WO2007141839A1 - Testing device and method of controlling drive of testing device - Google Patents

Testing device and method of controlling drive of testing device Download PDF

Info

Publication number
WO2007141839A1
WO2007141839A1 PCT/JP2006/311221 JP2006311221W WO2007141839A1 WO 2007141839 A1 WO2007141839 A1 WO 2007141839A1 JP 2006311221 W JP2006311221 W JP 2006311221W WO 2007141839 A1 WO2007141839 A1 WO 2007141839A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuators
displacement
difference
actuator
calculation unit
Prior art date
Application number
PCT/JP2006/311221
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Yasuda
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to JP2008520076A priority Critical patent/JP4793444B2/en
Priority to PCT/JP2006/311221 priority patent/WO2007141839A1/en
Publication of WO2007141839A1 publication Critical patent/WO2007141839A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/021Treatment of the signal; Calibration

Definitions

  • Test apparatus and drive control method of test apparatus are Test apparatus and drive control method of test apparatus
  • the present invention relates to a test apparatus for performing various tests such as a fatigue test and a strength test by loading a specimen using a plurality of actuators.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 44623
  • a test apparatus includes a plurality of actuators for loading a specimen, a sensor for detecting displacement or load of the specimen, and a first for calculating a difference between a sensor signal and a target signal. Based on the calculation results of the calculation unit, the second calculation unit that calculates the displacement or load difference of the plurality of actuators, and the first calculation unit and the second calculation unit, And a control unit for driving and controlling each of the actuators.
  • the control unit uses a PID control method based on the servo valve for controlling the hydraulic pressure of each of the plurality of actuators and the calculation results of the first calculation unit and the second calculation unit. It is preferable that the actuator has a PID control unit for driving and controlling the servo valve, and the plurality of actuators are driven according to the hydraulic pressure controlled by the servo valve.
  • the second calculating unit calculates a difference obtained by subtracting the average value of the displacement amount or the load amount of each of the actuators for each of the actuators, and the control unit Each of the actuators can be driven and controlled based on the difference calculated by the first calculation unit and the difference calculated for each of the actuators by the second calculation unit.
  • the second calculation unit further includes a predetermined correction coefficient that is set in advance to the difference obtained by subtracting the average value of the displacement amount or load amount of each of the actuators.
  • the controller calculates a correction value for each actuator, and the control unit calculates the difference force calculated by the first calculation unit based on the value obtained by subtracting the correction value calculated for each actuator by the second calculation unit. It is preferable to drive and control each actuator.
  • a test apparatus drive control method is a test apparatus drive control method for driving and controlling each of the actuators in a test apparatus having a plurality of actuators for loading the specimen.
  • the displacement or load is detected, the difference between the detected displacement or load of the specimen and the target displacement or target load is calculated, the difference between the displacements or loads of multiple actuators is calculated, and each calculated difference is calculated. Based on the above, each of the plurality of actuators is driven and controlled. The invention's effect
  • the operations of a plurality of actuators can be appropriately controlled without delaying each other.
  • FIG. 1 is a block diagram of a test apparatus according to an embodiment of the present invention.
  • FIG. 2 is a graph showing an example of the internal stroke displacement amount of each actuator obtained when the magnitude of the external displacement setting signal is periodically changed in the test apparatus of the present invention.
  • FIG. 3 is a block diagram of a conventional test apparatus.
  • FIG. 4 is a graph showing an example of the internal stroke displacement amount of each actuator obtained when the magnitude of the external displacement setting signal is periodically changed in a conventional test apparatus.
  • FIG. 5 is a block diagram of a test apparatus according to a modification of the present invention.
  • FIG. 6 is a block diagram of a test apparatus having three or more actuators according to another embodiment of the present invention.
  • FIG. 1 A block diagram of an electrohydraulic servo type test apparatus according to an embodiment of the present invention is shown in FIG.
  • This test apparatus has a pair of actuators la and lb.
  • a pair of servo valves 2a and 2b, a PID controller 3a and 3b, a subtractor 4a and 4b, a subtractor, respectively. 5a and 5b, and arithmetic units 6a and 6b are provided.
  • a displacement meter 7 commonly used for controlling the actuators la and lb is provided.
  • feedback tests are performed on the actuators la and lb and the specimen 8 is loaded, so that load tests using various structures are performed.
  • the seismic isolation rubber fatigue test is performed by periodically changing the displacement of the actuators la and lb using the base isolation rubber for the specimen 8.
  • the specimen 8 is supported by a support frame (not shown), and loads corresponding to the respective displacement amounts are applied from the actuators la and lb.
  • the displacement meter 7 detects the displacement of the specimen 8 caused by the deformation.
  • Displacement meter 7 excludes the detection result of displacement amount of specimen 8. It is output to the subtracters 5a and 5b as a partial displacement signal.
  • the external displacement signal indicating the displacement of the specimen 8 is input from the displacement meter 7 to the subtracters 5a and 5b, and the displacement of the specimen 8 is measured with respect to the actuators la and lb.
  • An external displacement setting signal for setting a target value is input.
  • Subtractors 5a and 5b calculate the difference between the input external displacement signal and the external displacement setting signal (hereinafter referred to as an external displacement difference), and output the calculation results to subtractors 4a and 4b, respectively.
  • Each of the actuators la and lb detects the amount of internal stroke displacement, and outputs the detection result to the arithmetic units 6a and 6b as internal displacement signals A and B, respectively.
  • the arithmetic units 6a and 6b calculate the average value of these signals, that is, (A + B) Z2 and multiply by the correction coefficient k from the internal displacement signal A or B, respectively, and subtract the subtraction units 4a and 4 Output for each b.
  • the calculator 6a calculates a value obtained by subtracting the average value of the internal displacement signals A and B from the internal displacement signal A (hereinafter referred to as internal displacement difference A), and further corrects the internal displacement difference A.
  • the value multiplied by the coefficient k (hereinafter referred to as the internal displacement difference A correction value) is calculated.
  • the calculator 6b calculates a value obtained by subtracting the average value of the internal displacement signals A and B from the internal displacement signal B (hereinafter referred to as internal displacement difference B), and further calculates the correction coefficient k to the internal displacement difference B.
  • the value multiplied by (hereinafter referred to as the internal displacement difference B correction value) is calculated.
  • the correction coefficient k is a correction coefficient determined in accordance with the gain ratio between the external control and the internal control in the actuators la and lb, that is, the ratio of the gain with respect to the external displacement signal and the gain with respect to the internal displacement signal. ing.
  • the subtractors 4a and 4b respectively represent the difference between the external displacement difference output from the subtracters 5a and 5b and the internal displacement difference A or B output from the calculator 6a or 6b, respectively. Calculate. The calculated difference is output to the PID control units 3a and 3b, respectively. At this time, the subtractor 4a calculates a value (hereinafter referred to as a control value A) obtained by subtracting the correction value of the internal displacement difference A calculated by the calculator 6a from the external displacement difference calculated by the subtractor 5a. Output to PID control unit 3a.
  • a control value A a value obtained by subtracting the correction value of the internal displacement difference A calculated by the calculator 6a from the external displacement difference calculated by the subtractor 5a.
  • the subtractor 4b calculates a value (hereinafter referred to as a control value B) obtained by subtracting the correction value of the internal displacement difference B calculated by the calculator 6b from the external displacement differential force calculated by the subtractor 5b. Output to PID control unit 3b.
  • PID control units 3a and 3b are connected to control values A output from subtracters 4a and 4b, respectively. And based on the control value B, the servo valves 2a and 2b are controlled so that the internal stroke displacement amounts of the actuators la and lb coincide with the corresponding control value A or B. At this time, a control method called PID control is used.
  • the servo valves 2a and 2b are driven according to the control of the PID control units 3a and 3b, respectively, and control the hydraulic pressure applied to the actuators la and lb, respectively.
  • the actuators la and lb are hydraulic jacks whose internal stroke displacement changes according to the hydraulic pressure received from the servo valves 2a and 2b. In this way, the actuators la and lb are driven, and a load corresponding to the driving amount is applied to the specimen 8.
  • the graph of FIG. 2 shows an example of the internal stroke displacement amounts of the actuators la and lb obtained when the magnitude of the external displacement setting signal is periodically changed in the test apparatus of FIG.
  • the magnitude of the external displacement setting signal is changed so that the internal stroke displacement amounts of the actuators la and lb change at a frequency of 3 Hz and an amplitude of 5 mm, respectively.
  • the graph in Fig. 2 shows that the maximum displacement delay of the actuator lb relative to the actuator la is about 0.002 seconds.
  • FIG. 3 shows a block diagram of a test device that controls the actuator lb following the operation of the actuator la as an example of a conventional test device.
  • the test apparatus of FIG. 3 calculates the difference between the input external displacement setting signal and the external displacement signal output from the displacement meter 7 by the subtractor 5a, and outputs the calculation result to the PID control unit.
  • the actuator la is displaced by inputting to 3a and controlling the servo valve 2a.
  • the difference between the internal displacement signals A and B output from the actuators la and lb is calculated in the calculator 6, and the calculation result is input to the PID controller 3b to control the servo knob 2b.
  • Actuator lb is driven. In this way By controlling the actuator lb following the movement of la, a load corresponding to the driving amount of each of the actuators la and lb is applied to the specimen 8.
  • FIG. 4 shows an example of the internal stroke displacement amounts of the actuators la and lb obtained when the magnitude of the external displacement setting signal is periodically changed in the test apparatus of FIG.
  • the magnitude of the external displacement setting signal is changed so that the internal stroke displacement of the actuators la and lb changes at a frequency of 3 Hz and an amplitude of 5 mm, respectively.
  • the displacement delay of the actuator lb relative to the actuator la is about 0.006 seconds at maximum, which is larger than the maximum displacement delay of about 0.002 seconds in the graph of FIG. I understand that.
  • the test apparatus of FIG. 1 can reduce the displacement delay of the other actuator relative to the one actuator 1. Therefore, the operations of the plurality of actuators can be appropriately controlled without delaying each other.
  • Subtractor 5a and 5b calculate the difference between the external displacement signal from displacement meter 7 and the external displacement setting signal, which is a signal for setting the target displacement amount of specimen 8, as the external displacement difference To do.
  • the difference between the displacements of the actuators la and lb is calculated as the internal displacement difference by the arithmetic units 6a and 6b. Based on these calculation results, the actuators la and lb are driven and controlled by the subtractors 4a and 4b, the PID control units 3a and 3b, and the servo valves 2a and 2b, respectively. Since it did in this way, operation
  • a difference obtained by subtracting the average value of the displacement amounts of the respective actuators from the displacement amount of either the actuator la or lb is calculated for each of the actuators, and based on the calculated difference, It was decided to drive and control each actuator.
  • an internal displacement representing the displacement amount of the actuator la is calculated by subtracting the average value of the internal displacement signal A and the internal displacement signal B representing the displacement amount of the actuator lb from the signal A, and then the internal displacement difference A is multiplied by the correction factor k.
  • the correction value of the internal displacement difference A is calculated.
  • the arithmetic unit 6b subtracts the average value of the internal displacement signal B representing the displacement amount of the actuator la from the internal displacement signal B representing the displacement amount of the actuator lb to subtract the internal displacement difference.
  • the subtractor 4a calculates a value obtained by subtracting the correction value of the external displacement differential force internal displacement difference A calculated by the subtractor 5a, and the actuator la is calculated by the PID controller 3a and the servo valve 2a based on the calculation result.
  • the external displacement differential force calculated by the subtractor 5b is calculated by subtracting the correction value of the internal displacement difference B in the subtractor 4b, and the PID control unit 3b and servonove 2b are calculated based on the calculation result. Therefore, the actuator lb was driven. As a result, the two actuators can be controlled in accordance with the target values, and can be controlled so that there is no difference in displacement between the two actuators.
  • a test apparatus as shown in FIG. 5 can be used instead of the test apparatus shown in FIG.
  • This test apparatus is provided with a subtracter 9 instead of the arithmetic units 6a and 6b, and the subtracter 9 calculates a difference between the internal displacement signals A and B.
  • the calculated difference is output to the subtracters 4a and 4b.
  • Subtractors 4a and 4b calculate the difference between the external displacement difference output from subtracters 5a and 5b, respectively, and the difference between internal displacement signals A and B output from subtractor 9, respectively. Output to 3b respectively.
  • the drive amount of the other actuator is larger than the drive amount of the other actuator, so that there is a difference between the displacements of both of the actuators. It can be controlled like this.
  • FIG. 6 shows a block diagram when applied to a test apparatus having three actuators la, lb and lc. Furthermore, the actuator la, lb and lc The distance between the load points where each specimen 8 is loaded shall be the same. That is, each load point is arranged on the specimen 8 in a regular triangle shape.
  • the external displacement setting signal and the external displacement signal from the displacement meter 7 are input to the subtracters 5a, 5b, and 5c, respectively, and the external displacement difference is calculated in the subtractors 5a, 5b, and 5c, respectively. Input to units 4a, 4b and 4c, respectively.
  • internal displacement signals A, B, and C are input to the calculators 6a, 6b, and 6c from the actuators la, lb, and lc, respectively.
  • the arithmetic units 6a, 6b and 6c in this test apparatus subtract the average value of the internal displacement signals of the actuators la, lb and lc corresponding to the respective arithmetic units corresponding to the respective arithmetic units, and further multiply by the correction coefficient k. Each value is calculated. That is, the arithmetic unit 6a subtracts the average value obtained by adding the internal displacement signals A, B, and C of the actuators la, lb, and lc and dividing by 3 from the internal displacement signal A of the corresponding actuator la.
  • the value multiplied by the correction coefficient k is calculated.
  • the calculator 6b calculates a value obtained by subtracting the above average value and multiplying the correction coefficient k by the internal displacement signal B force of the corresponding actuator lb.
  • the calculator 6c calculates a value obtained by subtracting the above average value from the internal displacement signal C of the corresponding actuator and multiplying by the correction coefficient k.
  • the calculation results obtained by the arithmetic units 6a, 6b and 6c are output to the subtracters 4a, 4b and 4c, respectively.
  • the subtractors 4a, 4b, and 4c are respectively the differences between the external displacement differences output from the subtracters 5a, 5b, and 5c and the respective calculation results output from the calculators 6a, 6b, and 6c.
  • the calculation results are output as control values A, B, and C to the PID control units 3a, 3b, and 3c, respectively.
  • the servo valves 2a, 2b and 2c are controlled by the PID control units 3a, 3b and 3c, respectively, so that the actuators la, lb and lc are driven, A load corresponding to the driving amount is applied to the specimen 8.
  • the operation timings of the actuators la, lb, and lc can be synchronized.
  • the operations of the actuators la, lb and lc can be appropriately controlled without delaying each other as in the test apparatus of FIG. 4 or more
  • the operation of each actuator can be appropriately controlled without delaying each other.
  • the internal displacement signal A, B or C force representing the displacement amount of any one of the actuators la, lb or lc. Calculation is performed for each character.
  • the subtractor 4a, 4b is obtained by subtracting a correction value obtained by multiplying the displacement difference calculated for each actuator by the calculators 6a, 6b and 6c by the correction coefficient k from the external displacement difference calculated by the subtractor 5a.
  • the actuators la, lb, and lc are driven by the PID control units 3a, 3b, and 3c and the servo valves 2a, 2b, and 2c, respectively. . Since this is done, it is possible to control three or more actuators according to the target value, and to control so that there is no difference between the displacements of both actuators.
  • the target displacement value of the specimen is set, the displacement of the specimen and the displacement of each actuator are detected, and based on the displacement target value and the detection result of the displacement
  • the present invention can be similarly applied to load control by replacing the displacement in each of the above embodiments with a load. it can.
  • the load target value of the specimen is set, the load applied to the specimen and the load of each actuator are detected, and multiple actuators are driven and controlled based on the load target value and the load detection result. can do.
  • the first calculation unit is realized by the subtracters 5a, 5b, and 5c
  • the second calculation unit is realized by the calculators 6a, 6b, and 6c
  • the control unit is the subtractor This is realized by 4a, 4b and 4c, PID control units 3a, 3b and 3b, and servo valves 2a, 2b and 2c.
  • 4a, 4b and 4c PID control units 3a, 3b and 3b
  • servo valves 2a, 2b and 2c servo valves

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Feedback Control In General (AREA)

Abstract

A testing device has actuators for applying a load on a sample, a sensor for detecting a displacement of or load on the sample, a first calculation section for calculating the difference between a signal from the sensor and a target signal, a second calculation section for calculating the difference between displacements or loads of the actuators, and a control section for individually driving and controlling the actuators based on the calculation results of the first and the second calculation section.

Description

明 細 書  Specification
試験装置、試験装置の駆動制御方法  Test apparatus and drive control method of test apparatus
技術分野  Technical field
[0001] 本発明は、複数のァクチユエータを用いて供試体を負荷することにより、疲労試験 や強度試験など各種の試験を行う試験装置に関する。  [0001] The present invention relates to a test apparatus for performing various tests such as a fatigue test and a strength test by loading a specimen using a plurality of actuators.
背景技術  Background art
[0002] 複数のァクチユエータを用いて供試体に負荷を加える試験装置において、一方の 了クチユエータ (ァクチユエータ Bとする)の変位量を検出し、その変位量に応じてもう 一方のァクチユエータ(ァクチユエータ Aとする)を制御するものがある。このような試 験装置では、ァクチユエータ Bの動作に追従してァクチユエータ Aが制御されるため、 ァクチユエータ Aの反応時間に遅れが生じてしまう。そこで、デジタル信号処理プロセ ッサを用いることで、ァクチユエータ Bの変位検出信号に基づいて直ちにァクチユエ ータ Aの制御目標値を算出し、ァクチユエータ Aの反応時間の遅れを解消するように した試験装置が知られて 、る (特許文献 1参照)。  [0002] In a test apparatus that applies a load to a specimen using a plurality of actuators, the displacement amount of one finisher (referred to as “actuator B”) is detected, and the other actuator (actuator A and There is something that controls. In such a test apparatus, since the actuator A is controlled following the operation of the actuator B, the reaction time of the actuator A is delayed. Therefore, by using a digital signal processing processor, the control target value of Actuator A is immediately calculated based on the displacement detection signal of Actuator B, and the delay in the reaction time of Actuator A is eliminated. Is known (see Patent Document 1).
[0003] 特許文献 1 :特開平 11 44623号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 11 44623
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 特許文献 1に開示される試験装置では、高速な演算が可能なデジタル信号処理プ 口セッサを用いたとしても、ァクチユエータ Bが動作しな!、とァクチユエータ Aの動作が 開始されないため、反応時間の遅れを完全に解消することはできない。従来の試験 装置におけるこのような問題を解決するために、複数のァクチユエータの動作を互い に遅れることなく適切に制御することができる試験装置が求められて 、る。 [0004] In the test apparatus disclosed in Patent Document 1, even if a digital signal processing processor capable of high-speed calculation is used, the actuator B does not operate, and the operation of the actuator A is not started. The reaction time delay cannot be completely eliminated. In order to solve such a problem in the conventional test apparatus, there is a need for a test apparatus that can appropriately control the operations of a plurality of actuators without delaying each other.
課題を解決するための手段  Means for solving the problem
[0005] 本発明による試験装置は、供試体を負荷するための複数のァクチユエータと、供試 体の変位または荷重を検出するセンサと、センサの信号と目標信号との差分を算出 する第 1の算出部と、複数のァクチユエータの変位または荷重の差分を算出する第 2 の算出部と、第 1の算出部および第 2の算出部による算出結果に基づいて、複数の ァクチユエータをそれぞれ駆動制御する制御部とを備える。 [0005] A test apparatus according to the present invention includes a plurality of actuators for loading a specimen, a sensor for detecting displacement or load of the specimen, and a first for calculating a difference between a sensor signal and a target signal. Based on the calculation results of the calculation unit, the second calculation unit that calculates the displacement or load difference of the plurality of actuators, and the first calculation unit and the second calculation unit, And a control unit for driving and controlling each of the actuators.
上記の試験装置において、制御部は、複数のァクチユエータの油圧をそれぞれ制 御するためのサーボバルブと、第 1の算出部および第 2の算出部による算出結果に 基づ 、て、 PID制御方式によりサーボバルブを駆動制御するための PID制御部とを 有し、複数のァクチユエータは、サーボバルブにより制御された油圧に応じてそれぞ れ駆動することが好ましい。  In the above test apparatus, the control unit uses a PID control method based on the servo valve for controlling the hydraulic pressure of each of the plurality of actuators and the calculation results of the first calculation unit and the second calculation unit. It is preferable that the actuator has a PID control unit for driving and controlling the servo valve, and the plurality of actuators are driven according to the hydraulic pressure controlled by the servo valve.
また、上記の試験装置において、第 2の算出部は、ァクチユエータのいずれかの変 位量または荷重量力 各ァクチユエータの変位量または荷重量の平均値を減算した 差分を各ァクチユエータについて算出し、制御部は、第 1の算出部により算出された 差分と第 2の算出部により各ァクチユエータについて算出された差分とに基づいて、 各ァクチユエータをそれぞれ駆動制御することができる。  Further, in the above test apparatus, the second calculating unit calculates a difference obtained by subtracting the average value of the displacement amount or the load amount of each of the actuators for each of the actuators, and the control unit Each of the actuators can be driven and controlled based on the difference calculated by the first calculation unit and the difference calculated for each of the actuators by the second calculation unit.
この試験装置では、第 2の算出部は、ァクチユエータのいずれかの変位量または荷 重量力 各ァクチユエータの変位量または荷重量の平均値を減算した差分に、さら に予め定められた所定の補正係数を乗じた補正値を各ァクチユエータについて算出 し、制御部は、第 1の算出部により算出された差分力 第 2の算出部により各ァクチュ エータについて算出された補正値を減じた値に基づいて、各ァクチユエータをそれ ぞれ駆動制御することが好ま ヽ。  In this test apparatus, the second calculation unit further includes a predetermined correction coefficient that is set in advance to the difference obtained by subtracting the average value of the displacement amount or load amount of each of the actuators. The controller calculates a correction value for each actuator, and the control unit calculates the difference force calculated by the first calculation unit based on the value obtained by subtracting the correction value calculated for each actuator by the second calculation unit. It is preferable to drive and control each actuator.
本発明による試験装置の駆動制御方法は、供試体を負荷するための複数のァクチ ユエータを有する試験装置にお 、て各ァクチユエータをそれぞれ駆動制御する試験 装置の駆動制御方法であって、供試体の変位または荷重を検出し、検出された供試 体の変位または荷重と、目標変位または目標荷重との差分を算出し、複数のァクチ ユエータの変位または荷重の差分を算出し、算出された各差分に基づいて、複数の ァクチユエータをそれぞれ駆動制御する。 発明の効果  A test apparatus drive control method according to the present invention is a test apparatus drive control method for driving and controlling each of the actuators in a test apparatus having a plurality of actuators for loading the specimen. The displacement or load is detected, the difference between the detected displacement or load of the specimen and the target displacement or target load is calculated, the difference between the displacements or loads of multiple actuators is calculated, and each calculated difference is calculated. Based on the above, each of the plurality of actuators is driven and controlled. The invention's effect
[0006] 本発明によれば、複数のァクチユエータの動作を互いに遅れることなく適切に制御 することができる。  [0006] According to the present invention, the operations of a plurality of actuators can be appropriately controlled without delaying each other.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]本発明の一実施形態による試験装置のブロック図である。 [図 2]本発明の試験装置において外部変位設定信号の大きさを周期的に変化させた ときに得られる各ァクチユエータの内部ストローク変位量の例を示したグラフである。 FIG. 1 is a block diagram of a test apparatus according to an embodiment of the present invention. FIG. 2 is a graph showing an example of the internal stroke displacement amount of each actuator obtained when the magnitude of the external displacement setting signal is periodically changed in the test apparatus of the present invention.
[図 3]従来の試験装置のブロック図である。  FIG. 3 is a block diagram of a conventional test apparatus.
[図 4]従来の試験装置において外部変位設定信号の大きさを周期的に変化させたと きに得られる各ァクチユエータの内部ストローク変位量の例を示したグラフである。  FIG. 4 is a graph showing an example of the internal stroke displacement amount of each actuator obtained when the magnitude of the external displacement setting signal is periodically changed in a conventional test apparatus.
[図 5]本発明の変形例による試験装置のブロック図である。  FIG. 5 is a block diagram of a test apparatus according to a modification of the present invention.
[図 6]本発明の別の実施形態による 3つ以上のァクチユエータを有する試験装置のブ ロック図である。  FIG. 6 is a block diagram of a test apparatus having three or more actuators according to another embodiment of the present invention.
符号の説明  Explanation of symbols
[0008] la、 lb、 lc :ァクチユエータ 2a、 2b、 2c :サーボバルブ  [0008] la, lb, lc: Actuator 2a, 2b, 2c: Servo valve
3a、 3b、 3c: PID制御部 4a、 4b, 4c :減算器  3a, 3b, 3c: PID controller 4a, 4b, 4c: Subtractor
5a、 5b、 5c:減算器 6a、 6b, 6c :演算器  5a, 5b, 5c: Subtractor 6a, 6b, 6c: Operation unit
7 :変位計 8 :供試体  7: Displacement meter 8: Specimen
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 第 1の実施の形態  [0009] First Embodiment
本発明の一実施形態による電気油圧サーボ式の試験装置のブロック図を図 1に示 す。この試験装置は一対のァクチユエータ laおよび lbを有しており、ァクチユエータ laおよび lbを制御するために、それぞれ一対のサーボバルブ 2aおよび 2b、 PID制 御部 3aおよび 3b、減算器 4aおよび 4b、減算器 5aおよび 5b、演算器 6aおよび 6bが 備えられている。さらに、ァクチユエータ laおよび lbの制御に共通に用いられる変位 計 7が備えられて 、る。これらの各構成を用いてァクチユエータ laおよび lbをフィー ドバック制御して供試体 8を負荷することにより、各種の構造物を供試体に用いた負 荷試験が行われる。たとえば、供試体 8に免震ゴムを用いてァクチユエータ laおよび lbの変位量を周期的に変化させることで、免震ゴムの疲労試験が行われる。  A block diagram of an electrohydraulic servo type test apparatus according to an embodiment of the present invention is shown in FIG. This test apparatus has a pair of actuators la and lb. In order to control the actuators la and lb, a pair of servo valves 2a and 2b, a PID controller 3a and 3b, a subtractor 4a and 4b, a subtractor, respectively. 5a and 5b, and arithmetic units 6a and 6b are provided. Further, a displacement meter 7 commonly used for controlling the actuators la and lb is provided. Using these components, feedback tests are performed on the actuators la and lb and the specimen 8 is loaded, so that load tests using various structures are performed. For example, the seismic isolation rubber fatigue test is performed by periodically changing the displacement of the actuators la and lb using the base isolation rubber for the specimen 8.
[0010] 供試体 8は図示しない支持枠によって支持されており、ァクチユエータ laおよび lb から各々の変位量に応じた負荷が加えられる。ァクチユエータ laおよび lbから負荷 が加えられることによって供試体 8が変形すると、その変形によって生じる供試体 8の 変位量が変位計 7により検出される。変位計 7は、供試体 8の変位量の検出結果を外 部変位信号として減算器 5aおよび 5bに出力する。 [0010] The specimen 8 is supported by a support frame (not shown), and loads corresponding to the respective displacement amounts are applied from the actuators la and lb. When the specimen 8 is deformed by applying loads from the actuators la and lb, the displacement meter 7 detects the displacement of the specimen 8 caused by the deformation. Displacement meter 7 excludes the detection result of displacement amount of specimen 8. It is output to the subtracters 5a and 5b as a partial displacement signal.
[0011] 減算器 5aおよび 5bには、上記のように供試体 8の変位量を表す外部変位信号が 変位計 7から入力されると共に、ァクチユエータ laおよび lbに対して供試体 8の変位 量の目標値を設定するための外部変位設定信号が入力される。減算器 5aおよび 5b は、入力された外部変位信号と外部変位設定信号の差分 (以下、外部変位差と称す る)を演算し、その演算結果を減算器 4aおよび 4bに対してそれぞれ出力する。  [0011] As described above, the external displacement signal indicating the displacement of the specimen 8 is input from the displacement meter 7 to the subtracters 5a and 5b, and the displacement of the specimen 8 is measured with respect to the actuators la and lb. An external displacement setting signal for setting a target value is input. Subtractors 5a and 5b calculate the difference between the input external displacement signal and the external displacement setting signal (hereinafter referred to as an external displacement difference), and output the calculation results to subtractors 4a and 4b, respectively.
[0012] ァクチユエータ laおよび lbは、各々の内部ストローク変位量を検出し、その検出結 果を内部変位信号 Aおよび Bとして、演算器 6aおよび 6bへそれぞれ出力する。演算 器 6a, 6bは、内部変位信号 Aまたは Bから、これらの平均値すなわち(A+B) Z2を 引いて補正係数 kを乗じた値をそれぞれ演算し、その演算結果を減算器 4aおよび 4 bに対してそれぞれ出力する。このとき、演算器 6aでは、内部変位信号 Aから両内部 変位信号 A, Bの平均値を減算した値 (以下、内部変位差 Aと称する)を演算し、さら にその内部変位差 Aに補正係数 kを乗じた値 (以下、内部変位差 Aの補正値と称す る)を演算する。一方演算器 6bでは、内部変位信号 Bから両内部変位信号 A, Bの平 均値を減算した値 (以下、内部変位差 Bと称する)を演算し、さらにその内部変位差 B に補正係数 kを乗じた値 (以下、内部変位差 Bの補正値と称する)を演算する。なお 補正係数 kは、ァクチユエータ laおよび lbにおける外部制御と内部制御のゲイン比 、すなわち外部変位信号に対するゲインと内部変位信号に対するゲインの比率に応 じて決まる補正係数であり、その値は予め定められている。  [0012] Each of the actuators la and lb detects the amount of internal stroke displacement, and outputs the detection result to the arithmetic units 6a and 6b as internal displacement signals A and B, respectively. The arithmetic units 6a and 6b calculate the average value of these signals, that is, (A + B) Z2 and multiply by the correction coefficient k from the internal displacement signal A or B, respectively, and subtract the subtraction units 4a and 4 Output for each b. At this time, the calculator 6a calculates a value obtained by subtracting the average value of the internal displacement signals A and B from the internal displacement signal A (hereinafter referred to as internal displacement difference A), and further corrects the internal displacement difference A. The value multiplied by the coefficient k (hereinafter referred to as the internal displacement difference A correction value) is calculated. On the other hand, the calculator 6b calculates a value obtained by subtracting the average value of the internal displacement signals A and B from the internal displacement signal B (hereinafter referred to as internal displacement difference B), and further calculates the correction coefficient k to the internal displacement difference B. The value multiplied by (hereinafter referred to as the internal displacement difference B correction value) is calculated. The correction coefficient k is a correction coefficient determined in accordance with the gain ratio between the external control and the internal control in the actuators la and lb, that is, the ratio of the gain with respect to the external displacement signal and the gain with respect to the internal displacement signal. ing.
[0013] 減算器 4aおよび 4bは、減算器 5aおよび 5bからそれぞれ出力された外部変位差と 、演算器 6aまたは 6bからそれぞれ出力された内部変位差 Aまたは Bの補正値との差 分をそれぞれ演算する。算出された差分は、 PID制御部 3aおよび 3bにそれぞれ出 力される。このとき、減算器 4aでは、減算器 5aにおいて算出された外部変位差から 演算器 6aにおいて算出された内部変位差 Aの補正値を減算した値 (以下、制御値 A と称する)を算出して PID制御部 3aに出力する。一方減算器 4bでは、減算器 5bにお いて算出された外部変位差力も演算器 6bにおいて算出された内部変位差 Bの補正 値を減算した値 (以下、制御値 Bと称する)を算出して PID制御部 3bに出力する。  [0013] The subtractors 4a and 4b respectively represent the difference between the external displacement difference output from the subtracters 5a and 5b and the internal displacement difference A or B output from the calculator 6a or 6b, respectively. Calculate. The calculated difference is output to the PID control units 3a and 3b, respectively. At this time, the subtractor 4a calculates a value (hereinafter referred to as a control value A) obtained by subtracting the correction value of the internal displacement difference A calculated by the calculator 6a from the external displacement difference calculated by the subtractor 5a. Output to PID control unit 3a. On the other hand, the subtractor 4b calculates a value (hereinafter referred to as a control value B) obtained by subtracting the correction value of the internal displacement difference B calculated by the calculator 6b from the external displacement differential force calculated by the subtractor 5b. Output to PID control unit 3b.
[0014] PID制御部 3aおよび 3bは、減算器 4aおよび 4bからそれぞれ出力された制御値 A および制御値 Bに基づいて、ァクチユエータ laおよび lbの内部ストローク変位量が 制御値 Aまたは Bのうち対応するものと一致するように、サーボバルブ 2aおよび 2bの 駆動をそれぞれ制御する。このとき PID制御と呼ばれる制御方式が用いられる。サー ボバルブ 2aおよび 2bは、 PID制御部 3aおよび 3bの制御に応じてそれぞれ駆動し、 ァクチユエータ laおよび lbに加える油圧をそれぞれ制御する。ァクチユエータ laお よび lbは油圧ジャッキであり、サーボバルブ 2aおよび 2bからそれぞれカ卩えられる油 圧に応じて内部ストローク変位量が変化する。このようにしてァクチユエータ laおよび lbが駆動され、その駆動量に応じた負荷が供試体 8に加えられる。 [0014] PID control units 3a and 3b are connected to control values A output from subtracters 4a and 4b, respectively. And based on the control value B, the servo valves 2a and 2b are controlled so that the internal stroke displacement amounts of the actuators la and lb coincide with the corresponding control value A or B. At this time, a control method called PID control is used. The servo valves 2a and 2b are driven according to the control of the PID control units 3a and 3b, respectively, and control the hydraulic pressure applied to the actuators la and lb, respectively. The actuators la and lb are hydraulic jacks whose internal stroke displacement changes according to the hydraulic pressure received from the servo valves 2a and 2b. In this way, the actuators la and lb are driven, and a load corresponding to the driving amount is applied to the specimen 8.
[0015] 以上説明したような制御が図 1の試験装置において行われることにより、ァクチユエ ータ laとァクチユエータ lbの動作タイミングを同期させることができ、一方のァクチュ エータが動作しないともう一方のァクチユエータの動作が開始されないという状態を 避けることができる。その結果、ァクチユエータ laおよび lbの動作を互いに遅れるこ となく適切に制御することができる。  [0015] By performing the control as described above in the test apparatus of FIG. 1, it is possible to synchronize the operation timings of the actuator la and the actuator lb. If one of the actuators does not operate, the other actuator It is possible to avoid a situation in which the operation of is not started. As a result, the operations of the actuators la and lb can be appropriately controlled without delaying each other.
[0016] 図 2のグラフは、図 1の試験装置において外部変位設定信号の大きさを周期的に 変化させたときに得られるァクチユエータ laおよび lbの内部ストローク変位量の例を 示している。この例では、周波数 3Hz、振幅 5mmでァクチユエータ laおよび lbの内 部ストローク変位量がそれぞれ変化するように、外部変位設定信号の大きさを変化さ せている。図 2のグラフにより、ァクチユエータ laに対するァクチユエータ lbの変位遅 れは、最大で約 0. 002秒程度であることが分かる。  The graph of FIG. 2 shows an example of the internal stroke displacement amounts of the actuators la and lb obtained when the magnitude of the external displacement setting signal is periodically changed in the test apparatus of FIG. In this example, the magnitude of the external displacement setting signal is changed so that the internal stroke displacement amounts of the actuators la and lb change at a frequency of 3 Hz and an amplitude of 5 mm, respectively. The graph in Fig. 2 shows that the maximum displacement delay of the actuator lb relative to the actuator la is about 0.002 seconds.
[0017] 次に、図 1の試験装置と従来の試験装置とを比較して説明する。図 3は、従来の試 験装置の例として、ァクチユエータ laの動作に追従してァクチユエータ lbを制御する 試験装置のブロック図を示して!/、る。  Next, a description will be given by comparing the test apparatus of FIG. 1 with a conventional test apparatus. Fig. 3 shows a block diagram of a test device that controls the actuator lb following the operation of the actuator la as an example of a conventional test device.
[0018] 図 3の試験装置は、入力される外部変位設定信号と変位計 7から出力される外部変 位信号との差分を減算器 5aにお 、て演算し、その演算結果を PID制御部 3aに入力 してサーボバルブ 2aを制御することにより、ァクチユエータ laを変位させる。また、ァ クチユエータ laおよび lbからそれぞれ出力される内部変位信号 Aおよび Bの差分を 演算器 6において演算し、その演算結果を PID制御部 3bに入力してサーボノ レブ 2 bを制御することにより、ァクチユエータ lbを駆動させる。このようにしてァクチユエータ laの動作に追従してァクチユエータ lbを制御することにより、ァクチユエータ laおよ び lbそれぞれの駆動量に応じた負荷が供試体 8に加えられる。 The test apparatus of FIG. 3 calculates the difference between the input external displacement setting signal and the external displacement signal output from the displacement meter 7 by the subtractor 5a, and outputs the calculation result to the PID control unit. The actuator la is displaced by inputting to 3a and controlling the servo valve 2a. Also, the difference between the internal displacement signals A and B output from the actuators la and lb is calculated in the calculator 6, and the calculation result is input to the PID controller 3b to control the servo knob 2b. Actuator lb is driven. In this way By controlling the actuator lb following the movement of la, a load corresponding to the driving amount of each of the actuators la and lb is applied to the specimen 8.
[0019] 図 4は、図 3の試験装置において外部変位設定信号の大きさを周期的に変化させ たときに得られるァクチユエータ laおよび lbの内部ストローク変位量の例を示してい る。この例でも図 2のグラフと同様に、ァクチユエータ laおよび lbの内部ストローク変 位量が周波数 3Hz、振幅 5mmでそれぞれ変化するように、外部変位設定信号の大 きさを変化させている。図 4のグラフにより、ァクチユエータ laに対するァクチユエータ lbの変位遅れは最大で約 0. 006秒程度であり、図 2のグラフにおける変位遅れの最 大値である約 0. 002秒と比較して大き 、ことが分かる。  FIG. 4 shows an example of the internal stroke displacement amounts of the actuators la and lb obtained when the magnitude of the external displacement setting signal is periodically changed in the test apparatus of FIG. In this example as well, as in the graph of Fig. 2, the magnitude of the external displacement setting signal is changed so that the internal stroke displacement of the actuators la and lb changes at a frequency of 3 Hz and an amplitude of 5 mm, respectively. According to the graph of FIG. 4, the displacement delay of the actuator lb relative to the actuator la is about 0.006 seconds at maximum, which is larger than the maximum displacement delay of about 0.002 seconds in the graph of FIG. I understand that.
[0020] 以上説明したように、従来の試験装置と比較して、図 1の試験装置では一方のァク チユエータ 1に対するもう一方のァクチユエータの変位遅れを小さくすることができる。 したがって、複数のァクチユエータの動作を互いに遅れることなく適切に制御すること ができる。  As described above, as compared with the conventional test apparatus, the test apparatus of FIG. 1 can reduce the displacement delay of the other actuator relative to the one actuator 1. Therefore, the operations of the plurality of actuators can be appropriately controlled without delaying each other.
[0021] 以上説明した第 1の実施の形態によれば、次の作用効果を奏することができる。  [0021] According to the first embodiment described above, the following operational effects can be obtained.
(1)減算器 5aおよび 5bにより、変位計 7からの外部変位信号と、供試体 8の変位量の 目標を設定するための信号である外部変位設定信号との差分を、外部変位差として 算出する。また、演算器 6aおよび 6bにより、ァクチユエータ laおよび lbの変位の差 分を、内部変位差として算出する。これらの算出結果に基づいて、減算器 4aおよび 4 b、 PID制御部 3aおよび 3b、サーボバルブ 2aおよび 2bにより、ァクチユエータ laおよ び lbをそれぞれ駆動制御することとした。このようにしたので、複数のァクチユエータ の動作を互いに遅れることなく適切に制御することができる。  (1) Subtractor 5a and 5b calculate the difference between the external displacement signal from displacement meter 7 and the external displacement setting signal, which is a signal for setting the target displacement amount of specimen 8, as the external displacement difference To do. In addition, the difference between the displacements of the actuators la and lb is calculated as the internal displacement difference by the arithmetic units 6a and 6b. Based on these calculation results, the actuators la and lb are driven and controlled by the subtractors 4a and 4b, the PID control units 3a and 3b, and the servo valves 2a and 2b, respectively. Since it did in this way, operation | movement of several actuators can be appropriately controlled, without mutually delaying.
[0022] (2)サーボバルブ 2aおよび 2bにより制御された油圧に応じて、ァクチユエータ laおよ び lbをそれぞれ駆動することとしたので、複数のァクチユエータの動作を互いに遅れ ることなく適切に制御する電気油圧サーボ式の試験装置を実現することができる。  [0022] (2) Since the actuators la and lb are driven according to the hydraulic pressure controlled by the servo valves 2a and 2b, the operations of the plurality of actuators are appropriately controlled without delaying each other. An electrohydraulic servo type test apparatus can be realized.
[0023] (3)演算器 6aおよび 6bにおいて、ァクチユエータ laまたは lbいずれかの変位量から 各ァクチユエータの変位量の平均値を減算した差分を各ァクチユエータについて算 出し、算出された差分に基づいて、各ァクチユエータをそれぞれ駆動制御することと した。具体的には、演算器 6aにおいて、ァクチユエータ laの変位量を表す内部変位 信号 Aから、この内部変位信号 Aとァクチユエータ lbの変位量を表す内部変位信号 Bとの平均値を減算して内部変位差 Aを算出し、さらにその内部変位差 Aに補正係 数 kを乗じることにより、内部変位差 Aの補正値を算出する。また、演算器 6bにおいて 、ァクチユエータ lbの変位量を表す内部変位信号 Bから、この内部変位信号 Bとァク チユエータ laの変位量を表す内部変位信号 Aとの平均値を減算して内部変位差 B を算出し、さらにその内部変位差 Bに補正係数 kを乗じることにより、内部変位差 Bの 補正値を算出する。そして、減算器 5aにより算出された外部変位差力 内部変位差 Aの補正値を減じた値を減算器 4aにおいて算出し、その算出結果に基づいて PID 制御部 3aとサーボバルブ 2aによりァクチユエータ laを駆動すると共に、減算器 5bに より算出された外部変位差力 内部変位差 Bの補正値を減じた値を減算器 4bにおい て算出し、その算出結果に基づいて PID制御部 3bとサーボノ レブ 2bによりァクチュ エータ lbを駆動することとした。このようにしたので、 2つのァクチユエータを目標値に したがって制御すると共に、両ァクチユエータの変位に差が生じないように制御でき る。 [0023] (3) In the calculators 6a and 6b, a difference obtained by subtracting the average value of the displacement amounts of the respective actuators from the displacement amount of either the actuator la or lb is calculated for each of the actuators, and based on the calculated difference, It was decided to drive and control each actuator. Specifically, in the arithmetic unit 6a, an internal displacement representing the displacement amount of the actuator la The internal displacement difference A is calculated by subtracting the average value of the internal displacement signal A and the internal displacement signal B representing the displacement amount of the actuator lb from the signal A, and then the internal displacement difference A is multiplied by the correction factor k. Thus, the correction value of the internal displacement difference A is calculated. In addition, the arithmetic unit 6b subtracts the average value of the internal displacement signal B representing the displacement amount of the actuator la from the internal displacement signal B representing the displacement amount of the actuator lb to subtract the internal displacement difference. Calculate the correction value of the internal displacement difference B by calculating B and multiplying the internal displacement difference B by the correction coefficient k. Then, the subtractor 4a calculates a value obtained by subtracting the correction value of the external displacement differential force internal displacement difference A calculated by the subtractor 5a, and the actuator la is calculated by the PID controller 3a and the servo valve 2a based on the calculation result. In addition to driving, the external displacement differential force calculated by the subtractor 5b is calculated by subtracting the correction value of the internal displacement difference B in the subtractor 4b, and the PID control unit 3b and servonove 2b are calculated based on the calculation result. Therefore, the actuator lb was driven. As a result, the two actuators can be controlled in accordance with the target values, and can be controlled so that there is no difference in displacement between the two actuators.
[0024] なお、上記の実施の形態において、図 1の試験装置に代えて図 5のような試験装置 を用いることもできる。この試験装置は、演算器 6a、 6bの代わりに減算器 9が備えら れており、減算器 9において、内部変位信号 Aと Bの差分を算出する。算出された差 分は減算器 4aおよび 4bに出力される。減算器 4aおよび 4bは、減算器 5aおよび 5b からそれぞれ出力された外部変位差と、減算器 9から出力された内部変位信号 Aと B の差分との差分をそれぞれ演算し、 PID制御部 3aおよび 3bにそれぞれ出力する。こ のようにしても、いずれか一方のァクチユエータの変位量が大きい場合には、そのァ クチユエータの駆動量よりも他方のァクチユエータの駆動量が大きくなるため、両ァク チユエータの変位に差が生じな 、ように制御できる。  In the above embodiment, a test apparatus as shown in FIG. 5 can be used instead of the test apparatus shown in FIG. This test apparatus is provided with a subtracter 9 instead of the arithmetic units 6a and 6b, and the subtracter 9 calculates a difference between the internal displacement signals A and B. The calculated difference is output to the subtracters 4a and 4b. Subtractors 4a and 4b calculate the difference between the external displacement difference output from subtracters 5a and 5b, respectively, and the difference between internal displacement signals A and B output from subtractor 9, respectively. Output to 3b respectively. Even in this case, when the displacement amount of either one of the actuators is large, the drive amount of the other actuator is larger than the drive amount of the other actuator, so that there is a difference between the displacements of both of the actuators. It can be controlled like this.
[0025] 第 2の実施の形態  [0025] Second Embodiment
上記の第 1の実施の形態では、 2つのァクチユエータを有する試験装置について説 明したが、同様の制御方法を 3つ以上のァクチユエータを有する試験装置に適用す ることもできる。図 6は、 3つのァクチユエータ la、 lbおよび lcを有する試験装置に適 用した場合のブロック図を示している。なお、ァクチユエータ la、 lbおよび lcがそれ ぞれ供試体 8を負荷する負荷点の間の距離は、いずれも等しいものとする。すなわち 、各負荷点は供試体 8上に正三角形状に配置されている。この試験装置では、外部 変位設定信号と変位計 7からの外部変位信号が減算器 5a、 5bおよび 5cにそれぞれ 入力され、減算器 5a、 5bおよび 5cにおいて外部変位差がそれぞれ算出されて、減 算器 4a、 4bおよび 4cにそれぞれ入力される。 In the first embodiment described above, the test apparatus having two actuators has been described. However, a similar control method can be applied to a test apparatus having three or more actuators. FIG. 6 shows a block diagram when applied to a test apparatus having three actuators la, lb and lc. Furthermore, the actuator la, lb and lc The distance between the load points where each specimen 8 is loaded shall be the same. That is, each load point is arranged on the specimen 8 in a regular triangle shape. In this test equipment, the external displacement setting signal and the external displacement signal from the displacement meter 7 are input to the subtracters 5a, 5b, and 5c, respectively, and the external displacement difference is calculated in the subtractors 5a, 5b, and 5c, respectively. Input to units 4a, 4b and 4c, respectively.
[0026] また、ァクチユエータ la、 lbおよび lcから内部変位信号 A、 Bおよび Cが演算器 6a 、 6bおよび 6cにそれぞれ入力される。この試験装置における演算器 6a、 6bおよび 6 cは、各演算器が対応するァクチユエータの内部変位信号カもァクチユエータ la、 lb および lcの内部変位信号の平均値を減算し、さらに補正係数 kを乗じた値をそれぞ れ算出する。すなわち演算器 6aは、対応するァクチユエータ laの内部変位信号 Aか ら、ァクチユエータ la、 lbおよび lcの内部変位信号 A、 Bおよび Cを合計して 3で割 ることにより求められる平均値を減算し、補正係数 kを乗じた値を演算する。同様に、 演算器 6bは、対応するァクチユエータ lbの内部変位信号 B力も上記の平均値を減 算して補正係数 kを乗じた値を演算する。演算器 6cは、対応するァクチユエータ の 内部変位信号 Cカゝら上記の平均値を減算して補正係数 kを乗じた値を演算する。こう して求められた演算器 6a、 6bおよび 6cによる演算結果は、減算器 4a、 4bおよび 4c にそれぞれ出力される。  [0026] Further, internal displacement signals A, B, and C are input to the calculators 6a, 6b, and 6c from the actuators la, lb, and lc, respectively. The arithmetic units 6a, 6b and 6c in this test apparatus subtract the average value of the internal displacement signals of the actuators la, lb and lc corresponding to the respective arithmetic units corresponding to the respective arithmetic units, and further multiply by the correction coefficient k. Each value is calculated. That is, the arithmetic unit 6a subtracts the average value obtained by adding the internal displacement signals A, B, and C of the actuators la, lb, and lc and dividing by 3 from the internal displacement signal A of the corresponding actuator la. The value multiplied by the correction coefficient k is calculated. Similarly, the calculator 6b calculates a value obtained by subtracting the above average value and multiplying the correction coefficient k by the internal displacement signal B force of the corresponding actuator lb. The calculator 6c calculates a value obtained by subtracting the above average value from the internal displacement signal C of the corresponding actuator and multiplying by the correction coefficient k. The calculation results obtained by the arithmetic units 6a, 6b and 6c are output to the subtracters 4a, 4b and 4c, respectively.
[0027] 減算器 4a、 4bおよび 4cは、減算器 5a、 5bおよび 5cからそれぞれ出力された外部 変位差と、演算器 6a、 6bおよび 6cから出力された各々の演算結果との差分をそれ ぞれ演算し、その演算結果を制御値 A、 Bおよび Cとして PID制御部 3a、 3bおよび 3 cにそれぞれ出力する。この制御値 A、 Bおよび Cに基づいて、 PID制御部 3a、 3bお よび 3cによりサーボバルブ 2a、 2bおよび 2cがそれぞれ制御されることで、ァクチユエ ータ la、 lbおよび lcがそれぞれ駆動し、その駆動量に応じた負荷が供試体 8に加え られる。  [0027] The subtractors 4a, 4b, and 4c are respectively the differences between the external displacement differences output from the subtracters 5a, 5b, and 5c and the respective calculation results output from the calculators 6a, 6b, and 6c. The calculation results are output as control values A, B, and C to the PID control units 3a, 3b, and 3c, respectively. Based on the control values A, B and C, the servo valves 2a, 2b and 2c are controlled by the PID control units 3a, 3b and 3c, respectively, so that the actuators la, lb and lc are driven, A load corresponding to the driving amount is applied to the specimen 8.
[0028] 以上説明したような制御が図 6の試験装置において行われることにより、ァクチユエ ータ la、 lbおよび lcの動作タイミングを同期させることができる。その結果、 3つのァ クチユエータを有する場合も図 1の試験装置と同様に、ァクチユエータ la、 lbおよび lcの動作を互いに遅れることなく適切に制御することができる。なお、 4つ以上のァク チユエータについても、同様の制御を適用することで各ァクチユエータの動作を互い に遅れることなく適切に制御することができる。 [0028] By performing the control as described above in the test apparatus of FIG. 6, the operation timings of the actuators la, lb, and lc can be synchronized. As a result, even when the three actuators are provided, the operations of the actuators la, lb and lc can be appropriately controlled without delaying each other as in the test apparatus of FIG. 4 or more By applying the same control to the actuator, the operation of each actuator can be appropriately controlled without delaying each other.
[0029] 以上説明した第 2の実施の形態によれば、第 2の実施の形態において説明した作 用効果に加えて、さらに次の作用効果を奏することができる。  [0029] According to the second embodiment described above, in addition to the operational effects described in the second embodiment, the following operational effects can be further achieved.
(1)演算器 6a、 6bおよび 6cにおいて、ァクチユエータ la、 lbまたは lcいずれかの変 位量を表す内部変位信号 A、 Bまたは C力 各ァクチユエータの変位量の平均値を 減算した変位差を、各ァクチユエータについてそれぞれ算出する。そして、減算器 5a により算出された外部変位差から、演算器 6a、 6bおよび 6cにより各ァクチユエータに ついて算出された変位差に補正係数 kを乗じた補正値を減じた値を減算器 4a、 4bお よび 4cにおいてそれぞれ算出し、その算出結果に基づいて、 PID制御部 3a、 3bお よび 3cとサーボバルブ 2a、 2bおよび 2cにより、ァクチユエータ la、 lbおよび lcをそ れぞれ駆動することとした。このようにしたので、 3つ以上のァクチユエータを目標値 にしたがって制御すると共に、両ァクチユエータの変位に差が生じないように制御で きる。  (1) In the arithmetic units 6a, 6b and 6c, the internal displacement signal A, B or C force representing the displacement amount of any one of the actuators la, lb or lc. Calculation is performed for each character. The subtractor 4a, 4b is obtained by subtracting a correction value obtained by multiplying the displacement difference calculated for each actuator by the calculators 6a, 6b and 6c by the correction coefficient k from the external displacement difference calculated by the subtractor 5a. And 4c, and based on the calculation results, the actuators la, lb, and lc are driven by the PID control units 3a, 3b, and 3c and the servo valves 2a, 2b, and 2c, respectively. . Since this is done, it is possible to control three or more actuators according to the target value, and to control so that there is no difference between the displacements of both actuators.
[0030] なお、上記の各実施の形態では、供試体の変位目標値を設定すると共に、供試体 の変位と各ァクチユエータの変位を検出し、その変位目標値と変位の検出結果に基 づ 、て複数のァクチユエータを駆動制御する変位制御の場合にっ 、て説明したが、 上記の各実施の形態における変位を荷重に置き換えることで、荷重制御の場合にも 同様に本発明を適用することができる。すなわち、供試体の荷重目標値を設定すると 共に、供試体に加えられている荷重と各ァクチユエータの荷重を検出し、その荷重目 標値と荷重の検出結果に基づいて、複数のァクチユエータを駆動制御することがで きる。  [0030] In each of the above embodiments, the target displacement value of the specimen is set, the displacement of the specimen and the displacement of each actuator are detected, and based on the displacement target value and the detection result of the displacement, In the case of displacement control for driving and controlling a plurality of actuators, the present invention can be similarly applied to load control by replacing the displacement in each of the above embodiments with a load. it can. In other words, the load target value of the specimen is set, the load applied to the specimen and the load of each actuator are detected, and multiple actuators are driven and controlled based on the load target value and the load detection result. can do.
[0031] 以上説明した各実施の形態や各種の変形例はあくまで一例であり、発明の特徴が 損なわれな!/、限り、本発明はこれらの内容に限定されな!ヽ。  [0031] Each embodiment and various modifications described above are merely examples, and the features of the invention are not impaired! / As long as the present invention is not limited to these contents.
[0032] 上記の各実施の形態では、第 1の算出部を減算器 5a、 5bおよび 5cにより実現し、 第 2の算出部を演算器 6a、 6bおよび 6cにより実現し、制御部を減算器 4a、 4bおよび 4cと、 PID制御部 3a、 3bおよび 3bと、サーボバルブ 2a、 2bおよび 2cとによって実現 している。しかし、これはあくまで一例であり、発明を解釈する際、上記の実施の形態 の記載事項と請求の範囲の記載事項の対応関係には何ら限定も拘束もされない。 [0032] In each of the above embodiments, the first calculation unit is realized by the subtracters 5a, 5b, and 5c, the second calculation unit is realized by the calculators 6a, 6b, and 6c, and the control unit is the subtractor This is realized by 4a, 4b and 4c, PID control units 3a, 3b and 3b, and servo valves 2a, 2b and 2c. However, this is only an example, and when interpreting the invention, the above embodiment There is no limitation or restriction on the correspondence between the items described in the above and the items described in the claims.

Claims

請求の範囲 The scope of the claims
[1] 供試体を負荷するための複数のァクチユエータと、  [1] Multiple actuators for loading the specimen,
前記供試体の変位または荷重を検出するセンサと、  A sensor for detecting the displacement or load of the specimen;
前記センサの信号と目標信号との差分を算出する第 1の算出部と、  A first calculation unit for calculating a difference between the sensor signal and the target signal;
前記複数のァクチユエータの変位または荷重の差分を算出する第 2の算出部と、 前記第 1の算出部および第 2の算出部による算出結果に基づいて、前記複数のァ クチユエータをそれぞれ駆動制御する制御部とを備えることを特徴とする試験装置。  A second calculation unit for calculating a difference between displacements or loads of the plurality of actuators, and a control for driving and controlling the plurality of actuators based on calculation results by the first calculation unit and the second calculation unit, respectively. And a testing device.
[2] 請求項 1の試験装置において、 [2] In the test apparatus of claim 1,
前記制御部は、前記複数のァクチユエータの油圧をそれぞれ制御するためのサー ボバルブと、前記第 1の算出部および第 2の算出部による算出結果に基づいて、 PID 制御方式により前記サーボバルブを駆動制御するための PID制御部とを有し、 前記複数のァクチユエータは、前記サーボノ レブにより制御された油圧に応じてそ れぞれ駆動することを特徴とする試験装置。  The control unit drives and controls the servo valve by a PID control method based on a servo valve for controlling the hydraulic pressure of each of the plurality of actuators and calculation results of the first calculation unit and the second calculation unit. And a plurality of actuators each driven according to the hydraulic pressure controlled by the servonove.
[3] 請求項 1または 2の試験装置において、 [3] In the test apparatus according to claim 1 or 2,
前記第 2の算出部は、前記ァクチユエータのいずれかの変位量または荷重量から 各ァクチユエータの変位量または荷重量の平均値を減算した差分を各ァクチユエ一 タについて算出し、  The second calculation unit calculates, for each actuator, a difference obtained by subtracting an average value of the displacement amount or load amount of each actuator from the displacement amount or load amount of any one of the actuators,
前記制御部は、前記第 1の算出部により算出された差分と前記第 2の算出部により 各ァクチユエータについて算出された差分とに基づいて、各ァクチユエータをそれぞ れ駆動制御することを特徴とする試験装置。  The control unit drives and controls each of the actuators based on the difference calculated by the first calculation unit and the difference calculated for each of the actuators by the second calculation unit. Test equipment.
[4] 請求項 3の試験装置において、 [4] In the test apparatus of claim 3,
前記第 2の算出部は、前記ァクチユエータのいずれかの変位量または荷重量から 各ァクチユエータの変位量または荷重量の平均値を減算した差分に、さらに予め定 められた所定の補正係数を乗じた補正値を各ァクチユエータについて算出し、 前記制御部は、前記第 1の算出部により算出された差分力 前記第 2の算出部によ り各ァクチユエータについて算出された補正値を減じた値に基づいて、各ァクチユエ ータをそれぞれ駆動制御することを特徴とする試験装置。  The second calculation unit further multiplies a difference obtained by subtracting the average value of the displacement amount or the load amount of each actuator from the displacement amount or the load amount of any of the actuators, and a predetermined correction coefficient set in advance. A correction value is calculated for each actuator, and the control unit is based on a value obtained by subtracting a correction value calculated for each actuator by the second calculation unit by the differential force calculated by the first calculation unit. , A test apparatus that controls the drive of each actuator.
[5] 供試体を負荷するための複数のァクチユエータを有する試験装置にぉ 、て各ァク チユエータをそれぞれ駆動制御する試験装置の駆動制御方法であって、 前記供試体の変位または荷重を検出し、 [5] In a test apparatus having a plurality of actuators for loading a specimen, A driving control method for a test apparatus for driving and controlling each of the actuators, wherein the displacement or load of the specimen is detected,
前記検出された供試体の変位または荷重と、目標変位または目標荷重との差分を 算出し、  Calculating the difference between the detected displacement or load of the specimen and the target displacement or load;
前記複数のァクチユエータの変位または荷重の差分を算出し、  Calculating the displacement or load difference of the plurality of actuators;
前記算出された各差分に基づいて、前記複数のァクチユエータをそれぞれ駆動制 御することを特徴とする試験装置の駆動制御方法。  A drive control method for a test apparatus, wherein the plurality of actuators are driven and controlled based on the calculated differences.
PCT/JP2006/311221 2006-06-05 2006-06-05 Testing device and method of controlling drive of testing device WO2007141839A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008520076A JP4793444B2 (en) 2006-06-05 2006-06-05 Test apparatus and drive control method of test apparatus
PCT/JP2006/311221 WO2007141839A1 (en) 2006-06-05 2006-06-05 Testing device and method of controlling drive of testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/311221 WO2007141839A1 (en) 2006-06-05 2006-06-05 Testing device and method of controlling drive of testing device

Publications (1)

Publication Number Publication Date
WO2007141839A1 true WO2007141839A1 (en) 2007-12-13

Family

ID=38801111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311221 WO2007141839A1 (en) 2006-06-05 2006-06-05 Testing device and method of controlling drive of testing device

Country Status (2)

Country Link
JP (1) JP4793444B2 (en)
WO (1) WO2007141839A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250625A (en) * 2008-04-01 2009-10-29 Saginomiya Seisakusho Inc Loading test method and device
CN103676851A (en) * 2013-11-26 2014-03-26 西安交通大学 Double electric control device of electrohydraulic servo fatigue tester
WO2014141961A1 (en) 2013-03-14 2014-09-18 株式会社Ihi Actuator controller
US20210096048A1 (en) * 2018-10-29 2021-04-01 Shimadzu Corporation Material testing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102401508B1 (en) * 2021-10-05 2022-05-23 인덕대학교 산학협력단 Testing apparatus for ascon specimen and testing method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140381A (en) * 1976-05-18 1977-11-22 Tekuno Benchiyaa Kk Multiiaxis fatigue tester
US4718281A (en) * 1987-02-12 1988-01-12 The United States Of America As Represented By The Administrator, National Aeronautics & Space Administration Bearing-bypass material system test
JPH1183714A (en) * 1997-09-08 1999-03-26 Shimadzu Corp Material tester driven with plurality of actuators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140381A (en) * 1976-05-18 1977-11-22 Tekuno Benchiyaa Kk Multiiaxis fatigue tester
US4718281A (en) * 1987-02-12 1988-01-12 The United States Of America As Represented By The Administrator, National Aeronautics & Space Administration Bearing-bypass material system test
JPH1183714A (en) * 1997-09-08 1999-03-26 Shimadzu Corp Material tester driven with plurality of actuators

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250625A (en) * 2008-04-01 2009-10-29 Saginomiya Seisakusho Inc Loading test method and device
WO2014141961A1 (en) 2013-03-14 2014-09-18 株式会社Ihi Actuator controller
JP2014177983A (en) * 2013-03-14 2014-09-25 Ihi Corp Actuator control device
US9752512B2 (en) 2013-03-14 2017-09-05 Ihi Corporation Actuator control device
CN103676851A (en) * 2013-11-26 2014-03-26 西安交通大学 Double electric control device of electrohydraulic servo fatigue tester
US20210096048A1 (en) * 2018-10-29 2021-04-01 Shimadzu Corporation Material testing machine
US11740165B2 (en) * 2018-10-29 2023-08-29 Shimadzu Corporation Material testing machine

Also Published As

Publication number Publication date
JPWO2007141839A1 (en) 2009-10-15
JP4793444B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
WO2007141839A1 (en) Testing device and method of controlling drive of testing device
Yang et al. Adaptive integral robust control of hydraulic systems with asymptotic tracking
Taleb et al. Pneumatic actuator control: Solution based on adaptive twisting and experimentation
Taghizadeh et al. Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit
Yao et al. High dynamic adaptive robust control of load emulator with output feedback signal
JP2019526045A (en) Inspection system with real-time compensation of changing system parameters
JP2003167604A (en) Parameter identification device in controller of hydraulic equipment
JP4618433B2 (en) Flexible control device and flexible control method for manipulator
JP3570056B2 (en) Material testing machine
JP2008076299A (en) Measuring unit and material testing machine
JP3278069B2 (en) Electro-hydraulic servo mechanism
JPH1164193A (en) Fatigue testing machine
JP3811639B2 (en) Control device
JP5076420B2 (en) Measuring device and material testing machine
JP6836341B2 (en) Cylinder control device
JP3119610U (en) Fatigue testing machine and inverse transfer function computing device
JP3141007B2 (en) Hydraulic servo actuator system
JPH11141696A (en) Spool type direction selective valve system
JP5248169B2 (en) Loading test method and apparatus
JP2576627B2 (en) Fluid actuator control device
JP6706122B2 (en) Active vibration control device
JP2007088909A (en) Phase advance compensation apparatus by means of digital control
JP3340055B2 (en) Material testing machine
JP7190947B2 (en) Apparatus and method for parameter identification in hydraulic control system, hydraulic control system, and state detection method
JPH0416195Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06756972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008520076

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 06756972

Country of ref document: EP

Kind code of ref document: A1