WO2007141958A1 - Method of manufacturing honeycomb structure - Google Patents

Method of manufacturing honeycomb structure Download PDF

Info

Publication number
WO2007141958A1
WO2007141958A1 PCT/JP2007/058237 JP2007058237W WO2007141958A1 WO 2007141958 A1 WO2007141958 A1 WO 2007141958A1 JP 2007058237 W JP2007058237 W JP 2007058237W WO 2007141958 A1 WO2007141958 A1 WO 2007141958A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrugated
corrugated sheet
plate
winding
honeycomb structure
Prior art date
Application number
PCT/JP2007/058237
Other languages
French (fr)
Japanese (ja)
Inventor
Shintaro Tabata
Original Assignee
Calsonic Kansei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corporation filed Critical Calsonic Kansei Corporation
Publication of WO2007141958A1 publication Critical patent/WO2007141958A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D13/00Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
    • B21D13/04Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form by rolling

Definitions

  • the present invention relates to a method for manufacturing a honeycomb structure in which corrugated plates and flat plates are overlapped and wound into a spiral shape.
  • a her cam structure for example, a metal carrier manufactured by winding a metal corrugated plate and a flat plate on each other is known. Usually, press fitting is performed when housing the hard cam structure having the metal carrier force in the container.
  • the her cam structure deformed in this way is different from the original design shape, and when used as an exhaust purification device, the exhaust purification performance is reduced.
  • the above-mentioned publication describes that a buffer member is interposed between the her cam structure and the container.
  • This her cam structure is made of ceramic and has a substantially circular cross section, and does not have a step on the outer peripheral portion like the her cam structure having the metal carrier force described above. Therefore, the buffer member has a constant thickness over the entire circumference.
  • the present invention provides a two-cam structure manufactured by overlapping and winding a corrugated plate and a flat plate and press-fitting the container into a container to ensure sufficient holding, while deforming the her cam structure.
  • the purpose is to prevent it.
  • a method of manufacturing a her cam structure in which corrugated plates and flat plates are overlapped and wound into a spiral shape. And by pulling the corrugated plate in the length direction corresponding to the winding direction of the vicinity of the winding end on the outer peripheral side of the flat plate, the wave pitch of the corrugated plate is increased toward the winding end to increase the wave height.
  • the most important feature is that the lower end of the winding is lower.
  • FIG. 1 is a simplified overall configuration diagram showing an apparatus for manufacturing a hard cam structure according to an embodiment of the present invention.
  • FIG. 2 is a front view showing details of the corrugated sheet forming machine in the apparatus for manufacturing the her cam structure of FIG.
  • FIG. 3 is a partial front view showing details of a forming roll portion in the corrugated sheet forming machine of FIG. 2.
  • FIG. 4 is a partial front view showing details of a pitch filling roll section in the corrugated sheet forming machine of FIG.
  • FIG. 5 is a partial front view showing details of a shaping roll section in the corrugated sheet forming machine of FIG. 2.
  • Fig. 6 is a front view showing the whole winding end portion forming machine of Fig. 2.
  • FIG. 7 is an enlarged front view of a divider driving unit in the winding end portion forming machine of FIG.
  • FIG. 8 (a) is an explanatory view of the operation of the winding end portion forming machine of FIG. Fig. 8 (b) is a diagram illustrating the operation of the rolled-up end forming machine shown in Fig. 6, and the next divider enters the trough of the corrugated sheet. The state where the 1st pitch expansion part was formed is shown.
  • FIG. 9 is an explanatory diagram of the operation of the rolled-up end forming machine of Fig. 6.
  • the state force of Fig. 8 (b) and the next divider enters the trough of the corrugated plate and the second pitch enlarged portion is
  • FIG. 9 (b) is an explanatory diagram of the operation of the rolled-up end forming machine shown in FIG. 6, and shows a state where the next divider enters the trough portion of the corrugated sheet to form the third pitch enlarged portion.
  • Fig. 10 is an explanatory diagram of the operation of the hoisting end forming machine in Fig. 6 and shows the state in which the end of the corrugated plate is stretched almost flat by the last divider
  • Fig. 10 (b ) Is an explanatory diagram of the operation of the rolled-up end forming machine in FIG. 6 and shows a state in which the corrugated plate is cut by the cutting tool in the state of FIG. 10 (a).
  • FIG. 11 (a) is a cross-sectional view of a honeycomb structure manufactured by the manufacturing apparatus of FIG. 1, and FIG. 11 (b) is a cross-sectional view of a conventional honeycomb structure.
  • FIG. 12 shows a state before the corrugated sheet is stretched
  • FIG. 12 (b) shows a state in which the corrugated sheet is stretched to some extent
  • FIG. 12 (c) shows the corrugated sheet stretched. It is a figure which shows a state.
  • FIG. 13 is an explanatory view showing a state in which the her cam structure of FIG. 11 (a) is press-fitted into a metal cylindrical container.
  • FIG. 14 is a cross-sectional view showing a state in which a two-cam structure body press-fitted into a cylindrical container is fitted and fixed between an inlet user and an outlet user on an exhaust passage in an automobile.
  • Fig. 15 shows the relationship between the wave height and wave pitch of the corrugated plate and is larger than the wave pitch
  • Fig. 15 (b) shows the relationship between the wave height and wave pitch of the corrugated plate. Is a figure smaller than the wave pitch.
  • FIG. 16 is a front view showing a part of a two-cam structure using the corrugated sheet of FIG. 15 (a).
  • FIG. 1 is a simplified diagram showing an apparatus for manufacturing a hard cam structure according to an embodiment of the present invention.
  • This apparatus for manufacturing a hard cam structure supplies a flat plate 3 from a flat plate supply stand 1 to a winding stand 5 as a winding portion, and at the same time, corrugated plate material supply stand 7 installed on the opposite side of the flat plate supply stand 1. Then, the corrugated sheet material 9 is supplied to the winding stand 5 as the corrugated sheet 15 through the corrugated sheet forming machine 11 and the rolled-up end forming apparatus 13.
  • the flat plate supply stand 1 is formed by winding the flat plate 3 as a coil material around a core portion 19 that is rotatably installed at the upper end of the leg portion 17. Then, the flat plate supply stand 1 feeds the flat plate 3 with a pair of pinch rollers 21 having a drive mechanism (not shown), whereby the core portion 19 rotates in the direction of arrow A in the drawing, and the coil material is guided to the guide roller 23. Supplied to take-up stand 5 via.
  • the corrugated material supply stand 7 has a corrugated sheet material 9 having a flat plate force similar to that of the flat plate 3 wound around a core portion 27 rotatably installed at the upper end of the leg portion 25 as a coil material. .
  • the corrugated sheet material supply stand 7 supplies the coil material to the corrugated sheet forming machine 11 by rotating the core portion 27 in the direction of arrow B in the figure by a drive mechanism (not shown).
  • the winding stand 5 for winding the flat plate 3 and the corrugated plate 15 described above is wound around the upper end of the leg 29 so as to be rotatable by a drive mechanism in the direction of arrow C in the drawing. It has a take-off section 31. Then, a metal carrier in which the corrugated plates 15 and the flat plates 3 are alternately overlapped with each other by winding the corrugated plate 15 into the core portion 31 from the lower side and the corrugated plate 15 from the upper side. A later-described her cam structure 71 (see FIG. 11 (a)) is manufactured.
  • the corrugated sheet forming machine 11 forms the corrugated sheet material 9 having flat plate force into the corrugated sheet 15 step by step from the upstream side in the feed direction of the corrugated sheet material 9 to the forming roll section 33, pitch packing.
  • a roll part 35 and a shaping roll part 37 are sequentially installed.
  • the forming roll unit 33 includes a pair of upper and lower forming rolls 33a and 33b that rotate synchronously as shown in detail in FIG. As shown in FIG. 3, a plurality of forming teeth 330a and 330b are formed on the outer peripheral surfaces of these forming rolls 33a and 33b, respectively.
  • the formed teeth 330a and 330b are fitted to each other at a predetermined interval, and the corrugated sheet material 9 is supplied by supplying the corrugated sheet material 9 between the rolls while being driven to rotate in the directions of arrows D and E in FIG. Is formed into a first corrugated sheet 9A as shown in FIG.
  • the pitch filling roll unit 35 includes a pair of upper and lower pitch filling rolls 35a and 35b that rotate synchronously. As shown in FIG.
  • formed teeth 350a and 350b are formed on the outer peripheral surfaces of the pitch filling rolls 35a and 35b, respectively.
  • the corrugated sheet 9A discharged from the upstream forming roll section 33 is temporarily dammed up at the inlet side of the pitch filling roll section 35 to become the second corrugated sheet 9B in which the corrugated sheet tops are pressed against each other. .
  • each corrugated plate top has a substantially semicircular shape.
  • the pitch filling rolls 35a and 35b are driven to rotate in the directions of arrows F and G in FIG. 2, the crests of the forming teeth 350a and 350b enter between the crests of the pressed plates, and the troughs are crests. Separate the tops of the corrugated plates while holding down the entire surface. As a result, the corrugated plate tops are separated on the exit side, resulting in a corrugated plate 9C having a corrugated pitch wider than the second corrugated shape and a third corrugated shape.
  • the corrugated plate 9B may be deformed.
  • the corrugated plate tops are separated from each other while holding the corrugated plate tops over the entire surface, so that deformation of the corrugated plate 9B can be prevented.
  • the shaping roll unit 37 includes a pair of upper and lower shaping rolls 37a and 37b that rotate synchronously in the directions of arrows H and I in FIG. Further, as shown in FIG. 5, formed teeth 370a and 370b are formed on the outer peripheral surfaces of the shaping rolls 37a and 37b, respectively. The crests of the formed teeth 37 Oa and 370b enter between the tops of the corrugated sheet 9C formed in the third corrugated shape and pull up the corrugated sheet 9C, so that the corrugated sheet pitch is widened.
  • the corrugated sheet pitch is pulled up to be wider than the target value.
  • the corrugated plate 9D (corresponding to the corrugated plate 15 shown in Fig. 1) discharged from the shaping roll unit 37 has a final corrugated wave shape that is contracted by elastic force, that is, springback. To be molded.
  • FIG. 6 shows the roll-up end forming machine 13 It is the front view which simplified and showed the whole.
  • the winding-up end forming machine 13 includes a divider driving unit 39 and an end holding and cutting unit 41 installed on the upstream side thereof.
  • the divider drive unit 39 is a bell with a divider as a moving body that is wound around the drive roller 43 and the other four rollers 45, 47, 49, 51 to rotate. 53, and four dividers 55, 57, 59, 61 as locking members are attached to the outer periphery of the belt 53 with divider.
  • Dividers 55, 57, 59, 61 are plate-like members having a width dimension (width in a direction perpendicular to the paper surface in FIG. 7) substantially the same as the width dimension of corrugated sheet material 9 (corrugated sheet 15).
  • the tip is tapered so that the tip can be easily inserted into the valley of the corrugated plate 15.
  • the dividers 55, 57, 59, 61 are attached at appropriate intervals in a region that is almost half of the entire length of the belt with divider 53.
  • the belt 53 with a divider is wound around the drive roller 43 and the other four rollers 45, 47, 49, 51 so as to have a substantially rectangular shape that is long in the moving direction of the corrugated plate 15 in a front view. It has been turned.
  • the driving roller 43 is installed on the upper right side
  • the other rollers 51, 45 are installed on the lower right side and the upper left side
  • two other rollers 47, 45 are installed on the lower left side. 49 are installed.
  • one roller 47 is located directly below the upper left roller 45, and is located on the upper side farther away from the corrugated plate 15 than the lower right roller 51. is doing.
  • the other roller 49 out of the two rollers 47 and 49 is positioned in the vicinity of the roller 47 between the roller 47 and the lower right roller 51, and up and down in FIG. The direction is the same position.
  • the end holding and cutting part 41 installed on the upstream side of the divider driving part 39 is provided with an end holding tool 63 as a fixing part for holding the corrugated plate 9D, and on the downstream side of the end holding tool 63. And a cutting tool 65 arranged close to each other.
  • the end holder 63 includes an upper convex member 67 and a lower concave member 69 in FIG. 6 with the corrugated plate 9D interposed therebetween, and the convex member 67 and the concave member 69 approach each other.
  • the corrugated plate 9D is fixedly held by moving and fitting.
  • the cutting blade 70 moves closer to the corrugated plate 9D. Cut the corrugated sheet 9D.
  • corrugated sheet material 9 is supplied from corrugated material supply stand 7 to corrugated sheet forming machine 11, hoisting end forming machine 13 Then, the corrugated plate 15 and the flat plate 9 are alternately overlapped and wound in a spiral shape to produce a her cam structure 71.
  • a constant wave number is set further to the end side from the position where the amount of winding of the flat plate 3 and the corrugated plate 15 (corrugated plate 9D) at the winding stand 5 becomes a specified amount near the winding end.
  • an encoder for measuring the number of rotations of a roll shaft (not shown) coaxial with the forming roll 33a can be used to detect the detected portion.
  • the corrugated sheet 9D is held by the end holder 63 and the divider driving unit 39 is driven as shown in FIG. 8 (a).
  • the roller 43 is driven to rotate the divider-equipped belt 53 in the direction indicated by the arrow J so as to synchronize with the movement of the corrugated plate 9D.
  • the divider-equipped belt 53 before the start of the rotational movement is in the position where all of the four dividers 55, 57, 59, 61 provided in almost half of the area are separated by the corrugated plate 9D force, and the rotational movement
  • the stop position is set in advance so that the divider 55 located at the forefront of the direction first enters the trough of the corrugated plate 9D.
  • the plate 9D is stretched to increase the wave pitch of the corrugated plate.
  • the wave pitch is expanded, as shown in Fig. 8 (b)
  • the next divider 57 enters the trough of the corrugated plate 9D
  • the first wave pitch between the dividers 55 and 57 is expanded.
  • a pitch expansion portion P is formed.
  • the belt 53 with a divider further rotates with the movement of the corrugated plate 9D, and this time, the corrugated plate 9D between the divider 57 and the end holder 63 is stretched.
  • the wave pitch of corrugated sheet 9D is further expanded.
  • the next divider 59 enters the trough of the corrugated plate 9D as shown in Fig. 9 (a), and the wave pitch between dividers 57 and 59 is further expanded. 2 pitch expansion part Q is formed.
  • the divider 55 that first enters the trough of the corrugated sheet 9D is moved to a position where the corrugated sheet 9D force is also away.
  • each of the dividers 55, 57, 59, 61 has a tapered shape with a tapered tip, it smoothly enters the valley without crushing the peak of the corrugated plate 9D.
  • FIG. 11A is a cross-sectional view of the two-cam structure 71 manufactured by winding in this manner. In the vicinity of the winding end 73 where the ends of the corrugated sheet 15 (corrugated sheet 9D) and the flat plate 3 are overlapped, the corrugated sheet 15 (corrugated sheet 9D) has a flat plate shape. There will be almost no steps at the top.
  • the outer shape of the her cam structure 71 as a whole is circumferential. A substantially circular shape with no step along the line.
  • the corrugated plate 150 is a her cam structure 710 having a corrugated shape having the same wave height over the entire length including the rolled-up end 730.
  • a large step K corresponding to the wave height occurs at the winding end 730.
  • FIG. 12 shows the relationship between the wave pitch fp and the wave height fh at the same development length of the corrugated plate.
  • the wave pitch fp expands in the order of Fig. 12 (a), (b), (c), and the wave height fh is accordingly increased in Fig. 12 (a), (b). , (c) in the order of decreasing.
  • the double cam structure 71 having no step at the winding end 73 as shown in FIG. 11 (a) and having a substantially circular outer shape is wound with a brazing foil material around the outer periphery. Then, the corrugated sheet 15 and the flat plate 3 are diffusion-bonded by press-fitting into a metal cylindrical container 75 and heated in a vacuum state, and the cylindrical container 75 is brazed and joined.
  • the above-mentioned nose-cam structure 71 has almost no step at the outer peripheral portion, it can be prevented from being locally deformed when it is press-fitted into the cylindrical container 75. Phenomena that propagate to the center also do not occur.
  • the nozzle-cam structure 71 press-fitted and fixed to the cylindrical container 75 in this manner is provided between the inlet Dich user 77 and the outlet Dich user 79 on the exhaust passage in the automobile. It is used as an exhaust purification device by inserting and fixing together.
  • a corrugated corrugated plate as shown in Fig. 15 (a) is being used.
  • the wave shape in Fig. 15 (a) makes the wave height fh larger than the wave pitch fp. That is, fhZfp> l.
  • the wave shape in Fig. 15 (b) is fhZfp ⁇ 1 and the wave height fh is smaller than the wave pitch fp.
  • FIG. 16 shows a part of the Hercam structure in which the wave height fh is larger than the wave pitch fp as described above. According to this her cam structure, the exhaust gas is purified by the exhaust gas flowing in the cell 81 surrounded by the corrugated plate 15 and the flat plate 3.
  • the present invention about the vicinity of the winding end on the outer peripheral side of the corrugated plate and the flat plate of the her cam structure, by pulling the corrugated plate in the length direction corresponding to the winding direction, Since the wave pitch is increased toward the winding end and the wave height is decreased toward the winding end, the step at the winding end on the outer peripheral side of the her cam structure is reduced.
  • the hard cam structure with a small step is press-fitted into the container to hold it sufficiently However, the deformation of the her cam structure can be prevented.
  • the honeycomb structure of the present invention is used as an exhaust purification device, performance degradation can be prevented, and a buffer member for housing the honeycomb structure in the container is also unnecessary. Therefore, it is possible to prevent an increase in the number of parts and a deterioration in assembly workability.

Abstract

A method of manufacturing a honeycomb structure, in which a honeycomb structure manufactured by superposing a corrugated sheet and a flat sheet over each other and rolling up the resultant is press fitted into a container and reliably held in position without deformation. In the method of manufacturing a honeycomb structure prepared by superposing a corrugated sheet and a flat sheet over each other and rolling up the resultant in a spiral form, a portion near the leading edge of the rolling, which leading edge is the edge on the outer peripheral side of both the corrugated plate and flat plate of the honeycomb structure, is pulled in the longitudinal direction corresponding to the direction of the rolling. As a result, the honeycomb structure is formed such that the closer to the leading edge of the rolling, the greater the pitch of the corrugations, and this in turn results that the closer to the leading edge of the rolling, the lower the height of the corrugations.

Description

明 細 書  Specification
ハニカム構造体の製造方法  Manufacturing method of honeycomb structure
技術分野  Technical field
[0001] 本発明は、波板と平板とを重ね合わせてこれらを渦巻き状に巻き付けてなるハニカ ム構造体の製造方法に関する。  The present invention relates to a method for manufacturing a honeycomb structure in which corrugated plates and flat plates are overlapped and wound into a spiral shape.
背景技術  Background art
[0002] 自動車などの内燃機関を備えた車両には、排出ガス中に含まれる有害成分を除去 するための排気浄ィ匕装置として、例えば特開 2004— 36398号公報に開示されてい るように、触媒を担持させたハニカム構造体を容器内に収容した構造のものが知られ ている。  [0002] For vehicles equipped with an internal combustion engine such as an automobile, as an exhaust purification device for removing harmful components contained in exhaust gas, for example, as disclosed in JP-A-2004-36398 A structure in which a honeycomb structure supporting a catalyst is accommodated in a container is known.
[0003] ハ-カム構造体としては、例えば金属製の波板と平板とを重ね合わせて卷回すこと によって製造したメタル担体が知られて 、る。このメタル担体力 なるハ-カム構造体 を容器内に収容する際には、通常圧入を実施している。  [0003] As a her cam structure, for example, a metal carrier manufactured by winding a metal corrugated plate and a flat plate on each other is known. Usually, press fitting is performed when housing the hard cam structure having the metal carrier force in the container.
発明の開示  Disclosure of the invention
[0004] ところで、上記した波板と平板とを重ね合わせて巻き回す際に、ハ-カム構造体の 外周側の巻き上げ端部については、波板の波高さによって円周方向に段差が形成 される。このため、ハ-カム構造体を容器に圧入する際には、段差によってメタルノヽ 二カム構造体に局部的に変形が発生し、この変形が中心部にまで伝播することとなる  [0004] By the way, when the corrugated plate and the flat plate described above are wound together, a step is formed in the circumferential direction by the wave height of the corrugated plate at the winding end on the outer peripheral side of the her cam structure. The For this reason, when the her cam structure is press-fitted into the container, the metal cam structure is locally deformed by the step, and this deformation propagates to the center.
[0005] このようにして変形したハ-カム構造体は、当初の設計形状とは違ったものとなり、 排気浄ィ匕装置として使用した場合に排気浄ィ匕性能の低下を招くものとなる。 [0005] The her cam structure deformed in this way is different from the original design shape, and when used as an exhaust purification device, the exhaust purification performance is reduced.
[0006] これに対し、前記した公報には、ハ-カム構造体と容器との間に、緩衝部材を介装 する点が記載されている。このハ-カム構造体は、セラミック製であって断面がほぼ 円形であり、前記したメタル担体力 なるハ-カム構造体のように外周部に段差を備 えていない。したがって、緩衝部材は、厚さが全周にわたり一定のものを使用してい る。  [0006] In contrast, the above-mentioned publication describes that a buffer member is interposed between the her cam structure and the container. This her cam structure is made of ceramic and has a substantially circular cross section, and does not have a step on the outer peripheral portion like the her cam structure having the metal carrier force described above. Therefore, the buffer member has a constant thickness over the entire circumference.
[0007] このような一定厚さの緩衝部材を、外周部に段差を備えるメタル担体に適用した場 合には、段差部分を緩衝部材が吸収しきれず、メタル担体力 なるハ-カム構造体 の保持が不充分となり、排気浄ィヒ装置として信頼性の低下を招く。 [0007] When such a constant thickness buffer member is applied to a metal carrier having a step on the outer periphery. In this case, the stepped portion cannot be absorbed by the buffer member, and the her cam structure which is a metal carrier force is not sufficiently held, resulting in a decrease in reliability as an exhaust purification device.
[0008] ここで、緩衝部材を段差に合わせて厚さを変化させることが考えられる。しかし、そ の場合には、緩衝部材とハ-カム構造体との位置あわせなどの余分な作業が必要と なって作業性の悪化を招き、また緩衝部材を使用する分、部品点数の増加を招く。  Here, it is conceivable to change the thickness of the buffer member in accordance with the step. However, in that case, extra work such as alignment of the buffer member and the hard cam structure is required, resulting in deterioration of workability, and the use of the buffer member increases the number of parts. Invite.
[0009] そこで、本発明は、波板と平板とを重ね合わせて巻き回すことによって製造したノヽ 二カム構造体を容器内に圧入して保持を充分としつつ、ハ-カム構造体の変形を防 止することを目的としている。  [0009] Accordingly, the present invention provides a two-cam structure manufactured by overlapping and winding a corrugated plate and a flat plate and press-fitting the container into a container to ensure sufficient holding, while deforming the her cam structure. The purpose is to prevent it.
[0010] 本発明のアスペクトは、波板と平板とを重ね合わせてこれらを渦巻き状に巻き付け てなるハ-カム構造体の製造方法にぉ 、て、前記ハ-カム構造体の前記波板およ び平板の外周側の巻き上げ端部付近を、前記波板をその巻き付け方向に対応する 長さ方向に引っ張ることで、前記波板の波ピッチを巻き上げ端部側ほど大きくして波 高さを巻き上げ端部側ほど低くなるようにしたことを最も主要な特徴とする。  [0010] According to an aspect of the present invention, there is provided a method of manufacturing a her cam structure in which corrugated plates and flat plates are overlapped and wound into a spiral shape. And by pulling the corrugated plate in the length direction corresponding to the winding direction of the vicinity of the winding end on the outer peripheral side of the flat plate, the wave pitch of the corrugated plate is increased toward the winding end to increase the wave height. The most important feature is that the lower end of the winding is lower.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]図 1は本発明の一実施形態に係わるハ-カム構造体の製造装置を示す簡略ィ匕 した全体構成図である。  FIG. 1 is a simplified overall configuration diagram showing an apparatus for manufacturing a hard cam structure according to an embodiment of the present invention.
[図 2]図 2は図 1のハ-カム構造体の製造装置における波板成形機の詳細を示す正 面図である。  [FIG. 2] FIG. 2 is a front view showing details of the corrugated sheet forming machine in the apparatus for manufacturing the her cam structure of FIG.
[図 3]図 3は図 2の波板成形機における成形ロール部の詳細を示す部分正面図であ る。  FIG. 3 is a partial front view showing details of a forming roll portion in the corrugated sheet forming machine of FIG. 2.
[図 4]図 4は図 2の波板成形機におけるピッチ詰めロール部の詳細を示す部分正面 図である。  FIG. 4 is a partial front view showing details of a pitch filling roll section in the corrugated sheet forming machine of FIG.
[図 5]図 5は図 2の波板成形機における形状出しロール部の詳細を示す部分正面図 である。  FIG. 5 is a partial front view showing details of a shaping roll section in the corrugated sheet forming machine of FIG. 2.
[図 6]図 6は図 2の巻き上げ端部成形機の全体を示す正面図である。  [Fig. 6] Fig. 6 is a front view showing the whole winding end portion forming machine of Fig. 2. [Fig.
[図 7]図 7は図 6の巻き上げ端部成形機におけるデバイダ駆動部の拡大した正面図 である。  [FIG. 7] FIG. 7 is an enlarged front view of a divider driving unit in the winding end portion forming machine of FIG.
[図 8]図 8(a)は図 6の巻き上げ端部成形機の動作説明図で端部保持具により波板を 保持しつつ最初のデバイダが波板の谷部に入り込んだ状態を示し、図 8(b)は図 6の 巻き上げ端部成形機の動作説明図で次のデバイダが波板の谷部に入り込んで第 1 ピッチ拡大部を形成した状態を示す。 [FIG. 8] FIG. 8 (a) is an explanatory view of the operation of the winding end portion forming machine of FIG. Fig. 8 (b) is a diagram illustrating the operation of the rolled-up end forming machine shown in Fig. 6, and the next divider enters the trough of the corrugated sheet. The state where the 1st pitch expansion part was formed is shown.
[図 9]図 9(a)は図 6の巻き上げ端部成形機の動作説明図で図 8 (b)の状態力 さらに 次のデバイダが波板の谷部に入り込んで第 2ピッチ拡大部を形成した状態を示し、 図 9(b)は図 6の巻き上げ端部成形機の動作説明図でさらに次のデバイダが波板の谷 部に入り込んで第 3ピッチ拡大部を形成した状態を示す。  [Fig. 9] Fig. 9 (a) is an explanatory diagram of the operation of the rolled-up end forming machine of Fig. 6. The state force of Fig. 8 (b) and the next divider enters the trough of the corrugated plate and the second pitch enlarged portion is FIG. 9 (b) is an explanatory diagram of the operation of the rolled-up end forming machine shown in FIG. 6, and shows a state where the next divider enters the trough portion of the corrugated sheet to form the third pitch enlarged portion.
[図 10]図 10(a)は図 6の巻き上げ端部成形機の動作説明図で最後のデバイダによつ て波板の端部をほぼ平板状に引き伸ばした状態を示し、図 10(b)は図 6の巻き上げ 端部成形機の動作説明図で図 10 (a)の状態で切断具によつて波板を切断している 状態を示す。  [Fig. 10] Fig. 10 (a) is an explanatory diagram of the operation of the hoisting end forming machine in Fig. 6 and shows the state in which the end of the corrugated plate is stretched almost flat by the last divider, and Fig. 10 (b ) Is an explanatory diagram of the operation of the rolled-up end forming machine in FIG. 6 and shows a state in which the corrugated plate is cut by the cutting tool in the state of FIG. 10 (a).
[図 11]図 11(a)は図 1の製造装置によって製造したハニカム構造体の断面図、図 11( b)は従来のハニカム構造体の断面図である。  FIG. 11 (a) is a cross-sectional view of a honeycomb structure manufactured by the manufacturing apparatus of FIG. 1, and FIG. 11 (b) is a cross-sectional view of a conventional honeycomb structure.
[図 12]図 12(a)は波板を引き伸ばす前の状態を示す図、図 12(b)は波板をある程度伸 ばした状態を示す図、図 12(c)は波板を引き伸ばした状態を示す図である。  [FIG. 12] FIG. 12 (a) shows a state before the corrugated sheet is stretched, FIG. 12 (b) shows a state in which the corrugated sheet is stretched to some extent, and FIG. 12 (c) shows the corrugated sheet stretched. It is a figure which shows a state.
[図 13]図 13は図 11 (a)のハ-カム構造体を金属製の円筒容器内に圧入する状態を 示す説明図である。  [FIG. 13] FIG. 13 is an explanatory view showing a state in which the her cam structure of FIG. 11 (a) is press-fitted into a metal cylindrical container.
[図 14]図 14は円筒容器内に圧入したノ、二カム構造体を、自動車における排気通路 上の入口ディヒユーザと出口ディヒユーザとの間に嵌入固定した状態を示す断面図で ある。  FIG. 14 is a cross-sectional view showing a state in which a two-cam structure body press-fitted into a cylindrical container is fitted and fixed between an inlet user and an outlet user on an exhaust passage in an automobile.
[図 15]図 15(a)は波板の波高さと波ピッチとの関係を示し波ピッチよりも大きくした図、 図 15(b)は波板の波高さと波ピッチとの関係を示し波高さを波ピッチよりも小さくした図 である。  [Fig. 15] Fig. 15 (a) shows the relationship between the wave height and wave pitch of the corrugated plate and is larger than the wave pitch, and Fig. 15 (b) shows the relationship between the wave height and wave pitch of the corrugated plate. Is a figure smaller than the wave pitch.
[図 16]図 16は図 15 (a)の波板を使用したノ、二カム構造体の一部を示す正面図であ る。  FIG. 16 is a front view showing a part of a two-cam structure using the corrugated sheet of FIG. 15 (a).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明の実施の形態を図面に基づき説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013] 図 1は、本発明の一実施形態に係わるハ-カム構造体の製造装置を示す簡略化し た全体構成図である。このハ-カム構造体の製造装置は、平板供給スタンド 1から平 板 3を巻き取り部としての巻き取りスタンド 5に供給すると同時に、平板供給スタンド 1 と反対側に設置した波板材料供給スタンド 7から、波板材料 9を波板成形機 11およ び巻き上げ端部成形機 13を通して波板 15として巻き取りスタンド 5に供給する。 [0013] FIG. 1 is a simplified diagram showing an apparatus for manufacturing a hard cam structure according to an embodiment of the present invention. FIG. This apparatus for manufacturing a hard cam structure supplies a flat plate 3 from a flat plate supply stand 1 to a winding stand 5 as a winding portion, and at the same time, corrugated plate material supply stand 7 installed on the opposite side of the flat plate supply stand 1. Then, the corrugated sheet material 9 is supplied to the winding stand 5 as the corrugated sheet 15 through the corrugated sheet forming machine 11 and the rolled-up end forming apparatus 13.
[0014] 平板供給スタンド 1は、脚部 17の上端部に回転可能に設置してあるコア部 19に、 平板 3をコイル材として巻き回してある。そして、この平板供給スタンド 1は、図示しな い駆動機構を持ったピンチローラ対 21で平板 3を送り出すことによりコア部 19が図中 の矢印 A方向に回転して、コイル材をガイドローラ 23を介して巻き取りスタンド 5に供 給する。 The flat plate supply stand 1 is formed by winding the flat plate 3 as a coil material around a core portion 19 that is rotatably installed at the upper end of the leg portion 17. Then, the flat plate supply stand 1 feeds the flat plate 3 with a pair of pinch rollers 21 having a drive mechanism (not shown), whereby the core portion 19 rotates in the direction of arrow A in the drawing, and the coil material is guided to the guide roller 23. Supplied to take-up stand 5 via.
[0015] 波板材料供給スタンド 7は、脚部 25の上端部に回転可能に設置してあるコア部 27 に、平板 3と同様な平板力もなる波板材料 9をコイル材として卷回してある。そして、こ の波板材料供給スタンド 7は、コア部 27が図示しない駆動機構によって図中の矢印 B方向に回転することで、このコイル材を波板成形機 11に供給する。  [0015] The corrugated material supply stand 7 has a corrugated sheet material 9 having a flat plate force similar to that of the flat plate 3 wound around a core portion 27 rotatably installed at the upper end of the leg portion 25 as a coil material. . The corrugated sheet material supply stand 7 supplies the coil material to the corrugated sheet forming machine 11 by rotating the core portion 27 in the direction of arrow B in the figure by a drive mechanism (not shown).
[0016] 上記した平板 3と波板 15を巻き取る巻き取りスタンド 5は、脚部 29の上端部に、図 示しな 、駆動機構によって図中の矢印 C方向に回転可能に設置してある巻き取りコ ァ部 31を有している。そして、このコア部 31に、平板 3を下部側から、波板 15を上部 側から、それぞれ取り込み渦巻き状に巻き回すことで、波板 15と平板 3とを交互に重 ね合わせたメタル担体となる後述するハ-カム構造体 71 (図 11 (a)参照)が製造され る。  [0016] The winding stand 5 for winding the flat plate 3 and the corrugated plate 15 described above is wound around the upper end of the leg 29 so as to be rotatable by a drive mechanism in the direction of arrow C in the drawing. It has a take-off section 31. Then, a metal carrier in which the corrugated plates 15 and the flat plates 3 are alternately overlapped with each other by winding the corrugated plate 15 into the core portion 31 from the lower side and the corrugated plate 15 from the upper side. A later-described her cam structure 71 (see FIG. 11 (a)) is manufactured.
[0017] 波板成形機 11は、平板力もなる波板材料 9を波板 15にまで順を追って成形するた めに、波板材料 9の送り方向上流側から、成形ロール部 33,ピッチ詰めロール部 35 および形状出しロール部 37を順次設置している。  [0017] The corrugated sheet forming machine 11 forms the corrugated sheet material 9 having flat plate force into the corrugated sheet 15 step by step from the upstream side in the feed direction of the corrugated sheet material 9 to the forming roll section 33, pitch packing. A roll part 35 and a shaping roll part 37 are sequentially installed.
[0018] 成形ロール部 33は、図 2に波板成形機 11の詳細を示すように、同期回転する上下 一対の成形ロール 33a, 33bを備えている。そして、これら成形ロール 33a, 33bの外 周面には、図 3に示すように、それぞれ複数の成形歯 330a, 330bを形成している。 この成形歯 330a, 330bを所定間隔で互いに嵌合させ、図 2中で矢印 D, E方向にそ れぞれ回転駆動させながらロール間に波板材料 9を供給することにより、波板材料 9 は図 3に示すような第 1波形状の波板 9Aに成形される。 [0019] ピッチ詰めロール部 35は、同期回転する上下一対のピッチ詰めロール 35a, 35bを 備える。そして、これらピッチ詰めロール 35a, 35bの外周面には、図 4に示すように、 それぞれ成形歯 350a, 350bを形成している。上流の成形ロール部 33から排出され た波板 9Aは、ピッチ詰めロール部 35の入口側で一時的に堰き止められることで波 板頂部同士が圧接された第 2波形状の波板 9Bとなる。 The forming roll unit 33 includes a pair of upper and lower forming rolls 33a and 33b that rotate synchronously as shown in detail in FIG. As shown in FIG. 3, a plurality of forming teeth 330a and 330b are formed on the outer peripheral surfaces of these forming rolls 33a and 33b, respectively. The formed teeth 330a and 330b are fitted to each other at a predetermined interval, and the corrugated sheet material 9 is supplied by supplying the corrugated sheet material 9 between the rolls while being driven to rotate in the directions of arrows D and E in FIG. Is formed into a first corrugated sheet 9A as shown in FIG. The pitch filling roll unit 35 includes a pair of upper and lower pitch filling rolls 35a and 35b that rotate synchronously. As shown in FIG. 4, formed teeth 350a and 350b are formed on the outer peripheral surfaces of the pitch filling rolls 35a and 35b, respectively. The corrugated sheet 9A discharged from the upstream forming roll section 33 is temporarily dammed up at the inlet side of the pitch filling roll section 35 to become the second corrugated sheet 9B in which the corrugated sheet tops are pressed against each other. .
[0020] この第 2波形状において、各波板頂部は略半円形となっている。この状態でピッチ 詰めロール 35a, 35bを図 2中で矢印 F, G方向にそれぞれ回転駆動すると、成形歯 350a, 350bの山部分が圧接された波板頂部間に入り込み、谷部分が波板頂部を 全面で押さえながら波板頂部同士を分離する。これにより、出口側では波板頂部同 士が分離して、第 2波形状よりも波板ピッチの広 、第 3波形状の波板 9Cとなる。  [0020] In the second wave shape, each corrugated plate top has a substantially semicircular shape. In this state, when the pitch filling rolls 35a and 35b are driven to rotate in the directions of arrows F and G in FIG. 2, the crests of the forming teeth 350a and 350b enter between the crests of the pressed plates, and the troughs are crests. Separate the tops of the corrugated plates while holding down the entire surface. As a result, the corrugated plate tops are separated on the exit side, resulting in a corrugated plate 9C having a corrugated pitch wider than the second corrugated shape and a third corrugated shape.
[0021] ここで、波板頂部を部分的に押さえながら移動させると、波板 9Bの変形を引き起こ すおそれがある。し力しながら本実施形態では、図 4に示すように、波板頂部を全面 で押さえながら波板頂部同士を分離しているため、波板 9Bの変形を防止することが できる。  Here, if the top of the corrugated plate is moved while being partially pressed, the corrugated plate 9B may be deformed. However, in this embodiment, as shown in FIG. 4, the corrugated plate tops are separated from each other while holding the corrugated plate tops over the entire surface, so that deformation of the corrugated plate 9B can be prevented.
[0022] 形状出しロール部 37は、図 2中で矢印 H, I方向に同期回転する上下一対の形状 出しロール 37a, 37bを備える。そして、これら形状出しロール 37a, 37bの外周面に は、図 5に示すように、それぞれ成形歯 370a, 370bを形成している。この成形歯 37 Oa, 370bの山部分は第 3波形状に成形された波板 9Cの波板頂部間に入り込み、 波板 9Cを引っ張りあげるので、波板ピッチが広がる。  [0022] The shaping roll unit 37 includes a pair of upper and lower shaping rolls 37a and 37b that rotate synchronously in the directions of arrows H and I in FIG. Further, as shown in FIG. 5, formed teeth 370a and 370b are formed on the outer peripheral surfaces of the shaping rolls 37a and 37b, respectively. The crests of the formed teeth 37 Oa and 370b enter between the tops of the corrugated sheet 9C formed in the third corrugated shape and pull up the corrugated sheet 9C, so that the corrugated sheet pitch is widened.
[0023] ここでは、波板 9Cの弾性域を考慮して、波板ピッチが目標値よりも広くなるように引 つ張りあげる。形状出しロール部 37から排出された波板 9D (前記図 1の波板 15に相 当)は、広げられた波板ピッチが弾性力、すなわちスプリングバックにより縮まって、最 終的な目標波形状に成形される。  [0023] Here, in consideration of the elastic region of the corrugated sheet 9C, the corrugated sheet pitch is pulled up to be wider than the target value. The corrugated plate 9D (corresponding to the corrugated plate 15 shown in Fig. 1) discharged from the shaping roll unit 37 has a final corrugated wave shape that is contracted by elastic force, that is, springback. To be molded.
[0024] なお、成形ロール部 33とピッチ詰めロール部 35の間、ピッチ詰めロール部 35と形 状出しロール部 37との間には、波板 9A, 9B, 9Cの厚み方向および幅方向への斜 行を抑制するとともに、各部のロールに形成された成形歯力 波板 9A, 9B, 9Cを分 離するための図示しな 、ガイド部を配置して 、る。  [0024] Between the forming roll part 33 and the pitch filling roll part 35 and between the pitch filling roll part 35 and the shaping roll part 37, in the thickness direction and the width direction of the corrugated plates 9A, 9B, 9C. In addition to suppressing the skew of the sheet, a guide portion (not shown) for separating the formed tooth force corrugated plates 9A, 9B, 9C formed on the rolls of the respective portions is arranged.
[0025] 次に、巻き上げ端部成形機 13について説明する。図 6は、巻き上げ端部成形機 13 の全体を簡略ィ匕して示した正面図である。この巻き上げ端部成形機 13は、デバイダ 駆動部 39とその上流側に設置してある端部保持切断部 41とをそれぞれ備えている [0025] Next, the wound-up end forming machine 13 will be described. Figure 6 shows the roll-up end forming machine 13 It is the front view which simplified and showed the whole. The winding-up end forming machine 13 includes a divider driving unit 39 and an end holding and cutting unit 41 installed on the upstream side thereof.
[0026] デバイダ駆動部 39は、図 7に拡大して示すように、駆動ローラ 43および他の四つの ローラ 45, 47, 49, 51に巻き回されて回転駆動する移動体としてのデバイダ付ベル ト 53を備え、デバイダ付ベルト 53の外周部に係止部材としての四つのデバイダ 55, 57, 59, 61を取り付けてある。 As shown in an enlarged view in FIG. 7, the divider drive unit 39 is a bell with a divider as a moving body that is wound around the drive roller 43 and the other four rollers 45, 47, 49, 51 to rotate. 53, and four dividers 55, 57, 59, 61 as locking members are attached to the outer periphery of the belt 53 with divider.
[0027] デバイダ 55, 57, 59, 61は、波板材料 9 (波板 15)の幅寸法とほぼ同等の幅(図 7 中で紙面に直交する方向の幅)寸法を備える板状部材で構成し、先端が波板 15の 谷部に容易に挿入可能なように、先細のテーパ形状としている。また、デバイダ 55, 57, 59, 61は、デバイダ付ベルト 53の全長のほぼ半分の領域において、適宜間隔 を開けて取り付けている。  [0027] Dividers 55, 57, 59, 61 are plate-like members having a width dimension (width in a direction perpendicular to the paper surface in FIG. 7) substantially the same as the width dimension of corrugated sheet material 9 (corrugated sheet 15). The tip is tapered so that the tip can be easily inserted into the valley of the corrugated plate 15. Further, the dividers 55, 57, 59, 61 are attached at appropriate intervals in a region that is almost half of the entire length of the belt with divider 53.
[0028] デバイダ付ベルト 53は、図 7に示すように正面視で波板 15の移動方向に長いほぼ 長方形状となるよう駆動ローラ 43および他の四つのローラ 45, 47, 49, 51に巻き回 されている。この際、上記長方形状の図 7中で右側上部に駆動ローラ 43を、同右側 下部および左側上部に他のローラ 51, 45をそれぞれ設置し、同左側下部には二つ の他のローラ 47, 49を設置している。  [0028] As shown in Fig. 7, the belt 53 with a divider is wound around the drive roller 43 and the other four rollers 45, 47, 49, 51 so as to have a substantially rectangular shape that is long in the moving direction of the corrugated plate 15 in a front view. It has been turned. At this time, in FIG. 7 of the above rectangular shape, the driving roller 43 is installed on the upper right side, the other rollers 51, 45 are installed on the lower right side and the upper left side, and two other rollers 47, 45 are installed on the lower left side. 49 are installed.
[0029] 左側下部における二つのローラ 47, 49のうち一方のローラ 47は、左側上部のロー ラ 45の直下に位置し、かつ右側下部のローラ 51よりも波板 15から離れる上部側に位 置している。また、二つのローラ 47, 49のうち他方のローラ 49は、ローラ 47と右側下 部のローラ 51との間でローラ 47近傍に位置し、かつ右側下部のローラ 51に対して図 7中で上下方向が同位置となっている。  [0029] Of the two rollers 47, 49 in the lower left portion, one roller 47 is located directly below the upper left roller 45, and is located on the upper side farther away from the corrugated plate 15 than the lower right roller 51. is doing. The other roller 49 out of the two rollers 47 and 49 is positioned in the vicinity of the roller 47 between the roller 47 and the lower right roller 51, and up and down in FIG. The direction is the same position.
[0030] デバイダ駆動部 39の上流側に設置してある端部保持切断部 41は、波板 9Dを保 持する固定部としての端部保持具 63と、端部保持具 63の下流側に近接して配置し てある切断具 65とをそれぞれ備えて 、る。  [0030] The end holding and cutting part 41 installed on the upstream side of the divider driving part 39 is provided with an end holding tool 63 as a fixing part for holding the corrugated plate 9D, and on the downstream side of the end holding tool 63. And a cutting tool 65 arranged close to each other.
[0031] 端部保持具 63は、波板 9Dを間に挟んで図 6中で上部の凸部材 67と同下部の凹 部材 69とを備え、これら凸部材 67と凹部材 69とが互いに接近移動して嵌合すること で、波板 9Dを固定保持する。一方、切断具 65は、切刃 70が波板 9Dに接近移動し て波板 9Dを切断する。 [0031] The end holder 63 includes an upper convex member 67 and a lower concave member 69 in FIG. 6 with the corrugated plate 9D interposed therebetween, and the convex member 67 and the concave member 69 approach each other. The corrugated plate 9D is fixedly held by moving and fitting. On the other hand, in the cutting tool 65, the cutting blade 70 moves closer to the corrugated plate 9D. Cut the corrugated sheet 9D.
[0032] 次に作用を説明する。図 1に示すように、平板供給スタンド 1から平板 3を巻き取りス タンド 5に供給すると同時に、波板材料供給スタンド 7から、波板材料 9を波板成形機 11,巻き上げ端部成形機 13を通して波板 15として巻き取りスタンド 5に供給すること で、波板 15と平板 9とを交互に重ね合わせて渦巻き状に巻き回わしてハ-カム構造 体 71を製造する。  Next, the operation will be described. As shown in Fig. 1, at the same time as supplying flat plate 3 from flat plate supply stand 1 to winding stand 5, corrugated sheet material 9 is supplied from corrugated material supply stand 7 to corrugated sheet forming machine 11, hoisting end forming machine 13 Then, the corrugated plate 15 and the flat plate 9 are alternately overlapped and wound in a spiral shape to produce a her cam structure 71.
[0033] この際、巻き取りスタンド 5での平板 3と波板 15 (波板 9D)の卷取量が、巻き取り終 端付近の規定量となった位置から、さらに終端側へ一定の波数を設定した部位を図 示しないセンサによって検出し、この検出を行った時点で波板成形機 11による波板 成形作業を停止する。この時点で、波板材料 9の波板成形機 11への供給を停止す る力 平板供給スタンド 1からの平板 3の供給および、巻き取りスタンド 5での平板 3と 波板 15の巻き取り作業は継続して行う。  [0033] At this time, a constant wave number from the position where the amount of winding of the flat plate 3 and the corrugated plate 15 (the corrugated plate 9D) at the winding stand 5 becomes a predetermined amount near the winding end to the end side. The part where is set is detected by a sensor (not shown), and when this detection is performed, the corrugated sheet forming work by the corrugated sheet forming machine 11 is stopped. At this point, force to stop the supply of corrugated sheet material 9 to corrugated sheet forming machine 11 Supply of flat plate 3 from flat plate supply stand 1 and winding work of flat plate 3 and corrugated sheet 15 at take-up stand 5 Will continue.
[0034] なお、巻き取りスタンド 5での平板 3と波板 15 (波板 9D)の卷取量が、巻き取り終端 付近の規定量となった位置から、さらに終端側へ一定の波数を設定した部位を検出 する作業としては、例えば成形ロール 33aと同軸の図示しないロール軸の回転数を 測定するエンコーダによって行える。  [0034] It should be noted that a constant wave number is set further to the end side from the position where the amount of winding of the flat plate 3 and the corrugated plate 15 (corrugated plate 9D) at the winding stand 5 becomes a specified amount near the winding end. For example, an encoder for measuring the number of rotations of a roll shaft (not shown) coaxial with the forming roll 33a can be used to detect the detected portion.
[0035] 波板成形機 11による波板成形作業を停止した後は、図 8 (a)に示すように、端部保 持具 63により波板 9Dを保持するとともに、デバイダ駆動部 39の駆動ローラ 43を駆 動してデバイダ付ベルト 53を矢印 Jで示す方向に、波板 9Dの移動に同期するよう回 転移動させる。この際、回転移動開始前のデバイダ付ベルト 53は、そのほぼ半分の 領域に設けてある四つのデバイダ 55, 57, 59, 61のすべてが波板 9D力 離れた位 置にあり、かつ回転移動方向最前部に位置するデバイダ 55が波板 9Dの谷部に最 初に入り込むように、停止位置をあらかじめ設定しておく。  [0035] After the corrugated sheet forming operation by the corrugated sheet forming machine 11 is stopped, the corrugated sheet 9D is held by the end holder 63 and the divider driving unit 39 is driven as shown in FIG. 8 (a). The roller 43 is driven to rotate the divider-equipped belt 53 in the direction indicated by the arrow J so as to synchronize with the movement of the corrugated plate 9D. At this time, the divider-equipped belt 53 before the start of the rotational movement is in the position where all of the four dividers 55, 57, 59, 61 provided in almost half of the area are separated by the corrugated plate 9D force, and the rotational movement The stop position is set in advance so that the divider 55 located at the forefront of the direction first enters the trough of the corrugated plate 9D.
[0036] なお、端部保持具 63の波板 9Dを保持する動作と、デバイダ 55が波板 9Dの谷部 に入り込む動作のタイミングは、端部保持具 63が波板 9Dを保持した直後に、デバイ ダ 55が谷部に入り込んでもよぐ逆に、デバイダ 55が谷部に入り込んだ直後に、端 部保持具 63が波板 9Dを保持してもよぐさらにはこれらの各動作を同時に行っても よい。 [0037] デバイダ 55が、図 8 (a)のように波板 9Dの谷部に入り込んだ状態で、波板 9Dの移 動とともに移動すると、デバイダ 55と端部保持具 63との間の波板 9Dが引き伸ばされ て波板の波ピッチが拡大する。この波ピッチが拡大した状態で、図 8 (b)に示すように 次のデバイダ 57が波板 9Dの谷部に入り込むことで、デバイダ 55と 57との間で波ピッ チが拡大した第 1ピッチ拡大部 Pが形成される。 [0036] The timing of the operation of holding the corrugated plate 9D of the end holder 63 and the operation of the divider 55 entering the trough of the corrugated plate 9D is immediately after the end holder 63 holds the corrugated plate 9D. On the contrary, if the divider 55 enters the valley, the end holder 63 may hold the corrugated plate 9D immediately after the divider 55 enters the valley. You may go. [0037] When the divider 55 moves with the movement of the corrugated plate 9D in a state where it enters the trough of the corrugated plate 9D as shown in Fig. 8 (a), the wave between the divider 55 and the end holder 63 is removed. The plate 9D is stretched to increase the wave pitch of the corrugated plate. In this state where the wave pitch is expanded, as shown in Fig. 8 (b), when the next divider 57 enters the trough of the corrugated plate 9D, the first wave pitch between the dividers 55 and 57 is expanded. A pitch expansion portion P is formed.
[0038] 図 8 (b)の状態から、さらに波板 9Dの移動とともにデバイダ付ベルト 53が回転移動 することで、今度はデバイダ 57と端部保持具 63との間の波板 9Dが引き伸ばされて 波板 9Dの波ピッチがさらに拡大する。この波ピッチがさらに拡大した状態で、図 9 (a) に示すように次のデバイダ 59が波板 9Dの谷部に入り込むことで、デバイダ 57と 59と の間で波ピッチがさらに拡大した第 2ピッチ拡大部 Qが形成される。このとき、波板 9D の谷部に最初に入り込んだデバイダ 55は、波板 9D力も離れた位置に移動している  [0038] From the state of FIG. 8 (b), the belt 53 with a divider further rotates with the movement of the corrugated plate 9D, and this time, the corrugated plate 9D between the divider 57 and the end holder 63 is stretched. The wave pitch of corrugated sheet 9D is further expanded. With this wave pitch further expanded, the next divider 59 enters the trough of the corrugated plate 9D as shown in Fig. 9 (a), and the wave pitch between dividers 57 and 59 is further expanded. 2 pitch expansion part Q is formed. At this time, the divider 55 that first enters the trough of the corrugated sheet 9D is moved to a position where the corrugated sheet 9D force is also away.
[0039] 図 9 (a)の状態から、さらに波板 9Dの移動とともにデバイダ付ベルト 53が回転移動 することで、今度はデバイダ 59と端部保持具 63との間の波板 9Dが引き伸ばされて 波板 9Dの波ピッチがさらに拡大する。この波ピッチがさらに拡大した状態で、図 9 (b) に示すように次のデバイダ 61が波板 9Dの谷部に入り込むことで、デバイダ 59と 61と の間で波ピッチがさらに拡大した第 3ピッチ拡大部 Rが形成される。このとき、デバイ ダ 57は、波板 9D力 離れた位置に移動している。 [0039] From the state of Fig. 9 (a), as the corrugated plate 9D further moves, the belt 53 with a divider rotates and this time, the corrugated plate 9D between the divider 59 and the end holder 63 is stretched. The wave pitch of corrugated sheet 9D is further expanded. With this wave pitch further expanded, the next divider 61 enters the valley of the corrugated plate 9D as shown in Fig. 9 (b), and the wave pitch between the dividers 59 and 61 is further expanded. A 3-pitch enlarged portion R is formed. At this time, the divider 57 has moved to a position away from the corrugated sheet 9D force.
[0040] 上記した各デバイダ 55, 57, 59, 61は、先端が先細のテーパ形状となっているの で、波板 9Dの山部を潰すことなく谷部にスムーズに入り込む。  [0040] Since each of the dividers 55, 57, 59, 61 has a tapered shape with a tapered tip, it smoothly enters the valley without crushing the peak of the corrugated plate 9D.
[0041] 図 9 (b)の状態から、さらに波板 9Dの移動とともにデバイダ付ベルト 53が回転移動 して、図 10 (a)に示すように、デバイダ 61が右側下部のローラ 51近傍に達すると、波 板 9Dは、ほぼ平板状に引き伸ばされた状態となり、この状態で、図 10 (b)に示すよう に、切刃 70が下降して平板状となった波板 9Dを切断する。  [0041] From the state shown in Fig. 9 (b), the belt 53 with a divider further rotates as the corrugated plate 9D moves, and the divider 61 reaches the vicinity of the roller 51 at the lower right side as shown in Fig. 10 (a). Then, the corrugated sheet 9D is stretched in a substantially flat plate shape, and in this state, as shown in FIG. 10 (b), the cutting blade 70 descends to cut the corrugated sheet 9D that is flat.
[0042] 切断後に端部保持具 63による波板 9Dの保持を解除し、この状態で波板 9Dは、平 板 3とともに、巻き取りスタンド 5に巻き取られる。平板 3についても波板 9Dの端部と一 致するように、図示しない切断具にて切断することで、これら平板 3と平板状となった 波板 9Dの端部相互が、巻き取りスタンド 5にて重ね合わされた状態となる。 [0043] 図 11 (a)は、このようにして巻き回して製造したノ、二カム構造体 71の断面図である 。波板 15 (波板 9D)と平板 3のそれぞれの端部を重ね合わせた巻き上げ端部 73付 近は、波板 15 (波板 9D)が平板状となっていることから、巻き上げ端部 73での段差 がほとんど発生しないものとなる。し力も、この巻き上げ端部 73から円周方向に沿つ て波板 15 (波板 9D)の高さが段階的に低くなつているので、ハ-カム構造体 71全体 として外形が円周方向に沿って段差のないほぼ円形となる。 [0042] After the cutting, the holding of the corrugated plate 9D by the end holder 63 is released, and in this state, the corrugated plate 9D is wound around the winding stand 5 together with the flat plate 3. The flat plate 3 is cut with a cutting tool (not shown) so that it matches the end of the corrugated plate 9D. It will be in the state where it overlapped with. FIG. 11A is a cross-sectional view of the two-cam structure 71 manufactured by winding in this manner. In the vicinity of the winding end 73 where the ends of the corrugated sheet 15 (corrugated sheet 9D) and the flat plate 3 are overlapped, the corrugated sheet 15 (corrugated sheet 9D) has a flat plate shape. There will be almost no steps at the top. Since the height of the corrugated sheet 15 (corrugated sheet 9D) gradually decreases along the circumferential direction from the winding end 73, the outer shape of the her cam structure 71 as a whole is circumferential. A substantially circular shape with no step along the line.
[0044] これに対して図 11 (b)に示すように、波板 150が、巻き上げ端部 730を含む全長に わたって同一の波高さの波板形状を呈するハ-カム構造体 710の場合には、巻き上 げ端部 730にて、波高さに対応する大きな段差 Kが発生することになる。  [0044] On the other hand, as shown in FIG. 11 (b), the corrugated plate 150 is a her cam structure 710 having a corrugated shape having the same wave height over the entire length including the rolled-up end 730. In this case, a large step K corresponding to the wave height occurs at the winding end 730.
[0045] 図 12は、波板の同一展開長での波ピッチ fpと波高さ fhとの関係を示す。波板を上 記のように引き伸ばすことで、波ピッチ fpが図 12 (a) , (b) , (c)の順に拡大し、これに 伴い波高さ fhは図 12 (a) , (b) , (c)の順に低くなつていることがわかる。  FIG. 12 shows the relationship between the wave pitch fp and the wave height fh at the same development length of the corrugated plate. By stretching the corrugated plate as described above, the wave pitch fp expands in the order of Fig. 12 (a), (b), (c), and the wave height fh is accordingly increased in Fig. 12 (a), (b). , (c) in the order of decreasing.
[0046] 上記図 11 (a)に示すような巻き上げ端部 73に段差がなく外形がほぼ円形となるハ 二カム構造体 71は、外周にろう箔材を巻き回して図 13に示すように、金属製の円筒 容器 75内に圧入し、真空状態で加熱することによって波板 15と平板 3とを拡散接合 するとともに、円筒容器 75との間をろう付け接合する。  As shown in FIG. 13, the double cam structure 71 having no step at the winding end 73 as shown in FIG. 11 (a) and having a substantially circular outer shape is wound with a brazing foil material around the outer periphery. Then, the corrugated sheet 15 and the flat plate 3 are diffusion-bonded by press-fitting into a metal cylindrical container 75 and heated in a vacuum state, and the cylindrical container 75 is brazed and joined.
[0047] 上記したノヽ-カム構造体 71は、外周部に段差がほとんど発生していなことから、円 筒容器 75内に圧入するに際し、局部的な変形を防止することができ、また変形が中 心部にまで伝播するような現象も発生しなくなる。  [0047] Since the above-mentioned nose-cam structure 71 has almost no step at the outer peripheral portion, it can be prevented from being locally deformed when it is press-fitted into the cylindrical container 75. Phenomena that propagate to the center also do not occur.
[0048] このようにして円筒容器 75に圧入固定したノヽ-カム構造体 71は、図 14に示すよう に、自動車における排気通路上の入口ディヒユーザ 77と出口ディヒユーザ 79との間 に、円筒容器 75とともに嵌入固定することで、排気浄化装置として使用する。  As shown in FIG. 14, the nozzle-cam structure 71 press-fitted and fixed to the cylindrical container 75 in this manner is provided between the inlet Dich user 77 and the outlet Dich user 79 on the exhaust passage in the automobile. It is used as an exhaust purification device by inserting and fixing together.
[0049] 排気浄化装置として使用する場合には、変形を防止したハ-カム構造体 71を利用 しているので、排気浄ィ匕性能の低下を防ぐことができ、またハ-カム構造体 71を円筒 容器 75に保持させる際に、段差を吸収するための緩衝部材も不要であることから、 部品点数の増加および組み付け作業性の悪化も防止することができる。  [0049] When used as an exhaust emission control device, since the her cam structure 71 that prevents deformation is used, it is possible to prevent the exhaust purification performance from being deteriorated. When the cylindrical container 75 is held, a buffer member for absorbing the step is not necessary, so that it is possible to prevent an increase in the number of parts and a deterioration in assembling workability.
[0050] なお、波板 9Dの波高さ fhと波ピッチ fpとの関係の一例としては、波ピッチ拡大前が 、 fh= 2mm, fp= l . 6mmで、図 8 (b)に示す第 1ピッチ拡大部 P力 fh= l. 5mm, fp = 3. 1、図 9 (a)に示す第 2ピッチ拡大咅 力 fh= l. Omm, fp = 3. 8mm、図 9 ( b)に示す第 3ピッチ拡大部 R力 fh=0. 5mm, fp=4. 2mmである。 [0050] As an example of the relationship between the wave height fh of the corrugated plate 9D and the wave pitch fp, before the wave pitch is expanded, fh = 2mm, fp = l.6mm, the first shown in FIG. 8 (b). Pitch expansion part P force fh = l. 5mm, fp = 3.1, second pitch expansion force shown in Fig. 9 (a) fh = l. Omm, fp = 3.8 mm, third pitch expansion portion R force fh = 0.5 mm shown in Fig. 9 (b) , fp = 4.2 mm.
[0051] ところで、近年では排気浄ィ匕性能を高めるために、図 15 (a)に示すような波形状の 波板を使用しつつある。図 15 (a)の波形状は、波高さ fhを波ピッチ fpよりも大きくして いる。つまり、 fhZfp>lである。これに対して、図 15 (b)の波形状は、 fhZfpく 1とし て、波高さ fhを波ピッチ fpよりも小さくしている。  [0051] By the way, in recent years, in order to improve the exhaust purification performance, a corrugated corrugated plate as shown in Fig. 15 (a) is being used. The wave shape in Fig. 15 (a) makes the wave height fh larger than the wave pitch fp. That is, fhZfp> l. On the other hand, the wave shape in Fig. 15 (b) is fhZfp <1 and the wave height fh is smaller than the wave pitch fp.
[0052] 図 16は、上記のように、波高さ fhを波ピッチ fpよりも大きくしたハ-カム構造体の一 部を示している。このハ-カム構造体によれば、波板 15と平板 3とで囲まれたセル 81 内を排気が流れることで、排気が浄化される。  [0052] FIG. 16 shows a part of the Hercam structure in which the wave height fh is larger than the wave pitch fp as described above. According to this her cam structure, the exhaust gas is purified by the exhaust gas flowing in the cell 81 surrounded by the corrugated plate 15 and the flat plate 3.
[0053] この際、波板 15と平板 3との接触部付近に溜まる無駄な触媒が、波高さ fhを波ピッ チ fpよりも大きくして波板 15の立ち上がり部を平板 3に対してほぼ垂直としたものが、 波高さ fhを波ピッチ fpよりも小さくして波板 15の立ち上がり部を平板 3に対してより平 行に近い状態としたものに比較して少なくなる。このため、前者のハ-カム構造体力 触媒を有効利用して排気性能が向上するとともに、コスト低下を図ることができる。  [0053] At this time, useless catalyst that accumulates in the vicinity of the contact portion between the corrugated plate 15 and the flat plate 3 makes the wave height fh larger than the wave pitch fp, so that the rising portion of the corrugated plate 15 is almost the same as the flat plate 3. The vertical one is smaller than the one in which the wave height fh is smaller than the wave pitch fp and the rising portion of the corrugated plate 15 is more nearly parallel to the flat plate 3. For this reason, it is possible to improve the exhaust performance and effectively reduce the cost by effectively using the former Hercam structure body force catalyst.
[0054] 特に、波板高さ fhと波板ピッチ fpとの関係を fh /fp = 1 . 5とした場合には、現 状の波板より熱伝達率を支配する代表長さ湘当直径)を小さくすることができ、担体 が温まりやすくなりエンジン始動時の触媒活性ィ匕までの時間が短くできることから、コ 一ルド域での浄ィ匕性能を向上できる。  [0054] In particular, when the relationship between the corrugated plate height fh and the corrugated plate pitch fp is fh / fp = 1.5, the representative length of the diameter that governs the heat transfer coefficient from the current corrugated plate ) Can be reduced, and the carrier can be easily warmed, and the time until the catalyst activity at the start of the engine can be shortened. Therefore, the purification performance in the cold region can be improved.
[0055] このように排気浄ィ匕性能を高めるために、波高さ fhを波ピッチ fpよりも大きくした場 合には、前記図 11 (b)におけるハ-カム構造体 710の外周端部の段差 730がより大 きくなるので、本実施形態のように波板 15の波高さが巻き上げ端部 73側ほど低くな るようにして段差をなくすことで、より有効なものとなる。  [0055] When the wave height fh is made larger than the wave pitch fp in order to improve the exhaust purification performance in this way, the outer peripheral end portion of the hard cam structure 710 in FIG. Since the step 730 becomes larger, it becomes more effective by eliminating the step so that the wave height of the corrugated plate 15 is lowered toward the winding end 73 as in this embodiment.
産業上の利用可能性  Industrial applicability
[0056] 本発明によれば、ハ-カム構造体の波板および平板の外周側の巻き上げ端部付 近について、波板をその巻き付け方向に対応する長さ方向に引っ張ることで、波板 の波ピッチを巻き上げ端部側ほど大きくして波高さを巻き上げ端部側ほど低くなるよう にしたので、ハ-カム構造体における外周側の巻き上げ端部での段差が小さくなり、 このような外周部に段差の小さいハ-カム構造体を容器に圧入してその保持を充分 なものとしても、ハ-カム構造体の変形を防止することができる。また、本発明のハ- カム構造体を排気浄ィ匕装置として使用した場合、性能低下を防ぐことができ、またハ 二カム構造体を容器内に収容する際の緩衝部材も不要であることから部品点数の増 加および組み付け作業性の悪化も防止することができる。 [0056] According to the present invention, about the vicinity of the winding end on the outer peripheral side of the corrugated plate and the flat plate of the her cam structure, by pulling the corrugated plate in the length direction corresponding to the winding direction, Since the wave pitch is increased toward the winding end and the wave height is decreased toward the winding end, the step at the winding end on the outer peripheral side of the her cam structure is reduced. The hard cam structure with a small step is press-fitted into the container to hold it sufficiently However, the deformation of the her cam structure can be prevented. In addition, when the honeycomb structure of the present invention is used as an exhaust purification device, performance degradation can be prevented, and a buffer member for housing the honeycomb structure in the container is also unnecessary. Therefore, it is possible to prevent an increase in the number of parts and a deterioration in assembly workability.

Claims

請求の範囲 The scope of the claims
[1] 波板と平板とを重ね合わせてこれらを渦巻き状に巻き付けてなるハニカム構造体の 製造方法において、  [1] In a method for manufacturing a honeycomb structure in which corrugated plates and flat plates are overlapped and wound into a spiral shape,
前記ハニカム構造体の前記波板および平板の外周側の巻き上げ端部付近を、前 記波板をその巻き付け方向に対応する長さ方向に引つ張ることで、前記波板の波ピ ツチを巻き上げ端部側ほど大きくして波高さを巻き上げ端部側ほど低くなるようにした ことを特徴とするハニカム構造体の製造方法。  The wave pitch of the corrugated sheet is wound up by stretching the corrugated sheet in the length direction corresponding to the winding direction of the vicinity of the winding end of the honeycomb structure on the outer peripheral side of the corrugated sheet and the flat plate. A method for manufacturing a honeycomb structured body, characterized in that the end side is increased and the wave height is increased toward the end side.
[2] 請求項 1に記載のハ-カム構造体の製造方法であって、  [2] A method of manufacturing the her cam structure according to claim 1,
前記波板および平板を渦巻き状に巻き付ける巻き付け部に対し、前記波板の供給 を停止して前記巻き上げ端部となる部位付近を固定部により固定する一方、前記卷 き付け部の巻き付け動作を継続して行い、この際前記波板の谷部に、前記波板の移 動方向に沿って移動する移動体に設けた係止部材を挿入し、この係止部材が前記 波板の移動とともに移動することで、前記係止部材と前記固定部との間の前記波板 の波ピッチを大きくして波高さを低くする  For the winding part that winds the corrugated sheet and the flat plate in a spiral shape, the supply of the corrugated sheet is stopped and the vicinity of the part that becomes the winding end is fixed by the fixing part, while the winding operation of the winding part is continued. In this case, a locking member provided on a moving body that moves along the moving direction of the corrugated sheet is inserted into the trough of the corrugated sheet, and the locking member moves along with the movement of the corrugated sheet. By doing so, the wave pitch of the corrugated plate between the locking member and the fixed part is increased to reduce the wave height.
ことを特徴とするハニカム構造体の製造方法。  A method for manufacturing a honeycomb structure, comprising:
[3] 請求項 2に記載のハニカム構造体の製造方法であって、 [3] A method for manufacturing a honeycomb structured body according to claim 2,
前記係止部材を、前記移動体の移動方向に沿って間隔を開けて複数設け、前記 各係止部材が前記波板の谷部に順次入り込むことで、各係止部材と前記固定部との 間で、前記波板の波ピッチを段階的に大きくして波高さを段階的に低くする  A plurality of the locking members are provided at intervals along the moving direction of the moving body, and each locking member sequentially enters a trough of the corrugated plate, whereby each locking member and the fixed portion In between, the wave pitch of the corrugated plate is increased stepwise and the wave height is decreased stepwise.
ことを特徴とするハニカム構造体の製造方法。  A method for manufacturing a honeycomb structure, comprising:
PCT/JP2007/058237 2006-06-06 2007-04-16 Method of manufacturing honeycomb structure WO2007141958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006157246A JP2007325990A (en) 2006-06-06 2006-06-06 Method for manufacturing honeycomb structure
JP2006-157246 2006-06-06

Publications (1)

Publication Number Publication Date
WO2007141958A1 true WO2007141958A1 (en) 2007-12-13

Family

ID=38801223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058237 WO2007141958A1 (en) 2006-06-06 2007-04-16 Method of manufacturing honeycomb structure

Country Status (2)

Country Link
JP (1) JP2007325990A (en)
WO (1) WO2007141958A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174525A (en) * 1986-01-25 1987-07-31 Toyota Motor Corp Catalyst convertor
JP2862298B2 (en) * 1989-12-19 1999-03-03 臼井国際産業株式会社 Exhaust gas purification device
JP2890503B2 (en) * 1989-07-26 1999-05-17 株式会社日本自動車部品総合研究所 Porous carrier
JP2904957B2 (en) * 1991-06-17 1999-06-14 新日本製鐵株式会社 Honeycomb structure winding device and winding method
JPH11290953A (en) * 1998-04-10 1999-10-26 Calsonic Corp Forming roll apparatus
JP2004223686A (en) * 2003-01-27 2004-08-12 Calsonic Kansei Corp Manufacturing apparatus and manufacturing method for corrugated fin
JP2005313193A (en) * 2004-04-28 2005-11-10 Calsonic Kansei Corp Pitch closing-up method for corrugated fin
JP3751139B2 (en) * 1998-01-06 2006-03-01 株式会社ユタカ技研 Metal corrugated sheet forming apparatus for honeycomb tubular body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174525A (en) * 1986-01-25 1987-07-31 Toyota Motor Corp Catalyst convertor
JP2890503B2 (en) * 1989-07-26 1999-05-17 株式会社日本自動車部品総合研究所 Porous carrier
JP2862298B2 (en) * 1989-12-19 1999-03-03 臼井国際産業株式会社 Exhaust gas purification device
JP2904957B2 (en) * 1991-06-17 1999-06-14 新日本製鐵株式会社 Honeycomb structure winding device and winding method
JP3751139B2 (en) * 1998-01-06 2006-03-01 株式会社ユタカ技研 Metal corrugated sheet forming apparatus for honeycomb tubular body
JPH11290953A (en) * 1998-04-10 1999-10-26 Calsonic Corp Forming roll apparatus
JP2004223686A (en) * 2003-01-27 2004-08-12 Calsonic Kansei Corp Manufacturing apparatus and manufacturing method for corrugated fin
JP2005313193A (en) * 2004-04-28 2005-11-10 Calsonic Kansei Corp Pitch closing-up method for corrugated fin

Also Published As

Publication number Publication date
JP2007325990A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
KR950003300B1 (en) Method of making a curved pipe
US20080206514A1 (en) Non-Cylindrical Catalytic-Converter Carrier Element and Tool, and Method for Manufacturing it
JPH0570644U (en) Catalytic converter
WO2007141958A1 (en) Method of manufacturing honeycomb structure
WO2006062021A1 (en) Honeycomb metal carrier and method of producing the same
KR101146781B1 (en) Design of a metal honeycomb structure and method for producing the same
JP3600809B2 (en) Tubular member structure
JP5669357B2 (en) Method for producing metal catalyst support
US9903252B2 (en) Method for encasing a body of an exhaust gas system
JP3751139B2 (en) Metal corrugated sheet forming apparatus for honeycomb tubular body
JPH1137358A (en) Duct hose containing steel plate reinforcement core and manufacture thereof
US11131229B2 (en) Method for producing a honeycomb body
JP2008062160A (en) Metal carrier and production method of metal carrier
JP2013015110A (en) Method of manufacturing honeycomb body in exhaust gas catalyst device, and honeycomb body manufactured by the method, and exhaust gas catalyst device using the honeycomb body
JPH105858A (en) Reinforcement steel sheet core-containing duct hose and its manufacture
JP2010125423A (en) Metal catalyst carrier
JP3578429B2 (en) Winding method of metal honeycomb body
JP2008194591A (en) Metal carrier and method and apparatus for molding terminal end of corrugated plate
JP4785444B2 (en) Tube forming method
JP4990802B2 (en) Spiral tube manufacturing equipment
JP2010221254A (en) Method of manufacturing spiral steel pipe
JP2008037621A (en) Winding device
JP2024049238A (en) Web conveying device
JP2009183844A (en) Metallic catalyst carrier
JP2010017605A (en) Method of manufacturing metallic catalyst carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741673

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 07.04.2009.

122 Ep: pct application non-entry in european phase

Ref document number: 07741673

Country of ref document: EP

Kind code of ref document: A1