WO2007141957A1 - Water purifying device, and water-ozone mixing device - Google Patents
Water purifying device, and water-ozone mixing device Download PDFInfo
- Publication number
- WO2007141957A1 WO2007141957A1 PCT/JP2007/058147 JP2007058147W WO2007141957A1 WO 2007141957 A1 WO2007141957 A1 WO 2007141957A1 JP 2007058147 W JP2007058147 W JP 2007058147W WO 2007141957 A1 WO2007141957 A1 WO 2007141957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- ozone
- gas
- inlet
- channel
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 794
- 238000002156 mixing Methods 0.000 title claims description 35
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 428
- 238000000746 purification Methods 0.000 claims description 186
- 239000008213 purified water Substances 0.000 claims description 61
- 239000007788 liquid Substances 0.000 claims description 48
- 230000000903 blocking effect Effects 0.000 claims description 39
- 238000001514 detection method Methods 0.000 claims description 20
- 238000012423 maintenance Methods 0.000 claims description 18
- 230000001629 suppression Effects 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 7
- 230000002441 reversible effect Effects 0.000 claims description 7
- 230000004044 response Effects 0.000 claims description 5
- 230000004888 barrier function Effects 0.000 claims description 3
- 238000005452 bending Methods 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 2
- 230000004308 accommodation Effects 0.000 claims 1
- 238000005192 partition Methods 0.000 abstract description 5
- 230000009471 action Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 139
- 102000010637 Aquaporins Human genes 0.000 description 78
- 108091006146 Channels Proteins 0.000 description 42
- 239000003570 air Substances 0.000 description 28
- 230000002093 peripheral effect Effects 0.000 description 22
- 230000007423 decrease Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 15
- 238000007789 sealing Methods 0.000 description 13
- 230000005856 abnormality Effects 0.000 description 11
- 230000006872 improvement Effects 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000004332 deodorization Methods 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 239000002349 well water Substances 0.000 description 7
- 235000020681 well water Nutrition 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000001877 deodorizing effect Effects 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- 238000004659 sterilization and disinfection Methods 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 239000008399 tap water Substances 0.000 description 5
- 235000020679 tap water Nutrition 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 108010063290 Aquaporins Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 206010016275 Fear Diseases 0.000 description 1
- 241000167880 Hirundinidae Species 0.000 description 1
- 241001553014 Myrsine salicina Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- -1 specifically Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/232—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/232—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
- B01F23/2326—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/237—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
- B01F23/2376—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
- B01F23/23761—Aerating, i.e. introducing oxygen containing gas in liquids
- B01F23/237613—Ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/312—Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/312—Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
- B01F25/3124—Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
- B01F25/31242—Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the central area of the venturi, creating an aspiration in the circumferential part of the conduit
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/78—Details relating to ozone treatment devices
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/03—Pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Definitions
- the present invention relates to a water purification apparatus for purifying water and a water ozone mixing apparatus for mixing ozone with water.
- river water often produces bad water quality.
- poisonous water quality means, for example, that the turbidity and chromaticity of water is increased, or that an odor is generated from water.
- red water refers to water in which the well water extracted from the well is changed to red as time passes because iron and manganese components are contained as ions. Therefore, “red water” is not suitable for use as washing water or bath water, and also has a problem of adversely affecting plant cultivation.
- ozone water is mixed with tap water to generate ozone water, and the ozone water is used, for example, for sterilization washing of hands and feet, sterilization 'deodorization' removal of toro boxes containing fresh fish, etc. There is also a request.
- Patent Document 1 Japanese Patent No. 2715244
- Patent Document 2 Japanese Patent Laid-Open No. 2003-305348
- the water quality improvement device described in Patent Document 1 is a device in which a large water receiving tank, a first stage treatment machine, and a second stage treatment machine are combined in a complex manner.
- the ozone generator is disposed below the ozone addition section.
- an ozone generator has a configuration that generates ozone by taking in ambient air and discharging it at a high voltage, so that it cannot be discharged if the ozone generator is exposed to water. There is a problem that. In addition, if the ozone generator exposed to water is turned on, there is a risk of electric leakage or electric shock, which also causes handling problems. Of course, not only the ozone generating device but also other electrical components such as a control device are the same. For this reason, it is desirable to prevent water from entering the ozone generator. However, in the configuration in which the ozone generator is disposed below the ozone addition unit, as in the case of the water quality improvement device described above, Water may invade the ozone generator through the ozone introduction pipe due to its own weight.
- the present invention has been made based on a strong background, and its main object is to provide a water purification apparatus that can be easily maintained.
- Another object of the present invention is to provide a water purification apparatus that can improve water quality satisfactorily with a simple configuration when purifying water.
- Another object of the present invention is to provide a water purification apparatus capable of achieving compactness.
- Another object of the present invention is to provide a water purification apparatus that can operate safely when purifying water.
- Another object of the present invention is to provide a water-ozone mixing apparatus that can suppress a decrease in ozone mixing efficiency with a simple configuration when ozone is mixed with water.
- the invention according to claim 1 includes a pump for drawing water and a purification device for purifying water.
- the purification apparatus includes a housing, and An operation unit provided on an outer surface of the housing; an ozone generator disposed in the housing; a gas-liquid mixer for mixing ozone generated by the ozone generator with water; and And a control device for controlling the operation of the pump and the ozone generator.
- the operation 'control' operation of the water purification apparatus is performed at a location related to the casing (on the casing surface or inside the casing).
- the water purifier can be made compact by combining the ozone generator, the gas-liquid mixer, and the control device in a casing.
- the invention described in claim 2 is that the pump is for drawing raw water from a water source, and the purified water supply path has a lead-out path for taking out purified water purified by the purification apparatus.
- the water purification device according to claim 1, comprising:
- the operation “control” operation of the water purification apparatus is performed at a location related to the casing (on the casing surface or inside the casing).
- the water purifier can be made compact by combining the ozone generator, the gas-liquid mixer, and the control device in a casing.
- the invention of claim 3 is characterized in that the control device controls the operation of the pump and the ozone generator in conjunction with each other based on the water pressure on the discharge side of the pump. Or it is the water purification apparatus of 2 description.
- a water purification device that is easy to handle, and further, the water pressure discharged to the user side is always properly maintained, and the water purification device has good operability. It can be a device.
- the invention according to claim 4 is that the pump is for drawing water from a storage source of the water to be purified, and the purified water supply channel supplies the purified water purified by the purification device to the storage source.
- the operation “control” operation of the water purification apparatus is performed at a location related to the casing (on the casing surface or inside the casing).
- the purified water is returned to the water storage source again. Therefore, store purified water in the water storage source. It is possible to use purified water easily.
- water can be made during the daylight hours and prepared for use at night.
- the invention according to claim 5 is characterized in that the water storage source includes a water storage tank that stores domestic water, and the water storage tank is provided with a water supply pipe for a user for taking out water from the water storage tank.
- the tank is arranged at a high place so that water is discharged by gravity when the user water supply pipe is opened, and the pump and the purification device are arranged at a position lower than the water storage tank.
- the purification apparatus is arranged at a low position. Therefore, the purification apparatus can be easily operated, and maintenance can be performed more easily.
- the invention according to claim 6 is provided with a member to be assembled to which the purification device and the pump are assembled, the water storage tank is disposed above the member to be assembled, and the purification device comprises the assembly 6.
- the purification device is disposed as close as possible to the water storage tank disposed above the assembled member by being disposed at the upper end portion of the assembled member. Therefore, the height difference between the water purification device and the water storage tank can be reduced, and the loss of the water head when the water stored in the water storage tank reaches the water purification device can be suppressed. As a result, the pressure loss of the water flowing through the gas-liquid mixer of the purification device can be prevented, so that the suction flow rate of ozone into the gas-liquid mixer is reduced. Can be suppressed, and a decrease in the efficiency of gas-liquid mixing can be prevented. Therefore, this water purification apparatus can improve the water quality satisfactorily with a simple configuration.
- the pump is generally disposed at a position lower than a pump power purification device that is a heavy object, the posture of the water purification device can be stabilized.
- the invention according to claim 7 is characterized in that a filter is provided in the middle of the introduction path to capture foreign matter in the water introduced into the purification device. 6.
- the water purification apparatus according to 6. [0021] According to such a configuration, since the foreign matter is trapped by the filter and introduced into the hydraulic purification device, the foreign matter is clogged in a portion where water flows inside the purification device, such as a gas-liquid mixer. Can be prevented.
- this filter is provided in the middle of the introduction path, it is arrange
- the filter becomes a resistance, so that pressure loss occurs in the water near the filter. Therefore, in the case where the filter is disposed on the downstream side of the water purification apparatus, the pressure loss described above occurs on the downstream side of the purification apparatus, so that the ozone mixed into water in the gas-liquid mixer is reduced. There is a concern that the suction flow rate to the gas-liquid mixer may decrease.
- the filter is arranged on the upstream side of the purification apparatus!
- the invention according to claim 8 is a pressure sensor for detecting a pressure of water flowing between the pump force and the filter, and an eye of the filter according to a pressure value detected by the pressure sensor.
- the control device for judging clogging, and a notifying means for notifying the clogging of the filter when the clogging of the filter is judged by the control device. 7.
- the filter when the filter is clogged, the flow of water in the introduction path and the purification device is deteriorated, so that the ozone mixed with water in the gas-liquid mixer of the purification device is reduced. There is concern about a decrease in the suction flow rate into the gas-liquid mixer.
- the clogging state of the filter can be managed by the pressure sensor detecting the pressure of water flowing between the pump force and the filter. Then, the control means determines the filter clogging according to the pressure value detected by the pressure sensor, and the notification means notifies the filter clogging according to the determination, so that the filter is accidentally clogged. Therefore, the above-described decrease in the ozone suction flow rate can be suppressed, and the decrease in gas-liquid mixing efficiency can be prevented.
- the casing is partitioned above the water channel, a water channel having one end connected to the introduction channel and the other end connected to the purified water supply channel.
- An electrical component region and a blocking wall for blocking the electrical component region from the water channel, the gas-liquid mixer is coupled to the water channel, and the ozone generator and the control device include: 9.
- the electrical components such as the ozone generator and the control device are arranged in the electrical component region partitioned above the water channel, so that even if water leaks from the water channel, Water is unlikely to reach the ozone generator and controller due to its own weight.
- this electrical component area is blocked by water barriers, so for example, even if water is splashed during maintenance, the water is reliably prevented from entering the ozone generator and the control device. can do.
- the water channel extends substantially horizontally in the left-right direction in the housing, and one end projects outwardly from one side surface of the housing and is connected to the introduction channel outside.
- the water purification device according to claim 9 wherein the other end protrudes outwardly from the other side surface of the housing and is connected to the purified water supply channel on the outside.
- the water channel is supported on one side surface and the other side surface of the housing, the water channel can be stably disposed in the housing, and the water channel can be easily assembled to the housing.
- the invention according to claim 11 is the water purification apparatus according to claim 10, wherein the gas-liquid mixer is coupled to the water channel so as to constitute the one end or the other end of the water channel. It is.
- the gas-liquid mixer is coupled to the water channel so as to constitute one end or the other end of the water channel, the gas-liquid mixer is coupled in the middle of the water channel and Compared with this, it is possible to reduce the portion where the gas-liquid mixer and the water channel are connected, that is, the portion where water leakage may occur, and it is possible to more reliably prevent the ozone generator and the control device from being flooded.
- the invention according to claim 12 is characterized in that the blocking wall is disposed above the coupling portion of the water channel and the gas-liquid mixer. This is the water purification device described.
- the blocking wall is disposed above the portion where water leakage may occur, such as the coupling portion of the water channel and the gas-liquid mixer, the ozone generator and the control device Inundation can be prevented more reliably.
- the invention according to claim 13 is characterized in that the water channel includes a part that can be removed during maintenance, and the blocking wall is disposed above the part. No! Is the water purification device described in any one of them.
- the invention according to claim 14 is characterized in that the gas-liquid mixer has a water inflow port at one end, a water outflow port at the other end, a water flow path communicating the inflow port and the outflow port, and one end
- a gas passage having a gas inlet at the other end and a gas passage where the gas outlet is joined in the middle of the water flow path, and ozone generated by the ozone generator is supplied from the gas inlet to the gas
- a drainage passage for draining water flowing out of the gas passage when the water in the water passage enters the gas outlet and flows through the gas passage, and is provided in the drainage passage.
- An air inflow suppression means for suppressing air from flowing in a direction opposite to a direction in which water flows out of the drainage channel during ozone supply to the passage. It is a water purification device.
- the invention according to claim 15 is characterized in that the gas-liquid mixer has a water inflow port at one end, a water outflow port at the other end, and a water flow path communicating the inflow port and the outflow port,
- a gas inlet having a gas inlet at one end and a gas outlet at the other end, extending upward from the gas inlet toward the gas outlet, and having the gas outlet joined in the middle of the water flow path is provided.
- the ozone generated by the ozone generator is supplied from the gas inlet to the gas passage, is provided in the gas passage, and is allowed to pass ozone from below to above from the gas inlet to the front gas outlet.
- it includes a check valve for preventing the passage of water in the reverse direction.
- the check valve opens the gas passage by the supply pressure of ozone when ozone is supplied, and by its own weight when ozone is not supplied.
- the valve body of the check valve opens the gas passage by ozone supply pressure (for example, a negative pressure generated in the gas passage) during ozone supply, whereby the gas inlet port The ozone supplied from the gas passage to the gas passage can be allowed to pass toward the gas outlet.
- the valve body closes the gas passage by its own weight, thereby preventing water from passing in the reverse direction (back flow).
- this gas-liquid mixer there is a possibility that water in the water channel leaks downward into the gas channel from the gas outlet joined to the water channel. Even without this operation, the gas passage can be automatically opened and closed to prevent backflow of water.
- the invention of claim 16 has a water inlet at one end, a water outlet at the other end, a water flow path communicating the inlet and the outlet, a gas inlet at one end, and the like.
- a gas outlet at the end, and the gas outlet is joined in the middle of the water flow path !, a gas-liquid mixer having a gas passage, and generating ozone, and the generated ozone is
- An ozone supply device for supplying to the gas passage; a drainage passage for draining water flowing out of the gas passage when water in the water passage enters the gas outlet and flows through the gas passage; Air inflow suppressing means for suppressing air from flowing in the direction opposite to the direction of water flowing out of the drainage channel during ozone supply to the gas passage. This is a water ozone mixing device.
- the invention according to claim 17 is characterized in that the gas-liquid mixer has a throttle part in which the middle of the water flow path is throttled, and the gas outlet is joined to the throttle part.
- the water purification device according to claim 16 According to such a configuration, the gas-liquid mixer has the throttle part in which the middle of the water channel is throttled, and the outlet of the gas passage is joined to the throttle part. Therefore, ozone can be taken into the water channel by using the negative pressure generated by the flow of water whose flow velocity increases at the throttle part by the water channel bench action.
- the ozone generated by the ozone supply device is mixed using the negative pressure generated by the water flowing through the throttle, so that, for example, a device such as a blower is not provided and the water flow path is configured with a simple configuration. Can be mixed with ozone.
- the invention described in claim 18 is characterized in that the air inflow suppressing means operates by a pressure change in the drainage channel that changes when ozone is sucked into the throttle portion. It is a water purification apparatus of description.
- the blocking of the drainage channel by the air inflow suppression means is performed by a pressure change in the drainage channel that changes as the ozone is sucked into the throttle portion.
- the negative pressure generated in the throttle portion is used.
- the invention according to claim 19 is characterized in that the air inflow suppressing means has an inlet at one end and an outlet at the other end, and the inlet and the outlet are connected to the drainage channel, so that the middle of the drainage channel A storage chamber inserted in the storage chamber, and the storage chamber is flexible and has flexibility, and the pressure entry in the drainage channel that changes when ozone is sucked into the throttle portion closes the front entry port and A blocking member that blocks the drainage channel, and the blocking member is an inner wall of the storage chamber except when water flows out of the drainage channel and when ozone is sucked into the throttle portion.
- a gap is formed between the inner wall of the storage chamber and the blocking member because the blocking member is bent by being pressed by the flowing water. Said by Wherein the water channel is opened, a MizuKiyoshii ⁇ apparatus of claim 18.
- the blocking member has a housing chamber except when water flows out of the drainage channel (when draining) and when ozone is sucked into the throttle portion. It is in contact with or close to the inner wall. Therefore, even if the pressure change in the drainage channel is small, the blocking member operates reliably and can block the drainage channel by closing the inlet. Therefore, the inflow of air can be reliably prevented.
- the blocking member has flexibility, and when water flows out of the drainage channel (during drainage), the blocking member is pressed against the flowing water and swallows it, so that Since the drainage channel is opened by forming a gap with the blocking member, smooth drainage in the drainage channel can be maintained.
- the invention according to claim 20 is characterized in that it includes a receiving member that is provided in the storage chamber, has a receiving surface that is convexly curved in the opposite direction, and receives the blocking member on the receiving surface.
- the peripheral side of the receiving surface is located on the center side of the receiving surface.
- a gap can be secured between the receiving surface and the inner wall of the storage chamber in this peripheral side portion. Therefore, during drainage, the drainage channel can be reliably opened by bending the blocking member until contact between the inner wall of the storage chamber and the blocking member is eliminated in this gap.
- the invention according to claim 21 is a water detection sensor for detecting drainage water, and ozone for stopping the ozone supply device in response to detection by the water detection sensor. 21.
- the ozone supply device is stopped by the ozone supply control means in response to detection by the water detection sensor.
- the ozone supply device is stopped in response to detection by the water detection sensor, even if water enters the ozone supply device, it is possible to prevent electric leakage or electric shock, and It can be operated safely.
- the invention described in claim 22 has a water inlet at one end, a water outlet at the other end, a water flow path communicating the inlet and the outlet, a gas inlet at one end, and the like.
- a gas outlet at the end, extending upward from the gas inlet toward the gas outlet, and the gas outlet is joined in the middle of the water flow path!
- an ozone supply device that supplies the generated ozone from the gas inlet to the gas passage, and is provided in the gas passage, and is installed from the lower side toward the front gas outlet from the gas inlet.
- a check valve for preventing the passage of water in the reverse direction, and the check valve allows the gas passage to be opened by ozone supply pressure when ozone is supplied.
- a water-ozone mixing apparatus comprising a valve body that is opened and closes the gas passage by its own weight when ozone is not supplied.
- the valve body By opening the gas passage by (for example, negative pressure generated in the gas passage), it is possible to allow ozone supplied from the gas inlet to the gas passage to pass toward the gas outlet.
- the valve body closes the gas passage by its own weight, thereby preventing water from passing in the reverse direction (back flow).
- this gas-liquid mixer there is a possibility that water in the water channel leaks downward into the gas channel from the gas outlet joined to the water channel. Even without this operation, the gas passage can be automatically opened and closed to prevent backflow of water.
- the invention according to claim 23 is characterized in that the valve element is accommodated in the gas passage in a freely movable state, and has an upper surface that is convexly curved upward. 22.
- the valve body is accommodated in the gas passage in a freely movable state. That is, the valve body is not supported by another member in the gas passage. Since the operation frequency of the valve body is relatively high for the use of the check valve, there is a possibility that the support portion may be damaged when it is supported by other members in the gas passage. Since the valve body is not supported by another member in the gas passage, the above-described support portion does not exist and there is no possibility of damage.
- the valve body has an upper surface convexly curved upward.
- the upper surface of the valve body is convexly curved upward, the pressure of water from the water flow path can be released to the surroundings on this upper surface.
- this upper surface is flat evenly from the outer edge to the inner center, the pressure of water from the water flow path cannot be released to the surroundings, so the inner part of the upper surface cannot withstand the pressure.
- the valve body may not be able to close the gas passage completely and may cause backflow of water There is.
- the upper surface of the valve body of the present invention is convexly curved in the direction opposite to the direction in which water leaks (upward). Even if water pressure is applied to the upper surface of the valve body, the valve body can maintain its overall shape without being squeezed by releasing the pressure to the surroundings. Therefore, the valve body can completely close the gas passage and reliably prevent the back flow of water.
- the invention according to claim 24 is characterized in that a protrusion in contact with the upper surface of the valve body is provided in the gas passage in order to prevent the position of the valve body from shifting.
- the water purifier according to claim 23 is characterized in that a protrusion in contact with the upper surface of the valve body is provided in the gas passage in order to prevent the position of the valve body from shifting.
- the valve body since the position of the valve body is prevented from being shifted by the protrusion provided in the gas passage, the valve body can always be disposed at an appropriate position where the gas passage can be opened and closed. Therefore, the operation reliability of the check valve can be improved.
- FIG. 1 is a schematic perspective view of a water purification apparatus 1 according to a first embodiment of the present invention.
- FIG. 2 is a system diagram showing a configuration example of the water purification apparatus 1.
- FIG. 3 is an illustration of the ozone mixer 7.
- FIG. 4 An illustration of the check valve 17.
- Fig. 4 (a) shows a normal state
- Fig. 4 (b) shows a state during suction.
- FIG. 5 is an illustrative view showing one example of a drain valve 36, FIG. 5 (a) shows a normal state, and FIG. 5 (b) shows a state during suction.
- FIG. 6 is an illustrative view showing an example of a drain valve 36, FIG. 6 (a) shows a normal state, and FIG. 6 (b) shows a state during suction.
- FIG. 7 is a block diagram showing an electrical configuration of the water purification apparatus 1 and shows a portion related to the present invention.
- FIG. 8 is a flowchart showing a control operation of the control unit 49 related to the purified water supply of the water purification apparatus 1.
- FIG. 9 is a flow chart showing the control operation of the control unit 49 related to water leak abnormality detection of the water purification apparatus 1.
- FIG. 10 is a schematic perspective view of a water purification apparatus 1 according to a second embodiment of the present invention.
- FIG. 11 is a system diagram showing a configuration example of a water purification apparatus 1 according to a second embodiment.
- FIG. 12 is a schematic plan view of the operation display unit 55 of the water purification apparatus 1 according to the second embodiment.
- FIG. 13 is a block diagram showing an electrical configuration of a water purification apparatus 1 according to a second embodiment, showing a portion related to the second embodiment.
- FIG. 14 is a flowchart showing a control operation of the control unit 49 related to purified water supply of the water purification apparatus 1 according to the second embodiment.
- FIG. 15 is a system diagram showing a configuration example of a water purification apparatus 1 according to a third embodiment.
- FIG. 16 is a system diagram showing a configuration example of an ozone water generator 70 according to a fourth embodiment.
- FIG. 17 is a front perspective view of a casing 27 in a water purification apparatus 1 according to a fifth embodiment.
- FIG. 18 is a front perspective view of the inside of the casing 27.
- FIG. 19 is a plan view of the inside of the housing 2.
- FIG. 20 shows a mode in which the ozone generator 21 is arranged above the control unit 49 in FIG.
- FIG. 21 is a front perspective view of a water purification apparatus 1 according to a sixth embodiment.
- FIG. 22 is a side sectional view of an ozone mixer 7 according to a seventh embodiment.
- FIG. 24 is an upper perspective view of the arch valve 81.
- FIG. 25 is an upper perspective view of the inside of the valve chamber 29 in a state where the arch valve 81 is arranged.
- FIG. 26 is an illustrative view of a check valve 17 according to a seventh embodiment.
- FIG. 26 (a) shows a normal state
- FIG. 26 (b) shows a state during suction.
- FIG. 27 shows the drain valve 36 extracted from FIG. 22, where FIG. 27 (a) shows the normal state, FIG. 27 (b) shows the state during suction, and FIG. ) Indicates the state during drainage.
- FIG. 28 is an upper perspective view of the stopper 47 inside the valve chamber 38.
- FIG. 1 is a schematic perspective view of a water purification apparatus 1 according to the first embodiment of the present invention.
- FIG. 2 is a system diagram showing a configuration example of the water purification apparatus 1. When referring to the direction, refer to the arrow indicating the direction shown. In the system diagram of FIG. 2, solid arrows indicate the flow of water, and broken arrows indicate the flow of electricity.
- this water purification apparatus 1 includes a water ozone mixing apparatus 2 according to the present invention, and ozone is mixed with water by the water ozone mixing apparatus 2 to produce water. No purification process is performed. More specifically, the water purification apparatus 1 includes a pump 5 for sucking raw water from a water source 3 such as a well or a river through a suction pipe 4, and a water supply channel and an introduction channel that are raw water channels discharged from the pump 5.
- a water source 3 such as a well or a river through a suction pipe 4
- a water supply channel and an introduction channel that are raw water channels discharged from the pump 5.
- the raw water supply pipe 6 and the raw water supply pipe 6 are connected to the raw water supply pipe 6 and the ozone mixer 7 as a gas-liquid mixer that mixes ozone with the raw water, and ozone is generated and the generated ozone is supplied to the ozone mixer 7
- the ozone supply device 8 (the ozone mixer 7 and the ozone supply device 8 are included in the water ozone mixing device 2), and the purified water mixed with ozone in the ozone mixer 7 is supplied to the user side.
- Purified water supply pipe 9 (leading path, purified water supply path and ozone water output pipe) and ozone deodorizing column inserted into the purified water supply pipe 9 as an ozone decomposing unit for decomposing ozone remaining in the purified water With 10 And these water water source 3 is Kiyoshii spoon by further residual ozone is decomposed and supplied to the user as raw utilize water.
- the pump 5 includes a pressure sensor 11 for detecting the flow path pressure (discharge-side flow path pressure) of the raw water supply pipe 6, an impeller (not shown), and a rotation sensor for rotating the impeller.
- a motor (not shown) is provided.
- the pressure sensor 11 is a sensor that is turned off when the discharge-side flow path pressure is equal to or higher than a predetermined pressure, and is turned on when it is lower than the predetermined pressure.
- the ONZ OFF signal of the pressure sensor 11 is given to the control unit 49 described later. When the pressure sensor 11 is turned on by the control signal, the pump 5 is driven. Therefore, the raw water is always sent to the ozone mixer 7 at a predetermined pressure or higher.
- FIG. 3 is an illustration of the ozone mixer 7.
- the solid line arrows represent the water flow
- the broken line arrows represent the gas flow.
- the ozone mixer 7 has a water flow path 1 having a water inlet 12 at one end and a water outlet 13 at the other end. 4 is provided.
- the water channel 14 has a constricted portion 15 that is constricted in the middle and narrowed in inner diameter.
- a gas passage 16 is connected to the throttle portion 15.
- the gas passage 16 has a check valve 17 in the middle thereof and a three-way branch 18 below the check valve 17.
- An inlet 19 as a gas inlet that opens to the side of the three-way branch 18 is an inlet for ozone, and an outlet 20 as a gas outlet at the upper end of the ozone exit is connected to the throttle 15. It communicates in a T shape.
- the flow rate of water flowing in from the inflow port 12 is increased in the throttle portion 15. Due to the flow of water with the increased flow velocity, the inside of the throttle portion 15 becomes a negative pressure. Due to this negative pressure, the ozone that has flowed into the gas passage 16 is sucked into the water flow path 14 from the outlet 20 and has a diameter of, for example, Is mixed into water as ultrafine bubbles (so-called microbubbles) of 50 m or less.
- a device such as a blower is not provided, and the water flow path 14 is utilized by utilizing the negative pressure generated by the water flow in the throttle portion 15.
- the ozone can be taken in efficiently.
- the ozone mixer 7 has been described as a bench-lily structure.
- a T-shaped tube can be used as the ozone mixer 7.
- ozone supply device 8 has an ozone generator 21 that converts oxygen in the air into ozone by discharging the air.
- the ozone generator 21 has a discharge element circuit (not shown) and a discharge electrode plate (not shown) inside, and is electrically connected to a control unit 49 (described later).
- the ozone supply device 8 includes an intake pipe 22 for sucking air outside the casing 27, which will be described later, a filter 23 inserted in the intake pipe 22, an ozone supply pipe 24 serving as a supply pipe and an ozone supply path, an ozone supply A check valve 17 inserted into the pipe 24 is included, the intake pipe 22 is connected to the inlet 25 of the ozone generator 21, and the ozone supply pipe 24 is connected to the exhaust 26 of the ozone generator 21. ing.
- the ozone generator 21 is turned on by the control unit 49 (described later)
- the air taken into the ozone generator 21 from the intake port 25 is discharged by an electrode plate (not shown) (for example, creeping discharge, (Such as silent discharge) To do. Dust contained in the air flowing in from the air inlet 25 is captured by the filter 23, so that dust enters the ozone generator 21 and damages the discharge element (not shown) and the electrode plate (not shown). This can be prevented.
- the generated ozone flows out from the exhaust port 26, and can be supplied to the inlet 19 of the three-way branch 18 through the check valve 17 and the ozone supply pipe 24 (see FIG. 3).
- Ozone is supplied from the ozone mixer 7, and the water purified by sterilization and sterilization by ozone flows through the purified water supply pipe 9, and the residual ozone is decomposed in the ozone deodorizing column 10, and the user uses it. Supplied. Specifically, ozone decomposition in the ozone deodorization column 10 is described. The ozone deodorization column 10 is filled with activated carbon, for example, and this activated carbon and unreacted ozone remaining in the purified water undergo an oxidation reaction. As a result, unreacted ozone is decomposed. By being decomposed in this way, ozone does not exist in the water supplied to the user side, and the user can use the purified water with peace of mind.
- water purification apparatus 1 such water purification is performed in a casing 27 in which the water ozone mixing apparatus 2 is accommodated (see FIG. 1).
- the casing 27 is disposed above the pump 5, and on the surface thereof, an operation display section 55 is formed as an operation section for performing various operations and various displays related to the operation of the water purification device 1.
- the operation display unit 55 is electrically connected to a control unit 49 (described later). Therefore, the user can operate the water purification apparatus 1 by operating the operation display unit 55 to give an instruction to the control unit 49 (described later) and know the operation state.
- the casing 27 accommodates the control unit 49 that is electrically connected to the pump 5 and the ozone generator 21.
- the operation display unit 55 is formed in the casing 27 as a purification device related to the operation 'control' operation of the water purification, and the ozone generation device 21, the ozone mixer 7 and the control unit 49. Is housed in the casing 27, for example, the user can easily perform maintenance such as periodic replacement of parts and repair of a failed part.
- the electrical configuration of the control unit 49 will be described in detail later with reference to FIG.
- an ozone deodorizing column 10 is attached to the outer surface of the casing 27. Ozone desorption Since the odor column 10 is provided in the vicinity of the casing 27, maintenance of the ozone deodorization column 10, such as replacement of activated carbon filled in the ozone deodorization column 10 or replacement of the ozone deodorization column 10 main body, etc. Can be easily performed. Furthermore, since it is provided outside the housing 27, there is no need to open the lid of the housing 27 during maintenance.
- the ozone generator 21 is disposed above the three-way branch 18. For this reason, even if water enters the three-way branch 18, it can be prevented that the water enters the ozone generator 21.
- the raw water supply pipe 6 downstream of the elbow pipe 28
- the purified water supply pipe 9 upstream of the ozone deodorizing column 10.
- the casing 27 can also be configured to be portable where needed.
- a check valve 17 is interposed in the gas passage 16 connected to the water channel 14.
- the check valve 17 is for preventing a flow (especially a flow of water) flowing from the bottom to the top in the gas passage 16 (especially a flow of ozone) from an upper side to a lower side.
- FIG. Fig. 4 is an illustrative view of the check valve 17.
- Fig. 4 (a) shows the state when water is not flowing in the water flow path 14 (hereinafter referred to as normal time), and
- Fig. 4 (b) The state when water is flowing in the water channel 14 (hereinafter referred to as suction) is shown.
- the dashed arrows indicate the gas flow.
- the check valve 17 includes a valve chamber 29, a ball valve 30 that can move in the valve chamber 29, one side (for example, the lower side) and the other side (for example, the upper side) of the valve chamber 29.
- the inlet 31 and the outlet 32 are formed as fluid passage holes, and the spring 33 is urged so that the ball valve 30 always closes the inlet 31.
- the shape of the valve chamber 29 is not limited to the force that is a rocket shape that tapers upward in this example. The point is that the ball valve 30 can move in the valve chamber 29 and the fluid can move between the inlet 31 and the outlet 32 when the inlet 31 is not blocked.
- the ball valve 30 is, for example, a known sphere such as rubber or resin, and has a diameter larger than that of the inlet 31.
- the spring 33 has a biasing force that allows the ball valve 30 to move upward due to negative pressure during suction. ing.
- the spring 33 may be a force exemplifying a coil spring, such as a bar spring or a plate spring.
- the check valve 17 is normally closed at its inlet 31 by the weight of the ball valve 30 and the biasing force of the spring 33. Therefore, even if water has entered the valve chamber 29, the water is blocked in the valve chamber 29.
- the check valve 17 is provided, for example, the suction state force is also switched to the normal state, and a water hammer phenomenon or the like caused by suddenly stopping the flow of water in the water flow path 14 may occur. For this reason, even if water in the water flow path 14 enters the gas passage 16 from the outlet 20, the inlet 31 of the valve chamber 29 is blocked by the ball valve 30, so that the water that has entered the check valve Can be blocked at 17. Therefore, it is possible to prevent water from entering the downstream side of the check valve 17, that is, the ozone generator 21 side. Even if the check valve 17 inserted in the gas passage 16 is damaged and water passes through the check valve 17, the ozone supply pipe 24 is further reversed. Since the stop valve 17 is inserted, the check valve 17 can block water and prevent the water from entering the ozone generator 21.
- the three-way branch 18 is provided with a drain outlet 34 as a drain opening that opens downward in addition to the inlet 19 described above.
- a drain pipe 35 is connected as a drainage channel for draining water that has entered the gas passage 16 (see Fig. 2).
- the drain pipe 35 extends downward from the three-way branch 18, and in the middle of the drain pipe 35 serves as an air inflow suppression means for suppressing air from flowing through the drain pipe 35 during ozone supply. All drain valves 36 are provided.
- the outlet at the lower end of the drain pipe 35 is provided with a water tray 37 as a water receiver for receiving water flowing out from the outlet (see Fig. 2).
- the drain pipe 35 is for draining water that has entered the gas passage 16 to the outside.
- the check valve 17 since the check valve 17 is inserted in the gas passage 16, normally, the infiltrated water is blocked by the ball valve 30. Even if it is a strong gap force with 1, water leaks out and may flow down to the drain pipe 35 via the three-way branch 18. Even in such a case, since the drain pipe 35 is provided, the powerful water that cannot be blocked by the check valve 17 can be drained to the outside.
- the flow path diameter of the drain pipe 35 is designed so as to be able to drain a water amount greater than or equal to the amount of water leaking from the outlet 20 to the gas passage 16 per certain time (for example, 10 minutes). Therefore, for example, even if the check valve 17 is not provided or the check valve 17 is damaged, the water leaked into the gas passage 16 does not stagnate in the drain pipe 35 and smoothly flows. Drained outside. In other words, it is possible to prevent water from stagnating in the drain pipe 35 and flowing out from the inlet 19 of the three-way branch 18 to the ozone generator 21 side.
- the drain valve 36 is a valve for suppressing the inflow of air in the direction opposite to the direction of water flow in the drain pipe 35 during ozone supply.
- FIG. 5 is an illustrative view showing an example of the drain valve 36.
- FIG. 5 (a) shows a normal state
- FIG. 5 (b) shows a state during suction.
- solid arrows indicate the flow of water
- broken arrows indicate the flow of gas.
- FIG. 5 (b) the illustration of the configuration of the water tray 37 shown in FIG. 5 (a) is omitted.
- drain valve 36 has a valve chamber 38 as a storage chamber and a ball valve 39 stored in valve chamber 38.
- An inlet 40 is formed on the upper surface of the valve chamber 38.
- a recess 41 in which the ball valve 39 is located by its own weight is formed on the lower surface of the valve chamber 38, and an outlet 42 is formed on the lower surface avoiding the recess 41.
- the drain valve 36 is inserted into the drain pipe 35 so as to be a part of the channel of the channel force drain pipe 35 that allows the inlet 40 and the outlet 42 to communicate with each other.
- the ball valve 39 is, for example, a known sphere such as rubber or resin, and is formed to be larger in diameter than the inlet 40.
- the ball valve 39 is positioned in the recess 41 in the valve chamber 38 due to its own weight, as shown in FIG. Therefore, the water falling through the drain pipe 35 is drained through the drain valve 36.
- the interior of the water tray 37 is divided into two rooms by a partition wall 73 that is lower than the height of the peripheral wall of the water tray 37, and the output of the room power drain pipe 35 of the two rooms is also It is a water receiving chamber 74 that receives the drained water, and an overflow chamber 75 into which the water overflowing from the other chamber strength water receiving chamber 74 beyond the cutting wall 73 enters.
- the overflow chamber 75 is connected with a discharge pipe 76 that leads to the outside of the casing 27 (see FIG. 2).
- the water drained from the drain pipe 35 is once received in the water receiving chamber 74, and when the water level is below the height of the partition wall 73, it does not overflow into the overflow chamber 75 and evaporates over time. To do.
- the excess amount overflows into the overflow chamber 75 as shown by the solid line arrow in FIG. Discharged.
- a water leak sensor 45 as a water detection sensor is provided at a position slightly lower than the upper end of the partition wall 73 on the peripheral surface wall of the water tray 37!
- the water leak sensor 45 is turned on when it detects that the water level force of the water stored in the water receiving chamber 74 is higher than a predetermined water level (for example, the height of the broken line in Fig. 5 (a)). It is a sensor to FF.
- the ONZOFF signal of the water leak sensor 45 is given to the control unit 49.
- the pump 5 and the ozone generator 21 are turned OFF by the control unit 49. The The flow of detection by the water leak sensor 45 will be described in detail later with reference to FIG.
- the drain valve 36 of the second configuration example has a valve chamber 38 and a disc valve 46 as a blocking member accommodated in the valve chamber 38.
- the valve chamber 38 has a stopper for receiving the disc valve 46. 47 is provided.
- the valve chamber 38 has an inlet 40 formed on the upper surface and a large outlet 42 formed on the lower surface below the stopper 47.
- the disc valve 46 is, for example, a known disc-shaped valve such as rubber or grease, and is formed with a diameter larger than the diameter of the inlet 40.
- the stopper 47 is disposed at such a height that a gap 48 is formed between the periphery of the disc valve 46 and the inner wall of the valve chamber 38 when the disc valve 46 is received.
- the disc valve 46 is normally received by a stopper 47 by its own weight as shown in FIG. 6 (a). Therefore, the drain pipe 35 on the inlet 40 side and the drain pipe 35 on the outlet 42 side communicate with each other through the drain valve 36, and the leaked water is drained through the drain pipe 35.
- the drain pipe 35 is shut off from the outside through the drain valve 36, and the external air passes through the drain pipe 35 through the three-way branch 18, Since it does not flow into the gas passage 16, it is possible to prevent the supplied ozone concentration from being lowered, and to supply ozone at a constant concentration stably. As a result, water purification can be performed efficiently.
- the drain pipe 35 can be shut off by using the negative pressure generated in the throttle portion 15, it is possible to automatically prevent the inflow of air from the outside without any separate operation. .
- a force that prevents the inflow of air during ozone supply by the drain valve 36 for example, an electromagnetic valve is provided instead of the drain valve 36, and is controlled by the control unit 49 (described later). It can also be controlled.
- the electromagnetic valve is closed so that air does not flow in.
- the electromagnetic valve is opened so that water leaking from the outlet 20 can be drained.
- the water purification apparatus 1 is provided with, for example, an ozone supply control means for controlling the pump 5, the ozone generator 21 and the like, and a control unit 49 as a control device. Is housed inside the casing 27 and connected to an external power source 50 (see FIG. 2). This Now, the controller 49 will be described with reference to FIG.
- FIG. 7 is a block diagram showing an electrical configuration of the water purification apparatus 1 and shows a portion related to the present invention.
- the control unit 49 is composed of, for example, a microcomputer, and includes a CPU 51, a ROM 52, a RAM 53, and a timer 54.
- the control unit 49 is electrically connected to the operation display unit 55, the ozone generator 21, the pump 5, the water leak sensor 45, and the pressure sensor 11, respectively.
- the operation display unit 55 includes a power switch 56 for ONZOFF of the control unit 49, an ozone switch 57 for ONZOFF of the ozone generator 21, and a power LED 58 for performing various displays to the user, ozone LED59, abnormal LED60, etc. are provided respectively.
- the portion composed of the ozone mixer 7, the ozone supply device 8, the drain pipe 35, and the drain valve 36 is the water according to the present invention. It functions as the ozone mixing device 2, and in the water purification device 1, the user operates the operation display unit 55 so that the water ozone mixing device 2 is controlled by the control unit 49, so that ozone is added to the water. Water is purified by mixing.
- FIG. 8 is a flowchart showing the control operation of the control unit 49 related to the water purification water supply of the water purification apparatus 1.
- the control regarding water purification water supply of the water purification apparatus 1 is demonstrated.
- step S2 When the power switch 56 is turned on by the user (Yes in step S1), it is determined whether or not the ozone switch 57 is turned on (step S2). If the ozone switch 57 is not turned ON (No in step S2), the pump 5 is controlled independently (step S9). That is, only the pump 5 is turned on, and ozone is not supplied to the water of the water source 3, but is supplied to the user side as it is. On the other hand, when the ozone switch 57 is turned on (Yes in step S2), the pump 5 and the ozone generator 21 are controlled in conjunction (step S3).
- step S5 Water source 3 Purified water supply in which water is purified and supplied by ozone is performed.
- step S6 when the pressure sensor 11 is turned OFF during purification water supply (Yes in step S6), it is determined whether or not the pressure sensor 11 is turned OFF and the force is also T1 seconds, for example, 1 second (step S7). .
- T1 seconds have elapsed (Yes in step S7), the pump 5 and the ozone generator 21 are turned off (step S8), and the purified water supply is terminated. Further, the user can also end the purified water supply by turning off the power switch 56.
- the user wants to use the purified water again after the above water supply is completed, it is only necessary to open the faucet. In other words, when the user opens the faucet, the pressure sensor 11 is turned on again (Yes in step S4), and the pump 5 and the ozone generator 21 are automatically turned on in conjunction with this, so the user Can be used.
- the pump 5 and the ozone generator 21 in conjunction with each other, it is possible to provide the water purification apparatus 1 that is easy to operate and easy to handle.
- the water pressure in the flow path is controlled by the pressure sensor 11, the water pressure discharged to the user use side is always properly maintained, and the water purification device 1 with good operability can be obtained. it can.
- FIG. 9 is a flowchart showing the control operation of the control unit 49 relating to the detection of water leakage abnormality of the water purifier 1.
- the abnormality detection of water leakage refers to detecting that there is a possibility that water leaked from the gas passage 16 may enter the ozone generator 21.
- step S11 When water of a predetermined level or more is accumulated in the water receiving chamber 74 and the water leak sensor 45 is turned on (Yes in step S11), the water leak sensor 45 is turned on. Then, it is determined whether or not the force has also elapsed for T2 seconds, for example, 1 second (step S12).
- T2 seconds elapse Yes in step S12
- the pump 5 and the ozone generator 21 are turned off (step S13)
- the abnormality LED 60 is lit, the ozone LED 59 flashes (step S14), and the user is notified. Water supply is stopped.
- the water purification apparatus 1 can be restarted by turning on the power switch 56 again. At this time, the water leakage sensor 45 is reset to the initial state. In other words, even if the water supply is stopped while the water leak sensor 45 is ON, it is reset to the OFF state after restarting. In addition, If water of a predetermined level or more remains in the water receiving chamber 74 even after the water supply is stopped, the above processing and determination (steps Sl to 14) are performed again immediately after the restart, and the water supply is stopped.
- the user is notified of the abnormality by turning on the abnormality LED 60 or blinking the ozone LED 59, so that the user can quickly cope with the water leakage abnormality detection.
- a predetermined water level for example, the height of the broken line in FIG. 5 (a)
- the water leak sensor 45 does not detect that the water leak is abnormal, and further the water leak sensor Even when 45 is turned on, if T2 seconds have not elapsed (No in step S12), water leakage abnormality detection is not performed. For this reason, it is possible to prevent the user from being forced to deal with an abnormal water leak, and to efficiently perform the water purification process.
- the drain pipe 35 is shut off from the outside through the drain valve 36, and the outside air flows from the drain pipe 35 through the three-way branch 18 into the gas passage 16. Therefore, the concentration of ozone to be supplied can be prevented from being lowered, and ozone with a certain concentration can be stably supplied. As a result, water can be efficiently purified.
- FIG. 10 is a schematic perspective view of the water purification apparatus 1 according to the second embodiment of the present invention.
- FIG. 11 is a system diagram showing a configuration example of the water purification apparatus 1 according to the second embodiment. 1 and 2 are denoted by the same reference numerals and description thereof is omitted. In the system diagram of FIG. 11, solid arrows indicate the flow of water, and broken arrows indicate the flow of electricity.
- the water purification apparatus 1 is not provided with the pump 5 and the pressure sensor 11 as shown in FIG.
- the pipe 6 is provided with an open / close valve 61 as an open / close valve for opening and closing the raw water supply pipe 6.
- the open / close solenoid 61 is, for example, a valve such as an electromagnetic valve that is electrically opened and closed, and is electrically connected to the control unit 49. Therefore, the user can use purified water by connecting the raw water supply pipe 6 to, for example, a faucet of a water supply and opening and closing the opening / closing valve 61 as appropriate.
- the purified water supplied to the user is generated by the same method as in the first embodiment.
- FIG. 12 is a schematic plan view of the operation display unit 55 of the water purification apparatus 1 according to the second embodiment.
- FIG. 13 is a block diagram showing an electrical configuration of the water purification apparatus 1 according to the second embodiment, and shows a portion related to the second embodiment. Note that parts that are the same as those in FIG.
- the control unit 49 of the water purification apparatus 1 is composed of, for example, a microcomputer.
- the control unit 49 is electrically connected to the operation display unit 55, the ozone generator 21, the open / close valve 61, and the water leak sensor 45, respectively.
- the operation display unit 55 includes a coarse switch 62 for selecting whether ozone is mixed in the water to be supplied, and an open / close valve 61.
- a water supply switch 63 for performing the opening / closing operation and a water supply LED 64 for displaying whether or not the water is being supplied are provided. Therefore, the user can operate the operation display unit 55 to open and close the open / close valve 61 to supply water, or to mix ozone with the supplied water to generate purified water.
- FIG. 14 shows the control of the control unit 49 regarding water purification water supply of the water purification apparatus 1 according to the second embodiment. It is a flowchart which shows operation
- the control regarding the purified water supply of the purified water apparatus 1 which concerns on 2nd Embodiment is demonstrated.
- the course setting is read from the ROM 52 (step S22).
- the course setting is, for example, the program content in which the amount of ozone supplied to the water in the water supply is set, and the user can change the course setting by appropriately changing the content of ROM52. Can do.
- the course switch 62 is turned on (Yes in step S23)
- the ozone generator 21 is turned on (step S24).
- step S25 when the water supply switch 63 is turned on (step S25) and the water supply is started by opening the open / close valve 61 (step S26), ozone is supplied to the ozone mixer 7 by the negative pressure.
- step S26 water supply is started even if the water supply switch 63 is turned on without the course switch 62 being turned on (No in step S23).
- step S23 water not mixed with ozone is sent to the user side.
- the user can supply ozone to the ozone mixer 7 by turning on the coarse switch 62 during the water supply.
- step S27 the clean water supply ends.
- the raw water supply pipe 6 is provided with the opening / closing valve 61 and can be supplied with purified water by a user's appropriate operation, for example, a water source (for example, a well, a river, etc.) Even if the user's place of use is remote, if the pump is driven near the water source and the open / close valve 61 is provided near the user's place of use, the pump will be driven each time it is used. Purified water can be used simply by operating the open / close valve 61 in accordance with the use.
- a water source for example, a well, a river, etc.
- the pump 5 is not driven by the pressure sensor 11 as in the first embodiment, there is no need to provide a channel opening / closing component such as a faucet on the user side. That is, regardless of the situation (for example, the presence or absence of a faucet) where the ends of the raw water supply pipe 6 and the purified water supply pipe 9 are connected, the water purification plant according to the second embodiment is used. Device 1 allows the use of purified water.
- FIG. 15 is a system diagram showing a configuration example of the water purification apparatus 1 according to the third embodiment.
- the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
- the water source 3 shown in Fig. 2 is a tank 65 as a water storage tank for storing water.
- the tank 65 is installed on the same height as the roof of the house 77, for example, a dedicated steel tower.
- the tank 65 is connected to a water storage pipe 69 including a tank pump 66 for pumping water from a water source (for example, a well or a river).
- the tank 65 is driven by the driving force of the tank pump 66. Water is collected.
- the pump 5 is installed at a position lower than the tank 65, more specifically, on the floor 78 of the house 77, and the casing 27 is installed on the inner wall 79 of the house 77. 27 (more specifically, the ozone mixer 7 (see Fig. 1)) is connected by the raw water supply pipe 6.
- a suction pipe 4 extending downward from the inside of the tank 65 is connected to the pump 5.
- the casing 27 (more specifically, the ozone mixer 7 (see FIG. 1)) has a purified water supply pipe 9 as a return path. The other end of the purified water supply pipe 9 is connected to the inside of the tank 65 from above the tank 65.
- the water in the tank 65 is driven by the driving force of the pump 5 as follows: tank 65 ⁇ suction pipe 4 ⁇ pump 5 ⁇ raw water supply pipe 6 ⁇ housing 27 ⁇ purified water supply pipe 9 ⁇ tank 65
- the circulation channel) is circulated while being purified in the casing 27.
- the pump 5 and the casing 27 are installed at low positions such as the floor 78 and the inner wall 79, the user can easily perform the operation and maintenance of the water purification apparatus 1.
- a user water supply pipe 67 that extends downward from the tank 65, bends in the middle, and extends into the house 77 is connected to the tank 65, and the other end of the user water supply pipe 67 is connected to the other end of the user water supply pipe 67.
- a faucet 68 is provided. Therefore, when the user uses water, for example, Users who do not need to install a special device such as a tap can use the water in the tank 65 simply by opening the faucet 68.
- the water purification apparatus 1 when operated by solar energy, it is prepared for use at night by creating purified water during daylight hours.
- the tank 65 is installed on a dedicated steel tower or the like, but may be installed on the roof of the house 77, for example.
- the water stored in the tank 65 is not limited to the water source pumped up by the tank pump 66.
- rainwater can be stored in the tank 65.
- the tank 65 was taken as an example. However, if the water storage pipe 69 and the user water supply pipe 67 were omitted and the tank 65 was replaced with, for example, a pool or a bathtub, the tank 65 could be stored in the pool or the bathtub. Since germs contained in the water can be removed through the purification process, clean water can be stored without periodic water replacement.
- FIG. 16 is a system diagram showing a configuration example of an ozone water generator 70 according to the fourth embodiment. Note that portions overlapping those in FIGS. 1 and 2 are denoted by the same reference numerals and description thereof is omitted. In the system diagram of FIG. 16, the solid arrows indicate the flow of water and the broken arrows indicate the flow of electricity.
- the ozone water generating apparatus 70 includes a tank 65 for storing tap water, a pump 5 for sucking the water stored in the tank 65 through the suction pipe 4, and a pump.
- a water ozone mixing device 2 for mixing ozone with water discharged from the pump 5 and sent through the raw water supply pipe 6, and a purified water supply pipe 9 for releasing the ozone water generated by the water ozone mixing device 2, It has.
- the purified water supply pipe 9 corresponds to an ozone water output pipe.
- the water source 3 of the water purification apparatus 1 shown in FIG. 2 is replaced with a tank 65, and the ozone deodorizing column 10 is omitted.
- the tank 65 stores, for example, tap water. Therefore, the tap water stored in the tank 65 is mixed with ozone in the water ozone mixing device 2 and released from the purified water supply pipe 9 as ozone water with excellent sterilization * deodorizing function.
- the pump 5 is installed outside the casing 27.
- the parts including the tank 65 and the pump 5 are, for example, And the ends of the purified water supply pipe 9 and the intake pipe 22 are exposed from the mobile casing 72. Therefore, when the user wants to use ozone water, for example, a faucet or a shower nozzle is attached to the end of the purified water supply pipe 9 to wash hands and feet with ozone water or to spray ozone water. can do.
- the mobile casing 72 when used as described above, it can be easily carried. For example, after placing the fresh fish on a loading platform such as a truck for transporting fresh fish, and then sprinkling the fresh fish into the box, the sanitary box can be sterilized, deodorized, slimmed, etc. can do.
- the ozone water used by the user is generated by the same method as in the first embodiment.
- FIG. 17 is a front perspective view of the casing 27 in the water purification apparatus 1 according to the fifth embodiment.
- FIG. 18 is a front perspective view of the inside of the housing 27.
- FIG. 19 is a plan view of the inside of the housing 2.
- FIG. 20 shows a mode in which the ozone generator 21 is arranged above the control unit 49 in FIG.
- the casing 27 has a longitudinal direction extending in the left-right direction (a direction connecting the front side and the rear side of the casing 27).
- the back portion on the back side is fixed to a wall or the like as an installation surface.
- the inlet 12 of the ozone mixer 7 is provided so as to protrude outward from the right side of the casing 27, and the outlet 13 of the ozone mixer 7 (see FIG. 18) is provided on the left side of the casing 27.
- the inside of the casing 27 is partitioned into a substantially rectangular parallelepiped shape, and a blocking wall 180 extending in the horizontal direction is provided at a substantially central position in the vertical direction.
- the blocking wall 180 is a rectangular thin plate having a size substantially equal to the planar shape of the casing 27 in plan view.
- the inside of the casing 27 is partitioned into two regions arranged in the vertical direction by the blocking wall 180.
- the upper area is referred to as an electrical component area 181 and the lower area is referred to as a water channel area 182.
- the water channel region 182 includes an ozone mixer 7 and a connecting pipe 183 (collectively referred to as a water channel 187).
- the connecting pipe 183 is a circular pipe extending substantially horizontally in the left-right direction, and the above-described connecting-side outlet 184 is provided at the left end, and the connecting-side inlet 185 is provided at the right end.
- the connecting side outlet 184 is connected to the purified water supply pipe 9 (see FIG. 2) outside the housing 27, and the connecting side inlet 185 is connected to the outlet 13 of the ozone mixer 7. .
- the inlet 12 of the ozone mixer 7 is connected to the raw water supply pipe 6 (see Fig. 2) outside the casing 27, and in this water channel 187, water flows from the right side to the left side.
- the water flow path 14 of the ozone mixer 7 is also formed to extend substantially horizontally in the left-right direction, like the connecting pipe 183. Therefore, the water channel 187 is formed so as to extend substantially horizontally in the left-right direction as a whole.
- the electrical component region 181 is blocked from the water channel 187 by the blocking wall 180, and the above-described ozone generating device 21 and the control unit 49 are connected to the rear side (that is, the back) of the casing 27 as shown in FIG. It is arranged on the surface side, the upper side in FIG. Specifically, as shown in FIG. 18, in front view, the ozone generator 21 is disposed on the left side of the electrical component region 181, and the control unit 49 is arranged on the right side of the ozone generator 21 such that In addition, it is disposed above the ozone mixer 7 with the blocking wall 180 interposed therebetween.
- the ozone supply pipe 24 of the ozone generator 21 is made of a flexible material, specifically, Teflon (registered trademark) or silicon rubber having excellent durability against ozone degradation. It extends downward from the ozone generator 21, passes through a through hole 191 formed in the blocking wall 180, extends obliquely downward to the right, and is connected to the inlet 19 of the ozone mixer 7.
- the electrical components such as the ozone generator 21 and the control unit 49 are arranged in the electrical component region 181 partitioned above the water channel 187. Even if water leaks out, the leaked water will not reach the ozone generator 21 and the control unit 49 by its own weight.
- the electrical component region 181 is blocked from the water channel 187 by the blocking wall 180, for example, even if water scatters from the water channel 187 during maintenance, the water remains in the ozone generator 21 and the control unit 49. It is possible to reliably prevent water from entering the water.
- the blocking wall 180 is disposed above a portion where water leakage may occur, such as a coupling portion between the water channel 187 and the ozone mixer 7 (that is, the vicinity of the outflow port 13 and the connection side inlet 185). Therefore, the ozone generator 21 and the control unit 49 can be more reliably prevented from being flooded.
- the check valve 17 and the drain valve 36 can be removed during maintenance. Therefore, there is a coupling portion between these removable parts and the water channel 187. Exists. Although there is a risk of water leakage at these joints, the blocking wall 180 is disposed above the check valve 17 and the drain valve 36, so that the ozone generator 21 and the control unit 49 are further submerged.
- the through-hole 191 of the blocking wall 180 through which the above-described ozone supply pipe 24 penetrates is located at a position where the above-mentioned coupling partial force is also separated, so that even if water leaks, water is electrically connected through this through-hole 191. There is no risk of entering product area 181.
- the water channel 187 extending substantially horizontally in the left-right direction in the housing 27 has no refracting portion. If there is a refracted part, it is necessary to provide a separate connecting part such as an elbow tube. In addition, the water channel 187 of the present invention eliminates these defects, and can more reliably prevent the ozone generator 21 and the control unit 49 from being flooded.
- the inlet 12 of the ozone mixer 7 forming one end of the water channel 187 protrudes outward from the right side surface of the housing 27 and is connected to the raw water supply pipe 6 (see Fig. 2) outside the housing 27.
- the connection side outlet 184 of the connection pipe 183 forming the other end in the water channel 187 protrudes outward from the left side surface of the housing 27 and is connected to the purified water supply pipe 9 (see FIG. 2) outside the housing 27. ing. In this way, the inlet 12 and the connection that are connected to the raw water supply pipe 6 and the purified water supply pipe 9 are connected.
- the side outlet 184 may cause water leakage, but both the inlet 12 and the connecting side outlet 184 are provided so as to protrude outward from the side surface of the casing 27. It is not located inside. Therefore, even if water leakage occurs at the inlet 12 and the connection-side outlet 184, it is possible to more reliably prevent the ozone generator 21 and the controller 49 inside the casing 27 from being flooded.
- the inlet 12 of the ozone mixer 7 is provided on the right side of the casing 27 and the connection side outlet 184 of the connecting pipe 183 is provided on the left side of the casing 27, the water channel 187 Is supported on both side surfaces of the casing 27 in the left-right direction, so that it can be stably disposed in the casing 27, and the water channel 187 can be easily and assembled to the casing 27.
- the ozone mixer 7 has a boss portion 192 that extends upward.
- the boss portion 192 is fixed to the blocking wall 180 with a screw or the like. Are also supported (see Figure 18).
- the inlet 12 of the ozone mixer 7 is coupled to the water channel 187 so as to constitute one end of the water channel 187, compared with the case where the ozone mixer 7 is coupled in the middle of the water channel 187. It is possible to reduce the portion where the ozone mixer 7 and the water channel 187 are joined, that is, the portion where water leakage may occur, and more reliably prevent the ozone generator 21 and the control unit 49 from entering the water. it can. In order to achieve the same effect, the outlet 13 of the ozone mixer 7 may constitute the other end of the water channel 187 (that is, the connection side outlet 184 in FIG. 18).
- the connecting pipe 183 is omitted, and the water flow path 14 of the ozone mixer 7 is extended so that the outlet 13 protrudes outward from the left side surface of the casing 27.
- the above-described connecting portion can be eliminated, and the ozone generator 21 and the control unit 49 can be more reliably prevented from being flooded. .
- the electrical components such as the ozone generator 21 and the control unit 49 have a back side of the casing 27 (that is, the rear side, the upper side in FIG. 19) as shown in FIG. It is desirable to be arranged in.
- the water channel 187 is arranged on the front side (that is, the front side, the lower side in FIG. 19)
- maintenance can be easily performed.
- the distance between the ozone generator 21 and the ozone mixer 7 is relatively narrow.
- the ozone supply pipe 24 cannot be connected between the ozone generator 21 and the ozone mixer 7 with an appropriate curvature, and is bent unnaturally on the way. There is a risk that the mixer 7 cannot be supplied smoothly.
- the control unit 49 is arranged above the ozone mixer 7, and the ozone generator 21 is arranged so as to be arranged on the left side of the control unit 49. ing.
- the distance between the ozone generator 21 and the ozone mixer 7 can be made relatively wide, so that the ozone supply pipe 24 connects the ozone generator 21 and the ozone mixer 7 with an appropriate curvature.
- the ozone from the ozone generator 21 can be smoothly supplied to the ozone mixer 7.
- the water in the water passage 18 7 (specifically, the water passage 14) that has entered the gas passage 16 from the outlet 20 of the ozone mixer 7 shown in FIG.
- the inlet 19 is connected to the ozone supply pipe 24 obliquely upward. Therefore, the water that has entered the gas passage 16 does not reach the ozone generator 21 via the inlet 19 and the ozone supply pipe 24. Therefore, the ozone generator 21 can be reliably prevented from entering the water, and the water that has entered the gas passage 16 can be reliably drained by the drain pipe 35 shown in FIG.
- the ozone generator 21 and the control unit 49 are arranged in the left-right direction.
- the ozone generator 21 may be disposed above the control unit 49.
- the ozone generator 21 is placed above the force control unit 49 that needs to take measures against flooding more than other electrical components. Infiltration of water can be prevented more reliably.
- the casing 27 can be made smaller (narrower) in the left-right direction than the configuration shown in FIG. 18, the water channel 187 can be configured only by the ozone mixer 7.
- FIG. 21 is a front perspective view of the water purification device 1 according to the sixth embodiment.
- the above-described purification is arranged inside a lattice-shaped frame 190 as a member to be assembled, which forms a rectangular parallelepiped that is long in the vertical direction.
- Equipment case 27, operation display 55 located in case 27, ozone generator 21, ozone mixer 7 and controller 49
- suction pipe 4 suction pipe 4
- pump 5 pump 5
- raw water supply pipe 6 are assembled. It has been.
- the casing 27 and the internal structure of the casing 27 according to the sixth embodiment are the same as those shown in the fifth embodiment.
- the ozone generator 21, the ozone mixer 7, and the control unit 49 are not shown (see FIG. 18).
- the casing 27 is disposed at the upper end on the front side of the frame 190.
- the pump 5 is disposed at a lower position than the casing 27, specifically, at the lower right end of the frame 190. Note that the pressure sensor 11 described above is disposed adjacent to the upper left side of the pump 5.
- the raw water supply pipe 6 extends from the pump 5 to the left side while winding a clockwise spiral three times.
- Each spiral portion of the raw water supply pipe 6 is formed in a substantially rectangular shape that is long in the vertical direction when viewed from the right side, and a long cylindrical filter 189 in the vertical direction is formed on the back side of each spiral portion.
- One by one is inserted. That is, in the raw water supply pipe 6, three filters 189 are arranged in series.
- the pressure sensor 11 described above detects the pressure of water flowing from the pump 5 to the filter 189 located at the right end in the frame 190. The pressure value detected by the pressure sensor 11 is given to the control unit 49 described above.
- the raw water supply pipe 6 extends downward from the filter 189 located at the left end in the frame 190, refracts and extends upward, and is connected to the water channel 187 of the casing 27.
- a manual valve 188 is inserted in the vicinity of the portion connected to the water channel 187 in the raw water supply pipe 6. By manually opening and closing the manual nozzle 188, the raw water supply pipe 6 can be opened or shut off.
- the manual valve 188 is also inserted in the raw water supply pipe 6 in the vicinity of the pressure sensor 11.
- the tank 65 shown in the third and fourth embodiments is disposed above the frame 190, and the suction pipe 4 extends downward from the tank 65 and is pumped. Connected to 5.
- the casing 27 described above is adjacent to the tank 65 below.
- the water stored in the tank 65 flows downward in the suction pipe 4, is sucked into the power pump 5, and is discharged to the raw water supply pipe 6.
- the water then spirals along the shape of the raw water supply pipe 6 in the raw water supply pipe 6 and further flows to the left while removing foreign substances (iron, manganese components, etc.) by the filter 189. Reach 27 waterways 187. As shown in FIG.
- the water that has reached the water channel 187 is purified by being mixed with ozone in the ozone mixer 7, and then the purified water supply pipe 9 connected to the water channel 187 (see FIGS. 2, 15, and 16). ) And supplied to the user use side as described above.
- the purification apparatus (the casing 27 and the operation display unit 55 arranged in the casing 27, As described above, the ozone generator 21, the ozone mixer 7, and the control unit 49) are disposed as close as possible to the tank 65, so that the height difference between the purification apparatus and the tank 65 can be reduced. It is possible to reduce the loss of the head when the water stored in the tank 65 reaches the purifier. As a result, the pressure loss of the water flowing through the ozone mixer 7 of the purification device can be prevented, so that the decrease in the suction flow rate of ozone into the ozone mixer 7 can be suppressed and the efficiency of gas-liquid mixing can be prevented from decreasing. be able to. Therefore, this water purification device 1 can improve the water quality satisfactorily with a simple configuration.
- the pump 5 which is generally a heavy object is disposed at a position lower than the purification device, the posture of the water purification device 1 can be stabilized.
- the filter 189 since the water in which foreign matter has been captured by the filter 189 is introduced into the purification device, it is possible to prevent the foreign matter from being clogged in a portion where water flows inside the purification device, such as the ozone mixer 7.
- this filter 189 is provided in the middle of the raw
- the filter 189 becomes a resistance, so that pressure loss occurs in water near the filter 189. Therefore, in the case where the filter 189 is disposed downstream of the purification apparatus, the pressure loss described above occurs on the downstream side of the purification apparatus, so that the ozone suction flow rate into the ozone mixer 7 is reduced. Concerned.
- the filter 189 is disposed upstream of the purification apparatus, the ozone suction flow rate to the ozone mixer 7 is reduced. And the above-described reduction in the efficiency of gas-liquid mixing can be prevented. As a result, the water purification apparatus 1 can improve the water quality satisfactorily with a simple configuration.
- the pressure sensor 11 detects the pressure of water flowing from the pump 5 to the filter 189 positioned at the right end in the frame 190, and this pressure value is To the control unit 49. Since the pressure value increases when the filter 189 is clogged, the control unit 49 determines that the filter 189 is clogged when the pressure value detected by the pressure sensor 11 rises to a predetermined value. When the control unit 49 determines that the filter 189 is clogged, a filter clogging LED (not shown) provided in the operation display unit 55 is turned on to notify the user of the clogging of the filter 189.
- the operation display unit 55 functions as a notification unit. Instead of a filter clogging LED (not shown), a buzzer or the like may be used to notify the user with sound.
- the pressure sensor 11 can manage the clogged state of the filter 189 by detecting the pressure of the water flowing between the pump 5 and the filter 189. Then, the control unit 49 determines that the filter 189 is clogged according to the pressure value detected by the pressure sensor 11, and the operation display unit 55 notifies that the filter 189 is clogged according to the determination. Therefore, the filter 189 can be prevented from being accidentally clogged, so that the above-described decrease in the ozone suction flow rate can be suppressed, and the decrease in the gas-liquid mixing efficiency can be prevented.
- the ozone mixer 7 caused by clogging of the filter 189 It is possible to prevent a decrease in the suction flow rate.
- FIG. 22 is a side sectional view of the ozone mixer 7 according to the seventh embodiment.
- solid line arrows represent water flow
- broken line arrows represent gas flow.
- the inlet 19 of the three-way branch 18 is preferably directed obliquely upward. Further, it is desirable that the ozone generator 21 is disposed above the connection portion between the ozone supply pipe 24 (see FIG. 2) and the inlet 19.
- FIG. 23 is a view of the inside of the valve chamber 29 as viewed from below in the check valve 17 used in the ozone mixer 7 according to the seventh embodiment.
- FIG. 24 is an upper perspective view of the arch valve 81 arranged in the valve chamber 29.
- FIG. FIG. 25 is an upper perspective view of the inside of the valve chamber 29 in a state where the arch valve 81 is arranged.
- FIG. 26 is an illustrative view of the check valve 17 according to the seventh embodiment, and FIG. 26 (a) shows a state when water is not flowing in the water flow path 14 (hereinafter, normal time).
- FIG. 26 (b) shows a state when water is flowing through the water flow path 14 (hereinafter referred to as suction).
- suction shows the gas flow.
- the valve chamber 29 has a divided structure. As shown in FIG. 22, the upper part 82 and the lower part 83 are arranged in order from the water channel 14 side. In the valve chamber 29, instead of the above-described ball valve 30 and spring 33 (see FIG. 4), a arch valve 81 as a valve body is accommodated.
- the upper part 82 is formed in a substantially hollow cylindrical shape, and its upper end is connected to the water flow path 14.
- a screw portion is formed on the outer peripheral surface of the upper part 82.
- the hollow portion is composed of a substantially conical region (conical region 85) tapered toward the upper side and a substantially cylindrical region (referred to as cylindrical region 86) continuing downward from the conical region 85. It is configured.
- a substantially cylindrical region (referred to as a small cylindrical region 87) extending upward, and a water flow path extending upward from the upper end of the small cylindrical region 87.
- a slit-like region (referred to as a slit region 88) that is rectangular in a bottom view is formed. Note that, as shown in FIG. 22, the connecting partial force between the slit region 88 and the throttle portion 15 is the outlet 20 described above.
- each protrusion 89 is formed in a thin plate shape of a substantially parallelogram that is long in the vertical direction (see FIG. 22), and the upper end corresponds to the conical region 85 of the inner peripheral surface of the upper part 82.
- the outer end of each protrusion 89 in the radial direction of the inner peripheral surface of the upper part 82 is connected to a portion corresponding to the cylindrical region 86 on the inner peripheral surface of the upper part 82.
- each projection 89 is formed so as to incline downward in the middle after extending horizontally from the inside to the outside as seen in the radial direction of the inner peripheral surface of the upper part 82 described above.
- the horizontally extending portion of the lower edge of each projection 89 is referred to as a horizontal portion 90
- the inclined portion is referred to as an inclined portion 91.
- the lower part 83 includes a substantially hollow cylindrical large-diameter cylindrical portion 92 larger in diameter than the upper part 82, and the inlet 31 of the check valve 17 described above (see Fig. 4). It is integrally formed with a narrow tube 93 that is connected to the lower end portion of the large-diameter cylindrical portion 92 through and extends downward.
- a threaded portion is formed on the inner peripheral surface of the large-diameter cylindrical portion 92.
- the bottom wall (lower side wall) of the large-diameter cylindrical portion 92 is formed with an inlet 31 at the center position in the radial direction, and a valve mounting surface 95 surrounding the inlet 31 is formed.
- the valve mounting surface 95 is formed in an annular shape in a plan view and flat in the horizontal direction, and a contact portion 96 that protrudes upward along the outer peripheral edge thereof is integrated with the valve mounting surface 95. Is formed.
- the narrow pipe 93 is connected to the drain pipe 35 (see FIG. 5) described above.
- the arch valve 81 is formed in a substantially disk shape made of Teflon (registered trademark) or silicon rubber having excellent durability against ozone degradation, and has an upper surface (pressurized surface 99). Is formed so as to be convexly curved when directed upward, and the lower surface (referred to as sealing surface 100) is formed flat in the horizontal direction.
- the pressurized surface 99 is provided with an annular inertial convex portion 101 that protrudes upward in a plan view.
- the arch valve 81 When assembling such a check valve 17, first, as shown in FIG. 25, the arch valve 81 is mounted on the mounting surface 95 of the lower part 83. At this time, the sealing surface 100 of the arch valve 81 uniformly contacts the valve mounting surface 95 to seal the inlet 31. Then, the lower part 83 is assembled to the upper part 82 by screwing the screw part formed on the inner peripheral surface of the lower part 83 into the screw part formed on the outer peripheral surface of the upper part 82.
- the contact part 96 of the lower part 83 is fitted to the lower end of the inner peripheral surface of the upper part 82, so that the lower part 83 becomes the upper part 82. It is positioned with respect to it. Further, on the outer side in the radial direction from the contact part 96, the upper surface of the bottom wall of the lower part 83 is pressed against the lower end surface of the upper part 82 with a notch 102 interposed therebetween without any gap. As a result, the inside of the valve chamber 29 described above is separated from the outside by the hollow part (conical region 85 and cylindrical region 86) of the upper part 82 and the valve mounting surface 95 and the contact part 96 of the lower part 83. It is formed airtight and liquidtight.
- the arch valve 81 accommodated in the valve chamber 29 is slightly lowered downward by the horizontal portion 90 of each projection 89 of the upper part 82 as shown in FIG.
- the valve chamber 29 is arranged in a free state that can move up and down. That is, the arch valve 81 is not supported by other members in the valve chamber 29 (that is, the gas passage 16). Since the operation frequency of the arch valve 81 is relatively high for the use of the check valve 17, the support portion is damaged in the case of being supported by V and other members in the valve chamber 29. However, since the arch valve 81 of the present invention is not supported by other members in the valve chamber 29, the above-described supporting portion does not exist, and there is no risk of damage.
- the inertial convex portion 101 of the arch valve 81 is surrounded by the inclined portion 91 of each projection 89 in the horizontal direction so that the horizontal position of the arch valve 81 is defined by each projection 89. It is prevented from shifting. Therefore, the arch valve 81 is sealed in the valve chamber 29.
- the stop surface 100 can always be disposed at an appropriate position where the inlet 31 can be sealed (that is, a gas passage 16 to be described later can be opened and closed), and the operation reliability of the check valve 17 can be improved.
- the arch valve 81 has a pressurized surface 99 that is convexly curved upward. Due to the structure of the ozone mixer 7, the water in the water channel 14 may leak downward into the gas channel 16 from the outlet 20 that joins the water channel 14 (see FIG. 22). Force assumed to pressurize the pressurizing surface 99 Since the pressurized surface 99 is convexly curved upward, the pressurized surface 99 can release the water pressure from the water flow path 14 to the surroundings. For example, when the pressurized surface 99 is uniformly flat from the outer edge (radially outer side) to the inner center, the pressure of water from the water channel 14 cannot be released to the surroundings.
- the pressurized surface 99 of the arch valve 81 of the present invention is convexly curved in the direction (upward) opposite to the direction in which water leaks out. Even if the pressure of water that has risen rapidly is applied to the surface 99 to be pressurized, the pressure is released to the surroundings, so that the arch valve 81 can maintain its entire shape without stagnation.
- the arch valve 81 completely closes the gas passage 16 (that is, the sealing surface 100 seals the inlet 31 without a gap), and can reliably prevent backflow of water. If the pressurized surface 99 is formed so as to release the pressure of water that pressurizes the pressurized surface 99 to the surroundings, it may be convexly curved as described above! .
- the inertial convex portion 101 of the pressed surface 99 is pressed against each projection 89. And the arch valve 81 is urged to close the gas passage 16.
- this water is connected between the arch valve 81 closing the gas passage 16 and the gas passage 16 (see May flow back through a minute gap between the sealing surface 100 and the inlet 31).
- the inertial convex portion 101 is pressed by the projections 89 to urge the arch valve 81 to close the gas passage 16 (that is, the sealing surface 100 is directed toward the inlet 31). Therefore, the minute gap described above is eliminated, and the backflow of water can be reliably prevented.
- the inertial convex portion 101 is pressed locally by each projection 89 (that is, at four positions on the circumference corresponding to each projection 89), so that the pressing force is concentrated and acted on locally. Therefore, it can be easily elastically deformed even with a small pressing force, and the sealing surface 100 is urged toward the inlet 31 to reliably eliminate the gap between the sealing surface 100 and the inlet 31.
- the arch valve 81 floats upward against the biasing force of the inertial convex portion 101 pressed by each projection 89, and the inlet 31 sealed by the sealing surface 100 is connected to the inside of the valve chamber 29.
- the gas passage 16 is completed (opened). Therefore, as with the check valve 17 in Fig. 4 (b), the ozone generator 21 ⁇ the ozone supply pipe 24 ⁇ the inlet 19 of the three-way branch 18 ⁇ the gas passage 16 and the force path communicate with each other. Is supplied to the gas passage 16.
- the arch valve 81 is driven by the ozone supply pressure (the negative pressure described above) during ozone supply (see FIG. 26 (b)).
- the ozone supply pressure the negative pressure described above
- the arch valve 81 closes the gas passage 16 by its own weight and the urging force of the inertial convex portion 101, so that the reverse direction of water (Fig. 26).
- the passage (backward flow) in the downward direction in (a) can be prevented.
- the check valve 17 having such a simple configuration can automatically open and close the gas passage 16 and prevent back flow of water without any external operation.
- FIG. 27 shows the drain valve 36 extracted from Fig. 22, where Fig. 27 (a) shows the normal state, Fig. 27 (b) shows the state during suction, and Fig. 27 (c ) Indicates the state when draining.
- the direction of the inlet 19 is shown in the opposite direction to that shown in FIG.
- FIG. 28 is an upper perspective view of the stopper 47 inside the valve chamber 38.
- the inside of the valve chamber 38 as a storage chamber is formed in a cylindrical shape whose upper portion is convexly curved upward.
- the above-described outlet 42 is formed in a circular shape at the center position of the bottom wall of the valve chamber 38.
- a stopper 47 as a receiving member provided in the valve chamber 38 is similar to the internal shape of the valve chamber 38 in a side sectional view and is formed to be convexly curved upward.
- the stocker 47 is configured by six pairs of ribs 105 provided radially on the bottom wall of the valve chamber 38 so as to surround the outlet 42.
- Each of the ribs 105 is formed so as to gently descend as the radial force of the upper surface force outlet 42 is directed outward (see FIG. 27). To do. That is, the receiving surface 103 forms the convex curved portion of the stopper 47 described above. A drainage groove 104 is formed between the pair of ribs 105.
- the disc valve 46 serving as a blocking member is made of a flexible material. Normally, as shown in Fig. 27 (a), in the valve chamber 38, It is received by the stopper 47 so as to be placed on the receiving surface 103. In this state, the peripheral edge of the disc valve 46 is in contact with or close to the inner wall of the valve chamber 38, for example, with a gap of less than 1 mm, preferably about 0.3 mm.
- the disc valve 46 is in contact with or close to the inner wall of the valve chamber 38 during normal times (except during draining and during suction). Therefore, even if the pressure change in the drain pipe 35 during suction (the negative pressure described above) is small, it can operate reliably, the inlet 40 can be blocked and the drain pipe 35 can be shut off. Can be reliably prevented.
- the disc valve 46 is flexible, and when drained, the disc valve 46 is pressed against the flowing water and squeezed between the inner wall of the valve chamber 38 and the disc valve 46. Since the drain pipe 35 is opened by forming the gap 48 described above, smooth drainage in the drain pipe 35 can be ensured.
- the peripheral side of the receiving surface 103 is downstream in the water outflow direction compared to the center side ( Therefore, a gap can be secured between the receiving surface 103 and the inner wall of the valve chamber 38 at the peripheral edge portion. Therefore, at the time of drainage, the drain valve 35 can be reliably opened by bending the disc valve 46 until the contact between the inner wall of the valve chamber 38 and the disc valve 46 is eliminated in this gap.
- the inside of the throttle portion 15 has a negative pressure.
- backflow is likely to occur when water is not flowing through the water channel 14. Therefore, by using this negative pressure, the water that has reached the ozone generator 21 can be returned into the throttle section 15.
- the control unit 49 is set for a predetermined time (for example, 10 seconds or more, assuming that the flow of water at the throttle unit 15 is the slowest) before turning on the ozone generator 21. Meanwhile, the pump 5 is driven to allow water to flow through the water flow path 14 (throttle section 15) (see FIG. 7).
- the inside of the throttle 15 becomes negative pressure, so that the water that has reached the ozone generator 21 that communicates with the throttle 15 via the ozone supply pipe 24 (see FIG. 2) and the gas passage 16 It can be returned to the aperture 15. That is, before the ozone generator 21 is turned on, moisture inside the ozone generator 21 is surely removed. This can reliably prevent the ozone generator 21 from being turned on in a wet state.
- the present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims.
- the configuration of the water ozone mixing device 2, the water purification device 1 or the ozone water generation device 70 according to the present invention may be used in a washing machine that performs washing using bath water. It can be used for processing.
- the configurations shown in the fifth, sixth, seventh and eighth embodiments are not limited to the water purification device 1 but can be applied to the water ozone mixing device 2.
- the ozone mixer 7 configured to mix ozone with water is illustrated, but the present invention is not limited thereto, and the ozone mixer 7 can be used as a general-purpose gas-liquid mixer. .
- the check valve 17 using the arch valve 81 shown in the seventh embodiment is related to the present invention.
- the present invention can be applied not only to the ozone mixer 7, the water ozone mixing device 2, the water purification device 1, and the ozone water generating device 70, but also to any mechanism that needs to prevent the backflow of fluid.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Provided is a water purifying device, which can be easily maintained, which can improve water quality satisfactorily with a simple constitution, which can be made compact, which has an easy operability, and which can prevent electrical parts from being submerged. The operations, controls and actions of the device are performed in a place related to a casing (27), by arranging an operation indication unit (55), an ozone generating unit (21), an ozone mixer (7) and a control unit (49) in the casing (27), so that the device can be easily maintained and made compact. On the basis of the water pressure on the discharge side of a pump (5), moreover, the control unit (49) controls the operations of the pump (5) and the ozone generating device (21) in a ganged manner so that the operability is improved. The electrical parts such as the ozone generating unit (21) and the control unit (49) are positioned above a water passage (187), and are isolated from the water passage (187) by a partition (180), so that those electrical parts can be reliably prevented from being submerged.
Description
明 細 書 Specification
水浄化装置および水オゾン混合装置 Water purification device and water ozone mixing device
技術分野 Technical field
[0001] この発明は、水を浄ィ匕するための水浄ィ匕装置、および、水にオゾンを混合するため の水オゾン混合装置に関する。 The present invention relates to a water purification apparatus for purifying water and a water ozone mixing apparatus for mixing ozone with water.
背景技術 Background art
[0002] 従来から、井戸や河川などの水源から汲み上げた水や雨水を、洗濯用水や風呂水 として利用したり、植物栽培のために散水したりしたいという要望がある。 [0002] Conventionally, there has been a demand to use water and rain water drawn from water sources such as wells and rivers as washing water and bath water, or to spray water for plant cultivation.
ところが、昨今は、地層自体の変化や汚染物質の地下水脈への浸透などにより、井 水の水質悪ィ匕が著しぐ汲み出した井水をそのまま利用しにくいという事態が生じて いる。同様に、河川の水も水質悪ィ匕を生じていることが多い。ここでいう水質悪ィ匕とは 、たとえば、水の濁度および色度が高くなることや、水から異臭が生じることなどであ る。 However, recently, due to changes in the strata itself and the infiltration of pollutants into the groundwater veins, it has become difficult to use well water that has been drawn by well water quality. Similarly, river water often produces bad water quality. The term “poisonous water quality” as used herein means, for example, that the turbidity and chromaticity of water is increased, or that an odor is generated from water.
[0003] このような水質悪ィ匕としては、たとえば、特許文献 1に記載されているように、井水が いわゆる「赤水」である場合がある。「赤水」とは、井水中に鉄分やマンガン成分がィ オンとして含まれるため、汲み出した井水が時間の経過と共に赤色に変化する水で ある。そのため、「赤水」は、洗濯用水や風呂水としての使用に適さず、また、植物栽 培にも悪影響を及ぼす問題がある。 [0003] As such a water quality defect, for example, as described in Patent Document 1, there is a case where well water is so-called "red water". “Red water” refers to water in which the well water extracted from the well is changed to red as time passes because iron and manganese components are contained as ions. Therefore, “red water” is not suitable for use as washing water or bath water, and also has a problem of adversely affecting plant cultivation.
[0004] 上記のような水質の悪化した井水や河川の水などの汚染水の水質を改善するため に、オゾン処理により、水中の鉄分を酸ィ匕して除去すると共に、オゾンの酸化作用で 、井水中の雑菌、大腸菌、ウィルスなどを殺菌することができる受水型井水改善装置 が提案されている (たとえば、特許文献 1参照)。 [0004] In order to improve the quality of polluted water such as well water and river water with deteriorated water quality as described above, the iron treatment removes iron from the water by ozone treatment and oxidizes ozone. On the other hand, a water-receiving-type well improvement device that can sterilize germs, E. coli, viruses and the like in well water has been proposed (see, for example, Patent Document 1).
また、水道水にオゾンを混合してオゾン水を生成し、そのオゾン水を、たとえば、手 足の除菌洗浄、鮮魚などを入れるトロ箱の除菌'消臭'ぬめり取りなどに利用したいと いう要望もある。 In addition, ozone water is mixed with tap water to generate ozone water, and the ozone water is used, for example, for sterilization washing of hands and feet, sterilization 'deodorization' removal of toro boxes containing fresh fish, etc. There is also a request.
[0005] 上記のようなオゾン水を生成するために、水道水とオゾンを混合させることによって 、除菌'消臭性能に優れるオゾン水生成システムが提案されている (たとえば、特許
文献 2参照)。 [0005] In order to generate ozone water as described above, an ozone water generation system having excellent sterilization and deodorization performance by mixing tap water and ozone has been proposed (for example, a patent (Ref. 2).
特許文献 1:特許第 2715244号公報 Patent Document 1: Japanese Patent No. 2715244
特許文献 2:特開 2003 - 305348号公報 Patent Document 2: Japanese Patent Laid-Open No. 2003-305348
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0006] 特許文献 1に記載されている水質改善装置は、大型の受水槽、第 1段処理機およ び第 2段処理機が複雑に組み合わされた装置である。 [0006] The water quality improvement device described in Patent Document 1 is a device in which a large water receiving tank, a first stage treatment machine, and a second stage treatment machine are combined in a complex manner.
ところで、たとえば、インドネシアなどでは、水道設備のインフラが整っていない地域 があり、このような地域においては、桶などで汲み出された赤水を含む井水もしくは河 川の水や、溜められた雨水などが生活用水として利用されている。そのため、このよう な地域において、水質改善装置を導入したいという要望が高ぐ水質改善装置の構 成は、なるべく簡単であることが望ましいが、上記水質改善装置のように、大型かつ 複雑な構成の装置では、導入することが困難である。 By the way, in Indonesia, for example, there are areas where water supply infrastructure is not in place, and in such areas, well water or river water containing red water pumped out by dredging, accumulated rainwater, etc. Etc. are used for domestic use. For this reason, it is desirable that the structure of the water quality improvement device, which is highly demanded to introduce the water quality improvement device in such areas, is preferably as simple as possible, but it has a large and complex configuration like the water quality improvement device described above. In the device, it is difficult to introduce.
[0007] また、上記水質改善装置では、オゾン発生装置がオゾン添加部よりも下方に配置さ れている。 [0007] Further, in the water quality improvement apparatus, the ozone generator is disposed below the ozone addition section.
一般に、オゾン発生装置は、周囲の空気を取り込んで高電圧の放電を行うことでォ ゾンを発生させる構成を有しているため、オゾン発生装置が水に晒されてしまうと、放 電できなくなるという不具合がある。また、水に晒されたオゾン発生装置の電源を ON にすると、漏電や感電してしまうおそれがあり、取り扱い上の問題もある。もちろん、ォ ゾン発生装置に限らず、制御装置などの他の電装品も同様である。そのため、オゾン 発生装置に水が浸入することを防止することが望まれるが、上記水質改善装置のよう に、オゾン発生装置がオゾン添加部より下方に配置されている構成では、オゾン添カロ 部の水が、その自重により、オゾン導入管を介してオゾン発生装置に浸入するおそ れがある。 Generally, an ozone generator has a configuration that generates ozone by taking in ambient air and discharging it at a high voltage, so that it cannot be discharged if the ozone generator is exposed to water. There is a problem that. In addition, if the ozone generator exposed to water is turned on, there is a risk of electric leakage or electric shock, which also causes handling problems. Of course, not only the ozone generating device but also other electrical components such as a control device are the same. For this reason, it is desirable to prevent water from entering the ozone generator. However, in the configuration in which the ozone generator is disposed below the ozone addition unit, as in the case of the water quality improvement device described above, Water may invade the ozone generator through the ozone introduction pipe due to its own weight.
[0008] そこで、これらの不具合を改善するため、特許文献 2に記載されて 、るオゾン水生 成システムのように、流路条件によらず汎用的に用いることができ、さらに、オゾン発 生器力 給水ライン内を流れる水にオゾンを混合する入口であるインジェクタより上方 に設けられているシステムの構成を、上記水質改善装置に導入することが提案される
。し力し、このシステムの構成を導入した場合であっても、システムの電源が OFFにな つたときに給水ライン内に水が満たされていると、インジェクタに設けられた逆止弁か ら微小な水漏れが生じ、やはりオゾン発生器に水が浸入する場合がある。また、給水 ライン内を流れる水の流れを 、きなり止めると、 V、わゆるウォーターハンマー現象が 発生して給水ライン内の水圧が上昇し、逆止弁があるにもかかわらず、給水ライン内 の水が逆流してオゾン発生器に到達する虞がある。 [0008] Therefore, in order to improve these problems, like the ozone water generation system described in Patent Document 2, it can be used universally regardless of the flow path conditions, and further, the ozone generator It is proposed that the system configuration provided above the injector, which is the inlet that mixes ozone with the water flowing in the water supply line, be introduced to the water quality improvement device. . However, even if this system configuration is introduced, if the water supply line is filled with water when the system is turned off, the check valve provided in the injector Water leaks and water may still enter the ozone generator. Also, if the flow of water flowing in the water supply line is stopped tightly, V, a so-called water hammer phenomenon occurs, the water pressure in the water supply line rises, and there is a check valve, but there is a check valve in the water supply line. There is a risk that water may flow backward and reach the ozone generator.
[0009] また、このような水質改善装置は、たとえば、部品交換'修理などのメンテナンスを 要するため、メンテナンスを容易に行なえることが望まれる。 [0009] In addition, such a water quality improvement device requires maintenance such as parts replacement and repair, so that it is desired that maintenance can be easily performed.
この発明は、力かる背景のもとになされたもので、メンテナンスを容易に行なうことが できる水浄ィ匕装置を提供することを主たる目的とする。 The present invention has been made based on a strong background, and its main object is to provide a water purification apparatus that can be easily maintained.
また、この発明は、水を浄化する場合に、簡単な構成で、良好に水質を改善できる 水浄化装置を提供することを別の目的とする。 Another object of the present invention is to provide a water purification apparatus that can improve water quality satisfactorily with a simple configuration when purifying water.
[0010] また、この発明は、コンパクトィ匕を図ることができる水浄ィ匕装置を提供することを別の 目的とする。 [0010] Another object of the present invention is to provide a water purification apparatus capable of achieving compactness.
また、この発明は、操作性の良い水浄ィ匕装置を提供することを別の目的とする。 また、この発明は、電装品の浸水を防止することができる水浄ィ匕装置を提供するこ とを別の目的とする。 Another object of the present invention is to provide a water purification apparatus with good operability. Another object of the present invention is to provide a water purification apparatus that can prevent the infiltration of electrical components.
[0011] また、この発明は、水を浄化する場合に、安全に稼動することができる水浄ィ匕装置 を提供することを別の目的とする。 [0011] Another object of the present invention is to provide a water purification apparatus that can operate safely when purifying water.
そして、この発明は、水にオゾンを混合させる場合に、簡単な構成で、オゾンの混 合効率の低下を抑制できる水オゾン混合装置を提供することを、さらに別の目的とす る。 Another object of the present invention is to provide a water-ozone mixing apparatus that can suppress a decrease in ozone mixing efficiency with a simple configuration when ozone is mixed with water.
課題を解決するための手段 Means for solving the problem
[0012] 請求項 1記載の発明は、水を汲むためのポンプと、水を浄化するための浄化装置と [0012] The invention according to claim 1 includes a pump for drawing water and a purification device for purifying water.
、前記ポンプで汲まれる水を前記浄化装置へ導入するための導入路と、前記浄化装 置で浄化された浄水を出力する浄水給水路と、を備え、前記浄化装置は、筐体と、 前記筐体の外面に設けられた操作部と、前記筐体内に配置されたオゾン発生装置、 前記オゾン発生装置が発生するオゾンを水に混合するための気液混合器、ならびに
前記ポンプおよび前記オゾン発生装置の運転を制御するための制御装置と、を含む ことを特徴とする、水浄化装置である。 And an introduction path for introducing water pumped by the pump into the purification apparatus, and a purified water supply path for outputting purified water purified by the purification apparatus, wherein the purification apparatus includes a housing, and An operation unit provided on an outer surface of the housing; an ozone generator disposed in the housing; a gas-liquid mixer for mixing ozone generated by the ozone generator with water; and And a control device for controlling the operation of the pump and the ozone generator.
[0013] このような構成によれば、水浄ィ匕装置の操作 '制御'動作が筐体に関連した場所( 筐体表面または筐体内部)で行なわれる。その結果、たとえば、定期的に行なう部品 交換や、故障した箇所の修理などのメンテナンスを容易に行なうことができる。また、 オゾン発生装置、気液混合器および制御装置を筐体にまとめることで、水浄化装置 のコンパクトィ匕を図ることもできる。 [0013] According to such a configuration, the operation 'control' operation of the water purification apparatus is performed at a location related to the casing (on the casing surface or inside the casing). As a result, for example, it is possible to easily perform maintenance such as periodic replacement of parts and repair of failed parts. Further, the water purifier can be made compact by combining the ozone generator, the gas-liquid mixer, and the control device in a casing.
[0014] 請求項 2記載の発明は、前記ポンプは、水源から原水を汲むためのものであり、前 記浄水給水路は、前記浄ィ匕装置で浄化された浄水を取り出すための導出路を含む ことを特徴とする、請求項 1記載の水浄化装置である。 [0014] The invention described in claim 2 is that the pump is for drawing raw water from a water source, and the purified water supply path has a lead-out path for taking out purified water purified by the purification apparatus. The water purification device according to claim 1, comprising:
このような構成によれば、水浄ィ匕装置の操作 '制御'動作が筐体に関連した場所( 筐体表面または筐体内部)で行なわれる。その結果、たとえば、定期的に行なう部品 交換や、故障した箇所の修理などのメンテナンスを容易に行なうことができる。また、 オゾン発生装置、気液混合器および制御装置を筐体にまとめることで、水浄化装置 のコンパクトィ匕を図ることもできる。 According to such a configuration, the operation “control” operation of the water purification apparatus is performed at a location related to the casing (on the casing surface or inside the casing). As a result, for example, it is possible to easily perform maintenance such as periodic replacement of parts and repair of failed parts. Further, the water purifier can be made compact by combining the ozone generator, the gas-liquid mixer, and the control device in a casing.
[0015] 請求項 3記載の発明は、前記制御装置は、前記ポンプの吐出側の水圧に基づいて 、前記ポンプおよび前記オゾン発生装置の運転を連動制御することを特徴とする、請 求項 1または 2記載の水浄ィ匕装置である。 [0015] The invention of claim 3 is characterized in that the control device controls the operation of the pump and the ozone generator in conjunction with each other based on the water pressure on the discharge side of the pump. Or it is the water purification apparatus of 2 description.
このような構成によれば、扱いやすい水浄ィ匕装置を提供することができ、さらに、ュ 一ザ使用側へ放出される水圧が常に適正に維持され、しかも操作性の良い水浄ィ匕 装置とすることができる。 According to such a configuration, it is possible to provide a water purification device that is easy to handle, and further, the water pressure discharged to the user side is always properly maintained, and the water purification device has good operability. It can be a device.
[0016] 請求項 4記載の発明は、前記ポンプは、被浄化水の貯水源から水を汲むためのも のであり、前記浄水給水路は、前記浄化装置で浄化された浄水を前記貯水源へ戻 すための返送路を含むことを特徴とする、請求項 1記載の水浄ィ匕装置である。 [0016] The invention according to claim 4 is that the pump is for drawing water from a storage source of the water to be purified, and the purified water supply channel supplies the purified water purified by the purification device to the storage source. The water purification apparatus according to claim 1, further comprising a return path for returning.
このような構成によれば、水浄ィ匕装置の操作 '制御'動作が筐体に関連した場所( 筐体表面または筐体内部)で行なわれる。その結果、たとえば、定期的に行なう部品 交換や、故障した箇所の修理などのメンテナンスを容易に行なうことができる。また、 浄化された水は、再び貯水源に戻される。そのため、貯水源に浄水を溜めておくこと
ができ、容易に浄水を利用することができる。さらに、装置を、太陽エネルギーで運転 する場合など、昼間の日照時間内に、浄水を作り、夜間の利用などに備えられる。 According to such a configuration, the operation “control” operation of the water purification apparatus is performed at a location related to the casing (on the casing surface or inside the casing). As a result, for example, it is possible to easily perform maintenance such as periodic replacement of parts and repair of failed parts. The purified water is returned to the water storage source again. Therefore, store purified water in the water storage source. It is possible to use purified water easily. In addition, when the device is operated by solar energy, water can be made during the daylight hours and prepared for use at night.
[0017] 請求項 5記載の発明は、前記貯水源は、生活水を溜める貯水タンクを含み、前記 貯水タンクには、前記貯水タンクの水を取り出すためのユーザ用給水管が備えられ、 前記貯水タンクは、前記ユーザ用給水管が開けられたときに重力で水が出るように高 所に配置されており、前記ポンプおよび前記浄化装置は、前記貯水タンクよりも低い 位置に配置されることを特徴とする、請求項 4記載の水浄ィ匕装置である。 [0017] The invention according to claim 5 is characterized in that the water storage source includes a water storage tank that stores domestic water, and the water storage tank is provided with a water supply pipe for a user for taking out water from the water storage tank. The tank is arranged at a high place so that water is discharged by gravity when the user water supply pipe is opened, and the pump and the purification device are arranged at a position lower than the water storage tank. The water purification apparatus according to claim 4, wherein the water purification apparatus is characterized.
[0018] このような構成によれば、ユーザが貯水タンクに溜められた水を使用する際、たとえ ば、蛇口を開けるだけでよい。また、浄ィ匕装置が低い位置に配置される。そのため、 浄ィ匕装置を容易に操作することができ、さらに、メンテナンスを一層容易に行なうこと ができる。 [0018] According to such a configuration, when the user uses the water stored in the water storage tank, for example, it is only necessary to open the faucet. Moreover, the purification apparatus is arranged at a low position. Therefore, the purification apparatus can be easily operated, and maintenance can be performed more easily.
請求項 6記載の発明は、前記浄化装置および前記ポンプが組付けられる被組付部 材を備え、前記貯水タンクは、前記被組付部材の上方に配置され、前記浄化装置は 、前記被組付部材の上端部に配置され、前記ポンプは、前記浄化装置よりも低い位 置に配置されて 、ることを特徴とする、請求項 5記載の水浄化装置である。 The invention according to claim 6 is provided with a member to be assembled to which the purification device and the pump are assembled, the water storage tank is disposed above the member to be assembled, and the purification device comprises the assembly 6. The water purification apparatus according to claim 5, wherein the water purification apparatus is disposed at an upper end portion of an attachment member, and the pump is disposed at a position lower than the purification apparatus.
[0019] このような構成によれば、浄化装置は、被組付部材の上端部に配置されることにより 、被組付部材の上方に配置された貯水タンクに対して極力近付けて配置されるので 、浄ィ匕装置と貯水タンクとの高低差を小さくでき、貯水タンクに溜められた水が浄ィ匕 装置に到達したときの水頭の損失を抑えることができる。これにより、浄化装置の気液 混合器を流れる水の圧力損失を防止することができるので、気液混合器にぉ 、て水 に混合されるオゾンの、気液混合器への吸込流量の低下が抑えられ、気液混合の効 率の低下を防止することができる。そのため、この水浄ィ匕装置では、簡単な構成で、 良好に水質を改善できる。 According to such a configuration, the purification device is disposed as close as possible to the water storage tank disposed above the assembled member by being disposed at the upper end portion of the assembled member. Therefore, the height difference between the water purification device and the water storage tank can be reduced, and the loss of the water head when the water stored in the water storage tank reaches the water purification device can be suppressed. As a result, the pressure loss of the water flowing through the gas-liquid mixer of the purification device can be prevented, so that the suction flow rate of ozone into the gas-liquid mixer is reduced. Can be suppressed, and a decrease in the efficiency of gas-liquid mixing can be prevented. Therefore, this water purification apparatus can improve the water quality satisfactorily with a simple configuration.
[0020] また、一般的には重量物であるポンプ力 浄ィ匕装置よりも低い位置に配置されてい るので、水浄化装置の姿勢を安定させることができる。 [0020] In addition, since the pump is generally disposed at a position lower than a pump power purification device that is a heavy object, the posture of the water purification device can be stabilized.
請求項 7記載の発明は、前記導入路の途中には、前記浄化装置へ導入される水の 中の異物を捕獲するためのフィルタが設けられていることを特徴とする、請求項 5また は 6記載の水浄ィ匕装置である。
[0021] このような構成によれば、フィルタによって異物が捕獲された水力 浄化装置へ導 入されるので、気液混合器などの、浄ィ匕装置内部で水が流れる部分に異物が詰まる ことを防止できる。 The invention according to claim 7 is characterized in that a filter is provided in the middle of the introduction path to capture foreign matter in the water introduced into the purification device. 6. The water purification apparatus according to 6. [0021] According to such a configuration, since the foreign matter is trapped by the filter and introduced into the hydraulic purification device, the foreign matter is clogged in a portion where water flows inside the purification device, such as a gas-liquid mixer. Can be prevented.
そして、このフィルタは、導入路の途中に設けられているので、水の流れる方向に 見て、浄ィ匕装置よりも上流側に配置されている。一般的に、水がフィルタを通過する 際、フィルタが抵抗となるので、フィルタ付近の水には圧力損失が生じる。そこで、フィ ルタが净ィ匕装置よりも下流側に配置されている場合では、上述した圧力損失が浄ィ匕 装置の下流側で生じることにより、気液混合器において水に混合されるオゾンの、気 液混合器への吸込流量の低下が懸念される。しかし、本発明では、フィルタが浄ィ匕 装置よりも上流側に配置されて!、るので、上述した気液混合器へのオゾンの吸込流 量の低下が抑えられ、気液混合の効率の低下を防止することができる。これにより、こ の水浄化装置では、簡単な構成で、良好に水質を改善できる。 And since this filter is provided in the middle of the introduction path, it is arrange | positioned upstream from the purification apparatus seeing in the direction through which water flows. Generally, when water passes through the filter, the filter becomes a resistance, so that pressure loss occurs in the water near the filter. Therefore, in the case where the filter is disposed on the downstream side of the water purification apparatus, the pressure loss described above occurs on the downstream side of the purification apparatus, so that the ozone mixed into water in the gas-liquid mixer is reduced. There is a concern that the suction flow rate to the gas-liquid mixer may decrease. However, in the present invention, the filter is arranged on the upstream side of the purification apparatus! Therefore, the above-described decrease in the ozone suction flow rate into the gas-liquid mixer can be suppressed, and the decrease in gas-liquid mixing efficiency can be prevented. Thereby, in this water purification apparatus, the water quality can be satisfactorily improved with a simple configuration.
[0022] 請求項 8記載の発明は、前記ポンプ力 前記フィルタまでの間を流れる水の圧力を 検知するための圧力センサと、前記圧力センサによって検知された圧力の値に応じ て前記フィルタの目詰りを判断するための制御装置と、前記制御装置によって前記フ ィルタの目詰りが判断されたときに前記フィルタの目詰りを報知するための報知手段 と、を含むことを特徴とする、請求項 7記載の水浄化装置である。 [0022] The invention according to claim 8 is a pressure sensor for detecting a pressure of water flowing between the pump force and the filter, and an eye of the filter according to a pressure value detected by the pressure sensor. The control device for judging clogging, and a notifying means for notifying the clogging of the filter when the clogging of the filter is judged by the control device. 7. The water purification apparatus according to 7.
[0023] このような構成によれば、フィルタの目詰りが生じると、導入路および浄化装置にお ける水の流れが悪化するので、浄化装置の気液混合器において水に混合されるォ ゾンの、気液混合器への吸込流量の低下が懸念される。しかし、本発明では、圧力 センサが、ポンプ力もフィルタまでの間を流れる水の圧力を検知することにより、フィ ルタの目詰り状態を管理することができる。そして、制御手段が、圧力センサによって 検知された圧力の値に応じてフィルタの目詰りを判断し、その判断に応じて報知手段 がフィルタの目詰りを報知することによって、フィルタの不慮の目詰りを防止することが できるので、上述したオゾンの吸込流量の低下が抑えられ、気液混合の効率の低下 を防止することができる。 [0023] According to such a configuration, when the filter is clogged, the flow of water in the introduction path and the purification device is deteriorated, so that the ozone mixed with water in the gas-liquid mixer of the purification device is reduced. There is concern about a decrease in the suction flow rate into the gas-liquid mixer. However, in the present invention, the clogging state of the filter can be managed by the pressure sensor detecting the pressure of water flowing between the pump force and the filter. Then, the control means determines the filter clogging according to the pressure value detected by the pressure sensor, and the notification means notifies the filter clogging according to the determination, so that the filter is accidentally clogged. Therefore, the above-described decrease in the ozone suction flow rate can be suppressed, and the decrease in gas-liquid mixing efficiency can be prevented.
[0024] また、貯水タンクが高 、位置に配置されるほど、上述したように、気液混合器へのォ ゾンの吸込流量の低下が懸念される。そこへフィルタの目詰りが生じると、気液混合
器へのオゾンの吸込流量のさらなる低下が懸念される。そのため、フィルタの目詰り に起因するオゾンの吸込流量の低下を防ぐためには、フィルタの目詰りがなるべく早 く検知されることが望ましいが、貯水タンクよりも低い位置にポンプが配置される構成 では、貯水タンクが高い位置に配置されるほど、圧力センサが圧力値を高めに検知 するので、フィルタの目詰りが実際よりも早く判断されてユーザに報知される。これに より、フィルタの目詰りに起因する気液混合器へのオゾンの吸込流量の低下を防止 することができる。 [0024] In addition, as the water storage tank is arranged at a higher position, there is a concern that the ozone suction flow rate into the gas-liquid mixer decreases as described above. If the filter becomes clogged there, gas-liquid mixing There is concern about further decline in the ozone suction flow rate into the vessel. Therefore, it is desirable to detect filter clogging as early as possible in order to prevent a decrease in the ozone suction flow rate due to filter clogging, but in a configuration where the pump is arranged at a position lower than the water storage tank. The higher the water storage tank is located, the higher the pressure value is detected by the pressure sensor. Therefore, the filter is clogged earlier than the actual one and is notified to the user. As a result, it is possible to prevent a decrease in the suction flow rate of ozone into the gas-liquid mixer due to filter clogging.
[0025] 請求項 9記載の発明は、前記筐体内には、一端が前記導入路に接続されていて、 他端が前記浄水給水路に接続されている水路と、前記水路の上方に区画された電 装品領域と、前記電装品領域を前記水路から遮断するための遮断壁と、が備えられ 、前記気液混合器は、前記水路に結合され、前記オゾン発生装置および前記制御 装置は、前記電装品領域に配置されていることを特徴とする、請求項 1ないし 8のい ずれかに記載の水浄化装置である。 [0025] In the invention according to claim 9, the casing is partitioned above the water channel, a water channel having one end connected to the introduction channel and the other end connected to the purified water supply channel. An electrical component region and a blocking wall for blocking the electrical component region from the water channel, the gas-liquid mixer is coupled to the water channel, and the ozone generator and the control device include: 9. The water purification apparatus according to claim 1, wherein the water purification apparatus is disposed in the electrical component region.
[0026] このような構成によれば、オゾン発生装置および制御装置といった電装品は、水路 の上方に区画された電装品領域に配置されるので、水路から水が漏れ出したとして も、漏れ出した水が自重によってオゾン発生装置および制御装置に到達する虡はな い。さらに、この電装品領域は、遮断壁によって水路力 遮断されているので、たとえ ば、メンテナンス時に水路力 水が飛散しても、その水がオゾン発生装置および制御 装置に浸水することを確実に防止することができる。 [0026] According to such a configuration, the electrical components such as the ozone generator and the control device are arranged in the electrical component region partitioned above the water channel, so that even if water leaks from the water channel, Water is unlikely to reach the ozone generator and controller due to its own weight. In addition, this electrical component area is blocked by water barriers, so for example, even if water is splashed during maintenance, the water is reliably prevented from entering the ozone generator and the control device. can do.
[0027] 請求項 10記載の発明は、前記水路は、前記筐体内を左右方向に略水平に延びて いて、一端は前記筐体の一側面外方へ突出し、外方において前記導入路に接続さ れ、他端は前記筐体の他側面外方へ突出し、外方において前記浄水給水路に接続 されて ヽることを特徴とする、請求項 9記載の水浄化装置である。 [0027] In the invention of claim 10, the water channel extends substantially horizontally in the left-right direction in the housing, and one end projects outwardly from one side surface of the housing and is connected to the introduction channel outside. 10. The water purification device according to claim 9, wherein the other end protrudes outwardly from the other side surface of the housing and is connected to the purified water supply channel on the outside.
このような構成によれば、筐体内を左右方向に略水平に延びる水路には、屈折部 分が存在しない。屈折部分が存在すると、エルボー管などの連結部品を別途設ける 必要があり、その場合には、部品点数の増加だけでなぐ連結部品と水路との結合部 分から水漏れが発生する虞があるが、本発明の水路によって、これらの虞は解消され 、オゾン発生装置および制御装置の浸水を一層確実に防止することができる。
[0028] また、水路の一端は、筐体の一側面外方へ突出し、外方において導入路に接続さ れ、他端は、筐体の他側面外方へ突出し、外方において浄水給水路に接続されて いる。導入路および浄水給水路との接続部分となる水路の一端および他端では、水 漏れが発生する虞があるが、これらの一端および他端は、いずれも筐体の側面外方 に突出しており、筐体内部には位置していない。そのため、水路の一端および他端 にお!/、て水漏れが発生しても、筐体内部のオゾン発生装置および制御装置の浸水 を一層確実に防止することができる。 According to such a configuration, there is no refracting portion in the water channel extending substantially horizontally in the left-right direction in the housing. If there is a refracted part, it is necessary to separately provide a connecting part such as an elbow tube.In that case, there is a risk that water leakage may occur from the connecting part between the connecting part and the water channel, which is just an increase in the number of parts. These fears are eliminated by the water channel of the present invention, and the ozone generator and the control device can be more reliably prevented from being flooded. [0028] In addition, one end of the water channel protrudes outwardly from one side surface of the casing and is connected to the introduction channel at the outer side, and the other end protrudes outwardly from the other side surface of the casing. It is connected to the. There is a risk of water leakage at one end and the other end of the water channel that is the connection part between the introduction channel and the purified water supply channel, but both one end and the other end protrude outward from the side of the housing. It is not located inside the housing. Therefore, even if water leakage occurs at one end and the other end of the water channel, it is possible to more reliably prevent the ozone generator and the controller inside the casing from being flooded.
[0029] そして、水路は、筐体の一側面および他側面に支持されるので、筐体内に安定して 配置することができ、水路の筐体への組付けも容易となる。 [0029] Since the water channel is supported on one side surface and the other side surface of the housing, the water channel can be stably disposed in the housing, and the water channel can be easily assembled to the housing.
請求項 11記載の発明は、前記気液混合器は、前記水路の前記一端または前記他 端を構成するように前記水路に結合されていることを特徴とする、請求項 10記載の 水浄化装置である。 The invention according to claim 11 is the water purification apparatus according to claim 10, wherein the gas-liquid mixer is coupled to the water channel so as to constitute the one end or the other end of the water channel. It is.
[0030] このような構成によれば、気液混合器が、水路の一端または他端を構成するように 水路に結合されているので、気液混合器が水路の途中で結合される場合と比べて、 気液混合器と水路との結合部分、つまり水漏れが発生する虞がある部分を減らすこと ができ、オゾン発生装置および制御装置の浸水を一層確実に防止することができる。 請求項 12記載の発明は、前記遮断壁は、前記水路および前記気液混合器の結合 部分の上方に配置されて 、ることを特徴とする、請求項 9な 、し 11の 、ずれかに記 載の水浄ィ匕装置である。 [0030] According to such a configuration, since the gas-liquid mixer is coupled to the water channel so as to constitute one end or the other end of the water channel, the gas-liquid mixer is coupled in the middle of the water channel and Compared with this, it is possible to reduce the portion where the gas-liquid mixer and the water channel are connected, that is, the portion where water leakage may occur, and it is possible to more reliably prevent the ozone generator and the control device from being flooded. The invention according to claim 12 is characterized in that the blocking wall is disposed above the coupling portion of the water channel and the gas-liquid mixer. This is the water purification device described.
[0031] このような構成によれば、水路および気液混合器の結合部分といった水漏れが発 生する虞がある部分の上方に遮断壁が配置されているので、オゾン発生装置および 制御装置の浸水を一層確実に防止することができる。 [0031] According to such a configuration, since the blocking wall is disposed above the portion where water leakage may occur, such as the coupling portion of the water channel and the gas-liquid mixer, the ozone generator and the control device Inundation can be prevented more reliably.
請求項 13記載の発明は、前記水路は、メンテナンス時に取り外し可能な部品を含 み、前記遮断壁は、前記部品の上方に配置されていることを特徴とする、請求項 9な Vヽし 12の!、ずれかに記載の水浄化装置である。 The invention according to claim 13 is characterized in that the water channel includes a part that can be removed during maintenance, and the blocking wall is disposed above the part. No! Is the water purification device described in any one of them.
[0032] このような構成によれば、水路とメンテナンス時に取り外し可能な部品との間には結 合部分が存在し、その結合部分では水漏れが発生する虞があるが、遮断壁は、この 部品の上方に配置されて!、るので、オゾン発生装置および制御装置の浸水を一層
確実に防止することができる。 [0032] According to such a configuration, there is a coupling portion between the water channel and a part that can be removed during maintenance, and there is a possibility that water leakage may occur at the coupling portion. Because it is placed above the parts !, so that the ozone generator and the controller can be further submerged. It can be surely prevented.
請求項 14記載の発明は、前記気液混合器には、一端に水の流入口、他端に水の 流出口を有し、前記流入口および前記流出口を連通する水流路、ならびに、一端に 気体入口、他端に気体出口を有し、前記気体出口が前記水流路の途中に合流され ている気体通路が備えられ、前記オゾン発生装置が発生したオゾンは、前記気体入 口から前記気体通路へ供給され、前記水流路の水が前記気体出口から浸入して、 前記気体通路を流れるとき、前記気体通路を流れ出る水を排水するための排水路と 、前記排水路に設けられ、前記気体通路へのオゾン供給中に、前記排水路を水が 流れ出る方向とは逆方向に空気が流入することを抑制するための空気流入抑制手 段と、を備えることを特徴とする、請求項 1記載の水浄化装置である。 The invention according to claim 14 is characterized in that the gas-liquid mixer has a water inflow port at one end, a water outflow port at the other end, a water flow path communicating the inflow port and the outflow port, and one end A gas passage having a gas inlet at the other end and a gas passage where the gas outlet is joined in the middle of the water flow path, and ozone generated by the ozone generator is supplied from the gas inlet to the gas A drainage passage for draining water flowing out of the gas passage when the water in the water passage enters the gas outlet and flows through the gas passage, and is provided in the drainage passage. 2. An air inflow suppression means for suppressing air from flowing in a direction opposite to a direction in which water flows out of the drainage channel during ozone supply to the passage. It is a water purification device.
[0033] このような構成によれば、気液混合器の水流路内の水力 気体出口から気体通路 内に浸入した場合であっても、その水は、オゾン発生装置へは浸入せずに排水路を 通って排水される。このように、水がオゾン発生装置内に浸入することを防止できるた め、オゾン発生装置が水に晒されて放電できなくなることを防止でき、安定してオゾン を供給することができる。また、気体通路へのオゾン供給中、排水路は、空気流入抑 制手段によって遮断されており、外部の空気が排水路力 気体通路へ流入してくるこ とがないため、オゾン濃度が低くなることを防止でき、効率的にオゾンを気体通路へと 供給することができる。 [0033] According to such a configuration, even when the gas enters the gas passage from the hydraulic gas outlet in the water flow path of the gas-liquid mixer, the water does not enter the ozone generator and drains. Drain through the road. Thus, since it is possible to prevent water from entering the ozone generator, it is possible to prevent the ozone generator from being exposed to water and becoming unable to discharge, and to supply ozone stably. During ozone supply to the gas passage, the drainage channel is blocked by the air inflow suppression means, so that external air does not flow into the gas channel, reducing the ozone concentration. Can be prevented, and ozone can be efficiently supplied to the gas passage.
[0034] 請求項 15記載の発明は、前記気液混合器には、一端に水の流入口、他端に水の 流出口を有し、前記流入口および前記流出口を連通する水流路、ならびに、一端に 気体入口、他端に気体出口を有し、前記気体入口から前記気体出口へ向かって上 方へ延び、前記気体出口が前記水流路の途中に合流されている気体通路が備えら れ、前記オゾン発生装置が発生したオゾンは、前記気体入口から前記気体通路へ供 給され、前記気体通路に備えられ、前記気体入口から前気体出口へ向かう下方から 上方へのオゾンの通過は許容するが、逆方向への水の通過を阻止するための逆止 弁を含み、当該逆止弁は、オゾン供給時には、オゾンの供給圧力によって前記気体 通路を開放し、オゾン非供給時には、自重によって前記気体通路を閉鎖する弁体を 含むことを特徴とする、請求項 1記載の水浄化装置である。
[0035] このような構成によれば、逆止弁の弁体が、オゾン供給時には、オゾンの供給圧力 (たとえば、気体通路内に生じる負圧)によって気体通路を開放することによって、気 体入口から気体通路へ供給されたオゾンが気体出口へ向かって通過することを許容 できる。一方、オゾン非供給時には、弁体が自重によって気体通路を閉鎖することに よって、水の逆方向への通過(逆流)を阻止することができる。この気液混合器では、 水流路に合流される気体出口から、水流路の水が気体通路内に下方へ漏れ出す虡 があるが、このような簡単な構成の逆止弁により、外部から別段の操作をしなくても、 自動的に気体通路を開閉して、水の逆流を阻止できる。 [0034] The invention according to claim 15 is characterized in that the gas-liquid mixer has a water inflow port at one end, a water outflow port at the other end, and a water flow path communicating the inflow port and the outflow port, In addition, a gas inlet having a gas inlet at one end and a gas outlet at the other end, extending upward from the gas inlet toward the gas outlet, and having the gas outlet joined in the middle of the water flow path is provided. The ozone generated by the ozone generator is supplied from the gas inlet to the gas passage, is provided in the gas passage, and is allowed to pass ozone from below to above from the gas inlet to the front gas outlet. However, it includes a check valve for preventing the passage of water in the reverse direction. The check valve opens the gas passage by the supply pressure of ozone when ozone is supplied, and by its own weight when ozone is not supplied. A valve body for closing the gas passage; The water purification device according to claim 1, comprising: [0035] According to such a configuration, the valve body of the check valve opens the gas passage by ozone supply pressure (for example, a negative pressure generated in the gas passage) during ozone supply, whereby the gas inlet port The ozone supplied from the gas passage to the gas passage can be allowed to pass toward the gas outlet. On the other hand, when ozone is not supplied, the valve body closes the gas passage by its own weight, thereby preventing water from passing in the reverse direction (back flow). In this gas-liquid mixer, there is a possibility that water in the water channel leaks downward into the gas channel from the gas outlet joined to the water channel. Even without this operation, the gas passage can be automatically opened and closed to prevent backflow of water.
[0036] 請求項 16記載の発明は、一端に水の流入口、他端に水の流出口を有し、前記流 入口および前記流出口を連通する水流路、ならびに、一端に気体入口、他端に気体 出口を有し、前記気体出口が前記水流路の途中に合流されて!、る気体通路を有す る気液混合器と、オゾンを発生し、発生したオゾンを前記気体入口から前記気体通 路へ供給するオゾン供給装置と、前記水流路の水が前記気体出口から浸入して、前 記気体通路を流れるとき、前記気体通路を流れ出る水を排水するための排水路と、 前記排水路に設けられ、前記気体通路へのオゾン供給中に、前記排水路を水が流 れ出る方向とは逆方向に空気が流入することを抑制するための空気流入抑制手段と 、を備えることを特徴とする、水オゾン混合装置である。 [0036] The invention of claim 16 has a water inlet at one end, a water outlet at the other end, a water flow path communicating the inlet and the outlet, a gas inlet at one end, and the like. A gas outlet at the end, and the gas outlet is joined in the middle of the water flow path !, a gas-liquid mixer having a gas passage, and generating ozone, and the generated ozone is An ozone supply device for supplying to the gas passage; a drainage passage for draining water flowing out of the gas passage when water in the water passage enters the gas outlet and flows through the gas passage; Air inflow suppressing means for suppressing air from flowing in the direction opposite to the direction of water flowing out of the drainage channel during ozone supply to the gas passage. This is a water ozone mixing device.
[0037] このような構成によれば、気液混合器の水流路内の水力 気体出口から気体通路 内に浸入した場合であっても、その水は、オゾン供給装置へは浸入せずに排水路を 通って排水される。このように、水がオゾン供給装置内に浸入することを防止できるた め、オゾン供給装置が水に晒されて放電できなくなることを防止でき、安定してオゾン を供給することができる。また、気体通路へのオゾン供給中、排水路は、空気流入抑 制手段によって遮断されており、外部の空気が排水路力 気体通路へ流入してくるこ とがないため、オゾン濃度が低くなることを防止でき、効率的にオゾンを気体通路へと 供給することができる。 [0037] According to such a configuration, even when the gas enters the gas passage from the hydraulic gas outlet in the water flow path of the gas-liquid mixer, the water is drained without entering the ozone supply device. Drain through the road. Thus, since it is possible to prevent water from entering the ozone supply device, it is possible to prevent the ozone supply device from being exposed to water and becoming unable to discharge, and to supply ozone stably. During ozone supply to the gas passage, the drainage channel is blocked by the air inflow suppression means, so that external air does not flow into the gas channel, reducing the ozone concentration. Can be prevented, and ozone can be efficiently supplied to the gas passage.
[0038] 請求項 17記載の発明は、前記気液混合器は、前記水流路の途中が絞られた絞り 部を有し、前記絞り部に前記気体出口が合流されていることを特徴とする、請求項 16 記載の水浄化装置である。
このような構成によれば、気液混合器が、水流路の途中が絞られた絞り部を有し、 その絞り部に気体通路の出口が合流されている。よって、水路ベンチユリ作用により、 絞り部において流速が増す水の流れによって発生する負圧を利用してオゾンを水流 路内に取り込むことができる。より具体的には、オゾン供給装置で発生するオゾンは、 絞り部を流れる水による負圧を利用して混合されるため、たとえば、ブロアなどの装置 を設けずに、簡単な構成で水流路内の水にオゾンを混合することができる。 [0038] The invention according to claim 17 is characterized in that the gas-liquid mixer has a throttle part in which the middle of the water flow path is throttled, and the gas outlet is joined to the throttle part. The water purification device according to claim 16. According to such a configuration, the gas-liquid mixer has the throttle part in which the middle of the water channel is throttled, and the outlet of the gas passage is joined to the throttle part. Therefore, ozone can be taken into the water channel by using the negative pressure generated by the flow of water whose flow velocity increases at the throttle part by the water channel bench action. More specifically, the ozone generated by the ozone supply device is mixed using the negative pressure generated by the water flowing through the throttle, so that, for example, a device such as a blower is not provided and the water flow path is configured with a simple configuration. Can be mixed with ozone.
[0039] 請求項 18記載の発明は、前記空気流入抑制手段は、前記絞り部にオゾンが吸い 込まれることによって変化する前記排水路内の圧力変化により動作することを特徴と する、請求項 17記載の水浄化装置である。 [0039] The invention described in claim 18 is characterized in that the air inflow suppressing means operates by a pressure change in the drainage channel that changes when ozone is sucked into the throttle portion. It is a water purification apparatus of description.
このような構成によれば、空気流入抑制手段による排水路の遮断は、絞り部にォゾ ンが吸い込まれることによって変化する排水路内の圧力変化により行なわれる。たと えば、絞り部において発生する負圧を利用して行なわれる。このように、外部から別 に操作をする必要がなく自動的に、簡単な構成で排水路を遮断して、空気の流入を 防止できる。 According to such a configuration, the blocking of the drainage channel by the air inflow suppression means is performed by a pressure change in the drainage channel that changes as the ozone is sucked into the throttle portion. For example, the negative pressure generated in the throttle portion is used. In this way, there is no need to perform a separate operation from the outside, and the drainage channel can be automatically shut off with a simple configuration to prevent the inflow of air.
[0040] 請求項 19記載の発明は、前記空気流入抑制手段は、一端に入口、他端に出口を 有し、前記入口および前記出口が前記排水路に接続されることによって前記排水路 の途中に介挿された収容室と、前記収容室に収容され、可撓性を有し、前記絞り部 にオゾンが吸い込まれることによって変化する前記排水路内の圧力変化によって前 記入口を塞いで前記排水路を遮断する遮断部材と、を含み、前記排水路を水が流 れ出るとき以外、かつ、前記絞り部にオゾンが吸い込まれるとき以外においては、前 記遮断部材は、前記収容室の内壁に接触または近接しており、前記排水路を水が 流れ出るときにおいては、流れ出る水に押圧されて前記遮断部材が撓むことにより、 前記収容室の内壁と前記遮断部材と間に隙間が形成されることによって前記排水路 が開放されることを特徴とする、請求項 18記載の水浄ィ匕装置である。 [0040] The invention according to claim 19 is characterized in that the air inflow suppressing means has an inlet at one end and an outlet at the other end, and the inlet and the outlet are connected to the drainage channel, so that the middle of the drainage channel A storage chamber inserted in the storage chamber, and the storage chamber is flexible and has flexibility, and the pressure entry in the drainage channel that changes when ozone is sucked into the throttle portion closes the front entry port and A blocking member that blocks the drainage channel, and the blocking member is an inner wall of the storage chamber except when water flows out of the drainage channel and when ozone is sucked into the throttle portion. When the water flows out of the drainage channel, a gap is formed between the inner wall of the storage chamber and the blocking member because the blocking member is bent by being pressed by the flowing water. Said by Wherein the water channel is opened, a MizuKiyoshii匕 apparatus of claim 18.
[0041] このような構成によれば、空気流入抑制手段において、遮断部材は、排水路を水が 流れ出るとき (排水時)以外、かつ、絞り部にオゾンが吸い込まれるとき以外において は、収容室の内壁に接触または近接している。そのため、排水路内の圧力変化が小 さくても、遮断部材は、確実に動作し、入口を塞いで排水路を遮断することができる
ので、空気の流入を確実に防止できる。 [0041] According to such a configuration, in the air inflow suppression means, the blocking member has a housing chamber except when water flows out of the drainage channel (when draining) and when ozone is sucked into the throttle portion. It is in contact with or close to the inner wall. Therefore, even if the pressure change in the drainage channel is small, the blocking member operates reliably and can block the drainage channel by closing the inlet. Therefore, the inflow of air can be reliably prevented.
[0042] また、遮断部材は、可撓性を有しており、排水路を水が流れ出るとき (排水時)にお いては、流れ出る水に押圧されて橈むことにより、収容室の内壁と遮断部材との間に 隙間が形成されることによって排水路が開放されるので、排水路での円滑な排水を ½保することができる。 [0042] Further, the blocking member has flexibility, and when water flows out of the drainage channel (during drainage), the blocking member is pressed against the flowing water and swallows it, so that Since the drainage channel is opened by forming a gap with the blocking member, smooth drainage in the drainage channel can be maintained.
請求項 20記載の発明は、前記収容室内に設けられ、前記逆方向に凸湾曲した受 入面が形成され、前記受入面で前記遮断部材を受け止めるための受け止め部材を 含むことを特徴とする、請求項 19記載の水浄ィ匕装置である。 The invention according to claim 20 is characterized in that it includes a receiving member that is provided in the storage chamber, has a receiving surface that is convexly curved in the opposite direction, and receives the blocking member on the receiving surface. The water purification apparatus according to claim 19.
[0043] このような構成によれば、受け止め部材の、排水時に水が流れ出る方向(流出方向 )とは逆方向に凸湾曲した受入面において、受入面の周縁側は、受入面の中心側に 比べて、水の流出方向下流側に位置しているので、この周縁側部分において受入面 と収容室の内壁との間に隙間を確保することできる。そのため、排水時には、この隙 間において、収容室の内壁と遮断部材との接触が解消されるまで遮断部材を撓ませ て、排水路を確実に開放することができる。 [0043] According to such a configuration, in the receiving surface of the receiving member that is convexly curved in the direction opposite to the direction in which water flows during drainage (outflow direction), the peripheral side of the receiving surface is located on the center side of the receiving surface. In comparison, since it is located downstream in the water outflow direction, a gap can be secured between the receiving surface and the inner wall of the storage chamber in this peripheral side portion. Therefore, during drainage, the drainage channel can be reliably opened by bending the blocking member until contact between the inner wall of the storage chamber and the blocking member is eliminated in this gap.
[0044] 請求項 21記載の発明は、前記排水路力 排水される水を検知するための水検知 センサと、前記水検知センサの検知に応じて、前記オゾン供給装置を停止させるた めのオゾン供給制御手段とを含むことを特徴とする、請求項 16ないし 20のいずれか に記載の水浄化装置である。 [0044] The invention according to claim 21 is a water detection sensor for detecting drainage water, and ozone for stopping the ozone supply device in response to detection by the water detection sensor. 21. The water purification apparatus according to claim 16, further comprising supply control means.
このような構成によれば、オゾン供給装置は、水検知センサの検知に応じて、ォゾ ン供給制御手段によって停止される。このように、水検知センサの検知に応じてォゾ ン供給装置を停止すれば、万一、水がオゾン供給装置に浸入した場合であっても、 漏電や感電することを防止でき、装置を安全に稼動させることができる。 According to such a configuration, the ozone supply device is stopped by the ozone supply control means in response to detection by the water detection sensor. In this way, if the ozone supply device is stopped in response to detection by the water detection sensor, even if water enters the ozone supply device, it is possible to prevent electric leakage or electric shock, and It can be operated safely.
[0045] 請求項 22記載の発明は、一端に水の流入口、他端に水の流出口を有し、前記流 入口および前記流出口を連通する水流路、ならびに、一端に気体入口、他端に気体 出口を有し、前記気体入口から前記気体出口へ向かって上方へ延び、前記気体出 口が前記水流路の途中に合流されて!、る気体通路を有する気液混合器と、オゾンを 発生し、発生したオゾンを前記気体入口から前記気体通路へ供給するオゾン供給装 置と、前記気体通路に備えられ、前記気体入口から前気体出口へ向かう下方から上
方へのオゾンの通過は許容するが、逆方向への水の通過を阻止するための逆止弁 と、を含み、当該逆止弁は、オゾン供給時には、オゾンの供給圧力によって前記気体 通路を開放し、オゾン非供給時には、自重によって前記気体通路を閉鎖する弁体を 含むことを特徴とする、水オゾン混合装置である。 [0045] The invention described in claim 22 has a water inlet at one end, a water outlet at the other end, a water flow path communicating the inlet and the outlet, a gas inlet at one end, and the like. A gas outlet at the end, extending upward from the gas inlet toward the gas outlet, and the gas outlet is joined in the middle of the water flow path! And an ozone supply device that supplies the generated ozone from the gas inlet to the gas passage, and is provided in the gas passage, and is installed from the lower side toward the front gas outlet from the gas inlet. And a check valve for preventing the passage of water in the reverse direction, and the check valve allows the gas passage to be opened by ozone supply pressure when ozone is supplied. A water-ozone mixing apparatus comprising a valve body that is opened and closes the gas passage by its own weight when ozone is not supplied.
[0046] このような構成によれば、逆止弁の弁体が、オゾン供給時には、オゾンの供給圧力 [0046] According to such a configuration, when the check valve body supplies ozone, the supply pressure of ozone
(たとえば、気体通路内に生じる負圧)によって気体通路を開放することによって、気 体入口から気体通路へ供給されたオゾンが気体出口へ向かって通過することを許容 できる。一方、オゾン非供給時には、弁体が自重によって気体通路を閉鎖することに よって、水の逆方向への通過(逆流)を阻止することができる。この気液混合器では、 水流路に合流される気体出口から、水流路の水が気体通路内に下方へ漏れ出す虡 があるが、このような簡単な構成の逆止弁により、外部から別段の操作をしなくても、 自動的に気体通路を開閉して、水の逆流を阻止できる。 By opening the gas passage by (for example, negative pressure generated in the gas passage), it is possible to allow ozone supplied from the gas inlet to the gas passage to pass toward the gas outlet. On the other hand, when ozone is not supplied, the valve body closes the gas passage by its own weight, thereby preventing water from passing in the reverse direction (back flow). In this gas-liquid mixer, there is a possibility that water in the water channel leaks downward into the gas channel from the gas outlet joined to the water channel. Even without this operation, the gas passage can be automatically opened and closed to prevent backflow of water.
[0047] 請求項 23記載の発明は、前記弁体は、前記気体通路内に上下に移動可能な自由 状態で収容されており、上方に凸湾曲した上面を有することを特徴とする、請求項 22 記載の水浄化装置である。 [0047] The invention according to claim 23 is characterized in that the valve element is accommodated in the gas passage in a freely movable state, and has an upper surface that is convexly curved upward. 22. The water purification apparatus according to 22.
このような構成によれば、弁体は、気体通路内に上下に移動可能な自由状態で収 容されている。つまり、弁体は、気体通路内において他の部材に支持されていない。 逆止弁の用途上、弁体は、その作動頻度が比較的高いので、気体通路内において 他の部材に支持されている場合には、その支持部分に損傷が生じる虞があるが、本 発明の弁体は、気体通路内において他の部材に支持されていないので、上述した 支持部分が存在せず、損傷が生じる虞はない。 According to such a configuration, the valve body is accommodated in the gas passage in a freely movable state. That is, the valve body is not supported by another member in the gas passage. Since the operation frequency of the valve body is relatively high for the use of the check valve, there is a possibility that the support portion may be damaged when it is supported by other members in the gas passage. Since the valve body is not supported by another member in the gas passage, the above-described support portion does not exist and there is no possibility of damage.
[0048] また、この弁体は、上方に凸湾曲した上面を有している。上述したように、この気液 混合器では、水流路の水が、水流路に合流される気体出口から気体通路内に下方 へ漏れ出て弁体の上面を加圧することが想定されるが、弁体の上面は上方に凸湾曲 しているので、この上面では、水流路からの水の圧力を周囲に逃すことができる。たと えば、この上面が外縁から内側中心に亘つて一様に平坦な場合、水流路からの水の 圧力を周囲に逃すことができないので、上面の内側部分が圧力に耐えられなくなると 弁体全体が橈んで弁体が気体通路を完全に閉鎖できなくなり、水の逆流が生じる虞
がある。しかし、本発明の弁体の上面は、上述したように、水の漏れ出す方向とは反 対の方向(上方)に向かって凸湾曲しているので、たとえば、ウォーターハンマー現象 によって急激に上昇した水の圧力が弁体の上面に作用されても、その圧力が周囲に 逃されることにより、弁体は、橈むことはなぐその全体形状を維持することができる。 そのため、弁体は、気体通路を完全に閉鎖し、水の逆流を確実に阻止することができ る。 [0048] Further, the valve body has an upper surface convexly curved upward. As described above, in this gas-liquid mixer, it is assumed that water in the water channel leaks downward into the gas channel from the gas outlet joined to the water channel and pressurizes the upper surface of the valve body. Since the upper surface of the valve body is convexly curved upward, the pressure of water from the water flow path can be released to the surroundings on this upper surface. For example, if this upper surface is flat evenly from the outer edge to the inner center, the pressure of water from the water flow path cannot be released to the surroundings, so the inner part of the upper surface cannot withstand the pressure. The valve body may not be able to close the gas passage completely and may cause backflow of water There is. However, as described above, the upper surface of the valve body of the present invention is convexly curved in the direction opposite to the direction in which water leaks (upward). Even if water pressure is applied to the upper surface of the valve body, the valve body can maintain its overall shape without being squeezed by releasing the pressure to the surroundings. Therefore, the valve body can completely close the gas passage and reliably prevent the back flow of water.
[0049] 請求項 24記載の発明は、前記気体通路内には、前記弁体の位置がずれるのを防 止するために、前記弁体の上面と接する突起が設けられていることを特徴とする、請 求項 23記載の水浄化装置である。 [0049] The invention according to claim 24 is characterized in that a protrusion in contact with the upper surface of the valve body is provided in the gas passage in order to prevent the position of the valve body from shifting. The water purifier according to claim 23.
このような構成によれば、気体通路内に設けられた突起によって弁体の位置がずれ るのが防止されるので、弁体を、気体通路を開閉可能な適正位置に常に配置するこ とができ、逆止弁の作動信頼性の向上を図ることができる。 According to such a configuration, since the position of the valve body is prevented from being shifted by the protrusion provided in the gas passage, the valve body can always be disposed at an appropriate position where the gas passage can be opened and closed. Therefore, the operation reliability of the check valve can be improved.
図面の簡単な説明 Brief Description of Drawings
[0050] [図 1]この発明の第 1の実施形態に係る水浄ィ匕装置 1の概略斜視図である。 FIG. 1 is a schematic perspective view of a water purification apparatus 1 according to a first embodiment of the present invention.
[図 2]水浄ィ匕装置 1の構成例を示すシステム図である。 FIG. 2 is a system diagram showing a configuration example of the water purification apparatus 1.
[図 3]オゾン混合器 7の図解図である。 FIG. 3 is an illustration of the ozone mixer 7.
[図 4]逆止弁 17の図解図であり、図 4 (a)は通常時の状態を示し、図 4 (b)は吸引時の 状態を示す。 [Fig. 4] An illustration of the check valve 17. Fig. 4 (a) shows a normal state, and Fig. 4 (b) shows a state during suction.
[図 5]ドレン弁 36の一例を示す図解図であり、図 5 (a)は通常時の状態を示し、図 5 (b )は吸引時の状態を示す。 FIG. 5 is an illustrative view showing one example of a drain valve 36, FIG. 5 (a) shows a normal state, and FIG. 5 (b) shows a state during suction.
[図 6]ドレン弁 36の一例を示す図解図であり、図 6 (a)は通常時の状態を示し、図 6 (b )は吸引時の状態を示す。 FIG. 6 is an illustrative view showing an example of a drain valve 36, FIG. 6 (a) shows a normal state, and FIG. 6 (b) shows a state during suction.
[図 7]この水浄ィ匕装置 1の電気的構成を示すブロック図であって、この発明に関連す る部分を示した図である。 FIG. 7 is a block diagram showing an electrical configuration of the water purification apparatus 1 and shows a portion related to the present invention.
[図 8]水浄ィ匕装置 1の浄ィ匕給水に関する制御部 49の制御動作を示すフローチャート である。 FIG. 8 is a flowchart showing a control operation of the control unit 49 related to the purified water supply of the water purification apparatus 1.
[図 9]水浄ィ匕装置 1の水漏れ異常検知に関する制御部 49の制御動作を示すフロー チャートである。
[図 10]この発明の第 2の実施形態に係る水浄ィ匕装置 1の概略斜視図である。 FIG. 9 is a flow chart showing the control operation of the control unit 49 related to water leak abnormality detection of the water purification apparatus 1. FIG. 10 is a schematic perspective view of a water purification apparatus 1 according to a second embodiment of the present invention.
[図 11]第 2の実施形態に係る水浄ィ匕装置 1の構成例を示すシステム図である。 FIG. 11 is a system diagram showing a configuration example of a water purification apparatus 1 according to a second embodiment.
[図 12]第 2の実施形態に係る水浄ィ匕装置 1の操作表示部 55の概略平面図である。 FIG. 12 is a schematic plan view of the operation display unit 55 of the water purification apparatus 1 according to the second embodiment.
[図 13]第 2の実施形態に係る水浄ィ匕装置 1の電気的構成を示すブロック図であって、 第 2の実施形態に関連する部分を示した図である。 FIG. 13 is a block diagram showing an electrical configuration of a water purification apparatus 1 according to a second embodiment, showing a portion related to the second embodiment.
[図 14]第 2の実施形態に係る水浄ィ匕装置 1の浄ィ匕給水に関する制御部 49の制御動 作を示すフローチャートである。 FIG. 14 is a flowchart showing a control operation of the control unit 49 related to purified water supply of the water purification apparatus 1 according to the second embodiment.
[図 15]第 3の実施形態に係る水浄ィ匕装置 1の構成例を示すシステム図である。 FIG. 15 is a system diagram showing a configuration example of a water purification apparatus 1 according to a third embodiment.
[図 16]第 4の実施形態に係るオゾン水生成装置 70の構成例を示すシステム図である FIG. 16 is a system diagram showing a configuration example of an ozone water generator 70 according to a fourth embodiment.
[図 17]第 5の実施形態に係る水浄ィ匕装置 1における筐体 27の正面側斜視図である。 FIG. 17 is a front perspective view of a casing 27 in a water purification apparatus 1 according to a fifth embodiment.
[図 18]筐体 27の内部の正面側斜視図である。 FIG. 18 is a front perspective view of the inside of the casing 27.
[図 19]筐体 2の内部の平面図である。 FIG. 19 is a plan view of the inside of the housing 2.
[図 20]図 18においてオゾン発生装置 21が制御部 49の上方に配置される態様を示し たものである。 FIG. 20 shows a mode in which the ozone generator 21 is arranged above the control unit 49 in FIG.
[図 21]第 6の実施形態に係る水浄ィ匕装置 1の正面側斜視図である。 FIG. 21 is a front perspective view of a water purification apparatus 1 according to a sixth embodiment.
[図 22]第 7の実施形態に係るオゾン混合器 7の側断面図である。 FIG. 22 is a side sectional view of an ozone mixer 7 according to a seventh embodiment.
[図 23]第 7の実施形態に係るオゾン混合器 7で用いられる逆止弁 17において、弁室 [FIG. 23] In the check valve 17 used in the ozone mixer 7 according to the seventh embodiment, the valve chamber
29内部を下方から見た図である。 It is the figure which looked at 29 inside from the bottom.
[図 24]アーチ弁 81の上側斜視図である。 24 is an upper perspective view of the arch valve 81. FIG.
[図 25]アーチ弁 81が配置された状態での弁室 29内部の上側斜視図である。 FIG. 25 is an upper perspective view of the inside of the valve chamber 29 in a state where the arch valve 81 is arranged.
[図 26]第 7の実施形態に係る逆止弁 17の図解図であり、図 26 (a)は通常時の状態を 示し、図 26 (b)は吸引時の状態を示す。 FIG. 26 is an illustrative view of a check valve 17 according to a seventh embodiment. FIG. 26 (a) shows a normal state, and FIG. 26 (b) shows a state during suction.
[図 27]図 22におけるドレン弁 36を抜き出して示したものであって、図 27 (a)は通常時 の状態を示し、図 27 (b)は吸引時の状態を示し、図 27 (c)は排水時の状態を示す。 FIG. 27 shows the drain valve 36 extracted from FIG. 22, where FIG. 27 (a) shows the normal state, FIG. 27 (b) shows the state during suction, and FIG. ) Indicates the state during drainage.
[図 28]弁室 38内部におけるストッパー 47の上側斜視図である。 28 is an upper perspective view of the stopper 47 inside the valve chamber 38. FIG.
符号の説明 Explanation of symbols
1 水浄化装置
水オゾン混合装置 水源 1 Water purification device Water ozone mixing device Water source
吸込管 ポンプ Suction pipe Pump
原水給水管 オゾン混合器 オゾン供給装置 浄水給水管 才ゾン脱臭カラム 圧力センサ 流入口 流出口 水流路 絞り部 Raw water supply pipe Ozone mixer Ozone supply equipment Purified water supply pipe Zon deodorization column Pressure sensor Inlet Outlet Water flow path Restriction part
気体通路 逆止弁 Gas passage check valve
3方分岐 入口 3-way entrance
出口 Exit
オゾン発生装置 オゾン供給管 筐体 Ozone generator Ozone supply tube Enclosure
弁室 Valve chamber
入口 entrance
排水口 排水管 ドレン弁 水受け皿
38 弁室 Drain port Drain pipe Drain valve Water tray 38 Valve chamber
40 入口 40 entrance
42 出口 42 Exit
45 水漏れセンサ 45 Water leak sensor
46 ディスク弁 46 Disc valve
47 ストッパー 47 Stopper
48 隙間 48 Clearance
49 制御部 49 Control unit
55 操作表示部 55 Operation display
61 開閉バルブ 61 Open / close valve
65 タンク 65 tanks
67 ユーザ用給水管 67 User water pipe
69 貯水管 69 Water storage pipe
81 アーチ弁 81 Arch valve
89 突起 89 protrusion
99 被加圧面 99 Pressurized surface
100 封止面 100 Sealing surface
101 弾性凸部 101 Elastic convex
103 受入面 103 Reception surface
180 遮断壁 180 barrier
181 電装品領域 181 Electrical component area
187 水路 187 waterway
189 フイノレタ 189 Huinoleta
190 フレーム 190 frames
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
<第 1の実施形態 > <First embodiment>
以下には、図面を参照して、この発明の実施形態について具体的に説明をする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(水浄化装置 1の構成)
図 1は、この発明の第 1の実施形態に係る水浄ィ匕装置 1の概略斜視図である。図 2 は、水浄ィ匕装置 1の構成例を示すシステム図である。なお、方向について言及する 場合には、図示した、方向を示す矢印を参照する。また、図 2のシステム図において 、実線矢印は水の流れ、破線矢印は電気の流れを、それぞれ表している。 (Configuration of water purification device 1) FIG. 1 is a schematic perspective view of a water purification apparatus 1 according to the first embodiment of the present invention. FIG. 2 is a system diagram showing a configuration example of the water purification apparatus 1. When referring to the direction, refer to the arrow indicating the direction shown. In the system diagram of FIG. 2, solid arrows indicate the flow of water, and broken arrows indicate the flow of electricity.
[0053] 主として図 2を参照して、この水浄ィ匕装置 1は、この発明に係る水オゾン混合装置 2 を含んでおり、この水オゾン混合装置 2によって水にオゾンが混合されて、水の浄ィ匕 が行なわれる。より具体的には、水浄化装置 1は、井戸または河川などの水源 3から 吸込管 4を通して原水を吸い込むためのポンプ 5と、ポンプ 5から吐出される原水の 水路である給水路および導入路としての原水給水管 6と、原水給水管 6に接続され、 原水にオゾンを混合させる気液混合器としてのオゾン混合器 7と、オゾンを発生し、発 生したオゾンをオゾン混合器 7へ供給するオゾン供給装置 8と (これらオゾン混合器 7 およびオゾン供給装置 8が水オゾン混合装置 2に含まれる。)、オゾン混合器 7でォゾ ンが混合されて浄化された浄水をユーザ使用側へ供給するための浄水給水管 9 (導 出路、浄水給水路およびオゾン水出力管)と、浄水給水管 9に介挿され、浄水中に残 存するオゾンを分解するためのオゾン分解装置としてのオゾン脱臭カラム 10とを備え ており、これらによって水源 3の水が浄ィ匕され、さらに、残存オゾンも分解されて、生 活用水としてユーザに供給される。 Referring mainly to FIG. 2, this water purification apparatus 1 includes a water ozone mixing apparatus 2 according to the present invention, and ozone is mixed with water by the water ozone mixing apparatus 2 to produce water. No purification process is performed. More specifically, the water purification apparatus 1 includes a pump 5 for sucking raw water from a water source 3 such as a well or a river through a suction pipe 4, and a water supply channel and an introduction channel that are raw water channels discharged from the pump 5. The raw water supply pipe 6 and the raw water supply pipe 6 are connected to the raw water supply pipe 6 and the ozone mixer 7 as a gas-liquid mixer that mixes ozone with the raw water, and ozone is generated and the generated ozone is supplied to the ozone mixer 7 The ozone supply device 8 (the ozone mixer 7 and the ozone supply device 8 are included in the water ozone mixing device 2), and the purified water mixed with ozone in the ozone mixer 7 is supplied to the user side. Purified water supply pipe 9 (leading path, purified water supply path and ozone water output pipe) and ozone deodorizing column inserted into the purified water supply pipe 9 as an ozone decomposing unit for decomposing ozone remaining in the purified water With 10 And these water water source 3 is Kiyoshii spoon by further residual ozone is decomposed and supplied to the user as raw utilize water.
[0054] ポンプ 5には、原水給水管 6の流路圧力(吐出側の流路圧力)を検知するための圧 力センサ 11と、インペラ(図示せず)と、このインペラを回転させるためのモータ(図示 せず)とが備えられている。圧力センサ 11は、吐出側流路圧力が所定圧力以上であ れば OFFし、所定圧力未満であれば ONするセンサである。圧力センサ 11の ONZ OFF信号は、後述する制御部 49へ与えられ、制御信号によって、圧力センサ 11が ONすると、ポンプ 5が駆動される。よって、原水は、常に所定圧以上でオゾン混合器 7へ送られる。 [0054] The pump 5 includes a pressure sensor 11 for detecting the flow path pressure (discharge-side flow path pressure) of the raw water supply pipe 6, an impeller (not shown), and a rotation sensor for rotating the impeller. A motor (not shown) is provided. The pressure sensor 11 is a sensor that is turned off when the discharge-side flow path pressure is equal to or higher than a predetermined pressure, and is turned on when it is lower than the predetermined pressure. The ONZ OFF signal of the pressure sensor 11 is given to the control unit 49 described later. When the pressure sensor 11 is turned on by the control signal, the pump 5 is driven. Therefore, the raw water is always sent to the ozone mixer 7 at a predetermined pressure or higher.
[0055] ここで、図 3を参照して、オゾン混合器 7の構成について説明する。図 3は、オゾン 混合器 7の図解図である。なお、図 3において、実線矢印は水の流れ、破線矢印は 気体の流れを、それぞれ表している。 Here, the configuration of the ozone mixer 7 will be described with reference to FIG. FIG. 3 is an illustration of the ozone mixer 7. In FIG. 3, the solid line arrows represent the water flow, and the broken line arrows represent the gas flow.
オゾン混合器 7は、一端に水の流入口 12、他端に水の流出口 13を有する水流路 1
4を備える。 The ozone mixer 7 has a water flow path 1 having a water inlet 12 at one end and a water outlet 13 at the other end. 4 is provided.
[0056] 水流路 14は、その途中が絞られ、内径が狭くされた絞り部 15を有している。また、 絞り部 15には、気体通路 16が接続されている。気体通路 16は、その途中に逆止弁 17を有し、その下方に 3方分岐 18を有している。 3方分岐 18の側方に開口した、気 体入口としての入口 19が、オゾンが入ってくる入口であり、オゾンが出る上端の、気 体出口としての出口 20は、絞り部 15に対し、 T字状に連通している。 [0056] The water channel 14 has a constricted portion 15 that is constricted in the middle and narrowed in inner diameter. A gas passage 16 is connected to the throttle portion 15. The gas passage 16 has a check valve 17 in the middle thereof and a three-way branch 18 below the check valve 17. An inlet 19 as a gas inlet that opens to the side of the three-way branch 18 is an inlet for ozone, and an outlet 20 as a gas outlet at the upper end of the ozone exit is connected to the throttle 15. It communicates in a T shape.
[0057] 流入口 12から流入する水は、絞り部 15においてその流速が増す。この流速の増し た水の流れによって、絞り部 15内は負圧になるので、この負圧により、気体通路 16 内に流入したオゾンは、出口 20から水流路 14内へ吸い込まれ、たとえば、直径が 50 m以下の超微細気泡(いわゆるマイクロバブル)として水に混入される。このように、 水流路 14に絞り部 15を設けてベンチユリ構造にすると、たとえば、ブロアなどの装置 を設けず、絞り部 15内の水の流れにより発生する負圧を利用して、水流路 14内にォ ゾンを効率的に取り込むことができる。 [0057] The flow rate of water flowing in from the inflow port 12 is increased in the throttle portion 15. Due to the flow of water with the increased flow velocity, the inside of the throttle portion 15 becomes a negative pressure. Due to this negative pressure, the ozone that has flowed into the gas passage 16 is sucked into the water flow path 14 from the outlet 20 and has a diameter of, for example, Is mixed into water as ultrafine bubbles (so-called microbubbles) of 50 m or less. In this way, when the throttle portion 15 is provided in the water flow path 14 to form a bench-lily structure, for example, a device such as a blower is not provided, and the water flow path 14 is utilized by utilizing the negative pressure generated by the water flow in the throttle portion 15. The ozone can be taken in efficiently.
[0058] なお、この実施形態にお!、ては、オゾン混合器 7をベンチユリ構造として説明したが 、オゾン混合器 7として、たとえば、 T字管なども使用することができる。 T字管であれ ば、絞り部 15がなぐ水路中に径の細い部分がないため、水路が異物などによって 目詰まりすることを防止することができる。 In this embodiment, the ozone mixer 7 has been described as a bench-lily structure. However, for example, a T-shaped tube can be used as the ozone mixer 7. In the case of a T-shaped tube, there is no portion with a small diameter in the water channel formed by the throttling portion 15, so that the water channel can be prevented from being clogged with foreign substances.
図 2を参照して、オゾン供給装置 8は、空気に対して放電を行なうことにより、空気中 の酸素をオゾンに変換するオゾン発生装置 21を有する。 Referring to FIG. 2, ozone supply device 8 has an ozone generator 21 that converts oxygen in the air into ozone by discharging the air.
[0059] オゾン発生装置 21は、その内部に放電素子回路(図示せず)および放電電極板( 図示せず)を有しており、制御部 49 (後述)と電気的に接続されている。 The ozone generator 21 has a discharge element circuit (not shown) and a discharge electrode plate (not shown) inside, and is electrically connected to a control unit 49 (described later).
また、オゾン供給装置 8には、後述する筐体 27外の空気を吸い込むための吸気管 22、吸気管 22に挿入されたフィルタ 23、供給管およびオゾン供給路としてのオゾン 供給管 24、オゾン供給管 24に挿入された逆止弁 17が含まれており、吸気管 22は、 オゾン発生装置 21の吸気口 25に接続され、オゾン供給管 24は、オゾン発生装置 21 の排気口 26に接続されている。制御部 49 (後述)によってオゾン発生装置 21が ON にされると、吸気口 25からオゾン発生装置 21内に取り込まれた空気に対し、電極板( 図示せず)で放電 (たとえば、沿面放電、無声放電など)されることにより、オゾンが生
成する。吸気口 25から流入する空気に含まれる塵埃は、フィルタ 23によって捕獲さ れるため、オゾン発生装置 21に塵埃が混入して、放電素子(図示せず)や電極板(図 示せず)が破損することを防止することができる。 Also, the ozone supply device 8 includes an intake pipe 22 for sucking air outside the casing 27, which will be described later, a filter 23 inserted in the intake pipe 22, an ozone supply pipe 24 serving as a supply pipe and an ozone supply path, an ozone supply A check valve 17 inserted into the pipe 24 is included, the intake pipe 22 is connected to the inlet 25 of the ozone generator 21, and the ozone supply pipe 24 is connected to the exhaust 26 of the ozone generator 21. ing. When the ozone generator 21 is turned on by the control unit 49 (described later), the air taken into the ozone generator 21 from the intake port 25 is discharged by an electrode plate (not shown) (for example, creeping discharge, (Such as silent discharge) To do. Dust contained in the air flowing in from the air inlet 25 is captured by the filter 23, so that dust enters the ozone generator 21 and damages the discharge element (not shown) and the electrode plate (not shown). This can be prevented.
[0060] 生成されたオゾンは、排気口 26から流出し、逆止弁 17、オゾン供給管 24を通って 3方分岐 18の入口 19へ供給され得る(図 3参照)。 [0060] The generated ozone flows out from the exhaust port 26, and can be supplied to the inlet 19 of the three-way branch 18 through the check valve 17 and the ozone supply pipe 24 (see FIG. 3).
オゾン混合器 7でオゾンが供給され、オゾンによる除菌'殺菌が行なわれて浄化さ れた水は、浄水給水管 9を流れ、オゾン脱臭カラム 10において残存オゾンが分解さ れ、ユーザ使用側に供給される。オゾン脱臭カラム 10におけるオゾン分解について 具体的に説明すると、オゾン脱臭カラム 10には、たとえば、活性炭などが充填されて おり、この活性炭と浄水中に残存している未反応のオゾンが酸化反応することにより、 未反応のオゾンが分解される。このように分解されることによって、ユーザ使用側に供 給される水中にオゾンは存在せず、ユーザは安心して浄水を使用することができる。 Ozone is supplied from the ozone mixer 7, and the water purified by sterilization and sterilization by ozone flows through the purified water supply pipe 9, and the residual ozone is decomposed in the ozone deodorizing column 10, and the user uses it. Supplied. Specifically, ozone decomposition in the ozone deodorization column 10 is described. The ozone deodorization column 10 is filled with activated carbon, for example, and this activated carbon and unreacted ozone remaining in the purified water undergo an oxidation reaction. As a result, unreacted ozone is decomposed. By being decomposed in this way, ozone does not exist in the water supplied to the user side, and the user can use the purified water with peace of mind.
[0061] 以上説明した流れで水の浄ィ匕が行なわれ、浄化された水がユーザに供給される。 [0061] Water purification is performed according to the flow described above, and the purified water is supplied to the user.
水浄ィ匕装置 1においては、このような水の浄化が、水オゾン混合装置 2が収容される 筐体 27内で行なわれる(図 1参照)。 In the water purification apparatus 1, such water purification is performed in a casing 27 in which the water ozone mixing apparatus 2 is accommodated (see FIG. 1).
筐体 27は、ポンプ 5より上方に配置され、その表面には、水浄化装置 1の運転に関 する各種操作や各種表示を行なう操作部としての操作表示部 55が形成されている。 操作表示部 55は、制御部 49 (後述)と電気的に接続されている。そのため、ユーザ は操作表示部 55を操作することにより、制御部 49 (後述)に指示を与え、水浄化装置 1の運転を行なうことができ、また、その運転状態を知ることができる。 The casing 27 is disposed above the pump 5, and on the surface thereof, an operation display section 55 is formed as an operation section for performing various operations and various displays related to the operation of the water purification device 1. The operation display unit 55 is electrically connected to a control unit 49 (described later). Therefore, the user can operate the water purification apparatus 1 by operating the operation display unit 55 to give an instruction to the control unit 49 (described later) and know the operation state.
[0062] また、筐体 27には、上述したように、ポンプ 5およびオゾン発生装置 21と電気的に 接続されている制御部 49が収容されている。このように、水の浄化の操作 '制御'動 作に関連する、浄ィ匕装置として、操作表示部 55が筐体 27に形成され、オゾン発生装 置 21、オゾン混合器 7および制御部 49が筐体 27に収容されているため、ユーザは、 たとえば、定期的な部品交換や、故障した箇所の修理などのメンテナンスを容易に 行なうことができる。なお、制御部 49の電気的構成については、図 7を参照して、後 に詳述する。 [0062] Further, as described above, the casing 27 accommodates the control unit 49 that is electrically connected to the pump 5 and the ozone generator 21. As described above, the operation display unit 55 is formed in the casing 27 as a purification device related to the operation 'control' operation of the water purification, and the ozone generation device 21, the ozone mixer 7 and the control unit 49. Is housed in the casing 27, for example, the user can easily perform maintenance such as periodic replacement of parts and repair of a failed part. The electrical configuration of the control unit 49 will be described in detail later with reference to FIG.
[0063] また、筐体 27の外側面には、オゾン脱臭カラム 10が取り付けられている。オゾン脱
臭カラム 10が、筐体 27の近傍に設けられているため、オゾン脱臭カラム 10のメンテ ナンス、たとえば、オゾン脱臭カラム 10の中に充填されている活性炭の交換やオゾン 脱臭カラム 10本体の交換などを容易に行なうことができる。さらに、筐体 27の内部で はなぐ外部に設けられているため、メンテナンスをする際、筐体 27の蓋などを開ける 必要もない。 Further, an ozone deodorizing column 10 is attached to the outer surface of the casing 27. Ozone desorption Since the odor column 10 is provided in the vicinity of the casing 27, maintenance of the ozone deodorization column 10, such as replacement of activated carbon filled in the ozone deodorization column 10 or replacement of the ozone deodorization column 10 main body, etc. Can be easily performed. Furthermore, since it is provided outside the housing 27, there is no need to open the lid of the housing 27 during maintenance.
[0064] また、筐体 27内において、オゾン発生装置 21は、 3方分岐 18より上方に配置され ている。このため、たとえ 3方分岐 18に水が浸入することがあっても、その水がオゾン 発生装置 21まで浸入することは防止できる。 In the casing 27, the ozone generator 21 is disposed above the three-way branch 18. For this reason, even if water enters the three-way branch 18, it can be prevented that the water enters the ozone generator 21.
なお、図 1に示す、たとえば、原水給水管 6 (エルボー管 28の下流側)および浄水 給水管 9 (オゾン脱臭カラム 10の上流側)を着脱可能とし、筐体 27を、水の浄化が必 要される場所に持ち運ぶことができる構成にすることもできる。 For example, as shown in FIG. 1, the raw water supply pipe 6 (downstream of the elbow pipe 28) and the purified water supply pipe 9 (upstream of the ozone deodorizing column 10) can be attached and detached, and the casing 27 must be purified. It can also be configured to be portable where needed.
[0065] 再び図 3を参照して、水流路 14に接続された気体通路 16には、逆止弁 17が介揷 されている。逆止弁 17は、気体通路 16内を下から上へ流れる流れ (特にオゾンの流 れ)は許容する力 上から下へ流れる流れ (特に水の流れ)を防止するためのもので ある。 Referring to FIG. 3 again, a check valve 17 is interposed in the gas passage 16 connected to the water channel 14. The check valve 17 is for preventing a flow (especially a flow of water) flowing from the bottom to the top in the gas passage 16 (especially a flow of ozone) from an upper side to a lower side.
ここで、図 4を参照して、逆止弁 17の構成例について説明する。図 4は、逆止弁 17 の図解図であり、図 4 (a)は水流路 14に水が流れていないとき(以下、通常時とする。 )の状態を示し、図 4 (b)は水流路 14に水が流れているとき(以下、吸引時とする。)の 状態を示す。なお、図 4において、破線矢印は気体の流れを示す。 Here, a configuration example of the check valve 17 will be described with reference to FIG. Fig. 4 is an illustrative view of the check valve 17. Fig. 4 (a) shows the state when water is not flowing in the water flow path 14 (hereinafter referred to as normal time), and Fig. 4 (b) The state when water is flowing in the water channel 14 (hereinafter referred to as suction) is shown. In FIG. 4, the dashed arrows indicate the gas flow.
[0066] 逆止弁 17は、弁室 29と、弁室 29内を移動し得るボール弁 30と、弁室 29の一側(た とえば、下側)および他側(たとえば、上側)に形成された流体通過穴としての入口 31 および出口 32と、ボール弁 30が常時入口 31を塞ぐように付勢するばね 33とを有す る。弁室 29の形状は、この例では上方に向けて先細りとなるロケット形状である力 こ れに限定されない。要は、ボール弁 30が弁室 29内を移動でき、入口 31を塞がない ときに、入口 31と出口 32との間を流体が移動できる形状であればよい。 [0066] The check valve 17 includes a valve chamber 29, a ball valve 30 that can move in the valve chamber 29, one side (for example, the lower side) and the other side (for example, the upper side) of the valve chamber 29. The inlet 31 and the outlet 32 are formed as fluid passage holes, and the spring 33 is urged so that the ball valve 30 always closes the inlet 31. The shape of the valve chamber 29 is not limited to the force that is a rocket shape that tapers upward in this example. The point is that the ball valve 30 can move in the valve chamber 29 and the fluid can move between the inlet 31 and the outlet 32 when the inlet 31 is not blocked.
[0067] ボール弁 30は、たとえば、公知のゴムまたは榭脂などの球体であり、入口 31の径ょ り大き 、径で形成されて 、る。 [0067] The ball valve 30 is, for example, a known sphere such as rubber or resin, and has a diameter larger than that of the inlet 31.
ばね 33は、吸引時に、負圧によりボール弁 30が上方へ移動可能な付勢力を備え
ている。ばね 33は、コイルばねを例示している力 たとえば、棒状ばねや板状ばねな どでもよ 、。 The spring 33 has a biasing force that allows the ball valve 30 to move upward due to negative pressure during suction. ing. The spring 33 may be a force exemplifying a coil spring, such as a bar spring or a plate spring.
[0068] 逆止弁 17は、その入口 31が、通常時には、図 4 (a)に示すように、ボール弁 30の 自重およびばね 33の付勢力によって塞がれている。そのため、仮に水が弁室 29内 に浸入してきても、その水は、弁室 29内において塞き止められる。 As shown in FIG. 4A, the check valve 17 is normally closed at its inlet 31 by the weight of the ball valve 30 and the biasing force of the spring 33. Therefore, even if water has entered the valve chamber 29, the water is blocked in the valve chamber 29.
一方、吸引時には、図 4 (b)に示すように、ボール弁 30が負圧により吸引されて、塞 がれていた入口 31が、弁室 29内部と連通する状態となる。そのため、オゾン発生装 置 21→オゾン供給管 24→3方分岐 18の入口 19→気体通路 16とつながる経路が連 通する状態となり、オゾンは、気体通路 16に供給される。なお、吸引時には、水は水 流路 14内を流れているため、その水が出口 20から気体通路 16へ漏れ出すことはな い。 On the other hand, at the time of suction, as shown in FIG. 4B, the ball valve 30 is sucked by negative pressure, and the blocked inlet 31 is in communication with the inside of the valve chamber 29. For this reason, the route connecting the ozone generation device 21 → the ozone supply pipe 24 → the inlet 19 of the three-way branch 18 → the gas passage 16 is connected, and ozone is supplied to the gas passage 16. At the time of suction, since water flows in the water channel 14, the water does not leak from the outlet 20 to the gas passage 16.
[0069] また、逆止弁 17が設けられていれば、たとえば、吸引状態力も通常状態に切り替わ り、水流路 14内の水の流れが急に止められることにより生じるウォーターハンマー現 象などが原因で、水流路 14の水が出口 20から気体通路 16内に浸入してきても、弁 室 29の入口 31は、ボール弁 30によって塞がれているため、その浸入した水は、逆 止弁 17で塞き止められる。そのため、水が逆止弁 17より下流側、つまり、オゾン発生 装置 21側に浸入することを阻止することができる。また、万一、気体通路 16に介挿さ れた逆止弁 17が破損などして、水がその逆止弁 17を通過した場合であっても、ォゾ ン供給管 24にも、さらに逆止弁 17が介挿されているため、この逆止弁 17によって、 水を塞き止めることができ、オゾン発生装置 21に水が浸入することを阻止することが できる。 [0069] If the check valve 17 is provided, for example, the suction state force is also switched to the normal state, and a water hammer phenomenon or the like caused by suddenly stopping the flow of water in the water flow path 14 may occur. For this reason, even if water in the water flow path 14 enters the gas passage 16 from the outlet 20, the inlet 31 of the valve chamber 29 is blocked by the ball valve 30, so that the water that has entered the check valve Can be blocked at 17. Therefore, it is possible to prevent water from entering the downstream side of the check valve 17, that is, the ozone generator 21 side. Even if the check valve 17 inserted in the gas passage 16 is damaged and water passes through the check valve 17, the ozone supply pipe 24 is further reversed. Since the stop valve 17 is inserted, the check valve 17 can block water and prevent the water from entering the ozone generator 21.
[0070] なお、気体通路 16の逆止弁 17は、必要に応じて、直列状に複数配置してもよい。 [0070] Note that a plurality of check valves 17 in the gas passage 16 may be arranged in series if necessary.
図 3を参照して、 3方分岐 18には、上述した入口 19の他に、下方に向かって開口さ れた排水用開口としての排水口 34が備えられており、排水口 34には、気体通路 16 へ浸入した水を排水するための排水路としての排水管 35が接続されている(図 2参 照)。 Referring to FIG. 3, the three-way branch 18 is provided with a drain outlet 34 as a drain opening that opens downward in addition to the inlet 19 described above. A drain pipe 35 is connected as a drainage channel for draining water that has entered the gas passage 16 (see Fig. 2).
排水管 35は、 3方分岐 18から下方に伸びており、その途中には、オゾン供給中に 、排水管 35を通って空気が流入することを抑制するための、空気流入抑制手段とし
てのドレン弁 36が設けられている。また、排水管 35の下端の出口には、出口から流 れ出る水を受けるための水受け部としての水受け皿 37が備えられている(図 2参照) The drain pipe 35 extends downward from the three-way branch 18, and in the middle of the drain pipe 35 serves as an air inflow suppression means for suppressing air from flowing through the drain pipe 35 during ozone supply. All drain valves 36 are provided. In addition, the outlet at the lower end of the drain pipe 35 is provided with a water tray 37 as a water receiver for receiving water flowing out from the outlet (see Fig. 2).
[0071] 排水管 35は、気体通路 16に浸入した水を外部に排水するためのものである。上述 したように、気体通路 16には逆止弁 17が介挿されているため、通常時、浸入した水 は、ボール弁 30によって塞き止められる力 時間の経過と共に、ボール弁 30と入口 3 1とのわず力な隙間力も水が漏れ出し、 3方分岐 18を経て、排水管 35へ流れ落ちる 場合がある。たとえそのような場合であっても、排水管 35が設けられているので、逆 止弁 17で塞き止めることができな力つた水を外部に排水することができる。 The drain pipe 35 is for draining water that has entered the gas passage 16 to the outside. As described above, since the check valve 17 is inserted in the gas passage 16, normally, the infiltrated water is blocked by the ball valve 30. Even if it is a strong gap force with 1, water leaks out and may flow down to the drain pipe 35 via the three-way branch 18. Even in such a case, since the drain pipe 35 is provided, the powerful water that cannot be blocked by the check valve 17 can be drained to the outside.
[0072] また、排水管 35の流路径は、一定時間(たとえば、 10分)あたり出口 20から気体通 路 16に漏れ出す水量以上の水量を排水できるように設計されている。よって、たとえ ば、逆止弁 17が設けられていない場合や、逆止弁 17が破損した場合でも、気体通 路 16に漏れ出した水は、排水管 35内で停滞せずに、円滑に外部に排水される。つ まり、水が、排水管 35内に停滞して、 3方分岐 18の入口 19からオゾン発生装置 21側 に流れ出ることを防止することができる。 [0072] Further, the flow path diameter of the drain pipe 35 is designed so as to be able to drain a water amount greater than or equal to the amount of water leaking from the outlet 20 to the gas passage 16 per certain time (for example, 10 minutes). Therefore, for example, even if the check valve 17 is not provided or the check valve 17 is damaged, the water leaked into the gas passage 16 does not stagnate in the drain pipe 35 and smoothly flows. Drained outside. In other words, it is possible to prevent water from stagnating in the drain pipe 35 and flowing out from the inlet 19 of the three-way branch 18 to the ozone generator 21 side.
[0073] ドレン弁 36は、オゾン供給中に、排水管 35の水の流れ方向とは逆方向に空気が流 入することを抑制するための弁である。 The drain valve 36 is a valve for suppressing the inflow of air in the direction opposite to the direction of water flow in the drain pipe 35 during ozone supply.
ここで図 5を参照して、ドレン弁 36および水受け皿 37などの構成例について説明 する。図 5は、ドレン弁 36の一例を示す図解図であり、図 5 (a)は通常時の状態を示 し、図 5 (b)は吸引時の状態を示す。なお、図 5において、実線矢印は水の流れを示 し、破線矢印は気体の流れを示す。また、図 5 (b)については、図 5 (a)に示す水受け 皿 37などの構成を示す図を省略する。 Here, referring to FIG. 5, a configuration example of the drain valve 36 and the water tray 37 will be described. FIG. 5 is an illustrative view showing an example of the drain valve 36. FIG. 5 (a) shows a normal state, and FIG. 5 (b) shows a state during suction. In FIG. 5, solid arrows indicate the flow of water, and broken arrows indicate the flow of gas. In FIG. 5 (b), the illustration of the configuration of the water tray 37 shown in FIG. 5 (a) is omitted.
[0074] 図 5を参照して、ドレン弁 36は、収容室としての弁室 38と、弁室 38内に収容された ボール弁 39とを有する。 Referring to FIG. 5, drain valve 36 has a valve chamber 38 as a storage chamber and a ball valve 39 stored in valve chamber 38.
弁室 38の上面には、入口 40が形成されている。弁室 38の下面には、ボール弁 39 が自重で位置する凹所 41が形成されていて、この凹所 41を避けた下面に出口 42が 形成されている。そして、ドレン弁 36は、これら入口 40と出口 42とを連通させる流路 力 排水管 35の流路の一部となるように、排水管 35に介挿されている。
[0075] ボール弁 39は、たとえば、公知のゴムまたは榭脂などの球体であり、入口 40の径ょ り大きく形成されている。 An inlet 40 is formed on the upper surface of the valve chamber 38. A recess 41 in which the ball valve 39 is located by its own weight is formed on the lower surface of the valve chamber 38, and an outlet 42 is formed on the lower surface avoiding the recess 41. The drain valve 36 is inserted into the drain pipe 35 so as to be a part of the channel of the channel force drain pipe 35 that allows the inlet 40 and the outlet 42 to communicate with each other. [0075] The ball valve 39 is, for example, a known sphere such as rubber or resin, and is formed to be larger in diameter than the inlet 40.
ボール弁 39は、通常時には、図 5 (a)に示すように、その自重により、弁室 38内の 凹所 41に位置する。そのため、排水管 35を落下する水は、ドレン弁 36を通り排水さ れる。 Normally, the ball valve 39 is positioned in the recess 41 in the valve chamber 38 due to its own weight, as shown in FIG. Therefore, the water falling through the drain pipe 35 is drained through the drain valve 36.
[0076] 一方、吸引時には、図 5 (b)に示すように、ボール弁 39が負圧により吸引されて、入 口 40力塞力れる。そのため、ドレン弁 36より上流側に位置する排水管 35が、ドレン 弁 36を隔てて外部と遮断される。 On the other hand, at the time of suction, as shown in FIG. 5 (b), the ball valve 39 is sucked by negative pressure, and the inlet 40 is blocked. Therefore, the drain pipe 35 located upstream from the drain valve 36 is blocked from the outside through the drain valve 36.
水受け皿 37は、その内部が、水受け皿 37の周面壁の高さより低い仕切り壁 73によ つて 2つの部屋に仕切られており、その 2つの部屋の一方の部屋力 排水管 35の出 ロカも排水される水を受ける水受け室 74であり、他方の部屋力 水受け室 74から仕 切り壁 73を超えて溢れ出した水が入ってくる溢水室 75である。そして、溢水室 75に は、筐体 27の外部に通じる排出管 76が接続されている(図 2参照)。排水管 35の出 ロカも排水された水は、いったん水受け室 74で受けられ、その水位が仕切り壁 73の 高さ以下の場合には、溢水室 75に溢れ出さず、時間の経過と共に蒸発する。一方、 その水位が仕切り壁 73の高さを超える場合には、その超えた分が、図 5 (a)の実線矢 印に示すように、溢水室 75に溢れ出し、排出管 76から外部に排出される。 The interior of the water tray 37 is divided into two rooms by a partition wall 73 that is lower than the height of the peripheral wall of the water tray 37, and the output of the room power drain pipe 35 of the two rooms is also It is a water receiving chamber 74 that receives the drained water, and an overflow chamber 75 into which the water overflowing from the other chamber strength water receiving chamber 74 beyond the cutting wall 73 enters. The overflow chamber 75 is connected with a discharge pipe 76 that leads to the outside of the casing 27 (see FIG. 2). The water drained from the drain pipe 35 is once received in the water receiving chamber 74, and when the water level is below the height of the partition wall 73, it does not overflow into the overflow chamber 75 and evaporates over time. To do. On the other hand, if the water level exceeds the height of the partition wall 73, the excess amount overflows into the overflow chamber 75 as shown by the solid line arrow in FIG. Discharged.
[0077] また、水受け皿 37周面壁の、仕切り壁 73の上端部よりやや低い位置には、水検知 センサとしての水漏れセンサ 45が設けられて!/、る。 [0077] Further, a water leak sensor 45 as a water detection sensor is provided at a position slightly lower than the upper end of the partition wall 73 on the peripheral surface wall of the water tray 37!
水漏れセンサ 45は、水受け室 74に溜められた水の水位力 所定水位 (たとえば、 図 5 (a)における破線の高さ)以上であると検知すると ONし、それ以外の場合には O FFするセンサである。水漏れセンサ 45の ONZOFF信号は、制御部 49へ与えられ 、制御信号によって、水漏れセンサ 45が ONし、所定の時間経過すると、ポンプ 5お よびオゾン発生装置 21が制御部 49によって OFFにされる。なお、水漏れセンサ 45 による検知の流れについては、図 9を参照して、後に詳説する。 The water leak sensor 45 is turned on when it detects that the water level force of the water stored in the water receiving chamber 74 is higher than a predetermined water level (for example, the height of the broken line in Fig. 5 (a)). It is a sensor to FF. The ONZOFF signal of the water leak sensor 45 is given to the control unit 49. When the water leak sensor 45 is turned ON by the control signal and a predetermined time elapses, the pump 5 and the ozone generator 21 are turned OFF by the control unit 49. The The flow of detection by the water leak sensor 45 will be described in detail later with reference to FIG.
[0078] 図 6を参照して、ドレン弁 36の第 2の構成例について説明する。 A second configuration example of the drain valve 36 will be described with reference to FIG.
この第 2の構成例のドレン弁 36は、弁室 38と、弁室 38内に収容された遮断部材と してのディスク弁 46を有する。また、弁室 38内には、ディスク弁 46を受けるストッパー
47が備えられている。弁室 38は、上面に入口 40が形成され、ストッパー 47下方の下 面に大きな出口 42が形成されている。 The drain valve 36 of the second configuration example has a valve chamber 38 and a disc valve 46 as a blocking member accommodated in the valve chamber 38. The valve chamber 38 has a stopper for receiving the disc valve 46. 47 is provided. The valve chamber 38 has an inlet 40 formed on the upper surface and a large outlet 42 formed on the lower surface below the stopper 47.
[0079] ディスク弁 46は、たとえば、公知のゴムまたは榭脂などの円板形状の弁であり、入 口 40の径より大き!/、径で形成されて 、る。 [0079] The disc valve 46 is, for example, a known disc-shaped valve such as rubber or grease, and is formed with a diameter larger than the diameter of the inlet 40.
ストッパー 47は、ディスク弁 46を受け止めた場合に、ディスク弁 46の周囲と弁室 38 の内壁との間に隙間 48が形成されるような高さに配置される。 The stopper 47 is disposed at such a height that a gap 48 is formed between the periphery of the disc valve 46 and the inner wall of the valve chamber 38 when the disc valve 46 is received.
ディスク弁 46は、通常時には、図 6 (a)に示すように、その自重により、ストッパー 47 によって受け止められる。そのため、入口 40側の排水管 35と出口 42側の排水管 35 とが、ドレン弁 36の内部を介して連通する状態となり、漏れ出す水は、排水管 35を介 して排水される。 The disc valve 46 is normally received by a stopper 47 by its own weight as shown in FIG. 6 (a). Therefore, the drain pipe 35 on the inlet 40 side and the drain pipe 35 on the outlet 42 side communicate with each other through the drain valve 36, and the leaked water is drained through the drain pipe 35.
[0080] 一方、吸引時には、図 6 (b)に示すように、ディスク弁 46が負圧により吸引されて、 入口 40が塞がれる。ドレン弁 36より上流側に位置する排水管 35が、ドレン弁 36を隔 てて外部と遮断される。 On the other hand, at the time of suction, as shown in FIG. 6 (b), the disc valve 46 is sucked by negative pressure, and the inlet 40 is closed. A drain pipe 35 located upstream from the drain valve 36 is shut off from the outside through the drain valve 36.
このように、吸引時、つまり入口 19へのオゾン供給中には、排水管 35がドレン弁 36 を隔てて外部と遮断されており、外部の空気が排水管 35から 3方分岐 18を経て、気 体通路 16へ流入してくることがないため、供給されるオゾンの濃度が低くなることを防 止でき、一定の濃度のオゾンを安定して供給することができる。その結果、効率的に 水の浄ィ匕処理を行なうことができる。また、このような排水管 35の遮断を、絞り部 15で 発生する負圧を利用して行なうことができるため、別に操作をする必要がなく自動的 に、外部からの空気の流入を防止できる。 Thus, during suction, that is, during ozone supply to the inlet 19, the drain pipe 35 is shut off from the outside through the drain valve 36, and the external air passes through the drain pipe 35 through the three-way branch 18, Since it does not flow into the gas passage 16, it is possible to prevent the supplied ozone concentration from being lowered, and to supply ozone at a constant concentration stably. As a result, water purification can be performed efficiently. In addition, since the drain pipe 35 can be shut off by using the negative pressure generated in the throttle portion 15, it is possible to automatically prevent the inflow of air from the outside without any separate operation. .
[0081] なお、この実施形態においては、オゾン供給時における空気の流入をドレン弁 36 によって阻止した力 ドレン弁 36の代わりに、たとえば、電磁バルブなどを設けて、制 御部 49 (後述)によって制御することもできる。この場合、水浄ィ匕装置 1の運転中には 、電磁バルブを閉じて空気が流入しないようにし、停止中には、電磁バルブを開けて 出口 20から漏れ出す水を排水できるようにする。 Note that in this embodiment, a force that prevents the inflow of air during ozone supply by the drain valve 36, for example, an electromagnetic valve is provided instead of the drain valve 36, and is controlled by the control unit 49 (described later). It can also be controlled. In this case, when the water purification apparatus 1 is in operation, the electromagnetic valve is closed so that air does not flow in. When the water purification apparatus 1 is stopped, the electromagnetic valve is opened so that water leaking from the outlet 20 can be drained.
[0082] この水浄ィ匕装置 1には、たとえば、ポンプ 5やオゾン発生装置 21などを制御するた めのオゾン供給制御手段および制御装置としての制御部 49が備えられており、制御 部 49は、筐体 27の内部に収容され、外部の電源 50と接続されている(図 2参照)。こ
こで、図 7を参照して、制御部 49について説明する。 The water purification apparatus 1 is provided with, for example, an ozone supply control means for controlling the pump 5, the ozone generator 21 and the like, and a control unit 49 as a control device. Is housed inside the casing 27 and connected to an external power source 50 (see FIG. 2). This Now, the controller 49 will be described with reference to FIG.
図 7は、この水浄ィ匕装置 1の電気的構成を示すブロック図であって、この発明に関 連する部分を示した図である。 FIG. 7 is a block diagram showing an electrical configuration of the water purification apparatus 1 and shows a portion related to the present invention.
[0083] 制御部 49は、たとえば、マイクロコンピュータなどで構成されており、 CPU51と、 R OM52と、 RAM53と、タイマ 54とを備えている。また、制御部 49は、操作表示部 55 、オゾン発生装置 21、ポンプ 5、水漏れセンサ 45および圧力センサ 11と、それぞれ 電気的に接続されている。 The control unit 49 is composed of, for example, a microcomputer, and includes a CPU 51, a ROM 52, a RAM 53, and a timer 54. The control unit 49 is electrically connected to the operation display unit 55, the ozone generator 21, the pump 5, the water leak sensor 45, and the pressure sensor 11, respectively.
操作表示部 55には、制御部 49の ONZOFFを行なうための電源スィッチ 56、ォゾ ン発生装置 21の ONZOFFを行なうためのオゾンスィッチ 57ならびにユーザに対し て各種表示を行なうための電源 LED58、オゾン LED59および異常 LED60などが それぞれ設けられている。 The operation display unit 55 includes a power switch 56 for ONZOFF of the control unit 49, an ozone switch 57 for ONZOFF of the ozone generator 21, and a power LED 58 for performing various displays to the user, ozone LED59, abnormal LED60, etc. are provided respectively.
[0084] 以上説明したこの水浄ィ匕装置 1の構成中、オゾン混合器 7と、オゾン供給装置 8と、 排水管 35と、ドレン弁 36とから構成される部分が、この発明に係る水オゾン混合装置 2として機能し、水浄ィ匕装置 1においては、ユーザが操作表示部 55を操作することに より、水オゾン混合装置 2が制御部 49に制御されることによって、水にオゾンが混合さ れて水の浄化が行なわれる。 [0084] In the configuration of the water purification apparatus 1 described above, the portion composed of the ozone mixer 7, the ozone supply device 8, the drain pipe 35, and the drain valve 36 is the water according to the present invention. It functions as the ozone mixing device 2, and in the water purification device 1, the user operates the operation display unit 55 so that the water ozone mixing device 2 is controlled by the control unit 49, so that ozone is added to the water. Water is purified by mixing.
(水浄ィ匕装置 1の制御) (Control of water purification equipment 1)
図 8は、水浄ィ匕装置 1の浄ィ匕給水に関する制御部 49の制御動作を示すフローチヤ ートである。以下、図 8を参照して、水浄ィ匕装置 1の浄ィ匕給水に関する制御について 説明する。 FIG. 8 is a flowchart showing the control operation of the control unit 49 related to the water purification water supply of the water purification apparatus 1. Hereinafter, with reference to FIG. 8, the control regarding water purification water supply of the water purification apparatus 1 is demonstrated.
[0085] ユーザにより電源スィッチ 56が ONにされると(ステップ S1の Yes)、オゾンスィッチ 5 7が ONにされたか否か判別される(ステップ S 2)。オゾンスィッチ 57が ONにされな いと(ステップ S2の No)、ポンプ 5が単独制御される(ステップ S9)。つまり、ポンプ 5 のみが ONにされ、水源 3の水にはオゾンが供給されずに、そのままユーザの使用側 へ供給される。一方、オゾンスィッチ 57が ONにされると(ステップ S2の Yes)、ポンプ 5とオゾン発生装置 21が連動制御される(ステップ S3)。つまり、ユーザが蛇口などを 開けることにより、流路内の水圧が降下し、圧力センサ 11が ONすると (ステップ S4の Yes)、ポンプ 5およびオゾン発生装置 21がともに ONにされ (ステップ S5)、水源 3の
水がオゾンにより浄ィ匕されて供給される浄ィ匕給水が行なわれる。 [0085] When the power switch 56 is turned on by the user (Yes in step S1), it is determined whether or not the ozone switch 57 is turned on (step S2). If the ozone switch 57 is not turned ON (No in step S2), the pump 5 is controlled independently (step S9). That is, only the pump 5 is turned on, and ozone is not supplied to the water of the water source 3, but is supplied to the user side as it is. On the other hand, when the ozone switch 57 is turned on (Yes in step S2), the pump 5 and the ozone generator 21 are controlled in conjunction (step S3). In other words, when the user opens the faucet or the like, the water pressure in the flow path drops, and when the pressure sensor 11 is turned on (Yes in step S4), both the pump 5 and the ozone generator 21 are turned on (step S5). Water source 3 Purified water supply in which water is purified and supplied by ozone is performed.
[0086] そして、浄化給水中、圧力センサ 11が OFFすると(ステップ S6の Yes)、圧力セン サ 11が OFFして力も T1秒、たとえば、 1秒経過したか否か判別される(ステップ S7) 。 T1秒経過すると (ステップ S7の Yes)、ポンプ 5およびオゾン発生装置 21が OFFに され (ステップ S8)、浄ィ匕給水が終了する。また、ユーザは、電源スィッチ 56を OFF にすることによつても浄ィ匕給水を終了することができる。なお、上記給水終了後、ユー ザが再び浄水を使用したい場合には、蛇口を開けるだけでよい。つまり、ユーザが蛇 口を開けると、圧力センサ 11が再び ONして (ステップ S4の Yes)、それに連動してポ ンプ 5およびオゾン発生装置 21が自動的に ONにされるため、ユーザは浄水を使用 することができる。 [0086] Then, when the pressure sensor 11 is turned OFF during purification water supply (Yes in step S6), it is determined whether or not the pressure sensor 11 is turned OFF and the force is also T1 seconds, for example, 1 second (step S7). . When T1 seconds have elapsed (Yes in step S7), the pump 5 and the ozone generator 21 are turned off (step S8), and the purified water supply is terminated. Further, the user can also end the purified water supply by turning off the power switch 56. When the user wants to use the purified water again after the above water supply is completed, it is only necessary to open the faucet. In other words, when the user opens the faucet, the pressure sensor 11 is turned on again (Yes in step S4), and the pump 5 and the ozone generator 21 are automatically turned on in conjunction with this, so the user Can be used.
[0087] このように、ポンプ 5とオゾン発生装置 21とを連動制御することにより、操作が簡単 で、扱いやすい水浄ィ匕装置 1を提供することができる。また、流路内の水圧が圧力セ ンサ 11により制御されるため、ユーザ使用側へ放出される水圧が常に適正に維持さ れ、し力も操作性の良い水浄ィ匕装置 1とすることができる。 As described above, by controlling the pump 5 and the ozone generator 21 in conjunction with each other, it is possible to provide the water purification apparatus 1 that is easy to operate and easy to handle. In addition, since the water pressure in the flow path is controlled by the pressure sensor 11, the water pressure discharged to the user use side is always properly maintained, and the water purification device 1 with good operability can be obtained. it can.
図 9は、水浄ィ匕装置 1の水漏れ異常検知に関する制御部 49の制御動作を示すフロ 一チャートである。以下、図 9を参照して、水浄化装置 1の水漏れ異常検知に関する 制御について説明する。なお、ここでいう水漏れ異常検知とは、気体通路 16から漏 れ出した水がオゾン発生装置 21へ浸入するおそれがあることを検知することである。 FIG. 9 is a flowchart showing the control operation of the control unit 49 relating to the detection of water leakage abnormality of the water purifier 1. Hereinafter, with reference to FIG. 9, the control relating to the water leakage abnormality detection of the water purification apparatus 1 will be described. In this case, the abnormality detection of water leakage refers to detecting that there is a possibility that water leaked from the gas passage 16 may enter the ozone generator 21.
[0088] 図 8で示したユーザへの浄化給水中に、水受け室 74に所定水位以上の水が溜め られ、水漏れセンサ 45が ONすると(ステップ S11の Yes)、水漏れセンサ 45が ONし て力も T2秒、たとえば、 1秒経過しているか否か判別される(ステップ S 12)。そして、 T2秒経過すると (ステップ S 12の Yes)、ポンプ 5およびオゾン発生装置 21が OFFに され (ステップ S13)、異常 LED60が点灯され、オゾン LED59が点滅され (ステップ S 14)、ユーザへの給水が停止される。 [0088] During the purification water supply to the user shown in FIG. 8, when water of a predetermined level or more is accumulated in the water receiving chamber 74 and the water leak sensor 45 is turned on (Yes in step S11), the water leak sensor 45 is turned on. Then, it is determined whether or not the force has also elapsed for T2 seconds, for example, 1 second (step S12). When T2 seconds elapse (Yes in step S12), the pump 5 and the ozone generator 21 are turned off (step S13), the abnormality LED 60 is lit, the ozone LED 59 flashes (step S14), and the user is notified. Water supply is stopped.
[0089] なお、上記給水停止後、ユーザが再び浄水を使用した 、場合には、再度電源スィ ツチ 56を ONにすることで水浄ィ匕装置 1を再始動させることができる。このとき、水漏 れセンサ 45は初期状態にリセットされる。つまり、水漏れセンサ 45が ONした状態で 給水停止となった場合でも、再始動後は、 OFFしている状態にリセットされる。なお、
給水停止後も水受け室 74に所定水位以上の水が残っている場合には、再始動直後 に再び上記処理および判断 (ステップ Sl l〜14)が行なわれ、給水が停止される。 If the user uses purified water again after the water supply is stopped, the water purification apparatus 1 can be restarted by turning on the power switch 56 again. At this time, the water leakage sensor 45 is reset to the initial state. In other words, even if the water supply is stopped while the water leak sensor 45 is ON, it is reset to the OFF state after restarting. In addition, If water of a predetermined level or more remains in the water receiving chamber 74 even after the water supply is stopped, the above processing and determination (steps Sl to 14) are performed again immediately after the restart, and the water supply is stopped.
[0090] このように、水漏れセンサ 45の検知に応じて、ポンプ 5およびオゾン発生装置 21を 停止させること〖こよって、漏電'感電などを未然に防止することができ、水浄化装置 1 を安全に稼動させることができる。 [0090] Thus, by stopping the pump 5 and the ozone generator 21 in response to the detection of the water leak sensor 45, it is possible to prevent electric leakage and electric shock, etc. It can be operated safely.
また、これと同時にユーザに対しては、異常 LED60の点灯やオゾン LED59の点 滅により異常報知されるため、ユーザは、水漏れ異常検知に対して迅速に対処する ことができる。また、水受け室 74の水位が所定水位 (たとえば、図 5 (a)における破線 の高さ)未満であれば、水漏れセンサ 45が水漏れ異常であると検知せず、さらに、水 漏れセンサ 45が ONした場合でも、 T2秒経過しなければ (ステップ S12の No)水漏 れ異常検知は行なわれない。そのため、ユーザが不用な水漏れ異常に対して対処を 強いられることを防止することができ、効率的に水の浄ィ匕処理を行なうことができる。 At the same time, the user is notified of the abnormality by turning on the abnormality LED 60 or blinking the ozone LED 59, so that the user can quickly cope with the water leakage abnormality detection. Further, if the water level in the water receiving chamber 74 is lower than a predetermined water level (for example, the height of the broken line in FIG. 5 (a)), the water leak sensor 45 does not detect that the water leak is abnormal, and further the water leak sensor Even when 45 is turned on, if T2 seconds have not elapsed (No in step S12), water leakage abnormality detection is not performed. For this reason, it is possible to prevent the user from being forced to deal with an abnormal water leak, and to efficiently perform the water purification process.
[0091] 以上のように、この水浄ィ匕装置 1では、水流路 14内の水力 入口 19から漏れ出した 場合であっても、その水は、 3方分岐 18において、入口 19からオゾン発生装置 21側 に浸入せずに、排水口 34から排水管 35を通って排水される。このように、水がオゾン 発生装置 21内に浸入することを防止することができるため、オゾン発生装置 21が水 に晒されて放電できなくなることを防止でき、安定してオゾンを供給することができる。 つまり、水質の改善効率 (オゾンの混合効率)の低下を防止することができる。 [0091] As described above, in this water purification apparatus 1, even when leaking from the hydraulic inlet 19 in the water flow path 14, the water is generated from the inlet 19 in the three-way branch 18. The water is drained from the drain outlet 34 through the drain pipe 35 without entering the device 21 side. In this way, since water can be prevented from entering the ozone generator 21, it can be prevented that the ozone generator 21 is exposed to water and cannot be discharged, and ozone can be supplied stably. it can. That is, it is possible to prevent a reduction in water quality improvement efficiency (ozone mixing efficiency).
[0092] また、入口 19へのオゾン供給中、排水管 35がドレン弁 36を隔てて外部と遮断され ており、外部の空気が排水管 35から 3方分岐 18を経て、気体通路 16へ流入してくる ことがないため、供給されるオゾンの濃度が低くなることを防止でき、一定の濃度のォ ゾンを安定して供給することができる。その結果、効率的に水の浄化処理を行なうこと ができる。 [0092] Further, during the ozone supply to the inlet 19, the drain pipe 35 is shut off from the outside through the drain valve 36, and the outside air flows from the drain pipe 35 through the three-way branch 18 into the gas passage 16. Therefore, the concentration of ozone to be supplied can be prevented from being lowered, and ozone with a certain concentration can be stably supplied. As a result, water can be efficiently purified.
[0093] さらに、水漏れセンサ 45による水漏れ異常検知によってポンプ 5およびオゾン発生 装置 21が停止されるため、漏電'感電などを未然に防止することができ、水浄化装置 1を安全に稼動させることができる。 [0093] Furthermore, since the pump 5 and the ozone generating device 21 are stopped when the water leakage sensor 45 detects the water leakage abnormality, it is possible to prevent a leakage current and an electric shock and to operate the water purification device 1 safely. be able to.
<第 2の実施形態 > <Second Embodiment>
(水浄化装置 1の構成)
図 10は、この発明の第 2の実施形態に係る水浄ィ匕装置 1の概略斜視図である。図 11は、第 2の実施形態に係る水浄ィ匕装置 1の構成例を示すシステム図である。なお、 図 1および図 2と重複する部分については、同じ符号を付してその説明を省略する。 また、図 11のシステム図において、実線矢印は水の流れ、破線矢印は電気の流れを 、それぞれ表している。 (Configuration of water purification device 1) FIG. 10 is a schematic perspective view of the water purification apparatus 1 according to the second embodiment of the present invention. FIG. 11 is a system diagram showing a configuration example of the water purification apparatus 1 according to the second embodiment. 1 and 2 are denoted by the same reference numerals and description thereof is omitted. In the system diagram of FIG. 11, solid arrows indicate the flow of water, and broken arrows indicate the flow of electricity.
[0094] 主として図 11を参照して、この第 2の実施形態に係る水浄ィ匕装置 1には、図 2で示 したようなポンプ 5および圧力センサ 11が備えられておらず、原水給水管 6に、原水 給水管 6を開閉するための開閉弁としての開閉バルブ 61が備えられている。 Referring mainly to FIG. 11, the water purification apparatus 1 according to the second embodiment is not provided with the pump 5 and the pressure sensor 11 as shown in FIG. The pipe 6 is provided with an open / close valve 61 as an open / close valve for opening and closing the raw water supply pipe 6.
開閉ノ レブ 61は、たとえば、電気的に開閉される電磁バルブなどのバルブであり、 制御部 49と電気的に接続されている。そのため、原水給水管 6が、たとえば、水道の 蛇口などに接続され、開閉バルブ 61が適宜開閉されることにより、ユーザは浄水を使 用することができる。なお、ユーザに供給される浄水は、第 1の実施形態と同様の方 法により生成される。 The open / close solenoid 61 is, for example, a valve such as an electromagnetic valve that is electrically opened and closed, and is electrically connected to the control unit 49. Therefore, the user can use purified water by connecting the raw water supply pipe 6 to, for example, a faucet of a water supply and opening and closing the opening / closing valve 61 as appropriate. The purified water supplied to the user is generated by the same method as in the first embodiment.
[0095] 図 12は、第 2の実施形態に係る水浄化装置 1の操作表示部 55の概略平面図であ る。図 13は、第 2の実施形態に係る水浄ィ匕装置 1の電気的構成を示すブロック図で あって、第 2の実施形態に関連する部分を示した図である。なお、図 7と重複する部 分については、同じ符号を付してその説明を省略する。 FIG. 12 is a schematic plan view of the operation display unit 55 of the water purification apparatus 1 according to the second embodiment. FIG. 13 is a block diagram showing an electrical configuration of the water purification apparatus 1 according to the second embodiment, and shows a portion related to the second embodiment. Note that parts that are the same as those in FIG.
この第 2の実施形態に係る水浄ィ匕装置 1の制御部 49は、たとえば、マイクロコンピュ ータなどで構成されている。また、制御部 49は、操作表示部 55、オゾン発生装置 21 、開閉ノ レブ 61および水漏れセンサ 45と、それぞれ電気的に接続されている。 The control unit 49 of the water purification apparatus 1 according to the second embodiment is composed of, for example, a microcomputer. The control unit 49 is electrically connected to the operation display unit 55, the ozone generator 21, the open / close valve 61, and the water leak sensor 45, respectively.
[0096] 操作表示部 55には、電源スィッチ 56、電源 LED58、オゾン LED59および異常 L ED60の他に、給水される水にオゾンを混入させるか選択するためのコーススィッチ 6 2、開閉バルブ 61の開閉操作を行なうための給水スィッチ 63および給水中であるか 否かを表示するための給水 LED64がそれぞれ設けられている。そのため、ユーザは 、操作表示部 55を操作することにより、開閉バルブ 61を開閉させて給水したり、給水 される水にオゾンを混入させて浄水を生成したりすることができる。 [0096] In addition to the power switch 56, the power LED 58, the ozone LED 59, and the abnormal LED 60, the operation display unit 55 includes a coarse switch 62 for selecting whether ozone is mixed in the water to be supplied, and an open / close valve 61. A water supply switch 63 for performing the opening / closing operation and a water supply LED 64 for displaying whether or not the water is being supplied are provided. Therefore, the user can operate the operation display unit 55 to open and close the open / close valve 61 to supply water, or to mix ozone with the supplied water to generate purified water.
(水浄ィ匕装置 1の制御) (Control of water purification equipment 1)
図 14は、第 2の実施形態に係る水浄ィ匕装置 1の浄ィ匕給水に関する制御部 49の制
御動作を示すフローチャートである。以下、図 14を参照して、第 2の実施形態に係る 水浄ィ匕装置 1の浄ィ匕給水に関する制御について説明する。 FIG. 14 shows the control of the control unit 49 regarding water purification water supply of the water purification apparatus 1 according to the second embodiment. It is a flowchart which shows operation | movement. Hereinafter, with reference to FIG. 14, the control regarding the purified water supply of the purified water apparatus 1 which concerns on 2nd Embodiment is demonstrated.
[0097] ユーザにより電源スィッチ 56が ONにされると(ステップ S21)、 ROM52からコース 設定が読み出される (ステップ S22)。ここでコース設定とは、たとえば、給水中の水に 供給されるオゾンの量などが設定されているプログラム内容であり、ユーザは ROM5 2の内容を適宜変更することにより、コース設定を変更することができる。そして、コー ススィッチ 62が ONにされると(ステップ S23の Yes)、オゾン発生装置 21が ONにさ れる(ステップ S 24)。 When the power switch 56 is turned on by the user (step S21), the course setting is read from the ROM 52 (step S22). Here, the course setting is, for example, the program content in which the amount of ozone supplied to the water in the water supply is set, and the user can change the course setting by appropriately changing the content of ROM52. Can do. When the course switch 62 is turned on (Yes in step S23), the ozone generator 21 is turned on (step S24).
[0098] そして、給水スィッチ 63が ONにされ (ステップ S25)、開閉バルブ 61が開かれるこ とにより給水が開始されると (ステップ S26)、負圧によりオゾン混合器 7にオゾンが供 給される。このとき、コーススィッチ 62が ONにされずに(ステップ S23の No)、給水ス イッチ 63が ONにされた場合でも給水は開始される。なお、このときは、オゾンが混合 されていない水がユーザ使用側に送られる。また、ユーザは、コーススィッチ 62を O Nにせずに給水を開始した場合でも、給水中にコーススィッチ 62を ONにすることに よって、オゾン混合器 7にオゾンを供給することができる。その後、電源スィッチ 56が OFFにされると (ステップ S27)、浄ィ匕給水が終了する。 [0098] Then, when the water supply switch 63 is turned on (step S25) and the water supply is started by opening the open / close valve 61 (step S26), ozone is supplied to the ozone mixer 7 by the negative pressure. The At this time, water supply is started even if the water supply switch 63 is turned on without the course switch 62 being turned on (No in step S23). At this time, water not mixed with ozone is sent to the user side. Further, even when the user starts water supply without turning on the coarse switch 62, the user can supply ozone to the ozone mixer 7 by turning on the coarse switch 62 during the water supply. Thereafter, when the power switch 56 is turned off (step S27), the clean water supply ends.
[0099] このように、原水給水管 6に開閉バルブ 61が設けられ、ユーザが適宜操作すること によって浄水の給水を行なうことができる構成にすれば、たとえば、水源(たとえば、 井戸、河川など)とユーザの使用場所が離れている場合でも、汲み出しポンプなどを 水源の近くで駆動させておき、開閉バルブ 61をユーザの使用場所の近くに設けてお けば、使用の都度汲み出しポンプなどを駆動する必要がなぐ使用時に合わせて開 閉バルブ 61を操作するだけで浄ィ匕された水を利用することができる。 [0099] As described above, if the raw water supply pipe 6 is provided with the opening / closing valve 61 and can be supplied with purified water by a user's appropriate operation, for example, a water source (for example, a well, a river, etc.) Even if the user's place of use is remote, if the pump is driven near the water source and the open / close valve 61 is provided near the user's place of use, the pump will be driven each time it is used. Purified water can be used simply by operating the open / close valve 61 in accordance with the use.
[0100] また、第 1の実施形態のように圧力センサ 11によるポンプ 5の駆動といった構成で ないため、ユーザ側に蛇口などの流路開閉部品などを設ける必要もない。つまり、原 水給水管 6および浄水給水管 9の端部が通じる先の状況 (たとえば、蛇口の有無など )がどのような場合であっても、この第 2の実施形態に係る水浄ィ匕装置 1によって、浄 水を使用することができる。 [0100] Further, since the pump 5 is not driven by the pressure sensor 11 as in the first embodiment, there is no need to provide a channel opening / closing component such as a faucet on the user side. That is, regardless of the situation (for example, the presence or absence of a faucet) where the ends of the raw water supply pipe 6 and the purified water supply pipe 9 are connected, the water purification plant according to the second embodiment is used. Device 1 allows the use of purified water.
[0101] なお、この第 2の実施形態に係る水浄ィ匕装置 1の水漏れ異常検知の制御について
は、第 1の実施形態と同様であるため、ここでは説明を省略する。 [0101] Regarding the control of the water leakage abnormality detection of the water purification apparatus 1 according to the second embodiment Since this is the same as in the first embodiment, description thereof is omitted here.
<第 3の実施形態 > <Third embodiment>
(水浄化装置 1の構成) (Configuration of water purification device 1)
図 15は、第 3の実施形態に係る水浄ィ匕装置 1の構成例を示すシステム図である。な お、図 1および図 2と重複する部分については、同じ符号を付してその説明を省略す る。 FIG. 15 is a system diagram showing a configuration example of the water purification apparatus 1 according to the third embodiment. The same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
[0102] この第 3の実施形態に係る水浄化装置 1は、図 2で示した水源 3が、水を溜めるため の貯水タンクとしてのタンク 65である。 [0102] In the water purification device 1 according to the third embodiment, the water source 3 shown in Fig. 2 is a tank 65 as a water storage tank for storing water.
タンク 65は、家屋 77の屋根と略同じ高さに、たとえば、専用の鉄塔などを組み、そ の上に設置される。タンク 65には、水源 (たとえば、井戸や河川など)力も水を汲み出 すためのタンク用ポンプ 66を含む貯水管 69が接続されており、タンク用ポンプ 66の 駆動力により、タンク 65内に水が溜められる。 The tank 65 is installed on the same height as the roof of the house 77, for example, a dedicated steel tower. The tank 65 is connected to a water storage pipe 69 including a tank pump 66 for pumping water from a water source (for example, a well or a river). The tank 65 is driven by the driving force of the tank pump 66. Water is collected.
[0103] また、タンク 65より低い位置、より具体的には、家屋 77の床 78にポンプ 5が設置さ れ、家屋 77の内壁 79に筐体 27が設置されており、ポンプ 5と筐体 27 (より具体的に はオゾン混合器 7 (図 1参照))とは、原水給水管 6により接続されている。 [0103] In addition, the pump 5 is installed at a position lower than the tank 65, more specifically, on the floor 78 of the house 77, and the casing 27 is installed on the inner wall 79 of the house 77. 27 (more specifically, the ozone mixer 7 (see Fig. 1)) is connected by the raw water supply pipe 6.
ポンプ 5には、タンク 65内部から下方に伸びる吸込管 4が接続されており、筐体 27 ( より具体的にはオゾン混合器 7 (図 1参照)には、返送路としての浄水給水管 9の一端 が接続され、浄水給水管 9の他端は、タンク 65の上方から、タンク 65内部につながつ ている。 A suction pipe 4 extending downward from the inside of the tank 65 is connected to the pump 5. The casing 27 (more specifically, the ozone mixer 7 (see FIG. 1)) has a purified water supply pipe 9 as a return path. The other end of the purified water supply pipe 9 is connected to the inside of the tank 65 from above the tank 65.
[0104] そのため、タンク 65内の水は、ポンプ 5の駆動力により、タンク 65→吸込管 4→ボン プ 5→原水給水管 6→筐体 27→浄水給水管 9→タンク 65となる経路 (循環用流路)を 、筐体 27内で浄ィ匕されながら循環する。このように、タンク 65内の水が浄ィ匕循環され るため、タンク 65に浄水を溜めておくことができる。また、ポンプ 5および筐体 27が、 床 78および内壁 79という低い位置にそれぞれ設置されているため、ユーザは、水浄 化装置 1の運転操作やメンテナンスを容易に行なうことができる。 [0104] For this reason, the water in the tank 65 is driven by the driving force of the pump 5 as follows: tank 65 → suction pipe 4 → pump 5 → raw water supply pipe 6 → housing 27 → purified water supply pipe 9 → tank 65 The circulation channel) is circulated while being purified in the casing 27. In this way, since the water in the tank 65 is circulated through the purified water, the purified water can be stored in the tank 65. In addition, since the pump 5 and the casing 27 are installed at low positions such as the floor 78 and the inner wall 79, the user can easily perform the operation and maintenance of the water purification apparatus 1.
[0105] また、タンク 65には、タンク 65の下方に伸び、途中で屈曲して家屋 77の内部に伸 びるユーザ用給水管 67の一端が接続され、ユーザ用給水管 67の他端には蛇口 68 が設けられている。そのため、ユーザが水を使用する際に、たとえば、汲み出しボン
プなどの特別な装置を設ける必要がなぐユーザは、蛇口 68が開けるという簡単な操 作をするだけでタンク 65内の水を使用できる。 [0105] Further, one end of a user water supply pipe 67 that extends downward from the tank 65, bends in the middle, and extends into the house 77 is connected to the tank 65, and the other end of the user water supply pipe 67 is connected to the other end of the user water supply pipe 67. A faucet 68 is provided. Therefore, when the user uses water, for example, Users who do not need to install a special device such as a tap can use the water in the tank 65 simply by opening the faucet 68.
[0106] さらに、この水浄ィ匕装置 1を、太陽エネルギーで運転する場合など、昼間の日照時 間内に浄ィ匕水を作り、夜間の利用などに備えられる。 [0106] Further, when the water purification apparatus 1 is operated by solar energy, it is prepared for use at night by creating purified water during daylight hours.
なお、この第 3の実施形態では、タンク 65を、専用の鉄塔などの上に設置したが、 たとえば、家屋 77の屋根の上に設置することもできる。また、タンク 65に溜める水は、 水源力もタンク用ポンプ 66で汲み上げる水に限られず、たとえば、タンク 65に雨水を 溜めることもできる。さらに、タンク 65を例として挙げたが、貯水管 69とユーザ用給水 管 67を省略し、タンク 65を、たとえば、プールや浴槽などに置換した構成にすれば、 プールや浴槽などに溜められた水に含まれる雑菌などを浄ィ匕循環によって除去する ことができるため、定期的な水の入れ替えをせずに、清潔な水を溜めておくことがで きる。 In the third embodiment, the tank 65 is installed on a dedicated steel tower or the like, but may be installed on the roof of the house 77, for example. Further, the water stored in the tank 65 is not limited to the water source pumped up by the tank pump 66. For example, rainwater can be stored in the tank 65. Furthermore, the tank 65 was taken as an example. However, if the water storage pipe 69 and the user water supply pipe 67 were omitted and the tank 65 was replaced with, for example, a pool or a bathtub, the tank 65 could be stored in the pool or the bathtub. Since germs contained in the water can be removed through the purification process, clean water can be stored without periodic water replacement.
<第 4の実施形態 > <Fourth embodiment>
図 16は、第 4の実施形態に係るオゾン水生成装置 70の構成例を示すシステム図 である。なお、図 1および図 2と重複する部分については、同じ符号を付してその説 明を省略する。また、図 16のシステム図において、実線矢印は水の流れ、破線矢印 は電気の流れを、それぞれ表している。 FIG. 16 is a system diagram showing a configuration example of an ozone water generator 70 according to the fourth embodiment. Note that portions overlapping those in FIGS. 1 and 2 are denoted by the same reference numerals and description thereof is omitted. In the system diagram of FIG. 16, the solid arrows indicate the flow of water and the broken arrows indicate the flow of electricity.
[0107] この第 4の実施形態に係るオゾン水生成装置 70は、水道水などを溜めるためのタ ンク 65と、タンク 65に溜められた水を吸込管 4を通して吸い込むためのポンプ 5と、ポ ンプ 5から吐出され、原水給水管 6を通して送られる水にオゾンを混合するための水 オゾン混合装置 2と、水オゾン混合装置 2で生成されるオゾン水を放出するための浄 水給水管 9とを備えている。なお、この発明においては、浄水給水管 9がオゾン水出 力管に相当する。 [0107] The ozone water generating apparatus 70 according to the fourth embodiment includes a tank 65 for storing tap water, a pump 5 for sucking the water stored in the tank 65 through the suction pipe 4, and a pump. A water ozone mixing device 2 for mixing ozone with water discharged from the pump 5 and sent through the raw water supply pipe 6, and a purified water supply pipe 9 for releasing the ozone water generated by the water ozone mixing device 2, It has. In the present invention, the purified water supply pipe 9 corresponds to an ozone water output pipe.
[0108] より具体的には、図 2に示す水浄ィ匕装置 1の水源 3がタンク 65に置換され、オゾン 脱臭カラム 10が省略されている。また、タンク 65には、たとえば、水道水などが溜めら れる。そのため、タンク 65に溜められた水道水は、水オゾン混合装置 2においてォゾ ンが混合され、浄水給水管 9から除菌*消臭機能に優れるオゾン水として放出される
また、図 2に示す水浄ィ匕装置 1においては、ポンプ 5を筐体 27の外部に設置したが 、このオゾン水生成装置 70では、タンク 65およびポンプ 5を含む部品も、たとえば、タ ィャ 71などが取り付けられた移動式筐体 72に収容され、浄水給水管 9および吸気管 22の端部が移動式筐体 72から露出されている。そのため、ユーザは、オゾン水を使 用したい場合に、浄水給水管 9の端部に、たとえば、蛇口やシャワーノズルなどを取り 付けることによって、オゾン水で手足を洗ったり、オゾン水を散水したりすることができ る。 More specifically, the water source 3 of the water purification apparatus 1 shown in FIG. 2 is replaced with a tank 65, and the ozone deodorizing column 10 is omitted. The tank 65 stores, for example, tap water. Therefore, the tap water stored in the tank 65 is mixed with ozone in the water ozone mixing device 2 and released from the purified water supply pipe 9 as ozone water with excellent sterilization * deodorizing function. Further, in the water purification apparatus 1 shown in FIG. 2, the pump 5 is installed outside the casing 27. However, in the ozone water generating apparatus 70, the parts including the tank 65 and the pump 5 are, for example, And the ends of the purified water supply pipe 9 and the intake pipe 22 are exposed from the mobile casing 72. Therefore, when the user wants to use ozone water, for example, a faucet or a shower nozzle is attached to the end of the purified water supply pipe 9 to wash hands and feet with ozone water or to spray ozone water. can do.
[0109] さらに、上記のように移動式筐体 72を用いると、簡単に持ち運ぶことができる。たと えば、鮮魚運搬用トラックなどの荷台に乗せておき、鮮魚を積み下ろした後、その鮮 魚が入って 、たトロ箱に散水することによって、トロ箱の除菌 ·消臭 ·ぬめり取りなどを することができる。なお、ユーザが使用するオゾン水は、第 1の実施形態と同様の方 法により生成される。 [0109] Furthermore, when the mobile casing 72 is used as described above, it can be easily carried. For example, after placing the fresh fish on a loading platform such as a truck for transporting fresh fish, and then sprinkling the fresh fish into the box, the sanitary box can be sterilized, deodorized, slimmed, etc. can do. The ozone water used by the user is generated by the same method as in the first embodiment.
<第 5の実施形態 > <Fifth embodiment>
図 17は、第 5の実施形態に係る水浄化装置 1における筐体 27の正面側斜視図で ある。図 18は、筐体 27の内部の正面側斜視図である。図 19は、筐体 2の内部の平 面図である。図 20は、図 18においてオゾン発生装置 21が制御部 49の上方に配置さ れる態様を示したものである。 FIG. 17 is a front perspective view of the casing 27 in the water purification apparatus 1 according to the fifth embodiment. FIG. 18 is a front perspective view of the inside of the housing 27. FIG. 19 is a plan view of the inside of the housing 2. FIG. 20 shows a mode in which the ozone generator 21 is arranged above the control unit 49 in FIG.
[0110] 第 5の実施形態に係る水浄化装置 1において、筐体 27は、図 17に示すように、左 右方向に長ぐ前後方向(筐体 27の正面側と背面側とを結ぶ方向)に薄いボックス状 に形成されており、正面右上側には、上述した操作表示部 55が配置されている。筐 体 27において、奥側となる背面部分が設置面として壁などに固定される。そして、ォ ゾン混合器 7の流入口 12は、筐体 27の右側面外方へ突出するように設けられ、筐体 27の左側面には、オゾン混合器 7の流出口 13 (図 18参照)に結合される連結管 183 (後述する)の、連結側出口 184が、筐体 27の左側面外方へ突出するように設けられ ている。 [0110] In the water purification apparatus 1 according to the fifth embodiment, as shown in Fig. 17, the casing 27 has a longitudinal direction extending in the left-right direction (a direction connecting the front side and the rear side of the casing 27). ) Is formed in a thin box shape, and the operation display unit 55 described above is arranged on the upper right side of the front. In the case 27, the back portion on the back side is fixed to a wall or the like as an installation surface. The inlet 12 of the ozone mixer 7 is provided so as to protrude outward from the right side of the casing 27, and the outlet 13 of the ozone mixer 7 (see FIG. 18) is provided on the left side of the casing 27. ) Is connected to the connecting pipe 183 (described later) so as to protrude outward from the left side surface of the housing 27.
[0111] この筐体 27の内部は、図 18に示すように、略直方体形状に区画されており、上下 方向略中央位置には、水平方向に延びる遮断壁 180が設けられている。遮断壁 18 0は、平面視において、筐体 27の平面形状とほぼ等しい大きさをなす矩形薄板状に
形成されており、筐体 27の内部は、遮断壁 180によって、上下方向に並ぶ 2つの領 域に区画されている。以下では、筐体 27の内部において区画された 2つの領域のう ち、上側の領域を電装品領域 181とし、下側の領域を水路領域 182とする。 As shown in FIG. 18, the inside of the casing 27 is partitioned into a substantially rectangular parallelepiped shape, and a blocking wall 180 extending in the horizontal direction is provided at a substantially central position in the vertical direction. The blocking wall 180 is a rectangular thin plate having a size substantially equal to the planar shape of the casing 27 in plan view. Thus, the inside of the casing 27 is partitioned into two regions arranged in the vertical direction by the blocking wall 180. In the following, of the two areas partitioned inside the casing 27, the upper area is referred to as an electrical component area 181 and the lower area is referred to as a water channel area 182.
[0112] 水路領域 182には、オゾン混合器 7および連結管 183 (まとめて水路 187とする。 ) 力 図 19に示すように、筐体 27の手前側(つまり正面側、図 19における下側)に配 置されている。連結管 183は、左右方向に略水平に延びる円管であり、左端部には、 上述した連結側出口 184が設けられ、右端部には連結側入口 185が設けられている 。連結管 183において、連結側出口 184は、筐体 27の外方において浄水給水管 9 ( 図 2参照)に接続され、連結側入口 185は、オゾン混合器 7の流出口 13に結合され ている。また、オゾン混合器 7の流入口 12は、筐体 27の外方において原水給水管 6 ( 図 2参照)に接続されており、この水路 187では、右側から左側へ向かって水が流れ る。 [0112] The water channel region 182 includes an ozone mixer 7 and a connecting pipe 183 (collectively referred to as a water channel 187). As shown in FIG. 19, the front side of the casing 27 (that is, the front side, the lower side in FIG. 19) ). The connecting pipe 183 is a circular pipe extending substantially horizontally in the left-right direction, and the above-described connecting-side outlet 184 is provided at the left end, and the connecting-side inlet 185 is provided at the right end. In the connecting pipe 183, the connecting side outlet 184 is connected to the purified water supply pipe 9 (see FIG. 2) outside the housing 27, and the connecting side inlet 185 is connected to the outlet 13 of the ozone mixer 7. . The inlet 12 of the ozone mixer 7 is connected to the raw water supply pipe 6 (see Fig. 2) outside the casing 27, and in this water channel 187, water flows from the right side to the left side.
[0113] オゾン混合器 7の水流路 14も、連結管 183と同様に、左右方向に略水平に延びる ように形成されている。そのため、水路 187は、全体として左右方向に略水平に延び るように形成されている。 [0113] The water flow path 14 of the ozone mixer 7 is also formed to extend substantially horizontally in the left-right direction, like the connecting pipe 183. Therefore, the water channel 187 is formed so as to extend substantially horizontally in the left-right direction as a whole.
また、このオゾン混合器 7では、メンテナンス時に、図 18に示す逆止弁 17およびド レン弁 36が取り外し可能となって!/、る。 In the ozone mixer 7, the check valve 17 and the drain valve 36 shown in FIG. 18 can be removed during maintenance!
[0114] 電装品領域 181は、遮断壁 180によって水路 187から遮断されており、上述したォ ゾン発生装置 21および制御部 49が、図 19に示すように、筐体 27の奥側(つまり背 面側、図 19における上側)に配置されている。詳しくは、図 18に示すように、正面視 において、オゾン発生装置 21は、電装品領域 181の左側に配置され、制御部 49は 、オゾン発生装置 21に対して、その右側に並ぶように、かつ、遮断壁 180を挟んでォ ゾン混合器 7の上方に配置されて 、る。 [0114] The electrical component region 181 is blocked from the water channel 187 by the blocking wall 180, and the above-described ozone generating device 21 and the control unit 49 are connected to the rear side (that is, the back) of the casing 27 as shown in FIG. It is arranged on the surface side, the upper side in FIG. Specifically, as shown in FIG. 18, in front view, the ozone generator 21 is disposed on the left side of the electrical component region 181, and the control unit 49 is arranged on the right side of the ozone generator 21 such that In addition, it is disposed above the ozone mixer 7 with the blocking wall 180 interposed therebetween.
[0115] オゾン発生装置 21の、上述したオゾン供給管 24は、可撓性を有する素材、詳しく は、オゾン劣化に対して優れた耐久性を有するテフロン (登録商標)やシリコンのゴム から構成されており、オゾン発生装置 21から下方に延びて、遮断壁 180に形成され た貫通穴 191を貫通した後、斜め右側下方へ延びてオゾン混合器 7の入口 19に接 続されている。
[0116] このように、第 5の実施形態では、オゾン発生装置 21および制御部 49といった電装 品は、水路 187の上方に区画された電装品領域 181に配置されるので、水路 187か ら水が漏れ出したとしても、漏れ出した水が自重によってオゾン発生装置 21および 制御部 49に到達する虡はない。さらに、この電装品領域 181は、遮断壁 180によつ て水路 187から遮断されているので、たとえば、メンテナンス時に水路 187から水が 飛散しても、その水がオゾン発生装置 21および制御部 49に浸水することを確実に防 止することができる。 [0115] The ozone supply pipe 24 of the ozone generator 21 is made of a flexible material, specifically, Teflon (registered trademark) or silicon rubber having excellent durability against ozone degradation. It extends downward from the ozone generator 21, passes through a through hole 191 formed in the blocking wall 180, extends obliquely downward to the right, and is connected to the inlet 19 of the ozone mixer 7. Thus, in the fifth embodiment, the electrical components such as the ozone generator 21 and the control unit 49 are arranged in the electrical component region 181 partitioned above the water channel 187. Even if water leaks out, the leaked water will not reach the ozone generator 21 and the control unit 49 by its own weight. Furthermore, since the electrical component region 181 is blocked from the water channel 187 by the blocking wall 180, for example, even if water scatters from the water channel 187 during maintenance, the water remains in the ozone generator 21 and the control unit 49. It is possible to reliably prevent water from entering the water.
[0117] 特に、遮断壁 180は、水路 187とオゾン混合器 7との結合部分 (つまり、流出口 13 および連結側入口 185付近)といった水漏れが発生する虞がある部分の上方に配置 されているので、オゾン発生装置 21および制御部 49の浸水を一層確実に防止する ことができる。また、上述したように、オゾン混合器 7では、メンテナンス時に、逆止弁 1 7およびドレン弁 36が取り外し可能となっているので、これらの取り外し可能な部品と 水路 187との間には結合部分が存在する。これらの結合部分では水漏れが発生する 虞があるが、遮断壁 180は、逆止弁 17およびドレン弁 36の上方に配置されているの で、オゾン発生装置 21および制御部 49の浸水を一層確実に防止することができる。 なお、遮断壁 180の、上述したオゾン供給管 24が貫通する貫通穴 191は、上述した 結合部分力も離れた位置にあるので、水漏れが生じても、この貫通穴 191を介して水 が電装品領域 181に浸入する虞はない。 [0117] In particular, the blocking wall 180 is disposed above a portion where water leakage may occur, such as a coupling portion between the water channel 187 and the ozone mixer 7 (that is, the vicinity of the outflow port 13 and the connection side inlet 185). Therefore, the ozone generator 21 and the control unit 49 can be more reliably prevented from being flooded. In addition, as described above, in the ozone mixer 7, the check valve 17 and the drain valve 36 can be removed during maintenance. Therefore, there is a coupling portion between these removable parts and the water channel 187. Exists. Although there is a risk of water leakage at these joints, the blocking wall 180 is disposed above the check valve 17 and the drain valve 36, so that the ozone generator 21 and the control unit 49 are further submerged. It can be surely prevented. Note that the through-hole 191 of the blocking wall 180 through which the above-described ozone supply pipe 24 penetrates is located at a position where the above-mentioned coupling partial force is also separated, so that even if water leaks, water is electrically connected through this through-hole 191. There is no risk of entering product area 181.
[0118] そして、筐体 27内を左右方向に略水平に延びる水路 187には、屈折部分が存在し ない。屈折部分が存在すると、エルボー管などの連結部品を別途設ける必要があり、 その場合には、部品点数の増加だけでなぐ連結部品と水路 187との結合部分から 水漏れが発生する虞があるが、本発明の水路 187によって、これらの虡は解消され、 オゾン発生装置 21および制御部 49の浸水を一層確実に防止することができる。 [0118] The water channel 187 extending substantially horizontally in the left-right direction in the housing 27 has no refracting portion. If there is a refracted part, it is necessary to provide a separate connecting part such as an elbow tube. In addition, the water channel 187 of the present invention eliminates these defects, and can more reliably prevent the ozone generator 21 and the control unit 49 from being flooded.
[0119] また、水路 187における一端をなすオゾン混合器 7の流入口 12は、筐体 27の右側 面外方へ突出し、筐体 27の外方において原水給水管 6 (図 2参照)に接続され、水 路 187における他端をなす連結管 183の連結側出口 184は、筐体 27の左側面外方 へ突出し、筐体 27の外方において浄水給水管 9 (図 2参照)に接続されている。この ように、原水給水管 6および浄水給水管 9との接続部分となる流入口 12および連結
側出口 184では、水漏れが発生する虞があるが、これらの流入口 12および連結側出 口 184は、いずれも筐体 27の側面外方に突出するように設けられており、筐体 27内 部には位置していない。そのため、流入口 12および連結側出口 184において水漏 れが発生しても、筐体 27内部のオゾン発生装置 21および制御部 49の浸水を一層確 実に防止することができる。 [0119] In addition, the inlet 12 of the ozone mixer 7 forming one end of the water channel 187 protrudes outward from the right side surface of the housing 27 and is connected to the raw water supply pipe 6 (see Fig. 2) outside the housing 27. The connection side outlet 184 of the connection pipe 183 forming the other end in the water channel 187 protrudes outward from the left side surface of the housing 27 and is connected to the purified water supply pipe 9 (see FIG. 2) outside the housing 27. ing. In this way, the inlet 12 and the connection that are connected to the raw water supply pipe 6 and the purified water supply pipe 9 are connected. The side outlet 184 may cause water leakage, but both the inlet 12 and the connecting side outlet 184 are provided so as to protrude outward from the side surface of the casing 27. It is not located inside. Therefore, even if water leakage occurs at the inlet 12 and the connection-side outlet 184, it is possible to more reliably prevent the ozone generator 21 and the controller 49 inside the casing 27 from being flooded.
[0120] また、オゾン混合器 7の流入口 12が筐体 27の右側面に設けられ、連結管 183の連 結側出口 184が筐体 27の左側面に設けられていることにより、水路 187は、筐体 27 の左右方向両側面に支持されているので、筐体 27内に安定して配置することができ 、水路 187の筐体 27への容易と組付けもなる。なお、オゾン混合器 7には、上方へ延 びるボス部 192が形成されており、そのボス部 192が遮断壁 180にねじ等で固定さ れることにより、オゾン混合器 7は、遮断壁 180にも支持されている(図 18参照)。 [0120] In addition, since the inlet 12 of the ozone mixer 7 is provided on the right side of the casing 27 and the connection side outlet 184 of the connecting pipe 183 is provided on the left side of the casing 27, the water channel 187 Is supported on both side surfaces of the casing 27 in the left-right direction, so that it can be stably disposed in the casing 27, and the water channel 187 can be easily and assembled to the casing 27. The ozone mixer 7 has a boss portion 192 that extends upward. The boss portion 192 is fixed to the blocking wall 180 with a screw or the like. Are also supported (see Figure 18).
[0121] また、オゾン混合器 7の流入口 12は、水路 187の一端を構成するように水路 187に 結合されているので、オゾン混合器 7が水路 187の途中で結合される場合と比べて、 オゾン混合器 7と水路 187との結合部分、つまり水漏れが発生する虞がある部分を減 らすことができ、オゾン発生装置 21および制御部 49の浸水を一層確実に防止するこ とができる。同様の効果を奏する為に、オゾン混合器 7の流出口 13が水路 187の他 端 (つまり、図 18においては連結側出口 184)を構成してもよい。この場合、連結管 1 83が省略され、流出口 13が筐体 27の左側面外方に突出するように、オゾン混合器 7の水流路 14が延長される。もちろん、オゾン混合器 7の水流路 14力 水路 187自 体を構成すれば、上述した連結部分をなくすことができ、オゾン発生装置 21および 制御部 49の浸水をより一層確実に防止することができる。 [0121] Further, since the inlet 12 of the ozone mixer 7 is coupled to the water channel 187 so as to constitute one end of the water channel 187, compared with the case where the ozone mixer 7 is coupled in the middle of the water channel 187. It is possible to reduce the portion where the ozone mixer 7 and the water channel 187 are joined, that is, the portion where water leakage may occur, and more reliably prevent the ozone generator 21 and the control unit 49 from entering the water. it can. In order to achieve the same effect, the outlet 13 of the ozone mixer 7 may constitute the other end of the water channel 187 (that is, the connection side outlet 184 in FIG. 18). In this case, the connecting pipe 183 is omitted, and the water flow path 14 of the ozone mixer 7 is extended so that the outlet 13 protrudes outward from the left side surface of the casing 27. Of course, if the water flow path 14 force water flow path 187 of the ozone mixer 7 is configured, the above-described connecting portion can be eliminated, and the ozone generator 21 and the control unit 49 can be more reliably prevented from being flooded. .
[0122] また、オゾン発生装置 21および制御部 49といった電装品は、外部から電力を取り 込む関係上、図 19に示すように、筐体 27の奥側(つまり背面側、図 19における上側 )に配置されることが望ましい。一方、水路 187は、手前側(つまり正面側、図 19にお ける下側)に配置されることで、メンテナンスを容易に行うことができる。また、このよう な配置関係により、奥側に配置されるオゾン発生装置 21および制御部 49と、手前側 に配置される水路 187との間に隔たりが生じるので、水路 187から水が漏れ出したと しても、オゾン発生装置 21および制御部 49の浸水を確実に防止することができる。
[0123] また、オゾン発生装置 21がオゾン混合器 7の上方に配置されて 、る場合、オゾン発 生装置 21とオゾン混合器 7との間隔が比較的狭くなる。この場合、オゾン供給管 24 は、適正な曲率をもってオゾン発生装置 21とオゾン混合器 7との間をつなぐことがで きずに途中で不自然に曲がってしまい、オゾン発生装置 21からのオゾンをオゾン混 合器 7に円滑に供給することができなくなる虞がある。しかし、本発明では、図 18に示 すように、オゾン混合器 7の上方に制御部 49が配置され、オゾン発生装置 21は、制 御部 49に対して、その左側に並ぶように配置されている。これにより、オゾン発生装 置 21とオゾン混合器 7との間隔を比較的広くすることができるので、オゾン供給管 24 は、適正な曲率をもってオゾン発生装置 21とオゾン混合器 7との間をつなぐことがで き、オゾン発生装置 21からのオゾンをオゾン混合器 7に円滑に供給することができる [0122] In addition, the electrical components such as the ozone generator 21 and the control unit 49 have a back side of the casing 27 (that is, the rear side, the upper side in FIG. 19) as shown in FIG. It is desirable to be arranged in. On the other hand, since the water channel 187 is arranged on the front side (that is, the front side, the lower side in FIG. 19), maintenance can be easily performed. In addition, due to such an arrangement relationship, there is a gap between the ozone generator 21 and the control unit 49 arranged on the back side and the water channel 187 arranged on the near side, so that water leaked from the water channel 187. Even so, it is possible to reliably prevent the ozone generator 21 and the control unit 49 from being flooded. [0123] When the ozone generator 21 is disposed above the ozone mixer 7, the distance between the ozone generator 21 and the ozone mixer 7 is relatively narrow. In this case, the ozone supply pipe 24 cannot be connected between the ozone generator 21 and the ozone mixer 7 with an appropriate curvature, and is bent unnaturally on the way. There is a risk that the mixer 7 cannot be supplied smoothly. However, in the present invention, as shown in FIG. 18, the control unit 49 is arranged above the ozone mixer 7, and the ozone generator 21 is arranged so as to be arranged on the left side of the control unit 49. ing. As a result, the distance between the ozone generator 21 and the ozone mixer 7 can be made relatively wide, so that the ozone supply pipe 24 connects the ozone generator 21 and the ozone mixer 7 with an appropriate curvature. The ozone from the ozone generator 21 can be smoothly supplied to the ozone mixer 7.
[0124] また、図 3に示すオゾン混合器 7の出口 20から気体通路 16に浸入してきた水路 18 7 (詳しくは水流路 14)の水は、自重により、出口 20の下方に位置する入口 19に到 達するが、図 18に示すように、入口 19は、斜め上方を向いてオゾン供給管 24に接 続されている。そのため、気体通路 16に浸入してきた水が入口 19およびオゾン供給 管 24を介してオゾン発生装置 21に到達する虡はない。そのため、オゾン発生装置 2 1の浸水を確実に防止し、さらに、気体通路 16に浸入してきた水を図 5に示す排水管 35で確実に排水することができる。 [0124] Further, the water in the water passage 18 7 (specifically, the water passage 14) that has entered the gas passage 16 from the outlet 20 of the ozone mixer 7 shown in FIG. However, as shown in FIG. 18, the inlet 19 is connected to the ozone supply pipe 24 obliquely upward. Therefore, the water that has entered the gas passage 16 does not reach the ozone generator 21 via the inlet 19 and the ozone supply pipe 24. Therefore, the ozone generator 21 can be reliably prevented from entering the water, and the water that has entered the gas passage 16 can be reliably drained by the drain pipe 35 shown in FIG.
[0125] また、図 18に示すように、電装品領域 181において、オゾン発生装置 21および制 御部 49は、左右方向に並ぶように配置されていた力 これに代え、図 20に示すよう に、オゾン発生装置 21が制御部 49の上方に配置されていても構わない。オゾン発 生装置 21は、他の電装品以上に浸水への対策を講じる必要がある力 制御部 49の 上方に配置されることで、水路 187から一層隔てて配置されるので、オゾン発生装置 21の浸水を一層確実に防止することができる。さらに、筐体 27を、図 18での構成に 比べて左右方向に小さく(幅狭)にすることができるので、水路 187を、オゾン混合器 7だけで構成することも可能となる。 Further, as shown in FIG. 18, in the electrical component region 181, the ozone generator 21 and the control unit 49 are arranged in the left-right direction. Instead, as shown in FIG. The ozone generator 21 may be disposed above the control unit 49. The ozone generator 21 is placed above the force control unit 49 that needs to take measures against flooding more than other electrical components. Infiltration of water can be prevented more reliably. Furthermore, since the casing 27 can be made smaller (narrower) in the left-right direction than the configuration shown in FIG. 18, the water channel 187 can be configured only by the ozone mixer 7.
<第 6の実施形態 > <Sixth embodiment>
図 21は、第 6の実施形態に係る水浄化装置 1の正面側斜視図である。
[0126] 図 21に示すように、第 6の実施形態に係る水浄化装置 1では、上下方向に長手の 直方体をなす格子状の、被組付部材としてのフレーム 190の内部に、上述した浄ィ匕 装置 (筐体 27と、筐体 27に配置された操作表示部 55、オゾン発生装置 21、オゾン 混合器 7および制御部 49)、吸込管 4、ポンプ 5および原水給水管 6が組付けられて いる。なお、第 6の実施形態に係る筐体 27および筐体 27の内部構造は、第 5の実施 形態で示したものと同じである。そして、図 21では、オゾン発生装置 21、オゾン混合 器 7および制御部 49は、図示されていない(図 18参照)。 FIG. 21 is a front perspective view of the water purification device 1 according to the sixth embodiment. [0126] As shown in FIG. 21, in the water purification apparatus 1 according to the sixth embodiment, the above-described purification is arranged inside a lattice-shaped frame 190 as a member to be assembled, which forms a rectangular parallelepiped that is long in the vertical direction.匕 Equipment (case 27, operation display 55 located in case 27, ozone generator 21, ozone mixer 7 and controller 49), suction pipe 4, pump 5 and raw water supply pipe 6 are assembled. It has been. Note that the casing 27 and the internal structure of the casing 27 according to the sixth embodiment are the same as those shown in the fifth embodiment. In FIG. 21, the ozone generator 21, the ozone mixer 7, and the control unit 49 are not shown (see FIG. 18).
[0127] 筐体 27は、フレーム 190の正面側上端部に配置されている。ポンプ 5は、筐体 27よ りも低い位置、詳しくは、フレーム 190の右側下端部に配置されている。なお、ポンプ 5の斜め左側上方には、上述した圧力センサ 11が隣接配置されている。 [0127] The casing 27 is disposed at the upper end on the front side of the frame 190. The pump 5 is disposed at a lower position than the casing 27, specifically, at the lower right end of the frame 190. Note that the pressure sensor 11 described above is disposed adjacent to the upper left side of the pump 5.
原水給水管 6は、右側面視において、ポンプ 5から、時計回りの螺旋を 3回卷きなが ら左側へ延びている。原水給水管 6の各螺旋部分は、右側面視において上下方向 に長手の略矩形状に形成されており、各螺旋部分の奥側部分には、上下方向に長 手の円筒状のフィルタ 189が 1つずつ介挿されている。つまり、原水給水管 6では、 3 つのフィルタ 189が、直列状に配置されている。ここで、上述した圧力センサ 11は、 ポンプ 5から、フレーム 190内で右端に位置するフィルタ 189までの間を流れる水の 圧力を検知している。そして、圧力センサ 11が検知する圧力値は、上述した制御部 4 9に与えられる。 In the right side view, the raw water supply pipe 6 extends from the pump 5 to the left side while winding a clockwise spiral three times. Each spiral portion of the raw water supply pipe 6 is formed in a substantially rectangular shape that is long in the vertical direction when viewed from the right side, and a long cylindrical filter 189 in the vertical direction is formed on the back side of each spiral portion. One by one is inserted. That is, in the raw water supply pipe 6, three filters 189 are arranged in series. Here, the pressure sensor 11 described above detects the pressure of water flowing from the pump 5 to the filter 189 located at the right end in the frame 190. The pressure value detected by the pressure sensor 11 is given to the control unit 49 described above.
[0128] また、原水給水管 6は、フレーム 190内で左端に位置するフィルタ 189から下方に 延び、屈折して上方へ延びて筐体 27の水路 187に接続されている。原水給水管 6の 、水路 187に接続される部分の近傍部分には、手動バルブ 188が介挿されている。 この手動ノ レブ 188を手動で開閉することによって、原水給水管 6を、開放または遮 断することができる。なお、手動バルブ 188は、原水給水管 6の、圧力センサ 11の近 傍部分にも介挿されている。 The raw water supply pipe 6 extends downward from the filter 189 located at the left end in the frame 190, refracts and extends upward, and is connected to the water channel 187 of the casing 27. A manual valve 188 is inserted in the vicinity of the portion connected to the water channel 187 in the raw water supply pipe 6. By manually opening and closing the manual nozzle 188, the raw water supply pipe 6 can be opened or shut off. The manual valve 188 is also inserted in the raw water supply pipe 6 in the vicinity of the pressure sensor 11.
[0129] また、図示されていないが、フレーム 190の上方には、第 3および第 4の実施形態 で示したタンク 65が配置されており、吸込管 4は、タンク 65から下方に延びてポンプ 5 に接続されている。そして、上述した筐体 27は、タンク 65に対して、その下方で隣接 している。
水浄ィ匕装置 1において、タンク 65内に溜められた水は、吸込管 4において下方へ 流れて力 ポンプ 5に吸い込まれて原水給水管 6に吐出される。その後、この水は、 原水給水管 6において、原水給水管 6の形状に沿って螺旋を巻きつつ、さらに、フィ ルタ 189で異物 (鉄分やマンガン成分等)が除去されながら左側へ流れて筐体 27の 水路 187に到達する。水路 187に到達した水は、図 18に示すように、オゾン混合器 7 でオゾンが混合されて浄化されてから、水路 187に接続される浄水給水管 9 (図 2、図 15および図 16参照)を流れて、上述したように、ユーザ使用側へ供給される。 [0129] Although not shown, the tank 65 shown in the third and fourth embodiments is disposed above the frame 190, and the suction pipe 4 extends downward from the tank 65 and is pumped. Connected to 5. The casing 27 described above is adjacent to the tank 65 below. In the water purification apparatus 1, the water stored in the tank 65 flows downward in the suction pipe 4, is sucked into the power pump 5, and is discharged to the raw water supply pipe 6. The water then spirals along the shape of the raw water supply pipe 6 in the raw water supply pipe 6 and further flows to the left while removing foreign substances (iron, manganese components, etc.) by the filter 189. Reach 27 waterways 187. As shown in FIG. 18, the water that has reached the water channel 187 is purified by being mixed with ozone in the ozone mixer 7, and then the purified water supply pipe 9 connected to the water channel 187 (see FIGS. 2, 15, and 16). ) And supplied to the user use side as described above.
[0130] このように、第 6の実施形態に係る水浄化装置 1では、図 21に示すように、浄ィ匕装 置 (筐体 27と、筐体 27に配置された操作表示部 55、オゾン発生装置 21、オゾン混 合器 7および制御部 49)は、上述したように、タンク 65に対して極力近づけて配置さ れるので、浄ィ匕装置とタンク 65との高低差を小さくでき、タンク 65に溜められた水が 浄ィ匕装置に到達したときの水頭の損失を抑えることができる。これにより、浄化装置の オゾン混合器 7を流れる水の圧力損失を防止することができるので、オゾン混合器 7 へのオゾンの吸込流量の低下が抑えられ、気液混合の効率の低下を防止することが できる。そのため、この水浄ィ匕装置 1では、簡単な構成で、良好に水質を改善できる Thus, in the water purification apparatus 1 according to the sixth embodiment, as shown in FIG. 21, the purification apparatus (the casing 27 and the operation display unit 55 arranged in the casing 27, As described above, the ozone generator 21, the ozone mixer 7, and the control unit 49) are disposed as close as possible to the tank 65, so that the height difference between the purification apparatus and the tank 65 can be reduced. It is possible to reduce the loss of the head when the water stored in the tank 65 reaches the purifier. As a result, the pressure loss of the water flowing through the ozone mixer 7 of the purification device can be prevented, so that the decrease in the suction flow rate of ozone into the ozone mixer 7 can be suppressed and the efficiency of gas-liquid mixing can be prevented from decreasing. be able to. Therefore, this water purification device 1 can improve the water quality satisfactorily with a simple configuration.
[0131] また、一般的には重量物であるポンプ 5が、浄化装置よりも低い位置に配置されて いるので、水浄ィ匕装置 1の姿勢を安定させることができる。 [0131] Further, since the pump 5 which is generally a heavy object is disposed at a position lower than the purification device, the posture of the water purification device 1 can be stabilized.
また、フィルタ 189によって異物が捕獲された水が、浄化装置へ導入されるので、ォ ゾン混合器 7などの、浄ィ匕装置内部で水が流れる部分に異物が詰まることを防止でき る。 In addition, since the water in which foreign matter has been captured by the filter 189 is introduced into the purification device, it is possible to prevent the foreign matter from being clogged in a portion where water flows inside the purification device, such as the ozone mixer 7.
そして、このフィルタ 189は、原水給水管 6の途中に設けられているので、水の流れ る方向に見て、浄ィ匕装置よりも上流側に配置されている。一般的に、水がフィルタ 18 9を通過する際、フィルタ 189が抵抗となるので、フィルタ 189付近の水には圧力損 失が生じる。そこで、フィルタ 189が浄ィ匕装置よりも下流側に配置されている場合で は、上述した圧力損失が浄化装置の下流側で生じることにより、オゾン混合器 7への オゾンの吸込流量の低下が懸念される。しかし、本発明では、フィルタ 189が浄ィ匕装 置よりも上流側に配置されて 、るので、オゾン混合器 7へのオゾンの吸込流量の低下
が抑えられ、上述した気液混合の効率の低下を防止することができる。これにより、こ の水浄ィ匕装置 1では、簡単な構成で、良好に水質を改善できる。 And since this filter 189 is provided in the middle of the raw | natural water feed pipe 6, it is arrange | positioned upstream from the purification apparatus seeing in the direction through which water flows. Generally, when water passes through the filter 189, the filter 189 becomes a resistance, so that pressure loss occurs in water near the filter 189. Therefore, in the case where the filter 189 is disposed downstream of the purification apparatus, the pressure loss described above occurs on the downstream side of the purification apparatus, so that the ozone suction flow rate into the ozone mixer 7 is reduced. Concerned. However, in the present invention, since the filter 189 is disposed upstream of the purification apparatus, the ozone suction flow rate to the ozone mixer 7 is reduced. And the above-described reduction in the efficiency of gas-liquid mixing can be prevented. As a result, the water purification apparatus 1 can improve the water quality satisfactorily with a simple configuration.
[0132] また、上述したように、圧力センサ 11は、ポンプ 5から、フレーム 190内で右端に位 置するフィルタ 189までの間を流れる水の圧力を検知しており、この圧力値は、上述 した制御部 49に与えられる。この圧力値は、フィルタ 189が目詰りすると上昇するの で、制御部 49は、圧力センサ 11によって検知された圧力値が所定の値まで上昇す ると、フィルタ 189が目詰りしたと判断する。そして、制御部 49によってフィルタ 189の 目詰りが判断されると、操作表示部 55に備えられたフィルタ目詰り LED (図示せず) が点灯され、フィルタ 189の目詰りがユーザに報知される。ここで、操作表示部 55は 、報知手段として機能する。なお、フィルタ目詰り LED (図示せず)に代えて、ブザー 等によって音で報知してもよ 、。 [0132] Further, as described above, the pressure sensor 11 detects the pressure of water flowing from the pump 5 to the filter 189 positioned at the right end in the frame 190, and this pressure value is To the control unit 49. Since the pressure value increases when the filter 189 is clogged, the control unit 49 determines that the filter 189 is clogged when the pressure value detected by the pressure sensor 11 rises to a predetermined value. When the control unit 49 determines that the filter 189 is clogged, a filter clogging LED (not shown) provided in the operation display unit 55 is turned on to notify the user of the clogging of the filter 189. Here, the operation display unit 55 functions as a notification unit. Instead of a filter clogging LED (not shown), a buzzer or the like may be used to notify the user with sound.
[0133] すなわち、フィルタ 189の目詰りが生じると、原水給水管 6および浄化装置における 水の流れが悪ィ匕するので、オゾン混合器 7において水に混合されるオゾンの、オゾン 混合器 7への吸込流量の低下が懸念される。しかし、本発明では、圧力センサ 11が 、ポンプ 5からフィルタ 189までの間を流れる水の圧力を検知することにより、フィルタ 189の目詰り状態を管理することができる。そして、制御部 49が、圧力センサ 11によ つて検知された圧力の値に応じてフィルタ 189の目詰りを判断し、その判断に応じて 操作表示部 55がフィルタ 189の目詰りを報知することによって、フィルタ 189の不慮 の目詰りを防止することができるので、上述したオゾンの吸込流量の低下が抑えられ 、気液混合の効率の低下を防止することができる。 [0133] That is, when the filter 189 is clogged, the flow of water in the raw water supply pipe 6 and the purification device deteriorates, so that ozone mixed with water in the ozone mixer 7 is transferred to the ozone mixer 7. There is concern about a decrease in the suction flow rate. However, in the present invention, the pressure sensor 11 can manage the clogged state of the filter 189 by detecting the pressure of the water flowing between the pump 5 and the filter 189. Then, the control unit 49 determines that the filter 189 is clogged according to the pressure value detected by the pressure sensor 11, and the operation display unit 55 notifies that the filter 189 is clogged according to the determination. Therefore, the filter 189 can be prevented from being accidentally clogged, so that the above-described decrease in the ozone suction flow rate can be suppressed, and the decrease in the gas-liquid mixing efficiency can be prevented.
[0134] また、タンク 65が高い位置に配置されるほど、上述したように、オゾン混合器 7への オゾンの吸込流量の低下が懸念される。そこへフィルタ 189の目詰りが生じると、ォゾ ン混合器 7へのオゾンの吸込流量のさらなる低下が懸念される。そのため、フィルタ 1 89の目詰りに起因するオゾンの吸込流量の低下を防ぐためには、フィルタ 189の目 詰りがなるべく早く検知されることが望ましいが、タンク 65よりも低い位置にポンプ 5が 配置される構成では、タンク 65が高い位置に配置されるほど、圧力センサ 11が圧力 値を高めに検知するので、フィルタ 189の目詰りが実際よりも早く判断されてユーザ に報知される。これにより、フィルタ 189の目詰りに起因するオゾン混合器 7へのォゾ
ンの吸込流量の低下を防止することができる。 [0134] Further, as the tank 65 is arranged at a higher position, as described above, there is a concern that the ozone suction flow rate into the ozone mixer 7 decreases. If the filter 189 is clogged there, there is a concern that the ozone suction flow rate into the ozone mixer 7 may further decrease. Therefore, in order to prevent a decrease in the ozone suction flow rate due to the clogging of the filter 1 89, it is desirable to detect the clogging of the filter 189 as soon as possible, but the pump 5 is disposed at a position lower than the tank 65. In this configuration, the higher the tank 65 is located, the higher the pressure value is detected by the pressure sensor 11, so that the filter 189 is determined to be clogged earlier than the actual one and notified to the user. As a result, the ozone mixer 7 caused by clogging of the filter 189 It is possible to prevent a decrease in the suction flow rate.
<第 7の実施形態 > <Seventh embodiment>
(オゾン混合器) (Ozone mixer)
図 22は、第 7の実施形態に係るオゾン混合器 7の側断面図である。なお、図 22に おいて、実線矢印は水の流れ、破線矢印は気体の流れを、それぞれ表している。ま た、図 3と重複する部分については、同じ符号を付してその説明を省略する。 FIG. 22 is a side sectional view of the ozone mixer 7 according to the seventh embodiment. In FIG. 22, solid line arrows represent water flow, and broken line arrows represent gas flow. In addition, the same parts as those in FIG.
[0135] 図 22に示すように、 3方分岐 18の入口 19は、斜め上方を向いていることが望ましい 。さらに、オゾン発生装置 21は、オゾン供給管 24 (図 2参照)と入口 19との接続部分 よりも上方に配置されて 、ることが望ま 、。 [0135] As shown in FIG. 22, the inlet 19 of the three-way branch 18 is preferably directed obliquely upward. Further, it is desirable that the ozone generator 21 is disposed above the connection portion between the ozone supply pipe 24 (see FIG. 2) and the inlet 19.
これにより、出口 20を介して気体通路 16の中に浸入してきた水流路 14の水が入口 19に到達したとしても、その水が入口 19およびオゾン供給管 24 (図 2参照)を介して オゾン発生装置 21 (図 2参照)に到達する虡はない。そのため、オゾン発生装置 21 の浸水を確実に防止し、さらに、気体通路 16に浸入してきた水流路 14の水を、排水 口 34を介して排水管 35 (図 5参照)で確実に排水することができる。 As a result, even if the water in the water flow path 14 that has entered the gas passage 16 through the outlet 20 reaches the inlet 19, the water passes through the inlet 19 and the ozone supply pipe 24 (see FIG. 2). There should be no fault reaching generator 21 (see Figure 2). Therefore, the ozone generator 21 is reliably prevented from being flooded, and the water in the water passage 14 that has entered the gas passage 16 is surely drained through the drain 34 through the drain 35 (see Fig. 5). Can do.
(逆止弁) (Check valve)
図 23は、第 7の実施形態に係るオゾン混合器 7で用いられる逆止弁 17において、 弁室 29内部を下方から見た図である。図 24は、弁室 29内に配置されるアーチ弁 81 の上側斜視図である。図 25は、アーチ弁 81が配置された状態での弁室 29内部の上 側斜視図である。図 26は、第 7の実施形態に係る逆止弁 17の図解図であり、図 26 ( a)は水流路 14に水が流れていないとき(以下、通常時とする。)の状態を示し、図 26 (b)は水流路 14に水が流れているとき(以下、吸引時とする。)の状態を示す。なお、 図 26において、破線矢印は気体の流れを示す。 FIG. 23 is a view of the inside of the valve chamber 29 as viewed from below in the check valve 17 used in the ozone mixer 7 according to the seventh embodiment. FIG. 24 is an upper perspective view of the arch valve 81 arranged in the valve chamber 29. FIG. FIG. 25 is an upper perspective view of the inside of the valve chamber 29 in a state where the arch valve 81 is arranged. FIG. 26 is an illustrative view of the check valve 17 according to the seventh embodiment, and FIG. 26 (a) shows a state when water is not flowing in the water flow path 14 (hereinafter, normal time). FIG. 26 (b) shows a state when water is flowing through the water flow path 14 (hereinafter referred to as suction). In FIG. 26, the broken arrow indicates the gas flow.
[0136] 第 7の実施形態に係る逆止弁 17において、弁室 29は、分割構造になっており、図 22に示すように、水流路 14側から順に、上部品 82および下部品 83を有し、弁室 29 内には、上述したボール弁 30およびばね 33 (図 4参照)の代わりに、弁体としてのァ ーチ弁 81が収容されて 、る。 In the check valve 17 according to the seventh embodiment, the valve chamber 29 has a divided structure. As shown in FIG. 22, the upper part 82 and the lower part 83 are arranged in order from the water channel 14 side. In the valve chamber 29, instead of the above-described ball valve 30 and spring 33 (see FIG. 4), a arch valve 81 as a valve body is accommodated.
上部品 82は、略中空円筒状に形成されており、その上端部が水流路 14に接続さ れている。上部品 82の外周面には、ねじ部が形成されている。そして、上部品 82の
中空部分は、上側に向力つて先細となる略円錐状の領域(円錐領域 85とする。)と、 円錐領域 85から下方へ連続する略円筒状の領域(円筒領域 86とする。 )とで構成さ れている。 The upper part 82 is formed in a substantially hollow cylindrical shape, and its upper end is connected to the water flow path 14. A screw portion is formed on the outer peripheral surface of the upper part 82. And the upper part 82 The hollow portion is composed of a substantially conical region (conical region 85) tapered toward the upper side and a substantially cylindrical region (referred to as cylindrical region 86) continuing downward from the conical region 85. It is configured.
[0137] また、詳しくは、円錐領域 85の上端部には、上方に延びる略円筒状の領域 (小円 筒領域 87とする。)と、小円筒領域 87の上端から上方に延びて水流路 14の絞り部 1 5に接続され、図 23に示すように、底面視において矩形をなすスリット状の領域 (スリ ット領域 88とする。)とが形成されている。なお、図 22に示すように、スリット領域 88と 絞り部 15との接続部分力 上述した出口 20である。 [0137] Further, in detail, at the upper end of the conical region 85, a substantially cylindrical region (referred to as a small cylindrical region 87) extending upward, and a water flow path extending upward from the upper end of the small cylindrical region 87. As shown in FIG. 23, a slit-like region (referred to as a slit region 88) that is rectangular in a bottom view is formed. Note that, as shown in FIG. 22, the connecting partial force between the slit region 88 and the throttle portion 15 is the outlet 20 described above.
[0138] 上部品 82の内周面には、図 23に示すように、 4つの突起 89が、底面視において小 円筒領域 87を囲んで十字をなすように、周上に等しい間隔を隔てて設けられている 各突起 89は、上下方向に長手の略平行四辺形の薄板状に形成されており(図 22 参照)、上端部が、上部品 82の内周面の、円錐領域 85に相当する部分に接続され ている。また、各突起 89の、上部品 82の内周面の径方向における外側端部は、上 部品 82の内周面の、円筒領域 86に相当する部分に接続されている。各突起 89の 下端縁は、上述した上部品 82の内周面の径方向に見て、内側から外側へ向かって 、水平に延びてから途中で下方へ傾斜するように形成されている。以下では、各突起 89の下端縁の、水平に延びる部分を水平部分 90とし、傾斜する部分を傾斜部分 91 とする。 [0138] On the inner peripheral surface of the upper part 82, as shown in FIG. 23, four protrusions 89 are spaced at equal intervals on the periphery so as to form a cross around the small cylindrical region 87 in the bottom view. Each provided protrusion 89 is formed in a thin plate shape of a substantially parallelogram that is long in the vertical direction (see FIG. 22), and the upper end corresponds to the conical region 85 of the inner peripheral surface of the upper part 82. Connected to Further, the outer end of each protrusion 89 in the radial direction of the inner peripheral surface of the upper part 82 is connected to a portion corresponding to the cylindrical region 86 on the inner peripheral surface of the upper part 82. The lower end edge of each projection 89 is formed so as to incline downward in the middle after extending horizontally from the inside to the outside as seen in the radial direction of the inner peripheral surface of the upper part 82 described above. Hereinafter, the horizontally extending portion of the lower edge of each projection 89 is referred to as a horizontal portion 90, and the inclined portion is referred to as an inclined portion 91.
[0139] 下部品 83は、図 22に示すように、上部品 82よりも大径の略中空円筒状の大径円 筒部 92と、上述した逆止弁 17の入口 31 (図 4参照)を介して大径円筒部 92の下端 部に接続されて下方に延びる細管 93とで一体的に形成されている。 [0139] As shown in Fig. 22, the lower part 83 includes a substantially hollow cylindrical large-diameter cylindrical portion 92 larger in diameter than the upper part 82, and the inlet 31 of the check valve 17 described above (see Fig. 4). It is integrally formed with a narrow tube 93 that is connected to the lower end portion of the large-diameter cylindrical portion 92 through and extends downward.
大径円筒部 92の内周面には、ねじ部が形成されている。大径円筒部 92の底壁(下 側壁)には、径方向中心位置に入口 31が形成されており、そして、入口 31を囲む弁 載置面 95が形成されている。弁載置面 95は、平面視において環状に、かつ、水平 方向に平坦に形成されており、その外周縁に沿って上方へ突出する当接部 96が、 弁載置面 95に対して一体的に形成されている。 A threaded portion is formed on the inner peripheral surface of the large-diameter cylindrical portion 92. The bottom wall (lower side wall) of the large-diameter cylindrical portion 92 is formed with an inlet 31 at the center position in the radial direction, and a valve mounting surface 95 surrounding the inlet 31 is formed. The valve mounting surface 95 is formed in an annular shape in a plan view and flat in the horizontal direction, and a contact portion 96 that protrudes upward along the outer peripheral edge thereof is integrated with the valve mounting surface 95. Is formed.
[0140] 細管 93は、上述した排水管 35 (図 5参照)に接続されている。
アーチ弁 81は、図 24に示すように、オゾン劣化に対して優れた耐久性を有するテ フロン (登録商標)やシリコンのゴム力 なる略ディスク状に形成されており、上面 (被 加圧面 99とする。)は、上方へ向力つて凸湾曲するように形成され、下面 (封止面 10 0とする。)は、水平方向に平坦に形成されている。被加圧面 99には、上方へ突出す る、平面視において環状の弹性凸部 101がー体的に設けられている。 The narrow pipe 93 is connected to the drain pipe 35 (see FIG. 5) described above. As shown in FIG. 24, the arch valve 81 is formed in a substantially disk shape made of Teflon (registered trademark) or silicon rubber having excellent durability against ozone degradation, and has an upper surface (pressurized surface 99). Is formed so as to be convexly curved when directed upward, and the lower surface (referred to as sealing surface 100) is formed flat in the horizontal direction. The pressurized surface 99 is provided with an annular inertial convex portion 101 that protrudes upward in a plan view.
[0141] このような逆止弁 17を組立てる場合、先ず、図 25に示すように、下部品 83の載置 面 95にアーチ弁 81を載置する。このとき、アーチ弁 81の封止面 100が弁載置面 95 に一様に接触して入口 31を封止する。そして、下部品 83の内周面に形成されたねじ 部を、上部品 82の外周面に形成されたねじ部にねじ込むことにより、下部品 83を上 部品 82に組付ける。 When assembling such a check valve 17, first, as shown in FIG. 25, the arch valve 81 is mounted on the mounting surface 95 of the lower part 83. At this time, the sealing surface 100 of the arch valve 81 uniformly contacts the valve mounting surface 95 to seal the inlet 31. Then, the lower part 83 is assembled to the upper part 82 by screwing the screw part formed on the inner peripheral surface of the lower part 83 into the screw part formed on the outer peripheral surface of the upper part 82.
[0142] 上部品 82に下部品 83が組付けられた状態において、下部品 83の当接部 96が上 部品 82の内周面の下端部に嵌ることで、下部品 83が上部品 82に対して位置決めさ れている。また、当接部 96よりも径方向外側においては、下部品 83の底壁の上側面 力 上部品 82の下端面に対して、ノ ッキン 102を挟んで隙間なく圧接されている。こ れにより、上部品 82の中空部分(円錐領域 85および円筒領域 86)と、下部品 83の 弁載置面 95および当接部 96とによって、上述した弁室 29内部が、外部に対して空 密的かつ液密的に形成される。 [0142] When the lower part 83 is assembled to the upper part 82, the contact part 96 of the lower part 83 is fitted to the lower end of the inner peripheral surface of the upper part 82, so that the lower part 83 becomes the upper part 82. It is positioned with respect to it. Further, on the outer side in the radial direction from the contact part 96, the upper surface of the bottom wall of the lower part 83 is pressed against the lower end surface of the upper part 82 with a notch 102 interposed therebetween without any gap. As a result, the inside of the valve chamber 29 described above is separated from the outside by the hollow part (conical region 85 and cylindrical region 86) of the upper part 82 and the valve mounting surface 95 and the contact part 96 of the lower part 83. It is formed airtight and liquidtight.
[0143] そして、弁室 29内に収容されたアーチ弁 81は、図 26 (a)に示すように、弹性凸部 1 01が上部品 82の各突起 89の水平部分 90によって下方へ僅かに押圧される以外は 弁室 29内において上下に移動可能な自由状態で配置されている。つまり、アーチ弁 81は、弁室 29 (つまり気体通路 16)内において他の部材に支持されていない。逆止 弁 17の用途上、アーチ弁 81は、その作動頻度が比較的高いので、弁室 29内にお V、て他の部材に支持されて 、る場合には、その支持部分に損傷が生じる虞があるが 、本発明のアーチ弁 81は、弁室 29内において他の部材に支持されていないので、 上述した支持部分が存在せず、損傷が生じる虞はな 、。 Then, as shown in FIG. 26 (a), the arch valve 81 accommodated in the valve chamber 29 is slightly lowered downward by the horizontal portion 90 of each projection 89 of the upper part 82 as shown in FIG. Other than being pressed, the valve chamber 29 is arranged in a free state that can move up and down. That is, the arch valve 81 is not supported by other members in the valve chamber 29 (that is, the gas passage 16). Since the operation frequency of the arch valve 81 is relatively high for the use of the check valve 17, the support portion is damaged in the case of being supported by V and other members in the valve chamber 29. However, since the arch valve 81 of the present invention is not supported by other members in the valve chamber 29, the above-described supporting portion does not exist, and there is no risk of damage.
[0144] また、アーチ弁 81の弹性凸部 101は、各突起 89の傾斜部分 91によって水平方向 に間隔を隔てて囲まれて 、るので、各突起 89によってアーチ弁 81の水平方向の位 置がずれるのが防止されている。そのため、アーチ弁 81を、弁室 29内において、封
止面 100が入口 31を封止可能な (つまり、後述する気体通路 16を開閉可能な)適正 位置に常に配置することができ、逆止弁 17の作動信頼性の向上を図ることができる。 In addition, the inertial convex portion 101 of the arch valve 81 is surrounded by the inclined portion 91 of each projection 89 in the horizontal direction so that the horizontal position of the arch valve 81 is defined by each projection 89. It is prevented from shifting. Therefore, the arch valve 81 is sealed in the valve chamber 29. The stop surface 100 can always be disposed at an appropriate position where the inlet 31 can be sealed (that is, a gas passage 16 to be described later can be opened and closed), and the operation reliability of the check valve 17 can be improved.
[0145] アーチ弁 81が弁室 29内に配置されている状態において、弹性凸部 101は、通常 時(図 26 (a)参照)には、上述したように、各突起 89の水平部分 90によって押圧され ることによって弾性変形し、アーチ弁 81自体、詳しくは封止面 100を入口 31に向け て付勢している。また、封止面 100の入口 31への付勢には、アーチ弁 81の自重も作 用される。これにより、封止面 100によって入口 31が封止され、気体通路 16が遮断( 閉鎖)される。そのため、仮に、水流路 14 (図 22参照)からの水が弁室 29内に浸入し てきても、その水は、弁室 29内において塞き止められる。 [0145] In a state where the arch valve 81 is disposed in the valve chamber 29, the inertial convex portion 101 is in the normal state (see Fig. 26 (a)), as described above, the horizontal portion 90 of each projection 89 The arch valve 81 itself, more specifically, the sealing surface 100 is urged toward the inlet 31. Further, the weight of the arch valve 81 is also used to bias the sealing surface 100 toward the inlet 31. As a result, the inlet 31 is sealed by the sealing surface 100 and the gas passage 16 is blocked (closed). Therefore, even if water from the water flow path 14 (see FIG. 22) enters the valve chamber 29, the water is blocked in the valve chamber 29.
[0146] 詳しくは、上述したように、このアーチ弁 81は、上方に凸湾曲した被加圧面 99を有 している。このオゾン混合器 7では、その構造上、水流路 14 (図 22参照)に合流され る出口 20から、水流路 14の水が気体通路 16内に下方へ漏れ出す虞があり、この水 が被加圧面 99を加圧することが想定される力 被加圧面 99は上方に凸湾曲してい るので、この被加圧面 99では、水流路 14からの水の圧力を周囲に逃すことができる 。たとえば、この被加圧面 99が外縁 (径方向外側)から内側中心に亘つて一様に平 坦な場合、水流路 14からの水の圧力を周囲に逃すことができない。そのため、被カロ 圧面 99の内側部分が圧力に耐えられなくなるとアーチ弁 81全体が橈んでアーチ弁 81が気体通路 16を完全に閉鎖できなくなり(つまり、封止面 100と弁室 29の入口 31 との間に隙間が生じる。)、水の逆流が生じる虞がある。しかし、本発明のアーチ弁 81 の被加圧面 99は、上述したように、水の漏れ出す方向とは反対の方向(上方)に向 力つて凸湾曲しているので、たとえば、ウォーターハンマー現象によって急激に上昇 した水の圧力が被加圧面 99に作用されても、その圧力が周囲に逃されることにより、 アーチ弁 81は、橈むことはなぐその全体形状を維持することができる。そのため、ァ ーチ弁 81は、気体通路 16を完全に閉鎖し (つまり、封止面 100が入口 31を隙間なく 封止する。)、水の逆流を確実に阻止することができる。なお、被加圧面 99は、被カロ 圧面 99を加圧する水の圧力を周囲へ逃すように形成されているのであれば、上述し たように凸湾曲して!/、なくてもよ!、。 Specifically, as described above, the arch valve 81 has a pressurized surface 99 that is convexly curved upward. Due to the structure of the ozone mixer 7, the water in the water channel 14 may leak downward into the gas channel 16 from the outlet 20 that joins the water channel 14 (see FIG. 22). Force assumed to pressurize the pressurizing surface 99 Since the pressurized surface 99 is convexly curved upward, the pressurized surface 99 can release the water pressure from the water flow path 14 to the surroundings. For example, when the pressurized surface 99 is uniformly flat from the outer edge (radially outer side) to the inner center, the pressure of water from the water channel 14 cannot be released to the surroundings. For this reason, if the inner portion of the pressure-receiving surface 99 cannot withstand the pressure, the arch valve 81 as a whole stagnate and the arch valve 81 cannot completely close the gas passage 16 (that is, the sealing surface 100 and the inlet 31 of the valve chamber 29). There is a possibility that a back flow of water may occur. However, as described above, the pressurized surface 99 of the arch valve 81 of the present invention is convexly curved in the direction (upward) opposite to the direction in which water leaks out. Even if the pressure of water that has risen rapidly is applied to the surface 99 to be pressurized, the pressure is released to the surroundings, so that the arch valve 81 can maintain its entire shape without stagnation. Therefore, the arch valve 81 completely closes the gas passage 16 (that is, the sealing surface 100 seals the inlet 31 without a gap), and can reliably prevent backflow of water. If the pressurized surface 99 is formed so as to release the pressure of water that pressurizes the pressurized surface 99 to the surroundings, it may be convexly curved as described above! .
[0147] そして、上述したように、被加圧面 99の弹性凸部 101は、各突起 89に押圧されるこ
とによって弾性変形して、アーチ弁 81を、気体通路 16を閉鎖するように付勢する。た とえば、上述したウォーターハンマー現象とは反対に極めて低 、圧力の水の場合に おいて、この水が、気体通路 16を閉鎖しているアーチ弁 81とその気体通路 16との間 (詳しくは、封止面 100と入口 31との間)の微小な隙間を伝って逆流する虞がある。し かし、弹性凸部 101が、各突起 89に押圧されることによって、アーチ弁 81を、気体通 路 16を閉鎖するように付勢する(つまり、封止面 100を入口 31へ向けて付勢する。 ) ので、上述した微小な隙間は解消され、水の逆流を確実に阻止することができる。 [0147] Then, as described above, the inertial convex portion 101 of the pressed surface 99 is pressed against each projection 89. And the arch valve 81 is urged to close the gas passage 16. For example, in the case of extremely low pressure water, contrary to the water hammer phenomenon described above, this water is connected between the arch valve 81 closing the gas passage 16 and the gas passage 16 (see May flow back through a minute gap between the sealing surface 100 and the inlet 31). However, the inertial convex portion 101 is pressed by the projections 89 to urge the arch valve 81 to close the gas passage 16 (that is, the sealing surface 100 is directed toward the inlet 31). Therefore, the minute gap described above is eliminated, and the backflow of water can be reliably prevented.
[0148] そのため、この弹性凸部 101と、上方に凸湾曲した被加圧面 99とによって、水の圧 力の大小を問わず、その水の逆流を確実に阻止することができる。 [0148] Therefore, the reverse flow of water can be reliably prevented by the inertial convex portion 101 and the pressurized surface 99 convexly curved upward regardless of the water pressure.
また、弹性凸部 101は、各突起 89によって局部的に(つまり、各突起 89に対応する 周上 4箇所の位置で)押圧されることにより、押圧力が局部的に集中して作用される ので、小さな押圧力でも容易に弾性変形して、封止面 100を入口 31へ向けて付勢し 、封止面 100と入口 31との間の隙間を確実に解消することができる。 Further, the inertial convex portion 101 is pressed locally by each projection 89 (that is, at four positions on the circumference corresponding to each projection 89), so that the pressing force is concentrated and acted on locally. Therefore, it can be easily elastically deformed even with a small pressing force, and the sealing surface 100 is urged toward the inlet 31 to reliably eliminate the gap between the sealing surface 100 and the inlet 31.
[0149] 一方、吸引時には、図 26 (b)に示すように、アーチ弁 81が負圧により吸引される。 On the other hand, at the time of suction, as shown in FIG. 26 (b), the arch valve 81 is sucked by negative pressure.
これにより、アーチ弁 81は、各突起 89に押圧された弹性凸部 101の付勢力に抗して 、上方へ浮上し、封止面 100によって封止されていた入口 31が弁室 29内部と連通し 、気体通路 16が完成する(開放される)。そのため、図 4 (b)での逆止弁 17と同様に、 オゾン発生装置 21→オゾン供給管 24→3方分岐 18の入口 19→気体通路 16とつな 力 経路が連通する状態となり、オゾンは、気体通路 16に供給される。 As a result, the arch valve 81 floats upward against the biasing force of the inertial convex portion 101 pressed by each projection 89, and the inlet 31 sealed by the sealing surface 100 is connected to the inside of the valve chamber 29. As a result, the gas passage 16 is completed (opened). Therefore, as with the check valve 17 in Fig. 4 (b), the ozone generator 21 → the ozone supply pipe 24 → the inlet 19 of the three-way branch 18 → the gas passage 16 and the force path communicate with each other. Is supplied to the gas passage 16.
[0150] このように、第 7の実施形態に係る逆止弁 17では、アーチ弁 81が、オゾン供給時( 図 26 (b)参照)には、オゾンの供給圧力(上述した負圧)によって気体通路 16を開放 することによって、図 22に示すように、 3方分岐 18の入口 19から気体通路 16へ供給 されたオゾンが出口 20へ向かって上方へ通過することを許容できる。一方、オゾン非 供給時(図 26 (a)参照)には、アーチ弁 81が、その自重および弹性凸部 101の付勢 力によって気体通路 16を閉鎖することによって、水の逆方向(図 26 (a)における下方 向)への通過(逆流)を阻止することができる。つまり、このような簡単な構成の逆止弁 17により、外部力も別段の操作をしなくても、自動的に気体通路 16を開閉して、水の 逆流を阻止できる。
(ドレン弁) [0150] Thus, in the check valve 17 according to the seventh embodiment, the arch valve 81 is driven by the ozone supply pressure (the negative pressure described above) during ozone supply (see FIG. 26 (b)). By opening the gas passage 16, as shown in FIG. 22, it is possible to allow ozone supplied from the inlet 19 of the three-way branch 18 to the gas passage 16 to pass upward toward the outlet 20. On the other hand, when ozone is not supplied (see Fig. 26 (a)), the arch valve 81 closes the gas passage 16 by its own weight and the urging force of the inertial convex portion 101, so that the reverse direction of water (Fig. 26). The passage (backward flow) in the downward direction in (a) can be prevented. In other words, the check valve 17 having such a simple configuration can automatically open and close the gas passage 16 and prevent back flow of water without any external operation. (Drain valve)
図 27は、図 22におけるドレン弁 36を抜き出して示したものであって、図 27 (a)は通 常時の状態を示し、図 27 (b)は吸引時の状態を示し、図 27 (c)は排水時の状態を示 す。なお、図 27において、入口 19の向きは、図 22で示した向きとは反対の向きで示 されている。図 28は、弁室 38内部におけるストッパー 47の上側斜視図である。 Fig. 27 shows the drain valve 36 extracted from Fig. 22, where Fig. 27 (a) shows the normal state, Fig. 27 (b) shows the state during suction, and Fig. 27 (c ) Indicates the state when draining. In FIG. 27, the direction of the inlet 19 is shown in the opposite direction to that shown in FIG. FIG. 28 is an upper perspective view of the stopper 47 inside the valve chamber 38.
[0151] 第 7の実施形態に係るドレン弁 36において、図 27に示すように、収容室としての弁 室 38内部は、上側部分が上方に凸湾曲した円筒状に形成されている。また、弁室 3 8の底壁の中央位置には、上述した出口 42が円形状に形成されている。そして、弁 室 38内に設けられる受け止め部材としてのストッパー 47は、側断面視において、弁 室 38の内部形状と相似し、上方に凸湾曲するように形成されている。詳しくは、ストツ ノ ー 47は、図 28に示すように、弁室 38の底壁上において出口 42を囲むように放射 状に設けられた 6組のリブ 105の対によって構成されている。各リブ 105は、その上面 力 出口 42の径方向外側へ向力つて緩やかに下降するように形成されており(図 27 参照)、以下では、全てのリブ 105の上面をまとめて受入面 103とする。すなわち、受 入面 103が、上述したストッパー 47の凸湾曲した部分を形成している。また、 1対のリ ブ 105の間には、排水溝 104が形成されている。 In the drain valve 36 according to the seventh embodiment, as shown in FIG. 27, the inside of the valve chamber 38 as a storage chamber is formed in a cylindrical shape whose upper portion is convexly curved upward. Further, the above-described outlet 42 is formed in a circular shape at the center position of the bottom wall of the valve chamber 38. A stopper 47 as a receiving member provided in the valve chamber 38 is similar to the internal shape of the valve chamber 38 in a side sectional view and is formed to be convexly curved upward. Specifically, as shown in FIG. 28, the stocker 47 is configured by six pairs of ribs 105 provided radially on the bottom wall of the valve chamber 38 so as to surround the outlet 42. Each of the ribs 105 is formed so as to gently descend as the radial force of the upper surface force outlet 42 is directed outward (see FIG. 27). To do. That is, the receiving surface 103 forms the convex curved portion of the stopper 47 described above. A drainage groove 104 is formed between the pair of ribs 105.
[0152] 図 27に示すように、遮断部材としてのディスク弁 46は、可撓性を有する素材で構成 されており、通常時には、図 27 (a)に示すように、弁室 38内において、受入面 103上 に載置されるようにストッパー 47に受け止められている。この状態で、ディスク弁 46の 周縁は、弁室 38の内壁に接触または、たとえば lmm未満、好ましくは約 0. 3mmの 隙間を隔てて近接して 、る。 [0152] As shown in Fig. 27, the disc valve 46 serving as a blocking member is made of a flexible material. Normally, as shown in Fig. 27 (a), in the valve chamber 38, It is received by the stopper 47 so as to be placed on the receiving surface 103. In this state, the peripheral edge of the disc valve 46 is in contact with or close to the inner wall of the valve chamber 38, for example, with a gap of less than 1 mm, preferably about 0.3 mm.
[0153] そして、吸引時には、図 27 (b)に示すように、ディスク弁 46が負圧により吸引され、 入口 40が塞がれることにより、第 1の実施形態と同様に、排水管 35が遮断される(図 6 (b)参照)。このとき、ディスク弁 46は、弁室 38の内部形状の、上述した上面形状に 沿うように橈んでいる。ここで、排水管 35の内周面の、入口 40に近接する位置には、 3つの脱離防止リブ 106が、排水管 35の中心に向力つて突出するように、同一円周 上に等間隔で設けられており、これらの脱離防止リブ 106によって、吸引時において 、ディスク弁 46が排水管 35内まで吸引されることが防止されている。
[0154] 以上のように、このドレン弁 36では、図 27 (a)に示す通常時においては、ディスク弁 46力 S弁室 38の内壁に接触または近接して 、るので、弁室 38内にお!/、て入口 40と 出口 42とを連通させる隙間(図 6の隙間 48に相当)は、ほとんど存在しない。しかし、 ディスク弁 46が載置される受入面 103は、上方に凸湾曲しているので、その周縁側( 各リブ 105の上面の、出口 42から離れた部分)は、中心側(各リブ 105の上面の、出 口 42側の部分)に比べて、下側に位置しており、この周縁側部分において受入面 10 3と弁室 38の内壁との間に隙間を確保することできる。そのため、図 27 (c)に示す排 水時においては、入口 40から弁室 38内に流入した水がディスク弁 46を押圧すること により、ディスク弁 46の周縁部分力 上述した隙間において橈む。これにより、弁室 3 8の内壁とディスク弁 46との接触が解消されて、弁室 38の内壁とディスク弁 46との間 に、上述した隙間 48が形成される。これにより、入口 40と出口 42とが連通して排水 管 35が開放されるので、弁室 38内部に流入した水は、各排水溝 104を通過して出 口 42に到達し、排水管 35を介して排水される。 [0153] At the time of suction, as shown in Fig. 27 (b), the disk valve 46 is sucked by negative pressure and the inlet 40 is closed, so that the drain pipe 35 is opened as in the first embodiment. It is blocked (see Fig. 6 (b)). At this time, the disc valve 46 is held so as to conform to the above-described top surface shape of the internal shape of the valve chamber 38. Here, at the position on the inner peripheral surface of the drain pipe 35 close to the inlet 40, three detachment prevention ribs 106 are projected on the same circumference so as to protrude toward the center of the drain pipe 35. These separation prevention ribs 106 are provided at intervals, and the disk valve 46 is prevented from being sucked into the drain pipe 35 during suction. [0154] As described above, in this drain valve 36, in the normal state shown in Fig. 27 (a), the disk valve 46 force S is in contact with or close to the inner wall of the valve chamber 38. There is almost no gap between the inlet 40 and the outlet 42 (corresponding to the gap 48 in FIG. 6). However, since the receiving surface 103 on which the disc valve 46 is placed is convexly curved upward, the peripheral side (the portion of the upper surface of each rib 105 away from the outlet 42) is the center side (each rib 105). Compared with the portion on the outlet 42 side of the upper surface), a gap can be secured between the receiving surface 103 and the inner wall of the valve chamber 38 at the peripheral portion. Therefore, at the time of draining as shown in FIG. 27 (c), the water flowing into the valve chamber 38 from the inlet 40 presses the disc valve 46, so that the peripheral partial force of the disc valve 46 stagnates in the gap described above. As a result, contact between the inner wall of the valve chamber 38 and the disc valve 46 is eliminated, and the gap 48 described above is formed between the inner wall of the valve chamber 38 and the disc valve 46. As a result, the inlet 40 and the outlet 42 communicate with each other and the drain pipe 35 is opened, so that the water flowing into the valve chamber 38 passes through the drain grooves 104 and reaches the outlet 42, and the drain pipe 35 It is drained through.
[0155] すなわち、第 7の実施形態に係るドレン弁 36によれば、ディスク弁 46は、通常時( 排水時以外、かつ、吸引時以外)において、弁室 38の内壁に接触または近接してい るので、吸引時における排水管 35内の圧力変化 (上述した負圧)が小さくても、確実 に動作し、入口 40を塞いで排水管 35を遮断することができ、外部からの空気の流入 を確実に防止できる。 That is, according to the drain valve 36 according to the seventh embodiment, the disc valve 46 is in contact with or close to the inner wall of the valve chamber 38 during normal times (except during draining and during suction). Therefore, even if the pressure change in the drain pipe 35 during suction (the negative pressure described above) is small, it can operate reliably, the inlet 40 can be blocked and the drain pipe 35 can be shut off. Can be reliably prevented.
[0156] また、ディスク弁 46は、可撓性を有しており、排水時においては、流れ出る水に押 圧されて橈むことにより、弁室 38の内壁とディスク弁 46との間に、上述した隙間 48が 形成されることによって排水管 35が開放されるので、排水管 35での円滑な排水を確 保することができる。 [0156] Further, the disc valve 46 is flexible, and when drained, the disc valve 46 is pressed against the flowing water and squeezed between the inner wall of the valve chamber 38 and the disc valve 46. Since the drain pipe 35 is opened by forming the gap 48 described above, smooth drainage in the drain pipe 35 can be ensured.
そして、上方、つまり排水時に水が流れ出る方向(流出方向)とは逆方向に凸湾曲 した受入面 103において、受入面 103の周縁側は、その中心側に比べて、水の流出 方向下流側(下側)に位置しているので、この周縁側部分において受入面 103と弁 室 38の内壁との間に隙間を確保することできる。そのため、排水時には、この隙間に おいて、弁室 38の内壁とディスク弁 46との接触が解消されるまでディスク弁 46を撓ま せて、排水管 35を確実に開放することができる。
<第 8の実施形態 > In addition, in the receiving surface 103 that is convex upward in the direction opposite to the direction in which water flows out during drainage (outflow direction), the peripheral side of the receiving surface 103 is downstream in the water outflow direction compared to the center side ( Therefore, a gap can be secured between the receiving surface 103 and the inner wall of the valve chamber 38 at the peripheral edge portion. Therefore, at the time of drainage, the drain valve 35 can be reliably opened by bending the disc valve 46 until the contact between the inner wall of the valve chamber 38 and the disc valve 46 is eliminated in this gap. <Eighth embodiment>
図 3に示すように、逆止弁 17 (図 4参照)において、弁室 29内に異物が詰まると、逆 止弁 17では、水流路 14の絞り部 15から気体通路 16 (詳しくは、 3方分岐 18)への水 の逆流 (水漏れ)を阻止することが困難となる虞がある。そして、逆流する水の量が比 較的多い場合には、その水が 3方分岐 18の入口 19からオゾン発生装置 21まで到達 し、オゾン発生装置 21が水に濡れる虞がある(図 2参照)。この状態でオゾン発生装 置 21を ONすると、上述したように、放電できなくなったり、漏電が生じたりする虞があ る。 As shown in FIG. 3, in the check valve 17 (see FIG. 4), when foreign matter is clogged in the valve chamber 29, the check valve 17 causes the gas passage 16 (for details 3 There is a risk that it will be difficult to prevent the backflow of water (water leakage) to the side branch 18). If the amount of water flowing back is relatively large, the water may reach the ozone generator 21 from the inlet 19 of the three-way branch 18 and the ozone generator 21 may get wet (see Fig. 2). ). If the ozone generating device 21 is turned on in this state, there is a risk that electric discharge cannot be performed or electric leakage occurs as described above.
[0157] ここで、水流路 14で水が流れているときには、絞り部 15内は負圧になるので、絞り 部 15から気体通路 16への逆流は生じにくい。換言すれば、水流路 14で水が流れて いないときに、逆流が生じやすい。そこで、この負圧を利用して、オゾン発生装置 21 まで到達した水を絞り部 15内に戻すことができる。詳しくは、制御部 49が、オゾン発 生装置 21を ONする前に、所定時間(たとえば 10秒以上であり、絞り部 15での水の 流れが最も遅い場合を想定して設定する。)の間、ポンプ 5を駆動して水流路 14 (絞 り部 15)に水を流す(図 7参照)。これによつて、絞り部 15内が負圧になるので、ォゾ ン供給管 24 (図 2参照)および気体通路 16を介して絞り部 15に連通するオゾン発生 装置 21まで到達した水を、絞り部 15内に戻すことができる。つまり、オゾン発生装置 21が ONされる場合、その前に、オゾン発生装置 21内部の水分が必ず除去される。 これにより、オゾン発生装置 21が濡れた状態で ONされることを確実に防止できる。 [0157] Here, when water is flowing in the water flow path 14, the inside of the throttle portion 15 has a negative pressure. In other words, backflow is likely to occur when water is not flowing through the water channel 14. Therefore, by using this negative pressure, the water that has reached the ozone generator 21 can be returned into the throttle section 15. Specifically, the control unit 49 is set for a predetermined time (for example, 10 seconds or more, assuming that the flow of water at the throttle unit 15 is the slowest) before turning on the ozone generator 21. Meanwhile, the pump 5 is driven to allow water to flow through the water flow path 14 (throttle section 15) (see FIG. 7). As a result, the inside of the throttle 15 becomes negative pressure, so that the water that has reached the ozone generator 21 that communicates with the throttle 15 via the ozone supply pipe 24 (see FIG. 2) and the gas passage 16 It can be returned to the aperture 15. That is, before the ozone generator 21 is turned on, moisture inside the ozone generator 21 is surely removed. This can reliably prevent the ozone generator 21 from being turned on in a wet state.
[0158] この発明は、以上説明した実施形態に限定されるものではなぐ請求項記載の範囲 内において種々の変更が可能である。たとえば、この発明に係る水オゾン混合装置 2 、水浄ィ匕装置 1またはオゾン水生成装置 70の構成を、風呂水を利用して洗濯を行な う洗濯機などおける、風呂水の浄ィ匕処理などに用いることができる。また、第 5、第 6、 第 7および第 8の実施形態で示した構成は、水浄化装置 1に限らず、水オゾン混合装 置 2にも適用可能である。 [0158] The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims. For example, the configuration of the water ozone mixing device 2, the water purification device 1 or the ozone water generation device 70 according to the present invention may be used in a washing machine that performs washing using bath water. It can be used for processing. Further, the configurations shown in the fifth, sixth, seventh and eighth embodiments are not limited to the water purification device 1 but can be applied to the water ozone mixing device 2.
[0159] また、本実施形態では、オゾンを水に混合する構成のオゾン混合器 7を例示したが 、これに限らず、このオゾン混合器 7を汎用的な気液混合器として用いることができる 。そして、第 7の実施形態で示したアーチ弁 81を用いた逆止弁 17は、この発明に係
るオゾン混合器 7、水オゾン混合装置 2、水浄化装置 1およびオゾン水生成装置 70に 限らず、流体の逆流を阻止する必要がある全ての機構に適用することができる。
[0159] Further, in the present embodiment, the ozone mixer 7 configured to mix ozone with water is illustrated, but the present invention is not limited thereto, and the ozone mixer 7 can be used as a general-purpose gas-liquid mixer. . The check valve 17 using the arch valve 81 shown in the seventh embodiment is related to the present invention. The present invention can be applied not only to the ozone mixer 7, the water ozone mixing device 2, the water purification device 1, and the ozone water generating device 70, but also to any mechanism that needs to prevent the backflow of fluid.
Claims
[1] 水を汲むためのポンプと、 [1] a pump for drawing water;
水を浄ィ匕するための浄ィ匕装置と、 Purification equipment for purifying water,
前記ポンプで汲まれる水を前記浄化装置へ導入するための導入路と、 前記浄化装置で浄化された浄水を出力する浄水給水路と、を備え、 An introduction path for introducing water pumped by the pump into the purification apparatus, and a purified water supply path for outputting purified water purified by the purification apparatus,
前記浄化装置は、 The purification device comprises:
筐体と、前記筐体の外面に設けられた操作部と、前記筐体内に配置されたオゾン 発生装置、前記オゾン発生装置が発生するオゾンを水に混合するための気液混合 器、ならびに前記ポンプおよび前記オゾン発生装置の運転を制御するための制御装 置と、を含むことを特徴とする、水浄化装置。 A housing, an operation unit provided on an outer surface of the housing, an ozone generator disposed in the housing, a gas-liquid mixer for mixing ozone generated by the ozone generator with water, and the And a control device for controlling the operation of the pump and the ozone generator.
[2] 前記ポンプは、水源力 原水を汲むためのものであり、 [2] The pump is used to draw raw water.
前記浄水給水路は、前記浄化装置で浄化された浄水を取り出すための導出路を 含むことを特徴とする、請求項 1記載の水浄化装置。 2. The water purification apparatus according to claim 1, wherein the purified water supply path includes a lead-out path for taking out purified water purified by the purification apparatus.
[3] 前記制御装置は、前記ポンプの吐出側の水圧に基づ!、て、前記ポンプおよび前記 オゾン発生装置の運転を連動制御することを特徴とする、請求項 iまたは 2記載の水 浄化装置。 [3] The water purification according to claim i or 2, wherein the control device controls the operation of the pump and the ozone generator in conjunction with each other based on the water pressure on the discharge side of the pump. apparatus.
[4] 前記ポンプは、被浄ィ匕水の貯水源力も水を汲むためのものであり、 [4] The pump is for storing water to be stored as well.
前記浄水給水路は、前記浄化装置で浄化された浄水を前記貯水源へ戻すための 返送路を含むことを特徴とする、請求項 1記載の水浄化装置。 2. The water purification apparatus according to claim 1, wherein the water purification water supply path includes a return path for returning the purified water purified by the purification apparatus to the water storage source.
[5] 前記貯水源は、生活水を溜める貯水タンクを含み、 [5] The water storage source includes a water storage tank for storing domestic water,
前記貯水タンクには、前記貯水タンクの水を取り出すためのユーザ用給水管が備 えられ、 The water storage tank is provided with a user water supply pipe for taking out water from the water storage tank,
前記貯水タンクは、前記ユーザ用給水管が開けられたときに重力で水が出るように 高所に配置されており、 The water storage tank is arranged at a high place so that water is discharged by gravity when the user water supply pipe is opened,
前記ポンプおよび前記浄化装置は、前記貯水タンクよりも低!ヽ位置に配置されるこ とを特徴とする、請求項 4記載の水浄化装置。 The pump and the purification device are lower than the water storage tank! 5. The water purification apparatus according to claim 4, wherein the water purification apparatus is disposed at a heel position.
[6] 前記浄ィ匕装置および前記ポンプが組付けられる被組付部材を備え、 [6] A member to be assembled to which the purification apparatus and the pump are assembled,
前記貯水タンクは、前記被組付部材の上方に配置され、
前記浄化装置は、前記被組付部材の上端部に配置され、 The water storage tank is disposed above the assembled member, The purification device is disposed at an upper end of the member to be assembled,
前記ポンプは、前記浄ィ匕装置よりも低い位置に配置されていることを特徴とする、 請求項 5記載の水浄化装置。 6. The water purification apparatus according to claim 5, wherein the pump is disposed at a position lower than the purification apparatus.
[7] 前記導入路の途中には、前記浄化装置へ導入される水の中の異物を捕獲するた めのフィルタが設けられていることを特徴とする、請求項 5または 6記載の水浄ィ匕装置 [7] The water purification apparatus according to claim 5 or 6, wherein a filter for capturing foreign matter in water introduced into the purification device is provided in the middle of the introduction path. Equipment
[8] 前記ポンプ力も前記フィルタまでの間を流れる水の圧力を検知するための圧力セン サと、 [8] a pressure sensor for detecting the pressure of water flowing between the pump force and the filter;
前記圧力センサによって検知された圧力の値に応じて前記フィルタの目詰りを判断 するための制御装置と、 A control device for judging clogging of the filter according to a pressure value detected by the pressure sensor;
前記制御装置によって前記フィルタの目詰りが判断されたときに前記フィルタの目 詰りを報知するための報知手段と、を含むことを特徴とする、請求項 7記載の水浄ィ匕 装置。 8. The water purifier according to claim 7, further comprising a notifying unit for notifying the clogging of the filter when the control device determines that the filter is clogged.
[9] 前記筐体内には、 [9] In the housing,
一端が前記導入路に接続されていて、他端が前記浄水給水路に接続されている 水路と、 A water channel having one end connected to the introduction channel and the other end connected to the purified water supply channel;
前記水路の上方に区画された電装品領域と、 An electrical component area partitioned above the waterway;
前記電装品領域を前記水路から遮断するための遮断壁と、が備えられ、 前記気液混合器は、前記水路に結合され、前記オゾン発生装置および前記制御 装置は、前記電装品領域に配置されていることを特徴とする、請求項 1ないし 8のい ずれかに記載の水浄化装置。 A barrier wall for blocking the electrical component region from the water channel, the gas-liquid mixer is coupled to the water channel, and the ozone generator and the control device are disposed in the electrical component region. The water purifier according to claim 1, wherein the water purifier is characterized by the above.
[10] 前記水路は、前記筐体内を左右方向に略水平に延びていて、一端は前記筐体の 一側面外方へ突出し、外方において前記導入路に接続され、他端は前記筐体の他 側面外方へ突出し、外方において前記浄水給水路に接続されていることを特徴とす る、請求項 9記載の水浄化装置。 [10] The water channel extends substantially horizontally in the left-right direction in the housing, and one end projects outwardly from one side surface of the housing and is connected to the introduction channel at the outside, and the other end is the housing. 10. The water purification apparatus according to claim 9, wherein the water purification apparatus protrudes outward from the other side surface and is connected to the purified water supply channel outside.
[11] 前記気液混合器は、前記水路の前記一端または前記他端を構成するように前記水 路に結合されていることを特徴とする、請求項 10記載の水浄ィ匕装置。 11. The water purification apparatus according to claim 10, wherein the gas-liquid mixer is coupled to the water channel so as to constitute the one end or the other end of the water channel.
[12] 前記遮断壁は、前記水路および前記気液混合器の結合部分の上方に配置されて
V、ることを特徴とする、請求項 9な 、し 11の 、ずれかに記載の水浄化装置。 [12] The blocking wall is disposed above the coupling portion of the water channel and the gas-liquid mixer. The water purifier according to claim 9, wherein the water purifier is V.
[13] 前記水路は、メンテナンス時に取り外し可能な部品を含み、 [13] The waterway includes parts that can be removed during maintenance,
前記遮断壁は、前記部品の上方に配置されていることを特徴とする、請求項 9ない し 12のいずれかに記載の水浄ィ匕装置。 13. The water purification apparatus according to claim 9, wherein the blocking wall is disposed above the component.
[14] 前記気液混合器には、一端に水の流入口、他端に水の流出口を有し、前記流入 口および前記流出口を連通する水流路、ならびに、一端に気体入口、他端に気体出 口を有し、前記気体出口が前記水流路の途中に合流されて 、る気体通路が備えら れ、 [14] The gas-liquid mixer has a water inlet at one end, a water outlet at the other end, a water flow path communicating with the inlet and the outlet, a gas inlet at one end, and the like. A gas outlet having a gas outlet at an end, the gas outlet being joined in the middle of the water flow path;
前記オゾン発生装置が発生したオゾンは、前記気体入口から前記気体通路へ供給 され、 The ozone generated by the ozone generator is supplied from the gas inlet to the gas passage,
前記水流路の水が前記気体出口から浸入して、前記気体通路を流れるとき、前記 気体通路を流れ出る水を排水するための排水路と、 A drainage channel for draining water flowing out of the gas passage when water in the water channel enters from the gas outlet and flows through the gas passage;
前記排水路に設けられ、前記気体通路へのオゾン供給中に、前記排水路を水が 流れ出る方向とは逆方向に空気が流入することを抑制するための空気流入抑制手 段と、を備えることを特徴とする、請求項 1記載の水浄化装置。 An air inflow suppression means for suppressing air from flowing in a direction opposite to the direction in which water flows out of the drainage channel, provided in the drainage channel and supplying ozone to the gas passage. The water purification device according to claim 1, characterized in that:
[15] 前記気液混合器には、一端に水の流入口、他端に水の流出口を有し、前記流入 口および前記流出口を連通する水流路、ならびに、一端に気体入口、他端に気体出 口を有し、前記気体入口から前記気体出口へ向かって上方へ延び、前記気体出口 が前記水流路の途中に合流されて 、る気体通路が備えられ、 [15] The gas-liquid mixer has a water inlet at one end, a water outlet at the other end, a water channel communicating the inlet and the outlet, a gas inlet at one end, and the like. A gas outlet at the end, extending upward from the gas inlet toward the gas outlet, and having a gas passage that joins the gas outlet in the middle of the water flow path;
前記オゾン発生装置が発生したオゾンは、前記気体入口から前記気体通路へ供給 され、 The ozone generated by the ozone generator is supplied from the gas inlet to the gas passage,
前記気体通路に備えられ、前記気体入口から前気体出口へ向かう下方から上方へ のオゾンの通過は許容する力 逆方向への水の通過を阻止するための逆止弁を含 み、 A pressure valve provided in the gas passage, including a check valve for preventing the passage of water from the lower side to the upper side from the gas inlet to the front gas outlet;
当該逆止弁は、オゾン供給時には、オゾンの供給圧力によって前記気体通路を開 放し、オゾン非供給時には、 自重によって前記気体通路を閉鎖する弁体を含むこと を特徴とする、請求項 1記載の水浄化装置。 2. The check valve according to claim 1, wherein the check valve includes a valve body that opens the gas passage by an ozone supply pressure when ozone is supplied and closes the gas passage by its own weight when ozone is not supplied. Water purification device.
[16] 一端に水の流入口、他端に水の流出口を有し、前記流入口および前記流出口を
連通する水流路、ならびに、一端に気体入口、他端に気体出口を有し、前記気体出 口が前記水流路の途中に合流されている気体通路を有する気液混合器と、 オゾンを発生し、発生したオゾンを前記気体入口から前記気体通路へ供給するォ ゾン供給装置と、 [16] It has a water inlet at one end and a water outlet at the other end. A water flow path that communicates, a gas-liquid mixer having a gas inlet at one end, a gas outlet at the other end, and a gas passage where the gas outlet is joined in the middle of the water flow path; An ozone supply device for supplying the generated ozone from the gas inlet to the gas passage;
前記水流路の水が前記気体出口から浸入して、前記気体通路を流れるとき、前記 気体通路を流れ出る水を排水するための排水路と、 A drainage channel for draining water flowing out of the gas passage when water in the water channel enters from the gas outlet and flows through the gas passage;
前記排水路に設けられ、前記気体通路へのオゾン供給中に、前記排水路を水が 流れ出る方向とは逆方向に空気が流入することを抑制するための空気流入抑制手 段と、を備えることを特徴とする、水オゾン混合装置。 An air inflow suppression means for suppressing air from flowing in a direction opposite to the direction in which water flows out of the drainage channel, provided in the drainage channel and supplying ozone to the gas passage. A water ozone mixing device.
[17] 前記気液混合器は、 [17] The gas-liquid mixer is:
前記水流路の途中が絞られた絞り部を有し、 Having a throttle part that is throttled in the middle of the water flow path;
前記絞り部に前記気体出口が合流されていることを特徴とする、請求項 16記載の 水浄化装置。 17. The water purifier according to claim 16, wherein the gas outlet is joined to the throttle portion.
[18] 前記空気流入抑制手段は、 [18] The air inflow suppressing means includes:
前記絞り部にオゾンが吸い込まれることによって変化する前記排水路内の圧力変 化により動作することを特徴とする、請求項 17記載の水浄化装置。 18. The water purifier according to claim 17, wherein the water purifier is operated by a pressure change in the drainage channel that changes when ozone is sucked into the throttle portion.
[19] 前記空気流入抑制手段は、 [19] The air inflow suppression means includes:
一端に入口、他端に出口を有し、前記入口および前記出口が前記排水路に接続さ れることによって前記排水路の途中に介挿された収容室と、 A storage chamber having an inlet at one end and an outlet at the other end, and being inserted in the middle of the drainage channel by connecting the inlet and the outlet to the drainage channel,
前記収容室に収容され、可撓性を有し、前記絞り部にオゾンが吸い込まれること〖こ よって変化する前記排水路内の圧力変化によって前記入口を塞 、で前記排水路を 遮断する遮断部材と、を含み、 A blocking member that is accommodated in the storage chamber, has flexibility, and blocks the drainage path by closing the inlet by a pressure change in the drainage path that changes due to ozone being sucked into the throttle portion. And including
前記排水路を水が流れ出るとき以外、かつ、前記絞り部にオゾンが吸い込まれると き以外においては、前記遮断部材は、前記収容室の内壁に接触または近接しており 前記排水路を水が流れ出るときにおいては、流れ出る水に押圧されて前記遮断部 材が撓むことにより、前記収容室の内壁と前記遮断部材と間に隙間が形成されること によって前記排水路が開放されることを特徴とする、請求項 18記載の水浄ィ匕装置。
The blocking member is in contact with or close to the inner wall of the storage chamber except when water flows out of the drainage channel and when ozone is sucked into the throttle portion, and water flows out of the drainage channel. In some cases, the drainage channel is opened by being pressed by the flowing water and bending the blocking member to form a gap between the inner wall of the storage chamber and the blocking member. The water purification apparatus according to claim 18.
[20] 前記収容室内に設けられ、前記逆方向に凸湾曲した受入面が形成され、前記受入 面で前記遮断部材を受け止めるための受け止め部材を含むことを特徴とする、請求 項 19記載の水浄化装置。 [20] The water according to claim 19, further comprising a receiving member provided in the accommodation chamber, wherein a receiving surface convexly curved in the opposite direction is formed, and includes a receiving member for receiving the blocking member on the receiving surface. Purification equipment.
[21] 前記排水路から排水される水を検知するための水検知センサと、 [21] a water detection sensor for detecting water drained from the drainage channel;
前記水検知センサの検知に応じて、前記オゾン供給装置を停止させるためのォゾ ン供給制御手段とを含むことを特徴とする、請求項 16ないし 20のいずれかに記載の 水浄化装置。 21. The water purification apparatus according to claim 16, further comprising an ozone supply control means for stopping the ozone supply apparatus in response to detection by the water detection sensor.
[22] 一端に水の流入口、他端に水の流出口を有し、前記流入口および前記流出口を 連通する水流路、ならびに、一端に気体入口、他端に気体出口を有し、前記気体入 口から前記気体出口へ向かって上方へ延び、前記気体出口が前記水流路の途中に 合流されて!ゝる気体通路を有する気液混合器と、 [22] A water inlet at one end, a water outlet at the other end, a water flow path communicating the inlet and the outlet, a gas inlet at one end, and a gas outlet at the other end, A gas-liquid mixer having a gas passage that extends upward from the gas inlet toward the gas outlet, and the gas outlet joins in the middle of the water flow path;
オゾンを発生し、発生したオゾンを前記気体入口から前記気体通路へ供給するォ ゾン供給装置と、 An ozone supply device for generating ozone and supplying the generated ozone from the gas inlet to the gas passage;
前記気体通路に備えられ、前記気体入口から前気体出口へ向かう下方から上方へ のオゾンの通過は許容する力 逆方向への水の通過を阻止するための逆止弁と、を 含み、 A check valve provided in the gas passage, for allowing passage of ozone from below to above from the gas inlet to the front gas outlet, and preventing passage of water in the reverse direction;
当該逆止弁は、オゾン供給時には、オゾンの供給圧力によって前記気体通路を開 放し、オゾン非供給時には、自重によって前記気体通路を閉鎖する弁体を含むこと を特徴とする、水オゾン混合装置。 The check valve includes a valve body that opens the gas passage by ozone supply pressure when ozone is supplied and closes the gas passage by its own weight when ozone is not supplied.
[23] 前記弁体は、前記気体通路内に上下に移動可能な自由状態で収容されており、 上方に凸湾曲した上面を有することを特徴とする、請求項 22記載の水浄ィ匕装置。 [23] The water purification apparatus according to claim 22, wherein the valve body is accommodated in the gas passage in a freely movable state so as to move up and down, and has an upper surface convexly curved upward. .
[24] 前記気体通路内には、前記弁体の位置がずれるのを防止するために、前記弁体の 上面と接する突起が設けられていることを特徴とする、請求項 23記載の水浄ィ匕装置
[24] The water purification apparatus according to claim 23, wherein a protrusion in contact with the upper surface of the valve body is provided in the gas passage in order to prevent the position of the valve body from shifting. Equipment
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-160099 | 2006-06-08 | ||
JP2006160099 | 2006-06-08 | ||
JP2006208556A JP2008012511A (en) | 2006-06-08 | 2006-07-31 | Water purifying device, and water-ozone mixing device |
JP2006-208556 | 2006-07-31 | ||
JP2006208557A JP2008012512A (en) | 2006-06-08 | 2006-07-31 | Water-ozone mixing device, water purifying device, ozone water generation device, gas-liquid mixer, and check valve |
JP2006-208557 | 2006-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007141957A1 true WO2007141957A1 (en) | 2007-12-13 |
Family
ID=38801222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/058147 WO2007141957A1 (en) | 2006-06-08 | 2007-04-13 | Water purifying device, and water-ozone mixing device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007141957A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102784403A (en) * | 2012-08-20 | 2012-11-21 | 宋国艳 | Ozone supplying device |
JP2013527016A (en) * | 2009-06-01 | 2013-06-27 | ソーダ−クラブ(シーオー2)ソシエテ アノニム | Water purification pitcher |
CN107715564A (en) * | 2017-11-16 | 2018-02-23 | 白红创 | A kind of activated carbon filter element device for preventing out Heisui River |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04313393A (en) * | 1991-04-12 | 1992-11-05 | Tagawa Kogyo Kk | Ozone treated water producing equipment |
JPH07204670A (en) * | 1994-01-27 | 1995-08-08 | Masayoshi Kodesen | Method and apparatus for sterilizing water instantly |
JP2005152734A (en) * | 2003-11-21 | 2005-06-16 | Ebara Corp | Minute air bubble-supplying apparatus |
-
2007
- 2007-04-13 WO PCT/JP2007/058147 patent/WO2007141957A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04313393A (en) * | 1991-04-12 | 1992-11-05 | Tagawa Kogyo Kk | Ozone treated water producing equipment |
JPH07204670A (en) * | 1994-01-27 | 1995-08-08 | Masayoshi Kodesen | Method and apparatus for sterilizing water instantly |
JP2005152734A (en) * | 2003-11-21 | 2005-06-16 | Ebara Corp | Minute air bubble-supplying apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013527016A (en) * | 2009-06-01 | 2013-06-27 | ソーダ−クラブ(シーオー2)ソシエテ アノニム | Water purification pitcher |
CN102784403A (en) * | 2012-08-20 | 2012-11-21 | 宋国艳 | Ozone supplying device |
CN107715564A (en) * | 2017-11-16 | 2018-02-23 | 白红创 | A kind of activated carbon filter element device for preventing out Heisui River |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008012512A (en) | Water-ozone mixing device, water purifying device, ozone water generation device, gas-liquid mixer, and check valve | |
JP3193045B2 (en) | Contact lens cleaning system | |
KR101173395B1 (en) | Washing device for water treatment apparatus | |
JP5180458B2 (en) | Water purification equipment | |
JP5990423B2 (en) | Septic tank wastewater treatment system | |
US20090044838A1 (en) | Ozonation for elimination of bacteria for wet processing systems | |
JP2008012511A (en) | Water purifying device, and water-ozone mixing device | |
WO2007141957A1 (en) | Water purifying device, and water-ozone mixing device | |
JP2013092261A (en) | Air cleaning device having air purification function, and operation control method therefor | |
JP4678052B2 (en) | Electrolyzed water generator | |
JP3172987U (en) | Sewage purification equipment | |
JP2007117912A (en) | Emergency purification apparatus | |
WO2021145207A1 (en) | Air purification device | |
JP2005264585A (en) | Manhole device | |
CA2685803C (en) | Pressure tank | |
JP3505457B2 (en) | Water treatment equipment | |
JP2012096172A (en) | Water purifier | |
JP2003328979A (en) | Water level control method for liquid tank and water level control device for liquid tank | |
JP5369363B2 (en) | Hazardous substance removal device | |
JP2005246185A (en) | Water treatment and air diffusion equipment and operation management method | |
JP4248231B2 (en) | Washing water supply device | |
KR100706869B1 (en) | Low Frequency Oscillation Leak Detection Device of Water Purifier | |
KR102154608B1 (en) | Natural air bubble making system in the water | |
JP2010248730A (en) | Circulating type water closet | |
JP2008180222A (en) | Air trap |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780021172.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07741583 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10131/DELNP/2008 Country of ref document: IN |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07741583 Country of ref document: EP Kind code of ref document: A1 |