WO2007140684A1 - Procédé de commande de puissance, système et dispositifs de mise en œuvre de celui-ci dans des systèmes de communication - Google Patents

Procédé de commande de puissance, système et dispositifs de mise en œuvre de celui-ci dans des systèmes de communication Download PDF

Info

Publication number
WO2007140684A1
WO2007140684A1 PCT/CN2007/000999 CN2007000999W WO2007140684A1 WO 2007140684 A1 WO2007140684 A1 WO 2007140684A1 CN 2007000999 W CN2007000999 W CN 2007000999W WO 2007140684 A1 WO2007140684 A1 WO 2007140684A1
Authority
WO
WIPO (PCT)
Prior art keywords
error rate
power control
access terminal
channel
rate
Prior art date
Application number
PCT/CN2007/000999
Other languages
English (en)
French (fr)
Inventor
Zhifeng Wang
Original Assignee
Huaweitechnologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaweitechnologies Co., Ltd. filed Critical Huaweitechnologies Co., Ltd.
Publication of WO2007140684A1 publication Critical patent/WO2007140684A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a power control method system in a communication system, and an implementation device thereof.
  • an AT (Access Terminal) 1Q0 sends a rate request to an AN (Access Net) 200 in real time through a reverse channel, and the rate of the AN 200 according to the AT 100 request.
  • the forward scheduling policy determines the forward packet format.
  • the wireless environment in which the AT 100 resides and the PER (Packet Error Ratio) of the forward packet determine which sector in the AN 200 to request data.
  • the AT 100 then sends the sector identification and rate identifier to the AN 200 through the DRC (Data Rate Control, Data Rate Control, including Sector Identification and Rate Identification) channels.
  • DRC Data Rate Control, Data Rate Control, including Sector Identification and Rate Identification
  • the sector selected by AT 100 is referred to as the serving sector, which is typically the sector of the best forward link in the sector that can transmit data to AT 100.
  • the BTS Base Station Transceiver System
  • the serving sector decodes the DRC channel, and assembles a data packet of the corresponding format according to the rate indication carried in the forward direction and the forward scheduling policy, and sends the data packet to the AT 100.
  • the DRC channel demodulation fails, or a demodulation error will affect the service sector assembly and transmit packets. If the packet format assembled by the AN 200 is not compatible with the rate of the AT request, the AT 100 cannot be demodulated. Therefore, poor DRC channel quality directly leads to a decrease in forward throughput. To ensure good forward throughput, the quality of the DRC channel needs to be guaranteed. Among them, ensuring that the AT 100 has the proper DRC channel transmit power is one of the important ways to ensure that the DRC channel can be demodulated by the AN, thereby ensuring that the packet format assembled by the AN is compatible with the rate of the AT request.
  • the reverse channel in CDMA2000 lx EVDO includes a reverse pilot channel, a reverse traffic channel, a DRC channel, and some other channels.
  • the transmit power of the AT 100 is the sum of the transmit power of each channel. In the connected state, the transmit power of the reverse pilot channel is determined by open loop power estimation and closed loop power control. Closed loop power control is generally referred to as the AT 100 fine tuning based on the power control bits carried in the forward channel. Closed loop Power control includes outer loop and inner loop power control. The outer loop power control adjusts the power target based on the bit error rate on the link - PCT (Power Control Threshold). If the bit error rate is high, the power target is increased. Otherwise, the power target is lowered.
  • PCT Power Control Threshold
  • the loop power control determines the power control bit according to the target of the power and the actually received power. If the actual received power is lower than the target power, the power control bit with the value of “0” is used, and the AT 100 is required to be improved by, for example, a mobile phone. Power, otherwise, use a power control bit whose value is "1", requiring the phone to reduce power.
  • the current method for power control of the reverse pilot channel is: the power control bit is determined by the AN 200 according to the link quality of the reverse traffic channel in the closed loop power control. If the PER of the reverse traffic channel is greater than the target PER, the AN 200 expects the AT. 100 Increase the transmit power of the reverse pilot channel; conversely, it is desirable to transmit the power of the AT 100 P low reverse pilot channel.
  • the transmit power of the traffic channel, the DRC channel, and the other reverse channels is a fixed offset based on the reverse pilot channel.
  • the offset of the traffic channel is recorded as T2P (Traffic to Pilot), and the offset of the DRC channel is marked as DRCChannelGain. Since the current power control method of the reverse pilot channel is performed according to the PER of the reverse traffic channel, the PER of the reverse traffic channel can be converged to the target PER, that is, the link quality of the reverse traffic channel can be guaranteed. However, the link quality of the DRC channel cannot be effectively guaranteed. In particular, DRC demodulation failure or demodulation error may occur in the following cases:
  • the T2P setting is larger, and the DRCChannelGain setting is smaller. If the T2P is set larger, the lower reverse pilot transmission power can obtain higher traffic channel transmit power. Therefore, a better traffic channel link quality is obtained, that is, the PER can converge to the target PER. However, because the DRCChannelGain is small, the transmit power of the DRC channel is difficult to meet the requirements, and the link quality of the DRC channel is poor. The DRC demodulation failure or demodulation error may occur, which affects the service sector assembly and transmission of data packets.
  • the setting of the transmission power ratio of the reverse pilot channel, the reverse traffic channel, and the DRC channel is important, but it is difficult to set this ratio properly due to factors such as complex wireless environment and soft handover. Even in some cases this ratio is appropriate and may become inappropriate in the case of channel fading models or multipath effects. In the case of multi-branch soft handoff, the problem will be more prominent.
  • the front reverse link is unbalanced. That is, when the AT is in the soft handover state, the reverse link of the best branch of the forward link is poor, and the reverse link of the other branch is better. This is a phenomenon that often occurs in wireless networks.
  • the first BTS 21 and the second BTS 22 simultaneously serve the AT 10.
  • the reverse pilot channel, reverse traffic channel, and DRC channel transmitted by the AT 10 And other channels are simultaneously received by the two BTSs 21, 22.
  • the two BTSs 21, 22 send the data packets on the traffic channel to the BSC 30 for soft combining, but the DRC channel is not sent to the BSC 30.
  • the forward link of the first BTS 21 is better, and is the serving sector of the AT 10, that is, the data of the forward traffic is transmitted by the first BTS 21.
  • the result of the current reverse power control method causes the AT 10 to lower the transmission power, so that the reverse link of the first BTS 21 is poor, such as a dotted line.
  • the arrow shows. This forms an imbalance in which the forward data is transmitted from the first BTS 21 and the reverse data is received only by the second BTS 22. At this point, the AT 10's transmit power does not reach its maximum, that is, there is still power remaining.
  • the reverse link corresponding to the first BTS 21 is poor, and the received DRC cannot be correctly demodulated, but the reverse link corresponding to the second BTS 22 is good, and the AT 10 does not increase the transmit power. Thereby affecting the first BTS 21 assembling the forward data packet, reducing the forward throughput. If there are multiple BTSs serving AT 10 at the same time, the problem will be more prominent.
  • the prior art proposes a method for improving the demodulation capability of the DRC channel in the first case described above. Specifically, a larger offset - DRCChannelGain is added to the reverse pilot channel. Thus, even if the traffic channel on the reverse link cannot be correctly demodulated, the DRC channel can still provide a larger power and is correctly demodulated by the serving sector. To some extent, the correctness of the DRC channel demodulation is improved, and the fading of a generally mild wireless environment can be resisted.
  • the reverse pilot channel cannot be captured by the base station, even if the DRC channel power is large, it cannot be demodulated by the base station. When the signal fading is severe, the problem of the DRC channel shield difference cannot be solved. Since the base station first needs to capture the reverse pilot channel and then demodulate the traffic channel or the DRC channel, if the power of the mobile phone is not increased in time when the fading is deep, the base station cannot capture the reverse pilot frequency, and thus cannot demodulate the traffic channel and the DRC channel.
  • DRCChannelGain Set, not modified frequently as the wireless environment changes. Setting DRCChannelGain that is too high is a waste of AT power transmission when the reverse link is good.
  • the BTS forward packet does not refer to the AT's DRC channel, and cannot refer to the wireless environment where the AT is located. Multi-user gain cannot be achieved.
  • the change of the service sector of the AT cannot be monitored. If the AT selects another sector as the service sector, it transmits to the base stations of the AN through the DRC channel, but the serving sector cannot be correctly demodulated, and the information of the AT change cannot be acquired in time.
  • Embodiments of the present invention provide a power control method, system, and implementation device thereof in a communication system.
  • the technical solution of the embodiment of the present invention includes:
  • a power control method in a communication system includes the steps of:
  • the inner loop power control is performed according to the power control threshold.
  • a power control system for communication comprising:
  • the base transceiver station is configured to acquire a bit error rate of the data rate control channel and a packet error rate of the reverse traffic channel, and transmit the bit error rate and the packet error rate to the base station controller; and according to the received power control threshold Internal loop power control between access terminals;
  • a base station controller configured to respectively compare the bit error rate, the packet error rate, the target bit error rate, and the packet error rate, and any one of the higher than the target bit error rate or the packet error rate increases the power control threshold, and the tone is adjusted.
  • the power control threshold after the high is transmitted to the base transceiver station;
  • the access terminal is configured to send a data packet to the base transceiver station by using the data rate control channel and the reverse traffic channel data; and perform inner loop power control with the base transceiver station.
  • a base transceiver station includes:
  • a power control threshold acquisition module configured to receive a data rate control channel and a reverse traffic channel data from the access terminal, and calculate a bit error rate of the data rate control channel and a packet error rate of the reverse traffic channel according to the received data, Transmitting the error rate and the error rate to the base station controller; receiving the power control threshold from the base station controller, and transmitting the power control threshold to the inner loop power control unit;
  • the inner loop power control module is configured to perform inner loop power control with the access terminal according to the received power control threshold.
  • a base station controller includes a power control module, and the power control module includes:
  • An acquiring unit configured to acquire a bit error rate of the data rate control channel and a packet error rate of the reverse traffic channel
  • a comparing unit configured to respectively compare a bit error rate of the data rate control channel, a packet error rate of the reverse traffic channel, a target bit error rate, and a packet error rate, and determine whether any one is higher than a target bit error rate or a packet error rate, or When the error rate and the packet error rate are respectively lower than the target error rate and the packet error rate, the power control threshold adjustment unit is notified; the power control threshold adjustment unit is configured to increase or decrease the power control threshold according to the received notification. And transmitting the adjusted power control threshold to the base transceiver station.
  • the embodiment of the present invention refers to the quality of the data rate control channel in addition to the target packet error rate of the reference traffic channel when performing outer loop power control. Avoiding the technical problem that the prior art cannot demodulate the data rate control channel, and thus adopting a fixed low-rate multi-user packet method, resulting in low forward link throughput, and also reducing the forward direction caused by the front reverse link imbalance The technical problem of throughput, saving the transmission power of the access terminal, achieving multi-user gain, simple and efficient.
  • FIG. 1 is a schematic block diagram of a prior art power control system applied to communication
  • FIG. 2 is a schematic diagram of a system in which an access terminal uses two communication links for communication;
  • FIG. 3 is a flowchart of a power control method in a communication system according to an embodiment of the present invention
  • FIG. 4 is a timing diagram of a power control method in a communication system according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a power control method for detecting whether a transmission power of an access terminal reaches or solves a maximum value according to an embodiment of the present invention
  • FIG. 6 is a schematic block diagram of a power control system applied to communication according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base transceiver station according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a base station controller according to an embodiment of the present invention.
  • the error rate of the DRC channel is also referred to.
  • the transmit power of the access terminal is increased once the quality of the DRC channel is poor.
  • the network mediates the DRC channel and improves the forward throughput.
  • the transmit power of the access terminal reaches or approaches maximum, it is commanded to point to another sector to obtain a better reverse link quality.
  • a power control method in a communication system includes the following steps: 1. Before performing a substantial power control procedure, communication between an access terminal and an access network determines a forward channel. Transmission rate and forward packet format.
  • the access terminal sends a rate request to the access network in real time to request a forward data packet.
  • the access network determines the forward data packet format according to the rate requested by the access terminal and the forward scheduling policy, and sends the forward data packet to the access terminal.
  • the wireless environment in which the access terminal resides and the packet error rate of the forward data packets determine which sector in the access network is to request data, i.e., determine the sector in which the data is requested, and determine the rate of the request.
  • the access terminal then performs two operations:
  • the access terminal sends the sector identifier and the rate identifier to the access network through the DRC channel.
  • the data packet of the corresponding format is assembled according to the rate indication and the forward scheduling policy carried therein to be sent to the access terminal.
  • the access terminal sends a data packet to the access network through the reverse traffic channel.
  • the reverse power control flow L includes two parts, namely outer loop power control and inner loop power control, outer loop power control including steps L1-L3, and inner loop power control including steps L4 to L6, which are respectively described as follows:
  • the access terminal selects a sector of the first base transceiver station as its current serving sector, and the base transceiver station transmits the received data packet to the base station controller and combines to obtain a packet error packet. Rate, and the first base transceiver station transmits the error rate of the DRC channel to the base station controller as well.
  • the subsequent outer loop power control may not refer to the DRC channel quality of the second base transceiver station, because only the first base transceiver station transmits data to the handset, as long as the first base transceiver station can receive and correctly demodulate the DRC channel. Just fine.
  • the base station controller compares the DRC channel error rate reported by the current serving sector, the packet error rate of the received reverse traffic channel data packet, the DRC channel target error rate, and the traffic channel target packet error rate. If the DRC channel error rate reported by the sector and the received packet error rate of the reverse traffic channel data packet are higher than the target error rate or the packet error rate, such as a target error rate higher than the default 5% or The packet error rate increases the PCT, and if both are lower than the default value, the PCT is lowered. In addition, the specific value of the threshold can be determined according to the actual situation.
  • the base station controller distributes the adjusted PCT to each base transceiver station.
  • the base transceiver station determines the reverse power control bit according to the strength of the received reverse pilot channel and the PCT. If the strength of the reverse pilot channel is less than PCT, the reverse power control bit is 0; otherwise, L
  • the base transceiver station sends a reverse power control bit to the access terminal.
  • the transmit power is adjusted according to the reverse power control bit carried in the forward channel.
  • a reverse power control bit of 0 indicates that the access terminal is required to increase the transmit power, and a value of 1 indicates that the access terminal is required to reduce the transmit power.
  • step I is an operation on the access network side, that is, the base transceiver station where the access network service sector is located decodes the DRC channel, that is, step I is after step H,
  • step J there is no inevitable sequence between it and step J.
  • Steps K and L in Figure 3 should also be strictly inconsistent, because step K is for the network side to send data packets to the access terminal, and step L is for power control.
  • the beneficial effects obtained by the embodiments of the present invention are: First, ensure the throughput of the forward link.
  • the embodiment of the present invention does not change the inner loop power control, but only refers to the PER of the traffic channel when referring to the quality of the DRC channel when performing outer loop power control. If the quality of the DRC channel is poor, the transmission power of the access terminal is increased, and if the strength of the reverse pilot channel is greater than the PCT, the transmission power of the access terminal is reduced. By adjusting the transmit power of the access terminal, the DRC channel quality is maximized, so that the serving sector can assemble a compatible packet format according to the rate requested by the access terminal, and maintain a high forward link throughput.
  • the embodiment of the present invention improves the link quality by adjusting the transmit power of the access terminal without changing the T2P and the DRCChannelGain offset. Therefore, the T2P or DRCChannelGain offset is too large to solve the problem.
  • the technical problem of adjusting the DRC channel Since the embodiment of the present invention ensures that the DRC channel can be properly mediated, it also avoids the defect that the prior art 2 cannot demodulate the DRC channel and allows the base transceiver station to assemble a low rate multi-user packet, resulting in a greatly reduced forward transmission rate.
  • the reverse link quality of the branch with the best quality of the forward link is poor, and the technical problem of the shield of the reverse link of the other branch is better because the system does not consider the corresponding reverse.
  • the DRC channel quality of a poorly branched link when the base transceiver station receives the reverse data packet, the error rate of the DRC channel is also transmitted to the base station controller, and when the outer loop power control is performed, the PER of the traffic channel and the DRC channel are simultaneously referred to, so that the access is performed.
  • the network may indicate that the access terminal with poor reverse link quality adjusts the transmit power to an appropriate level to avoid the problem of front reverse link imbalance.
  • the transmission power of the access terminal is adjusted without changing the T2P or DRCChannelGain offset.
  • the transmission power of the access terminal is wasted in the case that the reverse link is better, and the transmission power of the access terminal according to the present invention is related to various communications.
  • the environment changes to allow the access network to mediate the DRC channel in the most efficient transmission power, saving the transmission power of the access terminal.
  • the access network in the embodiment of the present invention is based on The DRC reported by the access terminal tries to serve the users with good signals at all times. Most of the time, we try to serve the best signal users, and the total throughput is improved to achieve multi-user diversity gain.
  • the embodiment of the present invention does not need to separately set the T2P or DRCChannelGain offset, and only adjusts the transmit power to avoid complicated deviation calculation and set up.
  • the technical problem of the base station transceiver station assembling the low-rate multi-user packet and the change of the service sector of the access terminal in the DRC channel is further provided by the embodiment of the present invention to know whether the transmission power of the access terminal is reached or
  • the power control method for solving the maximum value includes: determining whether to switch the current serving sector before determining the forward packet format and transmitting the forward packet to the access terminal, that is, before step G. Referring to Figure 5, the steps are specifically included:
  • the access terminal periodically reports a request message to the access network.
  • the access network can set the parameters to allow the access terminal to periodically report the request to the access network.
  • the ⁇ 2 access network acquires the transmit power of the access terminal from the request message.
  • determine whether the transmit power of the access terminal is at or near maximum.
  • the specific judgment process is: determining whether the ratio of the remaining power of the access terminal to the reverse pilot transmit power is less than a threshold, the threshold can be adjusted, and the default value is 12%, that is, the minimum power control step, and if not, the power is performed. Control, if yes, it means that the transmit power of the access terminal is close to the maximum, and can no longer increase the transmit power, then enter the following steps:
  • the DRCLock flag is a lock identifier such as 0 to indicate that the service sector cannot be locked.
  • the access terminal communicate with other sectors, and continue the access of step A during the communication process.
  • the power control method provided by the embodiment of the present invention can be implemented and achieved by the method, and the high forward link throughput is further ensured.
  • the determining step of whether to switch the current serving sector may be performed before comparing the bit error rate and the packet error rate respectively, for example, before step G shown in FIG. 3, or before step L1 of FIG. Wait.
  • the embodiment of the invention also provides a power control system applied to communication.
  • the system includes an access terminal 700, an access network 800, a power control module 805, and a sector switch decision module 806.
  • the access terminal 700 is configured to transmit the data packet to the access network 800 using the reverse traffic channel, and determine the forward transmission rate of the request, and send the sector identification and the requested rate identifier to the access network 800 through the DRC channel.
  • the access network 800 includes a base transceiver station 801 and a base station controller 802.
  • the base transceiver station 801 receives the DRC channel and the reverse traffic channel data transmitted by the access terminal 700, and after decoding, transmits the DRC channel error rate and the reverse service data packet to the base station controller 802. If there are multiple base transceiver stations 801, the received reverse traffic data packets are combined in the base station controller 802 and the packet error rate is obtained.
  • the base transceiver station 801 which has better forward link quality and poor reverse link, transmits the obtained DRC channel error rate to the base station controller 802, and other base transceiver stations 801. The DRC channel error rate is not transmitted to the base station controller 802.
  • the power control module 805 compares the error rate of the data rate control channel, the packet error rate of the reverse traffic channel, the target error rate, and the packet error rate, and any one is higher than the target error rate or the packet error rate. Power control threshold.
  • the access terminal 700 and the access network 800 then perform internal loop power control.
  • the power control module may include: an acquiring unit, configured to acquire a bit error rate of the data rate control channel and a packet error rate of the reverse traffic channel; and a comparing unit, configured to compare the bit error rate and the reverse direction of the data rate control channel respectively The error rate of the traffic channel, the target error rate and the packet error rate, when any one is higher than the target error rate or the packet error rate, the power control threshold adjustment unit is notified; the power control threshold adjustment unit is used for ⁇ The power control threshold is raised according to the received notification.
  • the inner loop power control is that the base transceiver station 801 determines the reverse power control bit according to the strength of the received reverse pilot channel and the PCT. If the strength of the reverse pilot channel is less than PCT, the reverse power control bit is 0; otherwise Is 1. The reverse power control bit is then returned to the access terminal 700.
  • the access terminal 700 adjusts the transmit power according to the power control bits carried in the forward channel.
  • a power control bit of 0 indicates that the access terminal 700 is required to increase the transmit power, and a value of 1 indicates that the access terminal 700 is required to reduce the transmit power.
  • improving the transmit power of the access terminal 700 can reduce the error rate of the DRC channel, and the access network 800 can mediate the DRC channel, so that the serving sector can apply according to the access terminal 700.
  • the rate-assembly-compatible packet format maintains a high forward link throughput. For a better reverse link of the DRC channel, if the transmit power of the access terminal 700 is too high, the power control system of the embodiment of the present invention Then, the PCT can be lowered to appropriately reduce the transmission power of the access terminal 700 and save power.
  • the power control system of the embodiment of the present invention further includes a sector switching decision module 806, configured to learn the transmit power of the access terminal 700, determine whether the transmit power is at or near maximum, and if so, set the current service shoulder region DRCLock flag to 0, thereby instructing the access terminal 700 to switch to other sectors, otherwise notifying the power control module 805 to operate.
  • the module can solve the technical problem that the access terminal 700 has the highest transmit power and the access network 800 still cannot decode the DRC channel, ensuring both the forward link throughput and the transmit power of the access terminal 700, because the link quality is better. After the sector, the access terminal 700 does not require too much transmission power to achieve higher quality bone communication.
  • the power control module 805 can be located in the base station controller 802. Still referring to FIG. 6, the power control system applied to the communication may include: The base transceiver station 801 is configured to acquire a bit error rate of the data rate control channel and a packet error rate of the reverse traffic channel, and transmit the error rate and the packet error rate to the base station controller 802; according to the received power control The inner loop power control is performed between the threshold and the access terminal 700;
  • the base station controller 802 is configured to compare the bit error rate, the packet error rate, the target bit error rate, and the packet error rate respectively, and if any one is higher than the target bit error rate or the packet error rate, increase the power control threshold, and the The power control threshold after the adjustment is transmitted to the base transceiver station 801;
  • the access terminal 700 is configured to send a data packet to the base transceiver station 801 through the data rate control channel and the reverse traffic channel data, and perform inner loop power control with the base transceiver station 801.
  • the base station controller 802 is further configured to determine that the error rate and the packet error rate are lower than the target error rate and the packet error rate, respectively, and adjust the low power control threshold, and transmit the reduced power control threshold to the base transceiver. Thank you.
  • the sector switching decision module 806 can be located in the base transceiver station 801.
  • the base transceiver station 801 is further configured to learn the transmit power of the access terminal, and determine whether the transmit power is at or near maximum. If yes, the command is connected. The incoming terminal 700 is redirected to other sectors, otherwise the base station controller 802 is notified to perform the operation.
  • the service sector DRCLock flag at this time may be set to indicate that the lock identifier of the DRC channel of the AT cannot be locked, such as setting the DRCLock flag to zero.
  • the power control system of the embodiment of the present invention uses a power control module to adjust the error rate of the data rate control channel, the packet error rate of the reverse traffic channel, the target error rate, and the packet error rate.
  • PCT by adjusting the transmission power of the access terminal, maximizes the quality of the DRC channel, so that the serving sector can assemble a compatible packet format according to the rate requested by the access terminal, and maintain a high forward link throughput.
  • the sector switching decision module can solve the technical problem that the access terminal reaches the highest transmission power and the access network still cannot decode the DRC channel, which ensures the forward link throughput and reduces the transmission power of the access terminal.
  • the power control module and the sector switch decision module may be separate modules or may be part of the system embedded. Or just set the system parameters and implement the same functions through software.
  • the embodiment of the invention further provides a base transceiver station, which is shown in FIG. 7, and includes:
  • the power control threshold acquiring module 801a is configured to receive a data rate control signal from the access terminal And the reverse traffic channel data, calculating a bit error rate of the data rate control channel and a packet error rate of the reverse traffic channel according to the received data, and transmitting the bit error rate and the packet error rate to the base station controller;
  • the power control threshold of the base station controller is transmitted to the inner loop power control unit 801b;
  • the inner loop power control module 801b is configured to perform inner loop power control with the access terminal according to the received power control threshold.
  • the base transceiver station may further include: a sector handover decision module 801c, configured to learn the transmit power of the access terminal, determine that the transmit power reaches or approaches a maximum, and command the access terminal to switch to other sectors, otherwise notify the base station to control The device continues to be processed.
  • a sector handover decision module 801c configured to learn the transmit power of the access terminal, determine that the transmit power reaches or approaches a maximum, and command the access terminal to switch to other sectors, otherwise notify the base station to control The device continues to be processed.
  • the power control threshold acquisition module may further include a calculation unit and a power control threshold acquisition transmission unit (not shown), wherein the calculation unit is configured to receive the data rate control channel and the reverse traffic channel data from the access terminal, according to the receiving The obtained data calculates a bit error rate of the data rate control channel and a packet error rate of the reverse traffic channel, and transmits the bit error rate and the packet error rate to the base station controller; and the power control threshold acquisition and transmission unit is configured to receive the base station The power control threshold of the controller is transmitted to the inner loop power control unit.
  • An embodiment of the present invention further provides a base station controller, as shown in FIG. 8, including a power control module.
  • the power control module 805 includes: an obtaining unit 805a, configured to acquire a bit error rate of a data rate control channel and a packet error rate of a reverse traffic channel; and a comparing unit 805b, configured to compare bit error rates of the data rate control channel respectively , the packet error rate of the reverse traffic channel, the target bit error rate, and the packet error rate, determining whether any one is higher than the target bit error rate or the packet error rate, or the bit error rate and the packet error rate are respectively lower than the target bit error rate.
  • the power control threshold adjustment unit is notified to the power control threshold adjustment unit.
  • the power control threshold adjustment unit 805c is configured to increase or decrease the power control threshold according to the received notification, and send the adjusted power control gate P ⁇ to the base station for transmitting and receiving. Letter station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

2007/000999
- i - 通信系统中的功率控制方法、 系统及其实现设备
本申请要求于 2006 年 6 月 9 日提交中国专利局、 申请号为 200610087114.X、发明名称为 "通信系统中的功率控制方法及其系统"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别是涉及通信系统中的功率控制方法系 统、 及其实现设备。
背景技术
参阅图 1 , 在 CDMA2000 lx EVDO技术中, AT ( Access Terminal,接入 终端) 1Q0通过反向信道向 AN(Access Net,接入网) 200实时地发送速率请求, AN 200根据 AT 100请求的速率以及前向调度策略决定前向数据包格式。 AT 100 居所处的无线环境和前向数据包的 PER ( Packet Error Ratio,误包率)以 决定向 AN 200中哪个扇区请求数据。 AT 100然后通过 DRC( Data Rate Control, 数据速率控制, 包括扇区标识和速率标识)信道, 发送扇区标识和速率标识给 AN 200
被 AT 100选定的扇区称为服务扇区,这个扇区一般是可以向 AT 100发送 数据的扇区中前向链路最好的扇区。 服务扇区所在的 BTS ( Base Station Transceiver System, 基站收发信台)解码 DRC信道, 根据其中携带的速率指 示和前向调度策略组装相应格式的数据包发送给 AT 100。
如果 DRC信道解调失败, 或者解调错误都会影响服务扇区组装和发送数 据包。 如果 AN 200组装的包格式与 AT请求的速率不相容, 则 AT 100无法解 调。 因此, DRC信道质量差直接导致前向吞吐量降低。 为保证好的前向吞吐 量, 需要保证 DRC信道的质量。 其中, 保证 AT 100具备合适的 DRC信道发 射功率是保证其 DRC信道能被 AN解调、 进而保证 AN组装的包格式与 AT 请求的速率相容的重要途径之一。
CDMA2000 lx EVDO中反向信道包括反向导频信道、反向业务信道、 DRC 信道以及其它一些信道。 AT 100的发射功率是各个信道的发射功率总和。 在 连接态,反向导频信道的发射功率由开环功率估计和闭环功率控制决定。 闭环 功率控制概括来说是 AT 100根据前向信道中携带的功率控制位做微调。 闭环 功率控制包括外环和内环功率控制。外环功率控制是才艮据链路上的误码率来调 整功率目标 - PCT ( Power Control Threshold, 功率控制门限), 如果误码率较 高, 则提高功率目标, 否则, 降低功率目标; 内环功率控制是根据功率的目标 和实际接收到的功率来决定功率控制位, 如果实际收到的功率比目标的功率 低, 则使用数值是" 0"的功率控制位, 要求 AT 100比如手机提高功率, 否则, 使用数值是" 1 "的功率控制位, 要求手机降低功率。 目前反向导频信道功率控 制的方法是: 所述功率控制位由 AN 200根据闭环功率控制中的反向业务信道 的链路质量决定,如果反向业务信道的 PER大于目标 PER, AN 200希望 AT 100 提高反向导频信道发射功率; 反之, 希望 AT 100 P条低反向导频信道发射功率。
在 AT 100确定反向导频信道的发射功率后, 业务信道、 DRC信道以及其 它反向信道的发射功率是在反向导频信道的基础上加一个固定的偏移量。业务 信道的偏移量记为 T2P ( Traffic to Pilot ) , DRC 信道的偏移量标记为 DRCChannelGain。 由于目前反向导频信道的功率控制方法是依据反向业务信 道的 PER进行的, 可以使反向业务信道的 PER收敛到目标 PER, 即可以保证 反向业务信道的链路质量。 但 DRC信道的链路质量不能得到有效的保证。 特 别是在下述情况下, 可能发生 DRC解调失败或者解调错误:
一、 T2P设置较大,而 DRCChannelGain设置较小。如果 T2P设置的较大, 较低的反向导频发射功率就可以得到较高的业务信道发射功率。从而得到较好 的业务信道链路质量, 即 PER可以收敛到目标 PER。但由于 DRCChannelGain 较小, DRC信道的发射功率难以满足需要, 致使 DRC信道的链路质量较差, 可能发生 DRC解调失败或者解调错误, 影响服务扇区组装和发送数据包。 所 以反向导频信道、 反向业务信道、 DRC信道的发射功率比例的设置很重要, 但受到复杂的无线环境、软切换等因素的影响,使得这个比例很难设置得恰当。 即使在一些情况下这个比例是恰当的,在信道衰落模型或者多径效应改变情况 下, 就可能变得不恰当。 在多分支软切换的情况下, 问题会更加突出。
二、 前反向链路不平衡。 即 AT处于软切换状态下, 前向链路最好的分支 对应的反向链路很差, 而另一个分支的反向链路较好。这是一种在无线网络中 经常出现的现象。 如图 2所示, 第一 BTS 21和第二 BTS 22同时为 AT 10提 供服务。 反向链路上, AT 10发送的反向导频信道、 反向业务信道、 DRC信道 和其它信道被两个 BTS 21, 22同时接收。两个 BTS21, 22把业务信道上的数据 包送到 BSC 30进行软合并, 但 DRC信道并不会送到 BSC 30。 第一 BTS 21 的前向链路较好, 是 AT 10的服务扇区, 即前向业务的数据由第一 BTS 21负 责发送。 此时, 由于第二 BTS 22的反向链路较好, 目前的反向功率控制方法 的结果会让 AT 10降低发射功率, 从而使笫一 BTS 21的反向链路很差, 如虛 线箭头所示。 这样就形成前向数据从第一 BTS 21发送、 反向数据却仅由第二 BTS 22接收的不平衡的情况。 此时, AT 10的发射功率并没有达到最大, 也就 是还有功率剩余。 第一 BTS 21对应的反向链路很差, 接收到的 DRC无法正 确解调, 但第二 BTS 22对应的反向链路很好, AT 10不会提高发射功率。 从 而影响第一 BTS 21组装前向数据包, 降^ ^前向吞吐量。 如果有多个 BTS同 时为 AT 10提供服务, 问题会更突出。
三、 与情况二类似, 但 AT的发射功率已经达到最大, 无法继续提高发射 功率。 此时同样存在服务扇区无法正确解调 DRC信道的问题。
上述 3种情况都会造成 DRC信道解调失败, 从而降低前向吞吐量。
现有技术提出一种解决上述第一种情况的提高 DRC信道解调能力的方 法。 具体是在反向导频信道的基础上增加一个较大的偏移量 - DRCChannelGain。 这样即使反向链路上业务信道无法被正确解调, DRC信道 仍然可以提供较大的功率, 被服务扇区正确解调。 在一定程度上提高 DRC信 道解调的正确性, 可以抵御一般的轻度无线环境衰落。
但在实现过程中,发明人发现上述第一种现有技术方法没有从根本上解决 问题:
1 )如果反向导频信道无法被基站捕获, 即使 DRC信道功率很大, 仍然不 能被基站解调。 在信号衰落严重时, 仍然不能解决 DRC信道盾量差的问题。 因为基站首先要捕获反向导频信道, 然后才能解调业务信道或者 DRC信道, 如果深衰落时, 手机的功率没有及时提高, 基站无法捕获反向导频, 也就不能 解调业务信道和 DRC信道。
2 )浪费 AT功率。 DRCChannelGain—经设定, 不会随着无线环境的变化 而频繁修改。 设置太高的 DRCChannelGain, 在反向链路较好的情况下对 AT 发送功率是一种浪费。 现有技术还提供一种让 AT解调出前向包的方法。 具体是当服务扇区无法 正确解调 DRC信道时, BTS组装低速率的多用户包, 比如与 DRC=0x03相容 的多用户包。 由于 DRC=0x03的多用户包与所有 DRC相容, 此时 AT可以解 调前向包。
但在实现过程中, 发明人发现上述第二种现有技术方法带来以下缺陷:
1 )降低了用户吞吐量。 这种方法只对 VOIP等小数据量的业务适用, 由 于只能组装低速率的数据包, 无法满足高速率要求。
2 )降低了系统吞吐量。 BTS前向組包不参考 AT的 DRC信道, 无法参考 AT所在的无线环境, 不能实现多用户增益。
3 )不能监测 AT的服务扇区的变化。 如果 AT选择了其它扇区作为服务扇 区, 通过 DRC信道发送给 AN的各个基站, 但服务扇区无法正确解调, 不能 及时获取 AT改变的信息。
发明内容
本发明实施例提供一种通信系统中的功率控制方法、 系统及其实现设备。 本发明实施例的技术方案包括:
一种通信系统中的功率控制方法, 包括步驟:
获取数据速率控制信道的误码率和反向业务信道的误包率;
分别比较上述误码率、 误包率与目标误码率、误包率, 任一项高于目标误 码率或误包率则调高功率控制门限;
根据所述功率控制门限进行内环功率控制。
一种应用于通信的功率控制系统, 包括:
基站收发信台,用于获取数据速率控制信道的误码率和反向业务信道的误 包率,将所述误码率和误包率传送给基站控制器;根据接收到的功率控制门限 与接入终端之间进行内环功率控制;
基站控制器, 用于分别比较上述误码率、 误包率与目标误码率、 误包率, 任一项高于目标误码率或误包率则调高功率控制门限,将所述调高后的功率控 制门限传送给基站收发信台;
接入终端,用于通过数据速率控制信道和反向业务信道数据向基站收发信 台发送数据包; 与基站收发信台之间进行内环功率控制。 一种基站收发信台, 包括:
功率控制门限获取模块,用于接收来自接入终端的数据速率控制信道和反 向业务信道数据,根据接收到的数据计算数据速率控制信道的误码率和反向业 务信道的误包率,将所述误码率和误包率发送到基站控制器; 接收来自基站控 制器的功率控制门限, 传送给内环功率控制单元;
内环功率控制模块,用于根据接收到的功率控制门限与接入终端进行内环 功率控制。
一种基站控制器, 包括功率控制模块, 该功率控制模块包括:
获取单元, 用于获取数据速率控制信道的误码率和反向业务信道的误包 率;
比较单元, 用于分别比较数据速率控制信道的误码率、反向业务信道的误 包率与目标误码率、误包率,确定任一项高于目标误码率或误包率,或误码率、 误包率都分别低于目标误码率、 误包率时, 则通知功率控制门限调整单元; 功率控制门限调整单元, 用于根据接收到的通知调高或调低功率控制门 限, 将调整后的功率控制门限发送给基站收发信台。
由于本发明实施例在进行外环功率控制时除了参考业务信道的目标误包 率, 同时参考数据速率控制信道的质量。避免出现现有技术无法解调数据速率 控制信道、以及因此采用固定低速率多用户包方法导致前向链路吞吐量较低的 技术问题,也克服前反向链路不平衡导致的降低前向吞吐量的技术问题, 节省 接入终端的发射功率, 实现多用户增益, 简单高效。
附图说明
图 1是现有技术应用于通信的功率控制系统的原理框图;
图 2是现有技术一个接入终端采用两条通信链路进行通信的系统示意图; 图 3是本发明实施例通信系统中的功率控制方法流程图;
图 4是本发明实施例通信系统中的功率控制方法时序图;
图 5 本发明实施例可获知接入终端发射功率是否达到或解决最大值的功 率控制方法流程图;
图 6是本发明实施例应用于通信的功率控制系统原理框图;
图 7是根据本发明实施例的基站收发信台结构示意图; 图 8是根据本发明实施例的基站控制器结构示意图。
具体实施方式
本发明实施例在进行外环功率控制时除了参考业务信道的误包率,同时参 考 DRC信道的误码率。 一旦 DRC信道质量较差则提高接入终端的发射功率。 通过调节接入终端发射功率的大小, 让网络调解出 DRC信道, 提高前向吞吐 量。 另外如果接入终端的发射功率达到或接近最大, 则命令其指向另外一个扇 区, 得到较佳的反向链路质量。
以下结合实施方式和附图, 对本发明进行详细描述。
参阅图 3, 才艮据本发明实施例的通信系统中的功率控制方法包括步骤: 一. 在进行实质的功率控制流程前, 接入终端和接入网络之间进行通信, 确定前向信道的传输速率以及前向数据包格式。
E、 接入终端向接入网络实时地发送速率请求, 请求前向数据包。
并且,接入网络根据接入终端请求的速率以及前向调度策略, 决定前向数 据包格式, 并发送前向数据包给接入终端。
G、接入终端 居所处的无线环境和前向数据包的误包率来决定向接入网 络中哪个扇区请求数据, 即确定请求数据的扇区, 并且确定请求的速率。
接入终端随后进行两方面操作:
一方面,
H、 接入终端通过 DRC信道, 把扇区标识和速率标识发给接入网络。 I、 接入网络服务扇区所在的基站) 信台解码 DRC信道。
K、 然后在进入反向功率控制流程的同时, 根据其中携带的速率指示和前 向调度策略组装相应格式的数据包发送给接入终端。
另一方面,
J、 接入终端通过反向业务信道向接入网络发送数据包。
二、 一起参阅图 4, 进入反向功率控制流 L。 所述反向功率控制流程 L 包括两部分, 分别是外环功率控制和内环功率控制, 外环功率控制包括步骤 L1-L3 , 内环功率控制包括步骤 L4〜L6, 分别详述如下:
Ll、接入终端选定第一基站收发信台的一个扇区为其当前服务扇区,基站 收发信台把收到的数据包发送给基站控制器并进行合并, 取得数据包的误包 率, 并且第一基站收发信台把 DRC信道的误码率也传送给基站控制器。 随后 的外环功率控制可以不参考第二基站收发信台的 DRC信道质量, 因为只有第 一基站收发信台给手机发送数据,只要保证第一基站收发信台可以收到并正确 解调 DRC信道即可。 可以理解, 如果 DRC信道的误码率很高, 那么解析出的 扇区标识和速率标识很可能是错误的, 或者根本不能解析。 因而, 为了保证通 信质量, 需要将 DRC信道的误码率发送给基站控制器。
L2、 基站控制器比较当前服务扇区报告的 DRC信道误码率、 接收到的反 向业务信道数据包的误包率与 DRC信道目标误码率、 业务信道目标误包率。 如果扇区报告的 DRC信道误码率、 接收到的反向业务信道数据包的误包率任 一项高于目标误码率或误包率, 比如高于默认 5 %的目标误码率或误包率, 则 提高 PCT, 如果都低于该默认值则降低 PCT。 此外所述门限的具体数值可以 根据实际的情况确定。
L3、 基站控制器把调整后的 PCT分发给各个基站收发信台。
以下进行内环功率控制:
L4、 基站收发信台根据接收到的反向导频信道的强度和 PCT决定反向功 率控制位, 如果反向导频信道的强度小于 PCT, 反向功率控制位为 0; 否则为 L
L5、 基站收发信台分别发送反向功率控制位给接入终端。
L6、在接入终端一侧,根据前向信道中携带的反向功率控制位调整发射功 率。反向功率控制位为 0表示需要接入终端提高发射功率, 为 1则表示需要接 入终端降低发射功率。
可以理解,图 3中的步骤 H和 J之间是没有严格的先后顺序的,也就是说, 接入终端既通过 DRC信道, 把扇区标识和速率标识发给接入网络, 同时还通 过反向业务信道向接入网络发送数据包; 而步骤 I是接入网络侧的操作, 即接 入网络服务扇区所在的基站收发信台解码 DRC信道, 也即, 步驟 I是在步骤 H之后, 但其与步骤 J之间没有必然的先后顺序。
图 3中的步骤 K与步骤 L之间也应该是没有严格先后顺序的, 因为步骤 K是网絡侧发送数据包给接入终端, 而步骤 L是在进行功率控制。
本发明实施例取得的有益效果是: 一、保证前向链路的吞吐量。 本发明实施例不改变内环功率控制, 只是在 进行外环功率控制时除了参考业务信道的 PER, 同时参考 DRC信道的质量。 如果 DRC信道质量较差则提高接入终端的发射功率, 如果反向导频信道的强 度大于 PCT则降低接入终端的发射功率。通过调节接入终端发射功率的大小, 最大程度保证 DRC信道质量, 使服务扇区可以依据接入终端申请的速率组装 相容的数据包格式, 保持较高的前向链路吞吐量。
二、 避免出现现有技术无法解调 DRC信道、 以及因此采用固定低速率多 用户包方法导致前向链路吞吐量较低的技术问题。由于本发明实施例在不改变 T2P和 DRCChannelGain偏移量情况下, 只是通过调节接入终端的发射功率大 小来提高链路质量,因此克服了现有技术 T2P或 DRCChannelGain偏移量过大 导致无法解调 DRC信道的技术问题。由于本发明实施例确保 DRC信道能被正 确调解, 因此也避免现有技术二无法解调 DRC信道而让基站收发信台组装低 速率多用户包而导致前向传输速率大大降低的缺陷。
三、克服前反向链路不平衡导致的降低前向吞吐量的技术问题。现有技术 中出现前向链路质量最好的分支对应的反向链路质量很差,而另一个分支的反 向链路的盾量较好的技术问题,是因为系统没有考虑对应反向链路很差分支的 DRC信道质量。本发明实施例在基站收发信台收到反向数据包时也把 DRC信 道的误码率传送给基站控制器, 在进行外环功率控制时同时参考业务信道和 DRC信道的 PER, 使得接入网络可以指示对应反向链路质量较差的接入终端 调整发射功率到合适水平, 避免出现前反向链路不平衡问题。
四、 节省接入终端的发射功率。 本发明实施例在不改变 T2P 或 DRCChannelGain偏移量等其他技术情况下, 仅仅调节接入终端的发射功率大 小。 相对于现有技术一中设定较高的固定 DRCChannelGain偏移量, 在反向链 路较好的情况下造成接入终端发送功率的浪费,本发明中接入终端的发射功率 随各种通信环境变化, 以在最节省发射功率的情况下让接入网络调解出 DRC 信道, 节省接入终端的发射功率。
五、 实现多用户增益。相对于现有技术二中接入网络由于不知道接入终端 的 DRC, 只是盲目的使用一个通用的数据包格式, 无法在多用户情况下选择 信号最好的用户服务, 没有多用户分集增益。本发明实施例中的接入网络根据 接入终端报告的 DRC, 在任何时刻都尽量为信号好的用户服务。 大部分时间 都在尽量为信号最好的用户服务,总的吞吐量就提高了,实现多用户分集增益。
六、 简单高效。 相对于现有技术一中设定较高的固定 DRCChannelGain偏 移量的方法, 本发明实施例不需要单独设定 T2P或 DRCChannelGain偏移量, 仅仅进行发射功率的调节, 避免繁复的偏离量计算和设定。
为克服现有技术中接入终端的发射功率已经达到最大,无法继续提高发射 功率而存在当前服务扇区无法正确解调 DRC信道的技术问题, 以及现有技术 中当服务扇区无法正确解调 DRC信道时让基站收发信台組装低速率的多用户 包、 不能监测接入终端的服务扇区的变化的技术问题,本发明实施例进一步提 供一种可获知接入终端发射功率是否达到或解决最大值的功率控制方法, 包 括: 在决定前向数据包格式, 并发送前向数据包给接入终端之前, 即步骤 G 之前, 进行是否切换当前服务扇区的判断。 参阅图 5, 具体包括步骤:
A、 获知接入终端的发射功率。
Al、 接入终端周期地向接入网络报告请求消息。
接入网絡可以通过设置参数, 让接入终端周期地向接入网络报告请求消
Α2接入网络从所述请求消息中获取接入终端的发射功率。
获取接入终端最大可用的 Τ2Ρ,即接入终端的剩余功率与反向导频发射功 率的比值。
Β、 判断接入终端的发射功率是否达到或接近最大。 具体判断过程为: 判 断上述接入终端的剩余功率与反向导频发射功率的比值是否小于一个门限,该 门限可调整, 默认值 12%即最小的功控步长, 如果否, 则进行上述功率控制, 如果是, 则表示接入终端的发射功率已经接近最大, 不能再提高发射功率, 则 进入以下步骒:
C、 设置当前服务扇区 DRCLock标志为锁定标识如 0, 以表示无法锁定
AT的 DRC信道。
D、 指示接入终端转向其它扇区, 由其它扇区发送前向数据包, 跳到步據
Al。
让接入终端和其他扇区通信, 在通信过程中继续进行步驟 A的获知接入 终端的发射功率的操作或进行上述步骤 L的功率控制操作。如果接入终端在切 换后的扇区其发射功率没有达到或接近最大, 表明 DRC信道能够被解调, 则 留在该扇区内继续进行通信, 即保证较高的前向链路吞吐量; 否则继续转向其 他扇区继续扇区切换的步骤, 直至确定通信链路盾量合适为止。
上述可获知接入终端发射功率是否达到或接近最大值的功率控制方法由 于掌握在一个服务扇区下的接入终端其发射功率是否达到或接近最大的信息, 使得在接入终端发射功率达到或接近最大时指向其他合适的扇区,确保本发明 实施例提供的功率控制方法能够实施并取得效果,进一步保证了较高的前向链 路吞吐量。
上述进行是否切换当前服务扇区的判断步骤还可以在分别比较误码率、误 包率之前进行, 比如在图 3中所示的步骤 G之前进行, 也可以在图 4的步驟 L1之前进行等等。
同理, 图 5中步骤 H、 J和步骤 K、 L之间的没有严格的先后顺序, 理由 与图 3相应内容同, 不再赘述。
本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完,所述程序可以存储于一计算机可读存 储介质中, 所述存储介质如 ROM/RAM、 磁盘、 光盘等。 本发明实施例还提供一种应用于通信的功率控制系统。 参阅图 6, 所述系 统包括接入终端 700、 接入网络 800、 功率控制模块 805和扇区切换判决模块 806。 接入终端 700用于采用反向业务信道把数据包发给接入网络 800, 并且 确定请求的前向传输速率, 通过 DRC信道把扇区标识和请求的速率标识发给 接入网络 800。
所述接入网络 800包括基站收发信台 801和基站控制器 802。 基站收发信 台 801接收接入终端 700发送的 DRC信道和反向业务信道数据, 经解码, 再 将 DRC信道误码率和反向业务数据包发送到基站控制器 802。 如果对应有多 个基站收发信台 801, 则收到的反向业务数据包在基站控制器 802中进行合并 并取得误包率。 而对应前向链路质量较好而反向链路较差的基站收发信台 801 将其得到的 DRC信道误码率传送到基站控制器 802, 其他基站收发信台 801 不将 DRC信道误码率传送到基站控制器 802。
此时功率控制模块 805比较数据速率控制信道的误码率、反向业务信道的 误包率与目标误码率、误包率,任一项高于目标误码率或误包率则调高功率控 制门限。 然后所述接入终端 700和接入网络 800共同进行内环功率控制。
所述功率控制模块可以包括:获取单元, 用于获取数据速率控制信道的误 码率和反向业务信道的误包率; 比较单元, 用于分別比较数据速率控制信道的 误码率、反向业务信道的误包率与目标误码率、误包率, 确定任一项高于目标 误码率或误包率时, 则通知功率控制门限调整单元; 功率控制门限调整单元, 用于^^据接收到的通知调高功率控制门限。
所述内环功率控制是基站收发信台 801 根据接收到的反向导频信道的强 度和 PCT决定反向功率控制位, 如果反向导频信道的强度小于 PCT, 反向功 率控制位为 0; 否则为 1。 随后返回反向功率控制位到接入终端 700。
接入终端 700则根据前向信道中携带的功率控制位调整发射功率。功率控 制位为 0表示需要接入终端 700提高发射功率, 为 1则表示需要接入终端 700 降低发射功率。 对于 DRC信道较差的反向链路中, 提高接入终端 700发射功 率可降低 DRC信道误码率,接入网络 800则可以调解出 DRC信道,使服务扇 区可以依据接入终端 700申请的速率组装相容的数据包格式,保持较高的前向 链路吞吐量; 对于 DRC信道较好的反向链路中, 如果接入终端 700发射功率 过高,本发明实施例的功率控制系统则可以调低 PCT,从而适当降低接入终端 700发射功率, 节省功率。
本发明实施例的功率控制系统还包括扇区切换判决模块 806, 用于获知接 入终端 700的发射功率, 判断所述发射功率是否达到或接近最大,如果是则设 置当前服务肩区 DRCLock标志为 0, 从而指示接入终端 700转向其它扇区, 否则通知所述功率控制模块 805工作。该模块可以解决接入终端 700发射功率 达到最高同时接入网络 800仍然不能解码 DRC信道的技术问题, 既确保前向 链路吞吐量也降低接入终端 700发射功率, 因为选择链路质量较好的扇区后, 接入终端 700不需要太大的发射功率既能实现较高质骨的通信。
可以理解, 功率控制模块 805可以位于基站控制器 802内, 仍参见图 6, 这样, 应用于通信的功率控制系统可以包括: 基站收发信台 801 , 用于获取数据速率控制信道的误码率和反向业务信道 的误包率, 将所述误码率和误包率传送给基站控制器 802; 根据接收到的功率 控制门限与接入终端 700之间进行内环功率控制;
基站控制器 802, 用于分别比较上述误码率、 误包率与目标误码率、 误包 率,任一项高于目标误码率或误包率则调高功率控制门限,将所述调高后的功 率控制门限传送给基站收发信台 801;
接入终端 700, 用于通过数据速率控制信道和反向业务信道数据向基站收 发信台 801发送数据包; 与基站收发信台 801之间进行内环功率控制。
上述基站控制器 802还用于确定误码率、 误包率都分别低于目标误码率、 误包率, 时调低功率控制门限,将所述调低后的功率控制门限传送给基站收发 信台謝。
上述扇区切换判决模块 806可以位于基站收发信台 801内,这样,基站收 发信台 801还用于获知接入终端的发射功率,判断所述发射功率是否达到或接 近最大, 如果是则命令接入终端 700转向其它扇区, 否则再通知基站控制器 802执行操作。 当然, 在基站收发信台 801判断所述发射功率达到或接近最大 时,可以设置此时的服务扇区 DRCLock标志为表示无法锁定 AT的 DRC信道 的锁定标识, 如将 DRCLock标志置为 0。
从以上可以看出, 由于本发明实施例的功率控制系统采用功率控制模块, 通过比较数据速率控制信道的误码率、 反向业务信道的误包率与目标误码率、 误包率来调整 PCT, 通过调节接入终端发射功率的大小, 最大程度保证 DRC 信道质量, 使服务扇区可以依据接入终端申请的速率组装相容的数据包格式, 保持较高的前向链路吞吐量。
采用扇区切换判决模块则可以解决接入终端发射功率达到最高同时接入 网络仍然不能解码 DRC信道的技术问题, 既确保前向链路吞吐量也降低接入 终端发射功率。
所述功率控制模块和扇区切换判决模块可以是单独的模块,也可以是作为 系统内嵌的一部分。 或者仅仅设置系统参数, 通过软件来实现同样的功能。
本发明实施例还提供了一种基站收发信台, 参见图 7, 包括:
功率控制门限获取模块 801a, 用于接收来自接入终端的数据速率控制信 道和反向业务信道数据,根据接收到的数据计算数据速率控制信道的误码率和 反向业务信道的误包率,将所述误码率和误包率发送到基站控制器; 接收来自 基站控制器的功率控制门限, 传送给内环功率控制单元 801b;
内环功率控制模块 801b, 用于根据接收到的功率控制门限与接入终端进 行内环功率控制。
上述基站收发信台还可以包括: 扇区切换判决模块 801c, 用于获知接入 终端的发射功率,确定所述发射功率达到或接近最大时,命令接入终端转向其 它扇区, 否则通知基站控制器继续后续处理。
上述功率控制门限获取模块还可以包括计算单元和功率控制门限获取传 送单元(图未示), 其中, 计算单元, 用于接收来自接入终端的数据速率控制 信道和反向业务信道数据,根据接收到的数据计算数据速率控制信道的误码率 和反向业务信道的误包率,将所述误码率和误包率发送到基站控制器; 功率控 制门限获取传送单元, 用于接收来自基站控制器的功率控制门限,传送给内环 功率控制单元。
本发明实施例还提供了一种基站控制器, 参见图 8, 包括功率控制模块
805 , 该功率控制模块 805包括: 获取单元 805a, 用于获取数据速率控制信道 的误码率和反向业务信道的误包率; 比较单元 805b, 用于分别比较数据速率 控制信道的误码率、反向业务信道的误包率与目标误码率、误包率, 确定任一 项高于目标误码率或误包率, 或误码率、误包率都分别低于目标误码率、误包 率时, 则通知功率控制门限调整单元; 功率控制门限调整单元 805c, 用于根 据接收到的通知调高或调低功率控制门限,将调整后的功率控制门 P艮发送给基 站收发信台。
以上对本发明实施例所提供的一种通信系统中的功率控制方法及其系统 述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种通信系统中的功率控制方法, 其特征在于, 包括步骤:
获取数据速率控制信道的误码率和反向业务信道的误包率;
分别比较上述误码率、误包率与目标误码率、 误包率, 任一项高于目标误 码率或误包率则调高功率控制门限;
根据所述功率控制门限进行内环功率控制。
2、 根据权利要求 1所述的通信系统中的功率控制方法, 其特征在于, 所 述获取误码率和误包率的步骤包括:
通过数据速率控制信道,接入终端发送的扇区标识和速率标识,获得数据 速率控制信道的误码率;
通过反向业务信道接收接入终端发送的数据包, 获得误包率。
3、根据权利要求 1或 2所述的通信系统中的功率控制方法,其特征在于, 在分别比较误码率、 误包率之前还包括: 判断是否切换当前服务扇区的步骤: 具体为
获知接入终端的发射功率;
判断所述发射功率是否达到或接近最大, 若是, 则设置当前服务扇区 DRCLock标志为表示无法锁定 AT的数据速率控制信道的锁定标识;指示接入 终端转向其它扇区,继续获知接入终端发射功率;否则再执行分别比较误码率、 误包率的操作。
4、 根据权利要求 1所述的通信系统中的功率控制方法, 其特征在于, 进 一步包括: 当误码率、 误包率都分别低于目标误码率、 误包率时, 降低功率控 制门限。
5、根据权利要求 1或 4所述的通信系统中的功率控制方法,其特征在于, 所述进行内环功率控制的步驟包括:
^^据功率控制门 P艮确定功率控制位, 将所述功率控制位发送给接入终端; 所述接入终端根据功率控制位调整发射功率。
6、 一种应用于通信的功率控制系统, 其特征在于, 包括:
基站收发信台,用于获取数据速率控制信道的误码率和反向业务信道的误 包率,将所述误码率和误包率传送给基站控制器;根据接收到的功率控制门限 与接入终端之间进行内环功率控制;
基站控制器, 用于分别比较上述误码率、 误包率与目标误码率、 误包率, 任一项高于目标误码率或误包率则调高功率控制门限,将所述调高后的功率控 制门限传送给基站收发信台;
接入终端,用于通过数据速率控制信道和反向业务信道数据向基站收发信 台发送数据包; 与基站收发信台之间进行内环功率控制。
7、 根据权利要求 6所述的应用于通信的功率控制系统, 其特征在于, 所 述基站控制器还用于, 确定误码率、 误包率都分别低于目标误码率、 误包率, 时调低功率控制门限, 将所述调低后的功率控制门 P艮传送给基站收发信台。
8、根据权利要求 6或 7所述的应用于通信的功率控制系统, 其特征在于, 所述基站收发信台还用于,获知接入终端的发射功率, 判断所述发射功率是否 达到或接近最大,如果是则命令接入终端转向其它扇区, 否则再通知所述基站 控制器执行操作。
9、 根据权利要求 8所述的应用于通信的功率控制系统, 其特征在于, 所 述基站收发信台判断所述发射功率达到或接近最大时, 设置此时的服务扇区
DRCLock标志为表示无法锁定 AT的 DRC信道的锁定标识。
10、 一种基站 信台, 其特征在于, 包括:
功率控制门限获取模块,用于接收来自接入终端的数据速率控制信道和反 向业务信道数据,根据接收到的数据计算数据速率控制信道的误码率和反向业 务信道的误包率,将所述误码率和误包率发送到基站控制器; 接收来自基站控 制器的功率控制门限, 传送给内环功率控制单元;
内环功率控制模块,用于根据接收到的功率控制门限与接入终端进行内环 功率控制。
11、 根据权利要求 10所述的基站收发信台, 其特征在于, 还包括: 扇区切换判决模块, 用于获知接入终端的发射功率,确定所述发射功率达 到或接近最大时,命令接入终端转向其它扇区, 否则通知基站控制器继续后续 处理。
12、 根据权利要求 10或 11所述的基站收发信台, 其特征在于, 所述功率 控制门限获取模块包括: 计算单元,用于接收来自接入终端的数据速率控制信道和反向业务信道数 据,根据接收到的数据计算数据速率控制信道的误码率和反向业务信道的误包 率, 将所述误码率和误包率发送到基站控制器;
功率控制门限获取传送单元, 用于接收来自基站控制器的功率控制门限, 传送给内环功率控制单元。
13、 一种基站控制器, 其特征在于, 包括功率控制模块, 该功率控制模块 包括:
获取单元, 用于获取数据速率控制信道的误码率和反向业务信道的误包 率;
比较单元, 用于分别比较数据速率控制信道的误码率、反向业务信道的误 包率与目标误码率、误包率,确定任一项高于目标误码率或误包率,或误码率、 误包率都分别低于目标误码率、 误包率时, 则通知功率控制门限调整单元; 功率控制门 P艮调整单元, 用于根据接收到的通知调高或调低功率控制门 限, 将调整后的功率控制门 P艮发送给基站收发信台。
PCT/CN2007/000999 2006-06-09 2007-03-28 Procédé de commande de puissance, système et dispositifs de mise en œuvre de celui-ci dans des systèmes de communication WO2007140684A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610087114.X 2006-06-09
CN200610087114XA CN1968037B (zh) 2006-06-09 2006-06-09 通信系统中的功率控制方法及其系统

Publications (1)

Publication Number Publication Date
WO2007140684A1 true WO2007140684A1 (fr) 2007-12-13

Family

ID=38076620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000999 WO2007140684A1 (fr) 2006-06-09 2007-03-28 Procédé de commande de puissance, système et dispositifs de mise en œuvre de celui-ci dans des systèmes de communication

Country Status (2)

Country Link
CN (1) CN1968037B (zh)
WO (1) WO2007140684A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101494894B (zh) * 2008-12-31 2011-01-19 中兴通讯股份有限公司 反向功率控制方法及控制装置
CN105933968B (zh) * 2016-04-11 2019-12-03 珠海全志科技股份有限公司 一种无线通讯设备发射功率的自适应方法及其装置
CN113329244B (zh) * 2017-09-30 2022-07-22 华为技术有限公司 业务传输方法和装置
CN110166174B (zh) * 2019-05-16 2020-09-29 京信通信系统(中国)有限公司 链路自适应方法、装置、接入网设备和存储介质
CN112926347B (zh) * 2021-03-30 2023-03-17 太原理工大学 一种基于4qam无源标签反向散射功率的自适应控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603746B1 (en) * 1999-06-18 2003-08-05 Nortel Networks Limited Method and apparatus for controlling transmitted power in a wireless communications system
US6876866B1 (en) * 2000-07-13 2005-04-05 Qualcomm Incorporated Multi-state power control mechanism for a wireless communication system
US20050152308A1 (en) * 2003-12-10 2005-07-14 Lg Electronics Inc. Method of controlling reverse link data rate in a mobile communications system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781973B1 (en) * 2000-03-30 2004-08-24 Matsushita Electric Industrial Co., Ltd. Combined signaling and sir inner-loop power control
US7835762B2 (en) * 2002-06-27 2010-11-16 Qualcomm Incorporated Adjusting transmit power in a wireless communication system
CN100393008C (zh) * 2002-11-08 2008-06-04 中兴通讯股份有限公司 优化的外环功率控制方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603746B1 (en) * 1999-06-18 2003-08-05 Nortel Networks Limited Method and apparatus for controlling transmitted power in a wireless communications system
US6876866B1 (en) * 2000-07-13 2005-04-05 Qualcomm Incorporated Multi-state power control mechanism for a wireless communication system
US20050152308A1 (en) * 2003-12-10 2005-07-14 Lg Electronics Inc. Method of controlling reverse link data rate in a mobile communications system

Also Published As

Publication number Publication date
CN1968037A (zh) 2007-05-23
CN1968037B (zh) 2010-10-06

Similar Documents

Publication Publication Date Title
CN108464037B (zh) 语音呼叫切换到/自长期演进语音(volte)方法和装置
JP6113928B2 (ja) 複数の無線デバイスにおけるlte(登録商標)のためのtxアンテナ選択
US9338580B2 (en) Method and apparatus for packet loss rate-based codec adaptation
US20150003411A1 (en) Method and apparatus for selecting hd voice (volte) calls over cs voice calls
US8583123B2 (en) Methods for controlling radio links in a cellular communication system
KR100973925B1 (ko) 소프트 핸드오프 및 셀-스위칭 동안 데이터 레이트 제어를 위한 방법 및 장치
JP2018517326A (ja) ハンドオフ中のレート適応
WO2008110996A1 (en) Apparatus, method and computer program product providing auxillary handover command
KR101749641B1 (ko) 무선 액세스 네트워크들 사이에서의 접속 모드 이동성
EP2235986A1 (en) Network initiated proactive handover procedure for fast moving wireless devices
KR20150013577A (ko) 버스티 간섭을 갖는 레이트 예측을 강화하기 위한 피드백
KR101836054B1 (ko) 사용자 장비에 대한 전력 제어 성능
KR20170115508A (ko) 애플리케이션 선호도에 기초한 사용자 장비 (ue) 에서의 무선 액세스 기술 (rat) 선택
WO2007140684A1 (fr) Procédé de commande de puissance, système et dispositifs de mise en œuvre de celui-ci dans des systèmes de communication
WO2014206377A1 (zh) 功率控制方法、装置及ue
WO2014194799A1 (zh) 通信方法、无线网络控制器和用户设备
CN111757427B (zh) 一种基于信道质量评估的宽窄融合终端首选网络选择方法
AU2002217135B2 (en) Method and system for providing a downlink connection in a cellular network
WO2015032269A1 (zh) 一种软切换下上行授权信息的处理方法、终端及网络设备
CN117395735A (zh) 条件切换方法、信息传输方法、处理方法、装置及设备
WO2014023568A1 (en) Dynamic switching of the uplink beamforming with the downlink multiflow data transmission
WO2014100963A1 (zh) 一种多站点共小区下的发射功率控制方法及装置
EP2883310A1 (en) Dynamic switching of the uplink beamforming with the downlink multiflow data transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07720573

Country of ref document: EP

Kind code of ref document: A1