WO2007138102A1 - Structure de micro-commutateurs radiofrequence ou hyperfrequence et procede de fabrication d'une telle structure - Google Patents

Structure de micro-commutateurs radiofrequence ou hyperfrequence et procede de fabrication d'une telle structure Download PDF

Info

Publication number
WO2007138102A1
WO2007138102A1 PCT/EP2007/055358 EP2007055358W WO2007138102A1 WO 2007138102 A1 WO2007138102 A1 WO 2007138102A1 EP 2007055358 W EP2007055358 W EP 2007055358W WO 2007138102 A1 WO2007138102 A1 WO 2007138102A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
membrane
control electrode
structure according
microns
Prior art date
Application number
PCT/EP2007/055358
Other languages
English (en)
Inventor
Afshin Ziaei
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to US12/302,525 priority Critical patent/US7960662B2/en
Priority to EP07729759A priority patent/EP2024986B1/fr
Publication of WO2007138102A1 publication Critical patent/WO2007138102A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/12Auxiliary devices for switching or interrupting by mechanical chopper
    • H01P1/127Strip line switches

Definitions

  • the field of the invention is that of microsystem components also called MEMS (acronym for Micro Electrodes
  • the main application areas are wireless telecommunications systems and radars.
  • radio frequency or RF radio frequency
  • the RF switching is obtained by varying the capacitance of a capacitor whose armatures consist on the one hand of a membrane and on the other hand of an electrode control, a dielectric being provided between the two frames generally on the electrode.
  • the capacity then varies from a Con value to a Coff value.
  • the dielectric used may be silicon nitride.
  • the dielectric is PZT or BZT, or other material with a high relative permittivity, which makes it possible in particular to increase the Con / Coff ratio, and thus improves the transmission and isolation qualities of the micro- switch, as well as its characteristic times of switching between the two states on and off.
  • RF microswitches are increasingly used to improve the functionality of radio frequency circuits used especially in telecommunication systems. It is a question of obtaining better performances in terms of losses, noise, linearity, consumption. They are also used to obtain high component compactness and the lowest possible manufacturing costs.
  • microswitches providing a radiofrequency signal switching function on a transmission line: the microswitches in series with the radiofrequency transmission line and the microswitches in parallel with the radiofrequency transmission line.
  • the microswitches are of the series type, the application of an activation voltage under the membrane changes it from a state of rest off, open, to state on, closed.
  • the configuration of a microswitch in series with a radiofrequency line is as follows: the line is cut in the switching zone, above which one has the membrane. The membrane is isolated from the electrical mass. The membrane does not have to support the radiofrequency power over its entire surface, its role not being to short circuit the signal to ground but simply to connect two lines together by capacitive effect.
  • the application of a voltage on the control electrode moves it from a state of rest on, closed, to an open off state.
  • the configuration of a microswitch in parallel with a radiofrequency line is as follows: the RF line is not cut in the switching zone, above which we have the membrane. The membrane is connected to the electrical earth and must be able to withstand the power of the radiofrequency signal.
  • the microswitch in the on state, closed, which results in a very weak Coff capacity, which does not affect the radiofrequency signal transmission.
  • the capacity increases in a significant ratio, 100 for example.
  • the capacitor then induces a sufficiently weak impedance between the line and the ground to shunt the radiofrequency line to the electrical ground: the radiofrequency signal then flows from the line bringing the RF signal to the electrical mass via the membrane.
  • the two portions of lines, before and after the membrane, are then isolated: the microswitch is in the off state.
  • the main advantages of these types of microswitches series or parallel are essentially: • The realization techniques, which are derived from conventional technologies of manufacturing electronic integrated circuits. They simplify the realization and integration and therefore, to obtain low manufacturing costs compared to other technologies, while ensuring high reliability; • The very low electric powers consumed, some nanojoules being necessary for the activation;
  • a micro-switch is thus produced in a surface of the order of one tenth of a square millimeter, making it possible to achieve a high integration capacity;
  • This type of microswitch has very low insertion losses, of the order of a tenth of a decibel, much lower than those of devices providing the same functions.
  • the invention thus relates to a structure and a method of manufacturing a micro-switch that can meet all of these different needs. It applies to both a serial and parallel microswitch.
  • the invention therefore concerns the structure of a capacitor-type radio frequency or microwave microswitch with a first armature comprising a voltage control electrode arranged in a switching zone between a first conductive line called an input signal line. and a second conductive line called an output signal line arranged in the extension of one another, separated by the switching zone, a second armature being a flexible membrane disposed above said switching zone, the two armatures being separated by a vacuum or gas thickness and at least one layer of a dielectric material, two parallel ground lines being arranged symmetrically with respect to the signal lines, said structure being formed on an insulating substrate covered with a layer of passivation.
  • the structure is such that: Said control electrode is formed on said passivation layer,
  • Said layer of dielectric material has a high relative permittivity greater than one hundred, and it is deposited on said control electrode, so that in the direction of the input and output lines, said dielectric material rests only on said electrode in the orthogonal direction, said dielectric material overflows on each side and comes into contact with said passivation layer of the substrate,
  • the flexible membrane is conductive and comprises at least one layer of a conductive material.
  • At least one layer of insulator in a material different from that of the passivation layer separates the level of the ground lines from the level of the signal lines.
  • Said high-permittivity material is preferably PZT (Lead Zirconium Titanate, PbZrTiO 3).
  • the metal membrane comprises a lower layer of a resistive material, typically a titanium-tungsten alloy and a low-resistivity layer, of a material capable of withstanding mechanical stress, selected from Al, Au, Cu, preferably Al.
  • a resistive material typically a titanium-tungsten alloy and a low-resistivity layer, of a material capable of withstanding mechanical stress, selected from Al, Au, Cu, preferably Al.
  • the membrane is formed of a single layer of aluminum.
  • the invention also relates to a method of manufacturing a radio frequency microswitch or microwave frequency of such a micro-switch on an insulating substrate covered with a passivation layer, characterized in that it comprises at least the following sequence of steps : at). Formation of the control electrode; b). Formation of the dielectric on said control electrode c). Deposition on the entire surface of a first resistive conductive layer and a second non-resistive conductive layer, and etching the second layer, to form the input / output signal lines and contact pads, d). Deposition on the entire surface of an insulating layer, in a material different from that of the passivation layer, then opening on the signal lines, contact pads and on the dielectric, e).
  • FIGS. 1a to 1c illustrate a series switch structure according to the invention
  • FIGS. 2a to 2c illustrate a parallel switch structure according to the invention
  • FIG. 3a and the following figures up to FIG. 12 illustrate steps of a method according to the invention.
  • FIGS. 1a to 1d A radiofrequency or microwave microswitch structure according to the invention is illustrated in FIGS. 1a to 1d, for a series-type microswitch or in FIGS. 2a to 2c for a parallel-type microswitch.
  • a structure according to the invention comprises on a substrate 1 covered with a passivation layer 2, a first signal line LS-IN and a second signal line LS-OUT arranged in the extension of one another, separated by a switching zone 10; a control electrode 3 in said zone, a dielectric material 4 with a high relative invariant frequency permittivity, arranged on the control electrode so that between the two signal lines, the control electrode is wider on both sides and in the orthogonal direction, the dielectric overflows both sides of the control electrode, and rests on the passivation layer; parallel ground lines arranged symmetrically on either side of the signal lines and made on a topological level separated from that of the signal lines by at least one insulating layer 6 in a material different from that of the passivation,
  • the insulating material is advantageously silicon nitride Si 3 N 4 .
  • the dielectric material is advantageously PZT whose relative permittivity is equal to 150, and is independent of the frequency, which contributes to increasing the width of the operating frequency band of the micro-switch.
  • the PZT which has a monocrystalline structure resists well to significant RF powers.
  • FIG. 1a represents a view from above of such a microswitch and FIGS. 1b and 1c are views in section respectively along AA and following BB.
  • This structure is made by superposition of layers on a base substrate 1, typically a highly resistive silicon substrate, covered with a passivation layer 2, typically silicon oxide SiO 2 .
  • a control electrode 3 is formed between the two lines signal, in two parts electrically isolated: each part contacts a signal line.
  • a dielectric 4 with a high relative permittivity greater than one hundred and invariant with the frequency is deposited on the control electrode 3. It has a shape such that in the direction along the signal lines, the control electrode is wider on both sides, and in the orthogonal direction, it overflows each side of the control electrode 3, on the passivation layer 2.
  • the dielectric 4 must make it possible to respond to the constraints of high radiofrequency or microwave powers: in on-state transmission, passing (membrane in downwardly bent position, in contact with the dielectric), and in isolation in the off or open state. (membrane in initial high position).
  • the dielectric 4 is preferably PZT, which combines the advantages of having a high relative permittivity greater than one hundred (typically 150), invariant with the frequency, of being able to work in microwave, up to 100 GigaHertz, and to support the power, because of its monocrystalline nature.
  • the gap separating the two parts of the control electrode has a width g of the order of 10 microns.
  • the cut between the two parts may be straight section. It is advantageously such that the two parts are interdigitated. In known manner, such a shape makes it possible to significantly increase the dielectric capacitance of the capacitor formed by the membrane m, the control electrode 3 and the dielectric 4.
  • the control electrode is made of a platinum titanium alloy surmounted a Platinum / Gold layer for technological needs.
  • the membrane m rests at each end, on a conductive pillar 5a, 5b. It is also possible to consider only one conductive pillar on the two that support the membrane.
  • LM 1 and LM 2 ground lines are formed on the same side of the substrate as the LS-IN and LS-OUT signal lines. These coplanar ground lines are made on a topological level separated from the level of the input / output signal lines by an insulating layer 6, in a material different from that used for the passivation layer. In this way, it is certain that there will not be a short circuit between a signal line and a ground line, via the substrate. This has the technical effect that the micro-switch structure according to the invention can rise very high in frequency, typically up to at least 100 GigaHertz.
  • the insulation used is advantageously silicon nitride.
  • the pillars, the signal lines and the ground lines typically comprise a first resistive hung conductive layer, shown in thick black in FIGS. 4b and 4c and a second, weakly resistive layer, typically gold.
  • the first layer is sufficiently resistive to prevent the propagation of a radiofrequency or microwave signal. It is typically a layer of tungsten titanium, preferably 80% titanium and 20% tungsten to 1 or 2%, by which the best radiofrequency and microwave performance are obtained.
  • the titanium-tungsten layer 7 of the signal lines and pillars also serves for the realization of connection lines through which an activation voltage of the microswitch can be applied in the switching zone. In practice, at least one contact pad (not shown in FIGS.
  • the conductive membrane comprises: - a conductive layer of suspended, resistive, typically titanium-tungsten, facing the switching zone. This layer is sufficiently resistive to prevent the propagation of a radiofrequency or microwave signal.
  • the tungsten titanium preferably has a proportion of 80% of titanium and 20% of tungsten to 1 or 2%, as indicated previously; and a highly conductive layer. It can be a dielectric.
  • a metal material selected from Al, Cu and Au is chosen for their low electrical resistivity and their ability to withstand a mechanical stress greater than 30 megapascals: the membrane must be able to deform in order to come into contact with the dielectric 4 without breaking (state on), and return to its initial state (off state).
  • it is aluminum which is used, whereby the best results are obtained in terms of switching speed and resistance to mechanical stress.
  • the membrane is made in the form of a grid, that is to say that it has holes passing through it from one side to the other.
  • This configuration contributes to facilitating the production of the membrane, as will be seen in connection with the manufacturing process, because it facilitates the passage of solvents or gases to remove the sacrificial resin layer which serves as a plane support for producing the membrane.
  • This configuration also contributes to improving the flexibility of the membrane.
  • the grid shape is well known in the form of a performant in the radio frequency and microwave domain.
  • the serial micro-switch has the following sizing characteristics:
  • the section of the signal lines has a width Is of 80 microns, and the distance d between each side of the signal line of the ground line is 120 microns.
  • the gold layer e9 signal lines and pillars has a thickness of about 3 microns.
  • the control electrode has a thickness of about 0.7 microns.
  • the thickness of the ground lines is not an important parameter. It is substantially equal to that of the signal lines, from 0.2 to 0.4 microns, the negligible difference arising from the technological process.
  • the layer 4 of PZT has a thickness e4 less than one micron, for example 0.4 micron.
  • the width of the overhang on each side of the dielectric is of the order of 20 microns.
  • the mobile part of the membrane that is to say off pillars, is part of a rectangular parallelepiped, whose dimensions are advantageously: a width Im of 100 microns, in the direction of the signal lines, and a length wm between the two pillars, of the order of 280 microns.
  • the total thickness e em of the membrane is of the order of 0.7 microns, the first layer of tungsten titanium being of less thickness than the second layer. In one example, the tungsten titanium layer has a thickness of 0.2 microns.
  • FIGS. 2a top view
  • 2b and 2c sectional views following respectively AA and BB
  • FIGS. 2a top view
  • 2b and 2c sectional views following respectively AA and BB
  • the membrane is made of a single aluminum layer, preferably with a thickness of the order of 2.5 microns, making it possible to produce a capacitor with variable capacitance, the voltage activation then defining the value of the capacitance, as a function of the displacement imposed on the membrane.
  • the series and parallel microswitches according to the invention have good radio frequency and microwave performance, in particular for the transmission of radiofrequency or microwave significant power signals of the order of about ten watts or more.
  • each conductive element signal lines, ground lines, contact pads, and membrane are made by a first highly resistive conductive layer and a second non-resistive conductive layer.
  • the first layer is a tungsten titanium alloy in a proportion of 80% of titanium and 20% of tungsten to 1 or 2%
  • the second layer is gold, this choice making it possible to obtain the better performance.
  • we speak directly of tungsten titanium and gold but others materials such as copper and aluminum, for example, could be used without departing from the scope of the invention.
  • Step 1 Figures 3a (top view) and 3b (section along X).
  • a substrate 100 preferably highly resistive silicon (or GaAs, GaN ).
  • This substrate 100 is deposited on a SiO 2 silicon oxide passivation layer (relative permittivity 4).
  • the control electrode 102 is formed, with its shape in two isolated parts a, b, preferably as illustrated, interdigitated. The width g of the gap between the two parts is typically 10 microns.
  • the control electrode is for example made of a titanium / platinum alloy surmounted by a gold / platinum layer.
  • the PZT dielectric 103 is formed on the control electrode in the prescribed form, typically by a sol-gel or sputtering method: narrower in the Ds direction of the signal lines and wider on both sides in the orthogonal direction , coming to rest on the layer 101 of passivation.
  • Step 3 Figures 5a (top view) and 5b (section along YY '). Formation of the signal lines LS-IN and LS-OUT, contact pads Pc, and pillars P1, by deposition of a layer of titanium / tungsten 104, deposition and etching of a layer of gold 105. The layer The surface is then the layer 104. Step 4, FIGS.
  • a reference potential an electrical mass, which is not the mass of the microswitch circuit
  • Step 5 Figures 7a and 7b.
  • the surface layer is this layer 106 of insulation.
  • Step 6 Figures 8a and 8b. Deposition of a layer 107 of titanium / tungsten and deposition and etching of a gold layer 109, to form the mass lines LM1 and LM2.
  • the surface layer is titanium / tungsten layer 107.
  • Step 7 Figures 9a and 9b. Localized removal of tungsten titanium in an area f under the location of the membrane.
  • Step 8 Figure 10. Localized refill of gold, by prior deposition of resin over the entire surface and by current injection via the contact pads and connection lines.
  • the height of gold thus obtained is controlled by the resin thickness.
  • the thickness (or height) of gold signal lines and pillars reaches 3 microns.
  • the thickness of the mass lines is substantially equal, with in practice a negligible difference of the order of 0.2 to 0.4 microns (less).
  • the resin achieves the same level everywhere, which ensures the flatness of the membrane which is achieved in the next step.
  • Step 9 Formation of the membrane by deposition of tungsten titanium and then deposition of aluminum (or gold, or copper), and etching of the membrane.
  • tungsten titanium thickness Preferably, a tungsten titanium thickness of 0.2 microns and a gold thickness of 0.5 microns is used.
  • this step 10 comprises the deposition of a single layer, aluminum, with a thickness of about 2.5 microns and etching.
  • Step 10 Figure 12: release of the membrane by removing the resin layer of step 8, for example by solvents. This operation is facilitated by a membrane which is pierced with holes. Such a membrane structure also has the effect of making the membrane less rigid, which contributes to improving the latency.
  • This method also applies to parallel-type switches which differ from serial microswitches simply in that there are no pillars, the membrane resting directly on the ground lines, and by the continuous form, without cutting off the control electrode between the two signal lines.
  • the succession of the steps of the method just described leads to a micro-switch structure whose radio frequency performance in transmission, isolation, switching time, the service life, the width of the frequency band are substantially improved.

Abstract

La structure de microcommutateur comprend sur un substrat (1) recouvert d'une couche de passivation (2), une première ligne signal LS-IN et une deuxième ligne signal LS-OUT disposées dans le prolongement l'une de l'autre, séparées par une zone de commutation (10); une électrode de commande (3) dans la dite zone, un matériau diélectrique (4) à forte permittivité relative invariante en fréquence, disposé sur l'électrode de commande en sorte qu'entre les deux lignes signal, l'électrode de commande est plus large des deux côtés et dans la direction orthogonale, le diélectrique déborde des deux côtés de l'électrode de commande, et repose sur la couche de passivation; des lignes de masse parallèles, disposées de façon symétrique de part et d'autre des lignes signal et réalisées sur un niveau topologique séparé de celui des lignes signal par au moins une couche d'isolant dans un matériau différent de celui de la couche de passivation.

Description

STRUCTURE DE MICRO-COMMUTATEURS RADIOFREQUENCE OU HYPERFREQUENCE ET PROCEDE DE FABRICATION D'UNE TELLE
STRUCTURE
Le domaine de l'invention est celui des composants microsystèmes encore appelés MEMS (acronyme pour Micro Electro
Mechanical Systems) et plus particulièrement des microsystèmes radiofréquence ou hyperfréquence. Les domaines d'applications principaux sont les systèmes de télécommunications sans fil et les radars.
Dans la suite on utilise de façon générique le terme radiofréquence ou RF, à comprendre comme couvrant à la fois les hyperfréquences et les radiofréquences.
Selon l'état de l'art des micro-commutateurs MEMS RF, la commutation RF est obtenue par variation de capacité d'un condensateur dont les armatures sont constituées d'une part d'une membrane et d'autre part d'une électrode de commande en regard, un diélectrique étant prévu entre les deux armatures généralement sur l'électrode. La capacité varie alors d'une valeur Con à une valeur Coff. Le diélectrique utilisé peut être du nitrure de silicium. Dans d'autres réalisations, le diélectrique est du PZT ou du BZT, ou autre matériau à permittivité relative élevée, ce qui permet notamment d'augmenter le rapport Con/Coff, et donc améliore les qualités de transmission et d'isolation du micro-commutateur, ainsi que ses temps caractéristiques de basculement entre les deux états on et off. Les micro-commutateurs RF sont de plus en plus utilisés pour améliorer les fonctionnalités des circuits radiofréquence notamment utilisés dans les systèmes de télécommunication. Il s'agit d'obtenir de meilleures performances en termes de pertes, de bruit, de linéarité, de consommation. Ils sont aussi utilisés pour obtenir des fortes compacités de composants, et des coûts de fabrication les plus réduits possibles.
Il existe deux types de micro-commutateurs assurant une fonction de commutation de signal radiofréquence sur une ligne de transmission : les micro-commutateurs en série avec la ligne de transmission radiofréquence et les micro-commutateurs en parallèle avec la ligne de transmission radiofréquence. Lorsque les micro-commutateurs sont de type série, l'application d'une tension d'activation sous la membrane le fait passer d'un état de repos off, ouvert, à l'état on, fermé. La configuration d'un micro-commutateur en série avec une ligne radiofréquence est la suivante : la ligne est coupée dans la zone de commutation, au-dessus de laquelle on a la membrane. La membrane est isolée de la masse électrique. La membrane n'a pas à supporter la puissance radiofréquence sur toute sa surface, son rôle n'étant pas de court-circuiter le signal à la masse mais simplement de relier deux lignes entre elles par effet capacitif. Lorsque les micro-commutateurs sont de type parallèle, l'application d'une tension sur l'électrode de commande le fait passer d'un état de repos on, fermé, à un état off ouvert. La configuration d'un microcommutateur en parallèle avec une ligne radiofréquence est la suivante : la ligne RF n'est pas coupée dans la zone de commutation, au-dessus de laquelle on a la membrane. La membrane est reliée à la masse électrique et doit pouvoir supporter la puissance du signal radiofréquence.
Le fonctionnement est comme suit : en position de repos, le microcommutateur est à l'état on, fermé, ce qui se traduit par une capacité Coff très faible, qui n'influe pas sur la transmission de signal radiofréquence. Quand elle est à l'état bas, sous l'effet d'une tension d'activation sous la membrane, la capacité augmente dans un rapport important, 100 par exemple. Le condensateur induit alors une impédance suffisamment faible entre la ligne et la masse pour shunter la ligne radiofréquence à la masse électrique : le signal radiofréquence s'écoule alors depuis la ligne amenant le signal RF, vers la masse électrique via la membrane. Les deux portions de lignes, avant et après la membrane, sont alors isolées : le microcommutateur est à l'état off.
Les principaux avantages de ces types de micro-commutateurs série ou parallèle sont essentiellement : • Les techniques de réalisation, qui sont dérivées des technologies classiques de fabrication de circuits intégrés électroniques. Elles permettent de simplifier la réalisation et l'intégration et par conséquent, d'obtenir des coûts de fabrication faibles comparés à ceux d'autres technologies, tout en garantissant une fiabilité élevée ; • Les très faibles puissances électriques consommées, quelques nanojoules étant nécessaires à l'activation ;
• L'encombrement. On réalise ainsi un micro-commutateur dans une surface de l'ordre du dixième de millimètre carré, permettant d'atteindre une forte capacité d'intégration ;
• Les performances en utilisation hyperfréquence. Ce type de microcommutateur présente des pertes d'insertion très faibles, de l'ordre du dixième de déciBel, bien inférieures à celles de dispositifs assurant les mêmes fonctions. La recherche de vitesses de commutation plus élevées, de tenues en puissance RF plus importantes égales ou supérieures à la dizaine de watts, de fonctionnement large bande d'au moins 18 GigaHertz, de compacité la plus faible possible et toujours à moindre coût, de durée de vie toujours plus importantes (nombre de commutations), de l'ordre de 1011 au moins pour répondre à l'évolution et au besoin du marché, notamment de marchés civils comme par exemple la téléphonie portable, conduit à rechercher des structures et procédés de fabrication optimisés, les structures connues de micro-commutateurs répondant imparfaitement à ces besoins.
L'invention a ainsi pour objet une structure et un procédé de fabrication d'un micro-commutateur qui permettent de répondre à l'ensemble de ces différents besoins. Il s'applique aussi bien à un microcommutateur série que parallèle.
Telle que caractérisée l'invention concerne donc la structure d'un micro-commutateur radiofréquence ou hyperfréquence du type condensateur avec une première armature comportant une électrode de commande en tension disposée dans une zone de commutation entre une première ligne conductrice dite ligne signal d'entrée et une deuxième ligne conductrice dite ligne signal de sortie disposées dans le prolongement l'une de l'autre, séparées par la zone de commutation, une deuxième armature étant une membrane flexible disposée au-dessus de ladite zone de commutation, les deux armatures étant séparées par une épaisseur de vide ou de gaz et au moins une couche d'un matériau diélectrique, deux lignes de masse parallèles étant disposées de façon symétrique par rapport aux lignes signal, ladite structure étant réalisée sur un substrat isolant recouvert d'une couche de passivation. Selon l'invention, la structure est telle que : • ladite électrode de commande est formée sur ladite couche de passivation,
• ladite couche de matériau diélectrique est à forte permittivité relative supérieure à une centaine, et elle est déposée sur ladite électrode de commande, en sorte que suivant la direction des lignes d'entrée et de sortie, ledit matériau diélectrique ne repose que sur ladite électrode de commande et suivant la direction orthogonale, ledit matériau diélectrique déborde de chaque côté et vient en contact avec ladite couche de passivation du substrat,
• la membrane flexible est conductrice et comporte au moins une couche d'un matériau conducteur.
• au moins une couche d'isolant dans un matériau différent de celui de la couche de passivation sépare le niveau des lignes de masse du niveau des lignes signal.
Ledit matériau à forte permittivité est de préférence du PZT (Titanate Zirconium de Plomb, PbZrTiθ3).
Selon un mode de réalisation de l'invention, la membrane métallique comprend une couche inférieure d'un matériau résistif, typiquement un alliage Titane-Tungstène et une couche peu résistive, d'un matériau apte à supporter le stress mécanique, sélectionné parmi Al, Au, Cu, de préférence Al.
Pour une utilisation comme condensateur variable, dans laquelle on cherche à contrôler le déplacement de la membrane entre la position de repos et une position maximale entre le diélectrique et la position de repos, la membrane est formée d'une unique couche d'aluminium.
L'invention concerne aussi un procédé de fabrication d'un microcommutateur radiofréquence ou hyperfréquence d'un tel micro-commutateur sur un substrat isolant recouvert d'une couche de passivation, caractérisé en ce qu'il comporte au moins la succession d'étapes suivantes : a). Formation de l'électrode de commande; b). Formation du diélectrique, sur ladite électrode de commande, c). Dépôt sur toute la surface d'une première couche conductrice résistive et d'une deuxième couche conductrice peu résistive, et gravure de la deuxième couche, pour former les lignes signal d'entrée/sortie et des plots de contact, d). Dépôt sur toute la surface d'une couche d'isolant, dans un matériau différent de celui de la couche de passivation, puis ouverture sur les lignes signal, des plots de contact et sur le diélectrique, e). Dépôt sur toute la surface d'une première couche conductrice résistive et d'une deuxième couche conductrice peu résistive, et gravure de la deuxième couche, pour former les lignes de masse, f). Dépôt d'une épaisseur déterminée de résine sur toute la surface et recharge localisée à concurrence de la hauteur de résine du matériau de ladite deuxième couche conductrice peu résistive des lignes signal et de masse, g). Gravure localisée sous l'emplacement de la membrane de la première couche conductrice déposée à l'étape e). h). Formation de la membrane ; i). Libération de la membrane, par suppression de la couche de résine de l'étape f).
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre, donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :
• les figures 1a à 1c illustrent une structure de commutateur série selon l'invention; • les figures 2a à 2c illustrent une structure de commutateur parallèle selon l'invention;
• la figure 3a et les figures suivantes jusqu'à la figure 12 illustrent des étapes d'un procédé selon l'invention.
Une structure de micro-commutateur radiofréquence ou hyperfréquence selon l'invention est illustrée sur les figures 1a à 1d, pour un micro-commutateur de type série ou sur les figures 2a à 2c pour un microcommutateur de type parallèle.
Une structure selon l'invention comprend sur un substrat 1 recouvert d'une couche de passivation 2, une première ligne signal LS-IN et une deuxième ligne signal LS-OUT disposées dans le prolongement l'une de l'autre, séparées par une zone de commutation 10; une électrode de commande 3 dans la dite zone, un matériau diélectrique 4 à forte permittivité relative invariante en fréquence, disposé sur l'électrode de commande en sorte qu'entre les deux lignes signal, l'électrode de commande est plus large des deux côtés et dans la direction orthogonale, le diélectrique déborde des deux côtés de l'électrode de commande, et repose sur la couche de passivation; des lignes de masse parallèles, disposées de façon symétrique de part et d'autre des lignes signal et réalisées sur un niveau topologique séparé de celui des lignes signal par au moins une couche d'isolant 6 dans un matériau différent de celui de la couche de passivation,
Le matériau isolant est avantageusement du nitrure de silicium Si3N4.
Le matériau diélectrique est avantageusement du PZT dont la permittivité relative est égale à 150, et est indépendante de la fréquence, ce qui contribue à augmenter la largeur de la bande de fréquence de fonctionnement du micro-commutateur. En outre, le PZT qui a une structure monocristalline résiste bien aux puissances RF significatives.
On va décrire plus en détail une structure de micro-commutateur de type série. La figure 1a représente une vue de dessus d'un tel microcommutateur et les figures 1b et 1c sont des vues en coupe respectivement suivant AA, et suivant BB.
Cette structure est réalisée par superposition de couches sur un substrat de base 1 , typiquement un substrat silicium hautement résistif, recouvert d'une couche de passivation 2, typiquement de l'oxyde de silicium SiO2.
Elle comprend deux lignes signal LS-IN et LS-OUT disposées coplanaires dans le prolongement l'une de l'autre, séparées par une zone de commutation 10. Dans la zone de commutation, une électrode de commande 3 est réalisée entre les deux lignes signal, en deux parties isolées électriquement : chaque partie contacte une ligne signal. Un diélectrique 4 à forte permittivité relative supérieure à une centaine et invariante avec la fréquence est déposé sur l'électrode de commande 3. Il a une forme telle que dans la direction suivant les lignes signal, l'électrode de commande est plus large des deux côtés, et dans la direction orthogonale, il déborde de chaque côté de l'électrode de commande 3, sur la couche de passivation 2.
Le diélectrique 4 doit permettre de répondre aux contraintes de fortes puissances radiofréquences ou hyperfréquences : en transmission à l'état on, passant (membrane en position infléchie vers le bas, au contact du diélectrique), et en isolation à l'état off ou ouvert (membrane en position haute initiale).
Le diélectrique 4 est de préférence du PZT, qui combine les avantages d'avoir une forte permittivité relative supérieure à la centaine (typiquement 150), invariante avec la fréquence, de pouvoir travailler en hyperfréquence, jusqu'à 100 GigaHertz, et de supporter la puissance, du fait de sa nature monocristalline.
En pratique, le gap séparant les deux parties de l'électrode de commande a une largeur g de l'ordre de 10 microns. La coupure entre les deux parties peut être à section droite. Elle est avantageusement telle que les deux parties sont interdigitées. De manière connue, une telle forme permet d'augmenter significativement la capacité diélectrique du condensateur formé par la membrane m, l'électrode de commande 3 et le diélectrique 4. De préférence, l'électrode de commande est réalisée dans un alliage Titane Platine surmontée d'une couche Platine/Or et ce pour des besoins technologiques.
La membrane m repose à chaque extrémité, sur un pilier conducteur 5a, 5b. Il est aussi possible de n'envisager qu'un seul pilier conducteur sur les deux qui soutiennent la membrane.
Des lignes de masse LM 1 et LM2 sont réalisées sur la même face du susbtrat que les lignes signal LS-IN et LS-OUT. Ces lignes de masse coplanaires sont réalisées sur un niveau topologique séparé du niveau des lignes signal d'entrée/sortie par une couche d'isolant 6, dans un matériau différent de celui utilisé pour la couche de passivation. De cette façon, on est certain qu'il ne se produira pas de court-circuit entre une ligne signal et une ligne de masse, via le substrat. Cela a pour effet technique que la structure de micro-commutateur selon l'invention peut monter très haut en fréquence, typiquement jusqu'à au moins 100 GigaHertz. L'isolant utilisé est avantageusement du nitrure de silicium. Les piliers, les lignes signal et les lignes de masse comprennent typiquement une première couche conductrice d'accroché, résistive, représentée en noir épais sur les figures 4b et 4c et une deuxième couche peu résistive, typiquement de l'or. La première couche est suffisamment résistive pour empêcher la propagation d'un signal radiofréquence ou hyperfréquence. C'est typiquement une couche de Titane tungstène, de préférence à 80% de Titane et 20% de tungstène à 1 ou 2% près, par lequel les meilleures performances radiofréquences et hyperfréquences sont obtenues. La couche de titane-tungstène 7 des lignes signal et des piliers sert aussi à la réalisation de lignes de connexion par lesquelles, une tension d'activation du micro-commutateur peut être appliquée dans la zone de commutation. En pratique, au moins un plot de contact (non illustré sur les figures 4a à 4c) est réalisé de la même façon que la ligne signal et les piliers, sur les mêmes niveaux topologiques et une ligne de connexion est réalisée entre ce plot et au moins une ligne signal. De préférence le plot de contact est relié aux deux lignes signal LS-IN et LS-ouτ, en sorte que la tension se retrouve sur les deux parties de l'électrode de commande 3. La disposition en doigts interdigités permet d'avoir une partie métallique sensiblement au milieu sous la membrane. Ces deux caractéristiques combinées permettent d'obtenir un champ électrostatique maximum sensiblement au milieu de la membrane, ce qui assure des temps de commutation on et off optimum. La membrane conductrice comprend : -une couche conductrice d'accroché, résistive, typiquement en titane-tungstène, faisant face à la zone de commutation. Cette couche est suffisamment résistive pour empêcher la propagation d'un signal radiofréquence ou hyperfréquence. Le titane tungstène a de préférence une proportion de 80 % de titane et 20% de tungstène à 1 ou 2 % près, comme indiqué précédemment; -et une couche très conductrice. Ce peut être un diélectrique. De préférence, on choisit un matériau métallique, sélectionné parmi, Al, Cu et Au, pour leur faible résistivité électrique et leur capacité à résister à un stress mécanique supérieur à 30 mégapascals : la membrane doit pouvoir se déformer pour venir en contact du diélectrique 4 sans se casser (état on), et revenir dans son état initial (état off). De préférence, c'est l'aluminium qui est utilisé, par lequel les meilleurs résultats sont obtenus en terme de rapidité de commutation et de résistance au stress mécanique.
La membrane est réalisée sous forme d'une grille, c'est à dire qu'elle présente des trous qui la traversent de part en part. Cette configuration contribue à faciliter la réalisation de la membrane, comme on verra en relation avec le procédé de fabrication, car il facilite le passage de solvants ou de gaz pour supprimer la couche de résine sacrificielle qui sert de support plan pour réaliser la membrane. Cette configuration contribue aussi à améliorer la flexibilité de la membrane. Enfin, la forme de grille est de manière bien connue une forme performante dans le domaine radiofréquence et hyperfréquence.
Dans un mode de réalisation préféré, le micro-commutateur série a les caractéristiques de dimensionnement suivantes :
La section des lignes signal a une largeur Is de 80 microns, et la distance d séparant de chaque côté la ligne signal de la ligne de masse est de 120 microns.
La couche d'or e9 des lignes signal et des piliers a une épaisseur de l'ordre de 3 microns. L'électrode de commande a une épaisseur de l'ordre de 0,7 microns. L'épaisseur des lignes de masse n'est pas un paramètre important. Elle est sensiblement égale à celle des lignes signal, de 0.2 à 0.4 microns près, la différence négligeable découlant du processus technologique. La couche 4 de PZT a une épaisseur e4 inférieure au micron, par exemple 0,4 micron. La largeur du débord de chaque côté sur le diélectrique est de l'ordre de 20 microns. La partie mobile de la membrane, c'est à dire hors piliers, s'inscrit dans un parallélépipède rectangle, dont les dimensions sont avantageusement : une largeur Im de 100 microns, suivant la direction des lignes signal, et une longueur wm entre les deux piliers, de l'ordre de 280 microns. L'épaisseur totale em de la membrane est de l'ordre de 0,7 microns, la première couche de titane tungstène étant d'épaisseur inférieure à la deuxième couche. Dans un exemple la couche de titane tungstène a une épaisseur de 0.2 microns.
La structure d'un micro-commutateur parallèle selon l'invention est illustrée sur les figures 2a (vue de dessus), 2b et 2c (vues en coupes suivant respectivement AA et BB), qui utilisent les mêmes références que dans les figures 1 a à 1 c. La structure est sensiblement identique à celle du micro-commutateur série. Les différences tiennent aux spécificités du type parallèle par rapport au type série. Notamment, la membrane reposant directement sur les lignes de masse, il n'y a pas de piliers 5a, 5b, et l'électrode de commande a une forme continue et contacte de chaque côté une ligne signal. Pour ces raisons, la description précédente faite en relation avec les figures 1 a à 1 c s'applique de la même manière, avec les réserves qui viennent d'être faites. Les caractéristiques de dimensionnement préférées d'un microcommutateur parallèle selon l'invention sont identiques à celles indiquées précédemment pour la structure série.
Dans une variante applicable aussi bien au mode série que parallèle, la membrane est réalisée par une unique couche d'aluminium, de préférence avec une épaisseur de l'ordre de 2,5 microns, permettant de réaliser un condensateur à capacité variable, la tension d'activation définissant alors la valeur de la capacité, comme une fonction du déplacement imposé à la membrane.
Les micro-commutateurs série et parallèle selon l'invention ont de bonnes performances radiofréquences et hyperfréquences notamment pour la transmission de signaux de puissance radiofréquence ou hyperfréquence significative, de l'ordre de la dizaine de watts au moins.
Un procédé de fabrication d'un micro-commutateur avantageusement utilisé dans l'invention, tel que décrit en relation avec les figures 3a à 3c va maintenant être décrit. Il est illustré par les figures 10 a et suivantes, qui en montrent différentes étapes.
Au préalable chaque élément conducteur : lignes signal, lignes de masse, plots de contact, membrane sont réalisées par une première couche conductrice très résistive et une deuxième couche conductrice peu résistive.
De préférence, la première couche est un alliage de titane tungstène dans une proportion de 80% de titane et 20% de tungstène à 1 ou 2 % près, et la deuxième couche est de l'or, ce choix ayant permis d'obtenir les meilleures performances. Dans la description des étapes du procédé, par simplicité, on parle directement de titane tungstène et d'or, mais d'autres matériaux comme du cuivre et de l'aluminium par exemple, pourraient être utilisés sans sortir du cadre de l'invention.
Etape 1 , figures 3a (vue de dessus) et 3b (coupe suivant X). On a un substrat 100, de préférence du silicium hautement résistif (ou du GaAs, GaN... ). On dépose sur ce substrat 100 une couche de passivation en oxyde de silicium SiÛ2 (permittivité relative 4). On réalise l'électrode de commande 102, avec sa forme en deux parties isolées a, b, de préférence comme illustré, interdigitées. La largeur g du gap entre les deux parties est typiquement 10 microns. L'électrode de commande est par exemple réalisée dans un alliage Titane/Platine surmontée d'une couche Or/Platine.
Etape 2, figures 4a et 4b. Le diélectrique PZT 103 est formé sur l'électrode de commande suivant la forme prescrite, typiquement par un procédé de type sol-gel ou par pulvérisation cathodique : plus étroite suivant la direction Ds des lignes signal et plus large des deux côtés suivant la direction orthogonale, venant reposer sur la couche 101 de passivation.
Etape 3, figures 5a (vue de dessus) et 5b (coupe suivant YY'). Formation des lignes signal LS-IN et LS-OUT , des plots de contact Pc, et des piliers Pl, par dépôt d'une couche de Titane/tungstène 104, dépôt et gravure d'une couche d'or 105. La couche en surface est alors la couche 104. Etape 4, figures 6a et 6b : gravure de la couche 104 de titane/tungstène, pour former des lignes de connexion, entre un plot de contact entre une ou les deux lignes signal (pour amener une tension d'activation sur une ou les deux parties de l'électrode de commande), et un plot de contact et un pilier, ce qui permet de mettre la membrane à un potentiel de référence (une masse électrique, qui n'est pas la masse du circuit microcommutateur). On retrouve comme couche de surface, en dehors des éléments réalisés, la couche de passivation 101.
Etape 5, Figures 7a et 7b. Dépôt de la couche d'isolant en nitrure de silicium Si3N4, puis ouverture O sur les lignes signal, et les plots de contact, les piliers et le diélectrique 103, suivant les pointillés. La couche de surface est cette couche 106 d'isolant.
Etape 6, Figures 8a et 8b. Dépôt d'une couche 107 de Titane/tungstène et dépôt et gravure d'une couche d'or 109, pour former les lignes de masse LM1 et LM2. La couche de surface est la couche 107 de Titane/tungstène. Etape 7, figures 9a et 9b. Retrait localisé de Titane tungstène dans une zone f sous l'emplacement de la membrane.
Etape 8, figure 10. Recharge localisée d'or, par dépôt préalable de résine sur toute la surface et par injection de courant via les plots de contact et les lignes de connexion. La hauteur d'or ainsi obtenue est contrôlée par l'épaisseur de résine. En pratique l'épaisseur (ou la hauteur) d'or des lignes signal et des piliers atteint 3 microns. L'épaisseur des lignes de masse est sensiblement égale, avec en pratique une différence négligeable de l'ordre de 0,2 à 0,4 microns près (en moins). La résine permet d'atteindre le même niveau partout, ce qui assure la planéité de la membrane qui est réalisée à l'étape suivante.
Etape 9, Figures 11a et 11 b. Formation de la membrane par dépôt de titane tungstène puis dépôt d'Aluminium (ou Or, ou Cuivre), et gravure de la membrane. De préférence, on a une épaisseur de titane tungstène de 0,2 microns et une épaisseur d'Or de 0,5 microns. Pour un micro-commutateur utilisé comme condensateur variable comme dans le circuit d'adaptation d'impédance, cette étape 10 comprend le dépôt d'une seule couche, en aluminium, avec une épaisseur de l'ordre de 2,5 microns et gravure.
Etape 10, Figure 12 : libération de la membrane par élimination de la couche de résine de l'étape 8, par exemple par solvants. Cette opération est facilitée par une membrane qui est percée de trous. Une telle structure de membrane a en outre pour effet de rendre la membrane moins rigide, ce qui contribue à améliorer la latence.
Ce procédé s'applique également pour les commutateurs de type parallèle qui diffèrent des micro-commutateurs série simplement en ce qu'il n'y a pas de piliers, la membrane reposant directement sur les lignes de masse, et par la forme continue, sans coupure de l'électrode de commande entre les deux lignes signal.
La succession des étapes du procédé qui vient d'être décrit, conduit à une structure de micro-commutateur dont les performances radiofréquences en transmission, isolation, temps de commutation, la durée de vie, la largeur de la bande de fréquence sont sensiblement améliorées.

Claims

REVENDICATIONS
1. Structure d'un micro-commutateur radiofréquence ou hyperfréquence du type condensateur avec une première armature comportant une électrode de commande en tension (3) disposée dans une zone de commutation (10) entre une première ligne conductrice dite ligne signal d'entrée (LS-IN) et une deuxième ligne conductrice dite ligne signal de sortie (LS-ouτ) disposées dans le prolongement l'une de l'autre, séparées par la zone de commutation (10), une deuxième armature étant une membrane (m) flexible disposée au-dessus de ladite zone de commutation, les deux armatures étant séparées par une épaisseur de vide ou de gaz et au moins une couche d'un matériau diélectrique, deux lignes de masse (LM1 , LM2) parallèles étant disposée de façon symétrique par rapport aux lignes signal, ladite structure étant réalisée sur un substrat isolant (1) recouvert d'une couche de passivation (2), caractérisée en ce que : • ladite électrode de commande (3) est formée sur ladite couche de passivation (2),
• ladite couche de matériau diélectrique (4) est à forte permittivité relative supérieure à une centaine, et elle est déposée sur ladite électrode de commande (3), en sorte que suivant la direction des lignes d'entrée et de sortie, ledit matériau diélectrique ne repose que sur ladite électrode de commande et suivant la direction orthogonale, ledit matériau diélectrique déborde de chaque côté et vient en contact sur ladite couche de passivation (2) du substrat, • la membrane flexible est conductrice et comporte au moins une couche d'un matériau conducteur,
• au moins une couche d'isolant (8) dans un matériau différent de celui de la couche de passivation (2) sépare le niveau des lignes de masse du niveau des lignes signal.
2. Structure selon la revendication 1 , caractérisée en ce que ledit diélectrique (4) est du PZT.
3. Structure selon la revendication 1 ou 2 caractérisée en ce que ledit isolant (8) est du nitrure de silicium Si3N4.
4. Structure de micro-commutateur selon la revendication 1 ou 2, caractérisée en ce que l'épaisseur des lignes signal est de l'ordre de 3 microns, et l'épaisseur de l'électrode de commande est de l'ordre de
0,7 micron.
5. Structure de micro-commutateur selon la revendication 1 ou 2, caractérisée en ce que les lignes signal et les lignes de masse comprennent une couche inférieure très résistive et une couche supérieure peu résistive.
6. Structure de micro-commutateur selon l'une des revendications précédentes, caractérisée en ce que la membrane comprend une couche inférieure (m1) très résistive, face à l'électrode de commutation en titane tungstène, et une couche supérieure dans un matériau sélectionné parmi Al, Cu, Au.
7. Structure selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la membrane est formée d'une unique couche d'aluminium avec une épaisseur de l'ordre de 2,5 microns, pour une utilisation comme condensateur variable.
8. Structure de micro-commutateur selon la revendication 5 ou 6, caractérisée en ce que ladite couche inférieure est une couche de titane tungstène étant un alliage dans une proportion à 80% de titane et 20% de tungstène à 1 ou 2% près.
9. Structure de micro-commutateur selon la revendication 6, caractérisée en ce que l'épaisseur totale de la membrane est de l'ordre de 0,7 microns, l'épaisseur de la couche supérieure étant de l'ordre de 0,5 microns.
10. Structure de micro-commutateur selon l'une des revendications précédentes, caractérisée en ce que l'épaisseur de diélectrique (4) est de l'ordre de 0,4 microns.
11. Structure de micro-commutateur selon l'une quelconque des revendications précédentes, caractérisée en ce que la largeur (Is) des lignes signal est de 80 microns, et la distance (d) à chaque ligne de masse, de 120 microns.
12. Structure de micro-commutateur de type série selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite électrode de commande (3) comprend au moins deux parties séparées, chacune en contact avec une des lignes signal, une zone de gap entre les deux parties étant située sensiblement au milieu de la zone de commutation et en ce que la dite membrane (m) repose à chaque extrémité sur un pilier (5a, 5b) disposé entre les lignes signal et une ligne de masse.
13. Structure selon la revendication 12, caractérisée en ce que lesdites parties de l'électrode de commande sont interdigitées,
14. Structure de micro-commutateur de type parallèle selon l'une quelconque des revendications 1 à 1 1 , la membrane reposant à chaque extrémité sur une ligne de masse et l'électrode de commande ayant une forme unitaire connectant de chaque côté les lignes signal.
15. Structure selon l'une des revendications 1 1 à 13, caractérisée en ce que la partie de la membrane hors des piliers s'inscrit sensiblement dans un parallélépipède rectangle ayant une longueur entre les piliers de l'ordre de 280 microns, et une largeur de l'ordre de 100 microns.
16. Structure selon l'une des revendications 12 à 15, caractérisée en ce que la longueur de chaque débord du diélectrique (4) sur la couche de passivation (2) est de l'ordre de 20 microns.
17. Procédé de fabrication d'un micro-commutateur radiofréquence ou hyperfréquence selon la revendication 1 sur un substrat isolant (100) recouvert d'une couche de passivation (101), caractérisé en ce qu'il comporte au moins la succession d'étapes suivantes :
• a). Formation de l'électrode de commande (102);
• b). Formation du diélectrique (103), sur la dite électrode de commande,
• c). Dépôt sur toute la surface d'une première couche conductrice résistive (104) et d'une deuxième couche conductrice peu résistive (105) , et gravure de la deuxième couche, pour former les lignes signal d'entrée/sortie et des plots de contact,
• d). Dépôt sur toute la surface d'une couche d'isolant (106), dans un matériau différent de celui de la couche de passivation (102), puis ouverture sur les lignes signal, des plots de contact (105) et sur le diélectrique (103),
• e). Dépôt sur toute la surface d'une première couche conductrice résistive (107) et d'une deuxième couche conductrice peu résistive (108), et gravure de la deuxième couche, pour former les lignes de masse,
• f).Dépôt d'une épaisseur déterminée de résine sur toute la surface et recharge localisée à concurrence de la hauteur de résine du matériau (Au) de ladite deuxième couche conductrice peu résistive (105, 108) des lignes signal et de masse,
• g).Gravure localisée sous l'emplacement de la membrane de la première couche conductrice (107) déposée à l'étape e).
• h). Formation de la membrane (m)
• i). Libération de la membrane, par suppression de la couche de résine de l'étape f).
18. Procédé de réalisation selon la revendication 17, caractérisé en ce que la couche de matériau diélectrique est déposée par un procédé sol-gel ou à pulvérisation cathodique.
19. Procédé de réalisation selon la revendication 17, caractérisé en ce que la membrane est percée de trous.
20. Procédé de réalisation selon les revendications 17 à 19 pour un microcommutateur de type série, caractérisé en ce qu'à l'étape c) des piliers sont aussi formés, auxquels s'appliquent l'étape f) de recharge localisée, la membrane formée à l'étape i) reposant à chaque extrémité sur lesdits piliers.
PCT/EP2007/055358 2006-05-31 2007-05-31 Structure de micro-commutateurs radiofrequence ou hyperfrequence et procede de fabrication d'une telle structure WO2007138102A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/302,525 US7960662B2 (en) 2006-05-31 2007-05-31 Radiofrequency or hyperfrequency micro-switch structure and method for producing one such structure
EP07729759A EP2024986B1 (fr) 2006-05-31 2007-05-31 Structure de micro-commutateurs radiofrequence ou hyperfrequence et procede de fabrication d'une telle structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0604858A FR2901781B1 (fr) 2006-05-31 2006-05-31 Structure de micro-commutateurs radiofrequence ou hyperfrequence et procede de fabrication d'une telle structure
FR06/04858 2006-05-31

Publications (1)

Publication Number Publication Date
WO2007138102A1 true WO2007138102A1 (fr) 2007-12-06

Family

ID=37745597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/055358 WO2007138102A1 (fr) 2006-05-31 2007-05-31 Structure de micro-commutateurs radiofrequence ou hyperfrequence et procede de fabrication d'une telle structure

Country Status (4)

Country Link
US (1) US7960662B2 (fr)
EP (1) EP2024986B1 (fr)
FR (1) FR2901781B1 (fr)
WO (1) WO2007138102A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187627A (zh) * 2013-03-11 2013-07-03 华南理工大学 一种共面波导馈电的方向图可重构平面单极子天线
US8665579B2 (en) 2008-02-20 2014-03-04 Fujitsu Limited Variable capacitor, matching circuit element, and mobile terminal apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930370B1 (fr) * 2008-04-18 2011-08-26 Thales Sa Composants microsystemes comportant une membrane comprenant des nanotubes.
FR2952048B1 (fr) * 2009-11-03 2011-11-18 Thales Sa Micro-commutateur capacitif comportant un drain de charges a base de nanotubes orientes sur l'electrode basse et procede de fabrication
KR101192412B1 (ko) * 2011-04-08 2012-10-18 주식회사 멤스솔루션 Rf 멤스 스위치 소자 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031819A1 (fr) * 1998-11-25 2000-06-02 Raytheon Company Procede et appareil de commutation de signaux haute frequence
FR2841389A1 (fr) * 2002-06-21 2003-12-26 Thales Sa Cellule dephaseuse pour reseau reflecteur d'antenne
FR2845075A1 (fr) * 2002-09-27 2004-04-02 Thales Sa Microcommutateurs a actuation electrostatique a faible temps de reponse et commutation de puissance et procede de realisation associe
DE10342938A1 (de) * 2003-09-17 2005-04-21 Bosch Gmbh Robert Bauteil zu Impedanzänderung bei einem koplanaren Wellenleiter sowie Verfahren zu Herstellung eines Bauelements

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619061A (en) * 1993-07-27 1997-04-08 Texas Instruments Incorporated Micromechanical microwave switching
US6657832B2 (en) * 2001-04-26 2003-12-02 Texas Instruments Incorporated Mechanically assisted restoring force support for micromachined membranes
US6426687B1 (en) * 2001-05-22 2002-07-30 The Aerospace Corporation RF MEMS switch
US6791441B2 (en) * 2002-05-07 2004-09-14 Raytheon Company Micro-electro-mechanical switch, and methods of making and using it
US6621022B1 (en) * 2002-08-29 2003-09-16 Intel Corporation Reliable opposing contact structure
FR2845705B1 (fr) 2002-10-15 2005-05-27 Ineo Reseaux Haute Tension Procede pour renforcer les fondations d'un pylone
KR100492004B1 (ko) * 2002-11-01 2005-05-30 한국전자통신연구원 미세전자기계적 시스템 기술을 이용한 고주파 소자
US7084724B2 (en) * 2002-12-31 2006-08-01 The Regents Of The University Of California MEMS fabrication on a laminated substrate
KR100619110B1 (ko) * 2004-10-21 2006-09-04 한국전자통신연구원 미세전자기계적 스위치 및 그 제조 방법
JP4580826B2 (ja) * 2005-06-17 2010-11-17 株式会社東芝 マイクロメカニカルデバイス、マイクロスイッチ、容量可変キャパシタ、高周波回路及び光学スイッチ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031819A1 (fr) * 1998-11-25 2000-06-02 Raytheon Company Procede et appareil de commutation de signaux haute frequence
FR2841389A1 (fr) * 2002-06-21 2003-12-26 Thales Sa Cellule dephaseuse pour reseau reflecteur d'antenne
FR2845075A1 (fr) * 2002-09-27 2004-04-02 Thales Sa Microcommutateurs a actuation electrostatique a faible temps de reponse et commutation de puissance et procede de realisation associe
DE10342938A1 (de) * 2003-09-17 2005-04-21 Bosch Gmbh Robert Bauteil zu Impedanzänderung bei einem koplanaren Wellenleiter sowie Verfahren zu Herstellung eines Bauelements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAMIE YAO ET AL: "Micromachined Low-Loss Microwave Switches", IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 8, no. 2, June 1999 (1999-06-01), XP011034850 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8665579B2 (en) 2008-02-20 2014-03-04 Fujitsu Limited Variable capacitor, matching circuit element, and mobile terminal apparatus
CN103187627A (zh) * 2013-03-11 2013-07-03 华南理工大学 一种共面波导馈电的方向图可重构平面单极子天线

Also Published As

Publication number Publication date
FR2901781B1 (fr) 2008-07-04
US7960662B2 (en) 2011-06-14
EP2024986A1 (fr) 2009-02-18
US20090236211A1 (en) 2009-09-24
EP2024986B1 (fr) 2012-06-27
FR2901781A1 (fr) 2007-12-07

Similar Documents

Publication Publication Date Title
EP2022129B1 (fr) Circulateur radiofrequence ou hyperfrequence
EP1639613B1 (fr) Micro-commutateur bistable a faible consommation
EP2024986B1 (fr) Structure de micro-commutateurs radiofrequence ou hyperfrequence et procede de fabrication d'une telle structure
EP1543535B1 (fr) Procédé de réalisation des microcommutateurs a actuation electrostatique a faible temps de reponse et a commutation de puissance
FR2895390A1 (fr) Boitier avec fonction accordable en frequence
EP3465724B1 (fr) Membrane mems à ligne de transmission intégrée
EP0044758B1 (fr) Dispositif de terminaison d'une ligne de transmission, en hyperfréquence, à taux d'ondes stationnaires minimal
FR2831705A1 (fr) Micro-condensateur variable a fort rapport et faible tension d'actionnement
FR2815774A1 (fr) Resonateur electrique
EP1565921B1 (fr) Micro-commutateur electrostatique pour composant a faible tension d'actionnement
EP1536439B1 (fr) Composant incluant un condensateur variable
JP3374804B2 (ja) 移相器およびその製造方法
EP1565922B1 (fr) Micro-commutateur electrostatique pour composant a faible tension d'actionnement
FR2864951A1 (fr) Dispositif de type microsysteme electromecanique a film mince piezoelectrique
CA3024836C (fr) Commutateur variable microelectromecanique radiofrequence
FR2835963A1 (fr) Micro-composant du type micro-interrupteur et procede de fabrication d'un tel micro-composant
EP2648335B1 (fr) Limiteur de puissance hyperfréquence à commutateurs MEMS radiofréquences capacitifs
EP2603448B1 (fr) Microsystemes electromecaniques a gaps d'air
FR2930370A1 (fr) Composants microsystemes comportant une membrane comprenant des nanotubes.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07729759

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007729759

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12302525

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE