転対称なミラー面が形成されにくい。すなわち 、ミラー面に非対称な面形状の誤差が生じやすい (かかる非対称の面形状誤差の観 点から、図 6〜図 9はスクリーン面 SCN上での Z軸方向のプラス側およびマイナス側 を示している)。  [0137] In particular, the second mirror M2 in the projection optical system PS is a glass-made rotationally symmetric aspherical mirror. Usually, when trying to form a rotationally symmetric aspherical mirror by glass molding, it is difficult to form a rotationally symmetric mirror surface due to a relatively low molding accuracy. That is, an error in the asymmetric surface shape is likely to occur on the mirror surface (from the viewpoint of such an asymmetric surface shape error, FIGS. 6 to 9 show the positive side and the negative side in the Z-axis direction on the screen surface SCN. )
[0138] しかし、そのミラー面に対応する金型のキヤビティ面に自由曲面的な補正加工を施 すことは難しレ、。なぜなら、高温対応のガラス成形用金型のキヤビティ面に対する補 正加工は、樹脂成形用金型のキヤビティ面に対する補正加工に比べて難しいためで ある。  [0138] However, it is difficult to perform free-form correction on the cavity surface of the mold corresponding to the mirror surface. This is because the correction processing for the cavity surface of the glass mold for high temperature is difficult compared to the correction process for the cavity surface of the resin mold.
[0139] すると、第 2ミラー M2の反射面 S(M2)における面形状の誤差に起因した光学性能 劣化を、第 2ミラー M2に対応する第 4金型 (ガラス成型用金型)のキヤビティ面 T(M2) に対する補正加工ではなぐ樹脂製の第 1レンズ L1および第 2レンズ L2に対応する 第 2金型および第 5金型 (樹脂成形用金型)のキヤビティ面 {T(Lls), T(L2s)}で補正 加工することは容易といえる。  [0139] Then, the optical performance deterioration due to the surface shape error on the reflecting surface S (M2) of the second mirror M2 is reduced. The fourth mold (glass molding mold) corresponding to the second mirror M2 has a cavity surface. Cavity surfaces {T (Lls), T of the second and fifth molds (resin molds) corresponding to the first lens L1 and the second lens L2 made of resin, which are not compensated for T (M2) It can be said that it is easy to correct with (L2s)}.
[0140] その上、第 2金型および第 5金型のキヤビティ面 {T(Lls), T(L2s)}への自由曲面形 状の補正加工は容易なことから、第 2ミラー M2の反射面 S(M2)に生じた非対称な面 形状の誤差を補正 (相殺)することが容易である。  [0140] In addition, the correction of the free-form surface shape to the cavity surfaces {T (Lls), T (L2s)} of the second and fifth molds is easy, so the reflection of the second mirror M2 It is easy to correct (cancel) the error of the asymmetric surface shape generated on the surface S (M2).
[0141] 以上から、少なくとも 1個のミラーと少なくとも 1個のレンズとを含む投影光学系 PSで は、光学性能に対する感度の観点から、少なくとも 1面のレンズ面が変化近似面にな つているとよいといえる。特に、ガラス成形されたミラーの面形状誤差、詳説すると、回 転対称な非球面である反射面 (ミラー面)に生じる面形状誤差に起因する光学性能 劣化は、レンズ面を変化近似面とした場合に、容易に補正されるといえる。  [0141] From the above, in the projection optical system PS including at least one mirror and at least one lens, from the viewpoint of sensitivity to optical performance, at least one lens surface is a change approximate surface. It's good. In particular, the surface shape error of a glass-molded mirror, more specifically, the optical performance degradation caused by the surface shape error that occurs on the reflection surface (mirror surface), which is a rotationally symmetric aspheric surface, makes the lens surface a change approximate surface. In this case, it can be said that it is easily corrected.
[0142] ただし、これに限定されず、ガラス成形されたレンズのレンズ面の面形状誤差、詳説 すると、回転対称な非球面であるレンズ面に生じる面形状誤差に起因する光学性能 劣化も、レンズ面 (望ましくは樹脂製レンズのレンズ面)を変化近似面とした場合に、 容易に補正されるといえる。なぜなら、レンズ面のほうがミラー面よりも感度が低いた め、再成形品に形状誤差が生じた場合でも光学性能への影響が小さいからである。 最後に、上記で開示された技術を適宜組み合わせて得られる実施形態についても 、本発明の技術的範囲に含まれることはいうまでもない。 [0142] However, the present invention is not limited to this, and the surface shape error of the lens surface of the glass molded lens, more specifically, the optical performance deterioration caused by the surface shape error generated on the lens surface which is a rotationally symmetric aspheric surface is not limited. When the surface (preferably the lens surface of a resin lens) is a change approximate surface, it can be said that it is easily corrected. Because the lens surface is less sensitive than the mirror surface Therefore, even if a shape error occurs in the remolded product, the influence on the optical performance is small. Finally, it goes without saying that embodiments obtained by appropriately combining the techniques disclosed above are also included in the technical scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 型部材を用いた成形によって、複数の光学面を含む光学系を製造する方法にあつ て、  [1] A method for manufacturing an optical system including a plurality of optical surfaces by molding using a mold member.
初期成形によって形成される光学面を含む上記光学系の全光学面の近似面を設 定する工程と、  Setting an approximate surface of all the optical surfaces of the optical system including the optical surface formed by initial molding;
上記光学系内における全光学面の近似面から、全系の光学性能を評価する第 1光 学性能評価工程と、  A first optical performance evaluation step for evaluating the optical performance of the entire system from the approximate surface of the entire optical surface in the optical system;
上記全光学面の近似面のうち型部材で成型される少なくとも 1面を変化近似面とす る一方、上記全光学面の近似面のうち型部材で成型される少なくとも 1面を上記変化 近似面とせずに無変化近似面とし、全系としての最適な光学性能を発揮する場合の 変化近似面の変化量を求める変化量算出工程と、  Of the approximate surfaces of all the optical surfaces, at least one surface molded by the mold member is used as a change approximate surface, and among the approximate surfaces of all the optical surfaces, at least one surface molded by the mold member is used as the change approximate surface. A change amount calculating step for obtaining a change amount of the change approximate surface when the optimal optical performance as the entire system is exhibited,
上記変化量に基づいて上記変化近似面に対応する上記型部材のキヤビティ面へ の補正加工量を求めて補正加工し、新キヤビティ面を作製する第 1補正加工工程と、 上記第 1補正加工工程で加工された補正型部材を用いて光学素子を成形する第 1 成形工程と、  Based on the change amount, a first correction processing step for obtaining a correction processing amount on the cavity surface of the mold member corresponding to the change approximate surface and performing correction processing to produce a new cavity surface; and the first correction processing step A first molding step of molding an optical element using the correction mold member processed in step 1;
上記補正型部材以外の型部材を用いて光学素子を成形する第 2成形工程と、 を含む光学系の製造方法。  A second molding step of molding an optical element using a mold member other than the correction mold member, and a method for producing an optical system.
[2] 上記の第 1成形工程は、 [2] The first molding step is
上記の新キヤビティ面を有する型部材で成形された光学素子にぉレ、て、新キヤ ビティ面に対応する光学面の面形状の測定結果に基づいて近似面を設定する工程 と、  A step of setting an approximate surface based on the measurement result of the surface shape of the optical surface corresponding to the new cavity surface; and an optical element molded with the mold member having the new cavity surface.
上記の新キヤビティ面に対応する光学面の近似面と、新キヤビティ面との形状誤 差を相殺するように、新キヤビティ面を補正加工する第 2補正加工工程と、  A second correction processing step for correcting and processing the new cavity surface so as to cancel out the shape error between the approximate surface of the optical surface corresponding to the new cavity surface and the new cavity surface;
第 2補正加工工程でカ卩ェされた補正型部材を用いて光学素子を成形する工程 と、  Forming an optical element using the correction mold member covered in the second correction processing step;
を含む請求項 1に記載の光学系の製造方法。  The method for producing an optical system according to claim 1, comprising:
[3] 上記の近似面を設定する工程において、 [3] In the step of setting the approximate surface,
上記の型部材を用いた成形によって形成される光学面には、初期成形によって形 成される光学面の測定面形状に基づく近似面が設定される請求項 1に記載の光学 系の製造方法。 The optical surface formed by molding using the mold member is shaped by initial molding. 2. The method of manufacturing an optical system according to claim 1, wherein an approximate surface based on a measurement surface shape of the formed optical surface is set.
[4] 上記の近似面を設定する工程において、  [4] In the step of setting the approximate surface,
光学面が研磨面の場合、上記研磨面には、上記光学面の設計データが近似面と して設定される請求項 1に記載の光学系の製造方法。  2. The method of manufacturing an optical system according to claim 1, wherein when the optical surface is a polished surface, design data of the optical surface is set as an approximate surface on the polished surface.
[5] 光学系内の各光学面の近似面と、各近似面に対応する光学面の設計データとの 差が最も大きな近似面を変化近似面とする請求項 1に記載の光学系の製造方法。 [5] The optical system according to claim 1, wherein the approximate surface having the largest difference between the approximate surface of each optical surface in the optical system and the design data of the optical surface corresponding to each approximate surface is the change approximate surface. Method.
[6] 光学系内の各光学面の近似面と、各近似面に対応する光学面の設計データとの 差が最も大きな光学面に最も近い光学面の近似面を変化近似面とする請求項 1に記 載の光学系の製造方法。 [6] The approximate surface of the optical surface closest to the optical surface having the largest difference between the approximate surface of each optical surface in the optical system and the design data of the optical surface corresponding to each approximate surface is defined as the change approximate surface. A method for producing the optical system described in 1.
[7] 上記の変化近似面は、多くとも 2面である請求項 1に記載の光学系の製造方法。 7. The method for manufacturing an optical system according to claim 1, wherein the change approximate surface is at most two surfaces.
[8] 上記の近似面を設定する工程では、 [8] In the step of setting the approximate surface,
上記光学素子の光学面における所定の基準軸に対し垂直な平面を複数に分割し A plane perpendicular to a predetermined reference axis on the optical surface of the optical element is divided into a plurality of parts.
、それらの分割された平面を底とする空間を複数設定する空間分割設定工程が含ま れ、上記の空間同士における境界で連続性を有する近似式が用いられている請求 項 1に記載の光学系の製造方法。 2. The optical system according to claim 1, further comprising a space division setting step for setting a plurality of spaces with the divided planes as a bottom, and using an approximate expression having continuity at a boundary between the spaces. Manufacturing method.
[9] 上記近似式が少なくとも 3次以上の関数である請求項 8記載の光学系の製造方法 9. The method of manufacturing an optical system according to claim 8, wherein the approximate expression is a function of at least a third order or higher.
[10] 上記の連続性とは、上記近似式の 2次導関数が上記の空間同士における境界で 連続することである請求項 9に記載の光学系の製造方法。 10. The optical system manufacturing method according to claim 9, wherein the continuity is that the second derivative of the approximate expression is continuous at a boundary between the spaces.
[11] 上記近似式が、スプライン関数である請求項 8〜: 10のいずれ力 1項に記載の光学 系の製造方法。 [11] The method for producing an optical system according to any one of [8] to [10], wherein the approximate expression is a spline function.
[12] 上記光学系は、型部材で成形される素子として、少なくとも 1個のレンズと少なくとも 1個のミラーとを含み、  [12] The optical system includes at least one lens and at least one mirror as an element molded by the mold member,
少なくともレンズ面が、上記変化近似面として用いられる請求項 1に記載の光学系 の製造方法。  2. The method of manufacturing an optical system according to claim 1, wherein at least a lens surface is used as the change approximate surface.
[13] 上記光学系内に含まれる上記レンズおよび上記ミラーのうちの少なくとも 1つ力 ガ ラス成形によって形成されている請求項 12に記載の光学系の製造方法。 13. The method of manufacturing an optical system according to claim 12, wherein at least one of the lens and the mirror included in the optical system is formed by force glass molding.
[14] 上記光学系は、非回転対称面を含み、 [14] The optical system includes a non-rotationally symmetric surface,
上記変化量算出工程では、上記非回転対称面に対応する近似面を、変化近似面 としている請求項 1に記載の光学系の製造方法。  2. The optical system manufacturing method according to claim 1, wherein, in the change amount calculation step, an approximate surface corresponding to the non-rotationally symmetric surface is a change approximate surface.
[15] 上記光学系は、型部材で成形される素子として、少なくとも 1個のレンズと少なくとも 1個のミラーとを含み、 [15] The optical system includes at least one lens and at least one mirror as an element molded by the mold member,
少なくともレンズ面が、上記変化近似面として用いられる請求項 14に記載の光学系 の製造方法。  15. The method of manufacturing an optical system according to claim 14, wherein at least a lens surface is used as the change approximate surface.
[16] 上記光学系内に含まれる上記レンズおよび上記ミラーのうちの少なくとも 1つ力 ガ ラス成形によって形成されている請求項 15に記載の光学系の製造方法。  16. The method of manufacturing an optical system according to claim 15, wherein at least one of the lens and the mirror included in the optical system is formed by force glass molding.
PCT/JP2007/061016 2006-06-05 2007-05-30 Optical system manufacturing method WO2007142100A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800208192A CN101460295B (en) 2006-06-05 2007-05-30 Optical system manufacturing method
JP2007554377A JP4111251B2 (en) 2006-06-05 2007-05-30 Optical system manufacturing method and mold member manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006156232 2006-06-05
JP2006-156232 2006-06-05
JP2006345250 2006-12-22
JP2006-345250 2006-12-22

Publications (1)

Publication Number Publication Date
WO2007142100A1 true WO2007142100A1 (en) 2007-12-13

Family

ID=38801358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061016 WO2007142100A1 (en) 2006-06-05 2007-05-30 Optical system manufacturing method

Country Status (4)

Country Link
JP (1) JP4111251B2 (en)
KR (1) KR101034431B1 (en)
CN (1) CN101460295B (en)
WO (1) WO2007142100A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107466A1 (en) * 2008-02-29 2009-09-03 コニカミノルタオプト株式会社 Method for designing imaging lens, and imaging lens
JP2010137402A (en) * 2008-12-10 2010-06-24 Canon Inc Method for manufacturing optical element
CN102378741A (en) * 2009-04-07 2012-03-14 柯尼卡美能达精密光学株式会社 Method of manufacturing optical elements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118571A1 (en) * 2015-10-30 2017-05-04 Kraussmaffei Technologies Gmbh Plastic injection molding machine with at least one camera

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094441A (en) * 2001-09-19 2003-04-03 Ricoh Co Ltd Optical element and method for manufacturing the same
JP2004361274A (en) * 2003-06-05 2004-12-24 Pentax Corp Apparatus and method for evaluating error in shape of optical surface
JP2005225089A (en) * 2004-02-13 2005-08-25 Canon Inc Method for producing optical element
JP2005283783A (en) * 2004-03-29 2005-10-13 Fujinon Corp Optical system with formed optical element and manufacturing method therefof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405108C (en) * 2002-12-18 2008-07-23 大立光电股份有限公司 Mosaic lens in optical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094441A (en) * 2001-09-19 2003-04-03 Ricoh Co Ltd Optical element and method for manufacturing the same
JP2004361274A (en) * 2003-06-05 2004-12-24 Pentax Corp Apparatus and method for evaluating error in shape of optical surface
JP2005225089A (en) * 2004-02-13 2005-08-25 Canon Inc Method for producing optical element
JP2005283783A (en) * 2004-03-29 2005-10-13 Fujinon Corp Optical system with formed optical element and manufacturing method therefof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107466A1 (en) * 2008-02-29 2009-09-03 コニカミノルタオプト株式会社 Method for designing imaging lens, and imaging lens
JPWO2009107466A1 (en) * 2008-02-29 2011-06-30 コニカミノルタオプト株式会社 Imaging lens design method and imaging lens
US8379314B2 (en) 2008-02-29 2013-02-19 Konica Minolta Opto, Inc. Method for designing imaging lens, and imaging lens
JP2010137402A (en) * 2008-12-10 2010-06-24 Canon Inc Method for manufacturing optical element
CN102378741A (en) * 2009-04-07 2012-03-14 柯尼卡美能达精密光学株式会社 Method of manufacturing optical elements
CN102378741B (en) * 2009-04-07 2014-04-23 柯尼卡美能达精密光学株式会社 Method of manufacturing optical elements
US9156196B2 (en) 2009-04-07 2015-10-13 Konica Minolta Opto, Inc. Method of manufacturing optical elements

Also Published As

Publication number Publication date
CN101460295A (en) 2009-06-17
JPWO2007142100A1 (en) 2009-10-22
KR20080113298A (en) 2008-12-29
KR101034431B1 (en) 2011-05-12
CN101460295B (en) 2012-12-05
JP4111251B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US7861626B2 (en) Lens surface cutting apparatus and lens surface cutting method for spectacle lens, and spectacle lens
CN104395804B (en) The manufacture method of optics assembly and the method for designing of assembling lens
WO2007142100A1 (en) Optical system manufacturing method
US20170261718A1 (en) Lens aligning device and image capturing lens
WO2019148639A1 (en) Collimating lens
US20050157258A1 (en) Generation system of design data, generation method of design data, recording medium and program
CN114303090B (en) Bifocal eyeglass lens and computer-implemented method of digital representation thereof
JP3982999B2 (en) Optical element manufacturing method
JP6096019B2 (en) Mold for mold, mold and method for manufacturing spectacle lens
JP2004299934A (en) Method for designing mold to form optical element
JP4711853B2 (en) Improved tolerance determination method for progressive power eyeglass lens inspection
JP2006289692A (en) Manufacturing method of mirror surface component, manufacturing method of optical element and optical element
JP5495529B2 (en) Manufacturing method of lens mold and manufacturing method of lens
Brooks et al. Manufacturing of a large, extreme freeform, conformal window with robotic polishing
JP3973430B2 (en) Mold, mold manufacturing method, and molding method
JP3946106B2 (en) Mold for press and method for manufacturing lens
KR101809839B1 (en) System and method for manufacturing lens
JP3722464B2 (en) Lens surface shape evaluation method and shape evaluation device
US6412945B1 (en) Non-uniform mask lens
TWI398338B (en) Compensation method for optics mold
JP5712454B2 (en) Measuring method and processing method of semi-finished blank
CN111465890B (en) Determination method for an ophthalmic lens with optimized thickness
JP2008020547A (en) Lens, lens molding metal mold, and manufacturing method of lens molding metal mold
TW201928731A (en) Ophthalmic lens designing device and ophthalmic lens designing method
JP2007114217A (en) Measurement method for lens shape or formed surface shape

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780020819.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007554377

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744429

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087028766

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07744429

Country of ref document: EP

Kind code of ref document: A1