WO2007138793A1 - Lance pipe, degasification equipment, container with degasification equipment and watershoot with degasification equipment - Google Patents

Lance pipe, degasification equipment, container with degasification equipment and watershoot with degasification equipment Download PDF

Info

Publication number
WO2007138793A1
WO2007138793A1 PCT/JP2007/058073 JP2007058073W WO2007138793A1 WO 2007138793 A1 WO2007138793 A1 WO 2007138793A1 JP 2007058073 W JP2007058073 W JP 2007058073W WO 2007138793 A1 WO2007138793 A1 WO 2007138793A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pipe
molten metal
degassing
outflow hole
Prior art date
Application number
PCT/JP2007/058073
Other languages
French (fr)
Japanese (ja)
Inventor
Minehiko Ota
Toshiyuki Matsumoto
Kenji Takemoto
Original Assignee
Nippon Crucible Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Crucible Co., Ltd. filed Critical Nippon Crucible Co., Ltd.
Publication of WO2007138793A1 publication Critical patent/WO2007138793A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/117Refining the metal by treating with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge

Definitions

  • the present invention relates to a lance pipe, a degassing device, a container with a degassing device, and a bowl with a degassing device.
  • a lance pipe as shown in Patent Document 1 is used.
  • the lance pipe closes one opening of the gas supply pipe 101, the gas supply pipe 101 that opens at both ends, the refractory material 102 that covers the gas supply pipe 101, and the gas supply pipe 101.
  • breathable refractory 103 installed.
  • the inert gas By introducing the inert gas by immersing the lance pipe 100 configured in this manner in the molten metal, the inert gas passes through the breathable refractory 103 and passes through a number of bubbles G from the tip of the lance nove 100. It flows out into the molten metal. Hydrogen or the like dissolved in the molten metal moves into the inert gas bubbles G flowing out from the breathable refractory 103 and is removed from the molten metal.
  • Patent Document 1 JP-A-2-301526
  • the present invention has been made to solve such problems, and is equipped with a lance pipe, a degassing processor, and a degassing processor that can efficiently perform degassing of molten metal.
  • An object is to provide a container and a basket with a degasser.
  • the object of the present invention is a lance pipe for performing degassing treatment by blowing an insoluble gas into a molten metal, and comprising a metal tube main body and a porous resistant material that covers the tube main body. This is achieved by a lance pipe in which a gas outflow hole covered with the covering material is formed on the side wall of the pipe body.
  • the tube main body has a bent portion, and the gas outflow hole is formed on a distal end side of the bent portion of the tube main body.
  • the coating material includes a base sheet made of glass fiber soaked with a glassy coating agent, and the entire surface of the base sheet is covered with a coating film of the glassy coating agent. Formed, prefer to be! /
  • a porous stopper which is also a porous refractory material is attached to the gas outflow hole, and the porous stopper is covered with the covering material.
  • the tube main body may be configured by forming a wire mesh member in a cylindrical shape.
  • the object of the present invention is a degassing treatment device for performing degassing treatment by blowing an insoluble gas into a molten metal, the metal treatment device main body having an internal space, and the treatment
  • a bubble generating body having a covering material made of a porous refractory material covering the container body, and the bubble generating body is formed with a gas introduction portion for introducing an insoluble gas into the internal space,
  • a gas outflow hole covered with the coating material is formed in the processor main body, and this is achieved by the degassing processor.
  • the bubble generating body is formed in a flat plate shape over the degassing processor, and at least one surface force insoluble gas of the bubble generating body flows out from the gas outflow hole. It is preferred to be formed into.
  • the bubble generating body includes a housing portion in which a molten metal is accommodated, and the gas outflow hole is formed so that insoluble gas flows out into the housing portion. ,.
  • the bubble generating body includes a transfer portion to which the molten metal is transferred, and the gas flow
  • the outlet hole is preferably formed so that insoluble gas flows out to the transfer section.
  • the coating material is obtained by impregnating a substrate sheet made of glass fiber cover with a glassy coating agent and covering the entire surface of the substrate sheet with a coating film of the glassy coating agent. Formed, prefer to be! /
  • a porous stopper which is also a porous refractory material is attached to the gas outflow hole, and the porous stopper is covered with the covering material.
  • the processor main body is formed of a wire mesh member.
  • the object of the present invention is a container with a degassing device comprising a degassing device and a storage space for storing molten metal, wherein the bubble generator is disposed in the storage space. This is achieved by a container with a degasser.
  • the above-mentioned object of the present invention is a scissor with a degassing device comprising a degassing device and a transfer space to which the molten metal is transferred, wherein the bubble generator is disposed in the transfer space. This is achieved by using a scissor with a degasser.
  • the present invention it is possible to provide a lance nove, a degassing device, a container with a degassing device, and a slag with a degassing device that can efficiently perform degassing of molten metal.
  • FIG. 1 is a schematic sectional view of a lance pipe according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the AA cross section of FIG.
  • FIG. 3 is a schematic cross-sectional view showing a modification of the lance nove shown in FIG.
  • FIG. 4 is an explanatory diagram for explaining how to use the lance pipe shown in FIG. 1.
  • FIG. 5 is a schematic sectional view showing another modification of the lance nove shown in FIG.
  • FIG. 6 is a schematic sectional view showing still another modification of the lance nove shown in FIG.
  • FIG. 7 is a schematic cross-sectional view showing a conventional lance nove.
  • FIG. 8 is a schematic cross-sectional view of a degasser according to an embodiment of the present invention.
  • FIG. 9 is a plan view seen from the direction of arrow B in FIG. ⁇ 10]
  • FIG. 9 is an explanatory diagram for explaining a method of use when the degassing device shown in FIG. 8 is attached to a container.
  • FIG. 11 is an explanatory diagram for explaining how to use the degassing device shown in FIG. 8 when attached to the bag.
  • FIG. 12 is a plan view of the force in the direction of arrow C in FIG.
  • FIG. 9 is a schematic cross-sectional view showing a modified example of the degassing device shown in FIG.
  • FIG. 14 is a schematic cross-sectional view showing another modification of the degassing processor shown in FIG.
  • FIG. 15 is a plan view showing force in the direction of arrow E in FIG.
  • 16 is a schematic cross-sectional view showing still another modification of the degassing processor shown in FIG. Explanation of symbols
  • FIG. 1 is a schematic sectional view of a lance pipe 1 according to an embodiment of the present invention
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • the lance pipe 1 includes a metal pipe body 10 having a bent portion 12 and a covering material 20 that covers the pipe body 10.
  • the pipe body 10 includes a gas introduction pipe 11 and a gas outflow pipe 14 connected via an elbow pipe 13 constituting the bent portion 12, so that the overall shape is L-shaped in a side view. Is configured.
  • the gas introduction pipe 11, the gas outflow pipe 14 and the elbow pipe 13 are made of a metal material such as ordinary steel, stainless steel or pig iron.
  • the gas introduction pipe 11 is a pipe-like member having openings at both ends, and one end is connected to the elbow pipe 13. The other end of the gas introduction pipe 11 is provided with an attachment portion 15 for attaching a gas supply pipe extending from an insoluble gas supply source (not shown).
  • the insoluble gas is a concept including a gas that does not dissolve in the molten metal and a gas that is difficult to dissolve in the molten metal.
  • an inert gas such as argon or a gas such as nitrogen or chlorine is used. You can.
  • the gas outflow pipe 14 is a pipe-like member that forms the distal end side of the bent portion 12 of the pipe main body 10, and has a bottomed shape with one end closed.
  • the other end of the gas outflow pipe 14 is connected to the epoxy pipe 13.
  • a plurality of gas outflow holes 16 formed at predetermined intervals along the longitudinal direction of the gas outflow pipe 14 are formed in the side wall of the gas outflow pipe 14.
  • the gas outflow hole 16 is covered with a covering material 20.
  • the hole shape and the number of the gas outflow holes 16 are not particularly limited. For example, a circular shape or an elliptical shape can be adopted as the hole shape. Further, the gas outflow hole 16 can be constituted by a single slit 16a as shown in FIG. A configuration in which a gas outflow hole 16 is further formed in a bottom portion 14a provided at one end of the gas outflow pipe 14 may be adopted.
  • coating material 20 for example, permeability is 3. 5 X 10 _14 m 2 ⁇ 9 . 0 X 10 _14 m 2 approximately porous 1 and 2, the base sheet 21 that covers the outer surface of the tube body 10 so as to be wound, and the coating film that covers the surface of the base sheet 21 are formed. 22 and.
  • the above air permeability is a value obtained in accordance with JIS standard R2115 (Test method for air permeability of refractory bricks).
  • the base sheet 21 is made of glass fibers such as a glass sleeve, a glass woven fabric, and a glass non-woven fabric, and examples of the glass composition of the glass fibers include E glass, S glass, and T glass.
  • the glass fiber gaps in the base sheet 21 are pre-impregnated with a heat-resistant glassy coating agent before application to the tube body 10 by dipping or the like.
  • the heat resistant glassy coating agent include metal oxides such as silica, alumina, alumina'silica, zircon, and zircoyu, and refractory powders that do not easily react with molten metal such as silicon carbide and nitride nitride.
  • Water glass (alkali metal silicate), silica sol, alumina sol, or a mixture thereof in an aqueous solution can be used.
  • the above-mentioned refractory powder is preferably obtained by pulverizing a fibrous material in order to increase the coating strength of the coating material.
  • Formation of the coating film 22 on the surface of the substrate sheet 21 is performed by application of a glassy coating agent having heat resistance.
  • the application of the heat-resistant glassy coating agent is preferably repeated a plurality of times while appropriately adjusting the viscosity, which is preferably performed uniformly over the entire surface of the substrate sheet 21.
  • the thickness of the coating film 22 thus obtained from the surface of the base sheet 21 is 2mn! ⁇ 7mm is preferred ⁇ .
  • Examples of the glassy coating agent applied to the surface of the base sheet 21 can be the same as the glassy coating agent impregnated in the base sheet 21.
  • the insoluble gas pressurized as the supply source force of the insoluble gas is guided to the lance pipe 1.
  • the insoluble gas is led to the gas outflow pipe 14 through the gas introduction pipe 11 and is led to the plurality of gas outflow holes 16 formed in the gas outflow pipe 14.
  • the insoluble gas introduced into the gas outflow hole 16 is subdivided when passing through the porous coating material 20 and flows out into the molten metal as fine bubbles G from the surface of the coating material 20.
  • the hydrogen dissolved in the molten metal also flows out to the surface 20 of the coating material and moves to the fine bubbles G of the insoluble gas that rises against the molten metal liquid surface S, and from the molten metal liquid surface S to the outside. To be released.
  • the side force of the lance nove 1 can be configured so that bubbles of the insoluble gas can flow into the molten metal. It is possible to perform a degassing process. As a result, hydrogen dissolved in the molten metal can be efficiently removed.
  • the tube body 10 has the bent portion 12 and the gas outflow hole 16 is formed on the tip side of the bent portion 12 of the tube body 10.
  • the spipe 1 can be easily supported, and the side surface of the lance pipe 1 where insoluble gas bubbles are generated can be easily immersed to an arbitrary depth of the molten metal. Furthermore, since the insoluble gas bubbles generated by the lance pipe 1 can flow into the molten metal from around the same depth of the molten metal, the residence time of the insoluble gas bubbles in the molten metal is made substantially constant. Therefore, the degassing process can be performed more efficiently.
  • the lance pipe 1 since the lance pipe 1 according to the present embodiment includes a metal pipe body 10 in the entire length of the lance pipe 1, an impact during the handling of the lance pipe 1 and a degassing process are provided. It is possible to prevent the lance pipe 1 from being broken by the work load, and to improve the impact resistance and durability of the lance pipe 1.
  • the covering material 20 to be coated on the surface of the tube body 10 impregnates the base material sheet 21 made of glass fiber cover with the vitreous coating agent, and the entire surface of the base material sheet 21 is vitreous. Since it is formed by covering with the coating film 22 of the coating agent, it is possible to prevent the coating material 20 from being clogged by the molten metal having poor wettability to the molten metal. As a result, the insoluble matter introduced into the porous covering material 20 through the gas outflow holes 16 is obtained. As a result, it is possible to effectively prevent the occurrence of a situation in which the functional gas cannot pass through the covering material 20, and the lance pipe 1 can be used for a long time.
  • the covering material 20 configured in this way is a material having excellent corrosion resistance, it is possible to effectively prevent the lance pipe 1 from being melted and to have some flexibility. Therefore, it is possible to effectively prevent peeling and cracking of the covering material 20 caused by a difference in thermal expansion between the tube body 10 and the covering material 20.
  • the gas flow formed in the gas flow pipe A configuration in which a porous stopper 40 made of a porous refractory material is attached to the outlet 16 can also be adopted.
  • the porous plug 40 is covered with a covering material 20.
  • the insoluble gas guided to the gas outflow pipe 14 via the gas introduction pipe 11 passes through the porous plug 40 and then enters the covering material 20 that covers the gas outflow pipe 14. Since it flows out into the molten metal, the force of the insoluble gas that directly presses the coating material 20 can be reduced.
  • a porous plug 40 may be attached so as to penetrate the tube body 10.
  • the porous plug 40 is formed by molding and sintering a fireproof powder such as alumina, alumina′silica , zircon, etc., for example, the air permeability is 4. OX 10 _14 m 2 to l 5.0 X It is preferably about 10 _14 m 2 .
  • This air permeability is a value determined according to JIS standard R2115 (Test method for air permeability of refractory bricks).
  • the tube body 10 in the present embodiment may be configured by forming a wire mesh member into a cylindrical shape.
  • the wire mesh member include expanded metal and metal mesh panels.
  • the mesh portion of the metal net member corresponds to the gas outflow hole 16, and therefore the gas outflow hole 16 is separately provided.
  • the lance pipe 1 can be manufactured at a low cost that does not need to be formed. Further, at least a part of the pipe body 10 is made of gold.
  • the pipe body 10 is configured by connecting the gas introduction pipe 11 and the gas outflow pipe 14 via the elbow pipe 13, but for example, a single linear shape is used.
  • the pipe body 10 is configured so that the metal tube is formed to be L-shaped in side view by bending and the gas outflow hole 16 is formed on the tip side of the bent portion 12 of the L-shaped metal tube.
  • the gas outflow pipe 14 uses a bottomed pipe-shaped member force with one end closed.
  • a pipe-shaped member having openings at both ends is used.
  • the gas outflow pipe 14 may be configured by attaching a cap that closes one end of the pipe-shaped member.
  • the shape of the tube body 10 is configured to be L-shaped when viewed from the side, but is not particularly limited to such a shape.
  • the shape is linear or curved. Can also be configured.
  • FIG. 8 is a schematic cross-sectional view of a degassing apparatus according to an embodiment of the present invention
  • FIG. 9 is a plan view seen from the direction indicated by the arrow B shown in FIG.
  • the degassing processor 50 includes a bubble generating body 51 and a gas introduction pipe 55.
  • the bubble generating body 51 is formed in a flat plate shape having a rectangular shape in plan view, and is made of a metal processing device main body 52 having an internal space 53, and a porous fireproof covering the processing device main body 52. And a covering material 20 made of a material.
  • a gas introduction part 54 for introducing an insoluble gas to the internal space 53 of the processor main body 52 is formed, and a gas introduction pipe 55 is connected to the gas introduction part 54. Is connected.
  • the processor main body 52 is also formed of a flat plate having a rectangular shape in plan view, and is made of a metal material such as ordinary steel, stainless steel, pig iron and the like.
  • the processor main body 52 is provided with the internal space 53 as described above.
  • a gas introduction part 54 is formed, and is substantially over the entire area of the one surface 52a of the processor body 52.
  • a plurality of gas outflow holes 16 through which the insoluble gas led to the internal space 53 flows out are formed at predetermined intervals.
  • the gas outflow holes 16 are covered with a covering material 20 such as a porous refractory material, and thereby the insoluble gas gas gas outflow holes 16 led to the internal space 53 of the processor main body 52 and the covering are covered.
  • the hole shape and the number of the gas outflow holes 16 are not particularly limited.
  • a shape such as a circular shape in plan view or an elliptical shape in plan view can be adopted as the hole shape.
  • the gas outflow hole 16 can be constituted by a slit. A configuration in which the gas outflow hole 16 is further formed in the other surface 52b of the processing unit main body 52, or a configuration in which the gas outflow hole 16 is further formed in the end surfaces 52c, 52c, 52c, 52c of the processing unit main body 52. It may be adopted.
  • the covering material 20 has the same configuration as that used for the lance pipe 1 described above, detailed description thereof is omitted here.
  • the gas introduction pipe 55 is configured by covering a noise member 55a having openings at both ends with a covering material 20, and one end thereof is connected to the gas introduction part 54.
  • the other end of the gas introduction pipe 55 is provided with an attachment portion 55b for attaching a gas supply pipe extending from the insoluble gas supply source, not shown.
  • the pipe-like member 55a constituting the gas introduction pipe 55 is made of a metal material such as ordinary steel, stainless steel, pig iron, and the like.
  • the degassing device 50 configured as described above will be described below.
  • the molten metal in the container 70 such as a ladle holding furnace is accommodated.
  • the bubble generating body 51 of the degassing processor 50 is disposed in the accommodating space 70a.
  • the other surface 5 lb of the bubble generating body 51 is disposed in contact with the bottom surface of the housing space 70a.
  • the molten metal is accommodated in the accommodating space 70a of the container 70, and insoluble gas is supplied to the bubble generating body 51 through the gas introduction pipe 55.
  • the insoluble gas introduced to the bubble generating body 51 passes through the inner space 53 of the processing unit main body 52, the gas outflow hole 16 and the covering material 20 which is also a porous refractory material 51, and the one side 51a of the bubble generating body 51
  • the almost whole area force becomes a fine bubble G, which is accommodated in the accommodating space 70a of the container 70 and flows out into the molten metal.
  • Hydrogen or the like dissolved in the molten metal flows out from one surface 51a of the bubble generating body 51 and flows into the liquid metal surface S. It moves to fine bubbles G of insoluble gas that rises toward the surface, and is discharged from the liquid surface S of the molten metal to the outside.
  • the insoluble gas bubbles G from the substantially entire surface of the one surface 5 la of the bubble generating body 51 formed in a flat plate shape are melted. Since it is configured to flow out into the metal, hydrogen and the like dissolved in the molten metal can be efficiently removed over a wide range.
  • the bubble generating body 51 in the degassing processor 50 includes a metal processing body 52 in the interior thereof, due to an impact during handling of the degassing processor 50, It is possible to effectively prevent the bubble generating body 51 from being damaged, and to improve the impact resistance and durability of the degassing processor 50.
  • the covering material 20 to be coated on the surface of the processor main body 52 has the same configuration as that in the lance noop 1 described above, it depends on the molten metal having poor wettability with respect to the molten metal. The clogging of the covering material 20 can be prevented. As a result, it is possible to effectively prevent the occurrence of a situation in which the insoluble gas guided to the porous coating material 20 through the gas outflow hole 16 cannot pass through the coating material 20.
  • the degassing processor 50 can be used for a long time.
  • the coating material 20 is a material having excellent corrosion resistance, it is possible to effectively prevent the degassing processor 50 from being melted and to have a slight flexibility. It is possible to effectively prevent peeling and cracking of the covering material 20 caused by the difference in thermal expansion between the main body 52 and the covering material 20.
  • the degassing device 50 can be attached to a tank that transfers the molten metal discharged from the melting furnace to a holding furnace or ladle, so that hydrogen dissolved in the molten metal can be removed.
  • the molten metal is transferred to the transfer space 57 and floats on the surface of the melt.
  • the molten metal transfer side (downstream side) with respect to the partition plate 58
  • the bubble generator 51 of the degasser 50 is placed in the transfer space 57 in the While transferring from the melting furnace to a ladle, etc., insoluble gas is supplied to the bubble generating body 51 through the gas introduction pipe 55, and fine bubbles flow out from one side 51a of the bubble generating body 51 into the molten metal being transferred.
  • FIG. 11 and FIG. 12 a configuration in which two gas introduction pipes 55, 55 are attached to the bubble generating body 51 is shown.
  • the other surface 51b of the bubble generating body 51 is disposed so as to be in contact with the bottom surface 57a of the transfer space 57. .
  • the bubble generating body 51 is formed in a flat plate shape.
  • the bubble generating body 51 is formed in a container shape, and the bubble generating body 51 is formed. You may comprise 51 so that the accommodating part 60 which accommodates a molten metal may be provided.
  • the gas outflow hole 16 is formed in the processor main body 52 so as to flow out to the accommodating portion 60 through the insoluble gas force covering material 20 guided to the internal space 53 of the processor main body 52. .
  • the gas outflow hole 16 is formed in the processor body 52 so that insoluble gas bubbles flow out from the bottom 60 a of the container 60 into the container 60. With such a configuration, it is possible to obtain a degassing processor 50 having a function of accommodating molten metal.
  • a gas outflow hole 16 is formed in a part of the processor main body 52 constituting the side wall 60b of the housing 60 so that the insoluble gas bubbles also flow into the housing 60 from the side wall 60b of the housing 60. May be.
  • FIG. 15 which is a cross-sectional view of FIG. 14 and a plan view seen from the direction of arrow E in FIG. 14, the bubble generator 51 is formed in a bowl shape
  • a transfer unit 61 for transferring the molten metal may be provided.
  • a gas outflow hole 16 is formed in the processor main body 52 so that the insoluble gas guided to the internal space 53 of the processor main body 52 flows out to the transfer section 61 through the coating material 20. To do.
  • FIG. 15 is a cross-sectional view of FIG. 14 and a plan view seen from the direction of arrow E in FIG. 14
  • the bubble generator 51 is formed in a bowl shape
  • a transfer unit 61 for transferring the molten metal may be provided.
  • a gas outflow hole 16 is formed in the processor main body 52 so that the insoluble gas guided to the internal space 53 of the processor main body 52 flows out to the transfer section 61 through the coating material 20. To do.
  • FIG. 15 is a cross-sectional view of FIG. 14 and
  • the degassing processor 50 forms a bubble generating body 51 in a U-shaped cross-sectional view to form a transfer unit 61, and insoluble gas bubbles are transferred from the bottom 6 la of the transfer unit 61. Gas flow to flow into part 61 An outlet 16 is formed in the processor body 52. With such a configuration, it is possible to obtain a degassing processor 50 capable of performing degassing while transferring molten metal from a melting furnace or the like to a ladle or the like. A gas outflow hole 16 is formed in a part of the processor body 52 constituting the side wall 61b of the transfer unit 61 so that insoluble gas bubbles also flow into the transfer unit 61 from the side wall 61b of the transfer unit 61. May be.
  • the bubble generating body 51 is formed in a U-shape in cross section to constitute the transfer unit 61.
  • the bubble generating body 51 is formed in a U-shape in cross section to constitute the transfer unit 61.
  • the bubble generating body 51 it is also possible to form the bubble generating body 51 so as to have a U-shape in cross section and to configure the transfer section 61.
  • the force for forming a plurality of gas outflow holes 16 over substantially the entire area of the one surface 52a of the processor main body 52 is as described above.
  • the configuration is not particularly limited, and for example, a configuration in which a plurality of gas outflow holes 16 are formed in the central portion of the one surface 52a of the processor main body 52 may be employed.
  • the bubble generating body 51 is formed in a rectangular flat plate shape in plan view.
  • the present invention is not particularly limited to this shape. It can be formed in various shapes such as a flat plate shape having a circular view.
  • the porous plug 40 which is also a porous refractory material, is attached to the gas outflow hole 16 formed in the processor body 52, and the porous plug 40 is porous.
  • a configuration in which the stopper 40 is covered with the covering material 20 can also be adopted. The effect of adopting such a configuration is the same as the effect described in the modification of Lance Neuve shown in FIG.
  • the processor main body 52 may be formed of a wire mesh member.
  • the wire mesh member the member described in the above-described modification of the lance pipe can be employed.
  • the mesh portion of the wire mesh member corresponds to the gas outflow hole 16, so that it is not necessary to separately form the gas outflow hole 16 and the degassing processor 50 is low in cost. Can be manufactured.
  • the processor main body 52 made of a wire mesh member has elasticity, it effectively prevents peeling and cracking of the coating material 20 caused by a difference in thermal expansion between the processor main body 52 and the coating material 20. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A lance pipe, degasification equipment, container with degasification equipment and watershoot with degasification equipment structured so as to attain efficient degasification of molten metal. There is provided lance pipe (1) for blowing an insoluble gas into molten metal to thereby attain degasification thereof, comprising metal-made pipe main body (10) and coating material (20) of porous refractory covering the pipe main body (10), wherein the pipe main body (10) at its side wall is provided with gas outflow hole (16) covered with the coating material (20).

Description

明 細 書  Specification
ランスパイプ、脱ガス処理器、脱ガス処理器付き容器及び脱ガス処理器 付き樋  Lance pipe, degassing device, container with degassing device and dredging with degassing device
技術分野  Technical field
[0001] 本発明は、ランスパイプ、脱ガス処理器、脱ガス処理器付き容器及び脱ガス処理器 付き樋に関する。  The present invention relates to a lance pipe, a degassing device, a container with a degassing device, and a bowl with a degassing device.
背景技術  Background art
[0002] 従来、溶湯金属の精鍊において、溶湯金属中に不活性ガス等を吹き込み、溶湯中 に溶解して ヽる水素等を不活性ガス等の気泡中に移行させて除去する脱ガス処理 が行われている。  [0002] Conventionally, in the refinement of molten metal, there has been a degassing process in which an inert gas or the like is blown into the molten metal, and hydrogen or the like dissolved in the molten metal is transferred to bubbles of inert gas or the like to be removed. Has been done.
[0003] 溶湯金属中に不活性ガス等を吹き込むには、例えば、特許文献 1に示すようなラン スパイプが用いられている。このランスパイプは、図 7に示すように、両端部が開口す るガス供給管 101と、このガス供給管 101を被覆する耐火材 102と、ガス供給管 101 の一方の開口を閉塞するようにして設置される通気性耐火物 103とを備えている。こ のように構成されたランスパイプ 100を溶湯金属に浸漬させて不活性ガスを導入する ことにより、不活性ガスは、通気性耐火物 103を通過してランスノイブ 100の先端から 多数の気泡 Gとなって溶湯金属中に流出する。溶湯金属中に溶解して 、る水素等は 、通気性耐火物 103から流出した不活性ガスの気泡 G中に移行して、溶湯から除去 される。  [0003] In order to blow an inert gas or the like into molten metal, for example, a lance pipe as shown in Patent Document 1 is used. As shown in FIG. 7, the lance pipe closes one opening of the gas supply pipe 101, the gas supply pipe 101 that opens at both ends, the refractory material 102 that covers the gas supply pipe 101, and the gas supply pipe 101. And breathable refractory 103 installed. By introducing the inert gas by immersing the lance pipe 100 configured in this manner in the molten metal, the inert gas passes through the breathable refractory 103 and passes through a number of bubbles G from the tip of the lance nove 100. It flows out into the molten metal. Hydrogen or the like dissolved in the molten metal moves into the inert gas bubbles G flowing out from the breathable refractory 103 and is removed from the molten metal.
特許文献 1 :特開平 2— 301526号公報  Patent Document 1: JP-A-2-301526
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しカゝしながら、上述したランスパイプを用いて溶湯金属の脱ガス処理を行った場合、 溶湯金属全体に不活性ガスの気泡を行き渡らせることが難しぐ脱ガス処理を効率的 に行うことが困難であるという問題があった。 [0004] However, when the molten metal degassing process is performed using the lance pipe described above, the degassing process is difficult because it is difficult to spread the bubbles of the inert gas throughout the molten metal. There was a problem that it was difficult to do.
[0005] 本発明は、このような問題を解決するためになされたものであって、溶湯金属の脱 ガス処理を効率良く行うことができるランスパイプ、脱ガス処理器、脱ガス処理器付き 容器および脱ガス処理器付き樋を提供することを目的とする。 [0005] The present invention has been made to solve such problems, and is equipped with a lance pipe, a degassing processor, and a degassing processor that can efficiently perform degassing of molten metal. An object is to provide a container and a basket with a degasser.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の上記目的は、溶湯金属中に不溶性ガスを吹き込んで脱ガス処理を行うた めのランスパイプであって、金属製の管本体と、前記管本体を被覆する多孔質性耐 火材からなる被覆材とを備えており、前記管本体の側壁には、前記被覆材で被覆さ れるガス流出孔が形成されているランスパイプにより達成される。  [0006] The object of the present invention is a lance pipe for performing degassing treatment by blowing an insoluble gas into a molten metal, and comprising a metal tube main body and a porous resistant material that covers the tube main body. This is achieved by a lance pipe in which a gas outflow hole covered with the covering material is formed on the side wall of the pipe body.
[0007] また、このランスパイプにおいて、前記管本体は、曲がり部を有しており、前記ガス 流出孔は、前記管本体の前記曲がり部よりも先端側に形成されていることが好ましい  [0007] Further, in this lance pipe, it is preferable that the tube main body has a bent portion, and the gas outflow hole is formed on a distal end side of the bent portion of the tube main body.
[0008] また、前記被覆材は、ガラス繊維カゝら成る基材シートにガラス質コーティング剤を含 浸させると共に、前記基材シートの表面全体をガラス質コーティング剤の塗布膜で覆 うことにより形成されて 、ることが好まし!/、。 [0008] Further, the coating material includes a base sheet made of glass fiber soaked with a glassy coating agent, and the entire surface of the base sheet is covered with a coating film of the glassy coating agent. Formed, prefer to be! /
[0009] また、前記ガス流出孔には、多孔質性耐火材カもなる多孔質栓が装着されており、 前記多孔質栓は、前記被覆材により被覆されていることが好ましい。 [0009] In addition, it is preferable that a porous stopper which is also a porous refractory material is attached to the gas outflow hole, and the porous stopper is covered with the covering material.
[0010] また、前記管本体の少なくとも一部は、金網状部材を筒状に形成して構成してもよ い。 [0010] Further, at least a part of the tube main body may be configured by forming a wire mesh member in a cylindrical shape.
[0011] また、本発明の上記目的は、溶湯金属中に不溶性ガスを吹き込んで脱ガス処理を 行うための脱ガス処理器であって、内部空間を有する金属製の処理器本体と、前記 処理器本体を被覆する多孔質性耐火材からなる被覆材とを有する気泡発生体を備 えており、前記気泡発生体には、前記内部空間に不溶性ガスを導くガス導入部が形 成されており、前記処理器本体には、前記被覆材で被覆されるガス流出孔が形成さ れて 、る脱ガス処理器により達成される。  [0011] Further, the object of the present invention is a degassing treatment device for performing degassing treatment by blowing an insoluble gas into a molten metal, the metal treatment device main body having an internal space, and the treatment A bubble generating body having a covering material made of a porous refractory material covering the container body, and the bubble generating body is formed with a gas introduction portion for introducing an insoluble gas into the internal space, A gas outflow hole covered with the coating material is formed in the processor main body, and this is achieved by the degassing processor.
[0012] また、この脱ガス処理器にぉ ヽて、前記気泡発生体は、平板状に形成されており、 前記ガス流出孔は、前記気泡発生体の少なくとも一方面力 不溶性ガスが流出する ように形成されて 、ることが好まし 、。  [0012] In addition, the bubble generating body is formed in a flat plate shape over the degassing processor, and at least one surface force insoluble gas of the bubble generating body flows out from the gas outflow hole. It is preferred to be formed into.
[0013] また、前記気泡発生体は、溶湯金属が収容される収容部を備えており、前記ガス流 出孔は、前記収容部に不溶性ガスが流出するように形成されて 、ることが好ま 、。  [0013] Further, it is preferable that the bubble generating body includes a housing portion in which a molten metal is accommodated, and the gas outflow hole is formed so that insoluble gas flows out into the housing portion. ,.
[0014] また、前記気泡発生体は、溶湯金属が移送される移送部を備えており、前記ガス流 出孔は、前記移送部に不溶性ガスが流出するように形成されてことが好ましい。 [0014] Further, the bubble generating body includes a transfer portion to which the molten metal is transferred, and the gas flow The outlet hole is preferably formed so that insoluble gas flows out to the transfer section.
[0015] また、前記被覆材は、ガラス繊維カゝら成る基材シートにガラス質コーティング剤を含 浸させると共に、前記基材シートの表面全体をガラス質コーティング剤の塗布膜で覆 うことにより形成されて 、ることが好まし!/、。  [0015] In addition, the coating material is obtained by impregnating a substrate sheet made of glass fiber cover with a glassy coating agent and covering the entire surface of the substrate sheet with a coating film of the glassy coating agent. Formed, prefer to be! /
[0016] また、前記ガス流出孔には、多孔質性耐火材カもなる多孔質栓が装着されており、 前記多孔質栓は、前記被覆材により被覆されていることが好ましい。 [0016] In addition, it is preferable that a porous stopper which is also a porous refractory material is attached to the gas outflow hole, and the porous stopper is covered with the covering material.
[0017] また、前記処理器本体の少なくとも一部は、金網状部材により構成されていることが 好ましい。 [0017] Further, it is preferable that at least a part of the processor main body is formed of a wire mesh member.
[0018] また、本発明の上記目的は、脱ガス処理器と、溶湯金属が収容される収容空間とを 備える脱ガス処理器付き容器であって、前記気泡発生体が、前記収容空間に配置さ れて 、る脱ガス処理器付き容器により達成される。  [0018] Further, the object of the present invention is a container with a degassing device comprising a degassing device and a storage space for storing molten metal, wherein the bubble generator is disposed in the storage space. This is achieved by a container with a degasser.
[0019] また、本発明の上記目的は、脱ガス処理器と、溶湯金属が移送される移送空間とを 備える脱ガス処理器付き樋であって、前記気泡発生体が、前記移送空間に配置され て 、る脱ガス処理器付き樋により達成される。 [0019] Further, the above-mentioned object of the present invention is a scissor with a degassing device comprising a degassing device and a transfer space to which the molten metal is transferred, wherein the bubble generator is disposed in the transfer space. This is achieved by using a scissor with a degasser.
発明の効果  The invention's effect
[0020] 本発明によれば、溶湯金属の脱ガス処理を効率良く行うことができるランスノイブ、 脱ガス処理器、脱ガス処理器付き容器および脱ガス処理器付き樋を提供することが できる。  [0020] According to the present invention, it is possible to provide a lance nove, a degassing device, a container with a degassing device, and a slag with a degassing device that can efficiently perform degassing of molten metal.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の一実施形態に係るランスパイプの概略構成断面図である。 FIG. 1 is a schematic sectional view of a lance pipe according to an embodiment of the present invention.
[図 2]図 1の A— A断面を示す断面図である。  FIG. 2 is a cross-sectional view showing the AA cross section of FIG.
[図 3]図 1に示すランスノイブの変形例を示す概略構成断面図である。  FIG. 3 is a schematic cross-sectional view showing a modification of the lance nove shown in FIG.
[図 4]図 1に示すランスパイプの使用方法を説明する説明図である。  FIG. 4 is an explanatory diagram for explaining how to use the lance pipe shown in FIG. 1.
[図 5]図 1に示すランスノイブの他の変形例を示す概略構成断面図である。  FIG. 5 is a schematic sectional view showing another modification of the lance nove shown in FIG.
[図 6]図 1に示すランスノイブの更に他の変形例を示す概略構成断面図である。  FIG. 6 is a schematic sectional view showing still another modification of the lance nove shown in FIG.
[図 7]従来のランスノイブを示す概略構成断面図である。  FIG. 7 is a schematic cross-sectional view showing a conventional lance nove.
[図 8]本発明の一実施形態に係る脱ガス処理器の概略構成断面図である。  FIG. 8 is a schematic cross-sectional view of a degasser according to an embodiment of the present invention.
[図 9]図 8における矢示 B方向から見た平面図である。 圆 10]図 8に示す脱ガス処理器を容器に取り付けた場合の使用方法を説明する説明 図である。 FIG. 9 is a plan view seen from the direction of arrow B in FIG. 圆 10] FIG. 9 is an explanatory diagram for explaining a method of use when the degassing device shown in FIG. 8 is attached to a container.
圆 11]図 8に示す脱ガス処理器を樋に取り付けた場合の使用方法を説明する説明図 である。 [11] FIG. 11 is an explanatory diagram for explaining how to use the degassing device shown in FIG. 8 when attached to the bag.
[図 12]図 11における矢示 C方向力 見た平面図。  FIG. 12 is a plan view of the force in the direction of arrow C in FIG.
圆 13]図 8に示す脱ガス処理器の変形例を示す概略構成断面図である。 13] FIG. 9 is a schematic cross-sectional view showing a modified example of the degassing device shown in FIG.
[図 14]図 8に示す脱ガス処理器の他の変形例を示す概略構成断面図である。 14 is a schematic cross-sectional view showing another modification of the degassing processor shown in FIG.
[図 15]図 14における矢示 E方向力も見た平面図である。 FIG. 15 is a plan view showing force in the direction of arrow E in FIG.
[図 16]図 8に示す脱ガス処理器の更に他の変形例を示す概略構成断面図である。 符号の説明  16 is a schematic cross-sectional view showing still another modification of the degassing processor shown in FIG. Explanation of symbols
1 ランスパイプ  1 Lance pipe
10 管本体  10 Tube body
11 ガス導入管  11 Gas introduction pipe
12 曲がり部  12 Curved part
13 エルボ管  13 Elbow tube
14 ガス流出管  14 Gas outflow pipe
15 取付部  15 Mounting part
16 ガス流出孔  16 Gas outflow hole
20 被覆材  20 Coating material
21 基材シート  21 Substrate sheet
22 塗布膜  22 Coating film
31 取鍋  31 Ladle
40 多孔質栓  40 Porous stopper
50 脱ガス処理器  50 Degasser
51 気泡発生体  51 Bubble generator
52 処理器本体  52 Processor body
53 内部空間  53 Interior space
54 ガス導入部 55 ガス導入配管 54 Gas introduction part 55 Gas introduction piping
56 樋  56 樋
70 容器  70 containers
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明のランスパイプついて添付図面を参照して説明する。図 1は、本発明 の一実施形態に係るランスパイプ 1の概略構成断面図であり、図 2は、図 1の A—A 断面図である。このランスパイプ 1は、図 1に示すように、曲がり部 12を有する金属製 の管本体 10と、管本体 10を被覆する被覆材 20とを備えている。  Hereinafter, the lance pipe of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic sectional view of a lance pipe 1 according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA in FIG. As shown in FIG. 1, the lance pipe 1 includes a metal pipe body 10 having a bent portion 12 and a covering material 20 that covers the pipe body 10.
[0024] 管本体 10は、曲がり部 12を構成するエルボ管 13を介して接続されるガス導入管 1 1およびガス流出管 14を備えており、全体形状が、側面視 L字状となるように構成さ れている。ガス導入管 11、ガス流出管 14およびエルボ管 13は、普通鋼、ステンレス 、铸鉄などの金属材料から構成されている。  [0024] The pipe body 10 includes a gas introduction pipe 11 and a gas outflow pipe 14 connected via an elbow pipe 13 constituting the bent portion 12, so that the overall shape is L-shaped in a side view. Is configured. The gas introduction pipe 11, the gas outflow pipe 14 and the elbow pipe 13 are made of a metal material such as ordinary steel, stainless steel or pig iron.
[0025] ガス導入管 11は、両端に開口部を有するパイプ状部材であり、一方端がエルボ管 13に接続している。ガス導入管 11の他方端は、図示しない不溶性ガスの供給源から 延びるガス供給配管を取り付けるための取付部 15を備えている。ここで、不溶性ガス とは、溶湯金属に溶解しないガスの他、溶湯金属に溶解しにくいガスを含む概念で あり、例えば、アルゴン等の不活性ガスや、窒素、塩素等のガスを使用することができ る。  The gas introduction pipe 11 is a pipe-like member having openings at both ends, and one end is connected to the elbow pipe 13. The other end of the gas introduction pipe 11 is provided with an attachment portion 15 for attaching a gas supply pipe extending from an insoluble gas supply source (not shown). Here, the insoluble gas is a concept including a gas that does not dissolve in the molten metal and a gas that is difficult to dissolve in the molten metal. For example, an inert gas such as argon or a gas such as nitrogen or chlorine is used. You can.
[0026] ガス流出管 14は、管本体 10の曲がり部 12よりも先端側を構成するパイプ状部材で あり、一方端が閉塞された有底状に形成されている。ガス流出管 14の他方端は、ェ ルポ管 13に接続している。このガス流出管 14の側壁には、当該ガス流出管 14の長 手方向に沿って所定間隔を空けて形成される複数のガス流出孔 16が形成されてい る。このガス流出孔 16は、被覆材 20により被覆されている。ガス流出孔 16の孔形状 や個数は特に限定されず、例えば、孔形状として、円形状、或いは、楕円形状等の 形状を採用することができる。また、ガス流出孔 16を図 3に示すような単一のスリット 1 6aにより構成することもできる。なお、ガス流出管 14の一方端に設けられる底部 14a にガス流出孔 16を更に形成するような構成を採用してもよ!ヽ。  [0026] The gas outflow pipe 14 is a pipe-like member that forms the distal end side of the bent portion 12 of the pipe main body 10, and has a bottomed shape with one end closed. The other end of the gas outflow pipe 14 is connected to the epoxy pipe 13. A plurality of gas outflow holes 16 formed at predetermined intervals along the longitudinal direction of the gas outflow pipe 14 are formed in the side wall of the gas outflow pipe 14. The gas outflow hole 16 is covered with a covering material 20. The hole shape and the number of the gas outflow holes 16 are not particularly limited. For example, a circular shape or an elliptical shape can be adopted as the hole shape. Further, the gas outflow hole 16 can be constituted by a single slit 16a as shown in FIG. A configuration in which a gas outflow hole 16 is further formed in a bottom portion 14a provided at one end of the gas outflow pipe 14 may be adopted.
[0027] 被覆材 20は、例えば、通気率が 3. 5 X 10_14m2〜9. 0 X 10_14m2程度の多孔質 性耐火物から構成されており、図 1及び図 2に示すように、管本体 10の外周面を卷回 するようにして被覆する基材シート 21と、基材シート 21の表面を覆う塗布膜 22とを備 えている。なお、上記通気率は、 JIS規格 R2115 (耐火れんがの通気率の試験方法) に従って求めた値である。基材シート 21は、ガラススリーブ、ガラス織布、ガラス不織 布などのガラス繊維からなり、ガラス繊維のガラス組成は、 Eガラス、 Sガラス、 Tガラス などを好ましく例示することができる。基材シート 21におけるガラス繊維の隙間には、 耐熱性を有するガラス質コーティング剤が、管本体 10への装着前に塗布ゃ浸漬など によって予め含浸されている。耐熱性のガラス質コーティング剤としては、例えば、シ リカ、アルミナ、アルミナ 'シリカ、ジルコン、ジルコユア等の金属酸化物や、炭化ケィ 素、窒化ケィ素等の溶湯と反応し難い耐火物粉末を、水ガラス (アルカリ金属ケィ酸 塩)やシリカゾル、アルミナゾル、或いはこれらの混合物等の水溶液中に分散させた ものを用いることができる。上述した耐火物粉末は、コーティング材の被覆強度を高 めるため、繊維状の素材を粉砕して得られたものが好まし 、。 [0027] coating material 20, for example, permeability is 3. 5 X 10 _14 m 2 ~9 . 0 X 10 _14 m 2 approximately porous 1 and 2, the base sheet 21 that covers the outer surface of the tube body 10 so as to be wound, and the coating film that covers the surface of the base sheet 21 are formed. 22 and. The above air permeability is a value obtained in accordance with JIS standard R2115 (Test method for air permeability of refractory bricks). The base sheet 21 is made of glass fibers such as a glass sleeve, a glass woven fabric, and a glass non-woven fabric, and examples of the glass composition of the glass fibers include E glass, S glass, and T glass. The glass fiber gaps in the base sheet 21 are pre-impregnated with a heat-resistant glassy coating agent before application to the tube body 10 by dipping or the like. Examples of the heat resistant glassy coating agent include metal oxides such as silica, alumina, alumina'silica, zircon, and zircoyu, and refractory powders that do not easily react with molten metal such as silicon carbide and nitride nitride. Water glass (alkali metal silicate), silica sol, alumina sol, or a mixture thereof in an aqueous solution can be used. The above-mentioned refractory powder is preferably obtained by pulverizing a fibrous material in order to increase the coating strength of the coating material.
[0028] 基材シート 21表面への塗布膜 22の形成は、耐熱性を有するガラス質コーティング 剤の塗布により行われる。耐熱性のガラス質コーティング剤の塗布は、基材シート 21 の表面全体に均一に行うことが好ましぐ粘度を適宜調整して複数回繰り返し行うこと が好ましい。こうして得られる塗布膜 22の基材シート 21表面からの厚みは、 2mn!〜 7mm程度が好まし ヽ。基材シート 21の表面に塗布するガラス質コーティング剤も、 基材シート 21に含浸させるガラス質コーティング剤と同様のものを例示することがで きる。 [0028] Formation of the coating film 22 on the surface of the substrate sheet 21 is performed by application of a glassy coating agent having heat resistance. The application of the heat-resistant glassy coating agent is preferably repeated a plurality of times while appropriately adjusting the viscosity, which is preferably performed uniformly over the entire surface of the substrate sheet 21. The thickness of the coating film 22 thus obtained from the surface of the base sheet 21 is 2mn! ~ 7mm is preferred ヽ. Examples of the glassy coating agent applied to the surface of the base sheet 21 can be the same as the glassy coating agent impregnated in the base sheet 21.
[0029] 次に、このように構成されたランスパイプ 1を用いて溶湯金属中に窒素等の不溶性 ガスを吹き込み、溶湯金属中に溶解する水素を除去する方法について説明する。ま ず、図 4に示すように、不溶性ガスの供給源(図示せず)から延びるガス供給配管 30 を取付部 15に接続する。その後、取鍋 31等に収容されている溶湯金属中にランス ノイブ 1を浸漬させる。このとき、溶湯金属中に溶解している水素を効率よく除去する ために、ガス流出管 14が溶湯金属の液面 Sと略平行となるように配置することが好ま しい。なお、ランスパイプ 1を溶湯金属中に浸漬させるには、リフターやクレーン等の 昇降装置 32を用いて行うのが好ま 、。 [0030] 次に、不溶性ガスの供給源力も加圧された不溶性ガスをランスパイプ 1に導く。不溶 性ガスは、ガス導入管 11を介してガス流出管 14に導かれ、ガス流出管 14に形成さ れて ヽる複数のガス流出孔 16に導かれる。ガス流出孔 16に導かれた不溶性ガスは 、多孔質の被覆材 20を通過する際に細分化され、被覆材 20表面から細かい気泡 G となって溶湯金属中に流出する。溶湯金属中に溶解している水素は、被覆材 20表 面力も流出し溶湯金属の液面 Sに向力つて上昇する不溶性ガスの細かい気泡 Gに移 行し、溶湯金属の液面 Sから外部に放出される。 [0029] Next, a method for removing hydrogen dissolved in the molten metal by blowing an insoluble gas such as nitrogen into the molten metal using the lance pipe 1 configured as above will be described. First, as shown in FIG. 4, a gas supply pipe 30 extending from an insoluble gas supply source (not shown) is connected to the mounting portion 15. Then, lance Neuve 1 is immersed in the molten metal contained in ladle 31 or the like. At this time, in order to efficiently remove hydrogen dissolved in the molten metal, it is preferable to arrange the gas outlet pipe 14 so as to be substantially parallel to the liquid surface S of the molten metal. In order to immerse the lance pipe 1 in the molten metal, it is preferable to use a lifting device 32 such as a lifter or a crane. [0030] Next, the insoluble gas pressurized as the supply source force of the insoluble gas is guided to the lance pipe 1. The insoluble gas is led to the gas outflow pipe 14 through the gas introduction pipe 11 and is led to the plurality of gas outflow holes 16 formed in the gas outflow pipe 14. The insoluble gas introduced into the gas outflow hole 16 is subdivided when passing through the porous coating material 20 and flows out into the molten metal as fine bubbles G from the surface of the coating material 20. The hydrogen dissolved in the molten metal also flows out to the surface 20 of the coating material and moves to the fine bubbles G of the insoluble gas that rises against the molten metal liquid surface S, and from the molten metal liquid surface S to the outside. To be released.
[0031] このように本実施形態に係るランスパイプ 1によれば、ランスノイブ 1の側面力 不 溶性ガスの気泡を溶湯金属中に流出できるように構成して ヽるので、溶湯金属の広 い範囲にわたって脱ガス処理を行うことが可能になる。この結果、溶湯金属中に溶解 している水素を効率良く除去することができる。  [0031] As described above, according to the lance pipe 1 according to the present embodiment, the side force of the lance nove 1 can be configured so that bubbles of the insoluble gas can flow into the molten metal. It is possible to perform a degassing process. As a result, hydrogen dissolved in the molten metal can be efficiently removed.
[0032] また、本実施形態に係るランスパイプ 1は、管本体 10が曲がり部 12を有すると共に 、管本体 10の曲がり部 12よりも先端側にガス流出孔 16が形成されているため、ラン スパイプ 1を容易に支持することができると共に、ランスパイプ 1における不溶性ガス の気泡が生成される側面を溶湯金属の任意の深さまで容易に浸漬させることができ る。さらに、ランスパイプ 1により生成される不溶性ガスの気泡を、溶湯金属の同一深 度付近から溶湯金属中に流出させることができるので、溶湯金属中における不溶性 ガスの気泡の滞留時間を略一定にすることができ、より一層効率良く脱ガス処理を行 うことができる。  In the lance pipe 1 according to the present embodiment, the tube body 10 has the bent portion 12 and the gas outflow hole 16 is formed on the tip side of the bent portion 12 of the tube body 10. The spipe 1 can be easily supported, and the side surface of the lance pipe 1 where insoluble gas bubbles are generated can be easily immersed to an arbitrary depth of the molten metal. Furthermore, since the insoluble gas bubbles generated by the lance pipe 1 can flow into the molten metal from around the same depth of the molten metal, the residence time of the insoluble gas bubbles in the molten metal is made substantially constant. Therefore, the degassing process can be performed more efficiently.
[0033] また、本実施形態に係るランスパイプ 1は、ランスパイプ 1の全長にわたって金属製 の管本体 10を内部に備えているため、ランスパイプ 1の取り扱い時における衝撃や、 脱ガス処理時における作業負荷によって、ランスパイプ 1が折損することを防止するこ とができ、ランスパイプ 1の耐衝撃性や耐久性を高めることができる。  [0033] In addition, since the lance pipe 1 according to the present embodiment includes a metal pipe body 10 in the entire length of the lance pipe 1, an impact during the handling of the lance pipe 1 and a degassing process are provided. It is possible to prevent the lance pipe 1 from being broken by the work load, and to improve the impact resistance and durability of the lance pipe 1.
[0034] また、管本体 10の表面に被覆される被覆材 20は、ガラス繊維カゝら成る基材シート 2 1にガラス質コーティング剤を含浸させると共に、基材シート 21の表面全体をガラス質 コーティング剤の塗布膜 22で覆うことにより形成されているので、溶湯金属に対する ぬれ性が悪ぐ溶湯金属によって被覆材 20に目詰まりが発生することを防止すること ができる。この結果、ガス流出孔 16を介して多孔質性の被覆材 20に導かれた不溶 性ガスが、当該被覆材 20を通過できなくなるような事態が発生することを効果的に防 止することができ、ランスパイプ 1の長時間使用が可能になる。また、このように構成さ れた被覆材 20は、耐食性にも優れている材料なので、ランスパイプ 1が溶損すること を効果的に防止することができ、さらに、若干の柔軟性を有しているため、管本体 10 と被覆材 20との熱膨張差によって生じる被覆材 20の剥離や亀裂を効果的に防止す ることがでさる。 [0034] Further, the covering material 20 to be coated on the surface of the tube body 10 impregnates the base material sheet 21 made of glass fiber cover with the vitreous coating agent, and the entire surface of the base material sheet 21 is vitreous. Since it is formed by covering with the coating film 22 of the coating agent, it is possible to prevent the coating material 20 from being clogged by the molten metal having poor wettability to the molten metal. As a result, the insoluble matter introduced into the porous covering material 20 through the gas outflow holes 16 is obtained. As a result, it is possible to effectively prevent the occurrence of a situation in which the functional gas cannot pass through the covering material 20, and the lance pipe 1 can be used for a long time. In addition, since the covering material 20 configured in this way is a material having excellent corrosion resistance, it is possible to effectively prevent the lance pipe 1 from being melted and to have some flexibility. Therefore, it is possible to effectively prevent peeling and cracking of the covering material 20 caused by a difference in thermal expansion between the tube body 10 and the covering material 20.
[0035] 以上、本発明の一実施形態について説明したが、本発明の具体的な態様は上記 実施形態に限定されず、例えば、図 5に示すように、ガス流通管に形成されるガス流 出孔 16に多孔質性耐火材からなる多孔質栓 40を装着する構成を採用することもで きる。この多孔質栓 40は、被覆材 20により被覆されている。このような構成によれば、 ガス導入管 11を介してガス流出管 14に導かれた不溶性ガスは、多孔質栓 40を通過 した後、ガス流出管 14を被覆する被覆材 20に進入して溶湯金属中に流出するので 、被覆材 20を直接押圧する不溶性ガスの力を軽減させることができる。この結果、不 溶性ガスの押圧力によって被覆材 20が管本体力 剥離することを防止することが可 能となる。また、図 6に示すように、管本体 10を貫通するように多孔質栓 40を装着す るようにしてもよい。ここで、多孔質栓 40は、アルミナ、アルミナ 'シリカ、ジルコン等の 耐火粉末を成形し、焼結せしめたものであり、例えば、通気率が 4. O X 10_14m2〜l 5. 0 X 10_14m2程度であることが好ましい。なお、この通気率は、 JIS規格 R2115 (耐 火れんがの通気率の試験方法)に従って求めた値である。 Although one embodiment of the present invention has been described above, the specific aspect of the present invention is not limited to the above-described embodiment. For example, as shown in FIG. 5, the gas flow formed in the gas flow pipe A configuration in which a porous stopper 40 made of a porous refractory material is attached to the outlet 16 can also be adopted. The porous plug 40 is covered with a covering material 20. According to such a configuration, the insoluble gas guided to the gas outflow pipe 14 via the gas introduction pipe 11 passes through the porous plug 40 and then enters the covering material 20 that covers the gas outflow pipe 14. Since it flows out into the molten metal, the force of the insoluble gas that directly presses the coating material 20 can be reduced. As a result, it is possible to prevent the covering material 20 from being peeled off by the pressure of the insoluble gas. Further, as shown in FIG. 6, a porous plug 40 may be attached so as to penetrate the tube body 10. Here, the porous plug 40 is formed by molding and sintering a fireproof powder such as alumina, alumina′silica , zircon, etc., for example, the air permeability is 4. OX 10 _14 m 2 to l 5.0 X It is preferably about 10 _14 m 2 . This air permeability is a value determined according to JIS standard R2115 (Test method for air permeability of refractory bricks).
[0036] なお、被覆材 20により被覆されている多孔質栓 40の少なくとも一部力 外部に露 出するような構成を採用し、ランスノイブ 1内を通過する不溶性ガス力 多孔質栓 40 の露出部力も直接的に溶湯金属中に流出するような構成を採用することもできる。  [0036] It should be noted that a structure in which at least a part of the force of the porous plug 40 covered with the coating material 20 is exposed to the outside is adopted, and the exposed portion of the porous plug 40 that passes through the lance nove 1 is insoluble gas force. It is also possible to adopt a configuration in which the force also flows directly into the molten metal.
[0037] また、本実施形態における管本体 10の少なくとも一部を、金網状部材を筒状に形 成して構成してもよい。金網状部材としては、エキスパンドメタルや金属製のメッシュ 状パネル等を例示することができる。例えば、金網状部材を筒状に形成して本実施 形態におけるガス流出管 14を構成した場合、金網状部材のメッシュ部分が、ガス流 出孔 16に相当するので、当該ガス流出孔 16を別途形成する必要がなぐ低コストで ランスパイプ 1を製造することが可能になる。また、管本体 10の少なくとも一部を、金 網状部材を筒状に形成して構成した場合、管本体 10と被覆材 20との熱膨張率の相 違に基づいて発生する両者間の歪みを、金網状部材により形成した管本体 10の一 部が吸収するため、被覆材 20に剥離や亀裂等が発生することを効果的に防止する ことができる。 [0037] In addition, at least a part of the tube body 10 in the present embodiment may be configured by forming a wire mesh member into a cylindrical shape. Examples of the wire mesh member include expanded metal and metal mesh panels. For example, when the gas net member is formed in a cylindrical shape to form the gas outflow pipe 14 in the present embodiment, the mesh portion of the metal net member corresponds to the gas outflow hole 16, and therefore the gas outflow hole 16 is separately provided. The lance pipe 1 can be manufactured at a low cost that does not need to be formed. Further, at least a part of the pipe body 10 is made of gold. When the net-like member is formed in a cylindrical shape, distortion between the two due to the difference in the coefficient of thermal expansion between the pipe main body 10 and the covering material 20 is caused by one of the pipe main bodies 10 formed by the metal net-like member. Therefore, it is possible to effectively prevent the covering material 20 from being peeled off or cracked.
[0038] また、本実施形態においては、エルボ管 13を介してガス導入管 11とガス流出管 14 とを接続することにより管本体 10を構成しているが、例えば、単一の直線状の金属管 を曲げ形成により側面視 L字状となるように形成し、当該 L字状金属管の曲がり部 12 よりも先端側にガス流出孔 16を形成するようにして管本体 10を構成することもできる  In the present embodiment, the pipe body 10 is configured by connecting the gas introduction pipe 11 and the gas outflow pipe 14 via the elbow pipe 13, but for example, a single linear shape is used. The pipe body 10 is configured so that the metal tube is formed to be L-shaped in side view by bending and the gas outflow hole 16 is formed on the tip side of the bent portion 12 of the L-shaped metal tube. Can also
[0039] また、本実施形態においては、ガス流出管 14は、一方端が閉塞された有底状のパ イブ状部材力 形成されている力 例えば,両端に開口部を有するパイプ状部材を 使用すると共に、当該パイプ状部材の一端側を閉塞させるキャップを取り付けること によりガス流出管 14を構成してもよい。 [0039] In the present embodiment, the gas outflow pipe 14 uses a bottomed pipe-shaped member force with one end closed. For example, a pipe-shaped member having openings at both ends is used. In addition, the gas outflow pipe 14 may be configured by attaching a cap that closes one end of the pipe-shaped member.
[0040] また、本実施形態にぉ 、ては、管本体 10の形状を側面視 L字状に構成して 、るが 、このような形状に特に限定されず、例えば、直線状や、湾曲状に構成することもでき る。  [0040] Further, according to the present embodiment, the shape of the tube body 10 is configured to be L-shaped when viewed from the side, but is not particularly limited to such a shape. For example, the shape is linear or curved. Can also be configured.
[0041] 次に、本発明の脱ガス処理器について添付図面を参照して説明する。図 8は、本 発明の一実施形態に係る脱ガス処理器の概略構成断面図であり、図 9は、図 8に示 す矢示 B方向から見た平面図である。この脱ガス処理器 50は、図 8及び図 9に示すよ うに、気泡発生体 51と、ガス導入配管 55とを備えている。  [0041] Next, the degassing apparatus of the present invention will be described with reference to the accompanying drawings. FIG. 8 is a schematic cross-sectional view of a degassing apparatus according to an embodiment of the present invention, and FIG. 9 is a plan view seen from the direction indicated by the arrow B shown in FIG. As shown in FIGS. 8 and 9, the degassing processor 50 includes a bubble generating body 51 and a gas introduction pipe 55.
[0042] 気泡発生体 51は、平面視矩形状の平板状に形成されており、内部空間 53を有す る金属製の処理器本体 52と、当該処理器本体 52を被覆する多孔質性耐火材からな る被覆材 20とを備えている。この気泡発生体 51の一方面 51aにおける側縁近傍に は、処理器本体 52の内部空間 53に不溶性ガスを導くガス導入部 54が形成されてお り、当該ガス導入部 54にガス導入配管 55が接続されている。  [0042] The bubble generating body 51 is formed in a flat plate shape having a rectangular shape in plan view, and is made of a metal processing device main body 52 having an internal space 53, and a porous fireproof covering the processing device main body 52. And a covering material 20 made of a material. In the vicinity of the side edge of one surface 51a of the bubble generating body 51, a gas introduction part 54 for introducing an insoluble gas to the internal space 53 of the processor main body 52 is formed, and a gas introduction pipe 55 is connected to the gas introduction part 54. Is connected.
[0043] 処理器本体 52は、普通鋼、ステンレス、铸鉄などの金属材料力もなり、平面視矩形 状の平板状に形成されている。この処理器本体 52は、上述のように内部空間 53を備 えて 、る。ガス導入部 54が形成されて 、る処理器本体 52の一方面 52aの略全域に は、内部空間 53に導かれた不溶性ガスを流出するガス流出孔 16が所定間隔を開け て複数形成されている。このガス流出孔 16は、多孔質性耐火材カゝらなる被覆材 20に より被覆されており、これにより、処理器本体 52の内部空間 53に導かれた不溶性ガ スカ ガス流出孔 16と被覆材 20とを介して、気泡発生体 51の一方面 51aから流出す ることができる。また、ガス流出孔 16の孔形状や個数は特に限定されず、例えば、孔 形状として、平面視円形状、或いは、平面視楕円形状等の形状を採用することがで きる。また、ガス流出孔 16をスリットにより構成することもできる。なお、処理器本体 52 の他方面 52bにガス流出孔 16を更に形成するような構成や、処理器本体 52の端面 52c, 52c, 52c, 52cにガス流出孔 16を更に形成するような構成を採用してもよい。 [0043] The processor main body 52 is also formed of a flat plate having a rectangular shape in plan view, and is made of a metal material such as ordinary steel, stainless steel, pig iron and the like. The processor main body 52 is provided with the internal space 53 as described above. A gas introduction part 54 is formed, and is substantially over the entire area of the one surface 52a of the processor body 52. A plurality of gas outflow holes 16 through which the insoluble gas led to the internal space 53 flows out are formed at predetermined intervals. The gas outflow holes 16 are covered with a covering material 20 such as a porous refractory material, and thereby the insoluble gas gas gas outflow holes 16 led to the internal space 53 of the processor main body 52 and the covering are covered. It can flow out from the one surface 51a of the bubble generating body 51 through the material 20. Further, the hole shape and the number of the gas outflow holes 16 are not particularly limited. For example, a shape such as a circular shape in plan view or an elliptical shape in plan view can be adopted as the hole shape. Further, the gas outflow hole 16 can be constituted by a slit. A configuration in which the gas outflow hole 16 is further formed in the other surface 52b of the processing unit main body 52, or a configuration in which the gas outflow hole 16 is further formed in the end surfaces 52c, 52c, 52c, 52c of the processing unit main body 52. It may be adopted.
[0044] 被覆材 20は、上述したランスパイプ 1に用いられるものと同一の構成を備えている ので、ここでは詳細な説明を省略する。  Since the covering material 20 has the same configuration as that used for the lance pipe 1 described above, detailed description thereof is omitted here.
[0045] ガス導入配管 55は、両端に開口部を有するノイブ状部材 55aに被覆材 20を被覆 して構成されており、その一方端がガス導入部 54に接続している。ガス導入配管 55 の他方端は、図示しな 、不溶性ガスの供給源カゝら延びるガス供給配管を取り付ける ための取付部 55bを備えて 、る。ガス導入配管 55を構成するパイプ状部材 55aは、 例えば、普通鋼、ステンレス、铸鉄などの金属材料から構成されている。  [0045] The gas introduction pipe 55 is configured by covering a noise member 55a having openings at both ends with a covering material 20, and one end thereof is connected to the gas introduction part 54. The other end of the gas introduction pipe 55 is provided with an attachment portion 55b for attaching a gas supply pipe extending from the insoluble gas supply source, not shown. The pipe-like member 55a constituting the gas introduction pipe 55 is made of a metal material such as ordinary steel, stainless steel, pig iron, and the like.
[0046] このように構成された脱ガス処理器 50の作動について以下説明する。脱ガス処理 器 50を用いて溶湯金属中に溶解する水素等を除去するには、まず、図 10に示すよ うに、溶湯金属の保持炉ゃ取鍋のような容器 70における溶湯金属が収容される収容 空間 70aに脱ガス処理器 50の気泡発生体 51を配置する。このとき、溶湯金属中に 溶解して!/、る水素等を効率よく除去するために、気泡発生体 51の他方面 5 lbが収容 空間 70aの底面に接するように配置することが好ま 、。  [0046] The operation of the degassing device 50 configured as described above will be described below. In order to remove hydrogen and the like dissolved in the molten metal using the degasser 50, first, as shown in FIG. 10, the molten metal in the container 70 such as a ladle holding furnace is accommodated. The bubble generating body 51 of the degassing processor 50 is disposed in the accommodating space 70a. At this time, in order to efficiently remove hydrogen and the like dissolved in the molten metal, it is preferable that the other surface 5 lb of the bubble generating body 51 is disposed in contact with the bottom surface of the housing space 70a.
[0047] その後、容器 70の収容空間 70aに溶湯金属を収容すると共に、ガス導入配管 55を 介して不溶性ガスを気泡発生体 51に供給する。気泡発生体 51に導かれた不溶性ガ スは、処理器本体 52の内部空間 53、ガス流出孔 16および多孔質性耐火材カもなる 被覆材 20を介して、気泡発生体 51の一方面 51aの略全域力も細かい気泡 Gとなつ て容器 70の収容空間 70aに収容されて 、る溶湯金属中に流出する。溶湯金属中に 溶解している水素等は、気泡発生体 51の一方面 51aから流出し溶湯金属の液面 S に向カゝつて上昇する不溶性ガスの細かい気泡 Gに移行し、溶湯金属の液面 Sから外 部に放出される。 [0047] Thereafter, the molten metal is accommodated in the accommodating space 70a of the container 70, and insoluble gas is supplied to the bubble generating body 51 through the gas introduction pipe 55. The insoluble gas introduced to the bubble generating body 51 passes through the inner space 53 of the processing unit main body 52, the gas outflow hole 16 and the covering material 20 which is also a porous refractory material 51, and the one side 51a of the bubble generating body 51 The almost whole area force becomes a fine bubble G, which is accommodated in the accommodating space 70a of the container 70 and flows out into the molten metal. Hydrogen or the like dissolved in the molten metal flows out from one surface 51a of the bubble generating body 51 and flows into the liquid metal surface S. It moves to fine bubbles G of insoluble gas that rises toward the surface, and is discharged from the liquid surface S of the molten metal to the outside.
[0048] このように、本実施形態に係る脱ガス処理器 50によれば、平板状に形成された気 泡発生体 51の一方面 5 laの略全域カゝら不溶性ガスの気泡 Gを溶湯金属中に流出で きるように構成して 、るので、溶湯金属中に溶解して 、る水素等を広範囲にわたって 効率良く除去することができる。  [0048] Thus, according to the degassing processor 50 according to the present embodiment, the insoluble gas bubbles G from the substantially entire surface of the one surface 5 la of the bubble generating body 51 formed in a flat plate shape are melted. Since it is configured to flow out into the metal, hydrogen and the like dissolved in the molten metal can be efficiently removed over a wide range.
[0049] また、本実施形態に係る脱ガス処理器 50における気泡発生体 51は、その内部に 金属製の処理器本体 52を備えているため、脱ガス処理器 50の取り扱い時における 衝撃によって、気泡発生体 51が破損することを効果的に防止することができ、脱ガス 処理器 50の耐衝撃性や耐久性を高めることができる。  [0049] Further, since the bubble generating body 51 in the degassing processor 50 according to the present embodiment includes a metal processing body 52 in the interior thereof, due to an impact during handling of the degassing processor 50, It is possible to effectively prevent the bubble generating body 51 from being damaged, and to improve the impact resistance and durability of the degassing processor 50.
[0050] また、処理器本体 52の表面に被覆される被覆材 20は、上述のランスノィプ 1にお けるものと同一の構成を備えているので、溶湯金属に対するぬれ性が悪ぐ溶湯金 属によって被覆材 20に目詰まりが発生することを防止することができる。この結果、ガ ス流出孔 16を介して多孔質性の被覆材 20に導かれた不溶性ガスが、当該被覆材 2 0を通過できなくなるような事態が発生することを効果的に防止することができ、脱ガ ス処理器 50の長時間使用が可能になる。また、被覆材 20は、耐食性にも優れている 材料なので、脱ガス処理器 50が溶損することを効果的に防止することができ、さらに 、若干の柔軟性を有しているため、処理器本体 52と被覆材 20との熱膨張差によって 生じる被覆材 20の剥離や亀裂を効果的に防止することができる。  [0050] In addition, since the covering material 20 to be coated on the surface of the processor main body 52 has the same configuration as that in the lance noop 1 described above, it depends on the molten metal having poor wettability with respect to the molten metal. The clogging of the covering material 20 can be prevented. As a result, it is possible to effectively prevent the occurrence of a situation in which the insoluble gas guided to the porous coating material 20 through the gas outflow hole 16 cannot pass through the coating material 20. The degassing processor 50 can be used for a long time. In addition, since the coating material 20 is a material having excellent corrosion resistance, it is possible to effectively prevent the degassing processor 50 from being melted and to have a slight flexibility. It is possible to effectively prevent peeling and cracking of the covering material 20 caused by the difference in thermal expansion between the main body 52 and the covering material 20.
[0051] 上記脱ガス処理器 50の作動説明として、保持炉ゃ取鍋等の容器 70の収容空間 7 Oaに脱ガス処理器 50の気泡発生体 51を配置する場合を例にとり説明したが、例え ば、溶解炉カゝら排出された溶湯金属を保持炉ゃ取鍋等に移送する樋に脱ガス処理 器 50を取り付けて、溶湯金属中に溶解する水素等を除去することもできる。具体的に 説明すると、例えば図 11の断面図及び図 11における矢示 C方向力も見た図 12の平 面図に示すように、溶湯金属が移送される移送空間 57と、溶湯表面に浮遊するスラ グ等の不純物が移送方向(図 11に示す矢示 D方向)に流れることを防止する仕切板 58とを備える樋 56において、仕切板 58に対して溶湯金属の移送方向側(下流側) における移送空間 57に脱ガス処理器 50の気泡発生体 51を配置して、溶湯金属を 溶解炉から取鍋等に移送しながら、ガス導入配管 55を介して不溶性ガスを気泡発生 体 51に供給し、気泡発生体 51の一方面 51aから細かい気泡を移送中の溶湯金属 中に流出する。なお、図 11及び図 12に示す脱ガス処理器 50においては、 2つのガ ス導入配管 55, 55を気泡発生体 51に取り付ける構成を示して 、る。 [0051] As an explanation of the operation of the degassing device 50, the case where the bubble generating body 51 of the degassing device 50 is arranged in the accommodation space 7 Oa of the container 70 such as a holding furnace ladle is described as an example. For example, the degassing device 50 can be attached to a tank that transfers the molten metal discharged from the melting furnace to a holding furnace or ladle, so that hydrogen dissolved in the molten metal can be removed. Specifically, for example, as shown in the cross-sectional view of FIG. 11 and the plan view of FIG. 12 in which the force in the direction indicated by the arrow C in FIG. 11 is also seen, the molten metal is transferred to the transfer space 57 and floats on the surface of the melt. In the trough 56 provided with a partition plate 58 for preventing impurities such as slag from flowing in the transfer direction (the direction indicated by the arrow D in FIG. 11), the molten metal transfer side (downstream side) with respect to the partition plate 58 The bubble generator 51 of the degasser 50 is placed in the transfer space 57 in the While transferring from the melting furnace to a ladle, etc., insoluble gas is supplied to the bubble generating body 51 through the gas introduction pipe 55, and fine bubbles flow out from one side 51a of the bubble generating body 51 into the molten metal being transferred. . 11 and FIG. 12, a configuration in which two gas introduction pipes 55, 55 are attached to the bubble generating body 51 is shown.
[0052] これにより、溶湯金属の移送途中において溶湯金属中に溶解している水素等を除 去することができ、溶湯金属の脱ガス処理の時間的な効率性を向上させることができ る。なお、樋 56によって移送される溶湯金属中に溶解している水素等を効率よく除去 するために、気泡発生体 51の他方面 51bが移送空間 57の底面 57aに接するように 配置することが好ましい。  [0052] Thereby, hydrogen or the like dissolved in the molten metal can be removed during the transfer of the molten metal, and the temporal efficiency of the degassing treatment of the molten metal can be improved. In order to efficiently remove hydrogen or the like dissolved in the molten metal transferred by the trough 56, it is preferable that the other surface 51b of the bubble generating body 51 is disposed so as to be in contact with the bottom surface 57a of the transfer space 57. .
[0053] 以上、本発明にかかる脱ガス処理器 50の一実施形態について説明したが、本発 明の具体的な態様は上記実施形態に限定されない。本実施形態においては、図 9 に示すように、気泡発生体 51を平板状に形成しているが、例えば、図 13に示すよう に、気泡発生体 51を容器状に形成し、気泡発生体 51が溶湯金属を収容する収容部 60を備えるように構成してもよい。このような構成を採用する場合、処理器本体 52の 内部空間 53に導かれた不溶性ガス力 被覆材 20を介して収容部 60に流出するよう にガス流出孔 16を処理器本体 52に形成する。図 13に示す脱ガス処理器 50におい ては、収容部 60の底部 60aから不溶性ガスの気泡が収容部 60内に流出するように ガス流出孔 16を処理器本体 52に形成している。このような構成により、溶湯金属を 収容する機能を備えた脱ガス処理器 50を得ることができる。なお、収容部 60の側壁 部 60bからも不溶性ガスの気泡が収容部 60内に流出するように、収容部 60の側壁 部 60bを構成する処理器本体 52の一部分にガス流出孔 16を形成してもよい。  [0053] Although one embodiment of the degassing processor 50 according to the present invention has been described above, the specific mode of the present invention is not limited to the above embodiment. In the present embodiment, as shown in FIG. 9, the bubble generating body 51 is formed in a flat plate shape. For example, as shown in FIG. 13, the bubble generating body 51 is formed in a container shape, and the bubble generating body 51 is formed. You may comprise 51 so that the accommodating part 60 which accommodates a molten metal may be provided. In the case of adopting such a configuration, the gas outflow hole 16 is formed in the processor main body 52 so as to flow out to the accommodating portion 60 through the insoluble gas force covering material 20 guided to the internal space 53 of the processor main body 52. . In the degasser 50 shown in FIG. 13, the gas outflow hole 16 is formed in the processor body 52 so that insoluble gas bubbles flow out from the bottom 60 a of the container 60 into the container 60. With such a configuration, it is possible to obtain a degassing processor 50 having a function of accommodating molten metal. A gas outflow hole 16 is formed in a part of the processor main body 52 constituting the side wall 60b of the housing 60 so that the insoluble gas bubbles also flow into the housing 60 from the side wall 60b of the housing 60. May be.
[0054] また、例えば、図 14の断面図及び図 14の矢示 E方向から見た平面図である図 15 に示すように、気泡発生体 51を樋状に形成し、気泡発生体 51が、溶湯金属を移送 する移送部 61を備えるように構成してもよい。このような構成を採用する場合、処理 器本体 52の内部空間 53に導かれた不溶性ガスが、被覆材 20を介して移送部 61に 流出するようにガス流出孔 16を処理器本体 52に形成する。この脱ガス処理器 50は、 図 14に示すように、気泡発生体 51を断面視コ字状に形成して移送部 61を構成し、 移送部 61の底部 6 laから不溶性ガスの気泡が移送部 61内に流出するようにガス流 出孔 16を処理器本体 52に形成している。このような構成により、溶解炉等から取鍋 等に溶湯金属を移送しながら脱ガス処理を行うことが可能な脱ガス処理器 50を得る ことができる。なお、移送部 61の側壁部 61bからも不溶性ガスの気泡が移送部 61内 に流出するように、移送部 61の側壁部 61bを構成する処理器本体 52の一部分にガ ス流出孔 16を形成してもよい。 Further, for example, as shown in FIG. 15 which is a cross-sectional view of FIG. 14 and a plan view seen from the direction of arrow E in FIG. 14, the bubble generator 51 is formed in a bowl shape, Alternatively, a transfer unit 61 for transferring the molten metal may be provided. When such a configuration is adopted, a gas outflow hole 16 is formed in the processor main body 52 so that the insoluble gas guided to the internal space 53 of the processor main body 52 flows out to the transfer section 61 through the coating material 20. To do. As shown in FIG. 14, the degassing processor 50 forms a bubble generating body 51 in a U-shaped cross-sectional view to form a transfer unit 61, and insoluble gas bubbles are transferred from the bottom 6 la of the transfer unit 61. Gas flow to flow into part 61 An outlet 16 is formed in the processor body 52. With such a configuration, it is possible to obtain a degassing processor 50 capable of performing degassing while transferring molten metal from a melting furnace or the like to a ladle or the like. A gas outflow hole 16 is formed in a part of the processor body 52 constituting the side wall 61b of the transfer unit 61 so that insoluble gas bubbles also flow into the transfer unit 61 from the side wall 61b of the transfer unit 61. May be.
[0055] また、図 14に示す脱ガス処理器 50においては、気泡発生体 51を断面視コ字状に 形成して移送部 61を構成しているが、例えば、図 16に示すように、断面視 U字状と なるように気泡発生体 51を形成して移送部 61を構成することもできる。  [0055] Further, in the degassing processor 50 shown in Fig. 14, the bubble generating body 51 is formed in a U-shape in cross section to constitute the transfer unit 61. For example, as shown in Fig. 16, It is also possible to form the bubble generating body 51 so as to have a U-shape in cross section and to configure the transfer section 61.
[0056] また、本実施形態においては、図 8及び図 9に示すように、処理器本体 52の一方面 52aの略全域にわたって、ガス流出孔 16を複数形成するようにしている力 このよう な構成に特に限定されず、例えば、処理器本体 52の一方面 52aの中央部分にガス 流出孔 16を複数形成するような構成を採用することもできる。  In the present embodiment, as shown in FIGS. 8 and 9, the force for forming a plurality of gas outflow holes 16 over substantially the entire area of the one surface 52a of the processor main body 52 is as described above. The configuration is not particularly limited, and for example, a configuration in which a plurality of gas outflow holes 16 are formed in the central portion of the one surface 52a of the processor main body 52 may be employed.
[0057] また、本実施形態においては、図 9に示すように、気泡発生体 51を平面視矩形状 の平板状に形成しているが、このような形状に特に限定されず、例えば、平面視円形 状の平板状等種々の形状に形成することができる。  Further, in the present embodiment, as shown in FIG. 9, the bubble generating body 51 is formed in a rectangular flat plate shape in plan view. However, the present invention is not particularly limited to this shape. It can be formed in various shapes such as a flat plate shape having a circular view.
[0058] また、図 5に示すランスパイプ 1の変形例と同様に、多孔質性耐火材カもなる多孔 質栓 40を処理器本体 52に形成したガス流出孔 16に装着すると共に、多孔質栓 40 を被覆材 20により被覆する構成を採用することもできる。このような構成を採用した場 合の効果は、図 5に示すランスノイブの変形例において説明した効果と同様である。  [0058] Similarly to the modification of the lance pipe 1 shown in Fig. 5, the porous plug 40, which is also a porous refractory material, is attached to the gas outflow hole 16 formed in the processor body 52, and the porous plug 40 is porous. A configuration in which the stopper 40 is covered with the covering material 20 can also be adopted. The effect of adopting such a configuration is the same as the effect described in the modification of Lance Neuve shown in FIG.
[0059] また、処理器本体 52の少なくとも一部を、金網状部材により構成してもよい。金網 状部材としては、上述のランスパイプの変形例にお!、て説明した部材を採用すること ができる。金網状部材により処理器本体 52を構成した場合、金網状部材のメッシュ 部分が、ガス流出孔 16に相当するので、当該ガス流出孔 16を別途形成する必要が なぐ低コストで脱ガス処理器 50を製造することが可能になる。また、金網状部材で 構成した処理器本体 52は弾力性を有して ヽるため、処理器本体 52と被覆材 20との 熱膨張差によって生じる被覆材 20の剥離や亀裂を効果的に防止することができる。  [0059] Further, at least a part of the processor main body 52 may be formed of a wire mesh member. As the wire mesh member, the member described in the above-described modification of the lance pipe can be employed. In the case where the processor main body 52 is constituted by a wire mesh member, the mesh portion of the wire mesh member corresponds to the gas outflow hole 16, so that it is not necessary to separately form the gas outflow hole 16 and the degassing processor 50 is low in cost. Can be manufactured. In addition, since the processor main body 52 made of a wire mesh member has elasticity, it effectively prevents peeling and cracking of the coating material 20 caused by a difference in thermal expansion between the processor main body 52 and the coating material 20. can do.

Claims

請求の範囲 The scope of the claims
[1] 溶湯金属中に不溶性ガスを吹き込んで脱ガス処理を行うためのランスパイプであつ て、金属製の管本体と、前記管本体を被覆する多孔質性耐火材からなる被覆材とを 備えており、前記管本体の側壁には、前記被覆材で被覆されるガス流出孔が形成さ れているランスパイプ。  [1] A lance pipe for performing degassing treatment by blowing an insoluble gas into a molten metal, comprising a metal pipe body and a covering material made of a porous refractory material covering the pipe body. A lance pipe in which a gas outflow hole covered with the covering material is formed in a side wall of the pipe body.
[2] 前記管本体は、曲がり部を有しており、前記ガス流出孔は、前記管本体の前記曲 力 Sり部よりも先端側に形成されて 、る請求項 1に記載のランスパイプ。  [2] The lance pipe according to claim 1, wherein the tube main body has a bent portion, and the gas outflow hole is formed on a distal end side of the bent portion of the tube main body. .
[3] 前記被覆材は、ガラス繊維カゝら成る基材シートにガラス質コーティング剤を含浸さ せると共に、前記基材シートの表面全体をガラス質コーティング剤の塗布膜で覆うこ とにより形成されている請求項 1又は 2に記載のランスノイブ。 [3] The covering material is formed by impregnating a glassy fiber base material sheet with a glassy coating agent and covering the entire surface of the base material sheet with a glassy coating material coating film. The lance nove according to claim 1 or 2.
[4] 前記ガス流出孔には、多孔質性耐火材からなる多孔質栓が装着されており、前記 多孔質栓は、前記被覆材により被覆されて 、る請求項 1から 3の 、ずれかに記載のラ ンスパイプ。 [4] The gas outflow hole is provided with a porous stopper made of a porous refractory material, and the porous stopper is covered with the covering material. The lancepipe described in.
[5] 前記管本体の少なくとも一部は、金網状部材を筒状に形成して構成されている請 求項 1から 4のいずれかに記載のランスパイプ。  [5] The lance pipe according to any one of claims 1 to 4, wherein at least a part of the pipe body is formed by forming a wire mesh member into a cylindrical shape.
[6] 溶湯金属中に不溶性ガスを吹き込んで脱ガス処理を行うための脱ガス処理器であ つて、内部空間を有する金属製の処理器本体と、前記処理器本体を被覆する多孔 質性耐火材からなる被覆材とを有する気泡発生体を備えており、前記気泡発生体に は、前記内部空間に不溶性ガスを導くガス導入部が形成されており、前記処理器本 体には、前記被覆材で被覆されるガス流出孔が形成されて ヽる脱ガス処理器。  [6] A degassing treatment device for performing degassing treatment by blowing an insoluble gas into molten metal, and a metallic treatment device body having an internal space, and a porous refractory coating covering the treatment device body A bubble generator having a coating material made of a material, wherein the bubble generator is provided with a gas introduction portion for introducing an insoluble gas into the internal space, and the processor main body includes the coating material. A degassing device in which a gas outflow hole covered with a material is formed.
[7] 前記気泡発生体は、平板状に形成されており、前記ガス流出孔は、前記気泡発生 体の少なくとも一方面力 不溶性ガスが流出するように形成されている請求項 6に記 載の脱ガス処理器。  [7] The bubble generating body according to claim 6, wherein the bubble generating body is formed in a flat plate shape, and the gas outflow hole is formed so that at least one surface force insoluble gas of the bubble generating body flows out. Degasser.
[8] 前記気泡発生体は、溶湯金属が収容される収容部を備えており、前記ガス流出孔 は、前記収容部に不溶性ガスが流出するように形成されて!ヽる請求項 6に記載の脱 ガス処理器。  [8] The bubble generating body includes a housing portion in which the molten metal is accommodated, and the gas outflow hole is formed so that insoluble gas flows out into the housing portion! The degassing device according to claim 6.
[9] 前記気泡発生体は、溶湯金属が移送される移送部を備えており、前記ガス流出孔 は、前記移送部に不溶性ガスが流出するように形成されて ヽる請求項 6に記載の脱 ガス処理器。 [9] The bubble generation body according to claim 6, wherein the bubble generator includes a transfer portion to which a molten metal is transferred, and the gas outflow hole is formed so that an insoluble gas flows out to the transfer portion. Prolapse Gas processor.
[10] 前記被覆材は、ガラス繊維カゝら成る基材シートにガラス質コーティング剤を含浸さ せると共に、前記基材シートの表面全体をガラス質コーティング剤の塗布膜で覆うこ とにより形成されている請求項 6から 9のいずれかに記載の脱ガス処理器。  [10] The covering material is formed by impregnating a glassy fiber base material sheet with a glassy coating agent and covering the entire surface of the base material sheet with a glassy coating material coating film. The degassing device according to any one of claims 6 to 9.
[11] 前記ガス流出孔には、多孔質性耐火材からなる多孔質栓が装着されており、前記 多孔質栓は、前記被覆材により被覆されている請求項 6から 10のいずれか〖こ記載の 脱ガス処理器。 [11] The gas outflow hole is provided with a porous stopper made of a porous refractory material, and the porous stopper is covered with the covering material. The degasser described.
[12] 前記処理器本体の少なくとも一部は、金網状部材により構成されている請求項 6か ら 11の 、ずれかに記載の脱ガス処理器。  [12] The degasser according to any one of claims 6 to 11, wherein at least a part of the processor main body is formed of a wire mesh member.
[13] 請求項 6に記載の脱ガス処理器と、溶湯金属が収容される収容空間とを備える脱ガ ス処理器付き容器であって、前記気泡発生体が、前記収容空間に配置されている脱 ガス処理器付き容器。 [13] A container with a degassing device comprising the degassing device according to claim 6 and a housing space in which the molten metal is housed, wherein the bubble generator is disposed in the housing space. A container with a degasser.
[14] 請求項 6に記載の脱ガス処理器と、溶湯金属が移送される移送空間とを備える脱ガ ス処理器付き樋であって、前記気泡発生体が、前記移送空間に配置されている脱ガ ス処理器付き樋。  [14] A scissor with a degassing device comprising the degassing device according to claim 6 and a transfer space to which the molten metal is transferred, wherein the bubble generator is disposed in the transfer space.樋 with degasser.
PCT/JP2007/058073 2006-05-29 2007-04-12 Lance pipe, degasification equipment, container with degasification equipment and watershoot with degasification equipment WO2007138793A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-148635 2006-05-29
JP2006148635 2006-05-29
JP2006-226354 2006-08-23
JP2006226354A JP5247015B2 (en) 2006-05-29 2006-08-23 Lance pipe, degasser, container with degasser and dredger with degasser

Publications (1)

Publication Number Publication Date
WO2007138793A1 true WO2007138793A1 (en) 2007-12-06

Family

ID=38778316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058073 WO2007138793A1 (en) 2006-05-29 2007-04-12 Lance pipe, degasification equipment, container with degasification equipment and watershoot with degasification equipment

Country Status (2)

Country Link
JP (1) JP5247015B2 (en)
WO (1) WO2007138793A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414375B2 (en) * 2009-06-08 2014-02-12 三井金属鉱業株式会社 Lance pipe
US20140210144A1 (en) * 2013-01-31 2014-07-31 Pyrotek Composite degassing tube

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531269A (en) * 1978-08-28 1980-03-05 Aikoh Co Lance pipe
JPS60251214A (en) * 1984-05-29 1985-12-11 Kawasaki Steel Corp Gas blowing nozzle for melting and refining furnace or reactive vessel
JPS61270325A (en) * 1985-05-27 1986-11-29 Nippon Steel Corp Immersion lance
JPH01259135A (en) * 1988-04-08 1989-10-16 Nippon Pillar Packing Co Ltd Rotary nozzle for removing impurity in molten metal
JPH0469451U (en) * 1990-10-30 1992-06-19
JPH07185772A (en) * 1993-12-27 1995-07-25 Rozai Kogyo Kaisha Ltd Device for treating molten metal
JP2001192742A (en) * 2000-01-05 2001-07-17 Kobe Steel Ltd Degassing device for holding furnace for forging
JP2005030605A (en) * 2002-07-26 2005-02-03 Nissei Ltd Tapping device and molten metal heating device for melting furnace

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531269A (en) * 1978-08-28 1980-03-05 Aikoh Co Lance pipe
JPS60251214A (en) * 1984-05-29 1985-12-11 Kawasaki Steel Corp Gas blowing nozzle for melting and refining furnace or reactive vessel
JPS61270325A (en) * 1985-05-27 1986-11-29 Nippon Steel Corp Immersion lance
JPH01259135A (en) * 1988-04-08 1989-10-16 Nippon Pillar Packing Co Ltd Rotary nozzle for removing impurity in molten metal
JPH0469451U (en) * 1990-10-30 1992-06-19
JPH07185772A (en) * 1993-12-27 1995-07-25 Rozai Kogyo Kaisha Ltd Device for treating molten metal
JP2001192742A (en) * 2000-01-05 2001-07-17 Kobe Steel Ltd Degassing device for holding furnace for forging
JP2005030605A (en) * 2002-07-26 2005-02-03 Nissei Ltd Tapping device and molten metal heating device for melting furnace

Also Published As

Publication number Publication date
JP2008007848A (en) 2008-01-17
JP5247015B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
US10274255B2 (en) Molten metal-containing vessel, and methods of producing same
WO2007138793A1 (en) Lance pipe, degasification equipment, container with degasification equipment and watershoot with degasification equipment
TWI235686B (en) Immersion nozzle for continuous casting of steel and method for continuous casting steel
JP2007283395A (en) Ladle for molten metal delivery
CZ189199A3 (en) Vacuum degasification apparatus for melted glass
EP1284246A3 (en) Method and apparatus for producing porous glass soot body
GB2172384A (en) Metallurgical blowing lances
US7685863B2 (en) Device for measuring the gas content in a molten metal
JP4750277B2 (en) Pouring tube
JP4676927B2 (en) Immersion tube for molten metal treatment, manufacturing method thereof, and vacuum degassing method
CN104176906A (en) Precious metal evaporating barrier
JP2011084794A (en) Dip tube
JPS586943A (en) Refractories for blowing of gas for refining of molten metal
TW201502279A (en) Lead retaining purge plug
WO2009142160A1 (en) Molten metal holding furnace
WO2007094121A1 (en) Protective tube for melt temperature measuring and melt thermometer
ES2523595T3 (en) Ceramic gas purge refractory cap and method for manufacturing said gas purge plug
CN1411934A (en) Fire-resistant water outlet
JP2005076071A (en) Degassing apparatus
RU2066690C1 (en) Apparatus for bottom blowing of metal
JP2006250469A (en) Device for removing foreign matter from molten metal
JP2005264264A (en) Method and apparatus for vacuum-refining molten steel
RU2183684C2 (en) Apparatus for gas blowing of melt aluminium alloys
TWM494166U (en) Blowing pipe device used for converter slag
JP4370664B2 (en) Zinc recovery unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741509

Country of ref document: EP

Kind code of ref document: A1