WO2007141832A1 - Power line communication system and power line communication method - Google Patents

Power line communication system and power line communication method Download PDF

Info

Publication number
WO2007141832A1
WO2007141832A1 PCT/JP2006/311091 JP2006311091W WO2007141832A1 WO 2007141832 A1 WO2007141832 A1 WO 2007141832A1 JP 2006311091 W JP2006311091 W JP 2006311091W WO 2007141832 A1 WO2007141832 A1 WO 2007141832A1
Authority
WO
WIPO (PCT)
Prior art keywords
power line
signal
switch
line carrier
primary station
Prior art date
Application number
PCT/JP2006/311091
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuro Shimomura
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2006534186A priority Critical patent/JPWO2007141832A1/en
Priority to PCT/JP2006/311091 priority patent/WO2007141832A1/en
Publication of WO2007141832A1 publication Critical patent/WO2007141832A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5483Systems for power line communications using coupling circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5491Systems for power line communications using filtering and bypassing

Definitions

  • the present invention relates to a power line communication (PLC) communication system and a power line carrier communication method connected to a wide area communication network such as a broadband network, and more particularly, a primary station of a power line carrier modem. Even if the (main terminal) cannot communicate with the slave station that communicates via the power line, it continues communication with the broadband network by relaying signals to other primary stations.
  • PLC power line communication
  • the present invention relates to a power line carrier communication system and a power line carrier communication method.
  • a primary station for PLC communication is installed near the substation in the power system (distribution system) where multiple power lines are connected to the transformer of the substation. Then, the power station (distribution line) connected to the bus of the substation connected to the power line transport modem PLC modem connected to the power line to communicate.
  • the power station distributed line
  • Patent Document 1 describes a method of coupling to a substation bus using a signal coupling device when a carrier signal (PLC signal) is injected into or extracted from a distribution line. Has been.
  • Patent Document 2 when a circuit for transmitting a PLC signal is opened, a signal detour is provided in parallel with the open switch for communication. It is stated that it will continue.
  • the poll signal is a signal for establishing communication by transmitting a signal transmitted from a transmitting station back to the transmitting station when the signal is transmitted to the transmitting station.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-290185
  • Patent Document 2 Published Patent Publication No. Sho 62-43924
  • the present invention has been made to solve the above-described problems, and includes PLC communication.
  • An object is to provide a communication system and a power line carrier communication method.
  • a power line carrier communication system uses a power line of a power system to perform data communication between a primary station arranged in a substation and a slave station arranged in a building of a communication contractor.
  • a first primary station and a second primary station that transmit and receive information data to and from the knockbone network; a first slave station that performs power line carrier communication with the first primary station via a first power line; A second slave station that performs power line carrier communication with the second primary station via a second power line; A switching switch for switching a connection state between an end of the first power line opposite to the first primary station and an end of the second power line opposite to the second primary station to open or close And relaying a power line carrying signal between the first power line and the second power line based on a voltage detection result of the first power line and the second power line.
  • a power line carrier signal switching device (180) having a signal coupling means for performing either of the first power line or the second power line when the switching switch is in an open state, When the power line carrier communication cannot be performed between the primary station and the slave station, the power line carrier signal switching device bypasses the switching switch and relays the power line carrier signal.
  • a power line carrier communication method uses a power line of a power system, a plurality of primary stations arranged in a substation, and a communication contractor's building corresponding to each of the plurality of primary stations.
  • the plurality of primary stations communicate with the backbone network, but each primary station does not perform direct communication. In operation, a part of the power line path carrying the signal is opened and the plurality of primary stations are opened. When some or all of the slave stations communicate and become unable to communicate with the primary station, some or all of the slave stations can communicate with other primary stations. In this way, the signal communication path is switched and communication with the backbone network is continued.
  • the power line carrier communication system or the power line carrier communication method of the present invention even if the power line (distribution line) of the system performing the power line carrier communication is in a "disconnected" state, the signal communication path By switching, you can continue to communicate with the broadband network using other power lines.
  • FIG. 1 is a diagram showing an overall configuration of a PLC communication system according to a first embodiment.
  • FIG. 2 is a schematic configuration of a PLC signal switching device in the PLC communication system according to Embodiment 1.
  • FIG. 2 is a schematic configuration of a PLC signal switching device in the PLC communication system according to Embodiment 1.
  • FIG. 3 is a diagram for explaining an operation example of the PLC signal switching device shown in FIG.
  • FIG. 4 is a diagram for explaining an operation example of the PLC signal switching device shown in FIG.
  • V 5 A flowchart for explaining a signal switching operation in the PLC communication system according to the first embodiment.
  • FIG. 6 is a diagram showing a modification of the PLC communication system according to the first embodiment.
  • FIG. 7 is a diagram showing a configuration of a PLC signal switching device in a PLC communication system according to a second embodiment.
  • ⁇ 8] A flowchart for explaining a signal switching operation in the PLC communication system according to the second embodiment.
  • FIG. 9 is a diagram showing a configuration of a PLC signal switching device in a PLC communication system according to a third embodiment.
  • FIG. 10 is a diagram showing a configuration of a PLC signal switching device in a PLC communication system according to a fourth embodiment.
  • FIG. 11 is a diagram showing a configuration of a PLC signal switching device in a PLC communication system according to a fifth embodiment.
  • FIG. 12 shows an overall configuration of a PLC communication system according to a sixth embodiment.
  • FIG. 13 is a diagram showing an overall configuration of a PLC communication system according to a seventh embodiment.
  • Branch distribution line (branch power line)
  • Low voltage distribution line (low voltage power line)
  • FIG. 1 is a diagram for explaining the overall configuration of the power line carrier communication system according to the first embodiment of the present invention.
  • reference numeral 10 denotes a distribution substation (hereinafter simply referred to as a substation), and a plurality of primary stations (MVHE: main terminals) are arranged in the substation 10.
  • MVHE primary stations
  • MVHE main terminals
  • substation buses 55, 40, and 54 are substation buses (hereinafter simply referred to as busbars), and substation bus 55 is connected to upper power system A (indicated by reference numeral 5).
  • the bus 55 is connected to the bus 55 via the medium voltage transformer 20, and the bus 54 is connected to the bus 55 via the high voltage Z medium voltage transformer 21.
  • the primary station 30 is connected to a backbone network (broadband network) 1 through a network communication line 2 and also connected to a bus 40.
  • a backbone network broadband network
  • the primary station 31 is connected to the backbone network (broadband network) 1 by a network communication line 3 different from the network communication line 2 and to the bus 54.
  • 2a is information data transmitted / received between the backbone network 1 and the primary station 30 via the network communication line 2
  • 3a is transmitted / received between the backbone network 1 and the primary station 31 via the network communication line 3.
  • Information data is transmitted / received between the backbone network 1 and the primary station 30 via the network communication line 2
  • 3a is transmitted / received between the backbone network 1 and the primary station 31 via the network communication line 3.
  • 44 is a distribution line (power line) connected to the bus 40 via a distribution line breaker (hereinafter simply referred to as a breaker) 41 in the substation 10, and 45 is a distribution line breaker in the substation 10.
  • a distribution line (power line) connected to bus 54 via circuit breaker 49 !.
  • Reference numeral 47 denotes a distribution line (power line) connected to the distribution line 44 via the section switch 42.
  • the section switch is a switch for separating the section where the accident has occurred from the healthy section when an accident occurs in the distribution system.
  • a switching switch connected to the distribution line 47 and the distribution line 45, and a PLC signal switching device 180, which will be described later, is connected in parallel with the switching switch 43.
  • Primary station 30 installed in substation 10 is in parallel with bus 40, circuit breaker 41, distribution line 44, section switch 42, distribution line 47, branch distribution line 46, medium-voltage, low-voltage transformer 60.
  • MV Medium Voltage: Medium voltage of about 6000V to 30,000V
  • Node 111 a slave station located in PLC communication subscriber's building 120 via low-voltage distribution line 70
  • CPE Customer Premise Equipment: Home communication device Z home modem
  • an arrow 191 indicated by an alternate long and short dash line in the figure indicates a PLC communication data signal distributed from the primary station 30.
  • the primary station 30 communicates with the backbone network 1 via the network communication line 2.
  • the primary station 31 installed in the substation 10 includes a bus 54, a circuit breaker 49, a distribution line 45, an MV node 113, an MV node 113 connected in parallel to the medium voltage Z low voltage transformer 62, It communicates with a CPE (Customer Premise Equipment) 124, which is a slave station, via a low voltage distribution line 74.
  • CPE Customer Premise Equipment
  • an arrow 192 indicated by a broken line in the figure indicates PLC communication data 2 distributed from the primary station 31.
  • the carrier frequency of PLC communication data distributed from the primary station 30 or the primary station 31 is preferably about 1 ⁇ to 50 ⁇ .
  • the primary station 31 communicates with the backbone network 1 via the network communication line 3.
  • Distribution line 47 and distribution line 45 are connected to each other by switching switch 43.In the normal operation state, switching switch 43 is open, and distribution line 47 and distribution line 45 are electrically connected by switching switch 43. In a state of being disconnected.
  • FIG. 2 is a diagram showing a schematic configuration of PLC signal switching device 180 used in the power line carrier communication system according to the present embodiment shown in FIG.
  • the PLC signal switching device 180 includes a signal coupling device (consisting of a capacitance or electromagnetic coupling device) 210 connected to the distribution line 47, a signal coupling device 213 connected to the distribution line 45, and the signal coupling devices 210 and 214.
  • a signal coupling device consisting of a capacitance or electromagnetic coupling device
  • a signal coupling device 213 connected to the distribution line 45
  • the signal coupling devices 210 and 214 Connected signal relay switch 225, voltmeter 1 for measuring the voltage of distribution line 47 (indicated by reference numeral 220), voltmeter 2 for measuring the voltage of distribution line 45 (indicated by reference numeral 221), voltage detector 1 (reference numeral 223) ), A voltage detection device 2 (indicated by reference numeral 224), and a control device 213 that opens and closes the signal switch 225 in response to a signal from the voltage detection device.
  • Total 1 (indicated by reference numeral 220) measures the voltage of the power line 47 and outputs a voltage value.
  • Voltage detector 1 determines that the path to substation 10 is normal when the output of voltmeter 1 (220) is greater than the set value (for example, 90% of the rated voltage value). Output a signal (for example, 1.0).
  • voltmeter 2 (indicated by reference numeral 221) measures the voltage of distribution line 45 and outputs a voltage value.
  • Voltage detection device 2 (indicated by reference numeral 224) has the output of voltmeter 2 (221) set to the set value ( For example, if it is greater than 90% of the rated voltage value, it is determined that the path to the substation is normal and a signal (eg, 1.0) is output.
  • the control device 213 turns on (closes) the signal relay switch 225 when the voltage (ie, VI or V2) detected by the voltage detection device 1 (223) or the voltage detection device 2 (224) is no voltage. .
  • FIG. 3 is a diagram for explaining an operation example of the PLC signal switching device 180 shown in FIG. 2, and shows a specific configuration of the control device 213.
  • the signal holding device 1 of the control device 213 (indicated by reference numeral 215) has a certain magnitude that continues for ⁇ , for example, Outputs 1.0.
  • is the sample hold time of the voltage detection device 1 (223) and the voltage detection device 2 (224), and n is a value of 2 or more.
  • the signal holding device 2 (indicated by reference numeral 217) of the control device 213, when the voltage detection device 2 (224) force signal is output, has a constant magnitude that continues for ⁇ time, for example 1.0. Output.
  • the signal presence / absence check device (indicated by reference numeral 216) checks the output magnitudes of the signal holding device 1 (215) and the signal holding device 2 (217).
  • the signal relay switch H Set the operation command value to o.
  • the output of the signal holding device 2 (217) is a specified value, for example 0.5 or more
  • the output of the signal holding device 1 (215) is a specified value, for example, 0.5 or more. If so, the command value is set to 0.
  • the turn command value of the signal relay device operation 218 Set to 1.0.
  • the signal relay command device 218 checks the relay command value of the signal presence / absence check device 216 every ⁇ , and if it is less than a specified value (for example, 0.5), the signal relay switch 225 is opened.
  • a specified value for example, 0.5
  • the signal relay device 225 is turned on (closed).
  • the signal of the primary station 30 is transmitted to the distribution line 47 but is not transmitted to the distribution line 45 side.
  • the signal of the primary station 31 is transmitted to the distribution line 45, but the distribution line 45.
  • the primary station 30 communicates with the CPE 121 which is the slave station, and the primary station 31 communicates with the CPE 124 which is the slave station.
  • FIG. 4 is a diagram for explaining the operation of the control device 213 when no voltage is detected by the voltage detection device 1 (223).
  • the voltage detector 1 detects the normal rated voltage of the distribution line 47. No signal is output from the signal holding device 1.
  • the control device 213 determines that a failure has occurred in the other communication path, and turns on the signal relay switch 225. [0025] Thereby, the signal of the primary station 31 is injected into the distribution line 47 via the signal coupling device 214, the signal relay switch 225, and the signal coupling device 210, and communicated with the CPE 121 connected to the distribution line 47. Can be established.
  • the signal relay command device 21 Set the operation command value of 8 to 0.
  • the signal relay command device 218 opens the relay switch 225.
  • FIG. 5 is a flowchart for explaining a signal switching operation in the PLC communication system according to the present embodiment.
  • the signal holding device 1 (215) and the signal holding device 2 (217) both have the signal 1 . 0 is output.
  • step S100 the output signal level of the signal holding device 1 (215) is checked.
  • the output signal of the signal holding device 1 (215) is 1.0.
  • step S100 since the condition of “signal> 0.5” is satisfied, a Yes determination is made, and the process proceeds to step S200.
  • step S200 since the output signal of the signal holding device 2 (217) is 1.0, the determination is Yes, and the process proceeds to step S201.
  • step S201 the operation command of the signal relay switch 225 is set to 0, and the process proceeds to step S300.
  • step S300 since the operation command value of signal relay switch 225 is 0, No In step S301, the signal relay switch 225 is selected to be opened. Therefore, the signal coupling device 210 and the signal coupling device 214 are not coupled to each other, and the signal relay operation by the PLC signal switching device 180 does not occur! ,.
  • the signal holding device 1 since the voltage detection device 1 (223) does not detect the voltage, the signal holding device 1 (223) does not detect the voltage, the signal holding device 1 (223)
  • the signal holding device 2 (217) outputs the signal 1.0.
  • step SIOO the signal level of signal holding device 1 (215) is checked in step SIOO.
  • step S100 the condition of “Signal> 0.5” is not satisfied, the determination is No, and the process proceeds to step S400.
  • step S400 since the signal of the signal holding device 2 (217) is 1.0, a Yes determination is made, and the process proceeds to step S401.
  • step S401 the operation command of the switch 225 in the signal is set to 1, and the process proceeds to step S300.
  • step S300 since the operation command value of the signal relay switch 225 is 1, a Yes determination is made, the process proceeds to step S302, and the signal relay switch 225 is selected to be turned on.
  • step of the arithmetic processing based on the flowchart of FIG. 5 is repeated every ⁇ (predetermined sample hold time of the voltage detection device 1 and the voltage detection device 2).
  • the slave station (CPE) connected to the distribution line 47 can continue to communicate with the knockbone network 1 via the distribution line 45 and the primary station 31.
  • an MV node 100 for relaying the carrier signal may be installed between the primary station 30 and the slave station (CPE) 121 to amplify the signal. .
  • the PLC signal switching device 180 does not require the switching switch 43 to be present. Further, the PLC signal switching device 180 is not necessarily connected to the end of the distribution line, and may be provided in the middle part of the distribution line as shown in FIG. 6 showing a modification of the present embodiment. Fig. 6 shows that the PLC signal switching device 180 is located between the position of the distribution switch 44 in front of the section switch 42 and the position of the distribution line 45 in front of the medium pressure Z low voltage transformer 62 connected to the slave station (CPE) 124. Show the case of being placed!
  • CPE slave station
  • the PLC (power line carrier) communication system is arranged in the building of the primary station and the communication contractor located in the substation using the power line of the power system.
  • a power line carrier communication system for performing data communication with a slave station is arranged in the building of the primary station and the communication contractor located in the substation using the power line of the power system.
  • a signal coupling means (signal coupling device) that is arranged in parallel and relays the power line carrier signal between the first power line and the second power line based on the voltage detection result of the first power line and the second power line. 210, signal coupling device 214, control device 213, relay switch 225), and power line carrier signal switching device 180, and switch 43 is opened.
  • the power line carrier signal switching device 180 switches the switching.
  • the power line carrier signal is relayed around the switch.
  • the power line carrier signal switching device 180 has voltage detection devices (223, 224) for detecting operating voltages of the first power line and the second power line, and the voltage detection device is the first power line.
  • the signal coupling means detects that either the power line or the second power line is disconnected and a normal operating voltage is not applied, the slave station that cannot communicate with the primary station operates normally.
  • a signal relay switch 225 is turned on to bypass the switching switch so that the power line carrier signal is relayed so that the voltage is applied and connected to the primary line and communicated with the primary station.
  • the power line carrier communication method uses a power line of a power system to establish a communication contract corresponding to each of a plurality of primary stations arranged in a substation and the plurality of primary stations.
  • Multiple primary stations are capable of communicating with the knockbone network. Each primary station does not communicate directly with each other. In operation, a part of the power line path that carries the signal is opened and the multiple primary stations are open. When some or all of the slave stations communicate and become unable to communicate with the primary station, some or all of the slave stations can communicate with other primary stations. Switch the signal communication path so that the communication with the knockbone network continues.
  • the switching switch 43 is always open (open circuit)
  • the signal relay switch 225 is provided in parallel with the switching switch 43
  • the distribution line (power line) that is the PLC signal transmission medium is provided.
  • the switch 43 when the switch 43 is in the closed (closed) state, if either the distribution line 47 or the distribution line 45 is healthy and the rated operating voltage is applied, the voltage detector 1 (223) and Each of the voltage detection devices 2 (224) detects a voltage. In this case, as shown in the flowchart of FIG. 5, since the signal relay switch opening command is issued, the signal relay switch 225 is opened and the signal is not relayed.
  • FIG. 7 is a diagram showing a configuration of PLC signal switching device 180 in the PLC communication system according to the second embodiment.
  • an open / close state detection device 226 for detecting the open / close state of the switch 43 is provided as shown in FIG.
  • the open / close state is detected by an open / close state detection device 226.
  • FIG. 8 is a flowchart for explaining a signal switching operation in the PLC communication system according to the present embodiment.
  • steps denoted by the same step numbers as in FIG. 5 represent steps that perform the same processing as the steps in FIG.
  • step S500 is added to FIG. 5 which is a flowchart for explaining the signal switching operation in the first embodiment.
  • step S500 when the open / close state detection device 226 detects that the switching switch 43 is in a closed state, that is, it is detected that the switching state of the switching switch 43 is “closed” (Yes determination). ), The signal relay command is set to 1 and the signal relay switch 225 is turned on as shown in step S202.
  • the switching switch 43 if the switching switch 43 is in the on state, the PLC signal passes through the switching switch 43, so that the communication switching control cannot be performed by opening / closing the signal relay switch 225.
  • a PLC signal block device 260 using, for example, a low-pass filter is installed in series with the switching switch 43, and the PLC signal is transmitted via the switching switch 43. Prevent passing.
  • the open / close state detection device 226 of the switching switch 43 can be realized, for example, by detecting a change in the position of the switch operating mechanism unit by a switch operation by a micro switch.
  • the PLC communication system has the power line carrier signal block device 260 at the end of the switching switch 43 side of either the first power line or the second power line.
  • the power line carrier signal switching device 180 is arranged in parallel with the series connection body of the switching switch 43 and the power line carrier signal block device 260, and the switching switch 43 It has an open / close state detection device 226 for detecting the open / close state of the switch, and even if the switch 43 is in the closed state, the communication path is switched to relay the power line carrier communication.
  • the distribution line 47 is connected to the signal relay switch 225 via the signal coupling device 210, and the distribution line 45 is connected to the signal relay switch 225 via the signal coupling device 214.
  • the signal relay switch 225 when the signal relay switch 225 is connected to the distribution line via the signal coupling device 210 and the signal coupling device 214, a constant voltage of the distribution line, for example, a part of 20 KV is supplied to the signal relay switch 225. Since this is applied, there is a risk of continuity or damage to the switch due to a flash between the switch poles of the signal relay switch 225.
  • capacitance is used as the signal coupling device 210 and the signal coupling device 214, and the signal coupling device 210 and the signal coupling device 214 exhibit a high impedance value with respect to the commercial frequency, and a high frequency PLC.
  • a low impedance value is set for the signal.
  • FIG. 9 is a diagram showing a configuration of the PLC signal switching device in the PLC communication system according to the third embodiment.
  • the signal coupling device 210 of the PLC signal switching device 180 in the present embodiment has a low impedance value (for example, 1Z1000000 or less) at a commercial frequency, and a high impedance value (for example, a high frequency PLC signal) 1Z10) is grounded via a grounding device (ie, inductor) 230 using an inductor.
  • a grounding device ie, inductor
  • the signal coupling device 214 has a low impedance value at a commercial frequency and is grounded via a grounding device (that is, an inductor) 231 using an inductor having a high impedance value for a high frequency PLC signal. .
  • the grounding device 230 and the grounding device 231 have a low impedance value of 1Z 100000 or less of the impedance of the signal coupling device in the commercial frequency region, and the impedance of the signal coupling device of 1Z10 or more in the PLC signal frequency region. Has impedance.
  • the signal coupling device 210 and the signal coupling device 214 can use devices with a low rated voltage, and can reduce the cost of the devices.
  • the signal coupling means of the PLC communication system according to the present embodiment has a low impedance value in the commercial frequency region, and has a high impedance with respect to the power line carrier signal. Therefore, it is possible to reduce the voltage stress and reduce the cost of the equipment.
  • the surge generated in the distribution line enters the inside of the PLC signal switching device 180 via the signal coupling device 214 and enters the PLC signal switching device 180. May damage the electronic circuit.
  • the PLC signal switching device 180 includes a surge suppression device 240 and surge suppression device such as an arrester or a discharge gear in parallel with the grounding device 230 and the grounding device 231, respectively. 241 are arranged.
  • the surge zono (arrester 240, 241) is arranged in parallel with the ground installation (inductors 230, 231), the signal coupling device is connected to the electronic circuit. Prevents overvoltage penetration and damage caused by overvoltage.
  • the signal relay path is configured by three components, ie, two signal coupling devices (that is, the signal coupling device 210 and the signal coupling device 214) and the signal relay switch 225.
  • the signal coupling device 210 and the signal coupling device 214 originally pass high-frequency PLC signals, a combination of two components, a high-pass filter (HPF) 270 and a signal relay switch 225, as shown in FIG. It is possible to configure a signal relay route it can.
  • HPF high-pass filter
  • a high-pass filter (HPF) 270 is disposed between the distribution line and the signal relay switch 225, thereby reducing the number of components. Can be reduced.
  • force is shown when a high-pass filter (HP F) 270 is disposed between the distribution line 47 and the signal relay switch 225.
  • the high-pass filter (HPF) 270 is disposed between the distribution line 45 and the signal relay switch 225. You may arrange in.
  • FIG. 12 is a diagram for explaining the overall configuration of the power line carrier communication system according to the present embodiment.
  • the configuration includes a primary station (main terminal) for each substation, and two substations connected to different substations.
  • Primary station 30 installed in substation 10 passes through substation bus 40, circuit breaker 41, distribution line 44, section switch 42, branch distribution line 46, MV node 111, and low-voltage distribution line 70. Communicate with CPE121 which is a slave station.
  • the primary station 30 communicates with the backbone network 1 via the network communication line 2.
  • substation bus 50 the primary station 32 installed in substation 11 different from substation 10 passes through substation bus 50, circuit breaker 51, distribution line 52, branch distribution line 53, MV node 112, and low voltage distribution line 73. Communicates with the slave station CPE123.
  • the primary station 32 installed in the substation 11 communicates with the backbone network 1 via the network communication line 4.
  • the transformer 20 connected to the substation bus 40 of the substation 10 is connected to the upper power system A (5), and the transformer 22 connected to the substation bus 50 of the substation 11 is Connected to upper power grid B (6)!
  • the distribution line 44 of the substation 10 is connected to the distribution line 47 via the section switch 42.
  • the distribution line 47 and the distribution line 52 of the substation 11 are interconnected by the switching switch 43, but in the normal operation state, the switching switch 43 is open, and the two distribution lines 47 and the distribution line 52 are It is in an electrically disconnected state.
  • the PLC signal switching device 180 has two connection lines (two) and is connected in parallel with the switching switch 43.
  • the configuration of the PLC signal switching device 180 is basically the same as that of the PLC signal switching device described in the first embodiment (see FIGS. 2 and 3).
  • the PLC signal switching device 180 in the present embodiment is Signal coupling device 210 connected to distribution line 47, signal coupling device 214 connected to distribution line 47, signal relay switch 225 connected to signal coupling devices 210 and 214, voltmeter 1 (220), voltmeter 2 (221)
  • Voltmeter 1 (220) measures the voltage of power line 47 and outputs the measured voltage value.
  • the output of the voltmeter 1 (220) is set to a set value (for example, 9
  • the voltmeter 2 (221) measures the voltage of the power line 52 and outputs the measured voltage value.
  • Voltage detector 2 (224) determines that the path to substation 11 is normal when the output of voltmeter 2 (221) is greater than the set value (for example, 90% of the rated voltage value). , Signal (e.g. 1. Output o).
  • the signal holding device 1 (215) of the control device 213 outputs an output of a certain magnitude, for example, 1 for ⁇ ⁇ ⁇ time. .
  • is the sample hold time of the voltage detection device 1 (223) and the voltage detection device 2 (224).
  • N is a value of 2 or more.
  • the signal holding device 1 (217) of the control device outputs an output of a certain magnitude, for example, 1 for ⁇ time.
  • the signal presence / absence check device 216 checks the output levels of the signal holding device 1 (215) and the signal holding device 2 (217).
  • the switch operation command value in the signal is set to 0.
  • the command value is 0 if the output of the signal holding device 1 (215) is a specified value, for example, 0.5 or more. It is.
  • the signal relay device operation command value is The signal relay command device 218 set to 1 checks the relay command value of the signal presence / absence check device 213 every ⁇ , and if it is less than the specified value (for example, 0.5), the signal relay switch 225 is opened. On the other hand, the signal relay device 225 is turned on (closed) if the value is a specified value (for example, 0.5) or more.
  • both primary stations 30 and 31 are judged to be healthy, and the signal relay switch 225 is not turned on (closed). Therefore, the signal of the primary station 30 is transmitted to the distribution line 47 and is not transmitted to the distribution line 52.
  • the signal of the primary station 31 is transmitted to the distribution line 52, but not transmitted to the distribution line 47, and communication is performed between each primary station and the slave station.
  • the switching switch 43 is opened. In the state, when either the first power line or the second power line is partially disconnected and power line carrier communication cannot be performed between the primary station and the slave station, the power line carrier signal switching device 180 Thus, the power line carrier signal can be relayed bypassing the switching switch 43.
  • each substation has a primary station (main terminal), and the PLC signal switching device 43 is connected to the switch 43 placed between two power lines connected to different substations.
  • the section switch is opened in the middle of the distribution line and opened.
  • FIG. 13 is a diagram for explaining the overall configuration of the power line carrier communication system according to the present embodiment. As shown in the figure, it is assumed that the circuit breaker 41 is open for accident removal operation of the distribution line 44, and that the section switch 42 between the distribution lines 44 and 47 is also open. Since the distribution line 44 and the distribution line 47 are in an electrically disconnected state, the PLC signal cannot be transmitted between the distribution line 44 and the distribution line 47.
  • the PLC signal of the primary station 32 reaches the slave station (CPE) 122, and the slave station (CPE) 122 can communicate with backbone network 1.
  • a signal bypass device for example, bypass filter
  • the section switch 42 for separating the section where the accident has occurred from the healthy section is the first power line.
  • the signal bypass device 251 is provided in parallel with the section switch 42, so even if the section switch 42 is open, the section line 42 is bypassed to bypass the power line.
  • the carrier signal can be relayed.
  • the present invention relates to a power line carrier capable of continuing communication with a broadband network using a power line of another system even when the power line of the system performing the power line carrier communication is in a "disconnected" state. This is useful for realizing a communication system.

Abstract

Provided is a power line communication system in which data communication is performed between a primary station arranged in a substation and a child station arranged in a building of a communication contractor by using a power line of a power system. The power line communication system includes: an ON/OFF switch (43) for switching the connection state between a first primary station (30) and a terminal of the opposite side of a first power line and a second primary station (31) and a terminal of the opposite side of a second power line to OFF or ON; and a power line signal switching device (180) arranged in parallel to the ON/OFF switch (43) and having signal coupling means for relaying a power line signal between the first power line and the second power line according to voltage detection results of the first power line and the second power line. When the ON/OFF switch (43) is in OFF state and the first power line or the second power line is partially disconnected to disable power line communication between the primary station and the child station, the power line signal switching device (180) relays the power line signal by bypassing the ON/OFF switch (43).

Description

明 細 書  Specification
電力線搬送通信システムおよび電力線搬送通信方法  Power line carrier communication system and power line carrier communication method
技術分野  Technical field
[0001] この発明は、ブロードバンドネットワーク等の広域通信ネットワークと接続する電力 線搬送(PLC : Power Line Communication)通信システムおよび電力線搬送通信方 法に係わり、更に詳しくは、電力線搬送用のモデムの一次局(主端末)が電力線を介 して通信する子局との間で通信が不能の状態になった場合でも、他の一次局力 子 局に信号を中継することによってブロードバンドネットワークと通信を継続することが 可能な電力線搬送通信システムおよび電力線搬送通信方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a power line communication (PLC) communication system and a power line carrier communication method connected to a wide area communication network such as a broadband network, and more particularly, a primary station of a power line carrier modem. Even if the (main terminal) cannot communicate with the slave station that communicates via the power line, it continues communication with the broadband network by relaying signals to other primary stations. The present invention relates to a power line carrier communication system and a power line carrier communication method.
背景技術  Background art
[0002] 従来の配電線搬送信号の信号結合装置では、変電所の変圧器に複数の電力線が 接続されている電力系統 (配電系統)において変電所近傍に PLC通信のための一 次局を設置し、変電所の母線に接続される電力線 (配電線)を経由して電力線に接 続される子局の電力線搬送用のモデム PLCモデムに接続し、通信を行っていた。 例えば、特開平 10— 290185号公報 (特許文献 1)には、配電線に搬送信号 (PLC 信号)を注入または抽出する際に、信号結合装置を用いて変電所母線に結合する方 法が記載されている。  [0002] In the conventional signal coupling device for distribution line carrier signals, a primary station for PLC communication is installed near the substation in the power system (distribution system) where multiple power lines are connected to the transformer of the substation. Then, the power station (distribution line) connected to the bus of the substation connected to the power line transport modem PLC modem connected to the power line to communicate. For example, Japanese Patent Laid-Open No. 10-290185 (Patent Document 1) describes a method of coupling to a substation bus using a signal coupling device when a carrier signal (PLC signal) is injected into or extracted from a distribution line. Has been.
[0003] また、特開昭 62— 43924号公報 (特許文献 2)には、 PLC信号を伝送する回路が 開放になる場合には、開放スィッチに並列に信号の迂回路を設けて、通信を継続す ることが記載されている。  [0003] Also, in Japanese Patent Laid-Open No. 62-43924 (Patent Document 2), when a circuit for transmitting a PLC signal is opened, a signal detour is provided in parallel with the open switch for communication. It is stated that it will continue.
特開昭 62— 43924号公報では、上述したように開放スィッチに対して PLC信号を 迂回させる回路を設けることによって通信を継続していた。  In Japanese Patent Application Laid-Open No. 62-43924, as described above, communication is continued by providing a circuit for bypassing the PLC signal to the open switch.
しかしながら、電力線が、断線などのように開閉器以外の部分で物理的に線路開放 状態になる場合には、開閉器部分に通信の迂回路を設けても通信はできない。  However, if the power line is physically open in the part other than the switch, such as disconnection, communication is not possible even if a communication detour is provided in the switch part.
[0004] この対策として、異なる一次局の信号を伝送する隣接区間と通信を行うことによって 、ブロードバンドネットワークと通信を継続することが考えられる。 [0004] As a countermeasure against this, it is conceivable to continue communication with the broadband network by communicating with adjacent sections that transmit signals of different primary stations.
この隣接区間との接続部は、通常は開放状態で運用されているため、前述の特開 昭 62— 43924号公報で述べた迂回路を設ければ、隣接区間との通信路を確立でき ることになる。 Since the connection with this adjacent section is normally operated in an open state, If the detour described in Sho 62-43924 is provided, a communication channel with the adjacent section can be established.
ところで、 PLC通信では、主端末が子局に対してポール信号を出し、子局が受信し たポール信号に対して応答することによって、通信を確立している。  By the way, in PLC communication, communication is established by the main terminal sending a poll signal to the slave station and responding to the poll signal received by the slave station.
なお、ポール信号とは、送信局が送信した信号が相手局に届いたら、相手局から 送信局に対して送り返す信号のことであり、通信を確立するための信号である。  The poll signal is a signal for establishing communication by transmitting a signal transmitted from a transmitting station back to the transmitting station when the signal is transmitted to the transmitting station.
[0005] 隣接区間との間に PLC信号を常時迂回させる迂回路を設けていると、常時 2系統 で一次局(主端末)から子局に信号を送信するようにしている場合には、 2つの異なる 一次局(主端末)からのポール信号を受け取ることになり、いずれの一次局と通信をし てよいのかが判断できなくなり、一次局と子局の間で 1対 1の通信ができなくなるという 問題点がある。 [0005] If a bypass route that always bypasses the PLC signal between adjacent sections is provided, 2 signals are always sent from the primary station (main terminal) to the slave station. You will receive a poll signal from two different primary stations (main terminals), and you will not be able to determine which primary station you want to communicate with, and you will not be able to communicate one-to-one between the primary station and the slave station. There is a problem.
また、特開平 10— 290185号公報に示されている配電線搬送信号の結合装置に おいても同様の問題点がある。  Further, the distribution line carrier signal coupling device disclosed in Japanese Patent Laid-Open No. 10-290185 has the same problem.
[0006] 特許文献 1 :特開平 10— 290185号公報 [0006] Patent Document 1: Japanese Patent Laid-Open No. 10-290185
特許文献 2:公開特許公報昭 62—43924号  Patent Document 2: Published Patent Publication No. Sho 62-43924
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] この発明は、上述したような課題点を解決するためになされたものであり、 PLC通信 [0007] The present invention has been made to solve the above-described problems, and includes PLC communication.
(電力線搬送通信)を行っている系統の電力線 (配電線)が"断"の状態になっても、 他の系統を使用してブロードバンドネットワークとの通信を «I続することのできる電力 線搬送通信システムおよび電力線搬送通信方法を提供することを目的とする。  Even if the power line (distribution line) of the system performing (power line carrier communication) is in the “disconnected” state, the power line carrier can continue to communicate with the broadband network using another system. An object is to provide a communication system and a power line carrier communication method.
課題を解決するための手段  Means for solving the problem
[0008] 本発明に係わる電力線搬送通信システムは、電力系統の電力線を利用して、変電 所に配置された一次局と通信契約者の建物内に配置された子局との間でデータ通 信を行う電力線搬送通信システムであって、 [0008] A power line carrier communication system according to the present invention uses a power line of a power system to perform data communication between a primary station arranged in a substation and a slave station arranged in a building of a communication contractor. A power line carrier communication system for performing
ノックボーンネットワークと情報データの送受信を行う第 1の一次局および第二の一 次局と、第 1の電力線を介して前記第 1の一次局と電力線搬送通信を行う第 1の子局 と、第 2の電力線を介して前記第 2の一次局と電力線搬送通信を行う第 2の子局と、 前記第 1の電力線の前記第 1の一次局と反対側の端部と前記第 2の電力線の前記 第 2の一次局と反対側の端部との接続状態を開または閉に切り替える切替開閉器と 、前記切替開閉器と並列に配置され、前記第 1の電力線および前記第二の電力線 の電圧検出結果に基づいて前記第 1の電力線と前記第二の電力線の間で電力線搬 送信号を中継する信号結合手段を有した電力線搬送信号切替装置(180)を備え、 前記切替開閉器が開状態において、前記第 1の電力線あるいは前記第 2の電力線 のいずれかが一部で断状態となり、当該一次局と子局の間で電力線搬送通信が行 えなくなると、前記電力線搬送信号切替装置は前記切替開閉器を迂回して電力線 搬送信号を中継するものである。 A first primary station and a second primary station that transmit and receive information data to and from the knockbone network; a first slave station that performs power line carrier communication with the first primary station via a first power line; A second slave station that performs power line carrier communication with the second primary station via a second power line; A switching switch for switching a connection state between an end of the first power line opposite to the first primary station and an end of the second power line opposite to the second primary station to open or close And relaying a power line carrying signal between the first power line and the second power line based on a voltage detection result of the first power line and the second power line. A power line carrier signal switching device (180) having a signal coupling means for performing either of the first power line or the second power line when the switching switch is in an open state, When the power line carrier communication cannot be performed between the primary station and the slave station, the power line carrier signal switching device bypasses the switching switch and relays the power line carrier signal.
[0009] 本発明に係わる電力線搬送通信方法は、電力系統の電力線を利用して、変電所 に配置された複数の一次局と、該複数の一次局とそれぞれ対応して通信契約者の 建物内に配置された複数の子局との間でデータ通信を行う電力線搬送通信方法で あって、 [0009] A power line carrier communication method according to the present invention uses a power line of a power system, a plurality of primary stations arranged in a substation, and a communication contractor's building corresponding to each of the plurality of primary stations. A power line carrier communication method for performing data communication with a plurality of slave stations arranged in
前記複数の一次局は、バックボーンネットワークとは通信するが、各々の一次局間 では直接通信を行わな 、運用にお 、て、信号を搬送する電力線の経路の一部が開 放状態となり複数の子局の一部もしくは全部が通信して 、た一次局と通信不可能の 状況になった時に、その複数の子局の一部もしくは全部の子局を他の一次局と通信 が可能となるように信号通信経路を切り替え、前記バックボーンネットワークとの通信 を継続するものである。  The plurality of primary stations communicate with the backbone network, but each primary station does not perform direct communication. In operation, a part of the power line path carrying the signal is opened and the plurality of primary stations are opened. When some or all of the slave stations communicate and become unable to communicate with the primary station, some or all of the slave stations can communicate with other primary stations. In this way, the signal communication path is switched and communication with the backbone network is continued.
ことを特徴とする電力線搬送通信方法。  A power line carrier communication method.
発明の効果  The invention's effect
[0010] 本発明による電力線搬送通信システムあるいは電力線搬送通信方法によれば、電 力線搬送通信を行っている系統の電力線 (配電線)が"断"の状態になっても、信号 の通信経路を切り替えることによって、他の系統の電力線を使用してブロードバンド ネットワークと通信を継続することができる。  [0010] According to the power line carrier communication system or the power line carrier communication method of the present invention, even if the power line (distribution line) of the system performing the power line carrier communication is in a "disconnected" state, the signal communication path By switching, you can continue to communicate with the broadband network using other power lines.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]実施の形態 1に係る PLC通信システムの全体構成を示す図である。  FIG. 1 is a diagram showing an overall configuration of a PLC communication system according to a first embodiment.
[図 2]実施の形態 1に係る PLC通信システムにおける PLC信号切替装置の概略構成 を示す図である。 FIG. 2 is a schematic configuration of a PLC signal switching device in the PLC communication system according to Embodiment 1. FIG.
圆 3]図 2に示した PLC信号切替装置の動作例を説明するための図である。 [3] FIG. 3 is a diagram for explaining an operation example of the PLC signal switching device shown in FIG.
圆 4]図 2に示した PLC信号切替装置の動作例を説明するための図である。 [4] FIG. 4 is a diagram for explaining an operation example of the PLC signal switching device shown in FIG.
圆 5]実施の形態 1に係る PLC通信システムにおける信号切替動作を説明するため のフローチャートである。 V 5] A flowchart for explaining a signal switching operation in the PLC communication system according to the first embodiment.
[図 6]実施の形態 1に係る PLC通信システムの変形例を示す図である。  FIG. 6 is a diagram showing a modification of the PLC communication system according to the first embodiment.
[図 7]実施の形態 2に係る PLC通信システムにおける PLC信号切替装置の構成を示 す図である。  FIG. 7 is a diagram showing a configuration of a PLC signal switching device in a PLC communication system according to a second embodiment.
圆 8]実施の形態 2に係る PLC通信システムにおける信号切替動作を説明するため のフローチャートである。 圆 8] A flowchart for explaining a signal switching operation in the PLC communication system according to the second embodiment.
[図 9]実施の形態 3に係る PLC通信システムにおける PLC信号切替装置の構成を示 す図である。  FIG. 9 is a diagram showing a configuration of a PLC signal switching device in a PLC communication system according to a third embodiment.
[図 10]実施の形態 4に係る PLC通信システムにおける PLC信号切替装置の構成を 示す図である。  FIG. 10 is a diagram showing a configuration of a PLC signal switching device in a PLC communication system according to a fourth embodiment.
[図 11]実施の形態 5に係る PLC通信システムにおける PLC信号切替装置の構成を 示す図である。  FIG. 11 is a diagram showing a configuration of a PLC signal switching device in a PLC communication system according to a fifth embodiment.
[図 12]実施の形態 6に係る PLC通信システムの全体構成を示す図である。  FIG. 12 shows an overall configuration of a PLC communication system according to a sixth embodiment.
[図 13]実施の形態 7に係る PLC通信システムの全体構成を示す図である。 FIG. 13 is a diagram showing an overall configuration of a PLC communication system according to a seventh embodiment.
符号の説明 Explanation of symbols
1 バックボーンネットワーク(ブロードバンドネットワーク)  1 Backbone network (broadband network)
2、 3、 4 ネットワーク通信線  2, 3, 4 Network communication line
3 ネットワーク通信線  3 Network communication line
5 上位電力系統 A 6 上位電力系統 B  5 Upper power grid A 6 Upper power grid B
10 変電所 A 11 変電所 B  10 Substation A 11 Substation B
20、 21、 22 高圧 Z中圧変圧器  20, 21, 22 High voltage Z Medium voltage transformer
30、 31、 32 一次局  30, 31, 32 Primary station
40、 50、 54, 55 変電所母線  40, 50, 54, 55 Substation bus
41、 48、 49、 51 遮断器 42 区分開閉器 43 切替開閉器 41, 48, 49, 51 Circuit breaker 42 Category switch 43 Switching switch
44、 45、 47、 52 配電線(電力線)  44, 45, 47, 52 Distribution lines (power lines)
46、 53 分岐配電線 (分岐電力線)  46, 53 Branch distribution line (branch power line)
60、 61、 62 中圧/低圧変圧器  60, 61, 62 Medium / low voltage transformer
70、 71、 72、 73, 74 低圧配電線 (低圧電力線)  70, 71, 72, 73, 74 Low voltage distribution line (low voltage power line)
100、 111、 112、 113 MVノード  100, 111, 112, 113 MV nodes
121、 122、 123、 124、 125 CPE (子局)  121, 122, 123, 124, 125 CPE (slave station)
180 PLC信号切替装置  180 PLC signal switching device
191、 192 PLC通信データ信号  191, 192 PLC communication data signal
210、 214 信号結合装置  210, 214 signal combiner
213 制御装置 215 信号保持装置 1  213 Control device 215 Signal holding device 1
216 信号有無チェック装置 217 信号保持装置 2  216 Signal presence check device 217 Signal holding device 2
218 信号中継指令装置  218 Signal relay command device
220 電圧計 1 221 電圧計 2  220 Voltmeter 1 221 Voltmeter 2
223 電圧検出装置 1 224 電圧検出装置 2  223 Voltage detector 1 224 Voltage detector 2
225 信号中継スィッチ 226 開閉状態検出装置  225 Signal relay switch 226 Open / close state detection device
230、 231 接地装置 (インダクタンス)  230, 231 Grounding device (inductance)
240、 241 サージァブゾーバ(アレスター)  240, 241 Surge absorber (arrester)
251 信号バイパス装置 260 信号ブロック装置  251 Signal bypass device 260 Signal block device
270 ハイパスフィルター(HPF)  270 High Pass Filter (HPF)
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、図面に基づいて、本発明の一実施の形態について説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
なお、各図間において、同一符合は、同一あるいは相当のものであることを表す。 実施の形態 1.  In the drawings, the same reference sign indicates the same or equivalent. Embodiment 1.
図 1は、本発明の実施の形態 1に係わる電力線搬送通信システムの全体構成を説 明するための図である。  FIG. 1 is a diagram for explaining the overall configuration of the power line carrier communication system according to the first embodiment of the present invention.
図において、 10は配電変電所 (以下、単に変電所と称す)であり、変電所 10内には 複数の一次局 (MVHE:主端末)が配設されて 、る。 例えば、変電所 10内に一次局 30および一次局 31の 2つの一次局が配設されてい るとする。 In the figure, reference numeral 10 denotes a distribution substation (hereinafter simply referred to as a substation), and a plurality of primary stations (MVHE: main terminals) are arranged in the substation 10. For example, assume that two primary stations, a primary station 30 and a primary station 31, are arranged in the substation 10.
また、 55、 40および 54は変電所母線 (以下、単に母線と称す)であって、変電所母 線 55は上位電力系統 A (符合 5で示す)に接続されており、母線 40は高圧 Z中圧変 圧器 20を介して母線 55に接続され、母線 54は高圧 Z中圧変圧器 21を介して母線 55に接続されている。  55, 40, and 54 are substation buses (hereinafter simply referred to as busbars), and substation bus 55 is connected to upper power system A (indicated by reference numeral 5). The bus 55 is connected to the bus 55 via the medium voltage transformer 20, and the bus 54 is connected to the bus 55 via the high voltage Z medium voltage transformer 21.
[0014] 一次局 30は、ネットワーク通信線 2によりバックボーンネットワーク(ブロードバンドネ ットワーク) 1と接続されていると共に、母線 40に接続されている。  The primary station 30 is connected to a backbone network (broadband network) 1 through a network communication line 2 and also connected to a bus 40.
また、一次局 31は、ネットワーク通信線 2とは異なるネットワーク通信線 3によってバ ックボーンネットワーク(ブロードバンドネットワーク) 1と接続されていると共に、母線 5 4に接続されている。  The primary station 31 is connected to the backbone network (broadband network) 1 by a network communication line 3 different from the network communication line 2 and to the bus 54.
なお、 2aはネットワーク通信線 2を介してバックボーンネットワーク 1と一次局 30との 間で送受信される情報データ、 3aはネットワーク通信線 3を介してバックボーンネット ワーク 1と一次局 31との間で送受信される情報データである。  2a is information data transmitted / received between the backbone network 1 and the primary station 30 via the network communication line 2, and 3a is transmitted / received between the backbone network 1 and the primary station 31 via the network communication line 3. Information data.
[0015] また、 44は変電所 10内の配電線遮断器 (以下、単に遮断器と称す) 41を介して母 線 40に接続されている配電線 (電力線)、 45は変電所 10内の遮断器 49を介して母 線 54に接続されて!、る配電線 (電力線)である。 [0015] In addition, 44 is a distribution line (power line) connected to the bus 40 via a distribution line breaker (hereinafter simply referred to as a breaker) 41 in the substation 10, and 45 is a distribution line breaker in the substation 10. A distribution line (power line) connected to bus 54 via circuit breaker 49 !.
また、 47は区分開閉器 42を介して配電線 44と接続されている配電線 (電力線)で ある。  Reference numeral 47 denotes a distribution line (power line) connected to the distribution line 44 via the section switch 42.
なお、区分開閉器とは、配電系統に事故が発生した場合に、事故が発生している 区間を健全区間から切り離すための開閉器である。  The section switch is a switch for separating the section where the accident has occurred from the healthy section when an accident occurs in the distribution system.
43は配電線 47と配電線 45に接続された切替開閉器であって、この切替開閉器 43 と並列に後述する PLC信号切替装置 180が接続されている。  43 is a switching switch connected to the distribution line 47 and the distribution line 45, and a PLC signal switching device 180, which will be described later, is connected in parallel with the switching switch 43.
[0016] 変電所 10に設置された一次局 30は、母線 40、遮断器 41、配電線 44、区分開閉 器 42、配電線 47、分岐配電線 46、中圧,低圧変圧器 60に並列に接続された MV( Medium Voltage : 6000V〜3万 V程度の中圧電圧のこと)ノード 111、低圧配電線 70を経由して、 PLC通信契約者の建物 120内に配置されている子局である CPE(C ustomer Premise Equipment :宅内用通信装置 Z宅内モデムのこと) 121と PLC通 信を行なう。 [0016] Primary station 30 installed in substation 10 is in parallel with bus 40, circuit breaker 41, distribution line 44, section switch 42, distribution line 47, branch distribution line 46, medium-voltage, low-voltage transformer 60. Connected MV (Medium Voltage: Medium voltage of about 6000V to 30,000V) Node 111, a slave station located in PLC communication subscriber's building 120 via low-voltage distribution line 70 CPE (Customer Premise Equipment: Home communication device Z home modem) 121 and PLC communication I believe.
なお、図中の一点鎖線で示した矢印 191は、一次局 30から配信される PLC通信デ ータ信号を示している。  Note that an arrow 191 indicated by an alternate long and short dash line in the figure indicates a PLC communication data signal distributed from the primary station 30.
また、一次局 30は、ネットワーク通信線 2を経由してバックボーンネットワーク 1と通 信を行なっている。  The primary station 30 communicates with the backbone network 1 via the network communication line 2.
[0017] 同様に、変電所 10に設置された一次局 31は、母線 54、遮断器 49、配電線 45、 M Vノード 113、中圧 Z低圧変圧器 62に並列に接続された MVノード 113、低圧配電 線 74を経由して、子局である CPE(Customer Premise Equipment) 124と通信を行 なう。  [0017] Similarly, the primary station 31 installed in the substation 10 includes a bus 54, a circuit breaker 49, a distribution line 45, an MV node 113, an MV node 113 connected in parallel to the medium voltage Z low voltage transformer 62, It communicates with a CPE (Customer Premise Equipment) 124, which is a slave station, via a low voltage distribution line 74.
また、図中の破線で示した矢印 192は、一次局 31から配信される PLC通信データ 2を示している。  In addition, an arrow 192 indicated by a broken line in the figure indicates PLC communication data 2 distributed from the primary station 31.
なお、一次局 30あるいは一次局 31から配信される PLC通信データのキャリア周波 数は、約 1ΜΗζ〜50ΜΗζであることが好ましい。  The carrier frequency of PLC communication data distributed from the primary station 30 or the primary station 31 is preferably about 1ΜΗζ to 50ΜΗζ.
[0018] また、一次局 31は、ネットワーク通信線 3を経由してバックボーンネットワーク 1と通 信を行なっている。 Further, the primary station 31 communicates with the backbone network 1 via the network communication line 3.
配電線 47と、配電線 45は、切替開閉器 43によって連系されている力 常時の運用 状態では切替開閉器 43は開放状態であり、配電線 47と配電線 45は切替開閉器 43 によって電気的に切り離された状態にある。  Distribution line 47 and distribution line 45 are connected to each other by switching switch 43.In the normal operation state, switching switch 43 is open, and distribution line 47 and distribution line 45 are electrically connected by switching switch 43. In a state of being disconnected.
[0019] 図 2は、図 1に示した本実施の形態による電力線搬送通信システムに用いられる PL C信号切替装置 180の概略の構成を示した図である。  FIG. 2 is a diagram showing a schematic configuration of PLC signal switching device 180 used in the power line carrier communication system according to the present embodiment shown in FIG.
PLC信号切替装置 180は、配電線 47と接続した信号結合装置 (キャパシタンスあ るいは電磁結合装置などで構成) 210および配電線 45と接続した信号結合装置 21 4、信号結合装置 210および 214とを接続する信号中継スィッチ 225、配電線 47の 電圧を計測する電圧計 1(符合 220で示す)、配電線 45の電圧を計測する電圧計 2( 符合 221で示す)、電圧検出装置 1 (符合 223で示す)、電圧検出装置 2(符合 224で 示す)、電圧検出装置の信号を受けて信号中 «スィッチ 225を開閉する制御装置 21 3から構成される。  The PLC signal switching device 180 includes a signal coupling device (consisting of a capacitance or electromagnetic coupling device) 210 connected to the distribution line 47, a signal coupling device 213 connected to the distribution line 45, and the signal coupling devices 210 and 214. Connected signal relay switch 225, voltmeter 1 for measuring the voltage of distribution line 47 (indicated by reference numeral 220), voltmeter 2 for measuring the voltage of distribution line 45 (indicated by reference numeral 221), voltage detector 1 (reference numeral 223) ), A voltage detection device 2 (indicated by reference numeral 224), and a control device 213 that opens and closes the signal switch 225 in response to a signal from the voltage detection device.
[0020] 次に動作について説明する。 図 2に示すように、配電線 47および配電線 45が健全であり、電力が正常に供給さ れている場合、配電線 47および配電線 45には、定格の運転電圧が印加されている 電圧計 1(符合 220で示す)は、電力線 47の電圧を計測し電圧値を出力する。 Next, the operation will be described. As shown in Fig. 2, when distribution line 47 and distribution line 45 are healthy and power is supplied normally, the rated operating voltage is applied to distribution line 47 and distribution line 45. Total 1 (indicated by reference numeral 220) measures the voltage of the power line 47 and outputs a voltage value.
電圧検出装置 1(符合 223で示す)は、電圧計 1(220)の出力が設定値 (例えば定格 電圧値の 90%)より大きい場合、変電所 10との間の経路が正常であると判定し、信 号 (例えば 1. 0)を出力する。  Voltage detector 1 (indicated by reference numeral 223) determines that the path to substation 10 is normal when the output of voltmeter 1 (220) is greater than the set value (for example, 90% of the rated voltage value). Output a signal (for example, 1.0).
同様に、電圧計 2(符合 221で示す)は配電線 45の電圧を計測し電圧値を出力する 電圧検出装置 2(符合 224で示す)は、電圧計 2(221)の出力が設定値 (例えば定格 電圧値の 90%)より大きい場合、変電所との間の経路が正常であると判定し、信号( 例えば 1. 0)を出力する。  Similarly, voltmeter 2 (indicated by reference numeral 221) measures the voltage of distribution line 45 and outputs a voltage value.Voltage detection device 2 (indicated by reference numeral 224) has the output of voltmeter 2 (221) set to the set value ( For example, if it is greater than 90% of the rated voltage value, it is determined that the path to the substation is normal and a signal (eg, 1.0) is output.
制御装置 213は、電圧検出装置 1 (223)あるいは電圧検出装置 2(224)が検出す る電圧 (即ち、 VIあるいは V2)が無電圧であると、信号中継スィッチ 225を投入(閉 路)する。  The control device 213 turns on (closes) the signal relay switch 225 when the voltage (ie, VI or V2) detected by the voltage detection device 1 (223) or the voltage detection device 2 (224) is no voltage. .
図 3は、図 2に示した PLC信号切替装置 180の動作例を説明するための図であり、 制御装置 213の具体的構成を示している。  FIG. 3 is a diagram for explaining an operation example of the PLC signal switching device 180 shown in FIG. 2, and shows a specific configuration of the control device 213.
図 3に示すように、制御装置 213の信号保持装置 1(符合 215で示す)は、電圧検出 装置 1(223)から信号が出力されると、 η Χ ΔΤ時間継続する一定の大きさ、例えば 1 . 0の出力を出する。  As shown in FIG. 3, when a signal is output from the voltage detection device 1 (223), the signal holding device 1 of the control device 213 (indicated by reference numeral 215) has a certain magnitude that continues for ηΧΔΤ, for example, Outputs 1.0.
ここで、 ΔΤは電圧検出装置 1(223)および電圧検出装置 2(224)のサンプルホー ルド時間であり、 nは 2以上の値である。  Here, ΔΤ is the sample hold time of the voltage detection device 1 (223) and the voltage detection device 2 (224), and n is a value of 2 or more.
同様に、制御装置 213の信号保持装置 2(符合 217で示す)は、電圧検出装置 2(22 4)力 信号が出力されると、 η Χ ΔΤ時間継続する一定の大きさ、例えば 1. 0の出力 を出する。  Similarly, the signal holding device 2 (indicated by reference numeral 217) of the control device 213, when the voltage detection device 2 (224) force signal is output, has a constant magnitude that continues for ηΧΔΤ time, for example 1.0. Output.
信号有無チェック装置 (符合 216で示す)は、信号保持装置 1(215)と信号保持装 置 2(217)の出力の大きさをチ ックする。  The signal presence / absence check device (indicated by reference numeral 216) checks the output magnitudes of the signal holding device 1 (215) and the signal holding device 2 (217).
信号保持装置 1(215)の出力が規定値、例えば 0. 5以上であれば、信号中継スイツ チ運転指令値を oにセットする。 If the output of the signal holding device 1 (215) is a specified value, for example 0.5 or more, the signal relay switch H Set the operation command value to o.
[0022] 図 3のように、信号保持装置 2(217)の出力が規定値、例えば 0. 5以上であっても 信号保持装置 1(215)の出力が規定値、例えば、 0. 5以上であれば指令値は 0にセ ッ卜する。 As shown in FIG. 3, even if the output of the signal holding device 2 (217) is a specified value, for example 0.5 or more, the output of the signal holding device 1 (215) is a specified value, for example, 0.5 or more. If so, the command value is set to 0.
一方、信号保持装置 1(215)の出力が規定値以下で、信号保持装置 2(217)の出 力が規定値 (例えば 0. 5)以上であれば、信号中継装置運 218の転指令値を 1. 0に セットする。  On the other hand, if the output of the signal holding device 1 (215) is less than the specified value and the output of the signal holding device 2 (217) is more than the specified value (e.g. 0.5), the turn command value of the signal relay device operation 218 Set to 1.0.
信号中継指令装置 218は、信号有無チ ック装置 216の中継指令値を ΔΤ毎にチ エックし、規定値 (例えば 0. 5)未満であれば、信号中継スィッチ 225を開放状態にす る。  The signal relay command device 218 checks the relay command value of the signal presence / absence check device 216 every ΔΤ, and if it is less than a specified value (for example, 0.5), the signal relay switch 225 is opened.
規定値 (例えば 0. 5)以上であれば、信号中継装置 225を投入(閉路)する。  If it is a specified value (for example, 0.5) or more, the signal relay device 225 is turned on (closed).
[0023] 即ち、両側の線路 (配電線 47および配電線 45)の定格運転電圧を共に検出した場 合は、両側の一次局 30および一次局 31の両方が健全と判定し、信号中継スィッチ 2 25を投入 (閉路)させない。 [0023] That is, when the rated operating voltages of both lines (distribution line 47 and distribution line 45) are detected together, both primary station 30 and primary station 31 are judged to be healthy, and signal relay switch 2 25 is not turned on (closed).
従って、一次局 30の信号は、配電線 47までは送信されるが、配電線 45側には送 信されず、同様に、一次局 31の信号は配電線 45まで送信されるが、配電線 47側に は送信されず、一次局 30は子局である CPE121との間で、一次局 31は子局である CPE124との間で、それぞれ通信が行なわれる。  Therefore, the signal of the primary station 30 is transmitted to the distribution line 47 but is not transmitted to the distribution line 45 side. Similarly, the signal of the primary station 31 is transmitted to the distribution line 45, but the distribution line 45 The primary station 30 communicates with the CPE 121 which is the slave station, and the primary station 31 communicates with the CPE 124 which is the slave station.
[0024] 図 4は、電圧検出装置 1 (223)で電圧が検出されない場合の制御装置 213の動作 を説明するための図である。 FIG. 4 is a diagram for explaining the operation of the control device 213 when no voltage is detected by the voltage detection device 1 (223).
例えば、一次局 30から配電線 47の間の経路が断路されており、一次局 30の信号 を通せない状態にある場合、電圧検出装置 1(223)では配電線 47の通常定格電圧 が検出されず、信号保持装置 1から信号が出力されない。  For example, when the path between the primary station 30 and the distribution line 47 is disconnected and the signal from the primary station 30 cannot be passed, the voltage detector 1 (223) detects the normal rated voltage of the distribution line 47. No signal is output from the signal holding device 1.
一方、電圧検出装置 2(224)で配電線 45の電圧が検出されており、一次局 31から 配電線 45までの線路が健全であれば、一次局 31から配信される信号を信号結合装 置 214まで通すことができる。  On the other hand, if the voltage of distribution line 45 is detected by voltage detection device 2 (224) and the line from primary station 31 to distribution line 45 is healthy, the signal distributed from primary station 31 is connected to the signal coupling device. You can pass up to 214.
制御装置 213は、配電線 45あるいは配電線 47の一方のみの電圧が検出されると、 他方の通信経路に障害が発生したと判断し、信号中継スィッチ 225を投入する。 [0025] これにより、一次局 31の信号は、信号結合装置 214、信号中継スィッチ 225、信号 結合装置 210を経由して配電線 47に注入され、配電線 47に接続されている CPE1 21と通信を確立できる。 When the voltage of only one of the distribution line 45 or the distribution line 47 is detected, the control device 213 determines that a failure has occurred in the other communication path, and turns on the signal relay switch 225. [0025] Thereby, the signal of the primary station 31 is injected into the distribution line 47 via the signal coupling device 214, the signal relay switch 225, and the signal coupling device 210, and communicated with the CPE 121 connected to the distribution line 47. Can be established.
また、通信ができなくなつていた一次局 30と配電線 47間の経路が正常に復帰して 、配電線 47の電圧が電圧検出装置 1(223)で検出されれば、信号中継指令装置 21 8の運転指令値を 0にセットする。  In addition, if the path between the primary station 30 and the distribution line 47, which has become unable to communicate, returns to normal and the voltage of the distribution line 47 is detected by the voltage detection device 1 (223), the signal relay command device 21 Set the operation command value of 8 to 0.
信号中継指令装置 218は、運転指令値 0を受けて、中継スィッチ 225を開放状態 にする。  In response to the operation command value 0, the signal relay command device 218 opens the relay switch 225.
[0026] 図 5は、本実施の形態による PLC通信システムにおける信号切替動作を説明する ためのフローチャートである。  FIG. 5 is a flowchart for explaining a signal switching operation in the PLC communication system according to the present embodiment.
図 5のフローチャートに基づいて、本実施の形態による信号切替動作について説明 する。  The signal switching operation according to the present embodiment will be described based on the flowchart of FIG.
まず、配電線 47および配電線 45の両方に、電圧が印加されている場合について 説明する。  First, the case where a voltage is applied to both the distribution line 47 and the distribution line 45 will be described.
この場合、電圧検出装置 1 (223)および電圧検出装置 2 (224)の 、ずれも電圧を 検出するので、信号保持装置 1 (215)および信号保持装置 2 (217)のいずれもが信 号 1. 0を出力している。  In this case, since the voltage detection device 1 (223) and the voltage detection device 2 (224) detect the voltage, the signal holding device 1 (215) and the signal holding device 2 (217) both have the signal 1 . 0 is output.
演算力スタートすると、まず、信号保持装置 1 (215)の出力信号レベルをチェックす る(ステップ S 100)。  When the computing power starts, first, the output signal level of the signal holding device 1 (215) is checked (step S100).
電圧検出装置 1 (223)が信号 1. 0を出力しているので信号保持装置 1 (215)の出 力信号は 1. 0となる。  Since the voltage detection device 1 (223) outputs the signal 1.0, the output signal of the signal holding device 1 (215) is 1.0.
従って、ステップ S100では、 "信号 >0. 5 "の条件を満たすため、 Yes判定となり 、ステップ S 200に移る。  Accordingly, in step S100, since the condition of “signal> 0.5” is satisfied, a Yes determination is made, and the process proceeds to step S200.
[0027] ステップ S200では、信号保持装置 2 (217)の出力信号も 1. 0であるため、 Yes判 定となり、ステップ S201に移る。 [0027] In step S200, since the output signal of the signal holding device 2 (217) is 1.0, the determination is Yes, and the process proceeds to step S201.
ステップ S201では、信号中継スィッチ 225の動作指令は 0と設定され、ステップ S3 00へ処理が移る。  In step S201, the operation command of the signal relay switch 225 is set to 0, and the process proceeds to step S300.
ステップ S300では、信号中継スィッチ 225の動作指令値が 0であるため、 No判定 となり、ステップ S301に移り信号中継スィッチ 225は開放が選択される。 このため、信号結合装置 210と信号結合装置 214はと結合されず、 PLC信号切替 装置 180による信号中継動作が発生しな!、。 In step S300, since the operation command value of signal relay switch 225 is 0, No In step S301, the signal relay switch 225 is selected to be opened. Therefore, the signal coupling device 210 and the signal coupling device 214 are not coupled to each other, and the signal relay operation by the PLC signal switching device 180 does not occur! ,.
以上のように、配電線 47および配電線 45の 、ずれにも電圧が印加されて 、る場合 には、信号中継動作が行われない。  As described above, when a voltage is applied to the gap between the distribution line 47 and the distribution line 45, the signal relay operation is not performed.
[0028] 次に、何らかの原因で配電線 47に電圧が印加されていない状態であり、配電線 45 は正常に電圧が印加されて!、る場合にっ 、て説明する。 [0028] Next, the case where no voltage is applied to the distribution line 47 for some reason and the voltage is normally applied to the distribution line 45 will be described.
この場合では、電圧検出装置 1 (223)は電圧を検出しないため、信号保持装置 1 ( In this case, since the voltage detection device 1 (223) does not detect the voltage, the signal holding device 1 (
215)は信号 0を出力する。 215) outputs a signal 0.
一方、電圧検出装置 2 (224)は電圧を検出するので、信号保持装置 2 (217)は信 号 1. 0を出力している。  On the other hand, since the voltage detection device 2 (224) detects the voltage, the signal holding device 2 (217) outputs the signal 1.0.
この場合の信号切替動作について、図 5のフローチャートに基づいて説明する。 演算がスタートすると、ステップ SIOOで信号保持装置 1 (215)の信号のレベルをチ エックする。  The signal switching operation in this case will be described based on the flowchart of FIG. When the computation starts, the signal level of signal holding device 1 (215) is checked in step SIOO.
電圧検出装置 1 (223)が信号 0を出力しているので、信号保持装置 1 (215)の出 力信号は 0となる。  Since the voltage detection device 1 (223) outputs the signal 0, the output signal of the signal holding device 1 (215) becomes 0.
従って、ステップ S 100では "信号〉 0. 5"の条件を満たさず、 No判定となり、ステツ プ S400の処理に移る。  Therefore, in step S100, the condition of “Signal> 0.5” is not satisfied, the determination is No, and the process proceeds to step S400.
[0029] ステップ S400では、信号保持装置 2 (217)の信号が 1. 0であるため Yes判定とな り、ステップ S401に移る。 In step S400, since the signal of the signal holding device 2 (217) is 1.0, a Yes determination is made, and the process proceeds to step S401.
ステップ S401では信号中 «スィッチ 225の動作指令は 1と設定され、ステップ S30 0へ処理が移る。  In step S401, the operation command of the switch 225 in the signal is set to 1, and the process proceeds to step S300.
ステップ S300では信号中継スィッチ 225の動作指令値が 1であるため、 Yes判定と なり、ステップ S302に移り、信号中継スィッチ 225は投入が選択される。  In step S300, since the operation command value of the signal relay switch 225 is 1, a Yes determination is made, the process proceeds to step S302, and the signal relay switch 225 is selected to be turned on.
これによつて信号中継動作が発生する。  This causes a signal relay operation.
なお、図 5のフローチャートに基づく演算処理のステップは、 ΔΤ (電圧検出装置 1 および電圧検出装置 2の所定のサンプルホールド時間)毎に繰り返される。  Note that the step of the arithmetic processing based on the flowchart of FIG. 5 is repeated every ΔΤ (predetermined sample hold time of the voltage detection device 1 and the voltage detection device 2).
以上の様に、配電線 47に電圧がなぐ配電線 45に電圧が印加されている場合、信 号中継動作が発生し、配電線 47に接続している子局(CPE)は配電線 45、一次局 3 1を介して、ノックボーンネットワーク 1と通信を継続できる。 As described above, when voltage is applied to distribution line 45 where voltage is applied to distribution line 47, The slave station (CPE) connected to the distribution line 47 can continue to communicate with the knockbone network 1 via the distribution line 45 and the primary station 31.
[0030] なお、図 1に示しているように、一次局 30と子局(CPE) 121の間に、搬送信号を中 継するための MVノード 100を設置して信号を増幅しても良い。 [0030] As shown in FIG. 1, an MV node 100 for relaying the carrier signal may be installed between the primary station 30 and the slave station (CPE) 121 to amplify the signal. .
また、 PLC信号切替装置 180は、切替開閉器 43の存在を必須とはしない。 また、 PLC信号切替装置 180は、必ずしも配電線の端部に接続する必要性はなく 、本実施の形態の変形例を示す図 6のように、配電線の中間部に設けても良い。 図 6は、配電線 44の区分開閉器 42の手前の位置と配電線 45の子局(CPE) 124 に繋がる中圧 Z低圧変圧器 62の手前の位置との間に PLC信号切替装置 180が配 置されて!、る場合を示して 、る。  Further, the PLC signal switching device 180 does not require the switching switch 43 to be present. Further, the PLC signal switching device 180 is not necessarily connected to the end of the distribution line, and may be provided in the middle part of the distribution line as shown in FIG. 6 showing a modification of the present embodiment. Fig. 6 shows that the PLC signal switching device 180 is located between the position of the distribution switch 44 in front of the section switch 42 and the position of the distribution line 45 in front of the medium pressure Z low voltage transformer 62 connected to the slave station (CPE) 124. Show the case of being placed!
[0031] 以上説明したように、本実施の形態による PLC (電力線搬送)通信システムは、電 力系統の電力線を利用して、変電所に配置された一次局と通信契約者の建物内に 配置された子局との間でデータ通信を行う電力線搬送通信システムであって、 [0031] As described above, the PLC (power line carrier) communication system according to the present embodiment is arranged in the building of the primary station and the communication contractor located in the substation using the power line of the power system. A power line carrier communication system for performing data communication with a slave station,
ノックボーンネットワーク 1と情報データの送受信を行う第 1の一次局 30および第二 の一次局 31と、第 1の電力線 (配電線 44、 47)を介して第 1の一次局 0と電力線搬送 通信を行う第 1の子局(121)と、第 2の電力線 (配電線 45)を介して第 2の一次局 30 と電力線搬送通信を行う第 2の子局 124と、第 1の電力線の第 1の一次局と反対側の 端部と第 2の電力線の第 2の一次局と反対側の端部との接続状態を開または閉に切 り替える切替開閉器 43と、切替開閉器 43と並列に配置され、第 1の電力線および前 記第二の電力線の電圧検出結果に基づいて第 1の電力線と第二の電力線の間で電 力線搬送信号を中継する信号結合手段 (信号結合装置 210、信号結合装置 214、 制御装置 213、中継スィッチ 225)を有した電力線搬送信号切替装置 180を備え、 切替開閉器 43が開状態において、第 1の電力線あるいは第 2の電力線のいずれか がー部で断状態となり、当該一次局と子局の間で電力線搬送通信が行えなくなると、 電力線搬送信号切替装置 180は、前記切替開閉器を迂回して電力線搬送信号を中 継するように構成されて 、る。  Power line carrier communication with the first primary station 30 and the second primary station 31 that transmit / receive information data to / from the knockbone network 1 and the first primary station 0 via the first power line (distribution lines 44, 47). The first slave station (121) that performs power line communication with the second primary station 30 via the second power line (distribution line 45), and the first slave station 124 that performs power line carrier communication with the second primary station 30. A switching switch 43 for switching the connection state between the end on the opposite side of the primary station 1 and the end of the second power line on the opposite side of the second primary station to open or closed, and a switching switch 43 A signal coupling means (signal coupling device) that is arranged in parallel and relays the power line carrier signal between the first power line and the second power line based on the voltage detection result of the first power line and the second power line. 210, signal coupling device 214, control device 213, relay switch 225), and power line carrier signal switching device 180, and switch 43 is opened. In the state, when either the first power line or the second power line is disconnected at the part, and power line carrier communication cannot be performed between the primary station and the slave station, the power line carrier signal switching device 180 switches the switching. The power line carrier signal is relayed around the switch.
[0032] また、電力線搬送信号切替装置 180は、前記第 1の電力線および第 2の電力線の 運転電圧を検出する電圧検出装置 (223、 224)を有し、電圧検出装置が第 1の電力 線あるいは前記第 2の電力線のいずれかが断状態となって正常な運転電圧が印加さ れていないことを前記信号結合手段が検出すると、一次局と通信不可となった子局 を正常な運転電圧が印加されて 、る電力線に接続されて 、る一次局と通信できるよ うに、信号中継スィッチ 225を投入して前記切替開閉器を迂回して電力線搬送信号 を中継させる。 [0032] Further, the power line carrier signal switching device 180 has voltage detection devices (223, 224) for detecting operating voltages of the first power line and the second power line, and the voltage detection device is the first power line. When the signal coupling means detects that either the power line or the second power line is disconnected and a normal operating voltage is not applied, the slave station that cannot communicate with the primary station operates normally. A signal relay switch 225 is turned on to bypass the switching switch so that the power line carrier signal is relayed so that the voltage is applied and connected to the primary line and communicated with the primary station.
[0033] また、本実施の形態による電力線搬送通信方法は、電力系統の電力線を利用して 、変電所に配置された複数の一次局と、該複数の一次局とそれぞれ対応して通信契 約者の建物内に配置された複数の子局との間でデータ通信を行う電力線搬送通信 方法であって、  [0033] Also, the power line carrier communication method according to the present embodiment uses a power line of a power system to establish a communication contract corresponding to each of a plurality of primary stations arranged in a substation and the plurality of primary stations. A power line carrier communication method for performing data communication with a plurality of slave stations arranged in a person's building,
複数の一次局は、ノ ックボーンネットワークとは通信する力 各々の一次局間では 直接通信を行わな 、運用にお 、て、信号を搬送する電力線の経路の一部が開放状 態となり複数の子局の一部もしくは全部が通信して 、た一次局と通信不可能の状況 になった時に、その複数の子局の一部もしくは全部の子局を他の一次局と通信が可 能となるように信号通信経路を切り替え、ノ ックボーンネットワークとの通信を継続す る。  Multiple primary stations are capable of communicating with the knockbone network. Each primary station does not communicate directly with each other. In operation, a part of the power line path that carries the signal is opened and the multiple primary stations are open. When some or all of the slave stations communicate and become unable to communicate with the primary station, some or all of the slave stations can communicate with other primary stations. Switch the signal communication path so that the communication with the knockbone network continues.
[0034] 従って、本実施の形態による電力線搬送通信システムあるいは電力線搬送通信方 法によれば、電力線搬送通信を行っている系統の電力線 (配電線)が"断"の状態に なっても、信号の通信経路を切り替えることが可能であるので、他の系統の電力線を 使用してブロードバンドネットワークと通信を継続することができる。  [0034] Therefore, according to the power line carrier communication system or the power line carrier communication method according to the present embodiment, even if the power line (distribution line) of the system performing the power line carrier communication is in a "disconnected" state, Therefore, it is possible to continue communication with the broadband network using other power lines.
[0035] 実施の形態 2.  Embodiment 2.
前述の実施の形態 1では、切替開閉器 43は常に開放 (開路)状態であり、切替開 閉器 43と並列に信号中継用スィッチ 225を設け、 PLC信号伝送媒体である配電線 ( 電力線)の経路の一部が開放状態となり、子局が通信していた一次局と通信不可能 な状況になったときに、信号中継用スィッチ 225を投入することにより PLC通信を継 続する場合について説明した。  In the first embodiment described above, the switching switch 43 is always open (open circuit), the signal relay switch 225 is provided in parallel with the switching switch 43, and the distribution line (power line) that is the PLC signal transmission medium is provided. Explained the case where PLC communication is continued by turning on signal relay switch 225 when a part of the route becomes open and communication with the primary station with which the slave station was communicating becomes impossible. .
しかし、切替開閉器 43が投入(閉路)状態の場合では、配電線 47および配電線 45 のいずれか一方が健全で、定格の運転電圧が印加されていれば、電圧検出装置 1( 223)および電圧検出装置 2(224)のいずれも電圧を検出する。 この場合、図 5のフローチャートに示すように、信号中継スィッチ開放指令が出され るので、信号中継スィッチ 225は開放状態となり、信号は中継されない。 However, when the switch 43 is in the closed (closed) state, if either the distribution line 47 or the distribution line 45 is healthy and the rated operating voltage is applied, the voltage detector 1 (223) and Each of the voltage detection devices 2 (224) detects a voltage. In this case, as shown in the flowchart of FIG. 5, since the signal relay switch opening command is issued, the signal relay switch 225 is opened and the signal is not relayed.
図 7は、実施の形態 2による PLC通信システムにおける PLC信号切替装置 180の 構成を示した図である。  FIG. 7 is a diagram showing a configuration of PLC signal switching device 180 in the PLC communication system according to the second embodiment.
信号中継スィッチ開放指令が出されると信号は中継されない、という問題に対する 対策として、図 7に示すように切替開閉器 43の開閉状態を検出する開閉状態検出装 置 226を設け、切替開閉器 43の開閉状態を開閉状態検出装置 226で検出する。  As a countermeasure against the problem that the signal is not relayed when the signal relay switch open command is issued, an open / close state detection device 226 for detecting the open / close state of the switch 43 is provided as shown in FIG. The open / close state is detected by an open / close state detection device 226.
[0036] 図 8は、本実施の形態による PLC通信システムにおける信号切替動作を説明する ためのフローチャートである。 FIG. 8 is a flowchart for explaining a signal switching operation in the PLC communication system according to the present embodiment.
なお、図 8において図 5と同一のステップ番号を付しているステップは、図 5のステツ プと同一の処理を行うステップであることを表している。  Note that, in FIG. 8, steps denoted by the same step numbers as in FIG. 5 represent steps that perform the same processing as the steps in FIG.
本実施の形態では、実施の形態 1における信号切替動作を説明するためのフロー チャートである図 5に対して、ステップ S500が追加されている。  In the present embodiment, step S500 is added to FIG. 5 which is a flowchart for explaining the signal switching operation in the first embodiment.
ステップ S500に示すように、開閉状態検出装置 226によって切替開閉器 43が閉 路状態であることが検出されると、即ち、切替開閉器 43の投入状態力 閉"であると検 出 (Yes判定)されると、ステップ S202に示すように信号中継指令を 1として信号中継 スィッチ 225を投入する。  As shown in step S500, when the open / close state detection device 226 detects that the switching switch 43 is in a closed state, that is, it is detected that the switching state of the switching switch 43 is “closed” (Yes determination). ), The signal relay command is set to 1 and the signal relay switch 225 is turned on as shown in step S202.
ただし、切替開閉器 43が投入状態であると、 PLC信号が切替開閉器 43を通過す るため、信号中継スィッチ 225の開閉によって通信の切替制御はできない。  However, if the switching switch 43 is in the on state, the PLC signal passes through the switching switch 43, so that the communication switching control cannot be performed by opening / closing the signal relay switch 225.
そのため、本実施の形態においては、図 7に示すように、切替開閉器 43に直列に、 例えばローノ スフィルターを用いた PLC信号ブロック装置 260を設置し、切替開閉器 43を介して PLC信号が通過するのを防止する。  Therefore, in the present embodiment, as shown in FIG. 7, a PLC signal block device 260 using, for example, a low-pass filter is installed in series with the switching switch 43, and the PLC signal is transmitted via the switching switch 43. Prevent passing.
切替開閉器 43の開閉状態検出装置 226は、例えば開閉器動作による開閉器操作 機構部の位置変化をマイクロスイッチで検出することによって実現できる。  The open / close state detection device 226 of the switching switch 43 can be realized, for example, by detecting a change in the position of the switch operating mechanism unit by a switch operation by a micro switch.
[0037] 以上説明したように、本実施の形態による PLC通信システムは、前記第 1の電力線 あるいは第 2の電力線のいずれかの切替開閉器 43側の端部に電力線搬送信号プロ ック装置 260を配置し、電力線搬送信号切替装置 180は、切替開閉器 43と電力線 搬送信号ブロック装置 260の直列接続体と並列に配置されると共に、切替開閉器 43 の開閉状態を検出する開閉状態検出装置 226を有し、切替開閉器 43が閉状態にお Vヽても通信経路を切替えて電力線搬送通信を中継できるようにして!/、る。 [0037] As described above, the PLC communication system according to the present embodiment has the power line carrier signal block device 260 at the end of the switching switch 43 side of either the first power line or the second power line. The power line carrier signal switching device 180 is arranged in parallel with the series connection body of the switching switch 43 and the power line carrier signal block device 260, and the switching switch 43 It has an open / close state detection device 226 for detecting the open / close state of the switch, and even if the switch 43 is in the closed state, the communication path is switched to relay the power line carrier communication.
[0038] 実施の形態 3. [0038] Embodiment 3.
前述の実施の形態 1では、配電線 47は信号結合装置 210を介して信号中継スイツ チ 225と接続され、配電線 45は信号結合装置 214を介して信号中継スィッチ 225と 接続されている。  In the first embodiment, the distribution line 47 is connected to the signal relay switch 225 via the signal coupling device 210, and the distribution line 45 is connected to the signal relay switch 225 via the signal coupling device 214.
このように、信号結合装置 210および信号結合装置 214を介して、信号中継スイツ チ 225が配電線に接続されていると、配電線の常時電圧、例えば 20KVの一部が信 号中継スィッチ 225に印加されるので、信号中継スィッチ 225のスィッチ極間の閃絡 による導通あるいはスィッチの損傷に至る恐れがある。  As described above, when the signal relay switch 225 is connected to the distribution line via the signal coupling device 210 and the signal coupling device 214, a constant voltage of the distribution line, for example, a part of 20 KV is supplied to the signal relay switch 225. Since this is applied, there is a risk of continuity or damage to the switch due to a flash between the switch poles of the signal relay switch 225.
そのため、本実施の形態では、信号結合装置 210および信号結合装置 214として 、例えばキャパシタンスを用い、信号結合装置 210および信号結合装置 214が商用 周波数に対しては高 、インピーダンス値を示し、高周波の PLC信号に対しては低 ヽ インピーダンス値となるようにしている。  Therefore, in the present embodiment, for example, capacitance is used as the signal coupling device 210 and the signal coupling device 214, and the signal coupling device 210 and the signal coupling device 214 exhibit a high impedance value with respect to the commercial frequency, and a high frequency PLC. A low impedance value is set for the signal.
[0039] 図 9は、実施の形態 3による PLC通信システムにおける PLC信号切替装置の構成 を示した図である。 FIG. 9 is a diagram showing a configuration of the PLC signal switching device in the PLC communication system according to the third embodiment.
図 9に示すように、本実施の形態における PLC信号切替装置 180の信号結合装置 210は、商用周波数では低いインピーダンス値 (例えば 1Z1000000以下)となり、 高周波の PLC信号に対しては高いインピーダンス値 (例えば 1Z10)となるインダクタ を用いた接地装置 (即ち、インダクタ) 230を介して接地する。  As shown in FIG. 9, the signal coupling device 210 of the PLC signal switching device 180 in the present embodiment has a low impedance value (for example, 1Z1000000 or less) at a commercial frequency, and a high impedance value (for example, a high frequency PLC signal) 1Z10) is grounded via a grounding device (ie, inductor) 230 using an inductor.
同様に、信号結合装置 214は、商用周波数では低いインピーダンス値となり、高周 波の PLC信号に対しては高 、インピーダンス値となるインダクタを用いた接地装置( 即ち、インダクタ) 231を介して接地する。  Similarly, the signal coupling device 214 has a low impedance value at a commercial frequency and is grounded via a grounding device (that is, an inductor) 231 using an inductor having a high impedance value for a high frequency PLC signal. .
例えば、接地装置 230および接地装置 231は、商用周波数領域において信号結 合装置のインピーダンスの 1Z 100000以下の低いインピーダンス値を有し、 PLC信 号周波数領域においては、信号結合装置のインピーダンスの 1Z10以上のインピー ダンスを有する。  For example, the grounding device 230 and the grounding device 231 have a low impedance value of 1Z 100000 or less of the impedance of the signal coupling device in the commercial frequency region, and the impedance of the signal coupling device of 1Z10 or more in the PLC signal frequency region. Has impedance.
[0040] これにより、信号中継スィッチ 225に印加される常時の商用周波電圧の分圧比の値 を小さくして、常時の電圧ストレスを軽減する。 [0040] Thus, the value of the voltage division ratio of the normal commercial frequency voltage applied to the signal relay switch 225 Reduce the voltage stress at all times.
また、信号結合装置 210および信号結合装置 214は、低い定格電圧の装置を使用 することが可能となり、装置のコストを下げることができる。  Further, the signal coupling device 210 and the signal coupling device 214 can use devices with a low rated voltage, and can reduce the cost of the devices.
以上説明したように、本実施の形態による PLC通信システムの信号結合手段は、 商用周波数領域に対して低 ヽインピーダンス値を有し、当該電力線搬送信号に対し て高 、インピーダンスを有する接地設置 (インダクタ 230、 231)で接地されて!、るの で、常時の電圧ストレスを軽減できると共に、装置のコスト低減も図れる。  As described above, the signal coupling means of the PLC communication system according to the present embodiment has a low impedance value in the commercial frequency region, and has a high impedance with respect to the power line carrier signal. Therefore, it is possible to reduce the voltage stress and reduce the cost of the equipment.
[0041] 実施の形態 4. [0041] Embodiment 4.
前述した実施の形態 3による PLC通信システムでは、配電線に発生したサージが 信号結合装置 210ある ヽは信号結合装置 214を介して PLC信号切替装置 180の内 部に侵入し、 PLC信号切替装置 180の電子回路を損傷する恐れがある。  In the PLC communication system according to Embodiment 3 described above, the surge generated in the distribution line enters the inside of the PLC signal switching device 180 via the signal coupling device 214 and enters the PLC signal switching device 180. May damage the electronic circuit.
そのため、本実施の形態では、図 10に示すように、 PLC信号切替装置 180は、接 地装置 230および接地装置 231のそれぞれと並列にアレスターあるいは放電ギヤッ プなどのサージ抑制装置 240およびサージ抑制装置 241を配置している。  Therefore, in the present embodiment, as shown in FIG. 10, the PLC signal switching device 180 includes a surge suppression device 240 and surge suppression device such as an arrester or a discharge gear in parallel with the grounding device 230 and the grounding device 231, respectively. 241 are arranged.
これにより、配電線に発生あるいは伝播してくる高周波サージが信号結合装置を介 して PLC信号切替装置に侵入した場合に、信号結合装置の電子回路への過電圧侵 入を防止し、電子回路の損傷を防止することができる。  As a result, when a high-frequency surge generated or propagated in the distribution line enters the PLC signal switching device via the signal coupling device, it prevents the signal coupling device from entering an overvoltage into the electronic circuit. Damage can be prevented.
以上説明したように、本実施の形態による PLC通信システムでは、接地設置 (イン ダクタ 230、 231)と並列にサージァブゾーノ (アレスタ 240、 241)が配置されている ので、信号結合装置の電子回路への過電圧侵入を防止し、過電圧による損傷の防 止を図れる。  As described above, in the PLC communication system according to the present embodiment, since the surge zono (arrester 240, 241) is arranged in parallel with the ground installation (inductors 230, 231), the signal coupling device is connected to the electronic circuit. Prevents overvoltage penetration and damage caused by overvoltage.
[0042] 実施の形態 5. [0042] Embodiment 5.
前述の実施の形態 1〜実施の形態 4では、 2つの信号結合装置 (即ち、信号結合 装置 210および信号結合装置 214)と信号中継スィッチ 225の 3部品で信号中継経 路を構成していた。  In the first to fourth embodiments described above, the signal relay path is configured by three components, ie, two signal coupling devices (that is, the signal coupling device 210 and the signal coupling device 214) and the signal relay switch 225.
信号結合装置 210および信号結合装置 214は、もともと高周波の PLC信号を通過 させるものであるので、図 11に示すように、ハイパスフィルター(HPF) 270と信号中 継スィッチ 225の 2つの部品の組み合わせによって信号中継経路を構成することが できる。 Since the signal coupling device 210 and the signal coupling device 214 originally pass high-frequency PLC signals, a combination of two components, a high-pass filter (HPF) 270 and a signal relay switch 225, as shown in FIG. It is possible to configure a signal relay route it can.
本実施の形態による電力線搬送通信システムでは、信号結合装置 210および信号 結合装置 214に代えて、配電線と信号中継スィッチ 225の間にハイパスフィルター( HPF) 270を配置するこれにより、部品の数を減らすことができる。  In the power line carrier communication system according to the present embodiment, instead of the signal coupling device 210 and the signal coupling device 214, a high-pass filter (HPF) 270 is disposed between the distribution line and the signal relay switch 225, thereby reducing the number of components. Can be reduced.
なお、図 11では、配電線 47と信号中継スィッチ 225の間にハイパスフィルター(HP F) 270を配置した場合を示している力 ハイパスフィルター(HPF) 270は配電線 45 と信号中継スィッチ 225の間に配置してもよい。  In addition, in FIG. 11, force is shown when a high-pass filter (HP F) 270 is disposed between the distribution line 47 and the signal relay switch 225. The high-pass filter (HPF) 270 is disposed between the distribution line 45 and the signal relay switch 225. You may arrange in.
[0043] 実施の形態 6. [0043] Embodiment 6.
前述の実施の形態 1では、変電所 10に複数の一次局(主端末)を持つ構成で、異 なるコア圧 Z注圧変圧器 20、 21に接続された 2本の電力線 (即ち、配電線 47および 配電線 45)の間に配置された切替開閉器 43に、 PLC信号切替装置 180を設置する 場合について説明したが、本実施の形態では、変電所ごとに一次局 (主端末)を持 つ構成で、異なる変電所に接続された 2本の配電線 (電力線)の間に配置された切 替開閉器 43に、 PLC信号切替装置 180を設置する場合について説明する。  In the first embodiment described above, two power lines (that is, distribution lines) connected to different core pressure Z injection transformers 20 and 21 in a configuration having a plurality of primary stations (main terminals) in the substation 10. 47 and the distribution switch 45), the case where the PLC signal switching device 180 is installed in the switching switch 43 has been described, but in this embodiment, each substation has a primary station (main terminal). A description will be given of a case where the PLC signal switching device 180 is installed in the switching switch 43 arranged between two distribution lines (power lines) connected to different substations in a single configuration.
図 12は、本実施の形態による電力線搬送通信システムの全体構成を説明するため の図であり、変電所ごとに一次局 (主端末)を持つ構成で、異なる変電所に接続され た 2本の配電線 (電力線)の間に配置された切替開閉器 43に、 PLC信号切替装置 1 80を設置した例を示して!/、る。  FIG. 12 is a diagram for explaining the overall configuration of the power line carrier communication system according to the present embodiment. The configuration includes a primary station (main terminal) for each substation, and two substations connected to different substations. An example in which the PLC signal switching device 1 80 is installed on the switching switch 43 arranged between the distribution lines (power lines) is shown below.
[0044] 変電所 10に設置された一次局 30は、変電所母線 40、遮断器 41、配電線 44、区 分開閉器 42、分岐配電線 46、 MVノード 111、低圧配電線 70を経由して、子局であ る CPE121と通信を行なう。 [0044] Primary station 30 installed in substation 10 passes through substation bus 40, circuit breaker 41, distribution line 44, section switch 42, branch distribution line 46, MV node 111, and low-voltage distribution line 70. Communicate with CPE121 which is a slave station.
また、一次局 30は、ネットワーク通信線 2を経由してバックボーンネットワーク 1と通 信を行なっている。  The primary station 30 communicates with the backbone network 1 via the network communication line 2.
同様に、変電所 10と異なる変電所 11に設置された一次局 32は、変電所母線 50、 遮断器 51、配電線 52、分岐配電線 53、 MVノード 112、低圧配電線 73を経由して 子局である CPE123と通信を行なう。  Similarly, the primary station 32 installed in substation 11 different from substation 10 passes through substation bus 50, circuit breaker 51, distribution line 52, branch distribution line 53, MV node 112, and low voltage distribution line 73. Communicates with the slave station CPE123.
また、変電所 11に設置された一次局 32は、ネットワーク通信線 4を経由してバック ボーンネットワーク 1と通信を行なっている。 なお、変電所 10の変電所母線 40に接続されている変圧器 20は、上位電力系統 A (5)に接続されており、変電所 11の変電所母線 50に接続されている変圧器 22は、 上位電力系統 B (6)に接続されて!ヽる。 The primary station 32 installed in the substation 11 communicates with the backbone network 1 via the network communication line 4. The transformer 20 connected to the substation bus 40 of the substation 10 is connected to the upper power system A (5), and the transformer 22 connected to the substation bus 50 of the substation 11 is Connected to upper power grid B (6)!
[0045] 変電所 10の配電線 44は、区分開閉器 42を介して配電線 47と接続されている。 The distribution line 44 of the substation 10 is connected to the distribution line 47 via the section switch 42.
配電線 47と変電所 11の配電線 52は、切替開閉器 43によって連系されているが、 常時の運用状態では切替開閉器 43は開放状態であり、 2つの配電線 47と配電線 52 は電気的に切り離された状態にある。  The distribution line 47 and the distribution line 52 of the substation 11 are interconnected by the switching switch 43, but in the normal operation state, the switching switch 43 is open, and the two distribution lines 47 and the distribution line 52 are It is in an electrically disconnected state.
PLC信号切替装置 180は、 2箇所 (2つ)の接続線を有し、切替開閉器 43と並列に 接続されている。  The PLC signal switching device 180 has two connection lines (two) and is connected in parallel with the switching switch 43.
PLC信号切替装置 180の構成は、基本的には実施の形態 1で説明した PLC信号 切替装置(図 2、図 3参照)と同じ構成であり、本実施の形態における PLC信号切替 装置 180は、配電線 47と接続した信号結合装置 210および配電線 47と接続した信 号結合装置 214、信号結合装置 210および 214と接続する信号中継スィッチ 225、 電圧計 1(220)、電圧計 2(221)、電圧検出装置 1 (223)、電圧検出装置 2(224)、電 圧検出装置の信号を受けて信号中 «スィッチ 225を開閉する制御装置 213で構成 されている。  The configuration of the PLC signal switching device 180 is basically the same as that of the PLC signal switching device described in the first embodiment (see FIGS. 2 and 3). The PLC signal switching device 180 in the present embodiment is Signal coupling device 210 connected to distribution line 47, signal coupling device 214 connected to distribution line 47, signal relay switch 225 connected to signal coupling devices 210 and 214, voltmeter 1 (220), voltmeter 2 (221) The voltage detection device 1 (223), the voltage detection device 2 (224), and a control device 213 that opens and closes the signal switch 225 in response to a signal from the voltage detection device.
[0046] 次に、図 2、図 3および図 12も参照しながら本実施の形態による PLC通信システム の動作について説明する。  Next, the operation of the PLC communication system according to the present embodiment will be described with reference to FIG. 2, FIG. 3, and FIG.
図 12に示すように、 2つの電力線 (即ち、配電線 47および配電線 52)が健全で、電 力が正常に供給されている場合、電力線 47および電力線 52には、定格の運転電圧 が印加されている。  As shown in Figure 12, when the two power lines (i.e., distribution line 47 and distribution line 52) are healthy and the power is supplied normally, the rated operating voltage is applied to power line 47 and power line 52. Has been.
電圧計 1(220)は、電力線 47の電圧を計測し、計測した電圧値を出力する。  Voltmeter 1 (220) measures the voltage of power line 47 and outputs the measured voltage value.
電圧検出装置 1(223)は、電圧計 1(220)の出力が設定値 (例えば定格電圧値の 9 In the voltage detection device 1 (223), the output of the voltmeter 1 (220) is set to a set value (for example, 9
0%)より大きい場合、変電所 10との間の経路が正常であると判定し、信号 (例えば 1If it is greater than (0%), it is determined that the route to substation 10 is normal and a signal (for example, 1)
. 0)を出力する。 . 0) is output.
同様に電圧計 2(221)は、電力線 52の電圧を計測し、計測した電圧値を出力する。 電圧検出装置 2(224)は、電圧計 2(221)の出力が設定値 (例えば定格電圧値の 9 0%)より大きい場合は、変電所 11との間の経路が正常であると判定し、信号 (例えば 1. o)を出力する。 Similarly, the voltmeter 2 (221) measures the voltage of the power line 52 and outputs the measured voltage value. Voltage detector 2 (224) determines that the path to substation 11 is normal when the output of voltmeter 2 (221) is greater than the set value (for example, 90% of the rated voltage value). , Signal (e.g. 1. Output o).
[0047] 制御装置 213の信号保持装置 1(215)は、電圧検出装置 1(223)の信号が出力され ると、 η Χ ΔΤ時間 «続する一定の大きさ、例えば、 1の出力を出す。  [0047] When the signal of the voltage detection device 1 (223) is output, the signal holding device 1 (215) of the control device 213 outputs an output of a certain magnitude, for example, 1 for η Χ ΔΤ time. .
ここで、 ΔΤは、電圧検出装置 1(223)および電圧検出装置 2(224)のサンプルホー ルド時間である。なお、 nは 2以上の値である。同様に制御装置の信号保持装置 1(2 17)は電圧検出装置 1(224)の信号が出力されると、 η Χ ΔΤ時間 «続する一定の大 きさ、例えば 1の出力を出す。  Here, ΔΤ is the sample hold time of the voltage detection device 1 (223) and the voltage detection device 2 (224). N is a value of 2 or more. Similarly, when the signal of the voltage detection device 1 (224) is output, the signal holding device 1 (217) of the control device outputs an output of a certain magnitude, for example, 1 for ηΧΔΤ time.
信号有無チェック装置 216は、信号保持装置 1(215)と信号保持装置 2(217)の出 力の大きさをチェックする。  The signal presence / absence check device 216 checks the output levels of the signal holding device 1 (215) and the signal holding device 2 (217).
信号保持装置 1(215)の出力が規定値、例えば 0. 5以上であれば、信号中 «スイツ チ運転指令値を 0にセットする。  If the output of the signal holding device 1 (215) is a specified value, for example, 0.5 or more, the switch operation command value in the signal is set to 0.
信号保持装置 2(217)の出力が規定値、例えば、 0. 5以上であっても信号保持装 置 1(215)の出力が規定値、例えば、 0. 5以上であれば指令値は 0である。  Even if the output of the signal holding device 2 (217) is a specified value, for example, 0.5 or more, the command value is 0 if the output of the signal holding device 1 (215) is a specified value, for example, 0.5 or more. It is.
[0048] 一方、信号保持装置 1(215)の出力が規定値以下で、信号保持装置 2(217)の出 力が規定値,例えば、 0. 5以上であれば信号中継装置運転指令値を 1にセットする 信号中継指令装置 218は、信号有無チ ック装置 213の中継指令値を ΔΤ毎にチ エックし、規定値 (例えば、 0. 5)未満であれば信号中継スィッチ 225を開放状態にし 、規定値 (例えば、 0. 5)以上であれば信号中継装置 225を投入(閉路)する。 [0048] On the other hand, if the output of the signal holding device 1 (215) is less than or equal to a specified value and the output of the signal holding device 2 (217) is a specified value, for example, 0.5 or more, the signal relay device operation command value is The signal relay command device 218 set to 1 checks the relay command value of the signal presence / absence check device 213 every ΔΤ, and if it is less than the specified value (for example, 0.5), the signal relay switch 225 is opened. On the other hand, the signal relay device 225 is turned on (closed) if the value is a specified value (for example, 0.5) or more.
両側の線路の電圧を共に検出した場合は、両側の一次局 30および 31の両方が健 全と判定し、信号中継スィッチ 225を投入(閉路)させない。従って、一次局 30の信 号は配電線 47まで送信される力 配電線 52には送信されな 、。  If both line voltages are detected, both primary stations 30 and 31 are judged to be healthy, and the signal relay switch 225 is not turned on (closed). Therefore, the signal of the primary station 30 is transmitted to the distribution line 47 and is not transmitted to the distribution line 52.
同様に、一次局 31の信号は配電線 52まで送信されるが、配電線 47には送信され ず、それぞれの一次局と子局の間で通信が行われる。  Similarly, the signal of the primary station 31 is transmitted to the distribution line 52, but not transmitted to the distribution line 47, and communication is performed between each primary station and the slave station.
以上説明した本実施の形態における PLC信号切替動作のフローは、基本的には 前掲の図 5に示したフローチャートの動作フローと同じである。  The flow of the PLC signal switching operation in the present embodiment described above is basically the same as the operation flow of the flowchart shown in FIG.
[0049] 以上説明したように、本実施の形態による PLC通信システムでは、複数の一次局( 第 1および第 2の一次局)が異なる変電所に配置されていても、切替開閉器 43が開 状態において、第 1の電力線あるいは第 2の電力線のいずれかが一部で断状態とな り、当該一次局と子局の間で電力線搬送通信が行えなくなると、電力線搬送信号切 替装置 180は、切替開閉器 43を迂回して電力線搬送信号を中継することができる。 [0049] As described above, in the PLC communication system according to the present embodiment, even when a plurality of primary stations (first and second primary stations) are arranged in different substations, the switching switch 43 is opened. In the state, when either the first power line or the second power line is partially disconnected and power line carrier communication cannot be performed between the primary station and the slave station, the power line carrier signal switching device 180 Thus, the power line carrier signal can be relayed bypassing the switching switch 43.
[0050] 実施の形態 7. [0050] Embodiment 7.
前述の実施形態 6では、変電所ごとに一次局 (主端末)を持つ構成で、異なる変電 所に接続された 2本の電力線の間に配置された切替開閉器 43に、 PLC信号切替装 置 180を設置する例について説明した力 本実施の形態では、配電線途中に配置さ れて 、る区分開閉器が開放されて!、る場合にっ 、て説明する。  In Embodiment 6 described above, each substation has a primary station (main terminal), and the PLC signal switching device 43 is connected to the switch 43 placed between two power lines connected to different substations. In the present embodiment, a description will be given of the case where the section switch is opened in the middle of the distribution line and opened.
図 13は、本実施の形態による電力線搬送通信システムの全体構成を説明するため の図である。図に示すように、配電線 44の事故除去操作等のために遮断器 41が開 放状態であり、さらに、配電線 44と 47の間の区分開閉器 42も開放状態であるとする このとき、配電線 44と配電線 47は電気的に切り離された状態にあるため、配電線 4 4と配電線 47の間で PLC信号を伝送することができない。  FIG. 13 is a diagram for explaining the overall configuration of the power line carrier communication system according to the present embodiment. As shown in the figure, it is assumed that the circuit breaker 41 is open for accident removal operation of the distribution line 44, and that the section switch 42 between the distribution lines 44 and 47 is also open. Since the distribution line 44 and the distribution line 47 are in an electrically disconnected state, the PLC signal cannot be transmitted between the distribution line 44 and the distribution line 47.
そこで、図に示すように区分開閉器 42と並列に信号バイパス装置 (例えば、バイパ スフィルタ) 251を設置することによって、一次局 32の PLC信号が子局(CPE) 122に 到達し、子局(CPE) 122はバックボーンネットワーク 1と通信を行うことができる。  Therefore, as shown in the figure, by installing a signal bypass device (for example, bypass filter) 251 in parallel with the section switch 42, the PLC signal of the primary station 32 reaches the slave station (CPE) 122, and the slave station (CPE) 122 can communicate with backbone network 1.
[0051] 以上説明したように、本実施の形態による PLC通信システムは、電力系統に事故 が発生したときに事故発生している区間を健全区間から切り離すための区分開閉器 42が第 1の電力線あるいは第 2電力線に配置されている場合、区分開閉器 42と並列 に信号バイパス装置 251が設けられているので、区分開閉器 42が開状態であっても 、区分開閉器 42を迂回して電力線搬送信号を中継することができる。 [0051] As described above, in the PLC communication system according to the present embodiment, when the accident occurs in the power system, the section switch 42 for separating the section where the accident has occurred from the healthy section is the first power line. Alternatively, when placed on the second power line, the signal bypass device 251 is provided in parallel with the section switch 42, so even if the section switch 42 is open, the section line 42 is bypassed to bypass the power line. The carrier signal can be relayed.
産業上の利用可能性  Industrial applicability
[0052] 本発明は、電力線搬送通信を行っている系統の電力線が"断"の状態になっても、 他の系統の電力線を使用してブロードバンドネットワークと通信を継続することができ る電力線搬送通信システムの実現に有用である。 [0052] The present invention relates to a power line carrier capable of continuing communication with a broadband network using a power line of another system even when the power line of the system performing the power line carrier communication is in a "disconnected" state. This is useful for realizing a communication system.

Claims

請求の範囲 The scope of the claims
[1] 電力系統の電力線を利用して、変電所に配置された一次局と通信契約者の建物内 に配置された子局との間でデータ通信を行う電力線搬送通信システムであって、 ノックボーンネットワークと情報データの送受信を行う第 1の一次局および第二の一 次局と、  [1] A power line carrier communication system that performs data communication between a primary station installed in a substation and a slave station installed in a communication contractor's building using a power line of an electric power system. A first primary station and a second primary station that transmit and receive information data to and from the bone network;
第 1の電力線を介して前記第 1の一次局と電力線搬送通信を行う第 1の子局と、 第 2の電力線を介して前記第 2の一次局と電力線搬送通信を行う第 2の子局と、 前記第 1の電力線の前記第 1の一次局と反対側の端部と前記第 2の電力線の前記 第 2の一次局と反対側の端部との接続状態を開または閉に切り替える切替開閉器と 前記切替開閉器と並列に配置され、前記第 1の電力線および前記第二の電力線 の電圧検出結果に基づいて前記第 1の電力線と前記第二の電力線の間で電力線搬 送信号を中継する信号結合手段を有した電力線搬送信号切替装置を備え、 前記切替開閉器が開状態において、前記第 1の電力線あるいは前記第 2の電力線 のいずれかが一部で断状態となり、当該一次局と子局の間で電力線搬送通信が行 えなくなると、  A first slave station that performs power line carrier communication with the first primary station via a first power line; and a second slave station that performs power line carrier communication with the second primary station via a second power line. And switching the connection state between the end of the first power line opposite to the first primary station and the end of the second power line opposite to the second primary station to open or closed A power line carrying signal is arranged between the first power line and the second power line based on a voltage detection result of the first power line and the second power line, arranged in parallel with the switch and the switching switch. A power line carrier signal switching device having signal coupling means for relaying, and when the switching switch is in an open state, either the first power line or the second power line is partially disconnected, and the primary station If power line carrier communication is not possible between
前記電力線搬送信号切替装置は、前記切替開閉器を迂回して電力線搬送信号を 中継することを特徴とする電力線搬送通信システム。  The power line carrier communication system, wherein the power line carrier signal switching device relays a power line carrier signal bypassing the switching switch.
[2] 前記電力線搬送信号切替装置は、前記前記第 1の電力線および前記第 2の電力線 の運転電圧を検出する電圧検出装置を有し、前記電圧検出装置が前記第 1の電力 線あるいは前記第 2の電力線のいずれかが断状態となって正常な運転電圧が印加さ れていないことを前記信号結合手段が検出すると、一次局と通信不可となった子局 を正常な運転電圧が印加されて 、る電力線に接続されて 、る一次局と通信できるよ うに、信号中継スィッチを投入して前記切替開閉器を迂回して電力線搬送信号を中 継させることを特徴とする請求項 1に記載の電力線搬送通信システム。  [2] The power line carrier signal switching device includes a voltage detection device that detects an operating voltage of the first power line and the second power line, and the voltage detection device is the first power line or the first power line. When the signal coupling means detects that one of the power lines 2 is disconnected and no normal operating voltage is applied, the normal operating voltage is applied to the slave station that cannot communicate with the primary station. The power line carrier signal is relayed by turning on a signal relay switch to bypass the switching switch so that it can communicate with the primary station connected to the power line. Power line carrier communication system.
[3] 前記前記第 1の電力線あるいは前記第 2の電力線のいずれかの前記切替開閉器側 の端部に電力線搬送信号ブロック装置を配置し、  [3] A power line carrier signal block device is disposed at an end of the switching switch side of either the first power line or the second power line,
前記電力線搬送信号切替装置は、前記切替開閉器と前記電力線搬送信号ブロッ ク装置の直列接続体と並列に配置されると共に、前記切替開閉器の開閉状態を検 出する開閉状態検出装置を有し、前記切替開閉器が閉状態においても通信経路を 切替えて電力線搬送通信を中継できるようにしたことを特徴とする請求項 2に記載の 電力線搬送通信システム。 The power line carrier signal switching device includes the switching switch and the power line carrier signal block. And an open / closed state detection device that detects the open / closed state of the switching switch, and switches the communication path even when the switching switch is in the closed state. The power line carrier communication system according to claim 2, wherein the power line communication system according to claim 2 can be relayed.
[4] 前記信号結合手段は、商用周波数領域に対して低いインピーダンス値を有し、当該 電力線搬送信号に対して高 ヽインピーダンスを有する接地設置で接地されて ヽるこ とを特徴とする請求項 2に記載の電力線搬送通信システム。 [4] The signal coupling means is characterized in that the signal coupling means has a low impedance value with respect to a commercial frequency region and is grounded by a grounding installation having a high impedance with respect to the power line carrier signal. 2. The power line carrier communication system according to 2.
[5] 前記接地設置と並列にサージァブゾーバが配置されていることを特徴とする請求項 4 に記載の電力線搬送通信システム。 5. The power line carrier communication system according to claim 4, wherein a surge sover is arranged in parallel with the ground installation.
[6] 前記信号結合手段は、前記信号中継スィッチと該信号中継スィッチと直列に接続さ れたハイパスフィルターで構成されていることを特徴とする請求項 2に記載の電力線 搬送通信システム。 6. The power line carrier communication system according to claim 2, wherein the signal coupling means includes a signal relay switch and a high-pass filter connected in series with the signal relay switch.
[7] 前記第 1の一次局と前記第 2の一次局は、異なる変電所に配置されていることを特徴 とする請求項 1〜6のいずれ力 1項に記載の電力線搬送通信システム。  7. The power line carrier communication system according to any one of claims 1 to 6, wherein the first primary station and the second primary station are arranged in different substations.
[8] 電力系統に事故が発生したときに事故発生している区間を健全区間から切り離すた めの区分開閉器が前記第 1の電力線あるいは前記第 2電力線に配置されている場 合、前記区分開閉器と並列に信号バイパス装置が設けられていることを特徴とする請 求項 1〜7のいずれか 1項に記載の電力線搬送通信システム。  [8] When a section switch is installed on the first power line or the second power line to separate the section where the accident has occurred from the healthy section when an accident occurs in the power system, the section 8. The power line carrier communication system according to any one of claims 1 to 7, wherein a signal bypass device is provided in parallel with the switch.
[9] 前記電力線搬送信号のキャリア周波数は、約 1ΜΗζ〜50ΜΗζであることを特徴と する請求項 1〜8のいずれ力 1項に記載の電力線搬送通信システム。  9. The power line carrier communication system according to any one of claims 1 to 8, wherein a carrier frequency of the power line carrier signal is about 1ΜΗζ to 50ΜΗζ.
[10] 電力系統の電力線を利用して、変電所に配置された複数の一次局と、該複数の一 次局とそれぞれ対応して通信契約者の建物内に配置された複数の子局との間でデ ータ通信を行う電力線搬送通信方法であって、  [10] Using the power lines of the power system, there are a plurality of primary stations arranged in the substation, and a plurality of slave stations arranged in the telecommunications subscriber's building corresponding to each of the plurality of primary stations. Power line carrier communication method for data communication between
前記複数の一次局は、バックボーンネットワークとは通信するが、各々の一次局間 では直接通信を行わな 、運用にお 、て、信号を搬送する電力線の経路の一部が開 放状態となり複数の子局の一部もしくは全部が通信して 、た一次局と通信不可能の 状況になった時に、その複数の子局の一部もしくは全部の子局を他の一次局と通信 が可能となるように信号通信経路を切り替え、前記バックボーンネットワークとの通信 を継続することを特徴とする電力線搬送通信方法。 The plurality of primary stations communicate with the backbone network, but each primary station does not perform direct communication. In operation, a part of the power line path carrying the signal is opened and the plurality of primary stations are opened. When some or all of the slave stations communicate and become unable to communicate with the primary station, some or all of the slave stations can communicate with other primary stations. Switch the signal communication path to communicate with the backbone network The power line carrier communication method characterized by continuing.
PCT/JP2006/311091 2006-06-02 2006-06-02 Power line communication system and power line communication method WO2007141832A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006534186A JPWO2007141832A1 (en) 2006-06-02 2006-06-02 Power line carrier communication system and power line carrier communication method
PCT/JP2006/311091 WO2007141832A1 (en) 2006-06-02 2006-06-02 Power line communication system and power line communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/311091 WO2007141832A1 (en) 2006-06-02 2006-06-02 Power line communication system and power line communication method

Publications (1)

Publication Number Publication Date
WO2007141832A1 true WO2007141832A1 (en) 2007-12-13

Family

ID=38801105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311091 WO2007141832A1 (en) 2006-06-02 2006-06-02 Power line communication system and power line communication method

Country Status (2)

Country Link
JP (1) JPWO2007141832A1 (en)
WO (1) WO2007141832A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105788226A (en) * 2016-03-17 2016-07-20 长沙瑞斯康通信技术有限公司 Broadband carrier parallel meter reading method and broadband carrier parallel meter reading system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125723A (en) * 1985-11-26 1987-06-08 Mitsubishi Electric Corp Distribution line transmission system
JPS63146524A (en) * 1986-12-09 1988-06-18 Chubu Electric Power Co Inc Distribution line carrier equipment
JPH10290185A (en) * 1997-04-15 1998-10-27 Takaoka Electric Mfg Co Ltd Coupler for distribution line carrying signal and injection and extraction method for carrier signal using it

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315641A (en) * 1986-07-07 1988-01-22 三菱電機株式会社 Distribution line equipment remote monitoring and controlling terminal device
JP2002111555A (en) * 2000-09-29 2002-04-12 Matsushita Electric Ind Co Ltd Communication system and electrical apparatus
JP2004056218A (en) * 2002-07-16 2004-02-19 Sony Corp Power line carrier communication system and power-line carrier communication apparatus
JP3801166B2 (en) * 2003-11-12 2006-07-26 住友電気工業株式会社 Power line carrier communication system
JP2005151408A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Power-line carrier communication system and feed connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125723A (en) * 1985-11-26 1987-06-08 Mitsubishi Electric Corp Distribution line transmission system
JPS63146524A (en) * 1986-12-09 1988-06-18 Chubu Electric Power Co Inc Distribution line carrier equipment
JPH10290185A (en) * 1997-04-15 1998-10-27 Takaoka Electric Mfg Co Ltd Coupler for distribution line carrying signal and injection and extraction method for carrier signal using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105788226A (en) * 2016-03-17 2016-07-20 长沙瑞斯康通信技术有限公司 Broadband carrier parallel meter reading method and broadband carrier parallel meter reading system

Also Published As

Publication number Publication date
JPWO2007141832A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
US5784237A (en) Control method and apparatus for power distribution network
CN108134378B (en) Direct current protection system and direct current protection implementation method
Tong et al. Permissive pilot protection adaptive to DC fault interruption for VSC-MTDC
EP2656510A1 (en) Coupling circuit for power line communications
US9954352B2 (en) Power system including a circuit providing smart zone selective interlocking communication
US6859044B2 (en) Method and architecture for fault protection on a broadband communications network power passing tap
KR100996779B1 (en) Underground low voltage power distributor and control method thereof
WO2007141832A1 (en) Power line communication system and power line communication method
WO2004008600A3 (en) Electrical network protection system
JP4670810B2 (en) Power line carrier communication system and signal relay device
CN107979083A (en) Fault-tolerant electric power networks
Oppel et al. Evaluation of the performance of line protection schemes on the NYSEG six phase transmission system
JP2000295764A (en) Distribution facility circuit
US20120008255A1 (en) Encapsulation System For A Single Phase Encapsulated Channel Switchgear
JP2009130535A (en) Abnormal signal propagation preventing device
JP4434423B2 (en) Multi-terminal power line protection relay device
RU2162278C2 (en) Telephone drop for connecting subscriber analog line to digital exchange using time-division channel multiplex
GB2521143A (en) An improved ring main unit
RU2792285C1 (en) Method of protection of power line from magnetizing current surges at power transformer
RU2325747C1 (en) Method of arrangement and adjustment of high frequency directional relat protection of line
JPH0398321A (en) Method and apparatus for switching distribution line
JP4018497B2 (en) Accident line selection relay device
CN108469550B (en) Device and method for determining the resistance of the ground line of a charging device
KR101166368B1 (en) Powerline communication system, communication module, and coupling device for the same system
RU2311711C1 (en) Method for building and adjusting current cutoff

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2006534186

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06747121

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 06747121

Country of ref document: EP

Kind code of ref document: A1